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Abstract

The introduction of the “fetal programming hypothesis,” first in epidemiology, 

subsequently in a broad range of disciplines concerned with developmental biology, has 

generated new interest in phenotypic plasticity, the mechanisms that govern it, and its 

place in evolutionary biology.  A number of epidemiological studies link small size at 

birth, assumed to be a consequence of constrained prenatal energy availability, with 

adverse effects on the risk of chronic diseases later in life.  The cluster of chronic diseases 

associated with the metabolic syndrome and alterations of glucose metabolism are 

particularly implicated. Recent evidence suggests that epigenetic modification of gene 

expression affecting the hypothalamic-pituitary-adrenal (HPA) axis may be involved in 

these effects.  In animal studies epigenetic alteration of HPA axis activity and 

responsiveness is associated with changes in adult behavior and stress responsiveness. 

The potential for similar effects to contribute to psychological and psychiatric outcomes 

has been explored in a number of contexts, including famine exposure, observed 

covariance with birth weight, and prenatal dexamethasone treatment of fetuses at risk of 

congenital adrenal hyperplasia.  While fetal programming effects have now been widely 

demonstrated across species and human populations, the adaptive significance of these 

effects is still a matter of debate.  



Life is integrated, cumulative, and continuous, not episodic, static, or discrete. 

Behavioral scientists rarely forget this, but biologists often do.  Developmental biology is 

the one domain of the life sciences where the organism as a progressively unfolding 

phenomenon is a central concept.  The reemergence of developmental biology as a 

vigorous discipline, intersecting in important ways with genetics (Badayev, 2008), 

evolution (West-Eberhard, 2003), and epidemiology (Barker, 1994; Gluckman and 

Hanson, 2006; Kuh, Ben-Shlomo, Lynch, Hallqvist, and Power, 2003), has injected new 

energy and new ideas into all those fields.  Within epidemiology a seminal impact of this 

new attention to developmental biology has been in the formulation of the “fetal 

programming hypothesis,” also known as the “fetal origins hypothesis,” or, more 

generally, as the “developmental origins of health and disease” (DOHaD).  Simply put, 

this hypothesis suggests that conditions very early in development, even in utero, can 

leave lasting imprints of an organism’s physiology, imprints that may affect susceptibility 

to diseases with onsets that may occur many decades later (Barker, Eriksson, Forsen, and 

Osmond, 2002; Gluckman and Hanson, 2005).  

The concept of fetal programming is, of course, not new. Behavioral 

endocrinologists and neuroscientists, for example, have long recognized “organizational 

effects” of prenatal androgen hormones in “programming” certain aspects of reproductive 

axis function and reproductive behavior that emerges later in an animal’s life (Nelson, 

2005).  “Critical periods” in development, including fetal development, are familiar 



concepts in psychology even as they are in biology.  So rather than being a radically new 

concept, the ascendancy of the fetal programming hypothesis should be seen as 

representing a new appreciation for these kinds of effects together with a deeper 

understanding of the mechanisms that produce them and the significance they may play 

for individuals and species.

The question of the potential adaptive significance of fetal programming is an 

important one, both theoretically and practically.  It affects the way in which the 

phenomena clustered under the DOHaD aegis are integrated in a broader context of 

evolutionary biology and the practical responses and interventions that might be made to 

affect health outcomes (Gluckman et al., in press).  It is a question that is still keenly 

debated, however (Ellison and Jasienska, 2007; Jones, 2005; Kuzawa, 2005; Worthman 

and Kuzara, 2005).

The purpose of this paper is to briefly review the fetal programming hypothesis 

and the mechanisms thought to underlie it, to position the hypothesis in relation to 

psychological outcomes, and to comment on the theoretical framework that some have 

proposed to unite the hypothesis with cotemporary evolutionary theory.  There is only 

space for brief review of these topics.  Other, more extensive reviews of various aspects 

of the fetal programming hypothesis and its implications may be found in (Bateson et al., 

2004; Gluckman, Hanson, Cooper, and Thornburg, 2008).

Fetal programming in human epidemiology



The fetal programming hypothesis in its contemporary form was stimulated by the 

work of Barker and colleagues who reported that rates of ischemic heart disease in 

England and Wales were more closely related to mortality conditions when heart patients 

were born than to recent conditions (Barker, Winter, Osmund, Margetts, and Simmonds, 

1989).  This led to hypothesis that maternal conditions in the prenatal period might have 

an important impact on the emergence of later vascular disease, and to the use of size at 

birth as a proxy for prenatal conditions (Barker, Osmond, Golding, Kuh, and Wadsworth, 

1989).  The relationship between size or relative thinness at birth and the risk of a group 

of chronic diseases including heart and vascular diseases, adult-onset diabetes, and the 

cluster of conditions known as the “metabolic syndrome” has since been observed in 

numerous different populations (Barker, 1995; Eriksson, Forsen, Tuomilehto, Osmond, 

and Barker, 2000; Eriksson, Wallander, Krakau, Wedel, and Svardsudd, 2004; Ismail-

Beigi, Catalano, and Hanson, 2006; Rich-Edwards et al., 1999; Rich-Edwards et al., 

2005).  The effect of birth size is not simply a confounded effect of postnatal conditions, 

but it does interact with them to influence chronic disease outcomes.  Thus, in several 

studies, small size at birth followed by rapid postnatal growth has been associated with 

the greatest risk for the cardiovascular-metabolic cluster of chronic diseases (Bahargava 

et al., 2004; Barker, Osmond, Forsen, Kajantie, and Eriksson, 2005; Ong, 2006). 

The effects associated with birth size are not trivial.  British babies under 6 

pounds at birth, for example, are at a five-fold greater risk of type II diabetes as adults 

even after adjusting for adult body mass index (Barker, 1995).  Given the interaction 



between prenatal and postnatal conditions in influencing risk and the rapid rate at which 

environmental, and particularly nutritional, conditions are changing throughout the world, 

the fetal programming hypothesis has particularly worrisome public health implications 

(Gluckman and Hanson, 2008; Gluckman et al., In press).  Studies of migrant populations 

from developing to developed countries indicate that a dramatic shift in the nutritional 

environment between gestation, childhood, and adult life may underlie the elevated risk 

for heart disease and diabetes that such populations face (Barnett et al., 2006; Beaulieu et 

al., 2007; Candib, 2007; Daryani et al., 2005; Dwivedi, Agarwal, Suthar, and Dwivedi, 

2004; Foucan et al., 2006; Lob-Corzilius, 2007; Misra and Misra, 2003; Misra and 

Vikram, 2004; Misra, Endemann, and Ayer, 2005; Pousada et al., 2006; Schwingel et al., 

2007; Trayhurn, 2005; Tull, Thurland, and LaPorte, 2005).  Rapid nutritional transitions 

in the developing world may be accompanied by similar increase in chronic disease 

burden, if the fetal programming principle holds true.

The public health implications of the fetal programming hypothesis have 

motivated a large number of studies into the mechanisms that underlie the association 

between prenatal conditions and the cardiovascular-metabolic cluster of chronic diseases. 

One suggestion made by Baker and colleagues is that insufficient energy during fetal 

development might result in biased portioning of available energy designed to buffer 

brain development (D. J. Barker et al., 2002).  The development of other organs, 

including kidneys, pancreas, and adipose tissue might be compromised instead.  Small 

babies have fewer nephrons in their kidneys (Brenner and Chertow, 1993; Mackenzie and 

Brenner, 1995) and fewer beta cells in their pancreases (Breant, Gesina, and Blondeau, 



2006), and lower fat cell number (Breant et al., 2006) than their larger at birth peers, 

supporting this notion.  Many of the deleterious adult outcomes of small birth size, 

however, appeared to be related to altered insulin sensitivity and activity of the 

hypothalamic-pituitary-adrenal (HPA) axis (Fowden and Hill, 2001; Phillips, Barker, 

Hales, Hirst, and Osmond, 1994; Symonds, Budge, Stephenson, and Gardner, 2005). 

Both of these systems are key modulators of energy metabolism.  Considerable attention 

has been focused, therefore on the degree to which insulin sensitivity and HPA axis 

reactivity may be established in utero, the potential for maternal nutritional status to 

affect these aspects of metabolic physiology, and the cellular mechanisms by which these 

effects are mediated.

Epigenetic programming of energy metabolism

The term “epigenetics” refers to non-heritable modifications of genetic material in 

somatic cells that persist through the process of mitotic cell division.  Epigenetic 

modification of gene expression has recently been identified as a likely mechanism 

underlying fetal programming of metabolic set-points and sensitivities (Godfrey, 

Lillycrop, Burdge, Gluckman, and Hanson, 2007; Lillycrop et al., 2007).  Epigenetic 

mechanisms effect quasi-permanent changes in the gene expression patterns of different 

tissues and are a key part of cellular differentiation during normal embryogenesis and 

fetal development.  Among the specific processes that have been identified are histone 

acetylation, DNA methylation, and micro-RNA inhibition of gene translation (Baek et al., 

2008; Goldberg, Allis, and Bernstein, 2007) (Figure 1).  Histones are structural proteins 



that organize the tightly coiled packaging of nuclear chromosomes.  When acetyl groups 

are attached to specific lysine residues of histone molecules, the binding of DNA to those 

histones is modified making the neighboring regions available for transcription.  The de-

acetylation of histones, conversely, prohibits transcription of affected stretches of DNA. 

Promoter regions for many genes include cytidine-guanosine sequences, or CpG sites, 

that are potential site for the attachment of methyl groups.  When promoter regions of 

genes are heavily methylated, the attachment of transcription factors necessary for the 

initiation of transcription is inhibited.  Conversely, the de-methylation of promoter 

regions enhances gene transcription.  Micro-RNAs are short segments of RNA molecules 

that complement portions of the mRNA that is produced by gene transcription.  When 

this complementarity leads to binding of the micro-RNA to upstream segments of the 

mRNA translation of the mRNA into protein is inhibited.  Histone de-acetylation and 

promoter methylation are among the regular mechanisms by which the fate of developing 

cell lines is determined (Cavalli, 2006; Henckel, Toth, and Arnaud, 2007).  Once 

established in a given tissue, the patterns of histone acetylation and promoter methylation 

are usually not altered during the life of an organism (but see Fraga et al. 2005 for 

contrary evidence).  Germs cells, however, generally retain a totipotent epigenetic 

patterning (Morgan, Santos, Green, Dean, and Reik, 2005). 

Epigenetic patterns of gene expression are thus largely established in utero and 

are thus potentially subject to modification by maternal condition.  A number of studies in 

animal models have focused on epigenetic regulation of expression of the glucocorticoid 

receptor (GR).  When GR is expressed at high levels in a given tissue, that tissue 



becomes more sensitive to glucocorticoid signaling, i.e., lower concentrations of 

glucocorticoid are necessary for a given level of tissue response.  When GR expression is 

inhibited, tissues become relatively insensitive to glucocorticoid signals.  Experiments in 

rats have shown that alteration of maternal diet can influence the epigenetic regulation of 

GR in the liver by affecting the activity of the key enzymes methyltransferase-1 and 

histone-deacetylase (Lillycrop et al., 2007).  The result is an altered sensitivity of 

postnatal gluconeogenesis to cortisol signaling.  Similar alteration of the expression of 

the gene for peroxisome proliferator-activated receptor alpha (PPAR-alpha) has also been 

demonstrated, resulting in altered lipid metabolism (Lillycrop, Phillips, Jackson, Hanson, 

and Burdge, 2005).  Kidney GR expression and angiotensin II receptor gene expression 

in the adrenal gland also show modified epigenetic regulation in response to altered 

maternal diets, affecting both the development of nephrons in utero and blood pressure 

responses later in life (Pham et al., 2003).  Expression of GR in the hypothalamus is also 

epigenetically modified in rats in response to maternal diets, leading to altered HPA 

activity and stress responses after birth (Sebaai et al., 2002).

The identification of a core set of mechanisms mediating many aspects of the fetal 

programming of blood pressure and energy metabolism has focused research into 

possible interventions (Wyrwoll, Mark, Mori, Puddey, and Waddell, 2006). 

Understanding how maternal nutritional status alters the activity of the fetal enzymes 

mediating histone de-acetylation and promoter methylation may yield insights into ways 

in which enzyme activity might be buffered from maternal condition.  Alternatively, it 

may be possible to reverse deleterious epigenetic patterns after birth.  Recent research in 



rats has indicated that leptin administration to the pups of undernourished dams may 

undo the changes in PPAR-alpha expression induced in utero (Gluckman et al., 2007; 

Vickers et al., 2005).   If the period of sensitivity for epigenetic regulation of key genes 

extend into the postnatal period in humans, similar interventions may be possible.

Although the primary focus in epidemiology has been on the cardiovascular-

metabolic disease cluster, prenatal effects on other chronic disease outcomes have also 

been reported.  Breast and reproductive tract cancers and osteoporosis have drawn 

considerable attention as candidates for the effects of fetal programming (Barbieri, 2008; 

Michels and Xue, 2006; Michels, Xue, Terry, and Willett, 2006; Zhou, Dowdy, Podratz, 

and Jiang, 2007).  This in turn suggests that the expression patterns of steroid receptor 

genes may also be subject to epigenetic regulation (Fleury, Gerus, Lavigne, Richard-Foy, 

and Bystricky, 2008; Jordan, 2007; Leader, Wang, Fu, and Pestell, 2006; Wu, Strawn, 

Basir, Halverson, and Guo, 2006).  Non-pathological correlates of birth size have also 

been reported, including variation in adult patterns of ovarian steroid production 

(Jasienska, Thune, and Ellison, 2006; Jasienska, Ziomkiewicz, Lipson, Thune, and 

Ellison, 2006).  Of particular interest in the present context are correlations with 

psychological and behavioral outcomes.  Because of the involvement of the HPA axis in 

many behavioral patterns and responses, it is reasonable to expect that maternal condition 

might, though the epigenetic modification of HPA axis function, influence temperament, 

stress responses, and potentially psychiatric outcomes after birth in interaction with the 

effects of postnatal conditions.



Fetal programming of psychological and psychiatric outcomes

The most elegant example of epigenetic modification of behavior by early 

environments is not strictly an example of fetal programming, but offers clear 

documentation of the epigenetic processes that determine the effect.  Meaney and his 

colleagues have focused on maternal behavior in rats, describing individual variation in 

the pattern of arch-backed nursing intense licking and grooming of pups (Meaney et al., 

1994; Meaney et al., 1991).  Pups who receive greater degrees of maternal stimulation 

show less anxiety in open field tests and other indices as adults.  Females who receive 

greater stimulation as pups give greater amounts of stimulation to their own pups, 

inducing the same low-anxiety behavioral phenotype in their own offspring.  The entire 

effect appears to be mediated by epigenetic alterations in histone acetylation and 

methylation of the promoter region of the GR gene in the hippocampus of the rat pups 

depending on the type of maternal behavior they receive (Meaney and Szyf, 2005a; 

Weaver et al., 2004).  High stimulation results in greater GR expression in the 

hippocampus, which is in turn associated with greater sensitivity to corticosteroid 

feedback, a pattern that persists into adulthood (Weaver, Meaney, and Szyf, 2006).  (Note 

that in this tissue the effect of glucocorticoid signaling is to suppress hypothalamic 

release of corticotropin releasing hormone (CRH), leading to lower pituitary release of 

adrenocorticotropic hormone (ACTH) and lower secretion of glucocorticoid from the 

adrenal cortex.  Thus “greater sensitivity” to corticosteroid signaling results lower 

amplitude fluctuations of the HPA axis in response to stress, not greater.)  Adults who 

receive high levels of maternal stimulation as pups thus show relatively low HPA 



reactivity to stress, while the reverse is true in those who receive less stimulation as pups. 

This appears to correlate with their behavior in open field and other tests, and with the 

maternal style that females may display toward their own pups.  In this way a stable 

difference in HPA axis sensitivity is transferred across generations through females based 

on an “inherited” epigenetic pattern.  Interestingly, the epigenetic pattern is passed on not 

as such, but through first being translated into a behavioral pattern in the mothers, and 

then back into an epigenetic pattern in the offspring.  Recently the same group has 

documented the effect of maternal behavior to similarly program reproductive axis 

activity through epigenetic effects on steroid receptor expression (Cameron et al., 2008; 

Champagne et al., 2006). Although the example of rat maternal behavior is not an 

example of “fetal” programming, it is an elegant demonstration of the potential for 

programming of the HPA axis to have behavioral consequences (Champagne et al., 2008; 

Meaney and Szyf, 2005b).

One of the most impressive studies to implicate fetal programming in psychiatric 

outcomes is the work of Ezra Susser and colleagues on the follow-up of individuals 

conceived during the Nazi occupation of Holland at the end of World War II (Susser, 

Hoek, and Brown, 1998).  The so-called “Dutch Hunger Winter” provides a rather 

gruesome “natural experiment” in which pregnant women, along with the rest of the 

civilian population, were subject to extreme food deprivation during a relatively discrete 

period (Susser, Hoek et al., 1998).  Ezra Susser’s parents conducted seminal studies of the 

effects of this famine resulting, among other things, in the recognition of the importance 

of folate nutrition in pregnancy in avoiding neural tube defects (Stein, Susser, Saenger, 



and Marolla, 1972).  The younger Susser undertook to determine whether less debilitating 

effects on nervous system development as a consequence of famine exposure in utero 

might have consequences for psychiatric risk after birth.  He found a clearly significant 

elevation of risk of schizophrenia and related disorders among those whose mothers went 

through the peak of the famine during their second trimester of pregnancy (Susser, 

Brown, Klonowski, Allen, and Lindenbaum, 1998; Susser et al., 1996; Susser and Lin, 

1992).  Subsequent work with individuals born during discrete famines in China has 

yielded similar results (Susser, St Clair, and He, 2008).  Whether the mechanisms 

mediating these effects are epigenetic in nature remains to be determined (de Rooij et al., 

2006).

Costello et al. (Costello, Worthman, Erkanli, and Angold, 2007) provide a second 

example of prenatal influences on psychiatric outcomes.  They assessed a population-

based sample of over 1400 boys and girls in western North Carolina for psychiatric 

symptoms on an annual basis between the ages of 9 and 16.  They found that the rates of 

adolescent depression was over four times higher (38.1%) in girls who were low weight 

at birth compared to normal weight girls (8.4%), and seven times higher than in boys of 

any birth weight (4.9%).  The well-known sex difference in adolescent depression was 

thus almost entirely accounted for by the higher risk in low weight girls.  The effect was 

not diminished by consideration of perinatal, childhood, or adolescent adversities.  There 

was an interesting interaction, however.  Low and normal birth weight girls who 

experienced no subsequent adversities showed no incidence of depression.  But with each 

additional adverse circumstance the rate of depression in low birth weight girls, but not 



normal birth weight girls, increased significantly.  The authors suggest that low birth 

weight girls are thus more sensitive to adverse circumstances later in life in terms of their 

risk of depression, a result that suggests possible alteration of physiological responses to 

stress, perhaps involving the HPA axis.

Animal evidence has long suggested that maternal “stress” during pregnancy is 

associated with behavioral outcomes in offspring (Burton et al., 2007; Clarke, Wittwer, 

Abbott, and Schneider, 1994; Kapoor and Matthews, 2008; Ohkawa et al., 1991; 

Weinstock, 1997).  The nature of the “stress” applied may differ, but it is often assumed 

that the mother’s HPA axis responds with higher levels of glucocorticoid hormones.  It is 

unlikely that higher levels of maternal cortisol affect fetal physiology in humans, 

however, since the placenta is rich in 11-beta-steroid-dehydrogenase, which converts 

cortisol to inactive cortisone, thus buffering the fetus from maternal cortisol levels 

(Lakshmi, Nath, and Muneyyirci-Delale, 1993; McCalla, Nacharaju, Muneyyirci-Delale, 

Glasgow, and Feldman, 1998).  Although positive correlations between baseline levels of 

maternal and fetal cortisol have been observed (Gitau, 2001), evidence of changes in 

maternal and fetal cortisol levels following invasive procedures indicates that maternal 

and fetal cortisol responses to stress are independent (Gitau, Fisk, Teixeira, Cameron, and 

Glover, 2001).  Such buffering makes physiological sense since in late pregnancy the 

mother is essentially in a catabolic state while the fetus is in an anabolic state.  Cross-talk 

between the energy metabolism of mother and fetus would be disastrous.

However, dexamethasone (DEX), a synthetic glucocorticoid, has long been 



administered to mothers known to be carrying fetuses deficient in 21-hydroxylase and 

therefore at risk of congenital adrenal hyperplasia (CAH) (Forest, Betuel, and David, 

1989; Speiser and New, 1994).  Because affected CAH individuals are impaired in their 

ability to produce cortisol, inadequate negative feedback leads to overproduction of 

adrenocorticotropic hormone (ACTH) and hyperplasia of the adrenal glands.  A 

secondary consequence is overproduction of adrenal androgens that can lead to varying 

degrees of genital androgenization (Pang, 1997).  Some studies have indicated potential 

effects on childhood and adult behavior, including sexual orientation, as well (Arlt and 

Krone, 2007; New, 2004).  DEX is often administered to head off these consequences, 

since it readily crosses the placenta, is not metabolized by 11-steroid-dehydrogenase, and 

interacts with GR receptors in the fetal hypothalamus to suppress excess production of 

ACTH and its corollary effects (Hughes, 2003).

In animal studies using prenatal administration of DEX as a treatment alterations 

of offspring behavior and HPA axis reactivity are observed.  This suggests that the 

feedback sensitivity of the HPA axis may be partially regulated through the level of 

activation of the axis during fetal development.  Awareness of this fact has led some 

researchers to suggest that the administration of DEX to mothers of CAH fetuses may be 

unwise until its programming effects are better understood (Hirvikoski et al., 2007; Lajic, 

Nordenstrom, and Hirvikoski, 2008; Miller, 1999).

Although maternal stress may not be communicated to the fetus via maternal 

cortisol, there are other pathways possible, including alterations of placental blood flow 



(Gitau 2001) and changes in energy available for fetal growth.  In addition, conditions 

that lead to fetal stress, such as restricted energy availability or invasive medical 

procedures (Gitau et al. 2001) may directly affect the level of activity of the fetal HPA 

axis, as opposed to the maternal axis, with potential programming consequences. 

Achieving a better understanding the potential for prenatal conditions to have lasting 

effects on an individual’s physiology, with possibly serious implications for psychiatric 

risk, must be considered one of the high priorities for psychological research stemming 

from the fetal programming hypothesis (Kaplan, Evans, and Monk, 2008).

Is fetal programming adaptive?

Fetal programming as a phenomenon was first recognized through its pathological 

consequences, and most research continues to focus on the deleterious sequellae of small 

size at birth.  Epigenetic regulation of gene expression, on the other hand, is hardly 

pathological; rather it constitutes one of the principal mechanisms of cellular 

differentiation during embryological development.  Selection pressure on developmental 

processes should be very strong, since mistakes early in ontogeny can have broadly 

ramifying consequences.  Thus it would seem logical, in one way, that epigenetic 

responses to prenatal conditions must themselves have been products of natural selection, 

representing adaptive responses to those conditions.  Yet attention has been focused on 

prenatal programming principally through a recognition of its association with 

pathological outcomes.



Peter Gluckman and Mark Hanson have suggested that the apparent paradox of 

presumably adaptive developmental processes yielding pathological results can be 

resolved if (1) the adaptive processes are aimed at adjusting the organism’s physiology to 

a “predicted” postnatal environment, and (2) if there is in fact a “mismatch” between the 

predicted and actual postnatal environment (P. Gluckman and Hanson, 2005; P. D. 

Gluckman and Hanson, 2004; P. D. Gluckman, Hanson, and Spencer, 2005).  For 

example, fetal energy restriction may signal the fetus to permanently alter its own energy 

metabolism in anticipation of an energy restricted, postnatal environment.  The fetus 

might upregulate GR expression in its hippocampus to enhance cortisol responses to 

energy restriction.  If the postnatal environment is not energy restricted, however, this 

shift in metabolism may result in a tendency to obesity and poor glucose regulation. 

Thus the mechanisms of fetal programming might be adaptive in cases where in utero 

conditions are predictive of characteristics of the postnatal environment, but maladaptive 

when the prediction fails.

Others have argued that adjusting postnatal physiology on the basis of prenatal 

conditions would represent “hyper-responsiveness” to transient conditions and is unlikely 

to be the basis of an adaptive explanation for fetal programming effects (Jones, 2005; 

Rickard and Lummaa, 2007).  Gestation is at best a nine-month “bioassay” of 

environmental conditions, and the fetal environment is highly buffered as well.  Rather 

than establishing permanent physiological set-points and sensitivities on the basis of such 

a short period of information of limited relevance, wouldn’t it be more adaptive to 

establish these set-points on the basis of a longer period of postnatal experience?  The 



force of this logic suggests that fetal programming effects are not in themselves adaptive, 

but are instead probably constraints of development akin to the “sensitive periods” that 

are observed in many developmental processes.

These perspectives may not be as antithetical as it seems at first.  Yet if 

irreversible “decisions” must be made early in development, such as whether or not to 

silence or dampen the expression of certain genes in certain tissues, it may be better to 

make that decision in the light of whatever information is available, even if its correlation 

with future conditions is low.  A different answer to this problem has been proposed by 

Kuzawa (2005).  He suggests that conditions in utero may not merely reflect maternal 

conditions at the time, but also her own sensitivity to those conditions.  For example, fetal 

energy availability may not only be affected by maternal undernutrition, but also by how 

sensitive the mother’s own physiology is to variation in energy availability.  Maternal 

sensitivity to energy availability in turn may be partly a consequence of the conditions 

she faced in utero, which in turn would depend on grand-maternal sensitivity to energy 

availability, and so forth.  In this way fetal programming may not primarily be a response 

to transient conditions during gestation, but rather a response to a more cumulative signal 

of conditions across generations.  Rather than representing hyper-responsiveness to 

transient conditions, fetal programming may represent a mechanism of developmental 

“inertia.”

Interestingly, Barker himself does not subscribe to the view of fetal programming 

as adaptive (Barker et al., 2002; Barker, 1994).  He sees these effects rather as disruptions 



of optimal development with permanent consequences, developmental pathologies that 

may indeed be more frequent in evolutionarily novel environments.

Testing the Gluckman and Hanson hypothesis of “predictive adaptive responses” 

is difficult.  One strategy might involve experimentally “matching” and “mismatching” 

postnatal environments to prenatal treatments and comparing the outcomes in selectively 

relevant currencies, such as survival or fertility.  Other strategies may involve identifying 

outcomes a priori as constrained, pathological, or adaptive and then applying a test 

(Ellison and Jasienska, 2007; Jasienska, Thune, and Ellison, 2006).  In the same way that 

a deeper understanding of underlying mechanisms can suggest opportunities for public 

health intervention, a deeper understanding of the functional significance of fetal 

programming may help us avoid unanticipated consequences.

Summary

Epidemiological evidence that prenatal conditions can be important determinants 

of adult health is now quite compelling.  The rapidly developing field of epigenetics has 

elucidated important mechanisms by which tissue-specific patterns of gene expression 

that are stable over the life of an individual can mediate such effects.  Many of the best 

examples of prenatal alteration of gene expression involve adjustments in the sensitivity 

of the HPA axis.  In addition to the implications for metabolic disease, these changes can 

also affect behavior in animal models.  They may also underlie the relationship between 

fetal energy restriction and the epidemiology of schizophrenia in humans.  Animal 



models suggest that more moderate effects of prenatal and even immediately postnatal 

conditions may affect adult stress reactivity, with potential implications for the spectrum 

of individual differences displayed, from variation in normal temperament to pathologies 

of HPA axis responsiveness.  At the same time the potential for prenatal epigenetic 

alteration of HPA sensitivity has caused some to suggest caution in the use of drugs like 

dexamethasone in utero.  It is likely that the literature and examples reviewed here 

represent merely the opening of a new area of research in developmental psychology, one 

that will bring it into closer and more productive interaction with research in human 

genetics, developmental biology, and evolutionary biology in the years ahead.
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Figure Captions

Figure 1:  A schematic depiction of the three mechanisms of epigenetic modification of 
gene expression discussed in the text.  Nuclear DNA occurs tightly wound about 
histone molecules.  Attachment of acetyl groups (CH3CO) to exposed lysine 
residues on the histone molecules loosens the association between the histone and 
DNA molecules, allowing transcription factors access to gene promoter regions. 
CpG sequences in gene promoter regions provide sites for the attachment of 
methyl groups (CH3), which inhibits the binding of transcription factors.  Micro 
RNA molecules are small RNA sequences that can bind to messenger RNA. 
When they do, they inhibit the translation of the mRNA into protein.  In this 
figure, elements that promote gene expression are contained in ellipses; those that 
inhibit expression are contained in rectangles.

Alternate Figure Caption (if color figures are possible)

Figure 1:  A schematic depiction of the three mechanisms of epigenetic modification of 
gene expression discussed in the text.  Nuclear DNA occurs tightly wound about 
histone molecules.  Attachment of acetyl groups (CH3CO) to exposed lysine 
residues on the histone molecules loosens the association between the histone and 
DNA molecules, allowing transcription factors access to gene promoter regions. 
CpG sequences in gene promoter regions provide sites for the attachment of 
methyl groups (CH3), which inhibits the binding of transcription factors.  Micro 
RNA molecules are small RNA sequences that can bind to messenger RNA. 
When they do, they inhibit the translation of the mRNA into protein.  In this 
figure, elements that promote gene expression are in green; those that inhibit 
expression are in red.


