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Abstract 

We describe a new operating system scheduling 

algorithm that improves performance isolation on chip 

multiprocessors (CMP). Poor performance isolation 

occurs when an application’s performance is 

determined by the behaviour of its co-runners, i.e., 

other applications simultaneously running with it. This 

performance dependency is caused by unfair, co-

runner-dependent cache allocation on CMPs. Poor 

performance isolation interferes with the operating 

system’s control over priority enforcement and hinders 

QoS provisioning. Previous solutions required 

modifications to the hardware. We present a new 

software solution. Our cache-fair algorithm ensures 

that the application runs as quickly as it would under 

fair cache allocation, regardless of how the cache is 

actually allocated. If the thread executes fewer 

instructions per cycle than it would under fair cache 

allocation, the scheduler increases that thread’s CPU 

timeslice. This way, the thread’s overall performance 

does not suffer because it is allowed to use the CPU 

longer. We describe our implementation of the 

algorithm in Solaris™ 10, and show that it 

significantly improves performance isolation for SPEC 

CPU, SPEC JBB and TPC-C. 

1. Introduction 

Applications running on chip multiprocessors 

(CMP) [21] suffer from poor performance isolation 

[8,9,17]. Poor performance isolation is a phenomenon 

where an application’s performance is determined by 

the behaviour of its co-runners.  Such performance 

dependency is due to inherently unfair, co-runner-

dependent allocation of shared caches on CMPs. On 

CMPs, cache allocation is determined largely by the 

co-running threads’ relative cache demands; fairness is 

not considered. A thread “demands” a cache allocation 

by generating a cache miss. The cache miss is satisfied 

after evicting an existing line from the cache. The 

evicted line may belong to any thread, not necessarily 

the thread responsible for the cache miss. 

Consequently, the thread responsible for the miss may 

affect its co-runners’ cache allocations and, as a result, 

their performance. Accordingly, an application will run 

more slowly with high-miss-rate co-runners than with 

low-miss rate co-runners.  

Poor performance isolation causes problems. One 

problem is OS scheduler’s weakened control over 

priority enforcement.  It is difficult for the scheduler to 

ensure that a high-priority thread makes consistently 

greater forward progress than a low priority-thread on 

a CMP processor, because the high-priority thread’s 

performance could be arbitrarily decreased by a high-

miss-rate co-runner. 

Poor performance isolation complicates per-CPU-

hour billing in shared computing facilities [2]. If an 

application runs slowly in a given CPU-hour only due 

to the misfortune of having a high-miss-rate co-runner, 

billing that application for the full hour is unfair. 

Existing systems have no means of detecting or 

preventing this. 

Poor performance isolation hinders QoS 

provisioning. QoS is provisioned via a reservation of 

resources, such as a fraction of CPU cycles, for a 

customer’s application. Poor performance isolation 

makes resource reservations less effective, since an 

application could be slowed down unpredictably by a 

high-miss-rate co-runner despite having dedicated 

resources.  

To demonstrate the extent of poor performance 

isolation on CMPs, we draw upon data on co-runner-

dependent performance variability, i.e., the difference 

between the application’s running time with co-runner 

A and co-runner B [8,9,17]. (We use co-runner 

dependent performance variability as a metric for 

performance isolation: high variability implies poor 

performance isolation and vice versa). Previous work 

has shown that an application may take up to 65% 

longer to complete when it runs with a high-miss-rate 

co-runner than with a low-miss-rate co-runner [9]. 

Such dramatic slowdowns were attributed to 

significant increases in the second-level cache miss 

rates (up to 4x) experienced with a high-miss-rate co-



runner, as opposed to a low-miss-rate co-runner.  

Previous work addressed performance isolation in 

hardware, via cache partitioning [8,17,24,25]. While 

cache partitioning ensures fair cache allocation, it 

increases the cost and complexity of the hardware, has 

limited flexibility and long time-to-market. Our 

software solution avoids these shortcomings. 

Our solution is a new operating system scheduling 

algorithm, the cache-fair algorithm. This algorithm 

reduces co-runner-dependent variability in an 

application’s performance by ensuring that the 

application always runs as quickly as it would under 

fair cache allocation, regardless of how the cache is 

actually allocated. The cache-fair algorithm 

accomplishes that objective by regulating threads’ 

CPU timeslices. A thread’s CPU timeslice, as well as 

its IPC, determines its overall performance. (The IPC 

determines how quickly the thread executes 

instructions on CPU, while the timeslice determines 

how much time the thread gets to run on CPU.) Co-

runner-dependent cache allocation creates co-runner-

dependent variability in IPC and, hence, co-runner-

dependent variability in overall performance. Since the 

OS cannot control the variability in the IPC (because it 

cannot control cache allocation), the cache-fair 

algorithm instead offsets the variability in the IPC by 

adjusting the CPU timeslice. The scheduler monitors 

the thread’s IPC, and if it detects that the thread’s 

actual IPC is lower than its IPC under fair cache 

allocation (we call this the fair IPC), it increases the 

thread’s CPU timeslice. Likewise, if the thread’s IPC is 

above its fair IPC, the scheduler decreases that thread’s 

CPU timeslice. In this fashion, the scheduler 

compensates for the effects of unfair cache allocation 

on overall performance without requiring changes to 

the hardware.  

While performance isolation has been addressed in 

the past in the context of shared physical memory [6], 

addressing it in the context of shared caches is more 

difficult. The allocation of physical memory is directly 

controlled by the operating system, whereas cache 

allocation is not. Since the cache-fair scheduler cannot 

enforce fair cache allocation, it must compensate when 

the allocation is unfair. To provide the right amount of 

compensation, the scheduler needs to determine the 

extent to which a thread’s actual IPC differs from its 

fair IPC. Unfortunately, the fair IPC is not trivial to 

obtain: it cannot be measured, because one cannot 

simply “try” running a thread with a fairly allocated 

cache portion. To determine the fair IPC in our 

scheduler, we designed a new, low-overhead, heuristic 

cache model.  

We implemented the cache-fair algorithm in a 

commercial operating system, Solaris 10, and showed 

(using a simulated CMP) that it significantly improves 

performance isolation for workloads ranging from 

SPEC CPU2000 to SPEC JBB and TPC-C. Co-runner 

dependent performance variability was reduced from 

as much as 28% to under 4% for all the benchmarks. 

Performance overhead generated by the algorithm was 

negligible (<1%). 

We compared the effectiveness of the cache-fair 

scheduler and of cache partitioning (an alternative 

hardware solution) and found that the cache-fair 

scheduler reduces co-runner-dependent performance 

variability to a greater degree than cache partitioning. 

The cache-fair algorithm accounts for secondary 

performance effects of co-runner-dependent cache 

allocation, whereas cache partitioning does not. A 

significant secondary effect is co-runner dependent 

contention for the memory bus (a high-miss-rate co-

runner will get relatively more bus bandwidth). The 

cache-fair scheduler accounts for performance effects 

of bus contention its fair IPC model.  

Another advantage of our algorithm over hardware 

solutions is that it is implemented in the operating 

system – a natural place to manage resource allocation. 

The OS has a global knowledge of the entire workload 

and thus can ensure that the cache-fair algorithm 

“plays well” with other resource management policies. 

In the rest of the paper we describe the cache-fair 

algorithm (Section 2), the fair IPC model (Section 3), 

the implementation of the algorithm in Solaris 10 

(Section 4), and our evaluation of it (Section 5). We 

discuss related work in Section 6, and conclude in 

Section 7.  

2. Overview of the Algorithm 

In this section we explain how the cache-fair 

algorithm improves performance isolation via 

adjustments to threads’ CPU timeslices. In our 

examples we will assume a dual-core system with a 

shared second-level (L2) cache. We identify two 

performance metrics used in this paper: 

 
Overall performance (or simply performance) is the 

thread’s overall CPU latency: the time it takes to 

complete a logical unit of work (say, 500 million 

instructions). Fair performance refers to performance 

under fair cache allocation. 

 
IPC is the thread’s instructions per cycle rate. Fair 

IPC refers to IPC under fair cache allocation. 

 

A thread’s IPC is affected by the amount of cache 

allocated to that thread: a larger cache allocation 

usually results in a higher IPC, and vice versa. 

Therefore, co-runner-dependent variability in cache 

allocation causes co-runner-dependent variability in 



IPC. The cache-fair scheduler offsets that variability by 

increasing or decreasing the thread’s CPU timeslice. 

Figure 1 illustrates this concept. There are three 

threads (A though C) running on a dual-core CMP with 

a shared cache. In the figure, each box corresponds to a 

thread. The height of the box indicates the amount of 

cache allocated to the thread. The width of the box 

indicates the thread’s CPU timeslice. The area of the 

box is proportional to the amount of work completed 

by the thread. Stacked thread boxes indicate co-

runners.  

We show three scenarios resulting in different 

levels of performance isolation for Thread A: In Figure 

1(a) Thread A runs with other threads on a 

conventional CMP with a conventional scheduler and 

experiences poor performance isolation. In Figure 1(b) 

it runs on a hypothetical CMP that enforces fair cache 

and memory bus allocation and thus experiences good 

performance isolation. In Figure 1(c) Thread A runs on 

a conventional CMP with the cache-fair scheduler and 

thus experiences good performance isolation. 

In Figure 1(a) Thread A’s IPC is below its fair IPC, 

because its cache allocation is below the fair level due 

to a high-miss-rate co-runner Thread B. As a result, 

Thread A’s overall performance (shown on the X-axis 

as the CPU latency) is worse than its fair performance 

(achieved in Figure 1(b)). In Figure 1(c), Thread A still 

exhibits lower-than-fair IPC due to Thread B, but the 

cache-fair algorithm compensates for the reduced IPC 

by increasing Thread A’s CPU timeslice. This allows 

Thread A to achieve fair performance overall.  

In Figure 1, Thread A’s CPU timeslice was 

increased because its IPC was lower than its fair IPC. 

If, conversely, Thread A’s IPC had been higher than its 

fair IPC, the scheduler would have decreased its CPU 

timeslice. 

We note that the cache-fair algorithm does not 

establish a new scheduling policy, but instead helps 

enforce existing policies. For example, if the system is 

using a fixed priority policy, the cache-fair algorithm 

will make the threads run as quickly as they would if 

the cache were shared equally given the fixed priority 

policy. 

Referring again to Figure 1(c), we note that as the 

scheduler increased the timeslice of Thread A, the 

timeslice of Thread B correspondingly decreased. This 

is how CPU time sharing works: if the CPU share of 

one thread is increased, the CPU share of some other 

thread will be decreased to compensate (and vice 

versa). We must ensure that those compensatory 

timeslice adjustments do not work against any previous 

adjustments made to ensure fairness.  

To that end, we define two thread classes, a cache-

fair class and a best-effort class.  Threads in the cache-

fair class are managed for improved performance 

isolation: the scheduler makes adjustments to those 

threads’ timeslices to counter the effects of unfair 

cache allocation. Threads in the best-effort class are 

not managed for improved performance isolation: these 

could be background threads for which performance 

isolation is not important
1
.  The scheduler performs 

compensatory adjustments to best-effort threads’ 

timeslices as needed. In Figure 1(c), for example, 

Thread B is in the best-effort class, while Thread A is 

in the cache-fair class. 

With this design, we must ensure that best-effort 

threads do not suffer significant performance penalties. 

In our experiments, the performance penalty 

experienced by best-effort threads was small, less than 

1% on average. To prevent large performance 

penalties, the scheduler spreads compensatory 

adjustments among multiple best-effort threads 

whenever possible. 

In addition to determining which threads’ 

timeslices to adjust, the scheduler must also compute 

the amount by which to adjust each timeslice. 

Determining the right amount of adjustment is trivial 

as long as the scheduler knows by how much the 

                                                           
1
 A user specifies a thread’s class in the same way as she 
specifies a thread’s priority. 
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thread’s actual IPC deviates from its fair IPC: The 

scheduler (1) computes how many instructions the 

thread would have completed if its IPC had been fair, 

(2) compares it with the number of instructions 

actually completed by the thread, and (3) computes the 

adjustment to the next CPU timeslice so that by the end 

of that timeslice the thread completes as many 

instructions as it would if its IPC were fair. 

Unfortunately, fair IPC values are not trivial to 

determine, because they cannot be measured directly. 

We estimate them using a new performance model, 

which we describe in the next section. 

3. Fair IPC Model  

Our model for fair IPC is comprised of two parts: 

we first estimate the fair cache miss rate, and then the 

fair IPC given the fair miss rate.  

 

Fair cache miss rate is the miss rate experienced by 

the thread when it is allocated its fair cache share.  

 

The novelty of our model is in techniques for 

estimating the fair cache miss rate; fair IPC (given the 

fair miss rate) can be estimated using existing 

techniques [30]. Therefore, we discuss the fair miss 

rate model and refer the reader to our other publication 

describing the entire fair IPC model [14];  details on 

how our fair IPC model accounts for memory bus 

contention can also be found in this work. 

3.1. Overview of the model 

Models for cache miss rates have been designed in 

the past [4,5,7,9,13,17,26,32], but those models were 

either too complex and high-overhead to use inside an 

OS scheduler, or required inputs that could not be 

easily obtained at runtime. We designed a simple 

online model.  

For the purposes of this section we define the miss 

rate as the number of misses per cycle (MPC). Our 

approach for estimating the fair miss rate is based on 

an intuitive and empirically verified observation: if the 

co-runners have similar cache miss rates, they end up 

with equal cache allocations. Recall that the shared 

cache is allocated based on demand; intuitively, if the 

threads have similar demands (i.e., similar miss rates), 

they will have similar cache allocations.  

Considering this assumption more formally, if we 

assume that a thread's cache accesses are uniformly 

distributed in the cache (validity of this assumption is 

discussed below), we can model cache replacement as 

a simple case of the balls and bins abstraction [10]. For 

two co-runners A and B, let their cache requests 

correspond to black and white balls respectively. We 

toss black and white balls into a bin.  Each time a ball 

enters the bin, another ball is evicted from the bin.  If 

we toss black and white balls at the same rate, then 

after enough tosses the number of black balls in the bin 

will form a multinomial distribution centered around 

one-half. Thus, two threads with equal L2 cache miss 

rates (balls being tossed at the same rate) will share the 

cache equally, or fairly. This result generalizes to any 

number of different coloured balls being tossed at the 

same rate [10]. Thus any N threads with the same 

cache miss rate will share the cache fairly. 

We say that A and B are cache-friendly if they 

experience similar miss rates when running together 

(and, by our assumption, A and B share the cache 

fairly). Therefore, fair miss rate of A can be observed 

when A’s miss rate equals its co-runner’s miss rate. 

Based on that, to estimate the fair miss rate for Thread 

A (on a dual-core system) one could run it with 

different co-runners until detecting its cache-friendly 

co-runner (and recording the corresponding miss rate). 

That approach is not practical, however, since Ο 








m

n

tests (where n is the number of threads and m is the 

number of processors) are required to find a cache-

friendly co-runner or to determine that none exists. 

Instead we run Thread A with several different co-

runners, derive a relationship between the miss rates of 

Thread A and its co-runners, and use that relationship 

to estimate Thread A’s fair miss rate. Our goal is to 

find the miss rate that would be observed if Thread A 

and its co-runner had same miss rates. We use the 

derived relationship to estimate that miss rate. Figure 2 

illustrates this process. We express the relationship 

between the co-runners’ miss rates using a linear 

function. We experimentally found that a linear 

function approximated that relationship better than 

other simple functions. The resulting equation has the 

form: 

∑
=

+=
n

i

bCMissRateaAMissRate i

1

)(*)(  (1), 

where n is the number of co-runners, Ci is the ith co-
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Figure 2. Estimating the fair cache miss rate for Thread A 



runner, and a and b are the linear equation coefficients. 

By our definition: 
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for all i. Equation (1) can be expressed as: 
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3.2. Model evaluation 

We evaluated the accuracy of our model by 

comparing the fair miss rates estimated by our model 

with the actual fair miss rates. We used nine SPEC 

CPU2000 benchmarks as our experimental workload. 

We computed the estimated fair miss rate by running 

each of the selected benchmarks with several different 

co-runners (also from the SPEC CPU2000 suite) on a 

simulated dual-core CMP, deriving the coefficients for 

Equation 1 via linear regression analysis, and then 

using Equation 2. We measured the actual fair miss 

rates in an experiment where the benchmarks ran on 

our experimental CMP with an equally partitioned 

cache (we implemented cache-partitioning in our 

simulator for this purpose).  

Figure 3 shows how the estimated fair miss rates 

compare to the actual miss rates. The X-axis shows the 

names of the SPEC CPU2000 benchmarks we ran; the 

Y-axis shows the actual and estimated fair miss rates 

for each benchmark. The estimated miss rates closely 

approximate the actual miss rates. The difference 

between the measured and estimated values is within 

8% for six out of nine benchmarks, within 25% for 

eight out of nine benchmarks.  

We observed that our estimates were less accurate 

for benchmarks with relatively low miss rates than for 

benchmarks with relatively high miss rates (for crafty, 

we overestimated the fair cache miss rate by almost a 

factor of two). We hypothesize that because low-miss-

rate benchmarks actively reuse their working sets, 

there is little variation in the miss rate when those 

benchmarks run with different co-runners; low 

variation in the miss rates used for regression analysis 

results in a low-fidelity linear equation.  

A limitation of our model is that it requires running 

a thread with many co-runners that have diverse cache 

access patterns. If the workload has only a few threads, 

or if all threads have similar cache-access patterns, the 

linear equation will have low fidelity. In those 

situations, we could use one of the alternative, 

although more limiting, methods, such as a compiler-

based model [7], a hardware-based model if the 

appropriate hardware becomes available [32], or we 

could co-schedule a thread with a synthetically 

generated benchmark sized to use exactly its fair share 

of the cache [12] and measure the thread’s (fair) miss 

rate.  

Our model assumes that cache requests are 

distributed uniformly across the cache, while this is not 

the case for many workloads [27]. We do not view this 

as a serious limitation, however: existing work on 

cache models that operated under the same assumption 

of uniformity showed that the assumption does not 

significantly affect model accuracy [5,9,15,23,32]. 

Relaxing this assumption is difficult in an online 

model, because cache access distribution cannot be 

obtained online via hardware, and obtaining it in 

software is costly [5]. 

4. Implementation 

We implemented the cache-fair algorithm as a 

loadable module for Solaris 10. Module-based 

implementation makes our solution flexible: a user can 

enable the cache-fair scheduler only if needed and the 

scheduler can be tuned and upgraded independently of 

the core kernel.    

To have a thread managed by the cache-fair 

scheduler the user invokes the Solaris system call 

priocntl and specifies the name of the cache-fair 

module as one of the arguments. The user specifies the 

thread’s class, cache-fair or best-effort, also via 
priocntl. 

Each cache-fair thread goes through two phases: 

sampling and scheduling. During the sampling phase, 

the scheduler gathers performance data and uses it to 

estimate the thread’s fair miss rate. During the 

scheduling phase, the scheduler periodically monitors 

the thread’s performance and adjusts the thread’s CPU 

timeslice if its actual performance deviates from its fair 

performance. 

When a thread is in the sampling phase the 

scheduler monitors the cache miss rates for it and its  
   Figure 3. Estimated vs. the actual fair cache miss rate 
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co-runners via performance counters. We rely on 

performance counters commonly available on modern 

processors. We define a run as the contiguous time 

interval when a group of co-runners runs 

simultaneously. A run terminates when any of the co-

runners gives up the CPU. At the end of the run we 

record the observed miss rates. Measurements recorded 

at the end of the run correspond to one data sample. 

We collect at least ten data samples for each cache-fair 

thread. The scheduler discards measurements from 

runs where the cache-fair thread executed fewer than 

10 million instructions (to eliminate cold-start effects 

on cache miss rates [11]). Therefore, the sampling 

phase ends once the cache-fair thread has completed at 

least 100 million instructions in valid runs. At the end 

of the sampling phase, the scheduler estimates the fair 

miss rate using linear regression analysis.  

The per-thread runtime overhead of performing 

regression analysis is determined by the number of 

samples we obtain during the sampling phase; this 

quantity is set to ten in our implementation. Since the 

quantity is fixed, the per-thread overhead does not 

grow with the number of cores or the number of co-

runners. Therefore, the model’s performance will 

likely scale well as the number of cores and threads 

increases.  

The sampling phase needs to be repeated every 

time a thread changes its cache access patterns. An 

online phase detection algorithm would detect such a 

change [19,28], but unfortunately we are not aware of a 

phase-detection algorithm that works well on CMPs. 

Instead, we repeat the sampling phase every time a 

thread has completed one billion instructions. 

Infrequent repetitions of the sampling phase limit the 

overhead produced by linear regression.  

After the sampling phase, the thread enters the 

scheduling phase. In this phase, the scheduler 

periodically monitors the thread’s IPC (again via 

hardware counters), compares it to the thread’s fair IPC 

(estimated using the thread’s fair miss rate), and based 

on the difference between the two, adjusts the thread’s 

CPU timeslice. The scheduler also performs the 

corresponding compensatory adjustment to a best-

effort thread. It tries to spread compensatory 

adjustments evenly among all best-effort threads, to 

limit the penalty on any particular thread. 

Performance monitoring and timeslice adjustment 

is performed for each cache-fair thread every 50 

million instructions. We determined experimentally 

that this frequency was sufficiently high to allow the 

threads to achieve fair performance within less than a 

half-second of the beginning of the scheduling phase, 

while keeping the scheduler overhead low (the cache-

fair scheduler generated less than a 1% overhead as 

compared to the default scheduler). 

5. Evaluation 

We evaluated our implementation of the cache-fair 

scheduler using a multiprogram workload of SPEC 

CPU2000 benchmarks (Section 5.1) and database 

workloads: SPEC JBB and TPC-C benchmarks 

(Section 5.2). We compare performance isolation 

under the cache-fair scheduler and the Solaris fixed-

priority scheduler, to which we refer as the default 

scheduler. 

Our experimental hardware is a simulator of a dual-

core CMP, based on the UltraSPARC® T1 architecture 

[18] and implemented as a set of Simics [20] modules. 

Table 1 summarizes its configuration parameters. This 

is a full-system simulator that executes the complete 

operating system and applications unmodified. 

Therefore, the operating system scheduler is not 

simulated and works the same way it would on real 

hardware. 

5.1. Multiprogram workload experiment 

We picked nine benchmarks from the SPEC 

CPU2000 suite, so as to represent a variety of cache 

access patterns. We run each benchmark, which we 

call the principal benchmark in two experiments, or 

schedules. In the first experiment, the principal 

benchmark runs with high-miss-rate threads – we call 

this the slow schedule. In the second experiment, the 

principal benchmark runs with low-miss-rate threads – 

we call this the fast schedule. Table 2 shows the 

benchmarks and the schedules. We assign the principal 

benchmark to the cache-fair class. We assign one of 

the three remaining threads to the best-effort class. The 

Table 1. Configuration of the simulated machine 

CPU cores Two single-threaded processing cores, 

each running at 992 MHz. 

L1 caches Each core has a 16KB instruction cache 

and an 8KB data cache, both four-way set 

associative 

L2 cache 

 

Unified, shared, 1MB four-way banked, 

eight-way set associative.  

Memory bus 4 GB/s peak bandwidth 

Table 2. Schedules for each benchmark 
Principal Fast Schedule Slow Schedule 

art art,crafty,crafty,crafty art,mcf,mcf,mcf 

crafty crafty,vpr,vpr,vpr crafty,mcf,mcf,mcf 

gcc gcc,vpr,vpr,vpr gcc,mcf,mcf,mcf 

gzip gzip,crafty,crafty,crafty gzip,mcf,mcf,mcf 

mcf mcf,gzip,gzip,gzip mcf,crafty,crafty,crafty 

parser parser,crafty,crafty,crafty parser,mcf,mcf,mcf 

twolf twolf,crafty,crafty,crafty twolf,mcf,mcf,mcf 

vortex vortex,crafty,crafty,crafty vortex,mcf,mcf,mcf 

vpr vpr,crafty,crafty,crafty vpr,mcf,mcf,mcf 



two remaining threads were not managed by the cache-

fair scheduler. We run each schedule until the principal 

benchmark completes 500 million instructions in the 

scheduling phase. And the end, we measure the 

principal benchmark’s performance isolation, i.e., the 

difference between its runtime in the fast and slow 

schedules. 

We constructed this experiment such that the 

principal benchmark runs with three identical co-

runners, to ensure that any performance differences 

between the cache-fair and default schedulers are due 

to differences in the scheduling algorithms, not to co-

runner pairings. However because of the limited 

number of co-runners, it is not feasible to estimate the 

fair miss rate for a principal thread: there would not be 

enough different samples for the linear regression. 

Therefore, we estimate all principal benchmarks’ fair 

miss rates in a separate experiment that includes all 

nine benchmarks.  

5.1.1. Effect on performance isolation. For each 

principal benchmark, we computed performance 

variability (our metric for performance isolation) as the 

percent slowdown in the slow schedule vs. the fast 

schedule. We measured the time it takes the principal 

benchmark to complete 500 million instructions in the 

slow schedule, in the fast schedule, and computed the 

difference relative to the time in the fast schedule.  

Figure 4 shows performance variability for each 

benchmark with the two schedulers. With the default 

scheduler (black bars) performance variability is 

substantial: it ranges from 5% to 28%. With the cache-

fair scheduler, performance variability is negligible: 

below 4% for all benchmarks.  

Performance variability in our experiments was 

caused by unfair L2 cache sharing (for example, vpr’s 

19% slowdown in the slow schedule is explained by a 

46% increase in its L2 miss rate over the fast 

schedule); but since the cache-fair scheduler accurately 

modeled the effects of unfair cache allocation on IPC, 

it was able to successfully eliminate the variability in 

the overall performance.  

5.1.2. Effect on absolute performance. The cache-

fair scheduler is expected to affect the absolute 

performance of applications it manages. Applications 

that did not get their fair share of the cache are 

expected to take less time to complete under the cache-

fair scheduler, while applications that got more than 

their fair share are expected to take more time to 

complete.  

Figure 5 shows completion times for each principal 

benchmark under the two schedulers. Completion 

times are shown as ranges. Ranges denoted by pairs of 

white circles correspond to the default scheduler, 

ranges denoted by black boxes correspond to the 

cache-fair scheduler. The top of the range boundary 

(either a circle centre or a box edge) indicates the 

completion time in the slow schedule (longer 

completion time); the lower range boundary is the time 

in the fast schedule (shorter completion time). The 

times for each benchmark are normalized to its 

completion time in the fast schedule with the default 

scheduler. Note that in this experiment five 

benchmarks completed more quickly with the cache-

fair scheduler (box-delimited ranges are below circle-

delimited ranges), while three benchmarks completed 

more slowly. 

In this figure, we arrange the benchmarks along the 

X-axis in descending order of IPC. Thus high-IPC 

benchmarks appear on the left side in the figure, and 

low-IPC benchmarks appear on the right. Note that 

high-IPC benchmarks usually experience shorter 

completion times under the cache-fair scheduler than 

under the default scheduler (indicated by black boxes 

appearing below the circles). This is expected: high-

IPC threads are usually less memory-bound, so they 

“fight” for cache allocation less aggressively and get 

less than their fair cache share as a result. This forces 

the cache-fair scheduler to increase the length of their 

 
Figure 4. Performance variability with default and cache-

fair scheduler. The dotted line is at 4%. 
Figure 5. Ranges of normalized completion times with 

the two schedulers 
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CPU timeslice, which reduces their overall completion 

time.  

We emphasize that the goal of the cache-fair 

scheduler is to provide performance comparable to that 

under fair cache sharing, not to increase absolute 

performance. Therefore, it is not surprising that the 

scheduler does not have a clear advantage over the 

default scheduler in terms of performance. Those 

applications that get less than their fair cache share will 

experience an increase in absolute performance, those 

that get more than their fair share will experience a 

decrease. Performance isolation, not absolute 

performance, is the focus of the scheduler. 

5.1.3. Effect on overall throughput. We now 

evaluate the effect of the cache-fair scheduling 

algorithm on the instructions-per-cycle completed by 

the entire workload (i.e. the aggregate IPC). An 

alternative metric for throughput used on CMP 

architectures is weighted speedup [29]. We do not use 

weighted speedup, as it would not be affected by the 

cache-fair scheduler. Weighted speedup is determined 

by threads’ individual IPCs, so it would only be 

affected if those IPCs change. The cache-fair 

scheduler, as we explained, does not change threads’ 

individual IPCs, only the overall runtime.  

We present aggregate IPCs of slow schedules in 

Figure 6. Each schedule is identified by the name of 

the principal benchmark. Each schedule’s IPC is 

normalized to its IPC under the default scheduler. 

Black bars correspond to the default scheduler, white 

bars – to the cache-fair scheduler. We omit the figure 

for the fast schedules, but summarize the results.  

In parser’s schedule, the IPC was 12% lower under 

the cache-fair scheduler than under the default 

scheduler. It turned out that parser’s fair miss rate was 

overestimated, so parser’s CPU timeslice was reduced 

more than necessary. As a result, that schedule’s best-

effort thread mcf, a low-IPC thread, occupied a larger 

fraction of CPU time under the cache-fair scheduler. 

The aggregate IPC decreased as a result. Improving the 

accuracy of the fair miss rate model would address this 

problem. 

For the rest of the schedules, on the other hand, the 

aggregate IPC either increased (by 1-12% for five out 

of nine schedules) or remained roughly unchanged (for 

three out of nine schedules). The largest IPC increase 

(12%) was in the schedule with crafty as the principal 

benchmark. crafty failed to achieve its fair IPC when 

running with a cache-demanding co-runner mcf. As a 

result, crafty’s share of CPU time was increased 

relatively to mcf’s. crafty is a relatively high-IPC 

thread, so the aggregate IPC increased as a result. 

For fast schedules, the aggregate IPCs remained 

largely unchanged. For eight out of nine schedules, the 

IPC changed by at most +/- 3% in comparison with the 

default scheduler. In the schedule with art as the 

principal benchmark, the throughput increased by 8%. 

art is a high-miss-rate and low-IPC application; it 

occupied more than its fair cache share, which forced 

the cache-fair scheduler to reduce its CPU share. As a 

result, the system executed fewer instructions from 

low-IPC art and more instructions from art’s high-IPC 

co-runner crafty. That led to the increase in the 

aggregate IPC. 

We saw that the effect on aggregate IPC depends 

on the relative IPCs of the threads whose timeslices are 

being adjusted. In a workload with a balanced mix of 

high-IPC and low-IPC threads, we will typically see 

that high-IPC threads (that typically get less than their 

fair cache share) will have their CPU shares increased, 

while low-IPC threads (that typically get more than 

their fair cache share) will have their CPU shares 

decreased. In such a workload, we expect that the 

aggregate IPC will increase under cache-fair scheduler. 

5.1.4. Effect on best-effort threads. We now 

evaluate the cache-fair scheduler’s performance effect 

on best-effort threads. Recall the schedules in Table 2 

and note that there is only one best-effort thread in the 

schedule. Therefore, our experiment permits evaluating 

the worst-case performance penalties on best-effort 

threads: when there is only one best-effort thread, the 

scheduler is unable to spread compensatory 

adjustments among many threads.  

Our evaluation led us to the following conclusions: 

(1) in general, performance penalties for best-effort 

threads are small; (2) to avoid large penalties it is 

important to distribute the penalties among multiple 

best-effort threads.  

Table 3 shows the slowdown (vs. the default 

scheduler) experienced by the best-effort thread in each 

schedule. The first and third columns identify the slow 

and fast schedules respectively (by the principal 

benchmark and the corresponding best effort thread). Figure 6. Aggregate IPC for slow schedules with the 
default scheduler and cache-fair scheduler 

0

0.2

0.4

0.6

0.8

1

1.2

art crafty gcc gzip mcf parser twolf vortex vpr

N
O
R
M
A
L
IZ
E
D
 A

G
G
R
E
G
A
T
E
 I
P
C

DEF-SLOW

CF-SLOW



The second and fourth columns show how much less 

CPU time (in percent) the best-effort thread received 

under the cache-fair scheduler vs. the default 

scheduler. Positive values indicate slowdown, negative 

values indicate speed-up. 

On average, the cache-fair algorithm resulted in 

negligible (less than 1%) performance penalties for 

best-effort threads. In one third of the schedules the 

threads experienced slowdown of more than 6%, and in 

one schedule (gcc-mcf) of as much 27%. Had there 

been multiple best-effort threads, compensatory 

adjustments would have been distributed among them, 

reducing the penalty on a single thread. We note that in 

about one third of the schedules, the best-effort threads 

experienced a speed-up (of 12% on average). 

We suppose that having multiple cache-fair threads 

in a workload, would further help to soften the 

performance penalty on best-effort threads: 

Compensatory adjustments caused by different cache-

fair threads will likely cancel out. This can be 

explained with an example: 

Suppose there are two cache-fair threads in the 

system: Tcache_hungry and Tcache_moderate. 

Tcache_hungry uses more than its fair cache share, 

while Tcache_moderate is forced to use less than its 

fair share. Therefore, the scheduler will increase the 

timeslice of Tcache_moderate by some amount X, and 

decrease the timeslice of Tcache_hungry by some 

amount Y. After increasing the timeslice of 

Tcache_moderate the scheduler will pick a best-effort 

thread, we will call it Tbest_effort, to apply the 

compensatory adjustment of –X to its timeslice. 

Similarly, after decreasing the timeslice of 

Tcache_hungry by Y, the scheduler will need to pick a 

best-effort thread whose timeslice it will increase by Y. 

The scheduler will pick Tbest_effort in order to offset 

the previous penalties on Tbest_effort’s timeslice. As a 

result, Tbest_effort’s timeslice will be increased by Y, 

cancelling in part or in full the penalty of –X imposed 

by the compensatory adjustment of Tcache_moderate. 

Therefore, the overall performance penalty on 

Tbest_effort is reduced due to there being multiple 

cache-fair threads in the system.  

This effect occurs only if the system has roughly as 

many threads that use more than their fair cache share 

as the threads that use less than their fair share. This is 

reasonable to expect: if a thread has not gotten its fair 

cache share there must have been another thread that 

has caused that by using more than its fair share.  

5.2. Experiments with database workloads 

We describe our experiments with two database 

benchmarks: SPEC JBB and TPC-C. (We built our 

own implementation of TPC-C on top of Oracle 

Berkeley DB [1]). We ran two sets of experiments: one 

where SPEC JBB is the principal benchmark, and 

another one where TPC-C is the principal benchmark. 

We run each principal benchmark in the slow and in 

the fast schedule, just as in our SPEC CPU2000 

experiments. We evaluate performance isolation with 

respect to transactions per second: we measure 

performance variability as the difference in transaction 

rates between the two schedules. This application-level 

performance metric is often more meaningful for users 

than IPC. 

SPEC JBB and TPC-C emulate database activities 

of an order-processing warehouse. These benchmarks 

can be run with databases of various sizes. The size is 

determined by the number of warehouses, and the 

standard number of warehouses is ten. Because our 

simulator had a low upper limit for physical memory 

(only 4GB) we were forced to use a smaller database 

size (and hence fewer warehouses), to avoid physical 

memory paging. Because we used a reduced database 

size, we configured the simulator with a smaller L2 

cache: 512KB.  The number of threads used by the 

benchmark is also configurable – we use one thread in 

the principal benchmark, as this simplified 

measurement. 

5.2.1. SPEC JBB. In the slow schedule, SPEC 

JBB’s co-runners were TPC-C configured with five 

warehouses (TPC-C_5WH) and twolf (used as the best-

effort thread).  In the fast schedule, SPEC JBB’s co-

runners were TPC-C configured with one warehouse 

Table 3. Percent slowdown for the best-effort threads. 
Negative values indicate speedup. 

SLOW 

SCHEDULES 

Best-effort 

slowdown 
FAST 

SCHEDULES 

Best-effort 

slowdown 

art-mcf -8.07% art-crafty -23.38% 

crafty-mcf 4.58% crafty-vpr 2.69% 

gcc-mcf 26.70% gcc-vpr 11.23% 

gzip-mcf 7.14% gzip-crafty 1.40% 

mcf-crafty -0.63% mcf-gzip 6.90% 

parser-mcf -11.34% parser-crafty -23.84% 

twolf-mcf 15.79% twolf-crafty -3.11% 

vortex-mcf 8.51% vortex-crafty 5.84% 

vpr-mcf 2.32% vpr-crafty -13.43% 

SLOWDOWN SUMMARY: 

Mean:             0.52% Max:          26.70% 

Median:             2.50% Min:          -23.84% 

Table 4. SPEC JBB with the two schedulers 

Schedule Default sched. Cache-fair sched. 

Slow  2497 txn/sec 2435  txn/sec 

Fast 2728 txn/sec 2448  txn/sec 

Difference 9% 1% 
 



(TPC-C_1WH) and twolf (used as the best-effort 

thread). We pinned threads to CPU cores as follows: 
 

Pinning threads to CPU cores in this fashion 

prevents any performance effects due to changing co-

runners (the principal always runs with the same co-

runner when the threads are pinned). 

Table 4 reports SPEC JBB’s transactions per 

second (txn/sec) for each schedule with the two 

schedulers. The bottom row shows the difference. With 

the default scheduler, the co-runner-dependent 

difference in the transaction rate is 9%. With cache-fair 

scheduler, the difference is only 1%.  

In the fast schedule, SPEC JBB completed fewer 

transactions per second with the cache-fair scheduler 

than with the default scheduler. This happened because 

SPEC JBB occupied more than its fair cache (61% as 

measured by our simulator), and so the cache-fair 

scheduler reduced its CPU share.  

In the slow schedule, SPEC JBB achieved roughly 

the same transaction rate under the cache-fair scheduler 

as under the default scheduler. When SPEC JBB ran 

with TPC-C_5WH, it used roughly half the cache (in 

fact, the measured cache share was exactly 50%). The 

cache-fair scheduler, therefore, did not adjust SPEC-

JBB’s CPU share, and so SPEC JBB achieved the 

same performance as under the default scheduler.  

5.2.2. TPC-C. In this experiment the principal 

benchmark was TPC-C configured with two 

warehouses (TPC-C_2WH). In the slow schedule we 

ran it with SPEC JBB and twolf. In the fast schedule, 

we ran it with Sphinx [3] and twolf. (Sphinx is a speech 

recognition benchmark, representative of the workload 

used in online voice recognition servers). twolf was the 

best-effort thread in both schedules. The assignment of 

threads to CPUs was as follows: 
 

Schedule Core 0 Core 1 

Slow  TPC-C_2WH, twolf  SPEC JBB  

Fast  TPC-C_2WH, twolf Sphinx 
 

Table 5 shows the variability in TPC-C’s 

transaction rate with the two schedulers. Under the 

default scheduler, the difference in transaction rate was 

13%, while under the cache-fair scheduler it was only 

1%.  

In the slow schedule TPC-C ran more quickly 

under the cache-fair scheduler than under the default 

scheduler. In the slow schedule, TPC-C occupied only 

38% of the cache, indicating that its high-miss-rate co-

runner, SPEC JBB, reduced TPC-C’s fair cache share. 

The cache-fair scheduler gave TPC-C an extra 14% of 

CPU time to compensate for unfair cache allocation.  

5.3. Comparison with cache partitioning 

We compared the cache-fair scheduler with cache 

partitioning in terms of their ability to improve 

performance isolation. Cache partitioning eliminates 

unfair cache allocation and can also improve cache 

utilization by allocating cache in a more efficient 

manner [23]. However, we found that when it came to 

reducing co-runner-dependent performance variability, 

the cache-fair scheduler did significantly better than 

cache partitioning. 

We configured our simulator to equally partition 

the L2 cache among the two cores using way-

partitioning, and ran the slow and fast schedules 

presented in Table 2. Partitioning reduced co-runner-

dependent performance variability for only three out of 

nine benchmarks and made no difference for the 

remaining six. The reason is that cache partitioning 

does not eliminate co-runner-dependent contention for 

the memory bus. To confirm this, we ran another 

experiment where the simulator was configured with 

infinite memory bus bandwidth (to eliminate the 

variability in the bus contention); in that experiment 

cache partitioning did eliminate performance 

variability. Memory bus is a highly contended resource 

on CMPs [31], so taking that contention into account is 

necessary in order to reduce co-runner-dependent 

performance variability. The cache-fair algorithm 

accounts for the memory-bus contention and thus 

improves performance isolation more effectively than 

cache partitioning. 

5.4. Comparison with OS-level page 

allocation 

OS-level page allocation can be used to enforce 

equal cache sharing directly, by controlling where data 

is allocated in the cache [33]. In contrast, our approach 

compensates for unequal sharing. While a thorough 

study would be needed to compare the two approaches 

in detail, one difference between them is that OS-level 

page allocation, unlike our approach, could cause 

inefficient cache use. Suppose the system allocated 

equal cache portions to threads Ta and Tb (via OS-level 

page allocation), but Ta did not use its entire cache 

share. A part of Ta’s cache share would be wasted. 

Schedule Core 0 Core 1 

Slow  SPEC JBB, twolf  TPC-C_5WH  

Fast  SPEC JBB, twolf TPC-C_1WH 

Table 5. TPC-C with default and cache-fair schedulers 

Schedule Default sched. Cache-fair sched. 

Slow  902 txn/sec 1028 txn/sec 

Fast 1018 txn/sec 1035 txn/sec 

Difference 13% 1% 
 



Detecting this inefficiency is not trivial without 

adequate hardware support. In contrast, our algorithm 

does not alter cache allocation, it only compensates 

applications when the allocation is unfair.  

6. Related work 

We compare and contrast our work with existing 

solutions for improving performance isolation on 

CMPs.  

Hardware solutions employ changes to the CMP 

processor that either enforce fair resource allocation or 

expose control over resource allocation to the operating 

system [8,9,11,24,25,32]. The advantage of hardware 

solutions is that they can address performance isolation 

directly, and thus require few or no modifications to 

the operating system. However, as we have shown, 

simple hardware solutions, such as cache partitioning, 

do not address the problem effectively; at the same 

time complex modifications can make the hardware 

prohibitively costly. In addition, hardware solutions are 

usually less flexible and require longer time to market 

than software solutions. To the best of our knowledge, 

none of the previously proposed hardware solutions 

has been made commercially available. The cache-fair 

scheduling algorithm, on the other hand, can be used 

on systems that exist today.  

Software solutions related to resource allocation on 

CMPs usually employ co-scheduling, i.e., scheduling a 

thread with the optimal co-runner. Co-scheduling has 

been used to improve performance [22,29] and 

performance isolation [16]. The key difference of co-

scheduling is that it may be able to actually force cache 

allocation to be fair by selecting the “right” co-runner 

for the thread. On the other hand, if the right co-runner 

cannot be found, co-scheduling cannot be used. The 

cache-fair scheduling algorithm does not have that 

limitation. Better scalability is another potential 

advantage of the cache-fair scheduler. Co-scheduling 

requires co-ordination of scheduling decisions among 

the processor’s cores and may thus limit the 

scheduler’s scalability if the number of cores is large. 

The cache-fair scheduler, on the other hand, does not 

require inter-core coordination. Cache-fair algorithm 

is, to the best of our knowledge, the first CMP 

scheduling algorithm that does not use co-scheduling. 

On future CMP systems with dozens of cores this 

design may exhibit significant scalability advantages.  

7.  Summary 

We presented the cache-fair scheduling algorithm, 

a new algorithm that improves performance isolation 

on CMPs. We evaluated it using our implementation in 

a commercial operating system. We showed that this 

algorithm almost entirely eliminates co-runner-

dependent performance variability, and as such, 

significantly improves performance isolation. The 

cache-fair algorithm is more effective, less costly, and 

more flexible than hardware cache partitioning. It is 

also potentially more robust and scalable than existing 

software solutions.  
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