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Abstract. Errors in the timing assigned to observations degrade estimates4

of the power spectrum in a complicated and non-local fashion. It is clear that5

timing errors will smear concentrations of spectral energy across a wide band6

of frequencies, leading to uncertainties in the analysis of spectral peaks. Less7

understood is the influence of timing errors upon the background continuum.8

We find that power-law distributions of spectral energy are largely insensi-9

tive to errors in timing at frequencies much smaller than the Nyquist frequency,10

though timing errors do increase the uncertainty associated with estimates11

of power-law scaling exponents. These results are illustrated analytically and12

through Monte Carlo simulation, and are applied in the context of evaluat-13

ing the power-law behavior of oxygen isotopes obtained from Greenland ice14

cores. Age-errors in layer counted ice cores are modeled as a discrete and mono-15

tonic random walk that includes the possibility of biases toward under- or16

over-counting. The δ18Oice record from the Greenland Ice Sheet Project 217

is found to follow a power-law of 1.40 ± 0.19 for periods between 0.7 and18

50 ky, and equivalent results are also obtained for other Greenland ice cores.19
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1. Introduction

Power-law behavior, i.e. when spectral power scales proportionately with frequency20

raised to an exponent, has proven a useful description for climate over a wide range of21

timescales (e.g. Wunsch 1972; Vyushin and Kushner 2009; Shackleton and Imbrie 1990).22

In order to span a wider range of timescales, some studies have combined multiple spec-23

tral estimates from low-resolution, long-record proxy data and high-resolution, modern24

instrumental data. Harrison [2002] produced a patchwork spectrum from many sea-level25

records that generally followed a power law with an exponent of minus two extending26

over periods from ∼ 1 yr to ∼ 600 Myr. Notable, however, is that sea level variability27

scaled more nearly with a power law of -1.4 at periods shorter than 100 years. Using a28

similar patchwork approach, Huybers and Curry [2006] compared many records reflecting29

sea- and land-surface temperature from the instrumental era and paleorecord and found30

that temperature variability followed power laws ranging from −0.6 (tropical) to −0.431

(high-latitudes) at decadal to centennial timescales, whereas steeper power laws from32

−1.6 (tropical) to −1.3 (high-latitudes) existed at longer periods.33

In both Harrison [2002] and Huybers and Curry [2006], the lower frequency, more steeply34

scaling variability is from paleoclimate data, while the higher-frequency and more shallow35

scaling variability is generally from instrumental data. The question arises whether the36

steepening of the power law at centennial timescales might be an artifact of the errors37

present in certain proxy timeseries.38

There are many potential sources of error in any proxy timeseries. Among other com-39

plications, the data are sparse, representative of quantities integrated over poorly defined40
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geographical areas, generally encoded as a function of multiple physical and possibly bio-41

logical variables, and uncertain in measurement magnitude (e.g. Bradley 1999). Proxies42

are also subject to pervasive uncertainty in timing. Here we focus on the influence of43

timing errors upon spectral estimates of the background continuum because such errors44

are common but have received relatively little attention.45

Studies of error propagation in spectral analysis have primarily addressed the influence46

of measurement noise. Indeed, most of the standard methods were developed for engineer-47

ing applications where the assumption of perfect timing is normally adequate. However,48

timing errors are generally non-negligible in paleoclimate data. For example, even the49

meticulously layer-counted GISP2 record has time-uncertainty equal to about 2% of the50

estimated age (Alley et al. 1997). The case of jitter (white timescale noise) was explored51

by Moore and Thomson [1991], who showed that even small timing errors can result in52

large changes in the power spectral estimate of an oceanographic dataset. Extensions by53

Thomson and Robinson [1996] suggested that more realistic correlated errors have greater54

consequences for spectral estimation, although their approach was not tractable outside55

the assumption of nearly uniform sampling. Mudelsee et al. [2009] developed statistical56

tests to estimate the frequency and significance of time-uncertain spectral peaks using57

Monte-Carlo methods with the Lomb-Scargle periodogram, applying bootstrap to correct58

the estimator bias. This small literature represents an important step forward in grap-59

pling with the ubiquitous issue of time uncertainty in all but the most recent instrumental60

climate records. However, the effect of age model errors such as those encountered in pa-61

leoclimate timeseries on the estimation of power-law climate spectra has not yet been62

explored.63
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2. Time-induced Changes in the Power Spectrum

The power spectrum, P (f), of a continuous signal, x(t), can be estimated using the

periodogram (Bracewell 1986),

P (f) = |F (f)|2 ≡
∣

∣

∣

∣

∫

∞

−∞

x(t)e−2πiftdt
∣

∣

∣

∣

2

. (1)

The expectation of the periodogram, E[P (f)], is said to exhibit power-law scaling if,

E[P (f)] = afβ . (2)

To the extent that the power spectrum of a climate timeseries exhibits power-law scaling,64

the logarithm behaves linearly, log(P ) = β log(f) + log(a). Below we explore the impli-65

cations of replacing the signal, x(t), with a time-uncertain version, x(t′). Here, x is not a66

function, but rather a representation of a series of measurements placed on a timescale,67

t′. We define this uncertain estimate of the timescale as, t′ ≡ t + ε(t), where ε(t) is the68

time error.69

Errors in t′ distort the integral in Eq. 1 because changes in the timescale alter the70

frequency and phase of the Fourier components of the signal. We wish to determine the71

ways in which these timing errors alter the inferred spectrum, P ′(f), of a time-uncertain72

power-law signal, beginning with an illustrative example. Although real age errors will73

typically take the form of a random walk, we first consider a simpler case where time74

error grows linearly between the initial time, ti, and the switch time, ts, and then shrinks75

linearly between ts and the final time, tf ,76

ε(t) =

{

γ1t if ti ≤ t ≤ ts,
γ1ts + γ2(t− ts) if ts < t ≤ tf .

(3)
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The error rate, γ, is equal everywhere to dε/dt, and γ2 is here defined as −γ1ts/(tf − ts),77

such that the total length of the timeseries is unchanged. This leads to a distorted repre-78

sentation of the signal — the first half is stretched, while the second half is compressed.79

See Fig. 1a,c for an illustration of this timing error applied to a red-noise signal. How80

will such timing errors influence the spectral estimate of narrow and broadband features81

present in x(t)?82

Our approach is to examine the two segments of the record characterized by differ-83

ent temporal distortions independently, and then combine their spectra to estimate the84

spectrum of the full signal. That is, the signal can be decomposed into two segments by85

applying rectangular windows,86

x(t) = x(t)Π (t, ti, ts) + x(t)Π (t, ts, tf) ,

where the windowing function, Π, is defined as,

Π(t, t1, t2) =

{

1 if t1 ≤ t < t2,
0 otherwise.

Such windowing introduces sidebands due to the Gibbs phenomenon (e.g., Priestley87

1994). Furthermore, the sum of the spectral estimates of the individual segments will88

differ from the spectral estimate obtained from the entire segment owing to differences89

in frequency resolution and interactions of the phase across the two segments, but in the90

synthetic experiments described later, we show that the average influence of these effects91

is negligible. Note that segmenting timeseries, computing their spectral estimates, and92

then averaging is a common procedure for estimating the spectrum of a noisy timeseries93

(Bartlett 1950).94
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If x(t) contains a periodic component with frequency, f◦, the time errors (Eq. 3) will

shift the variability to lower and then higher frequencies, f1 and f2, defined by,

f◦ = (1 + γ1)f1 = (1 + γ2)f2, (4)

and the resulting spectral estimate will split the original peak in two,

P ′ ≈ P ′

1 + P ′

2 = a1δ(f − f1) + a2δ(f − f2), (5)

where δ(f) is the Dirac delta function. Here a1 and a2 are positive constants whose95

magnitude will depend upon the length of the record segments and the normalization96

conventions that are used in reporting spectral power. In practice, the samples are taken97

over finite window lengths, so that the peaks at the inferred frequencies are sinc functions98

whose resolution will depend on the scope of time errors and the length of the record. If99

the difference between the two frequencies is small, the two peaks may not be resolved100

and the effect would be to simply blur the original peak.101

Interestingly, while time errors significantly distort estimates of the power spectrum in

the vicinity of spectral peaks, power-law scaling estimates obtained from stretched and

squeezed time series appear largely intact (Fig. 1b,d). This insensitivity of power-law

scaling estimates to time errors can be understood from the self-similarity of power-law

signals. If P1 and P2 are power-law spectra as in Eq. 2, their inferred spectra are simply

scaled and frequency shifted in proportion with the rate of change of the time error (Eq.

4),

P ′

1 = a1 (1 + γ1)
β fβ, (6)
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as follows from the similarity theorem (e.g., Bracewell 1986, pp.101—103), and likewise

for P ′

2. The logarithm of the resulting spectral estimate is then,

log (P ′) ≈ log (P ′

1 + P ′

2)

= β log (f) + log
(

a1(1 + γ1)β + a2 (1 + γ2)
β
)

,
(7)

where the identity that log(a + b) = log(a) + log(1 + b/a) is used. The constant value in102

Eq. 7 is complicated, but the logarithmic scaling of P ′(f) with frequency according to β103

is unaffected when compared with Eq. 2. Although a simple example, Eq. 7 illustrates104

how power-law scaling can remain invariant in the presence of timing errors. A linear105

rescaling of the timescale of a signal does not affect a spectral power law. If the power106

law is an approximate description of a noisy discrete spectrum (as is typically the case),107

the estimate of that power law is also unaffected by a linear rescaling of the timescale.108

This line of reasoning can be extended to a more general case, in which the rate of time109

error changes numerous times over the course of a record. As with the two-segment case,110

we view a timeseries which has been variously stretched and squeezed by N changes in111

γ as a composite of N shorter segments xn(t). Using a similar segmenting approach, the112

power spectrum of the individual segments will follow the same frequency scaling as Eq.113

7, and give an expected power spectral estimate of x(t′) that remains proportional to fβ.114

Segments of a signal following a spectral power law still display that same power-law115

after being differentially compressed or stretched, at least over the resolved frequencies116

and for the simple piece-wise manner in which the spectrum is estimated. The suggestion117

is that time errors do not distort the expectation of estimates of β. In the next section we118

examine more general timing errors and more general estimates of the power spectrum —119

and find similar behavior.120
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3. Synthetic Experiments

We now wish to determine whether the simple result from the previous section holds121

in practice, and to examine the influence of more realistic time-uncertainty upon more122

complex spectral structures. We adopt a Monte Carlo approach of generating random123

signals with a known spectral structure, distorting them in time, and then examining124

the resulting spectral estimate. Records are initially generated at very high resolution,125

in order to better approximate continuous signals and avoid sampling and edge effects.126

We model the time error as a finite-length random walk arising from cumulative counting127

errors. Though the counting error distribution is not Gaussian, its variance is finite and128

the expected cumulative error approaches a normal distribution after tens of counted129

layers. Details and physical motivation for this model are provided in the Appendix.130

Though we apply an error model suitable for discretely layer-counted records, other131

tests using continuous error models suitable for chronologies based on accumulation rates132

(Huybers and Wunsch 2004) or using piece-wise linear errors as discussed in the foregoing133

section, all yield consistent results. Timing errors with a periodic or quasi-periodic com-134

ponent, or errors correlated with the value of the signal also provide equivalent results,135

despite their large effect on narrowband variability (Herbert 1994).136

There are several possible ways to estimate power-law scaling and the value of β, whose137

results are not necessarily equivalent, particularly in the case of noisy and sparse data138

(Clauset et al. 2007). Our approach is to use an ordinary least-squares estimate of the139

spectral slope of log(P ) versus log(f), where the mean of log(P ) and log(f) is first sub-140

tracted so that the y-intercept is zero — the covariance that otherwise arises between141

the y-intercept and β makes it more difficult to interpret the results. P is estimated142
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using a standard periodogram. Another popular method is detrended fluctuation anal-143

ysis (e.g. Vyushin and Kushner 2009) but which can be shown to be equivalent to the144

more common Fourier transform methods used here (Heneghan and McDarby 2000) up145

to differences in how the detrended fluctuations are weighted in estimating the slope.146

Once a new timescale is generated, the timeseries must be resampled on a regular grid.147

Many methods are available for this interpolation, including mean, linear interpolation,148

random, or bootstrap infilling (Wilson et al. 2003; Mudelsee et al. 2009). In these tests,149

linear interpolation is used for the sake of simplicity, and because its distortion is easily150

identified and contained. Interpolation reduces the variance of a signal, but these effects151

are confined to the highest frequencies, i.e. near the Nyquist frequency, fNy ≡ 1/2∆tmax.152

Thus, biases in power law fits of the continuum background can be minimized by using153

the appropriate frequency cutoff. Based on our experience with power-law signals, we154

find that a safe rule of thumb is to use a cutoff of fNy/2, though the details associated155

with the signal structure and time-error could yield cases where other cutoffs are more156

appropriate. More generally, computing statistics using a range of cutoffs and determining157

the sensitivity of the result appears prudent when substantial time error is suspected.158

First, an ensemble of 1,000 randomly generated β = −2 power law signals are sampled159

on timescales t′ produced using the counting errors described in the Appendix (Fig. 2).160

The underlying timeseries have ten times the resolution of the signals used in the analysis,161

in order to avoid the high-frequency sampling bias discussed above. The average fit of162

the power-law across these randomly generated signals is unaffected by the errors in163

timing, remaining at -2 to within the precision of the fit. We do note, however, that164

the distribution of realized power laws is 8% wider when subject to timing errors, t′,165
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of 5% of the length of the record than when compared against the ensemble of power166

laws not subject to timing errors. For the sake of comparing the spectra from different167

realizations, the total length of the signal is then constrained to the original length by168

subtracting the linear trend in time error between the first and last data point, making169

the discrete frequency axis identical for each realization. As shown in Section 2, such170

scaling in the time domain does not influence the power law in the frequency domain.171

The error structure then takes the form of a Brownian Bridge, discussed in more detail172

by Huybers and Wunsch [2004].173

Next we examine a mixed timeseries, having periodic and power-law variability. The174

imposition of timing errors results in spectral distortion in the vicinity of the peak, while175

the remainder of the spectral estimate maintains the original power-law scaling (Fig. 2).176

Effects similar to those of narrowband distortion are observed when multiple background177

scaling regimes are present. For example, in a spectral break between two power-law178

scaling exponents, the distribution of power about the knee of the spectrum is smoothed179

out while the power-law regions are unchanged (Fig. 2). If discontinuities in the spectrum180

are rapid or numerous, much of the narrowband detail can be obscured by this sort of181

smoothing.182

4. Application to GISP2

Insofar as the spectrum of the climate record scales as a power-law (or several power-183

law regimes), Sections 2 and 3 suggest that time-uncertainty will not affect estimates of184

β away from the Nyquist frequency of the largest timestep, at least in the expectation.185

Narrowband variations will be distorted by time errors, but the example of Section 2186

suggests that their influence will tend to be localized in frequency. It is therefore useful187
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to investigate the uncertainty in the estimation of β for a real climate record due to age-188

model errors: is it best characterized as a power law — which is relatively insensitive to189

time errors — or to a noisy collection of narrowband processes, which can be distorted190

significantly by modest time errors? This question is explored by applying realistic time191

errors discussed in the Appendix to the GISP2 δ18O record (Fig. 3) and examining the192

scaling of the resulting power spectra.193

We evaluate the power spectral estimate of the GISP2 δ18O record, using the counting194

error described in the Appendix to perturb the standard age-model record (Fig. 3a).195

The record is limited to 50 ky ago through the present, due to the larger and more poorly196

understood timing errors in deeper sections of the core. We note that there is no significant197

concentration of climatic precession energy. This could stem from a lack of sensitivity to198

precession forcing, nonlinearities, or the relative shortness of the record making it difficult199

to resolve bands with 21 ky periods. A fit is obtained for β in each realization, with spread200

evident under different age-models (Fig. 4a). The residuals of the ordinary least-squares201

fits are used to estimate a normal probability distribution of β for each realization, and202

these distributions are combined to produce an estimate of the uncertainty in β (Fig.203

4c). For the most recent 50 ky of GISP2, the original timescale produces an estimate204

of β0 = −1.41 ± 0.17. When time-uncertainty is considered, the distribution shifts and205

broadens slightly such that βest = −1.40 ± 0.19. This is consistent with the slightly206

greater spread in realizations of β obtained when time errors were introduced into the207

synthetic records. Similar results are obtained when the timescale error is correlated with208

the δ18O magnitude or, e.g., with orbital eccentricity or other climate forcing signals —209

such complications do not appear to influence the result in any significant way, nor do210
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they appreciably modify the power-law spectra obtained in Section 3. A similar analysis211

performed on the North Greenland Ice Core Project (NGRIP) core (Svensson et al. 2006)212

yields results equivalent to those of GISP2 when the same base time period and sampling213

rate are used for both records. Along the same lines, an analysis of the Greenland Ice Core214

Project (GRIP) record also produces results which agree with those of Ditlevsen et al.215

[1996] — namely, a spectral slope of -1.6 for periods greater than 200 yr — when the same216

time intervals and cutoff frequencies are used in analyzing both records. For both NGRIP217

and GRIP, inclusion of higher-frequency data made available by the higher sampling rate218

than GISP2 allows the break in the spectrum at centennial timescales to be resolved.219

This leads to much shallower power law estimates, apparently not as a consequence of220

distortion of the power spectrum, but because a linear fit is being improperly attempted221

over two distinct scaling regimes.222

We find that the scaling exponent is approximately invariant under the expected time-223

uncertainty. Resampling the record over 1,000 realizations for a range of prescribed ex-224

pected fractional error E[|(t− t′)/t|] at the oldest point, we estimate β for each timeseries225

(Fig. 5). When fmax equals fNy/2, the fit remains within 5% of the unperturbed age-226

model fit until the age error is 6%, exceeding the estimated counting error by a factor of227

three, indicating that the scaling is robust under the expected time-uncertainty. Under228

more extreme age-model errors of 10% or more, there is greater spread in the estimates229

of β with the standard deviation growing from 0.17 to 0.2 and bias appears that can230

exceed 5%. In practice, we then expect relatively large time-uncertainty of 10% or more231

to increase the likelihood that scaling of the power spectral estimate will be incorrectly232

estimated due to interpolation biases if our rule of thumb is used. In contrast, interpo-233
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lation errors are important for much smaller expected cumulative timing error when the234

spectrum is estimated out to the highest possible frequencies.235

5. Discussion and Conclusion

Estimates of power-law scaling exponents are insensitive to time-uncertainty in the ex-236

pectation, and this invariance was demonstrated upon synthetic records (Section 3) and237

for the GISP2 δ18O record (Section 4). This invariance can be understood from the238

power-law being preserved under shifts, stretches, and squeezes of a timescale (Section 2).239

Although time uncertainty is inevitable in paleoclimate records, magnitudes comparable240

to that in the GISP2 ice core do not appreciably affect estimates of power-law scaling.241

In particular, examination of the GISP2 power-law behavior under many plausible age242

model realizations yielded results virtually identical with those obtained using published243

age models. If errors exceed 10%, the distribution widens by more than 15% and the244

expectation begins to be affected through a bias introduced by interpolation. Further-245

more, individual, realistic age-model realizations can result in power spectra that diverge246

significantly from the expectation, so that examination of power laws under a wide range247

of plausible timescales is prudent, especially if narrow-band concentrations of energy may248

be present.249

A practical issue which will be encountered when resampling any record is that inter-250

polating sample values at intermediate points reduces high-frequency variance, and this251

region of the spectrum should be avoided in subsequent analysis of power-laws. Limiting252

the analysis to frequencies below half the Nyquist frequency seems to be a useful rule of253

thumb, at least for the random walk age distortion explored here. This is important for254
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paleoclimate timeseries, which are often difficult to obtain at a high temporal resolution255

and are generally sampled non-uniformly in time.256

For paleoclimate proxy data, the appropriate choice of a time error model differs ac-257

cording to the type of proxy and the manner in which its age was estimated. The error258

model presented in the Appendix should be broadly applicable for counted timescales,259

such as those associated with varved sediments, tree rings, and annually banded ice core260

records, all of which are expected to fundamentally follow a random walk pattern. The261

insensitivity of power law estimates to timing error holds for this counting-error model,262

as well as for continuous random walk error models and piece-wise error models. We have263

found no form of time errors, other than those with very large magnitudes, that give rise to264

significant changes in either the expected value or spread of power law estimates. It thus265

appears that timing error is not responsible for the steeper power-law scaling identified in266

paleoclimate records, relative to the scaling at higher frequencies that can be examined267

using instrumental records (Harrison 2002; Huybers and Curry 2006), though it remains268

to be seen whether the steeper power-law scaling can be attributed directly to dynamical269

processes.270

Appendix

In order to generate appropriate timing errors, we require a description of the process271

by which age models are created. Paleoclimate signals are generally recorded in some272

accumulating medium, e.g., ocean sediments, lake varves, glacier ice, corals, speleothems,273

or tree trunks. For purposes of specificity, we develop a time-error model that is relevant to274

layer counted ice cores, and the Greenland Ice Sheet Project 2 (GISP2) core in particular.275
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See Huybers and Wunsch [2004] for a development in the context of a marine sediment276

core.277

The Meese/Sowers depth-age scale for GISP2 was derived by counting annual layers278

with several independent optical, chemical, and electrical techniques (Meese et al. 1994).279

The GISP2 core is exceptionally well-dated because the high accumulation rate makes dis-280

continuities in stratigraphy relatively unlikely, and the multiparameter continuous count281

method reduces the probability of missing or over-counting years (Meese et al. 1997).282

Errors were estimated by intercomparison with volcanic ash layers and independently283

published age-models (Alley et al. 1993). Estimates place the error in the upper 2500m284

(∼0—58 ky) at an absolute maximum of 10%, while the errors are in fact believed to be285

smaller than 2% (Alley et al. 1997). This error increases through 2500—2800 m depth286

(∼58—110 ky), where discontinuities in the core lead to a layer undercount of up to 20%287

(Meese et al. 1997). Thus, in order to limit the analysis to perturbations of a well-dated288

record, we focus our attention to the most recent 50 ky of the core, in which the expected289

age error is less than 2%. The limiting case of 10% error is also considered, but only as a290

worst-case scenario.291

Annual layers were counted to discern the flow of time with depth in the GISP2 core292

(Alley et al. 1997). Seasonal alternations in optical properties of ice occur because of293

changes in the concentration of dust, aerosols, and other impurities over the course of294

the seasonal cycle as well as changes in bubble density associated with the seasonal cycle295

in accumulation, temperature, and solar insolation. Lighter bands in Greenland ice tend296

to be associated with summer hoar complexes, while darker and more transparent layers297

are associated with uninterrupted winter accumulation (Gow et al. 1997; Alley et al.298

D R A F T October 14, 2010, 8:42am D R A F T



RHINES AND HUYBERS: TIME-UNCERTAIN SPECTRAL POWER LAWS X - 17

1997). In some portions of the core, springtime dust layers are also clearly visible. These299

optical markers, in conjunction with electrical conductivity measurements, permit for a300

multiparameter layer count. Note, however, that bubbles no longer exist in a gaseous301

phase at depths greater than 1400 m, instead forming clathrates and eliminating one of302

the key visual markers. Coupled with dynamic flow thinning, this makes it increasingly303

difficult to count annual layers in deeper sections of the core.304

The errors associated with counting annual layers are cumulative and, therefore, natu-

rally modeled as a random walk. Starting from the top and counting layers downward,

counted time accrues at a rate of one layer per year, t′n+1 = t′n+τn, where τn represents the

possibility that the annual band was correctly counted once, τn = 1, a layer was missed,

τn = 0, or that more than one year was counted, τn = 2, 3, 4.... Counts are confined to

integer numbers, so that the error structure is described by a random walk on a lattice.

We define P1 as the probability of correctly counting a given true annual layer, τn = 1,

αu as the probability of not counting it, τn = 0, and αo as the probability of counting an

extra layer within the true annual band, τn = 2, conditional on one layer already having

been counted. Assuming that the conditional probability of counting an additional layer

is constant, the probability of counting m − 1 extra layers is then αm−1
o P1. For the mo-

ment assume that the mean of the distribution is one, so that the number of years missed,

on average, balances the number of extra years counted. These assumptions, along with

normalization, lead to the coefficient values,

αu = αo = 1−
√

P1,

and thus to the probability distribution,305
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Pr(τ) =











αu if τ = 0
P1ατ−1

o if τ ≥ 1
0 if τ ≤ −1.

(A1)

Eq. A1 is a mixed distribution that is geometric for τ ≥ 1. The variance of the distribution306

is finite, and the random walk age error which is generated by accumulation of these307

counting errors, ε(tn), grows proportionately to
√
tn (Fig. 6). Thus, in this symmetric308

scenario, the expected fractional error between true and estimated time, 〈tn− t′n〉/tn, will309

in fact shrink as 1/
√
tn. This would imply that the time error grows at a slower-than-310

linear rate, in contradiction to previously reported error estimates (Alley et al. 1997). In311

order to obtain errors upwards of 2% at 50 ky, one must set the parameter P1 to be 0.015,312

which is a much lower probability of correctly counting a layer than seems plausible (e.g.,313

Gow et al. 1997).314

Interestingly, Eq. A1 is consistent with the expected error for atomic clocks, where315

much of the error arises from biases toward under- or over-counting. Introduction of a316

bias parameter allows for a more general representation of cumulative timing error and317

makes it straight-forward to account for the error estimates from the literature. Bias is318

represented by setting the mean rate of counting to differ from one. This bias, b, can be319

constant, stationary, or nonstationary, depending on the physical situation. For a long320

ice core record the bias can be expected to drift with depth as the condition of the ice321

changes and, importantly, as the Holocene calibration loses accuracy.322

Similar to the symmetric case, normalization and the requirement that the expected

value of the distribution is equal to 1+ b leads the determination of the coefficients, which
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now depend on the bias parameter b in addition to P1,

αu = 1−
√

P1(1 + b),

αo = 1−
√

P1

1+b
.

Over many steps, the expected cumulative error ε(t) approaches a normal distribution323

centered on b, as follows from the central limit theorem. By computing many realizations,324

the variance of the distribution can then be used to numerically determine P1 such that325

the desired 2% expected error of 1 ky is achieved at 50 ky. We model the bias as an326

autoregressive order one process, with an autoregressive coefficient of 0.999 (corresponding327

to a decorrelation time of 2 ky) and noise parameter of 7.5×10−3. This produces an error328

structure close to that described by Alley et al. [1997] when P1 is set to 0.73, a value329

which is near the estimated ‘worst case’ ability to identify annual layers (Rasmussen et al.330

2006). The bias parameter is given upper and lower limits, P1 − 1 ≤ b ≤ 1− P1, in order331

to maintain consistency with the prescription of P1.332

Note that Eq. A1 assumes that the probability of under- or over-counting layers is333

independent of previous counting errors, which provides for simplicity, but fails to account334

for the expectation of a relatively constant accumulation rate that tends to curtail the335

likelihood of long strings of under- or over-counts. The high probabilities of miscounting336

an individual annual layer and miscounting strings of annual layers may make this error337

model something of a worst-case scenario, but which would then underscore the finding338

that power-law estimates are insensitive to timing error.339
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Figure 1. Example of the effect of time-errors on spectral estimates. (a) Measurements from a core section
nominally spanning 100 ky and containing a power-law signal with a 0.2 ky−1 narrowband component. (b) The power
spectral estimate of one realization on the correct timescale (black), with the mean over 1,000 realizations (gray, shifted
downward by three decades for visual clarity), and a minus-two power law for reference (dotted). (c) The measurements
on an incorrect timescale where time error grows at 1/3 yr/yr between 0 and 50 ky of estimated time and then at −1/3
yr/yr between 50 and 100 ky, leading to non-uniform sampling in actual time. Ticks correspond to the same sequence of
points in (a). (d) The power spectral estimate of the measurements on the incorrect timescale for one realization (black)
and the mean over 1,000 realizations of random signals composed of a power law plus narrowband variability and subject
to the same time error (gray), with a minus-two power law for reference (dotted). The narrowband component is split into
two broadened peaks, while the power-law background is only affected near frequencies having narrowband energy. The
majority of the background remains a -2 power-law in the expectation.
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Figure 2. Illustration of the sensitivity of power spectral estimates to time-errors. Signals are nominally 100 ky
long, and the average estimate of the power spectrum of each over 1,000 realizations is plotted on the correct (gray) and
perturbed (black) timescales. The perturbed timescales have an expected error equal to 5% of the timeseries length (see
the Appendix). The timescale error is then detrended so that all spectra can be plotted on a common set of axes (see text).
(i) An ensemble of β = −2 power-law signals are perturbed. The resulting expectation of the spectrum is unchanged. (ii)
Narrowband energy of 1/ky is embedded in an ensemble of β = −2 power-law signals, and the same timescale errors are
applied. The spectral estimate in the vicinity of the peak is distorted as the power in the peak is scattered over nearby
frequencies. (iii,iv) Similarly, discontinuities in scaling exponents are smoothed by errors in timing.
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Figure 3. (a) The Greenland Ice Sheet Project 2 δ18O record (solid). Modeled cumulative

counting errors in the most recent 50 ky lead to an expected age-error curve which grows with

the square root of age (dashed). (b) The Meese/Sowers depth-age scale (Meese et al. 1994).

(c) Because of compaction in the core, the sampling interval increases with age, limiting the

frequency resolution in older sections of the record.
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Figure 4. The effect of age-model errors on the power spectral estimate of the last 50 ky of the GISP2 δ18O record.
10,000 age-model realizations are drawn from the cumulative counting error model (as discussed in the Appendix), the
error of which grows with age to an expected relative error at the oldest point of 2%. (a) The power spectral estimate of the
standard age-model (black), along with the mean power in each frequency band over the different age-model realizations
(gray). The 95% confidence intervals of the β estimates are computed at frequencies below fNy/2 (dotted lines). (b) The

least-squares maximum likelihood estimate of β for δ18O using the original age model (dotted line) and its distribution
(solid), which is assumed to be normal. (c) Normalized histogram of the age-uncertain maximum likelihood β estimates
from each time-error realization (bars), and the combined uncertainty now accounting for the distribution associated with
each maximum likelihood estimate (solid). The original timescale gives β0 = −1.41 ± 0.17, whereas the ensemble of
perturbed timescales gives βest = −1.40 ± 0.19. The majority of the uncertainty comes from the estimation procedure,
not time errors.
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Figure 5. The sensitivity of the estimate of β to different levels of time-uncertainty. The mean

estimate of β is plotted as a function of the expected relative age-model error of the oldest data

point. The means of the time-uncertain β estimates for fmax = fNy/2 are shown with expected

errors reaching extreme levels of 25%. The fit does not deviate significantly from that of the

original signal until the expected age-model error is in the vicinity of 10 %.
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Figure 6. Three realizations of random walk timescales subject to counting errors (solid lines),

are compared with the true timescale (dashed line). The shaded region indicates the region

within which 95% of age-model points are expected to fall.
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