
Improving Performance Isolation on Chip
Multiprocessors via an Operating System
Scheduler

Citation
Feorova, Alexandra, Margo Seltzer, and Michael D. Smith. 2007. Improving performance
isolation on chip multiprocessors via an operating system scheduler. In Proceedings of the 16th
International Conference on Parallel Architecture and Compilation Techniques (PACT 2007),
Brasov, Romania, September 15-19, 2007, 5-38. Los Alamitos, CA: IEEE Computer Society.

Published Version
http://doi.ieeecomputersociety.org/10.1109/PACT.2007.40

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10065537

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:10065537
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Improving%20Performance%20Isolation%20on%20Chip%20Multiprocessors%20via%20an%20Operating%20System%20Scheduler&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=9ec45367f2eadbc99d2da2dc2f8dc1bd&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Improving Performance Isolation on Chip Multiprocessors

via an Operating System Scheduler

Alexandra Fedorova

Simon Fraser University

fedorova@cs.sfu.ca

Margo Seltzer

Harvard University

margo@eecs.harvard.edu

Michael D. Smith

Harvard University

smith@eecs.harvard.edu

Abstract

We describe a new operating system scheduling

algorithm that improves performance isolation on chip

multiprocessors (CMP). Poor performance isolation

occurs when an application’s performance is

determined by the behaviour of its co-runners, i.e.,

other applications simultaneously running with it. This

performance dependency is caused by unfair, co-

runner-dependent cache allocation on CMPs. Poor

performance isolation interferes with the operating

system’s control over priority enforcement and hinders

QoS provisioning. Previous solutions required

modifications to the hardware. We present a new

software solution. Our cache-fair algorithm ensures

that the application runs as quickly as it would under

fair cache allocation, regardless of how the cache is

actually allocated. If the thread executes fewer

instructions per cycle than it would under fair cache

allocation, the scheduler increases that thread’s CPU

timeslice. This way, the thread’s overall performance

does not suffer because it is allowed to use the CPU

longer. We describe our implementation of the

algorithm in Solaris™ 10, and show that it

significantly improves performance isolation for SPEC

CPU, SPEC JBB and TPC-C.

1. Introduction

Applications running on chip multiprocessors

(CMP) [21] suffer from poor performance isolation

[8,9,17]. Poor performance isolation is a phenomenon

where an application’s performance is determined by

the behaviour of its co-runners. Such performance

dependency is due to inherently unfair, co-runner-

dependent allocation of shared caches on CMPs. On

CMPs, cache allocation is determined largely by the

co-running threads’ relative cache demands; fairness is

not considered. A thread “demands” a cache allocation

by generating a cache miss. The cache miss is satisfied

after evicting an existing line from the cache. The

evicted line may belong to any thread, not necessarily

the thread responsible for the cache miss.

Consequently, the thread responsible for the miss may

affect its co-runners’ cache allocations and, as a result,

their performance. Accordingly, an application will run

more slowly with high-miss-rate co-runners than with

low-miss rate co-runners.

Poor performance isolation causes problems. One

problem is OS scheduler’s weakened control over

priority enforcement. It is difficult for the scheduler to

ensure that a high-priority thread makes consistently

greater forward progress than a low priority-thread on

a CMP processor, because the high-priority thread’s

performance could be arbitrarily decreased by a high-

miss-rate co-runner.

Poor performance isolation complicates per-CPU-

hour billing in shared computing facilities [2]. If an

application runs slowly in a given CPU-hour only due

to the misfortune of having a high-miss-rate co-runner,

billing that application for the full hour is unfair.

Existing systems have no means of detecting or

preventing this.

Poor performance isolation hinders QoS

provisioning. QoS is provisioned via a reservation of

resources, such as a fraction of CPU cycles, for a

customer’s application. Poor performance isolation

makes resource reservations less effective, since an

application could be slowed down unpredictably by a

high-miss-rate co-runner despite having dedicated

resources.

To demonstrate the extent of poor performance

isolation on CMPs, we draw upon data on co-runner-

dependent performance variability, i.e., the difference

between the application’s running time with co-runner

A and co-runner B [8,9,17]. (We use co-runner

dependent performance variability as a metric for

performance isolation: high variability implies poor

performance isolation and vice versa). Previous work

has shown that an application may take up to 65%

longer to complete when it runs with a high-miss-rate

co-runner than with a low-miss-rate co-runner [9].

Such dramatic slowdowns were attributed to

significant increases in the second-level cache miss

rates (up to 4x) experienced with a high-miss-rate co-

runner, as opposed to a low-miss-rate co-runner.

Previous work addressed performance isolation in

hardware, via cache partitioning [8,17,24,25]. While

cache partitioning ensures fair cache allocation, it

increases the cost and complexity of the hardware, has

limited flexibility and long time-to-market. Our

software solution avoids these shortcomings.

Our solution is a new operating system scheduling

algorithm, the cache-fair algorithm. This algorithm

reduces co-runner-dependent variability in an

application’s performance by ensuring that the

application always runs as quickly as it would under

fair cache allocation, regardless of how the cache is

actually allocated. The cache-fair algorithm

accomplishes that objective by regulating threads’

CPU timeslices. A thread’s CPU timeslice, as well as

its IPC, determines its overall performance. (The IPC

determines how quickly the thread executes

instructions on CPU, while the timeslice determines

how much time the thread gets to run on CPU.) Co-

runner-dependent cache allocation creates co-runner-

dependent variability in IPC and, hence, co-runner-

dependent variability in overall performance. Since the

OS cannot control the variability in the IPC (because it

cannot control cache allocation), the cache-fair

algorithm instead offsets the variability in the IPC by

adjusting the CPU timeslice. The scheduler monitors

the thread’s IPC, and if it detects that the thread’s

actual IPC is lower than its IPC under fair cache

allocation (we call this the fair IPC), it increases the

thread’s CPU timeslice. Likewise, if the thread’s IPC is

above its fair IPC, the scheduler decreases that thread’s

CPU timeslice. In this fashion, the scheduler

compensates for the effects of unfair cache allocation

on overall performance without requiring changes to

the hardware.

While performance isolation has been addressed in

the past in the context of shared physical memory [6],

addressing it in the context of shared caches is more

difficult. The allocation of physical memory is directly

controlled by the operating system, whereas cache

allocation is not. Since the cache-fair scheduler cannot

enforce fair cache allocation, it must compensate when

the allocation is unfair. To provide the right amount of

compensation, the scheduler needs to determine the

extent to which a thread’s actual IPC differs from its

fair IPC. Unfortunately, the fair IPC is not trivial to

obtain: it cannot be measured, because one cannot

simply “try” running a thread with a fairly allocated

cache portion. To determine the fair IPC in our

scheduler, we designed a new, low-overhead, heuristic

cache model.

We implemented the cache-fair algorithm in a

commercial operating system, Solaris 10, and showed

(using a simulated CMP) that it significantly improves

performance isolation for workloads ranging from

SPEC CPU2000 to SPEC JBB and TPC-C. Co-runner

dependent performance variability was reduced from

as much as 28% to under 4% for all the benchmarks.

Performance overhead generated by the algorithm was

negligible (<1%).

We compared the effectiveness of the cache-fair

scheduler and of cache partitioning (an alternative

hardware solution) and found that the cache-fair

scheduler reduces co-runner-dependent performance

variability to a greater degree than cache partitioning.

The cache-fair algorithm accounts for secondary

performance effects of co-runner-dependent cache

allocation, whereas cache partitioning does not. A

significant secondary effect is co-runner dependent

contention for the memory bus (a high-miss-rate co-

runner will get relatively more bus bandwidth). The

cache-fair scheduler accounts for performance effects

of bus contention its fair IPC model.

Another advantage of our algorithm over hardware

solutions is that it is implemented in the operating

system – a natural place to manage resource allocation.

The OS has a global knowledge of the entire workload

and thus can ensure that the cache-fair algorithm

“plays well” with other resource management policies.

In the rest of the paper we describe the cache-fair

algorithm (Section 2), the fair IPC model (Section 3),

the implementation of the algorithm in Solaris 10

(Section 4), and our evaluation of it (Section 5). We

discuss related work in Section 6, and conclude in

Section 7.

2. Overview of the Algorithm

In this section we explain how the cache-fair

algorithm improves performance isolation via

adjustments to threads’ CPU timeslices. In our

examples we will assume a dual-core system with a

shared second-level (L2) cache. We identify two

performance metrics used in this paper:

Overall performance (or simply performance) is the

thread’s overall CPU latency: the time it takes to

complete a logical unit of work (say, 500 million

instructions). Fair performance refers to performance

under fair cache allocation.

IPC is the thread’s instructions per cycle rate. Fair

IPC refers to IPC under fair cache allocation.

A thread’s IPC is affected by the amount of cache

allocated to that thread: a larger cache allocation

usually results in a higher IPC, and vice versa.

Therefore, co-runner-dependent variability in cache

allocation causes co-runner-dependent variability in

IPC. The cache-fair scheduler offsets that variability by

increasing or decreasing the thread’s CPU timeslice.

Figure 1 illustrates this concept. There are three

threads (A though C) running on a dual-core CMP with

a shared cache. In the figure, each box corresponds to a

thread. The height of the box indicates the amount of

cache allocated to the thread. The width of the box

indicates the thread’s CPU timeslice. The area of the

box is proportional to the amount of work completed

by the thread. Stacked thread boxes indicate co-

runners.

We show three scenarios resulting in different

levels of performance isolation for Thread A: In Figure

1(a) Thread A runs with other threads on a

conventional CMP with a conventional scheduler and

experiences poor performance isolation. In Figure 1(b)

it runs on a hypothetical CMP that enforces fair cache

and memory bus allocation and thus experiences good

performance isolation. In Figure 1(c) Thread A runs on

a conventional CMP with the cache-fair scheduler and

thus experiences good performance isolation.

In Figure 1(a) Thread A’s IPC is below its fair IPC,

because its cache allocation is below the fair level due

to a high-miss-rate co-runner Thread B. As a result,

Thread A’s overall performance (shown on the X-axis

as the CPU latency) is worse than its fair performance

(achieved in Figure 1(b)). In Figure 1(c), Thread A still

exhibits lower-than-fair IPC due to Thread B, but the

cache-fair algorithm compensates for the reduced IPC

by increasing Thread A’s CPU timeslice. This allows

Thread A to achieve fair performance overall.

In Figure 1, Thread A’s CPU timeslice was

increased because its IPC was lower than its fair IPC.

If, conversely, Thread A’s IPC had been higher than its

fair IPC, the scheduler would have decreased its CPU

timeslice.

We note that the cache-fair algorithm does not

establish a new scheduling policy, but instead helps

enforce existing policies. For example, if the system is

using a fixed priority policy, the cache-fair algorithm

will make the threads run as quickly as they would if

the cache were shared equally given the fixed priority

policy.

Referring again to Figure 1(c), we note that as the

scheduler increased the timeslice of Thread A, the

timeslice of Thread B correspondingly decreased. This

is how CPU time sharing works: if the CPU share of

one thread is increased, the CPU share of some other

thread will be decreased to compensate (and vice

versa). We must ensure that those compensatory

timeslice adjustments do not work against any previous

adjustments made to ensure fairness.

To that end, we define two thread classes, a cache-

fair class and a best-effort class. Threads in the cache-

fair class are managed for improved performance

isolation: the scheduler makes adjustments to those

threads’ timeslices to counter the effects of unfair

cache allocation. Threads in the best-effort class are

not managed for improved performance isolation: these

could be background threads for which performance

isolation is not important
1
. The scheduler performs

compensatory adjustments to best-effort threads’

timeslices as needed. In Figure 1(c), for example,

Thread B is in the best-effort class, while Thread A is

in the cache-fair class.

With this design, we must ensure that best-effort

threads do not suffer significant performance penalties.

In our experiments, the performance penalty

experienced by best-effort threads was small, less than

1% on average. To prevent large performance

penalties, the scheduler spreads compensatory

adjustments among multiple best-effort threads

whenever possible.

In addition to determining which threads’

timeslices to adjust, the scheduler must also compute

the amount by which to adjust each timeslice.

Determining the right amount of adjustment is trivial

as long as the scheduler knows by how much the

1
 A user specifies a thread’s class in the same way as she
specifies a thread’s priority.

Thread A

Thread A CPU latency (fair)

c) Cache not shared equally: CACHE-FAIR scheduler

Thread

B

c
a
c
h
e
 a
llo
c
a
ti
o
n

CPU time

Thread A
Thread A

a) Cache not shared equally: Conventional scheduler

Thread A CPU latency (worse than fair)

Thread A

Thread B

Thread B

Thread C

c
a
c
h
e
 a
llo
c
a
ti
o
n

CPU time

Thread C
Thread B

c
a
c
h
e
 a
llo
c
a
ti
o
n

CPU time

b) IDEAL: Cache is shared equally

Thread A CPU latency (fair)

Thread A

Thread B

Thread B

Thread C

Thread A

Thread C

Thread B
Thread C

Thread A

Thread C

Figure 1. Illustration of the cache-fair algorithm

thread’s actual IPC deviates from its fair IPC: The

scheduler (1) computes how many instructions the

thread would have completed if its IPC had been fair,

(2) compares it with the number of instructions

actually completed by the thread, and (3) computes the

adjustment to the next CPU timeslice so that by the end

of that timeslice the thread completes as many

instructions as it would if its IPC were fair.

Unfortunately, fair IPC values are not trivial to

determine, because they cannot be measured directly.

We estimate them using a new performance model,

which we describe in the next section.

3. Fair IPC Model

Our model for fair IPC is comprised of two parts:

we first estimate the fair cache miss rate, and then the

fair IPC given the fair miss rate.

Fair cache miss rate is the miss rate experienced by

the thread when it is allocated its fair cache share.

The novelty of our model is in techniques for

estimating the fair cache miss rate; fair IPC (given the

fair miss rate) can be estimated using existing

techniques [30]. Therefore, we discuss the fair miss

rate model and refer the reader to our other publication

describing the entire fair IPC model [14]; details on

how our fair IPC model accounts for memory bus

contention can also be found in this work.

3.1. Overview of the model

Models for cache miss rates have been designed in

the past [4,5,7,9,13,17,26,32], but those models were

either too complex and high-overhead to use inside an

OS scheduler, or required inputs that could not be

easily obtained at runtime. We designed a simple

online model.

For the purposes of this section we define the miss

rate as the number of misses per cycle (MPC). Our

approach for estimating the fair miss rate is based on

an intuitive and empirically verified observation: if the

co-runners have similar cache miss rates, they end up

with equal cache allocations. Recall that the shared

cache is allocated based on demand; intuitively, if the

threads have similar demands (i.e., similar miss rates),

they will have similar cache allocations.

Considering this assumption more formally, if we

assume that a thread's cache accesses are uniformly

distributed in the cache (validity of this assumption is

discussed below), we can model cache replacement as

a simple case of the balls and bins abstraction [10]. For

two co-runners A and B, let their cache requests

correspond to black and white balls respectively. We

toss black and white balls into a bin. Each time a ball

enters the bin, another ball is evicted from the bin. If

we toss black and white balls at the same rate, then

after enough tosses the number of black balls in the bin

will form a multinomial distribution centered around

one-half. Thus, two threads with equal L2 cache miss

rates (balls being tossed at the same rate) will share the

cache equally, or fairly. This result generalizes to any

number of different coloured balls being tossed at the

same rate [10]. Thus any N threads with the same

cache miss rate will share the cache fairly.

We say that A and B are cache-friendly if they

experience similar miss rates when running together

(and, by our assumption, A and B share the cache

fairly). Therefore, fair miss rate of A can be observed

when A’s miss rate equals its co-runner’s miss rate.

Based on that, to estimate the fair miss rate for Thread

A (on a dual-core system) one could run it with

different co-runners until detecting its cache-friendly

co-runner (and recording the corresponding miss rate).

That approach is not practical, however, since Ο

m

n

tests (where n is the number of threads and m is the

number of processors) are required to find a cache-

friendly co-runner or to determine that none exists.

Instead we run Thread A with several different co-

runners, derive a relationship between the miss rates of

Thread A and its co-runners, and use that relationship

to estimate Thread A’s fair miss rate. Our goal is to

find the miss rate that would be observed if Thread A

and its co-runner had same miss rates. We use the

derived relationship to estimate that miss rate. Figure 2

illustrates this process. We express the relationship

between the co-runners’ miss rates using a linear

function. We experimentally found that a linear

function approximated that relationship better than

other simple functions. The resulting equation has the

form:

∑
=

+=
n

i

bCMissRateaAMissRate i

1

)(*)((1),

where n is the number of co-runners, Ci is the ith co-

Thread A’s
miss rate

Co-runner’s
miss rate

co-runner D

co-runner B co-runner C

Hypothetical cache-
friendly co-runner

Fair Fair Fair Fair
Miss rateMiss rateMiss rateMiss rate

2. Derive relationships between the miss rates,

estimate the fair miss rate for Thread A

1. Run Thread A with

different co-runners.

Measure the miss rates.

Thread ACo-runner

Misses per 10,000 cycles:

Thread B

Thread C

Thread D
1 2 3 40

2.8 2.3

4.5

0.9

2.0

1.1

3

2

1

Figure 2. Estimating the fair cache miss rate for Thread A

runner, and a and b are the linear equation coefficients.

By our definition:

)()(iCMissRateAMissRatete(A)FairMissRa == ,

for all i. Equation (1) can be expressed as:

bAteFairMissRanaAteFairMissRa +=)(**)(,

and:
na

b
AteFairMissRa

*1
)(

−
= (2).

3.2. Model evaluation

We evaluated the accuracy of our model by

comparing the fair miss rates estimated by our model

with the actual fair miss rates. We used nine SPEC

CPU2000 benchmarks as our experimental workload.

We computed the estimated fair miss rate by running

each of the selected benchmarks with several different

co-runners (also from the SPEC CPU2000 suite) on a

simulated dual-core CMP, deriving the coefficients for

Equation 1 via linear regression analysis, and then

using Equation 2. We measured the actual fair miss

rates in an experiment where the benchmarks ran on

our experimental CMP with an equally partitioned

cache (we implemented cache-partitioning in our

simulator for this purpose).

Figure 3 shows how the estimated fair miss rates

compare to the actual miss rates. The X-axis shows the

names of the SPEC CPU2000 benchmarks we ran; the

Y-axis shows the actual and estimated fair miss rates

for each benchmark. The estimated miss rates closely

approximate the actual miss rates. The difference

between the measured and estimated values is within

8% for six out of nine benchmarks, within 25% for

eight out of nine benchmarks.

We observed that our estimates were less accurate

for benchmarks with relatively low miss rates than for

benchmarks with relatively high miss rates (for crafty,

we overestimated the fair cache miss rate by almost a

factor of two). We hypothesize that because low-miss-

rate benchmarks actively reuse their working sets,

there is little variation in the miss rate when those

benchmarks run with different co-runners; low

variation in the miss rates used for regression analysis

results in a low-fidelity linear equation.

A limitation of our model is that it requires running

a thread with many co-runners that have diverse cache

access patterns. If the workload has only a few threads,

or if all threads have similar cache-access patterns, the

linear equation will have low fidelity. In those

situations, we could use one of the alternative,

although more limiting, methods, such as a compiler-

based model [7], a hardware-based model if the

appropriate hardware becomes available [32], or we

could co-schedule a thread with a synthetically

generated benchmark sized to use exactly its fair share

of the cache [12] and measure the thread’s (fair) miss

rate.

Our model assumes that cache requests are

distributed uniformly across the cache, while this is not

the case for many workloads [27]. We do not view this

as a serious limitation, however: existing work on

cache models that operated under the same assumption

of uniformity showed that the assumption does not

significantly affect model accuracy [5,9,15,23,32].

Relaxing this assumption is difficult in an online

model, because cache access distribution cannot be

obtained online via hardware, and obtaining it in

software is costly [5].

4. Implementation

We implemented the cache-fair algorithm as a

loadable module for Solaris 10. Module-based

implementation makes our solution flexible: a user can

enable the cache-fair scheduler only if needed and the

scheduler can be tuned and upgraded independently of

the core kernel.

To have a thread managed by the cache-fair

scheduler the user invokes the Solaris system call

priocntl and specifies the name of the cache-fair

module as one of the arguments. The user specifies the

thread’s class, cache-fair or best-effort, also via
priocntl.

Each cache-fair thread goes through two phases:

sampling and scheduling. During the sampling phase,

the scheduler gathers performance data and uses it to

estimate the thread’s fair miss rate. During the

scheduling phase, the scheduler periodically monitors

the thread’s performance and adjusts the thread’s CPU

timeslice if its actual performance deviates from its fair

performance.

When a thread is in the sampling phase the

scheduler monitors the cache miss rates for it and its
 Figure 3. Estimated vs. the actual fair cache miss rate

0

5

10

15

20

25

30

35

40

art crafty gcc gzip mcf parser twolf vortex vpr

M
IS
S
E
S
 P
E
R
 1
0
,0
0
0
 C

Y
C
L
E
S

Estimated

Measured

co-runners via performance counters. We rely on

performance counters commonly available on modern

processors. We define a run as the contiguous time

interval when a group of co-runners runs

simultaneously. A run terminates when any of the co-

runners gives up the CPU. At the end of the run we

record the observed miss rates. Measurements recorded

at the end of the run correspond to one data sample.

We collect at least ten data samples for each cache-fair

thread. The scheduler discards measurements from

runs where the cache-fair thread executed fewer than

10 million instructions (to eliminate cold-start effects

on cache miss rates [11]). Therefore, the sampling

phase ends once the cache-fair thread has completed at

least 100 million instructions in valid runs. At the end

of the sampling phase, the scheduler estimates the fair

miss rate using linear regression analysis.

The per-thread runtime overhead of performing

regression analysis is determined by the number of

samples we obtain during the sampling phase; this

quantity is set to ten in our implementation. Since the

quantity is fixed, the per-thread overhead does not

grow with the number of cores or the number of co-

runners. Therefore, the model’s performance will

likely scale well as the number of cores and threads

increases.

The sampling phase needs to be repeated every

time a thread changes its cache access patterns. An

online phase detection algorithm would detect such a

change [19,28], but unfortunately we are not aware of a

phase-detection algorithm that works well on CMPs.

Instead, we repeat the sampling phase every time a

thread has completed one billion instructions.

Infrequent repetitions of the sampling phase limit the

overhead produced by linear regression.

After the sampling phase, the thread enters the

scheduling phase. In this phase, the scheduler

periodically monitors the thread’s IPC (again via

hardware counters), compares it to the thread’s fair IPC

(estimated using the thread’s fair miss rate), and based

on the difference between the two, adjusts the thread’s

CPU timeslice. The scheduler also performs the

corresponding compensatory adjustment to a best-

effort thread. It tries to spread compensatory

adjustments evenly among all best-effort threads, to

limit the penalty on any particular thread.

Performance monitoring and timeslice adjustment

is performed for each cache-fair thread every 50

million instructions. We determined experimentally

that this frequency was sufficiently high to allow the

threads to achieve fair performance within less than a

half-second of the beginning of the scheduling phase,

while keeping the scheduler overhead low (the cache-

fair scheduler generated less than a 1% overhead as

compared to the default scheduler).

5. Evaluation

We evaluated our implementation of the cache-fair

scheduler using a multiprogram workload of SPEC

CPU2000 benchmarks (Section 5.1) and database

workloads: SPEC JBB and TPC-C benchmarks

(Section 5.2). We compare performance isolation

under the cache-fair scheduler and the Solaris fixed-

priority scheduler, to which we refer as the default

scheduler.

Our experimental hardware is a simulator of a dual-

core CMP, based on the UltraSPARC® T1 architecture

[18] and implemented as a set of Simics [20] modules.

Table 1 summarizes its configuration parameters. This

is a full-system simulator that executes the complete

operating system and applications unmodified.

Therefore, the operating system scheduler is not

simulated and works the same way it would on real

hardware.

5.1. Multiprogram workload experiment

We picked nine benchmarks from the SPEC

CPU2000 suite, so as to represent a variety of cache

access patterns. We run each benchmark, which we

call the principal benchmark in two experiments, or

schedules. In the first experiment, the principal

benchmark runs with high-miss-rate threads – we call

this the slow schedule. In the second experiment, the

principal benchmark runs with low-miss-rate threads –

we call this the fast schedule. Table 2 shows the

benchmarks and the schedules. We assign the principal

benchmark to the cache-fair class. We assign one of

the three remaining threads to the best-effort class. The

Table 1. Configuration of the simulated machine

CPU cores Two single-threaded processing cores,

each running at 992 MHz.

L1 caches Each core has a 16KB instruction cache

and an 8KB data cache, both four-way set

associative

L2 cache

Unified, shared, 1MB four-way banked,

eight-way set associative.

Memory bus 4 GB/s peak bandwidth

Table 2. Schedules for each benchmark
Principal Fast Schedule Slow Schedule

art art,crafty,crafty,crafty art,mcf,mcf,mcf

crafty crafty,vpr,vpr,vpr crafty,mcf,mcf,mcf

gcc gcc,vpr,vpr,vpr gcc,mcf,mcf,mcf

gzip gzip,crafty,crafty,crafty gzip,mcf,mcf,mcf

mcf mcf,gzip,gzip,gzip mcf,crafty,crafty,crafty

parser parser,crafty,crafty,crafty parser,mcf,mcf,mcf

twolf twolf,crafty,crafty,crafty twolf,mcf,mcf,mcf

vortex vortex,crafty,crafty,crafty vortex,mcf,mcf,mcf

vpr vpr,crafty,crafty,crafty vpr,mcf,mcf,mcf

two remaining threads were not managed by the cache-

fair scheduler. We run each schedule until the principal

benchmark completes 500 million instructions in the

scheduling phase. And the end, we measure the

principal benchmark’s performance isolation, i.e., the

difference between its runtime in the fast and slow

schedules.

We constructed this experiment such that the

principal benchmark runs with three identical co-

runners, to ensure that any performance differences

between the cache-fair and default schedulers are due

to differences in the scheduling algorithms, not to co-

runner pairings. However because of the limited

number of co-runners, it is not feasible to estimate the

fair miss rate for a principal thread: there would not be

enough different samples for the linear regression.

Therefore, we estimate all principal benchmarks’ fair

miss rates in a separate experiment that includes all

nine benchmarks.

5.1.1. Effect on performance isolation. For each

principal benchmark, we computed performance

variability (our metric for performance isolation) as the

percent slowdown in the slow schedule vs. the fast

schedule. We measured the time it takes the principal

benchmark to complete 500 million instructions in the

slow schedule, in the fast schedule, and computed the

difference relative to the time in the fast schedule.

Figure 4 shows performance variability for each

benchmark with the two schedulers. With the default

scheduler (black bars) performance variability is

substantial: it ranges from 5% to 28%. With the cache-

fair scheduler, performance variability is negligible:

below 4% for all benchmarks.

Performance variability in our experiments was

caused by unfair L2 cache sharing (for example, vpr’s

19% slowdown in the slow schedule is explained by a

46% increase in its L2 miss rate over the fast

schedule); but since the cache-fair scheduler accurately

modeled the effects of unfair cache allocation on IPC,

it was able to successfully eliminate the variability in

the overall performance.

5.1.2. Effect on absolute performance. The cache-

fair scheduler is expected to affect the absolute

performance of applications it manages. Applications

that did not get their fair share of the cache are

expected to take less time to complete under the cache-

fair scheduler, while applications that got more than

their fair share are expected to take more time to

complete.

Figure 5 shows completion times for each principal

benchmark under the two schedulers. Completion

times are shown as ranges. Ranges denoted by pairs of

white circles correspond to the default scheduler,

ranges denoted by black boxes correspond to the

cache-fair scheduler. The top of the range boundary

(either a circle centre or a box edge) indicates the

completion time in the slow schedule (longer

completion time); the lower range boundary is the time

in the fast schedule (shorter completion time). The

times for each benchmark are normalized to its

completion time in the fast schedule with the default

scheduler. Note that in this experiment five

benchmarks completed more quickly with the cache-

fair scheduler (box-delimited ranges are below circle-

delimited ranges), while three benchmarks completed

more slowly.

In this figure, we arrange the benchmarks along the

X-axis in descending order of IPC. Thus high-IPC

benchmarks appear on the left side in the figure, and

low-IPC benchmarks appear on the right. Note that

high-IPC benchmarks usually experience shorter

completion times under the cache-fair scheduler than

under the default scheduler (indicated by black boxes

appearing below the circles). This is expected: high-

IPC threads are usually less memory-bound, so they

“fight” for cache allocation less aggressively and get

less than their fair cache share as a result. This forces

the cache-fair scheduler to increase the length of their

Figure 4. Performance variability with default and cache-

fair scheduler. The dotted line is at 4%.
Figure 5. Ranges of normalized completion times with

the two schedulers

0

5

10

15

20

25

30

twolf art vpr gcc parser crafty vortex gzip mcf

P
E
R
F
O
R
M
A
N
C
E
 V
A
R
IA
B
IL
IT
Y
 (
%
)

DEFAULT

CACHE-FAIR

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

gzip crafty vortex gcc parser vpr twolf mcf art

N
O
R
M
A
L
IZ
E
D
 C

O
M
P
L
E
T
IO

N
 T
IM

E

CPU timeslice, which reduces their overall completion

time.

We emphasize that the goal of the cache-fair

scheduler is to provide performance comparable to that

under fair cache sharing, not to increase absolute

performance. Therefore, it is not surprising that the

scheduler does not have a clear advantage over the

default scheduler in terms of performance. Those

applications that get less than their fair cache share will

experience an increase in absolute performance, those

that get more than their fair share will experience a

decrease. Performance isolation, not absolute

performance, is the focus of the scheduler.

5.1.3. Effect on overall throughput. We now

evaluate the effect of the cache-fair scheduling

algorithm on the instructions-per-cycle completed by

the entire workload (i.e. the aggregate IPC). An

alternative metric for throughput used on CMP

architectures is weighted speedup [29]. We do not use

weighted speedup, as it would not be affected by the

cache-fair scheduler. Weighted speedup is determined

by threads’ individual IPCs, so it would only be

affected if those IPCs change. The cache-fair

scheduler, as we explained, does not change threads’

individual IPCs, only the overall runtime.

We present aggregate IPCs of slow schedules in

Figure 6. Each schedule is identified by the name of

the principal benchmark. Each schedule’s IPC is

normalized to its IPC under the default scheduler.

Black bars correspond to the default scheduler, white

bars – to the cache-fair scheduler. We omit the figure

for the fast schedules, but summarize the results.

In parser’s schedule, the IPC was 12% lower under

the cache-fair scheduler than under the default

scheduler. It turned out that parser’s fair miss rate was

overestimated, so parser’s CPU timeslice was reduced

more than necessary. As a result, that schedule’s best-

effort thread mcf, a low-IPC thread, occupied a larger

fraction of CPU time under the cache-fair scheduler.

The aggregate IPC decreased as a result. Improving the

accuracy of the fair miss rate model would address this

problem.

For the rest of the schedules, on the other hand, the

aggregate IPC either increased (by 1-12% for five out

of nine schedules) or remained roughly unchanged (for

three out of nine schedules). The largest IPC increase

(12%) was in the schedule with crafty as the principal

benchmark. crafty failed to achieve its fair IPC when

running with a cache-demanding co-runner mcf. As a

result, crafty’s share of CPU time was increased

relatively to mcf’s. crafty is a relatively high-IPC

thread, so the aggregate IPC increased as a result.

For fast schedules, the aggregate IPCs remained

largely unchanged. For eight out of nine schedules, the

IPC changed by at most +/- 3% in comparison with the

default scheduler. In the schedule with art as the

principal benchmark, the throughput increased by 8%.

art is a high-miss-rate and low-IPC application; it

occupied more than its fair cache share, which forced

the cache-fair scheduler to reduce its CPU share. As a

result, the system executed fewer instructions from

low-IPC art and more instructions from art’s high-IPC

co-runner crafty. That led to the increase in the

aggregate IPC.

We saw that the effect on aggregate IPC depends

on the relative IPCs of the threads whose timeslices are

being adjusted. In a workload with a balanced mix of

high-IPC and low-IPC threads, we will typically see

that high-IPC threads (that typically get less than their

fair cache share) will have their CPU shares increased,

while low-IPC threads (that typically get more than

their fair cache share) will have their CPU shares

decreased. In such a workload, we expect that the

aggregate IPC will increase under cache-fair scheduler.

5.1.4. Effect on best-effort threads. We now

evaluate the cache-fair scheduler’s performance effect

on best-effort threads. Recall the schedules in Table 2

and note that there is only one best-effort thread in the

schedule. Therefore, our experiment permits evaluating

the worst-case performance penalties on best-effort

threads: when there is only one best-effort thread, the

scheduler is unable to spread compensatory

adjustments among many threads.

Our evaluation led us to the following conclusions:

(1) in general, performance penalties for best-effort

threads are small; (2) to avoid large penalties it is

important to distribute the penalties among multiple

best-effort threads.

Table 3 shows the slowdown (vs. the default

scheduler) experienced by the best-effort thread in each

schedule. The first and third columns identify the slow

and fast schedules respectively (by the principal

benchmark and the corresponding best effort thread). Figure 6. Aggregate IPC for slow schedules with the
default scheduler and cache-fair scheduler

0

0.2

0.4

0.6

0.8

1

1.2

art crafty gcc gzip mcf parser twolf vortex vpr

N
O
R
M
A
L
IZ
E
D
 A

G
G
R
E
G
A
T
E
 I
P
C

DEF-SLOW

CF-SLOW

The second and fourth columns show how much less

CPU time (in percent) the best-effort thread received

under the cache-fair scheduler vs. the default

scheduler. Positive values indicate slowdown, negative

values indicate speed-up.

On average, the cache-fair algorithm resulted in

negligible (less than 1%) performance penalties for

best-effort threads. In one third of the schedules the

threads experienced slowdown of more than 6%, and in

one schedule (gcc-mcf) of as much 27%. Had there

been multiple best-effort threads, compensatory

adjustments would have been distributed among them,

reducing the penalty on a single thread. We note that in

about one third of the schedules, the best-effort threads

experienced a speed-up (of 12% on average).

We suppose that having multiple cache-fair threads

in a workload, would further help to soften the

performance penalty on best-effort threads:

Compensatory adjustments caused by different cache-

fair threads will likely cancel out. This can be

explained with an example:

Suppose there are two cache-fair threads in the

system: Tcache_hungry and Tcache_moderate.

Tcache_hungry uses more than its fair cache share,

while Tcache_moderate is forced to use less than its

fair share. Therefore, the scheduler will increase the

timeslice of Tcache_moderate by some amount X, and

decrease the timeslice of Tcache_hungry by some

amount Y. After increasing the timeslice of

Tcache_moderate the scheduler will pick a best-effort

thread, we will call it Tbest_effort, to apply the

compensatory adjustment of –X to its timeslice.

Similarly, after decreasing the timeslice of

Tcache_hungry by Y, the scheduler will need to pick a

best-effort thread whose timeslice it will increase by Y.

The scheduler will pick Tbest_effort in order to offset

the previous penalties on Tbest_effort’s timeslice. As a

result, Tbest_effort’s timeslice will be increased by Y,

cancelling in part or in full the penalty of –X imposed

by the compensatory adjustment of Tcache_moderate.

Therefore, the overall performance penalty on

Tbest_effort is reduced due to there being multiple

cache-fair threads in the system.

This effect occurs only if the system has roughly as

many threads that use more than their fair cache share

as the threads that use less than their fair share. This is

reasonable to expect: if a thread has not gotten its fair

cache share there must have been another thread that

has caused that by using more than its fair share.

5.2. Experiments with database workloads

We describe our experiments with two database

benchmarks: SPEC JBB and TPC-C. (We built our

own implementation of TPC-C on top of Oracle

Berkeley DB [1]). We ran two sets of experiments: one

where SPEC JBB is the principal benchmark, and

another one where TPC-C is the principal benchmark.

We run each principal benchmark in the slow and in

the fast schedule, just as in our SPEC CPU2000

experiments. We evaluate performance isolation with

respect to transactions per second: we measure

performance variability as the difference in transaction

rates between the two schedules. This application-level

performance metric is often more meaningful for users

than IPC.

SPEC JBB and TPC-C emulate database activities

of an order-processing warehouse. These benchmarks

can be run with databases of various sizes. The size is

determined by the number of warehouses, and the

standard number of warehouses is ten. Because our

simulator had a low upper limit for physical memory

(only 4GB) we were forced to use a smaller database

size (and hence fewer warehouses), to avoid physical

memory paging. Because we used a reduced database

size, we configured the simulator with a smaller L2

cache: 512KB. The number of threads used by the

benchmark is also configurable – we use one thread in

the principal benchmark, as this simplified

measurement.

5.2.1. SPEC JBB. In the slow schedule, SPEC

JBB’s co-runners were TPC-C configured with five

warehouses (TPC-C_5WH) and twolf (used as the best-

effort thread). In the fast schedule, SPEC JBB’s co-

runners were TPC-C configured with one warehouse

Table 3. Percent slowdown for the best-effort threads.
Negative values indicate speedup.

SLOW

SCHEDULES

Best-effort

slowdown
FAST

SCHEDULES

Best-effort

slowdown

art-mcf -8.07% art-crafty -23.38%

crafty-mcf 4.58% crafty-vpr 2.69%

gcc-mcf 26.70% gcc-vpr 11.23%

gzip-mcf 7.14% gzip-crafty 1.40%

mcf-crafty -0.63% mcf-gzip 6.90%

parser-mcf -11.34% parser-crafty -23.84%

twolf-mcf 15.79% twolf-crafty -3.11%

vortex-mcf 8.51% vortex-crafty 5.84%

vpr-mcf 2.32% vpr-crafty -13.43%

SLOWDOWN SUMMARY:

Mean: 0.52% Max: 26.70%

Median: 2.50% Min: -23.84%

Table 4. SPEC JBB with the two schedulers

Schedule Default sched. Cache-fair sched.

Slow 2497 txn/sec 2435 txn/sec

Fast 2728 txn/sec 2448 txn/sec

Difference 9% 1%

(TPC-C_1WH) and twolf (used as the best-effort

thread). We pinned threads to CPU cores as follows:

Pinning threads to CPU cores in this fashion

prevents any performance effects due to changing co-

runners (the principal always runs with the same co-

runner when the threads are pinned).

Table 4 reports SPEC JBB’s transactions per

second (txn/sec) for each schedule with the two

schedulers. The bottom row shows the difference. With

the default scheduler, the co-runner-dependent

difference in the transaction rate is 9%. With cache-fair

scheduler, the difference is only 1%.

In the fast schedule, SPEC JBB completed fewer

transactions per second with the cache-fair scheduler

than with the default scheduler. This happened because

SPEC JBB occupied more than its fair cache (61% as

measured by our simulator), and so the cache-fair

scheduler reduced its CPU share.

In the slow schedule, SPEC JBB achieved roughly

the same transaction rate under the cache-fair scheduler

as under the default scheduler. When SPEC JBB ran

with TPC-C_5WH, it used roughly half the cache (in

fact, the measured cache share was exactly 50%). The

cache-fair scheduler, therefore, did not adjust SPEC-

JBB’s CPU share, and so SPEC JBB achieved the

same performance as under the default scheduler.

5.2.2. TPC-C. In this experiment the principal

benchmark was TPC-C configured with two

warehouses (TPC-C_2WH). In the slow schedule we

ran it with SPEC JBB and twolf. In the fast schedule,

we ran it with Sphinx [3] and twolf. (Sphinx is a speech

recognition benchmark, representative of the workload

used in online voice recognition servers). twolf was the

best-effort thread in both schedules. The assignment of

threads to CPUs was as follows:

Schedule Core 0 Core 1

Slow TPC-C_2WH, twolf SPEC JBB

Fast TPC-C_2WH, twolf Sphinx

Table 5 shows the variability in TPC-C’s

transaction rate with the two schedulers. Under the

default scheduler, the difference in transaction rate was

13%, while under the cache-fair scheduler it was only

1%.

In the slow schedule TPC-C ran more quickly

under the cache-fair scheduler than under the default

scheduler. In the slow schedule, TPC-C occupied only

38% of the cache, indicating that its high-miss-rate co-

runner, SPEC JBB, reduced TPC-C’s fair cache share.

The cache-fair scheduler gave TPC-C an extra 14% of

CPU time to compensate for unfair cache allocation.

5.3. Comparison with cache partitioning

We compared the cache-fair scheduler with cache

partitioning in terms of their ability to improve

performance isolation. Cache partitioning eliminates

unfair cache allocation and can also improve cache

utilization by allocating cache in a more efficient

manner [23]. However, we found that when it came to

reducing co-runner-dependent performance variability,

the cache-fair scheduler did significantly better than

cache partitioning.

We configured our simulator to equally partition

the L2 cache among the two cores using way-

partitioning, and ran the slow and fast schedules

presented in Table 2. Partitioning reduced co-runner-

dependent performance variability for only three out of

nine benchmarks and made no difference for the

remaining six. The reason is that cache partitioning

does not eliminate co-runner-dependent contention for

the memory bus. To confirm this, we ran another

experiment where the simulator was configured with

infinite memory bus bandwidth (to eliminate the

variability in the bus contention); in that experiment

cache partitioning did eliminate performance

variability. Memory bus is a highly contended resource

on CMPs [31], so taking that contention into account is

necessary in order to reduce co-runner-dependent

performance variability. The cache-fair algorithm

accounts for the memory-bus contention and thus

improves performance isolation more effectively than

cache partitioning.

5.4. Comparison with OS-level page

allocation

OS-level page allocation can be used to enforce

equal cache sharing directly, by controlling where data

is allocated in the cache [33]. In contrast, our approach

compensates for unequal sharing. While a thorough

study would be needed to compare the two approaches

in detail, one difference between them is that OS-level

page allocation, unlike our approach, could cause

inefficient cache use. Suppose the system allocated

equal cache portions to threads Ta and Tb (via OS-level

page allocation), but Ta did not use its entire cache

share. A part of Ta’s cache share would be wasted.

Schedule Core 0 Core 1

Slow SPEC JBB, twolf TPC-C_5WH

Fast SPEC JBB, twolf TPC-C_1WH

Table 5. TPC-C with default and cache-fair schedulers

Schedule Default sched. Cache-fair sched.

Slow 902 txn/sec 1028 txn/sec

Fast 1018 txn/sec 1035 txn/sec

Difference 13% 1%

Detecting this inefficiency is not trivial without

adequate hardware support. In contrast, our algorithm

does not alter cache allocation, it only compensates

applications when the allocation is unfair.

6. Related work

We compare and contrast our work with existing

solutions for improving performance isolation on

CMPs.

Hardware solutions employ changes to the CMP

processor that either enforce fair resource allocation or

expose control over resource allocation to the operating

system [8,9,11,24,25,32]. The advantage of hardware

solutions is that they can address performance isolation

directly, and thus require few or no modifications to

the operating system. However, as we have shown,

simple hardware solutions, such as cache partitioning,

do not address the problem effectively; at the same

time complex modifications can make the hardware

prohibitively costly. In addition, hardware solutions are

usually less flexible and require longer time to market

than software solutions. To the best of our knowledge,

none of the previously proposed hardware solutions

has been made commercially available. The cache-fair

scheduling algorithm, on the other hand, can be used

on systems that exist today.

Software solutions related to resource allocation on

CMPs usually employ co-scheduling, i.e., scheduling a

thread with the optimal co-runner. Co-scheduling has

been used to improve performance [22,29] and

performance isolation [16]. The key difference of co-

scheduling is that it may be able to actually force cache

allocation to be fair by selecting the “right” co-runner

for the thread. On the other hand, if the right co-runner

cannot be found, co-scheduling cannot be used. The

cache-fair scheduling algorithm does not have that

limitation. Better scalability is another potential

advantage of the cache-fair scheduler. Co-scheduling

requires co-ordination of scheduling decisions among

the processor’s cores and may thus limit the

scheduler’s scalability if the number of cores is large.

The cache-fair scheduler, on the other hand, does not

require inter-core coordination. Cache-fair algorithm

is, to the best of our knowledge, the first CMP

scheduling algorithm that does not use co-scheduling.

On future CMP systems with dozens of cores this

design may exhibit significant scalability advantages.

7. Summary

We presented the cache-fair scheduling algorithm,

a new algorithm that improves performance isolation

on CMPs. We evaluated it using our implementation in

a commercial operating system. We showed that this

algorithm almost entirely eliminates co-runner-

dependent performance variability, and as such,

significantly improves performance isolation. The

cache-fair algorithm is more effective, less costly, and

more flexible than hardware cache partitioning. It is

also potentially more robust and scalable than existing

software solutions.

8. Acknowledgements

We would like to thank Sun Microsystems for

supporting this work. We also thank Andreas Moestedt

of Virtutech for providing excellent technical support

for Simics.

9. References

[1] Berkeley DB. Oracle Embedded Database.

http://www.oracle.com/database/berkeley-db.html

[2] Consolidation and Virtualization.

http://www.sun.com/datacenter/consolidation/index.jsp

[3] Sphinx-4. http://cmusphinx.sourceforge.net/sphinx4/

[4] A. Agarwal, J. Hennessey, and M. Horowitz. An

Analytical Cache Model. ACM Transactions on Computer

Systems, 7(2):184-215, 1989

[5] Erik Berg and Erik Hagersten. StatCache: A

Probabilistic Approach to Efficient and Accurate Data

Locality Analysis. In Proceedings of the International

Symposium on Performance Analysis of Systems and

Software (ISPASS), 2004

[6] E. Berger, S. Kaplan, B. Urgaonkar, P. Sharma, A.

Chandra, and P. Shenoy. Scheduler-Aware Virtual Memory

Management. Poster, Symposium on Operating Systems

Principles (SOSP), 2003

[7] C. Cascaval, L. DeRose, D. A. Padua, and D. Reed.

Compile-Time Based Performance Prediction. In

Proceedings of the 12th Intl.Workshop on Languages and

Compilers for Parallel Computing, 1999

[8] F. J. Cazorla, Peter M. W. Knijnenburg, R. Sakellariou,

E. Fernandez, A. Ramirez, and M. Valero. Predictable

Performance in SMT Processors. In Proceedings of the 1st

Conference on Computing Frontiers, 2004

[9] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting

Inter-Thread Cache Contention on a Multi-Processor

Architecture. In Proceedings of the 12th International

Symposium on High Performance Computer Architecture,

2005

[10] Richard Cole, Alan M. Frieze, Bruce M. Maggs,

Michael Mitzenmacher, Andrea W. Richa, Ramesh K.

Sitaraman, and Eli Upfal. On Balls and Bins with Deletions.

In Proceedings of the Second International Workshop on

Randomization and Approximation Techniques in Computer

Science, 1998

[11] G. Dorai and D. Yeung. Transparent Threads: Resource

Sharing in SMT Processors for High Single-Thread

Performance. In Proceedings of the 11th International

Conference on Parallel Architectures and Compilation

Techniques (PACT), 2002

[12] Daniel Doucette and Alexandra Fedorova. Base

Vectors: A Potential Technique for Microarchitectural

Classification of Applications. In Proceedings of the

Workshop on the Interaction between Operating Systems and

Computer Architecture (WIOSCA), in conjunction with

ISCA-34, 2007

[13] P. K Dubey, A. Krishna, and Mark S. Squillante.

Analytic Performance Modeling for a Spectrum of

Multithreaded Processor Architectures. In Proceedings of the

Third International Workshop on Modeling, Analysis, and

Simulation On Computer and Telecommunication Systems,

1995

[14] Fedorova, Alexandra. Operating System Scheduling for

Chip Multithreaded Processors. Harvard University, Division

of Engineering and Applied Sciences. 11-7-2006

[15] Alexandra Fedorova, Margo Seltzer, and Michael D.

Smith. A Non-Work-Conserving Operating System

Scheduler for SMT Processors. In Proceedings of the

Workshop on the Interaction between Operating Systems and

Computer Architecture, in conjunction with ISCA-33, 2006

[16] R. Jain, C. J. Hughes, and S. V. Adve. Soft Real-Time

Scheduling on Simultaneous Multithreaded Processors. In

Proceedings of the 23rd IEEE Real-Time Systems Symposium

(RTSS), 2002

[17] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing

and Partitioning in a Chip Multiprocessor Architecture. In

Proceedings of the 13th International Conference on Parallel

Architectures and Compilation Techniques (PACT), 2004

[18] Poonacha Kongetira. A 32-way Multithreaded

SPARC(R) Processor. In Proceedings of the 16th Symposium

On High Performance Chips (HOTCHIPS), 2004

[19] J. Lau, S Schoenmackers, and B. Calder. Transition

Phase Classification and Prediction. In Proceedings of the

11th International Symposium on High Performance

Computer Architecture, February 2005

[20] Daniel Nussbaum, Alexandra Fedorova, and

Christopher Small. The Sam CMT Simulator Kit. Sun

Microsystems TR 2004-133, 2004

[21] K. Olukotun, B Nayfeh, and L. Hammond. The Case for

a Single-Chip Multiprocessor. In Proceedings of the Seventh

International Conference On Architectural Support For

Programming Languages And Operating Systems (ASPLOS),

1996

[22] Sujay Parekh, Susan J. Eggers, and Henry M. Levy.

Thread-Sensitive Scheduling for SMT Processors. University

of Washington TR 2000-04-02, 2004

[23] M. K. Qureshi and Yale Patt. Utility-Based Cache

Partitioning: A Low-Overhead, High-Performance, Runtime

Mechanism to Partition Shared Caches. In Proceedings of the

39th International Symposium on Microarchitecture, 2006

[24] S. E. Raasch and S. K. Reinhardt. Applications of

Thread Prioritization in SMT Processors. In Proceedings of

the Workshop On Multi-Threaded Execution, Architecture

and Compilation, 1999

[25] N. Rafique, W. T. Lim, and M. Thottethodi.

Architectural Support for Operating System-driven CMP

Cache Management. In Proceedings of the 15th International

Conference on Parallel Architectures and Compilation

Techniques, 2006

[26] R. Saavedra-Barrera, D. Culler, and T. von Eicken.

Analysis of Multithreaded Architectures for Parallel

Computing. In Proceedings of the Second Annual ACM

Symposium on Parallel Algorithms and Architectures, 1990

[27] Alex Settle, Joshua L. Kihm, Andrew Janiszewski, and

Daniel A. Connors. Architectural Support for Enhanced SMT

Job Scheduling. In Proceedings of the 13th International

Conference on Parallel Architectures and Compilation

Techniques (PACT), 2004

[28] X. Shen, Y. Zhong, and C. Ding. Locality Phase

Prediction. In Proceedings of the 13th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2004

[29] Allan Snavely and Dean M. Tullsen. Symbiotic

Jobscheduling for a Simultaneous Multithreaded Processor.

In Proceedings of the Ninth International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2000

[30] Yan Solihin, V. Lam, and Josep Torrellas. Scal-

Tool:Pinpointing and Quantifying Scalability Bottlenecks in

DSM Multiprocessors. In Proceedings of the 1999

Conference on Supercomputing, 2006

[31] Lawrence Spracklen and Santosh G. Abraham. Chip

Multithreading: Opportunities and Challenges. In

Proceedings of the 11th International Symposium on High-

Performance Computer Architecture, 2005

[32] G. E. Suh, S Devadas, and L. Rudolph. A New Memory

Monitoring Scheme for Memory-Aware Scheduling and

Partitioning. In Proceedings of the 8th International

Symposium on High Performance Computer Architecture,

2002

[33] D. Tam, Azimi R., Soares L., and Stumm M. Managing

Shared L2 Caches on Multicore Systems in Software.

Workshop on the Interaction between Operating Systems and

Computer Architecture (WIOSCA), in conjunction with

ISCA-34

