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Abstract

The kidney maintains water homeostasis by modulating aquaporin 2 (AQP2) on the plasma membrane of collecting duct
principal cells in response to vasopressin (VP). VP mediated phosphorylation of AQP2 at serine 256 is critical for this effect.
However, the role of phosphorylation of other serine residues in the AQP2 C-terminus is less well understood. Here, we
examined the effect of phosphorylation of S256, S261 and S269 on AQP2 trafficking and association with recycling pathway
markers. We used LLC-PK1 cells expressing AQP2(S-D) or (S-A) phospho mutants and a 20uC cold block, which allows
endocytosis to continue, but prevents protein exit from the trans Golgi network (TGN), inducing formation of a perinuclear
AQP2 patch. AQP2-S256D persists on the plasma membrane during cold block, while wild type AQP2, AQP2-S256A, S261A,
S269A and S269D are internalized and accumulate in the patch. Development of this patch, a measure of AQP2
internalization, was most rapid with AQP2-S256A, and slowest with S261A and S269D. AQP2-S269D exhibited a biphasic
internalization profile with a significant amount not internalized until 150 minutes of cold block. After rewarming to 37uC,
wt AQP2, AQP2-S261A and AQP2-S269D rapidly redistributed throughout the cytoplasm within 20 minutes, whereas AQP2-
S256A dissipated more slowly. Colocalization of AQP2 mutants with several key vesicular markers including clathrin, HSP70/
HSC70, EEA, GM130 and Rab11 revealed no major differences. Overall, our data provide evidence supporting the role of
S256 and S269 in the maintenance of AQP2 at the cell surface and reveal the dynamics of internalization and recycling of
differentially phosphorylated AQP2 in cell culture.
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Introduction

Aquaporin-2 (AQP2) is critical for the maintenance of systemic

water balance in mammals. Apical accumulation of AQP2 in renal

collecting duct principal cells increases the permeability of the

epithelium, allowing water to flow down its osmotic gradient into

the interstitium and enter the circulation [1–4]. AQP2 is a

constitutively recycled protein and is also subject to acute

regulation. In the canonical pathway, this regulation is mediated

via vasopressin (VP) signaling through its G coupled protein

receptor (V2R) leading to increased intracellular cAMP, modula-

tion of phosphorylation of AQP2 on the cytoplasmic COOH

terminus (notably at serine 256 by protein kinase A (PKA))

accompanied by an increase in the rate of exocytosis [4]. As

expected, compounds such as calcitonin [5] or prostaglandin E2

[6] that alter cAMP levels and/or the activity of PKA [7] are able

to influence AQP2 phosphorylation and trafficking.

Recently, various non-canonical (i.e. non-VP mediated) path-

ways for AQP2 membrane accumulation have been demonstrated

by our group and others. Phosphorylation of the AQP2 COOH

terminus can be regulated by activation of protein kinase G (PKG)

in response to elevated cGMP [8,9]. Alteration of the polymer-

ization of the actin cytoskeleton in the absence of VP stimulation

can itself lead to the membrane translocation of AQP2 [10–12],

and it is now well accepted that membrane accumulation of AQP2

can be achieved through the modulation of endocytosis and/or

exocytosis [4,13–19]. Inhibition of endocytosis by treatment with

statins [17,18,20] or methyl-b-cyclodextrin [14,16] results in the

accumulation of AQP2 on the plasma membrane independent of

phosphorylation. Furthermore, we have observed that VP

stimulation increased rates of exocytosis even in cells expressing

an AQP2 mutant (AQP2-S256A) that cannot be phosphorylated

at serine 256 [15]. Therefore, although a role for PKA/PKG

mediated AQP2-S256 phosphorylation in inhibiting AQP2

endocytosis has been clearly demonstrated [21,22], its influence

on AQP2 exocytosis is less certain, partially due to the difficulty of

separating the endocytosis and exocytosis pathways and the

constant, rapid recycling of AQP2 [14].

Phospho-proteomic studies [23,24] have identified S261, S264

and S269 as additional residues with phosphorylation states that

are modulated by VP. While the role of phosphorylation at these

residues is not fully understood, emerging data suggest that

differential phosphorylation at these sites can also regulate the

trafficking of AQP2. For example, S261 is de-phosphorylated in
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response to VP treatment [25], and pS261 is found mostly in

intracellular vesicles after ubiquitination and endocytosis indicat-

ing a possible role stabilizing intracellular AQP2 localization

[23,25,26]. On the other hand, phosphorylation at S269 has been

detected only on the plasma membrane [24], and recent data from

polarized MDCK cells expressing AQP2-S269D indicates that

pS269 conveys a resistance of AQP2 to endocytosis [22].

However, it has also been shown that the S256 residue seems to

be the ‘‘master switch’’ whose phosphorylation is necessary for

downstream phosphorylation of other C-terminal serines [21,24].

In addition, we have shown previously that phosphorylation at

S256 is not necessary for AQP2 recycling, because AQP2-S256A

recycles rapidly and constitutively [14]. The role of phosphory-

lation at the other C-terminus serine residues in AQP2 recycling

remains to be fully resolved.

Therefore, in this study we set out to investigate the role of

AQP2 phosphorylation sites on non-stimulated (constitutive

recycling) endocytosis and exocytosis using AQP2 with point

mutations that mimic either the phosphorylated or un-phosphor-

ylated state of serine 256, 261 and 269. We are able to isolate the

endocytotic and exocytotic pathways by employing the ‘‘cold

block’’ and ‘‘cold block release’’ methods to follow AQP2

trafficking. As observed nearly twenty years ago, the transport of

membrane proteins from the Golgi to the plasma membrane can

be blocked by incubating cells at 20uC, inhibiting the exit of

protein from the Golgi [27]. Since then, membrane protein

recycling has been studied by applying the cold blocking method

to interrupt the recycling of internalized membrane proteins and

cause their accumulation in the trans Golgi network (TGN). When

followed with a cold block release by rewarming to 37uC, the rapid

re-initiation of protein trafficking from TGN to plasma membrane

can be followed. We have successfully applied this cold block

approach previously in our work on both WT-AQP2 and V2R

trafficking [28,29]. In addition to assessing the internalization of

AQP2, we examined the colocalization of the water channel with

markers of the recycling pathway to determine if changes in AQP2

phosphorylation affected the association with these subcellular

compartment markers.

Methods

Antibodies and chemicals
All chemicals unless otherwise noted were purchased from

Sigma-Aldrich (St. Louis MO), and cell culture reagents were

obtained from Invitrogen (Carlsbad CA). Monoclonal antibodies

against c-myc were generated from the 9E10 hybridoma cell line,

purchased from American Type Culture Collection (ATCC,

Manassas VA). Secondary antibodies tagged with either Cy3,

CY5.5 or FITC were obtained from Jackson Immunoresearch

Laboratories (West Grove PA). The following commercial primary

antibodies were purchased from their respective vendors: EEA1

(Cell Signaling 2411s Danvers MA), Rab5 (Cell Signaling 2143s),

Rab7 (Cell Signaling 2094s), Rab10 (Sigma-Aldrich R8906),

HSP70/HSC70 (Abcam ab53496, Cambridge MA), Lysotracker

Red (Invitrogen), Clathrin (BD Transduction Labs 610499,

Franklin Lakes NJ). LLC-PK1 cells were purchased from ATCC

(CL-101).

AQP2 point mutations and generation of stable cell lines
Point mutations substituting either an aspartic acid (D) or

alanine (A) for serine (S) on the C-terminus of AQP2 at positions

256, 261 and 269 were generated using site directed mutagenesis

(Invitrogen) as previously reported [21]. The following primers

were used: S256A: (F) 59 GTGCGGCGGCAGGCAGTGGAG

39, S256A: (R) 59 GCCGTCCGTCACCTCGAGGTGAGA 39.

S256D: (F) 59 GTGCGGCGGCAGGACGTGGAG 39 S256D:

(R) 59 GCCGTCCTGCACCTCGAGGTGAGA 3,9 S261A: (F)

59 GGTGGAGCTCCACGCTCCTCAGAGCC 39, S261A: (R)

59 GGCTCTGAGGAGCGTGGAGCTCCACC 39. S269A: (F)

59 GAGCCTGCCTGCCGGCGCCAAGGCCGAACAAAAGC

39, S269A: (R) 59 GCTTTTGTTCGGCCTTGGCGCCGCGA-

GGCAGGCTC 39. S269D: (F) 59 GAGCCTGCCTGCCGGC-

GACAAGGCCGAACAAAAGC 39, S269D: (R) 59 GCTTTTG-

TTCGGCCTTGTCGCCGCGAGGCAGGCTC 39. Stable cell

lines expressing these phospho-mimic AQP2 mutants were

obtained by transfection of the porcine kidney cell line, LLC-

PK1, using Lipofectamine (Invitrogen) and selection under

500 mg/mL G418. All cell lines were maintained in DMEM

supplemented with 10% bovine serum and 1% penicillin/

streptomycin at 37uC in a humidified 5% CO2 atmosphere.

Cold block
LLC-PK1 - AQP2 cells were plated on 15615 mm glass cover

slips (Electron Microscopy Sciences) at least 24 hours before

experimentation. To inhibit newly synthesized protein production,

cycloheximide was added to the culture medium (10 mg/mL) for

60 minutes prior to, and maintained in the medium during cold

block. Cold block was performed by placing the culture plates at

20uC in a water bath for various time points up to 150 minutes.

Cells were then fixed with 4% paraformaldehyde/PBS (PH 7.4)

and subjected to immunofluorescence staining. For the cold block

and release experiment, after cold block for 2 hours, which gives

the maximal perinuclear patch structure, cells were brought to

37uC to allow protein/vesicle recycling to occur. Cells were

harvested at various time points after cold block release, fixed and

processed for immunofluorescence staining.

Immunofluorescence staining
AQP2 and subcellular markers were localized by immunoflu-

orescence staining via a standard protocol. Cells were permeabi-

lized in 0.01% Triton X-100 in PBS for 4 minutes, blocked with a

1% BSA/PBS for 20 minutes and then incubated with primary

antibody overnight at 4uC. After washing with PBS, cells were

incubated with the secondary antibodies at room temperature for

one hour. Subsequently, the cover slips were washed and mounted

in Vectashield containing DAPI (Vector Labs., Burlingame, CA)

and visualized on a Nikon 80i microscope with a ORCA95

camera (Hamamatsu, Tokyo Japan). For quantitative analysis of

AQP2 trafficking, all cover slips were stained under the same

conditions and imaged with the same microscope parameters.

Figure 1. Expression of AQP2 and various phosphorylation
mutants in LLCPK1 cells. Cell lysates were prepared from stable cells
expressing WT AQP2 or AQP2 phosphorylation mutants, including
S256A, S256D, S261A, S269A and S269D. Using an antibody recognizing
the myc tag that is attached to the C-terminus of AQP2, AQP2 appears
as an approximately 25 kDa band on western blot.
doi:10.1371/journal.pone.0032843.g001

AQP2 Phosphorylation and Trafficking
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Analysis of the AQP2 patch fluorescence was performed using

IPLAB software (Biovision, Exton PA). The region of interest used

to measure AQP2 patch fluorescence was determined by applying

an intensity threshold to the visible perinuclear accumulation of

AQP2 (Figure S1). Colocalization of AQP2 with markers of the

recycling pathway was calculated from a series of confocal sections

(1 mm step size) acquired on a Nikon A1 confocal microscope

(Nikon, Tokyo Japan) using Volocity software (Perkin Elmer,

Figure 2. Formation of AQP2 perinuclear patch after cold block at 206C in cells expressing various AQP2 phosphorylation mutants.
After pretreatment with cycloheximide for one hour, cells underwent cold block at 20uC for up to 150 minutes. Cells were fixed and subjected to
staining with anti-c-myc antibody to detect AQP2. During 120 minutes of cold block the development of the perinuclear AQP2 patch is evident in all
cells expressing AQP2 variants except for AQP2-S256D, which remains mainly on the cell membrane (LLC 256D). Scale bar = 20 mm.
doi:10.1371/journal.pone.0032843.g002

AQP2 Phosphorylation and Trafficking
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Waltham MA) (Figure S2). For publication, image brightness and

contrast were linearly adjusted, and a high pass filter was applied

to remove noise in Adobe Photoshop (Adobe, San Jose CA).

Statistics
Statistics were performed with the Prism software (GraphPad,

La Jolla CA). Data for each treatment (cold block or cold block

release) were first compared for significance with a one-way

ANOVA. Differences in means were then compared between

AQP2 mutants at each time point using the student’s T-test (two

tailed). Each experiment was repeated at least three times.

Statistical significance was determined at a p value,0.05.

Results and Discussion

Stable cell lines expressing various AQP2
phosphorylation mutants

Stable expression of AQP2 phosphorylation mutants containing a

c-myc tag fused to the COOH terminus was achieved in LLC-PK1

cells. Based on the rat AQP2 sequence, point mutations at serine

residues 256, 261, or 269 were created substituting either aspartic

acid (D), mimicking the charged state of phosphorylation, or alanine

(A), which mimics the de-phosphorylated state (Identified as:

S256D, S256A, S261A, S269D, S269A). AQP2 expression in these

cell lines was confirmed by western blot using an antibody against

the c-myc tag and a commercially available polyclonal goat anti-

AQP2 antibody recognizing AQP2 C-terminus (Santa Cruz, CA).

Both antibodies showed similar results and the immunoblot using

anti-c-myc antibody is presented here (Fig. 1).

Effect of phosphorylation on AQP2 endocytosis
To study the role of phosphorylation of AQP2 on its

endocytosis, LLC-PK1 cells expressing the AQP2 constructs were

incubated at 20uC (cold block) for up to 150 minutes and

evaluated by immunofluorescence staining with anti-c-myc

antibodies as previously described [21]. During the cold block,

the gradual formation of a perinuclear patch was evident for all of

the AQP2 phospho-mutants except for AQP2-S256D, the

majority of which remained on the cell membrane (Fig. 2). The

perinuclear patch consists of internalized AQP2 that is sequestered

at the level of the trans Golgi network by incubation of the cells at

20uC, which has been shown to prevent protein from exiting the

TGN [29] and which inhibits the constitutive recycling of

transferrin receptor [30,31]. The contribution of newly synthe-

sized AQP2 to the perinuclear patch was minimized by the

inhibition of de novo protein synthesis with cycloheximide in the

culture medium. Cycloheximide at this concentration has been

previously shown by our group to significantly inhibit AQP2 and

V2R synthesis [28,32]. Our initial experiment of cold block

treatment of mutant cells for 2 hours in the presence or absence of

cycloheximide revealed a similar AQP2 signal intensity with or

without cycloheximide suggesting that a significant contribution of

the perinuclear signal from newly synthesized AQP2 is unlikely

(data not shown). In addition, the half life of AQP2 at 37uC has

been reported to be between 6 and 12 hours in mpkCCD (c14)

[33] and MDCK cells [34]. Therefore, the majority of the AQP2

accumulating in the patch during the 2 hours of cold block is due

to recycled protein, and the contribution of protein degradation is

likely to be minimal.

To quantify the rate of accumulation of endocytosed AQP2, the

formation of the perinuclear patch was evaluated by immunoflu-

orescence staining every 30 minutes over 150 minutes of cold

block at 20uC. Representative images for each AQP2 mutant at 0,

45 and 120 minutes of cold block are displayed in Figure 2. The

quantification of fluorescence images representing the time

dependent development of the perinuclear AQP2 patch is shown

in Figure 3. Consistent with previous reports [21,22,35,36], we

found a persistent membrane presence of AQP2-S256D with

dramatically reduced endocytosis (patch formation) during cold

block compared to the other AQP2 mutants, suggesting that

phosphorylation at S256 leads to a resistance to endocytosis.

Conversely, the S256A mutant was not retained on the plasma

membrane and internalized rapidly after cold block with no

further significant increase in perinuclear patch fluorescence after

it reached a maximum intensity at 60 minutes (P,0.5). In

contrast, maximum perinuclear fluorescence in LLC-AQP2 and

LLC-S269A cells was achieved at either 120 minutes or

150 minutes of cold block for the S261A and S269D AQP2

mutants. Interestingly, the S269D mutant displayed a biphasic

internalization, initially reaching a patch fluorescence intensity of

37% of maximum by 60 minutes which plateaus until 120 min-

utes. Compared to the wild type AQP2, both S261A and 269A

displayed a rapid initial internalization at 30 minutes followed by a

steady subsequent growth of the patch.

Exocytosis and recycling after cold block release
To investigate the impact of the phosphorylation mutations on

the exocytosis of AQP2, cells were returned to 37uC after

120 minutes of cold block at 20uC. In Figure 4 the dissolution of

the perinuclear AQP2 patch is evident by 30 minutes of cold block

release. As observed during the cold block, AQP2-S256D is

primarily membrane bound, while the other AQP2 phosphoryla-

tion mutants redistributed throughout the cytoplasm. To compare

the relative rates of exocytosis, the dissolution of the perinuclear

Figure 3. Quantified formation of AQP2 perinuclear patch after
cold block at 206C in cells expressing various AQP2 phosphor-
ylation mutants. The time course of the development of the AQP2
perinuclear patch was quantified by measuring mean pixel intensity of
the patch using IPlab software. The results are presented as the increase
in mean patch fluorescence value starting from 0 minutes of cold block.
The overall accumulation of the perinuclear patch reached a maximal
density after cold block for 150 minutes with all mutants. The
experiment was repeated in triplicate, N for each mean is $24. Bars
represent standard error.
doi:10.1371/journal.pone.0032843.g003

AQP2 Phosphorylation and Trafficking
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patch was assessed by immunofluorescence staining every

10 minutes over 30 minutes of cold block release. In Figure 5,

the decrease in mean AQP2 perinuclear patch fluorescence is

compared. As was seen during the cold block, little change in the

already low intensity of AQP2-S256D perinuclear fluorescence

was observed. The perinuclear patch in LLC S256A, S269A and

S269D cells reached minimum fluorescence intensities after

30 minutes. On the other hand, wt AQP2 and S261A patches

resolved by 20 minutes of cold block release. In contrast to its

relatively rapid internalization during cold block, the AQP2-

S256A perinuclear patch was the slowest to dissolve upon

returning the cells to 37uC.

Figure 4. Dissolution of the AQP2 perinuclear patch after cold block release. Cells were cold blocked for 120 minutes to form the
perinuclear patch after which the cold block was released by returning the cells to 37uC. The perinuclear patch rapidly disintegrated over 30 minutes
of cold block release as the AQP2 mutants (except for AQP2-S256D which remained on the membrane) redistributed throughout the cytosol and
membrane. Scale bar = 20 mm.
doi:10.1371/journal.pone.0032843.g004

AQP2 Phosphorylation and Trafficking
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AQP2 colocalization with markers of vesicular
compartment

AQP2 is a constitutively trafficked protein that is recycled from

the plasma membrane beginning in clathrin coated pits [37], into

EEA1 positive vesicles and sorted to either lysosomes for

degradation or through the TGN and back to the plasma

membrane. Therefore, in addition to investigating the rate of

AQP2 internalization during cold block and subsequent exocytosis

following cold block release, we examined whether phosphoryla-

tion of AQP2 impacted its association with markers of key

subcellular compartments including clathrin, HSP70/HSC70,

EEA1, Rab7, Rab10, Lysotracker and TGN proteins.

In Figure 6 we show double immunofluorescence labeling of

LLC-PK1 cells expressing wild type AQP2 with TGN, HSP70/

HSC70, clathrin, or EEA1 during cold block and cold block

release. For each of these markers, visual inspection of the samples

revealed no obvious differences in immunofluorescence colocaliza-

tion among the AQP2 mutants, except for the internalization

resistant AQP2-S256D. Quantitative analysis of colocalization of

each of these markers and the AQP2 mutants did not provide any

additional significant insights into the role of phosphorylation on

AQP2 compartmentalization during constitutive trafficking (Fig-

ure S2). However some interesting patterns of interaction were

observed in the data among the mutants during cold block and

release. For example an increase in colocalization of AQP2 S256A

and GM130 was noted during the cold block, and persisted during

the cold block release suggesting a delayed transit from the TGN

to recycling vesicles, which is consistent with reports in the

literature [38].

Cold block of LLC-PK1 cells inhibits protein exit from the

TGN and results in a condensation of AQP2 staining in a

perinuclear region that is also labeled by the TGN protein GM130

(Figure 6 A). In agreement with previous studies, the AQP2

variants were found to colocalize with clathrin and HSP70/

HSC70 within the perinuclear patch [29]. While the majority of

AQP2-S256D remained on the plasma membrane, which may

account for our previous observation of reduced interaction of

HSP70 and this mutant [22,39], some colocalization of HSP70/

HSC70 and the small fraction of internalized AQP2-S256D was

observed (Figure S2).

Association with EEA1 decreased during the cold block, with a

subsequent increase following cold block release (Figure 6 C and

Figure S2). Rab7- AQP2 colocalization was observed mainly

within the already formed patch. Interestingly, little to no

colocalization of AQP2 and Rab10 or Lysotracker was observed

at any stage (not shown) despite reports in the literature that AQP2

is found in Rab10 positive vesicles by LM-MS [40] and that

AQP2-S256A is prominent in lysosomes [38]. These data indicate

that, aside from pS256, phosphorylation at these residues does not

seem to significantly alter the internalization path or major

subcellular compartments in which AQP2 resides during endocy-

tosis and recycling. Further examination with subcellular fraction-

ation in combination with biochemical characterization may be

needed to dissect the vesicular pathway in association with the

differential phosphorylation of AQP2 along its trafficking

pathways.

The current model of regulated AQP2 trafficking links VP

stimulated phosphorylation of serine 256 with membrane

accumulation of the water channel [41]. In vivo, VP stimulation

leads to dramatic apical membrane staining of AQP2 with

antibodies specific for phosphorylation at serine 256 (pS256),

and semi-quantitative analysis by western blot reveals an increase

in the percentage AQP2 with S256 phosphorylation. In vitro, the

dominant role of S256 in membrane accumulation is supported by

the constitutive membrane presence of AQP2 in cells expressing

the phospho-mimic mutation AQP2-S256D, an effect that is not

altered by S-D or S-A substitutions at S261, or S269 [21].

Endocytosis of AQP2-S256D may however be modulated in vitro

by ubiquitination at K270 following the addition of 12-

tetradecanoylphorbol-13-acetate (TPA) [26,35].

In contrast, AQP2-S256A remains mostly cytosolic even during

stimulation of cells by VP and/or forskolin. The S256A mutation,

however, does not prevent the constitutive recycling of the water

channel, and membrane accumulation of AQP2 S256A can be

readily observed upon acute inhibition of endocytosis [14].

Surprisingly, expression of the S256A mutation does not result

in an inhibition of stimulated exocytosis of AQP2 after treatment

of cells with VP [15]. Even though the functional significance and

regulation, if any, of the constitutive recycling of AQP2 is not yet

understood, current data suggest that in contrast to VP mediated

AQP2 trafficking, constitutive recycling of AQP2 does not depend

on the phosphorylation of S256. A recent report has shown that

AQP2-S256D has a reduced association with endocytotic proteins,

such as clathrin, dynamin and HSC70 in MDCK cells [22].

Therefore, it is likely that phosphorylation at S256 plays a more

dominant role in the maintenance of AQP2 membrane presence

via resistance to endocytosis rather than being directly responsible

for stimulated trafficking and/or exocytosis. However, one study

has suggested that S256D can be internalized after treatment of

cells with dopamine, but only after cells were first pre-exposed to

forskolin [35]. This was interpreted as reflecting the need for FK-

induced phosphorylation of as yet unknown components of the

endocytotic machinery to facilitate AQP2 endocytosis.

We quantified some significant differences among the AQP2

mutants in the rate at which the perinuclear patch accumulated.

The most rapid accumulations were seen with the S256A and

S261A mutants. This is consistent with the fact that the S256A

mutant cannot be phosphorylated at the critical S256 site, and its

Figure 5. Quantified dissolution of the AQP2 perinuclear patch
after cold block release. To quantify the rate of AQP2 redistribution
a time course analysis of the dissolution of the patch was assayed by
immunofluorescence staining and images were quantified using the
IPlab software. The results are presented as the decrease from the
maximum mean patch fluorescence value after release of cold block.
The experiment was repeated in triplicate N for each mean is . = 24.
Bars represent standard error.
doi:10.1371/journal.pone.0032843.g005

AQP2 Phosphorylation and Trafficking
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transit through the plasma membrane is not retarded, as could be

the case for at least some of the wild type protein, which may have

some level of constitutive S256 phosphorylation. The greater

speed of S261A accumulation compared to the wild type protein is

more difficult to rationalize, since it too could have some baseline

level of S256 phosphorylation. Our data indicate that, at the very

least, VP-induced dephosphorylation of S261 is not by itself a

signal for cell surface retention of AQP2.

The role of the S269 site is slowly emerging. pS269 is observed

only on the apical membrane in vivo, and a role in retarding

endocytosis has been suggested [22,24]. Our present data support

this hypothesis, since the S269D mutation was internalized much

more slowly than S269A. In our artificial AQP2-S269D expression

system, intracellular vesicles containing the mutant are clearly

detectable, whereas in vivo, antibodies against pS269 label only the

plasma membrane [24,42]. We found a biphasic pattern of growth

of the perinuclear patch in our cell system. One intriguing

possibility is that the initial growth, which plateaus between 50–

100 minutes of cold treatment, may reflect the recycling of these

intracellular vesicles back to the TGN. The later accumulation,

beginning about 100 minutes after cold exposure, may reflect the

retarded internalization of an ‘‘endocytosis resistant’’ pool of

membrane bound S269D that was either in the plasma membrane

initially, or in the final stages of the constitutive insertion pathway

prior to cold exposure. We have shown previously that endocytosis

from the cell surface contributes to patch formation, but we cannot

rule out the possibility that – as we suggest for the S269D mutation

– there is at least some contribution from retrograde transport of

vesicles that are already present inside the cell at the time of cold

exposure.

Upon re-warming of cells to 37uC, the tight perinuclear patch

containing AQP2 begins to disperse, as material is released from

the cold-induced TGN export block. It has been shown for AQP2,

as well as in other systems, that this released material can enter the

secretory pathway, and be inserted into the plasma membrane

through constitutive vesicle exocytosis [29]. In addition, we have

shown previously that cAMP is not elevated following the release

of cold block and, thus, it is unlikely that the rate of patch

dissolution is dependent on stimulated exocytosis [29]. In addition,

the endogenous level of cAMP was not altered in these stable cell

lines expressing these AQP2 phosphorylation mutants (data not

shown). We found that while three of the AQP2 constructs

behaved similarly after re-warming (WT, S216A and S269A),

dissipation of the S256A containing patch was significantly slower

than for the other AQP2 constructs and that of the S269D

mutation was more rapid. It has previously been suggested that

phosphorylation of S256 is somehow involved in AQP2 transport

and processing in the recycling pathway, and that release into the

Figure 6. Association of AQP2 and cellular compartment markers during the dynamic process of cold block and cold block release.
The association of subcellular compartment markers with AQP2 during the cold block and subsequent release was investigated. GM130, clathrin,
EEA1, and HSP/HSC70, were co-stained with AQP2 (A, B, C, D). Panel A, GM130 staining also overlaps with AQP2 in the perinuclear patch but not after
release of the cold block. In panel B, clathrin appeared to colocalize mostly with AQP2 during the development of the perinuclear patch and
redistribution after cold block release. Panel C, EEA staining was colocalized with AQP2 at the early stage of endocytosis, and was partially associated
with the perinuclear patch. After CBR at 37uC, a few large EEA/AQP2 positive structures appeared, but most AQP2 was not associated with EEA. Panel
D, HSP/HSC70 partially colocalized with AQP2 during the formation of the perinuclear patch, but not during AQP2 redistribution after cold block
release. Scale bar = 20 mm.
doi:10.1371/journal.pone.0032843.g006
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secretory pathway is inhibited by dephosphorylation [38]. Our

past and present data show that while S256A seems to follow a

similar trafficking itinerary to the wild type protein, its transit

through and/or release from the TGN may indeed be slower

compared to wild type AQP2 and the other phosphorylation

mutants. It appears that phosphorylation of the S269 residue may,

in contrast, increase the release of AQP2 from the TGN, although

whether regulation occurs in vivo remains to be determined.

While the differential role of various AQP2 phosphorylation

sites on AQP2 regulated trafficking as well as constitutive recycling

will continue to be the subject of future studies, our data

demonstrate that differential phosphorylation of AQP2 affects

the rate and pattern of endocytosis and recycling of AQP2 in cells.

Supporting Information

Figure S1 Region of Interest around perinuclear patch.
The region of interest (yellow line) used to measure AQP2 patch

fluorescence was determined by applying an intensity threshold to

the visible perinuclear accumulation of AQP2.

(TIF)

Figure S2 Quantification of colocalization between
AQP2 and markers of the subcellular compartment.
The fraction of AQP2 signal colocalized with each subcellular

compartment marker is presented for 0, 45, and 120 minutes of cold

block as well as for 30 minutes following cold block release. For each

data set, the colocalizations were calculated from multiple

individual cells in confocal microscope stacks taken at a step size

of 1 mm. Means are presented with standard error bars. Despite the

formation of a tight perinuclear patch in the same vicinity as the

Golgi apparatus, as can be observed in Figure 6, only a small

fraction (generally sub 15%) of AQP2 is colocalized on a vesicular

level with the TGN marker GM130. Specifically, for GM130

staining, a significant colocalization of AQP2 and GM130 is seen in

the LLC 256A mutant before the cold block and is increased after

cold block. Cold block release does not change the fraction of

association suggesting a delayed dissociation or a stable association

of AQP2 with GM130 even after cold block release. Minimal

association of AQP2 and GM130 is seen in LLC 269A and LLC

269D. Of the very small subpopulation of AQP2-S256D that gets

internalized, AQP2 staining colocalizes with GM130 after cold

block and cold block release. For clathrin staining, an increasing

association with clathrin signal during cold block was observed

followed by a decreased association during cold block release in the

mutants except for LLC 269A which experienced an increased

AQP2:clathrin colocalization only after cold block release. For EEA

staining, AQP2 has a generally low degree of association with EEA

and no particular pattern is suggested by the quantification. For

HSP/HSC70 staining, initial high level of colocalization of AQP2

and HSP/HSC70 was seen in the early endocytosis phase in wild

type, LLC 256A and LLC 256D, and is reduced after cold block

45 minutes, while it is increased for LLC 261A, LLC 269A and

LLC 269D. A biphasic pattern of AQP2/HSP/HSC70 colocaliza-

tion during the cold block is observed for LLC 261A, LLC 269A,

and LLC 269D. Interestingly, AQP2-S261A, -S269A and -S269D

show increased colocalization of HSP/HSC70 and AQP2 during

‘‘cold block release’’, while wild type, -S256A, and -S256D do not.

(PDF)
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