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Abstract
We describe the interplay between d-wave superconductivity and spin density wave (SDW) order

in a theory of the hole-doped cuprates at hole densities below optimal doping. The theory assumes

local SDW order, and associated electron and hole pocket Fermi surfaces of charge carriers in

the normal state. We describe quantum and thermal fluctuations in the orientation of the local

SDW order, which lead to d-wave superconductivity: we compute the superconducting critical

temperature and magnetic field in a ‘minimal’ universal theory. We also describe the back-action

of the superconductivity on the SDW order, showing that SDW order is more stable in the metal.

Our results capture key aspects of the phase diagram of Demler et al. (Phys. Rev. Lett. 87,

067202 (2001)) obtained in a phenomenological quantum theory of competing orders. Finally, we

propose a finite temperature crossover phase diagram for the cuprates. In the metallic state, these

are controlled by a ‘hidden’ quantum critical point near optimal doping involving the onset of SDW

order in a metal. However, the onset of superconductivity results in a decrease in stability of the

SDW order, and consequently the actual SDW quantum critical point appears at a significantly

lower doping. All our analysis is placed in the context of recent experimental results.
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I. INTRODUCTION

A number of recent experimental observations have the potential to dramatically advance

our understanding of the enigmatic underdoped regime of the cuprates. In the present paper,

we will focus in particular on two classes of experiments (although our results will also have

implications for a number of other experiments):

• The observation of quantum oscillations in the underdoped region of YBCO.1,2,3,4,5,6

The period of the oscillations implies a carrier density of order the density of dopants.

LeBoeuf et al.6 have claimed that the oscillations are actually due to electron-like

carriers of charge −e. We will accept this claim here, and show following earlier

work7,8, that it helps resolve a number of other theoretical puzzles in the underdoped

regime.

• Application of a magnetic field to the superconductor induces a quantum phase tran-

sition at a non-zero critical field, Hsdw, involving the onset of spin density wave

(SDW) order. This transition was first observed in La2−x SrxCuO4 with x = 0.144

by Khaykovich et al.9. Chang et al.10,11 have provided detailed studies of the spin dy-

namics in the vicinity of Hsdw, including observation of a gapped spin collective mode

for H < Hsdw whose gap vanishes as H ր Hsdw. Most recently, such observations

have been extended to YBa2Cu3O6.45 by Haug et al.12, who obtained evidence for the

onset of SDW order at H ≈ 15 T. These observations were all on systems which do

not have SDW order at H = 0; they build on the earlier work of Lake et al.13 who

observed enhancement of prexisting SDW order at H = 0 by an applied field in La2−x

SrxCuO4 with x = 0.10.

We begin our discussion of these experiments using the phenomenological quantum theory

of the competition between superconductivity and SDW order.14,15,16,17 The phase diagram

in the work of Demler et al.14 is reproduced in Fig. 1. The parameter t appears in a Landau

theory of SDW order and tunes the propensity to SDW order, with SDW order being favored

with decreasing t. We highlight a number of notable features of this phase diagram:

A. The upper-critical field above which superconductivity is lost, Hc2, decreases with

decreasing t. This is consistent with the picture of competing orders, as decreasing t

enhances the SDW order, which in turn weakens the superconductivity.

B. The SDW order is more stable in the non-superconducting ‘normal’ state than in the

superconductor. In other words, the line CM, indicating the onset of SDW order

in the normal state, is to the right of the point A where SDW order appears in

the superconductor at zero field; i.e. tc(0) > tc. Thus inducing superconductivity

destabilizes the SDW order, again as expected in a model of competing orders.

2



tc t

H

SC

M

AB

D

C

SC+
SDW

SDW

"Normal"

Hc2

Hsdw

tc(0)

FIG. 1: From Ref. 14: Phase diagram of the competition between superconductivity (SC) and

spin density wave (SDW) order tuned by an applied magnetic field H, and a Landau parameter t

controlling the SDW order (the effective action has a term t~ϕ2, where ~ϕ is the SDW order). The

labels identifying Hc2, Hsdw, and tc(0) have been added to the original figure,14 but the figure is

otherwise unchanged. The dashed line does not indicate any transition or crossover; it is just the

continuation of the line CM to identify tc(0). A key feature of this phase diagram is that SDW

order is more stable in the metal than in the superconductor i.e. tc(0) > tc.

C. An immediate consequence of the feature B is the existence of the line AM of quantum

phase transitions within the superconductor, representing Hsdw, where SDW order

appears with increasing H . As we have discussed above, this prediction of Demler et

al.14 has been verified in a number of experiments.

A related prediction by Demler et al.14 that an applied current should enhance the SDW

order, also appears to have been observed in a recent muon spin relaxation experiment.18

A glance at Fig. 1 shows that it is natural to place19 the quantum oscillation

experiments1,2,3,4,5,6 in the non-superconducting phase labeled “SDW”. Feature B above

is crucial in this identification: the normal state reached by suppressing superconductivity

with a field is a regime where SDW order is more stable. The structure of the Fermi surface

in this normal state can be deduced in the framework of conventional spin-density-wave the-

ory, and we recall the early results of Refs. 20,21 in Fig. 2. Recent studies22,23 have extended

these results to incommensurate ordering wavevectors Q, and find that the electron pockets

(needed to explain the quantum oscillation experiments) remain robust under deviations

from the commensurate ordering at (π, π). The present paper will consider only the case of

commensurate ordering with Q = (π, π), as this avoids considerable additional complexity.

The above phenomenological theory appears to provide a satisfactory framework for inter-

preting the experiments highlighted in this paper. However, such a theory cannot ultimately

be correct. A sign of this is that within its parameter space is a non-superconducting, non-
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Increasing SDW order

(a) (b) (c) (d)
FIG. 2: (Color online) Fermi surface evolution in the SDW theory20,21. Panel (d) is the “large

Fermi surface” state appropriate for the overdoped superconductor. The SDW order parameter, ~ϕ,

desribes ordering at the wavevector Q = (π, π), and mixes fermion states whose wavevectors differ

by Q. This leads to the SDW metal state with electron (red) and hole (blue) pockets in panel (b),

which is the state used here to explain the quantum oscillation experiments.1,2,3,4,5,6

SDW normal state at H = 0 and T = 0 (not shown in Fig. 1). Indeed, such a state is

the point of departure for describing the onset of the superconducting and SDW order in

Ref. 14. There is no such physically plausible state, and the parameters were chosen so that

this state does not appear in Fig. 1. Furthermore, we would like to extend the theory to

spectral properties of the electronic excitations probed in numerous other experiments. This

requires a more microscopic formulation of the theory of competing orders in terms of the

underlying electrons. We shall provide such a theory here, building upon the proposals of

Refs. 7,8,24,25. Our theory will not have the problematic H = 0, T = 0 “normal” state of

the phenomenological theory, and so cannot be mapped precisely onto it. Nevertheless, we

will see that our theory does reproduce the key aspects of Fig. 1. We will also use our theory

to propose a finite temperature phase diagram for the hole-doped cuprates; in particular,

we will argue that it helps resolve a central puzzle on the location of the quantum critical

point important for the finite temperature crossovers into the ‘strange metal’ phase. These

results appear in Section IV and Fig. 10.

The theory of superconductivity26 mediated by exchange of quanta of the SDW order

parameter, ~ϕ, has been successful above optimal doping. However, it does not appear to

be compatible with the physics of competing orders in the underdoped regime, at least in

its simplest version. This theory begins with the “large Fermi surface” state in panel (d) of

Fig. 2, and examines its instability in a BCS/Eliashberg theory due to attraction mediated

by exchange of ~ϕ quanta. An increase in the fluctuations of ~ϕ is therefore connected to an

increase in the effective attraction, and consequently a strengthening of the superconducting

order. This is evident from the increase in the critical temperature for superconductivity

as the SDW ordering transition is approached from the overdoped side (see e.g. Fig. 4 in
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Ref. 27). Thus rather than a competition, this theory yields an effective attraction between

the SDW and superconducting order parameters. This was also demonstrated in Ref. 14 by a

microscopic computation in this framework of the coupling between these order parameters.

It is possible that these difficulties may be circumvented in more complex strong-coupling

versions of this theory27, but a simple physical picture of these is lacking.

As was already discussed in Ref. 14, the missing ingredient in the SDW theory of the or-

dering of the metal is the knowledge of the proximity to the Mott insulator in the underdoped

compounds. Numerical studies of models in which the strong local repulsion associated with

Mott insulator is implemented in a mean-field manner do appear to restore aspects of the

picture of competing orders.28,29 Here, we shall provide a detailed study of the model of the

underdoped cuprates proposed in Refs. 7,8,24,25, and show that it is consistent with the

features A, B, and C of the theory of competing orders noted above, which are essential in

the interpretation of the experiments.

As discussed at some length in Ref. 8, the driving force of the superconductivity in the

underdoped regime is argued to be the pairing of the electron pockets visible in panel (b) of

Fig. 2. Experimental evidence for this proposal also appeared in the recent photoemission

experiments of Yang et al.31. In the interests of simplicity, this paper will focus exclusively on

the electron pockets, and neglect the effects of the hole pockets in Fig. 2. Further discussion

on the hole pockets, and the reason for their secondary role in superconductivity may be

found in Refs. 8,24,25.

The degrees of freedom of the theory are the bosonic spinons zα (α =↑, ↓), and spinless

fermions g±. The spinons determine the local orientation of the SDW order via

~ϕ = z∗α~σαβzβ (1.1)

where ~σ are the Pauli matrices. The electrons are assumed to form electron and hole pockets

as indicated in Fig. 2b, but with their components determined in a ‘rotating reference frame’

set by the local orientation of ~ϕ. This idea of Fermi surfaces correlated with the local order

is supported by the recent STM observations of Wise et al.32. Focussing only on the electron

pocket components, we can write the physical electron operators cα as7,8

c↑ = eiG1·r
[
z↑g+ − z∗↓g−

]
+ eiG2·r

[
z↑g+ + z∗↓g−

]

c↓ = eiG1·r
[
z↓g+ + z∗↑g−

]
+ eiG2·r

[
z↓g+ − z∗↑g−

]
(1.2)

where G1 = (0, π) and G2 = (π, 0) are the anti-nodal points about which the electron

pockets are centered. We present an alternative derivation of this fundamental relation from

spin-density-wave theory in Appendix A.

Note that when zα = (1, 0), Eq. (1.1) shows that the SDW order is uniformly polarized

in the z direction with ~ϕ = (0, 0, 1), and from Eq. (1.2) we have c↑ = g+(eiG1·r + eiG2·r) and

c↓ = g−(eiG1·r − eiG2·r). Thus, for this SDW state, the ± labels on the g± are equivalent
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to the z spin projection, and the spatial dependence is the consequence of the potential

created by the SDW order, which has opposite signs for the two spin components (as shown

in Appendix A). The expression in Eq. (1.2) for general ~ϕ is then obtained by performing

a spacetime-dependent spin rotation, determined by zα, on this reference state.

Another crucial feature of Eqs. (1.1) and (1.2) is that the physical observables ~ϕ and cα

are invariant under the following U(1) gauge transformation of the dynamical variables zα

and g±:

zα → eiφzα ; g+ → e−iφg+ ; g− → eiφg−. (1.3)

Thus the ± label on the g± can also be interpreted as the charge under this gauge transfor-

mation. This gauge invariance implies that the low energy effective theory will also include

an emergent U(1) gauge field Aµ.

We will carry out most of the computations in this paper using a “minimal model” for

zα and g± with the imaginary time (τ) Lagrangian7,8

L = Lz + Lg, (1.4)

where the fermion action is

Lg = g†
+

[
(∂τ − iAτ ) −

1

2m∗
(∇ − iA)2 − µ

]
g+

+ g†
−

[
(∂τ + iAτ ) −

1

2m∗
(∇ + iA)2 − µ

]
g−, (1.5)

and the spinon action is

Lz =
1

t

[
N∑

α=1

(
|(∂τ − iAτ )zα|2 + v2|(∇ − iA)zα|2

)
+ i̺

(
N∑

α=1

|zα|2 − N

)]
. (1.6)

Here the emergent gauge field is Aµ = (Aτ ,A), and, for future convenience, we have general-

ized to a theory with N spin components (the physical case is N = 2). The field ̺ imposes a

fixed length constraint on the zα, and accounts for the self-interactions between the spinons.

This effective theory omits numerous other couplings involving higher powers or gradi-

ents of the fields, which have been discussed in some detail in previous work.7,8,24,25 It also

omits the 1/r Coulomb repulsion between the g± fermions–this will be screened by the Fermi

surface excitations, and is expected to reduce the critical temperature as in the traditional

strong-coupling theory of superconductivity. For simplicity, we will neglect such effects here,

as they are not expected to modify our main conclusions on the theory of competing orders.

Non-perturbative effects of Berry phases are expected to be important in the superconduct-

ing phase, and were discussed earlier;7 they should not be important for the instabilities

towards superconductivity discussed here.
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As has been discussed earlier,7,8 the theory in Eq. (1.4) has a superconducting ground state

with a a simple momentum-independent pairing of the g± fermions 〈g+g−〉 6= 0. Combining

this pairing amplitude with Eq. (1.2), it is then easy to see7,8 that the physical cα fermions

have the needed d-wave pairing signature (see Appendix A).

The primary purpose of this paper is to demonstrate that the simple field theory in

Eq. (1.4) satisfies the constraints imposed by the framework of the picture of competing

orders. In particular, we will show that it displays the features A, B, and C listed above.

Thus, we believe, it offers an attractive and unified framework for understanding a large

variety of experiments in the underdoped cuprates. We also note that the competing order

interpretation of Eq. (1.4) only relies on the general gauge structure of theory, and not

specifically on the interpretation of g± as electron pockets in the anti-nodal region; thus it

could also apply in other physical contexts.

Initially, it might seem that the simplest route to understanding the phase diagram of

our theory Eq. (1.4) is to use it to compute the effective coupling constants in the phe-

nomenological theory of Ref. 14. However, such a literal mapping is not possible, because,

as we discussed earlier, the phenomenological theory does have additional unphysical phases.

Rather, we will show that our theory does satisfy the key requirements of the experimentally

relevant phase diagram in Fig. 1.

A notable feature of the theory in Eq. (1.4) is that it is characterized by only 2 dimen-

sionless couplings. We assume the chemical potential µ is adjusted to obtain the required

fermion density, which we determine by the value of the Fermi wavevector kF . The effective

fermion mass m∗ and the spin-wave velocity then determine our first dimensionless ratio

α1 ≡
~kF

m∗v
. (1.7)

Although we have inserted an explicit factor of ~ above, we will set ~ = kB = 1 in most

of our analysis. Note that we can also convert this ratio to that of the Fermi energy,

EF = ~
2k2

F /(2m∗) and the energy scale m∗v2:

EF

m∗v2
=

α2
1

2
(1.8)

From the values quoted in the quantum oscillation experiment1, m∗ = 1.9me and πk2
F =

5.1 nm−2, and the spin-wave velocity in the insulator v ≈ 670 meV Å, we obtain the estimate

α1 ≈ 0.76. We will also use

m∗v2 ≈ 112 meV (1.9)

as a reference energy scale.

The second dimensionless coupling controls the strength of the fluctuations of the SDW

order, which are controlled by the parameter t in Eq. (1.6). Tuning this coupling leads to a

transition from a phase with 〈zα〉 6= 0 to one where the spin rotation symmetry is preserved.

7



We assume that this transition occurs at the value t = tc(0) in the metallic phase (the

significance of the argument of tc will become clear below): this corresponds to the line CM

in Fig. 1. Then we can charaterize the deviation from this quantum phase transition by the

coupling

α2 ≡
(

1

tc(0)
− 1

t

)
1

m∗
. (1.10)

Note that α2 < 0 corresponds to the SDW phase in Fig. 1, while α2 > 0 corresponds to the

“Normal” phase of Fig. 1. For α2 > 0, we can also characterize this coupling by the value

of the spinon energy gap ∆z in the N = ∞ theory, which is (as will become clear below)

∆z

m∗v2
= 4πα2. (1.11)

It is worth noting here that our “minimal model” (Eq. (1.4)) in two spatial dimensions has

aspects of the universal physics of the Fermi gas at unitarity in three spatial dimensions. The

latter model has a ‘detuning’ parameter which tunes the system away from the Feshbach

resonance; this is the analog of our parameter α2. The overall energy scale is set in the

unitary Fermi gas by the Fermi energy; here, instead, we have 2 energy scales, EF and

m∗v2.

The outline of the remainder of the paper is as follows. In Section II, we will consider the

pairing problem of the g± fermions, induced by exchange of the gauge boson Aµ. We will

do this within a conventional Eliashberg framework. Our main result will be a computation

of the critical field Hc2, which will be shown to be suppressed as SDW order is enhanced

with decreasing t. Section III will consider the feedback of the superconductivity on the

SDW ordering, where we will find enhanced stability of the SDW order in the metal over

the superconductor. Section IV will summarize our results, and propose a crossover phase

diagram at non-zero temperatures.

II. ELIASHBERG THEORY OF PAIRING

In our mininal model, the charge and spin excitations interact with each other through

the Aµ gauge boson. So the gauge fluctuation is one of the key ingredients in our analysis.

We begin by computing the gauge propagator, and then we will determine the critical

temperature and magnetic field within the Eliashberg theory in the following subsections.

We use the framework of the large N expansion. In the limit N = ∞, the gauge field is

suppressed, and the constraint field ̺ takes a saddle point value (i̺ = m2) that makes the

spinon action extremum in Eq. (1.6). At leading order, the spinon propagator has the form

t

v2k2 + ω2
n + m2

(2.1)

8
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FIG. 3: The parameter m in Eq. (2.1) for T/(m∗v2) = 0.01.

where k is spatial momentum, ωn is the Matsubara frequency. The saddle point equation

for m is

T
∑

ωn

∫
d2k

4π2

[
1

v2k2 + ω2
n + m2

]
= −m∗α2 +

∫
dω

2π

∫
d2k

4π2

1

v2k2 + ω2
. (2.2)

The solution of this is

m = 2T ln

[
e+2πm∗v2α2/T +

√
e+4πm∗v2α2/T + 4

2

]
(2.3)

which holds for −∞ < α2 < ∞. This result is plotted in Fig. 3. Clearly, m is a monotonically

increasing function of α2. Recall that the positive α2 region has no SDW order, and m is

large here. As we will see below, the value of m plays a significant role in the photon

propagators.

The photon propagator is determined from the effective action obtained by integrating

out the spinons and non-relativistic fermions. Using gauge invariance, we can write down

the effective action of the gauge field as follows:

SA =
NT

2

∑

ǫn

∫
d2k

4π2

[
(kiAτ − ǫnAi)

2 D1(k, ǫn)

k2
+ AiAj

(
δij −

kikj

k2

)
D2(k, ǫn)

]
. (2.4)

As in analogous computation with relativistic fermions in Ref. 30, we separate the photon

polarizations into their bosonic and fermionic components:

D1 = ND1b + D1f

D2 = ND2b + D2f . (2.5)
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We use the Coulomb gauge, k · A = 0 in the computation. After imposing the gauge

condition, the propagator of Aτ from the above action is 1/D1, while that of Ai is

(
δij −

kikj

k2

)
1

D2 + (ǫ2
n/k

2)D1
. (2.6)

We will approximate D1b and D2b by their zero frequency limits. Computation of the

spinon polarization in this limit, as in Ref. 30 yields

D1b(k) = − T

πv2
ln
(
2 sinh

( m

2T

))

+
1

2πv2

∫ 1

0

dx
√

m2 + v2k2x(1 − x) coth

(√
m2 + v2k2x(1 − x)

2T

)
(2.7)

and

D2b(k) =
v2k2

8π

∫ 1

0

dx
1√

m2 + v2k2x(1 − x)
coth

(√
m2 + v2k2x(1 − x)

2T

)
(2.8)

For the fermionic contributions, we include the contribution of the g± fermions with effective

mass m∗ and Fermi wavevector kF . Calculation of the fermion compressibility yields

D1f (k, ǫn) = 2

∫
d2q

4π2

(nF (εq−k/2) − nF (εq+k/2))

(iǫn + k · q/m∗)

≈ m∗

π
, (2.9)

where nF is the Fermi function. For the transverse propagator, we obtain from the compu-

tation of the fermion current correlations

D2f (k, ǫn) +
ǫ2
n

k2
D1f(k, ǫn)

=
k2

F

2πm∗
− 2

m∗2

∫
d2q

4π2

(
q2 − (q · k)2

k2

)
(nF (εq−k/2) − nF (εq+k/2))

(iǫn + k · q/m∗)

≈ kF |ǫn|
πk

(2.10)

Putting all this together, we have the final form of the propagators. The propagator of Aτ

is
1

ND1b(k) + m∗/π
(2.11)

while that of Ai is (
δij −

kikj

k2

)
1

ND2b(k) + kF |ǫn|/(πk)
. (2.12)
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A. Eliashberg equations

We now address the pairing instability of the g± fermions. Both the longitudinal and

transverse photons contribute an attractive interaction between the oppositely charged

fermions, which prefers a simple s-wave pairing. However, we also know that the trans-

verse photons destroy the fermionic quasiparticles near the Fermi surface, and so have

a depairing effect. The competition between these effects can be addressed in the usual

Eliashberg framework.33 Based upon arguments made in Refs. 34,35, we can anticipate that

the depairing and pairing effects of the transverse photons exactly cancel each other in the

low-frequency limits, because of the s-wave pairing. The higher frequency photons yield a

net pairing contribution below a critical temperature Tc which we compute below.

Closely related computations have been carried out by Chubukov and Schmalian36 on a

generalized model of pairing due to the exchange of a gapless bosonic collective mode; our

numerical results for Tc below agree well with theirs, where the two computations can be

mapped onto each other.37

The Eliashberg approximation starts from writing the fermion Green function using

Nambu spinor notation.

Σ̂(ωn) = iωn(1 − Z(ωn))τ̂0 + ǫτ̂3 + φ.(ωn)τ̂1 (2.13)

G−1(ǫ, ωn) = iωnZ(ωn)τ̂0 − ǫτ̂3 − φ(ωn)τ̂1

where τ̂ are the Pauli matrices in the particle-hole space. Then self-consistency equation is

constructed by evaluating the self-energy with the above Green function, which yields the

following equation:

Σ̂(iωn) = T
∑

ωm

∫
d2k′

4π2
Ĝ(k′, ωm)D̃(~q,~k, ωm − ωn) (2.14)

= T
∑

ωm

λtot(ωm − ωn)

∫
dǫ′Ĝ(ǫ′, ωm)

Note that the first line is a formal expression, with D̃(~q,~k, iωm) being a combination of

the photon propagator and the matrix elements of the vertex. The equations are therefore

characterized by the coupling λtot(ωn); computation of the photon contribution yields the

explicit expression38,39

λtot(ωn) = λT (ωn) + λL (2.15)

λT (ωn) =
kF

2π2m∗

∫ 2kF

0

dk

√
1 − (k/2kF )2

ND2b(k) + kF |ωn|/(πk)

λL =
m∗

2π2kF

∫ 2kF

0

dk√
1 − (k/2kF )2

[
1

ND1b(k) + m∗/π

]
(2.16)
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FIG. 4: (Color online) The pairing coupling constants associated with the longitudinal (λL)

and transverse (λT (ωn)) gauge interactions. The parameter α2 measures the distance from

the SDW ordering transition in the metal, as defined in Eq. (1.10). The dotted (red), dot-

dashed (green), dashed (blue), and continuous (black) lines correspond to α2
1/2 = EF /(m∗v2) =

0.16, 0.21, 0.26, 0.29. We show λT (ωn = 8πT ) with T/(m∗v2) = 0.016 for the transverse interaction.

Note that λT (ωn) function is analytic near α2 ∼ 0 in the magnified scale.

We have divided the total coupling into two pieces based on the different frequency depen-

dence of the longitudinal and transversal gauge boson propagators. The frequency indepen-

dent term will need a cutoff for the actual calculation as we will see below. The typical

behaviors of the dimensionless couplings λT (ωn), λL are shown in Fig 4.

The longitudinal coupling λL is around 0.35, and has a significant dependence upon α2,

which is a measure of the distance from the SDW ordering transition. Note that λL is larger

in the SDW-disordered phase (α2 > 0): this is a consequence of the enhancement of gauge

fluctuations in this regime. This will be the key to the competing order effect we are looking

for: gauge fluctuations, and hence superconductivity, is enhanced when the SDW order is

12



suppressed.

The transverse gauge fluctuations yield the frequency dependent coupling λT (ωn). This

is divergent at low frequencies with38,39 λT (ωn) ∼ |ωn|−1/3. As we noted earlier, this diver-

gent piece cancels out between the normal and anomalous contributions to the fermion self

energy.34,35 We plot the dependence of λT (ωn) on the coupling α2 for a fixed ωn in Fig. 4.

As was for the case of the longitudinal coupling, the transverse contribution is larger in the

SDW-disordered phase.

The full self-consistent Eliashberg equations are obtained by matching the coefficients of

the Pauli matrices term by term.

iωn(1 − Z(ωn)) = −πT
∑

ωm

λtot(ωm − ωn)
iωm√

ω2
m + ∆2(ωm)

(2.17)

∆(ωn) = πT
∑

ωm

λtot(ωm − ωn)
∆(iωm)√

ω2
m + ∆2(ωm)

(2.18)

where ∆(ωn) is the frequency-dependent pairing amplitude.

Now we can solve the self-consistent equations to determine the boundary of the super-

conducting phase. Our goal is to look for the critical temperature and magnetic field, and

we can linearize the equations in ∆(ωn) in these cases; in other words we would neglect the

gap functions in the denominator.

Z(ωn) = 1 +
πT

ωn

∑

ǫn

sgn(ǫn)λT (ωn − ǫn)

= 1 +
πT

|ωn|
∑

|ǫn|<|ωn|

λT (ǫn) (2.19)

Then the solution of the critical temperature of linearized Eliashberg equation is equivalent

to the condition that the matrix K(ωn, ωm) first has a positive eigenvalue, where

K(ωn, ωm) = λT (ωn − ωm) + λL Λ(ωn − ωm) − δn,m
|ωn|Z(ωn)

πT
(2.20)

with the soft cutoff function with cutoff EF

Λ(ωn) ≡ 1

1 + c1(ωn/EF )2
(2.21)

where c1 is a constant of order unity. The cutoff EF is the highest energy scale of the

electronic structure, so it is not unnatural to set the cutoff with the scale. With this, the

numerics is well-defined and we plot the resulting critical temperature in Fig. 5.

For comparison, we show in Fig. 6 the results for Tc obtained in a model with only the

transverse interaction associated with λT (ωn). We can use this Tc to define an effective

13
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FIG. 5: (Color online) The critical temperature for superconductivity obtained by solution of the

Eliashberg equations. The lines are for the same parameter values as in Fig. 4. The top plot has

critical temperature scaled with m∗v2, and the bottom is one scaled with EF .

transverse coupling, λT , by Tc/EF = exp(−1/λT ). Using Tc/EF ≈ 0.008 for α2 ≈ 0 in

Fig. 6, we obtain λT ≈ 0.2. This is of the same order as the longitudinal coupling λL for

α2 ≈ 0 in Fig. 4.

Bigger attractive interactions λT (ωn) and λL clearly induces a higher critical temperature

in the SDW-disordered region. Note that this behavior is different from the one of previous

SDW-mediated superconductivity.26 (See the results of Ref . 27 Fig. [4]; near the critical

region, Tc shows the opposite behavior there.) We have also compared the plots obtained

by scaling Tc by m∗v2 and EF . The dependencies on the parameter α1 are reversed in two

plots in the SDW-disordered region. To interpret α1 as the doping related parameter, we

should choose the scaling by m∗v2 because the mass m∗ and spin wave velocity v are not

affected much by doping. With this scaling (the first plot in Fig. 5), the critical temperature

rises with increase doping at fixed α2; of course, in reality, α2 is also an increasing function

14
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FIG. 6: (Color online) As in the top panel of Fig. 5, but with only the transverse pairing interaction,

λT (ωn), included.

of doping.

B. Critical field

This subsection will extend the above analysis to compute the upper-critical magnetic

field, Hc2 at T = 0. We will neglect the weak Zeeman coupling of the applied field, and

assume that it couples only to the orbital motion of the g± fermions. This means that Lg

in Eq. (1.5) is modified to

Lg = g†
+

[
(∂τ − iAτ ) −

1

2m∗
(∇ − iA − i(e/c)a)2 − µ

]
g+

+ g†
−

[
(∂τ + iAτ ) −

1

2m∗
(∇ + iA − i(e/c)a)2 − µ

]
g−, (2.22)

where ∇ × a = H is the applied magnetic field.

Generally, the magnetic field induces non-local properties in the Green’s function. How-

ever, in the vanishing gap limit, Helfand and Werthamer proved the non-locality only ap-

pears as a phase factor (see Ref. 41). The formalism has been developed by Shossmann and

Schachinger42, and we will follow their method. As they showed, in the resulting equation

for Hc2, the magnetic field only appears in the modification of the frequency renormalization

Z(ωn).

The Eliashberg equations in zero magnetic contain a term |ωnZ(ωn)|, which comes from
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the inverse of the Cooperon propagator type at momentum q = 0, C(ωn, 0), where

C(ωn, q) =

∫
d2p

4π2

1

(−iωnZ(ωn) + εp+q)(iωnZ(ωn) + ε−p)

≈ N(0)

∫ 2π

0

dθ

2π

∫ ∞

−∞

dε
1

(−iωnZ(ωn) + ε + vF q cos θ)(iωnZ(ωn) + ε)

=
2πN(0)√

4ω2
nZ

2(ωn) + v2
F q2

(2.23)

where N(0) is the density of states at the Fermi level per spin.

Now we discuss the extension of this to H = 0, as described in Refs. 40,41,42. For this,

we need to replace C(ωn, 0) by the smallest eigenvalue of the operator

L̂(ωn) =

∫
d2ρ

∫
d2q

4π2
C(ωn, q)e

iq·ρe−iρ·π̂ (2.24)

where π̂ = p̂ − (2e/~c)A(r̂). Using Eq. (22) from Ref. 40, we find the smallest eigenvalue

of L̂(ωn) is

L0(ωn) =

∫ ∞

0

ρdρ

∫ ∞

0

qdqJ0(qρ)C(ωn, q)e−ρ2/(2r2

H
)

= r2
H

∫ ∞

0

qdqe−q2r2

H
/2C(ωn, q) (2.25)

where rH =
√

~c/2eH is the magnetic length.

So the only change in the presence of a field is that the wavefunction renormalization

Z(ωn) is replaced by ZH(ωn), where

1

ZH(ωn)
= 2|ωn|r2

H

∫ ∞

0

qdq
e−q2r2

H
/2

√
4ω2

nZ
2(ωn) + v2

F q2
(2.26)

= 2|ωn|
∫ ∞

0

xdx
e−x2/2

√
4ω2

nZ
2(ωn) + v2

F r−2
H x2

(2.27)

We can now insert the modified Z(ωn) into Eq. (2.27) into Eq. (2.20), and so compute

Hc2 as a function of both α1 and the SDW tuning parameter α2. The natural scale for the

magnetic field is

Hm ≡
(

~c

2e

)
k2

F ≈ 534 Tesla, (2.28)

where in the last step we have used values from the quantum oscillation experiment1 quoted

in Section I. Our results for Hc2/Hm are shown in Fig. 7. We can see that the critical

field dependence on α2 is similar to the critical temperature dependence: it is clear that

SDW competes with superconductivity, and that Hc2 decreases as the SDW ordering is
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FIG. 7: (Color online) The upper critical field Hc2 as a function of α1 and α2 using the same

conventions as in Fig. 4. The magnetic field is measured with the units induced by the fermion

mass via Hm defined in Eq. (2.28).

enhanced by decreasing α2. Also, we can compare this with the phenomenological phase

diagram of Fig 1; the critical field line in Fig. 7 determines the line B-M-D within Eliashberg

approximation. Finally, the values of Hc2 in Fig. 7 are quite compatible with the quantum

oscillation experiments.1,2,3,4,5,6

III. SHIFT OF SDW ORDERING BY SUPERCONDUCTIVITY

We are interested in the feedback on the strength of magnetic order due to the onset

of superconductivity. Rather than using a self-consistent approach, we will address the

question here systematically in a 1/N expansion.

We will replace the fermion action in Eq. (1.5) by a theory which has N/2 copies of the
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electron pockets

Lg =

N/2∑

a=1

{
g†
+a

[
(∂τ − iAτ ) −

1

2m∗
(∇ − iA)2 − µ

]
g+a

+ g†
−a

[
(∂τ + iAτ ) −

1

2m∗
(∇ + iA)2 − µ

]
g−a

− ∆ g+ag−a − ∆ g†
−ag

†
+a

}
(3.1)

Here we consider the gauge boson fluctuation more rigorously in the sense of accounting

for full fermion and boson polarization functions. But we will treat the fermion pairing

amplitude ∆ as externally given: the previous section described how it could be determined

in the Eliashberg theory with approximated polarization.

The large N expansion proceeds by integrating out the zα and the g±a, and then expanding

the effective action for ̺ and Aµ – formally this has the same structure as the computation

in Ref. 30, generalized here to non-relativistic fermions. At N = ∞, the g±a and zα remain

decoupled because the gauge propagator is suppressed by a prefactor of 1/N . So at this

level, the magnetic critical point is not affected by the presence of the fermions, and appears

at t = t0c where
1

t0c
=

∫
dωd2k

8π3

1

ω2 + v2k2
. (3.2)

We are interested in determining the 1/N correction to the magnetic quantum critical

point, which we write as
1

tc(∆)
=

1

t0c
+

1

N
F (∆); (3.3)

note that in the notation of Fig. 1, tc ≡ tc(∆). The effect of superconductivity on the

magnetic order will therefore be determined by F (∆) − F (0), which is the quantity to be

computed. The shift of the critical point at this order will be determined by the graphs in

Fig. 3 of Ref. 30, which are reproduced here in Fig. 8. Evaluating these graphs we find

F (∆) =

∫
d2qdω

8π3

∫
d2pdǫ

8π3

1

(ǫ2 + v2p2)2

[
1

D1(q, ω)

(
(2ǫ + ω)2

(ǫ + ω)2 + v2(p + q)2
− ω2

ω2 + v2q2

)

+
1

[D2(q, ω) + (ω2/q2)D1(q, ω)]

(
4v4(p2 − (p.q)2/q2)

(ǫ + ω)2 + v2(p + q)2

)

+
1

Π̺(q, ω)

(
1

ω2 + v2q2
− 1

(ω + ǫ)2 + v2(p + q)2

)]
, (3.4)

where 1/Π̺(q, ω) = 8
√

ω2 + v2q2 is the propagator of the Lagrange multiplier field ̺. The

last term involving Π̺ is independent of ∆, and so will drop out of our final expressions
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FIG. 8: Feynman diagrams for the self energy of zα from Ref. 30. The full line represents zα, the

wavy line is the Aµ propagator, and the dashed line is the ̺ propagator which imposes the length

constraint on zα.

measuring the influence of superconductivity: we will therefore omit this term in subsequent

expressions for F (∆).

It is now possible to evaluate the integrals over p and ǫ analytically. This is done by using

a relativistic method in 3 spacetime dimensions. Using a 3-momentum notation in which

Pµ ≡ (vpi, ǫ) and Qµ ≡ (vqi, ω) and
∫

P
≡ v2

∫
dǫd2p/(8π3), some useful integrals obtained

by dimensional regularization are:

∫

P

1

P 4
= 0

∫

P

1

P 4(P + Q)2
= 0

∫

P

Pµ

P 4(P + Q)2
= − Qµ

16Q3

∫

P

PµPν

P 4(P + Q)2
=

δµν

32Q
+

QµQν

32Q3
. (3.5)

While some of the integrals above appear infrared divergent, there are no infrared divergen-

cies in the complete original expression in Eq. (3.4), and we have verified that dimensional

regularization does indeed lead to the correct answer obtained from a more explicit subtrac-
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tion of the infrared singularities. Using these integrals, we obtain from Eq. (3.4)

F (∆) =

∫
d2qdω

8π3

q2

8(ω2 + v2q2)1/2

[
1

(ω2 + v2q2)D1(q, ω)
+

1

q2D2(q, ω) + ω2D1(q, ω)

]
.(3.6)

The above expression was obtained in the Coulomb gauge, but we have verified that it is

indeed gauge invariant.

We can now characterize the shift of the critical point in the superconductor by determin-

ing the spinon gap, ∆z, at the coupling t = tc(0) where there is onset of magnetic order in

the metal i.e. the spinon gap in the superconductor at H = 0 at the value of t corresponding

to the line CM in Fig. 1. To leading order in 1/N , this is given by

∆z

m∗v2
=

4π

m∗

(
1

tc(∆)
− 1

tc(0)

)

=
4π

m∗N
(F (∆) − F (0)) . (3.7)

This expression encapsulates our main result on the backaction of the superconductivity of

the g± fermions, with pairing gap ∆, on the position of the SDW ordering transition.

Before we can evaluate Eq. (3.7), we need the gauge field propagators D1,2. For com-

pleteness, we give explicit expressions for the boson and fermionic contributions by writing

D2(q, ω) +
ω2

q2
D1(q, ω) = Db

T (q, ω) + Df
T (q, ω) (3.8)

D1(q, ω) = Db
L(q, ω) + Df

L(q, ω). (3.9)

We can read off the bosonic polarization functions Db
L,T (q, ω) from the exact relativistic

result of Ref. 30, and the Eq. (2.4).

Db
T (q, ω) =

√
v2q2 + ω2

16
(3.10)

Db
L(q, ω) =

1

16

q2

√
v2q2 + ω2

(3.11)

For the fermion contribution, let us introduce the Nambu spinor Green’s function

ḡ(q, ω) =
1

(iω)2 − E2
q

(
iω + ξq −∆

−∆ iω − ξq

)
(3.12)

=

∫
dΩ

π

1

Ω − iω
Im [ḡ(q, Ω)] (3.13)

Im [ḡ(q, Ω)] =
(−π)

2Eq

(δ(Ω − Eq) − δ(Ω + Eq))

(
Ω + ξq −∆

−∆ Ω − ξq

)
, (3.14)
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where ξq = q2/(2m∗) − µ and Eq =
√

ξ2
q + ∆2. With the matrix elements of longitudinal

and transverse parts, the polarizations of the fermions are as:

Df
L(q, ω) = −

∫
d2k

(2π)2

dǫ

(2π)
tr [ḡ(k, ǫ)ḡ(q + k, ω + ǫ)]

=

∫
d2k

(2π)2

∫
dΩ′

π

dΩ

π

nF (Ω′) − nF (Ω)

iω + Ω − Ω′
tr [Imḡ(k, Ω)Imḡ(q + k, Ω′)]

=

∫
d2k

(2π)2

1

2

(
1 − ξkξk+q + ∆2

EkEk+q

)(
2(Ek + Ek+q)

ω2 + (Ek + Ek+q)2

)
. (3.15)

Df
T (q, ω) = Df

T,dia + Df
T,para

Df
T,para = −

∫
d2k

(2π)2

1

(m∗)2

(
k2 − (k · q)2

q2

)∫
dǫ

(2π)
tr [ḡ(k, ǫ)τ̂3ḡ(q + k, ω + ǫ)τ̂3]

= −
∫

d2k

(2π)2

k2sin2θ

(m∗)2

∫
dΩ

π

dΩ′

π

nF (Ω′) − nF (Ω)

iω + Ω − Ω′

× tr [Imḡ(k, Ω)τ̂3Imḡ(q + k, Ω′)τ̂3]

= −
∫

d2k

(2π)2

k2sin2θ

(m∗)2

1

2

(
1 − ξkξk+q − ∆2

EkEk+q

)(
2(Ek + Ek+q)

ω2 + (Ek + Ek+q)2

)
(3.16)

Df
T,dia =

ρf

m∗
, (3.17)

where ρf is the density of the fermions and τ̂3 is a Pauli matrix in the Nambu particle-hole

space. With these results we are now ready to evaluate Eq. (3.7).

One of the key features of the theory of competing orders was the enhanced stability of

SDW ordering in the metallic phase. This corresponds to feature B discussed in Section I:

tc(0) > tc in Fig. 1. In the notation of our key result in Eq. (3.7), where tc(∆) ≡ tc, this

requires ∆z > 0. We show numerical evaluations of Eq. (3.7) in Fig 9 and find this indeed

the case. (The values of ∆ used in Fig. 9 are similar to those obtained in Section II near the

SDW ordering critical point.) Indeed, the sign of ∆z is easily understood. In the metallic

phase, the gauge fluctuations are quenched by excitations of the Fermi surface. On the other

hand, in the superconducting state, this effect is no longer present: gauge fluctuations are

enhanced and hence SDW ordering is suppressed. Note that the fact that the g± fermions

have opposite gauge charges is crucial to this conclusion. The ordinary Coulomb interaction,

under which the g± have the same charge, continues to be screened in the superconductor.

In contrast, a gauge force which couples with opposite charges has its polarizability strongly

suppressed in the superconductor, much like the response of a BCS superconductor to a

Zeeman field.
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FIG. 9: The energy ∆z in Eq. (3.7) determining the value of the shift in the SDW ordering critical

point, tc(0)− tc(∆). The horizontal axis is the externally given superconducting gap. For numerics

we fix the parameter α1/2 = EF /m∗v2 = 0.3

IV. CONCLUSIONS

This paper has described the phase diagram of a simple ’minimal model’ of the under-

doped, hole-doped cuprates contained in Eqs. (1.4), (1.5), and (1.6). This theory describes

bosonic neutral spinons zα and spinless charge −e fermion g± coupled via a U(1) gauge field

Aµ. We have shown that the theory reproduces key aspects of a phenomenological phase

diagram14,16 of the competition between SDW order and superconductivity in Fig. 1 in an

applied magnetic field, H . This phase diagram has successfully predicted a number of recent

experiments, as was discussed in Section I.

In particular, in Section II, we showed that the minimal model had a Hc2 which decreased

as the SDW ordering was enhanced by decreasing the coupling t in Eq. (1.6).

Next, in Section III, we showed that the onset of SDW ordering in the normal state with

H > Hc2 occurred at a value t = tc(0) which was distinct from the value t = tc(∆) in

the superconducting state with H = 0. As expected from the competing order picture in

Fig. 1, we found tc(0) > tc(∆). The enhanced stability of SDW ordering in the metal was

a consequence of the suppression of Aµ gauge fluctuations by the g± Fermi surfaces. These

Fermi surfaces are absent in the superconductor, and as a result the gauge fluctuations are

stronger in the superconductor.

We conclude this paper by discussing implications of our results for the phase diagram

at T > 0, and in particular for the pseudogap regime above Tc. In our application of the

main result in Section III, tc(0) > tc(∆) we have assumed that the ∆ = 0 state was reached

by application of a magnetic field. However, this result also applies if ∆ is suppressed by

thermal fluctuations above Tc. Unlike H , thermal fluctuations will also directly affect the

22



T

SC

SC+
SDW

Small Fermi pockets
with pairing fluctuations

(RC)

Large 
Fermi surface

(QD)

Strange metal

(QC)

RC

QC

QD

tc ttc(0)

FIG. 10: Proposed finite temperature crossover phase diagram for the cuprates. The labels at

T = 0 are as in Fig. 1: the onset of SDW order in the superconductor is at tc ≡ tc(∆), while tc(0)

is a ‘hidden’ critical point which can be observed only at H > Hc2 as in Fig. 1. The computations

in Section III show that tc(0) > tc(∆). The full line is the phase transition at Tc representing loss

of superconductivity. The dashed lines are crossovers in the fluctuations of the SDW order. The

dotted lines are guides to the eye and do not represent any crossovers. Thus, in the pseudogap

regime at T > Tc the SDW fluctuations are in the ‘renormalized classical’43 (RC) regime; upon

lowering temperature, they crossover to the ‘quantum critical’ (QC) and ‘quantum disordered’

(QD) regime in the superconductor.

SDW order, in addition to the indirect effect through suppression of superconductivity. In

particular in two spatial dimensions there can be no long-range SDW order at any T > 0.

These considerations lead us to propose the crossover phase diagram in Fig. 10 in the T , t

plane. We anticipate that tc(0) is near optimal doping. Thus in the underdoped regime above

Tc, there is local SDW order which is disrupted by classical thermal fluctuations: this is the

so-called ‘renormalized classical’43 regime of the hidden metallic quantum critical point at

tc(0). Going below Tc in the underdoped regime, we eventually reach the regime controlled

by the quantum critical point associated with SDW ordering in the superconductor, which

is at tc(∆). Because tc(∆) < tc(0), the SDW order can now be ‘quantum disordered’ (QD).

Thus neutron scattering in the superconductor will not display long-range SDW order as

T → 0, even though there is a RC regime of SDW order above Tc. This QD region will have

enhanced charge order correlations7,16,17,44; this charge order can survive as true long-range

order below Tc, even though the SDW order does not. Thus we see that in our theory the

underlying competition is between superconductivity and SDW order, while there can be

substantial charge order in the superconducting phase.
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Further study of the nature of the quantum critical point at tc(0) in the metal is an

important direction for further research. In our present formulation in Eq. (1.4), this point

is a transition from a conventional metallic SDW state to an ‘algebraic charge liquid’25 in

the O(4) universality class.7 However, an interesting alternative possibility is a transition

directly to the large Fermi surface state.45

Finally, we note that a number of experimental studies32,46,47,48,49,50,51 have discussed a

scenario for crossover in the cuprates which is generally consistent with our Fig. 10.
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APPENDIX A: FIELD RELATIONS FROM SPIN DENSITY WAVE THEORY

This appendix will give a derivation of the relation (1.2) between the physical electron

operators cα and the fields g± and zα using spin density wave theory. This will complement

the derivation obtained from the doped Mott insulator approach in previous works.7,8

We begin the quasiparticle Hamitonian which determines the ‘large’ Fermi surface in the

overdoped regime

H0 = −
∑

i<j

tijc
†
iαcjα ≡

∑

k

εkc
†
kαckα (A1)

where we choose the dispersion εk to agree with the measured Fermi surface. In the presence

of spin density wave order, ~ϕ at wavevector K = (π, π), we have an additional term which

mixes electron states with momentum separated by K

Hsdw = −~ϕ ·
∑

k,α,β

c†k,α~σαβck+K,β (A2)

where ~σ are the Pauli matrices.

Now we focus on the electrons which are near the electron pockets. Let us write

c(0,π)α ≡ c1α , c(π,0)α ≡ c2α (A3)

and ε(0,π) = ε(π,0) = ε0. Then, for Néel order polarized as ~ϕ = (0, 0, ϕ) with ϕ > 0, the
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Hamiltonian for these electrons is

H0 + Hsdw = ε0

(
c†1αc1α + c†2αc2α

)

− ϕ
(
c†1↑c2↑ − c†1↓c2↓ + c†2↑c1↑ − c†2↓c1↓

)
(A4)

We diagonalize this by writing

H0 + Hsdw = (ε0 − ϕ)
(
g†
+g+ + g†

−g−

)
+ (ε0 + ϕ)

(
h†

+h+ + h†
−h−

)
(A5)

where

c1↑ = (g+ + h+)/
√

2

c2↑ = (g+ − h+)/
√

2

c1↓ = (g− + h−)/
√

2

c2↓ = (−g− + h−)/
√

2 (A6)

Now the main approximation we make here is to neglect the higher energy h± fermions.

We obtain the electron operators for a general polarization of the Néel order as in Eq. (1.1)

by performing an SU(2) rotation defined by the zα (and dropping the unimportant factor of

1/
√

2) (
c1↑

c1↓

)
= Rz

(
g+

g−

)
;

(
c2↑

c2↓

)
= Rz

(
g+

−g−

)
(A7)

where the SU(2) rotation is

Rz =

(
z↑ −z∗↓
z↓ z∗↑

)
. (A8)

These results lead immediately to Eq. (1.2). In the superconducting state, where 〈g+g−〉 6= 0,

they yield

〈c1↑c1↓〉 =
〈(
|z↑|2 + |z↓|2

)
g+g−

〉

〈c2↑c2↓〉 = −
〈(
|z↑|2 + |z↓|2

)
g+g−

〉
, (A9)

which implies a d-wave pairing signature for the electrons.
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