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Evidence for a novel multipotent mammary progenitor with pregnancy-

specific activity 

Abstract 

 The mouse mammary gland has emerged as a model system for studying processes 

involved in the development of epithelial tissues.  Current evidence suggests the existence of 

a differentiation hierarchy in the mammary gland, consisting of a stem cell capable of 

reconstituting the tissue, progenitors with the capacity to produce specific functional cell 

types, and differentiated cells with limited or no repopulation potential.  Although markers 

for mammary stem cells and progenitors have been identified, these populations have not 

been isolated to purity and our understanding of how they function in different stages of 

mammary development remains incomplete.   

 Many adult stem cells are mitotically quiescent and can therefore retain a DNA or 

histone label significantly longer than differentiated cells.  In an attempt to identify 

mammary stem cells/progenitors by histone label retention, I crossed a mouse carrying the 

tetracycline-inducible histone 2b/eGFP (H2BGFP) gene with tetracycline transactivator 

strains expected to induce H2BGFP in the mammary gland.  H2BGFP expression was 

induced in the mammary gland until puberty and then chased for 6-8 weeks; H2BGFP+ label 

retaining cells were isolated and assayed.  Transplantation experiments comparing 

MMTVrtTA/H2BGFP MECs isolated after induction to MMTVrtTA/H2BGFP MECs 

retaining label post-chase failed to prove that label retention enriches for stem 

cells/progenitors in the MMTVrtTA/H2BGFP system.  During the course of these 

experiments, I unexpectedly discovered that MMTVrtTA induced H2BGFP expression 
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exclusively in the CD24+/CD29+ and CD24+/CD29lo populations, which contain stem cells 

and progenitors, respectively.   

 Interestingly, I also discovered that H2BGFP+/CD24+/CD29lo MECs developed 

limited mammary outgrowths in vivo and that pregnancy increased the repopulation ability of 

these cells by 5-10-fold.  H2BGFP+/CD24+/CD29lo outgrowths contained all mammary 

lineages and produced milk, but were unable to self-renew in serial transplant assays.  

Furthermore, H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo MECs had distinct 

gene expression profiles, with H2BGFP+/CD24+/CD29lo MECs expressing lower levels 

of transcripts involved in mammary development and differentiation.   

 These data provide evidence for the existence of a multipotent, pregnancy-activated 

mammary progenitor and suggests that different progenitor populations are responsible for 

mammary expansion during puberty and pregnancy.  Future studies may identify FACS 

markers for purification of pregnancy-activated progenitors and further elucidate the role of 

different mammary cell types during pregnancy.   
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Chapter 1 Introduction  
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Overview of Mammary Development in the Mouse  

The mammary gland is an impressively dynamic epithelial tissue.  During the lifetime 

of a female mammal, the mammary gland undergoes three distinct modes of growth: the 

pubertal ductal elongation and branching which establishes the mammary architecture, the 

cyclic expansion and regression of the estrus/menstrual cycle, and the dramatic pregnancy-

associated proliferation and alveolar differentiation that is critical for lactation [6].  These 

processes are governed by different signals and hormones, and could involve the activity of 

different cell types at each stage [7, 8].   

The adult mammary gland is a branched network of bilayer ducts.  Each duct is 

composed of an inner luminal layer and an outer myoepithelial layer (Figure 1-1, top) [1].  

Luminal cells are cuboidal in shape and are often identified by expression of cytokeratin 8 

(CK8) and cytokeratin 18 (CK18) [9].  The myoepithelium comprises a continuous layer of 

long, thin cells, which express cytokeratin 14 (CK14), p63 and smooth muscle actin (SMA).  

Contractile force from the myoepithelial layer is required for the movement of milk from 

alveoli, through the ducts and towards the nipple during lacation [10].  Spaced at intervals in 

the myoepithelial layer are basal cells, small rounded cells that express CK14 and the 

transcription factor p63 [11].  By flow cytometric analysis, p63+ cells are found in mammary 

epithelial cell (MEC) sub-populations with stem cell activity [7, 12, 13].  

The mouse mammary gland is first detectable as an epithelial placode during 

embryogenesis at E11.  This placode develops into a small bud between E13-E15 and 

eventually becomes a small branched structure with short ducts by E18 [14].  At the onset of 

puberty (approximately three weeks of age, for the female mouse) estrogen signaling initiates 

the development of the mammary gland [15]. A club-shaped, multi-layer structure known as 

the terminal end bud (TEB) develops at the tip of each mammary duct (Figure 1-1, bottom).  
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TEBs  are the major site of mammary proliferation during puberty and comprise an outer 

layer of cap cells and an inner mass of body cells.  CK14 expression begins at the neck of the 

TEB where the outer cap cells cease proliferation and differentiate into myoepithelial cells.  .  

Most TEB body cells express CK8, with a small number of CK14+ and p63+ cells 

interspersed throughout.  Cap cells are p63+, but have a cuboidal shape and are larger than 

most basal cells[16].  Within TEBs, rapid proliferation combined with Bcl-2/Bim-mediated 

apoptosis results in a hollow bilayer ductal structure [17].  Throughout puberty, TEBs 

bifurcate at intervals, generating new branches of the mammary duct.  Once the mammary 

network has reaches the outer perimeter of the mammary fat pad, ductal elongation ceases 

and TEBs regress, forming distal end tips.   

Figure 1-1. Schematic of the Mouse Mammary Gland. Cross section of a mouse mammary duct (top). Longitudinal 
section of a terminal end bud (bottom).  From Visvader et al. [1] 
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Upon reaching sexual maturity, the female mouse begins four- to six- day estrous 

cycles, during which the mammary gland undergoes a cyclical process of expansion and 

regression (Figure 1-2).  Whereas pubertal mammary expansion is primarily a process of 

ductal elongation, with some branching to generate new ducts, the estrous cycle produces 

small side branches, presumably as a prelude to alveologenesis during pregnancy.  The four 

stages of the estrus cycle, proestrus, estrus, metestrus and diestrus are characterized by 

different levels of estrogen and progesterone [18].  During proestrus, estrogen levels rise and 

progesterone levels fall, in preparation for ovulation.  At estrus, estrogen levels have reached 

their peak, progesterone levels are at their nadir, and the female mouse ovulates.  Estrus is 

followed by metestrus, during which estrogen levels fall and progesterone levels rise.  It is 

during diestrus, the longest phase of the estrous cycle, that the appearance of pre-alveolar 

structures and side branches in the mammary gland is most prominent; later in diestrus, 

Figure 1-2. Whole Mounts of the Mouse Mammary Gland during the Estrous Cycle. Mammary gland whole mounts 
during a) proestrus b) estrus c) metestrus d) diestrus.  From Joshi et al. [2] 
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many of these side branches and alveolar growths undergo apoptosis, restoring the 

mammary gland to its original state for the next cycle [6, 18]. 

If the female is fertilized during estrus, rising progesterone levels during early 

pregnancy initiate the development of small side branches throughout the mammary gland 

[19] (Figure 1-3).   Instead of undergoing apoptosis, as occurs in estrus, these side branches 

become the structural scaffold for developing alveoli [3].  Prolactin signaling induces the 

growth of rounded structures, known as alveolar buds, at the distal ends of these side 

branches.  During mid-pregnancy, alveolar buds divide into numerous individual alveoli, 

forming alveolar clusters, which expand rapidly, filling the mammary fat pad [20].  Unlike 

pubertal proliferation, which produces a contiguous myoepithelium on the outside of the 

luminal cell layer, alveologenesis results in an expanded, but non-continuous, myoepithelial 

layer, such that luminal cells are in direct contact with the extracellular matrix [21].  At 

approximately day 18 of pregnancy, secretory cells within the alveoli begin to produce milk.  

Females give birth around day 20 of pregnancy, after a drop in progesterone levels and the 

Figure 1-3. Whole Mounts of the Mammary Gland during Pregnancy. Mammary gland whole mounts from a) virgin 
gland b) early pregnancy c) mid- to late pregnancy d) lactation. From Brisken et al. [3] 
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beginning of milk secretion into the alveoli [20, 22].  Females with normal mammary glands 

will lactate as long as the physical stimulus of nursing is present.  Within 24 hours of 

weaning, the mammary epithelium begins to undergo involution, an apoptotic clearing of 

alveoli from the mammary ductal structure.  The mammary gland is restored to its pre-

pregnancy state and will respond to the estrous cycle and pregnancy as it did previously [20].   

Mammary Stem Cells and Progenitors 

The functional definition of an adult stem cell is one that is capable of giving rise to 

the original tissue in vivo throughout repeated transplants [23].  These functional criteria of 

mutipotent differentiation and self-renewal have been observed in the normal function of 

the adult mammary gland.  The ability of the mammary gland to undergo repeated rounds of 

proliferation and remodeling in response to pregnancy has long been cited as evidence for 

the existence of mammary stem cells.  As early as 1959, transplantation studies of normal 

mammary glands have suggested that a single cell can give rise to a complete mammary gland 

[24].  In 1998, Smith et al. transplanted fragments of mammary glands infected with the 

Mouse Mammary Tumor Virus (MMTV) and, by analyzing the retroviral insertion site 

patterns of the newly grown glands, demonstrated that these mammary glands arose from a 

single cell [25].  While isolation of the mammary stem cell proved elusive, repeated attempts 

were made to characterize prospective mammary stem cells and progenitors by use of 

morphological analysis, stem cell markers from other tissue types (such as Sca-1), dye efflux 

assays, and cell lines with stem-like properties [26-29].   

 In 2006, two groups concurrently reported the isolation of a population containing 

mouse mammary stem cells.  Using CD29 ���¢�����L�Q�W�H�J�U�L�Q�����R�U���&�'�����I  ���¡�����L�Q�W�H�J�U�L�Q�����L�Q��

combination with CD24 (heat stable antigen), the Visvader and Eaves laboratories reported 

isolation of cell populations capable of forming a fully functional and serially transplantable 
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mammary gland.  Although single cells from both the CD24+/CD29+ and CD24+/CD49f+ 

populations could perform all mammary stem cell functions in vivo, neither set of markers 

purified mammary stem cells to homogeneity; the stem cell frequencies in the 

CD24+/CD29+ and CD24+/CD49f+ populations were calculated to be 1/64 and 1/100, 

respectively.  The CD24+/CD29+ and CD24+/CD49f+ populations demonstrated 

multipotent growth ability in vitro, as well as in vivo, forming colonies of varying sizes and 

morphologies in 2D growth assays, and developing multi-layered acini with occasional 

branched structures on reconstituted basement membrane (Matrigel�Œ).  These stem cell-

containing populations were found to express high levels of myoepithelial/basal markers, 

such as CK14, SMA and p63.  The expression levels of CD29 and CD49f corresponded 

strongly, �V�X�J�J�H�V�W�L�Q�J���W�K�D�W���W�K�H���¡�����¢�����F�R�P�S�O�H�[���L�V���K�L�J�K�O�\���H�[�S�U�H�V�V�H�G���L�Q���P�D�P�P�D�U�\���V�W�H�P���F�H�O�O�V������

Notably,  mammary stem cell populations were negative for steroid hormone receptors ER 

and PR [12, 13]. 

Figure 1-4. Mammary Epithelial Stem Cell Hierarchy. Known markers for mammary epithelial stemcells, progenitors 
and differentiated cells.  From Visvader et al. [1] 
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 In addition to labeling mammary stem cells, CD24, CD29 and CD49f have been 

used to isolate and characterize candidate mammary progenitors through in vitro assays.  

Progenitors are defined by the ability to give rise to at least one differentiated lineage and by 

the lack of self-renewal, which uniquely defines stem cells.  Shackleton et al. reported that 

only CD24+/CD29+ and CD24+/CD29lo cells could form colonies when grown in 2D 

colony assays on irradiated NIH3T3 feeder cells, and that CD24+/CD29lo-derived colonies 

were significantly fewer and smaller than those from CD24+/CD29+ cells.  CD24+/CD29lo 

and CD24+/CD49f lo cells, when grown on Matrigel to form 3D colonies, gave rise to single- 

layer acini of cuboidal cells.  Both the CD24+/CD29lo and CD24+/CD49f lo populations were 

initially reported as having no in vivo growth ability [12, 13].   

 These groundbreaking studies were followed by the discovery of additional markers 

for the purification and characterization of an increasing number of mammary epithelial cell 

types.  The CD24+/CD 29lo population, which is believed to contain luminal progenitors, has 

been subdivided by e�[�S�U�H�V�V�L�R�Q���R�I���&�'���������¢�����L�Q�W�H�J�U�L�Q�� into a population of differentiated 

MECs (CD24+/CD29lo/CD61-) and mammary progenitors (CD24+/CD29lo/CD61+), based 

on in vitro colony forming ability.  Most CD24+/CD29lo/CD61+ progenitors were found to 

be ER negative [30].  Mammary epithelial cells also show different in vitro activity based on 

�&�'�����E�����¡�� integrin) expression; CD24+/CD49b+ MECs were able to form colonies in vitro 

while CD24+/CD49blo MECs did not [31].  Expression of CD14 and c-Kit has been used to 

identify prospective alveolar progenitors.  The CD24+/CD29lo/CD14+/c -Kit- population 

expands during pregnancy and can give rise to lactogenic colonies in vitro [32, 33].  Stem cell 

antigen-1 (Sca-1), which has been used as a marker for hematopoietic stem cells, was 

originally believed to label mammary stem cells and/or progenitors[27].  However, later 
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studies proved the reverse, demonstrating that mammary stem cells were Sca-1- and that Sca-

1+ MECs were unable to repopulate the mammary gland in vivo [12, 34] (Figure 1-4). 

 Whereas a mammary epithelial stem cell can be defined by its ability to establish a 

fully functional mammary tree in vivo, the identification and characterization of mammary 

progenitors requires more complex analyses and assays.  Lineage-restricted progenitors that 

differentiated into myoepithelial and luminal MECs have been identified, principally as a 

result of in vitro assays [12, 13, 30, 31].  Although it was initially reported that CD24+/CD29lo 

and CD24+/CD49f lo MECs were unable to form outgrowths in vivo, recent reports have 

demonstrated that these MECs can form small, branched mammary structures, when co-

injected with Matrigel into mammary fat pads.  Transplantation of CD24+/CD29+ cells, by 

contrast were unaffected by Matrigel[35, 36].  This evidence for Matrigel-dependent 

outgrowths suggest that the CD24+/CD29lo and CD24+/CD49f lo populations contains 

multipotent progenitors that develop in vivo if provided with the additional stimuli present in 

Matrigel preparations.  Other groups have taken broader in vivo approaches, by transplanting 

mixed populations and extrapolating, based on the different mammary glandular structures 

grown, that the mammary gland contains unidentified progenitors which can give rise to 

mammary glands of different sizes and morphological characteristics [34, 37].   

Details about the in vivo activity of mammary stem cells and progenitors have been 

revealed by real-time tracking of MEC populations and lineage tracing.  Van Keymeulen et 

al. recently conducted extensive lineage tracing studies using transgenic mice that inducibly 

express fluorescent proteins driven by promoters for known mammary lineage markers, such 

as CK14, CK8 and CK18.  This study revealed that all mammary lineages derive from stem 

cells that express CK14 during embryogenesis.  Adult mammary epithelial cells were derived 

from lineage-restricted progenitors, including CK14-expressing myoepithelial progenitors 
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and CK8-expressing luminal progenitors, which were CD24+/CD29+ and CD24+/CD29lo, 

respectively.  Cells expressing CK5, which were also in the CD24+/CD29+ compartment, 

gave rise to myoepithelial cells specifically during pregnancy, while CK18-expressing cells 

were either committed progenitors or terminally differentiated MECs.  Unexpectedly, 

myoepithelial progenitors, which could give rise only to myoepithelial cells when in their 

native context, could be induced to adopt a multipotent progenitor phenotype when co-

transplanted with luminal cells.  This suggested that paracrine signaling can change the in vivo 

cell fate of a mammary progenitor.  This study demonstrated that lineage tracing in solid 

tissues can provide details of in vivo progenitor activity that might not be obtainable through 

repopulation studies [38].   

Mammary Stem Cells and Progenitors in Pregnancy 

 An early pregnancy is known to reduce the risk of breast cancer, a phenomenon that 

is believed to arise from a reduction in the proliferative potential of mammary stem cells and 

progenitors, making them less susceptible to oncogenic transformation [39].   Therefore, the 

mechanisms of mammary expansion during pregnancy and the identity of the cell types 

directly activated by pregnancy signaling is a matter of both medical and scientific interest 

[4].   

 In the mouse mammary gland, a plausible candidate for the mammary cell type 

directly activated by pregnancy is the same mammary stem cell that establishes the ductal 

architecture during puberty.  In this model, a single type of stem cell produces different 

structures (duct vs. alveoli) in response to the different signaling pathways that are active in 

each phase of mammary development.  Basal cells, which are contained within the 

CD24+/CD29+ mammary stem cell populationare seeded along the mammary ducts at 

regular intervals that suggest the spacing of alveoli[12, 13].  During pregnancy, the 
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CD24+/CD29+ compartment expands temporarily, peaking by day 12.5, at an 11-fold 

increase over what is found in virgin glands, and returning to its original fraction of the 

MEC population after involution.  However, the CD24+/CD29+ population in pregnant 

mice also loses 60% of its repopulation ability, which suggests that the size of stem and non-

stem populations within this compartment are increased [40].  In a real-time tracking study, 

�W�K�H���&�'�������¢�����L�Q�W�H�J�U�L�Q���S�U�R�P�R�W�H�U���Z�D�V���X�V�H�G���W�R���G�U�L�Y�H���H�[�S�U�H�V�V�L�R�Q���R�I���O�X�F�L�I�H�U�D�V�H���L�Q���R�U�G�H�U���W�R���W�U�D�F�N��

the dynamics of mammary stem cells in vivo�������¢�����L�Q�W�H�J�U�L�Q-luciferase expression labeled the 

entire CD24+/CD29+ compartment, which expands dramatically during pregnancy, 

increasing as a proportion of total MECs until the first week of lactation [41].  Additionally, 

the CD24+/CD49f+ stem cell population expands during the diestrus phase of the estrus 

cycle; it is during diestrus that side branches, which are thought to be either precursors to or 

stunted versions of alveoli, appear throughout the mammary tree [2].  However, these 

studies are limited by the markers used and it is remains possible that the expansion of these 

populations during the estrous cycle and pregnancy reflects increased numbers of non-stem 

MECs.   

 An alternative hypothesis is that different mammary stem cell/progenitor 

populations are responsible for the different modes of proliferation in puberty and 

pregnancy.  In this model, progenitors capable of giving rise to alveoli exist throughout the 

mammary gland but remain dormant until pregnancy.  The existence of pregnancy-specific 

progenitors has been suggested by a transplantation study of MECs from pregnancy 

mammary glands.  Limiting dilution transplants of MECs from pregnant mice gave rise to 

ductal-limited, lobule-limited, or bi-lineage outgrowths in vivo [37].  Further evidence for a 

pregnancy-specific progenitor has been provided by a lineage tracing study, in which MECs 

that are active during lactation were labeled using a lactation-specific transgene and a floxed 
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LacZ allele (WAP-cre/floxed Rosa26-LacZ).  Most labeled lactating cells underwent 

apoptosis during involution, but some MECs survived to produce LacZ-expressing alveoli in 

subsequent pregnancies [42]�������7�K�H�V�H���´�S�D�U�L�W�\���L�Q�G�X�F�H�G���0�(�&�V�µ��(PI-MECs) were found to exist 

in pre-pubertal glands and were initially reported to have no in vivo repopulation ability, 

suggesting that pregnancy-activated progenitors are part of the normal mammary epithelium  

[43].  A later study found that PI-MECs contain mammary stem cells with in vivo 

repopulation ability, as well as alveolar progenitors.  However, the percentage of stem cells 

was comparatively small, and therefore this finding does not invalidate the evidence for 

alveolar-specific progenitors [44].  Additional support for the existence of a progenitor 

population with pregnancy-specific function is provided by work demonstrating that the 

mammary glands of mice expressing a defective form of cyclin D1 have reduced numbers of 

CD24+/CD49f lo MECs.  When transplanted, cyclin D1-impaired CD24+/CD49f lo MECs 

give rise to diminished mammary outgrowths with lobular defects, whereas CD24+/CD49f lo 

MECs expressing wild-type cyclin D1 produce larger outgrowths with extensive alveolar 

development during pregnancy [35].  These data support the hypothesis that mammary stem 

cells are responsible for the development of the mammary gland during puberty, but a 

different population of MEC progenitors is responsible for mammary proliferation during 

pregnancy.  

The Mouse Mammary Tumor Virus (MMTV) Promoter 

 Mouse Mammary Tumor Virus (MMTV) provided one of the earliest mouse models 

of cancer.  The first description of a mouse mammary tumor, which might have been caused 

by MMTV, dates back to 1854 [45].  In subsequent decades, an apparently inherited mouse 

�P�D�P�P�D�U�\���F�D�Q�F�H�U�����Z�K�L�F�K���F�R�X�O�G���V�R�P�H�W�L�P�H�V���E�H���´�W�U�D�Q�V�S�O�D�Q�W�H�G�µ�����E�H�F�D�P�H���H�V�W�D�E�O�L�V�K�H�G���D�V���D�Q��

important mouse model of cancer.  In 1933, researchers at Jackson Labs identified the cause 
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of this mammary cancer as a milk-b�R�U�Q�H���´�H�[�W�U�D�F�K�U�R�P�R�V�R�P�D�O���I�D�F�W�R�U�µ���W�K�D�W��eventually was 

classified as a retrovirus [45].  Unlike the Rous Sarcoma Virus, MMTV did not cause cancer 

by expression of an oncogene carried within its own genome, but by insertion of the 

provirus near to and activation of critical proto-oncogenes including Wnt1, Notch and 

FGF3 [46-48].   

 The MMTV long terminal repeat (MMTV-LTR), often termed the MMTV promoter, 

was cloned in 1981, enabling structural analysis of its 1.3 kb sequence [49].  The MMTV 

promoter has binding sites for NF1 (nuclear factor 1) and Oct-1, as well as numerous 

hormone responsive elements, which bind to glucocorticoid receptor (GR) and progesterone 

receptor (PR) [50-53]. (Figure 1-5) These hormone responsive elements were found to be 

the mechanism behind the activity of the MMTV promoter in vivo [5, 54].  Glucocorticoids 

and progesterone can bind to and directly activate the MMTV promoter, but MMTV activity 

is also heavily dependent on nucleosome position [55-58].   

 The MMTV promoter is frequently used to express transgenes in the mouse 

mammary gland.  Although other mammary-specific promoters exist, their timing and 

activity can reduce their utility.  The beta-lactoglobulin (BLG) promoter drives gene 

expression at very low levels until pregnancy and the whey-acidic protein (WAP) promoter is 

active during late pregnancy and lactation, also with minimal activity before pregnancy [59, 

60].  By contrast, the MMTV promoter is expressed early in mammary development and 

Figure 1-5. MMTV Promoter Structure. The MMTV promoter contains at least four hormone responsiveelements 
(HREs) which bind to progesterone receptor and glucocorticoid receptor.   From Beato et al. [5] 
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does not require pregnancy or lactation for full activation, lowering the technical barriers for 

its use [60-62].   

 Since the development of the MMTV-myc mouse in 1984, dozens of mouse models 

of breast cancer have utilized the MMTV promoter, both directly and indirectly [63].  

Although these models have provided valuable insights into mammary neoplasia, tumor 

invasion and metastasis, their dependence on the incompletely characterized activity of a 

viral promoter should be considered when interpreting these data.  MMTV-driven 

transgenes are usually inserted randomly rather than being knocked in at a specific location.  

Consequently, expression patterns can vary between different MMTV-driven clones, 

depending on the insertion site or genetic background [60, 64].  The MMTV promoter also 

is active in non-mammary tissues, including the salivary gland, seminal vesicles and B-cells 

[61, 65].  Expression in the lymphoid system is a particular handicap and has resulted in 

transgenic mice that die of lymphoma before they can develop mammary tumors from an 

MMTV-driven oncogene [66, 67].   

Nevertheless, mice expressing MMTV-driven transgenes have provided some 

information about MMTV promoter activity during mammary development.  Although the 

MMTV promoter is active in the mammary gland before and during puberty [60], studies of 

MMTV-driven tumor models have found that multiple pregnancies result in decreased 

latency and increased size and metastatic potential of tumors, suggesting that promoter 

activity is upregulated during pregnancy and lactation [68-70].  Some studies have suggested 

that MMTV is active in all MECs, but this is unlikely for several reasons [65].  Given that the 

MMTV promoter is responsive to steroid hormone receptors and MECs vary widely in 

hormone receptor status, it is unlikely that the MMTV promoter is expressed equally across 

all MECs [51, 56].   MMTV activity also depends on nucleosome position, and therefore is 
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likely to be sensitive to the chromatin state in any given cell [71].  Further study is required 

to fully elucidate the dynamics of MMTV promoter activity in the transgenic mammary 

gland.    

Identification of Prospective Stem Cells by Label Retention 

 Prospective adult stem cells and stem cell niches have been identified through a 

variety of methods, including dye exclusion, drug resistance, expression of known stem cell 

markers, in vitro proliferation, and label retention.  These assays rely on the hypothetical 

properties of adult stem cells, and are used mainly in tissue systems where the stem cell 

hierarchy is unknown or incomplete, or where no definitive in vivo reconstitution assays exist.   

 Pulse-chase studies of various tissues have identified cell populations that are able to 

maintain a DNA-based label significantly longer than the bulk of the tissue.  Label retention 

is hypothesized to be a property of adult stem cells with two possible explanations.  One is 

that stem cells divide infrequently, preventing the dilution of label through successive 

mitoses.  The alternative explanation is that when a stem cell undergoes asymmetric division, 

producing a stem cell and a more differentiated cell, the older template DNA is retained by 

the stem cell, allowing for maintenance of a strong signal through many divisions.  This 

theory, known as the parental strand or immortal strand hypothesis, suggests an unknown 

but fundamental difference in the mechanisms of DNA segregation in stem cells.  In both of 

these models, label retention is hypothesized to be a mechanism for maintaining genome 

integrity [72-74] (Figure 1-6). 

 Label retention studies have been conducted to identify the stem cells and stem cell 

niches in various organ systems, most notably in the small intestine and the epidermis [75-

77].  In the small intestine experiments, mice were irradiated to clear the small intestinal  
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epithelium and to activate stem cell proliferation, then given extensive treatments of 

radiolabeled thymidine or BrdU (bromodeoxyuridine), and sacrificed at intervals to identify 

and locate the label retaining cells (LRCs).  LRCs were found near the bottom of the small 

intestinal crypts, at specific locations.  Further studies demonstrated that these cells were also 

actively cycling, which provided the first evidence of parental strand retention in an in vivo 

mammalian system [72].  Different intestinal cells recently have been identified as stem cell 

candidates based on separate criteria, including expression of potential stem cell markers 

such as Lgr5 and telomerase, and in vitro proliferation assays, raising questions over the role 

of LRCs in the small intestinal stem cell hierarchy [78-80].  In the mammalian epidermis, 

DNA label retention identified the hair follicle bulge as the repository of LRCs and a 

potential stem cell niche [81, 82]; epidermal LRCs had a higher proliferative potential than 

non-LRCs in ex vivo cultures and proliferated in response to damage [83, 84].  The epidermal 

bulge was verified as a stem cell niche when Tumbar et al. isolated fluorescently-tagged 

epidermal LRCs and demonstrated their stem cell activity in vivo [85].   

In the mammary gland, label retention studies have been applied to the task of 

identifying mammary gland stem cells and tracing stem cell activity throughout mammary 

development.  However, the dynamics of the mammary gland, which cycles slowly in 

comparison to the rapid turnover of the small intestine and epidermis, has resulted in the 

development of different pulse-chase methods.  To stimulate label dilution, some groups 

transplanted labeled MECs, triggering a fresh round of mammary proliferation in the 

recipient fat pad.  In other studies, pregnancy was induced as a method of label dilution [29, 

86-88].  

In these studies, mammary LRCs were located in the terminal end buds and along 

the mammary ducts at regular intervals [29].  A more detailed study found LRCs made up 
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4% of the luminal cells, 20% of the myoepithelial cells and 28% of the basal cell populations 

[88].  To examine the kinetics of mammary LRCs, Smith and colleagues administered a 

second DNA label to mammary glands that had already undergone an initial pulse-chase 

protocol.  Mammary cells already retaining the first label were found to incorporate the 

second DNA label, indicating that they were actively undergoing mitosis; this study raised 

the possibility of parental strand retention in the mammary epithelium [86].  In contrast to 

the mammary stem cells isolated by Shackleton et al. and Stingl et al., 40% of mammary 

LRCs were found to express ER and PR [12, 13, 89].  Mammary LRCs were also found to be 

actively cycling during pregnancy, suggesting a role for them during alveologenesis [88, 90].  

Welm et al. found that MECs exhibiting other hypothesized stem cell characteristics, such as 

Sca-1 expression and dye efflux, were found to be enriched for mammary LRCs [27]; 

Figure 1-6. The Parental Strand Hypothesis. �'�X�U�L�Q�J���D�Q���D�V�\�P�H�W�U�L�F���V�W�H�P���F�H�O�O���G�L�Y�L�V�L�R�Q�����W�K�H���R�O�G�H�U���´�S�D�U�H�Q�W�D�O�µ���'�1�$ strands 
are segregated into the daughter cell which remains a stem cell.A division which produces two stem cells would result in the 
unsegregated distribution of  parental DNA.  Immortal/Parental strand segregation is hypothesized to be the mechanism 
behind label retention in some somatic stem cells.  From Smalley and Ashworth [4] 
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however, later studies found that dye efflux does not correlate with stem cell activity, and 

that Sca-1 in fact labeled differentiated mammary cells [12, 13] .   

These studies have raised interesting questions about the mechanisms of mammary 

proliferation and development.  The continued cycling of label-retaining cells suggests that 

parental strand segregation is in operation in mammary epithelial cells.  LRC expression of 

hormone receptors and Sca-1, as well as their activity during pregnancy  suggest that LRCs 

might not be stem cells, but progenitors or stem cells with a pregnancy-specific function 

[12].  Further study of mammary LRCs is required to elucidate their function in the 

mammary gland.   

The critical weakness of label retention as a method of identifying somatic stem cells 

is that use of a DNA-based label such as BrdU or tritiated thymidine precludes the isolation 

of live LRCs for transplantation assays.  This limitation has been resolved with the 

development of a transgenic mouse carrying histone 2b/eGFP fusion (H2BGFP) under the 

control of a tetracycline responsive regulatory element.  When crossed with a strain 

expressing the tetracycline transactivator, H2BGFP can be turned on and off by 

administering or withholding tetracycline or doxycycline, resulting in fluorescently labeled 

cells that can be isolated by FACS [85].  Functional homology between DNA label retention 

assays and histone label retention assays is probable but not conclusively confirmed.  There 

is conflicting evidence over whether new and old histones distribute evenly or segregate 

preferentially between daughter strands during DNA synthesis, so no conclusions can be 

�G�U�D�Z�Q���D�E�R�X�W���D���´�S�D�U�H�Q�W�D�O���K�L�V�W�R�Q�H�µ���K�\�S�R�W�K�H�V�L�V on current evidence [91-93].  There is also 

evidence that H2B proteins are continuously synthesized and exchanged without the 

stimulus of DNA replication, a phenomenon that could alter the kinetics of H2BGFP label 

retention [94].  However, when the H2BGFP label retention system was used to study skin 



19 
 

development, histone LRCs were found in the epidermal bulge, precisely as DNA LRCs had 

been.  Histone-retaining bulge cells are able to regrow the original epidermis in transplant 

and proliferate in response to wounding.  These histone LRCs were also found to express 

low levels of proliferation-associated transcripts, suggesting that the mechanism for histone 

label retention is infrequent mitosis [85, 95].     

Subsequently, the transgenic H2BGFP system has been used to identify prospective 

adult stem cells in the kidney papilla and the ovarian coelomic epithelium [96, 97].   

Interestingly, H2BGFP label retention in the hematopoietic system was found to correlate 

with higher repopulation potential and stem cell markers; this result was unexpected because 

a previous study had reported that hematopoietic stem cells did not retain a BrdU label [98, 

99].  These data demonstrate that H2BGFP label retention is a powerful tool in the isolation 

of stem cells and identification of stem cell niches.   

Contributions of this Thesis  

The goal of my studies was to identify and assess prospective mammary epithelial 

stem cell and progenitor populations, building upon previous knowledge by examining 

known and potentially novel members of the mammary stem cell hierarchy.  I have provided 

evidence for the existence of a novel pregnancy-activated multipotent mammary progenitor.   

 Chapter 2 describes the testing of four different transgenic models of inducible 

H2BGFP expression to identify label-retaining cells in the mouse mammary gland.  The 

MMTVrtTA line[65] proved to be most amenable for labeling MECs with H2BGFP.  

However, I found that in the MMTVrtTA/H2BGFP model, label retention does not enrich 

for cells with mammary repopulating ability.  However, these studies revealed the existence 

of an H2BGFP-labeled subpopulation of the CD24+/CD29lo compartment that has in vivo 

repopulation ability.   
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 Chapter 3 evaluates the stem cell and progenitor activity of mammary epithelial 

subpopulations identified by MMTVrtTA/H2BGFP expression.  I found that the 

H2BGFP+/CD24+/CD29lo population contains multipotent progenitors with the ability to 

form mammary glandular structures in vivo.  The repopulation ability of 

H2BGFP+/CD24+/CD29lo cells increases five- to ten-fold when the transplant recipient is 

made pregnant, providing evidence that these progenitors are preferentially activated by 

pregnancy.  Expression analysis supports the conclusion that H2BGFP+/CD24+/CD29lo 

cells are distinct from H2BGFP-/CD24+/CD29lo cells.  H2BGFP+/CD24+/CD29lo cells 

express lower levels of transcripts for genes involved in mammary and differentiation and 

development than H2BGFP-/CD24+/CD29lo cells, contributing to the evidence that 

H2BGFP+/CD24+/CD29lo contains mammary progenitors.   

 The Appendix describes the analysis and testing of candidate cell surface markers for 

isolation of the H2BGFP+/CD24+/CD29lo population.  CD14 is identified as a potential 

marker for pregnancy-activated progenitors.   

 This thesis expands on previous work on the mammary stem cell hierarchy by 

providing evidence for a pregnancy-specific progenitor in vivo.  This work supports the 

hypothesis that mammary cells responsible for pregnancy-induced expansion are different 

from the stem cells and progenitors that establish the mammary gland architecture during 

puberty.   
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Mice. CMVrtTA (#003273) [100] and MMTVtTA (#002618) [101] transgenic strains were 

purchased from Jackson labs.  Rosa26rtTA mice were donate by R. Jaenisch [102].  

MMTVrtTA mice were donated by L. Chodosh [65].  H2BGFP mice in the CD-1 

background were provided by E. Fuchs [85].  H2BGFP was backcrossed onto the FVB 

strain for a minimum of 5 generations prior to crossing with MMTVrtTA and CMVrtTA 

mice.  To induce transgene expression, breeders and experimental mice were maintained on 

2 mg/ml doxycycline (Research Products International 50213285).  Mouse colonies were 

maintained according to federal, state and institutional regulations.   

Genotyping. Tail biopsies were obtained from transgenic mice and dissolved in 0.5 ml tail 

lysis buffer (10 mM Tris + 100 mM NaCL + 10 mM EDTA + 0.5% SDS + 1 mg/ml 

Proteinase K) at 60ºC for >4 hou�U�V�������$�I�W�H�U���S�U�R�W�H�L�Q�D�V�H���.���W�U�H�D�W�P�H�Q�W�������������¬�O�������0���1�D�&�/���Z�D�V��

added and  each sample, inverted 2-3 times and incubated on ice for 10 minutes.  Samples 

were clarified at 10,000 rpm in a microcentrifuge for 10 minutes.  Supernatant was added to 

���������¬�O���R�I���L�V�R�S�U�R�S�D�Q�Rl and inverted 2-3 times.  Samples were centrifuged at the highest speed 

in a microcentrifuge for 10 minutes.  Supernatant was decanted, precipitates were air-dried 

�D�Q�G���G�L�V�V�R�O�Y�H�G���L�Q�����������¬�O���G�G�+2O.  For H2BGFP mice: GFP-�)�������·- 

GCAAGGGCGAGGAGCTGTTCACC-���·�����*�)�3-�5�������·- 

GGCGAGCTGCACGCTGCCGTCCTC-���·�����H�[�S�H�F�W�H�G���E�D�Q�G���V�L�]�H�����������E�S�������)�R�U���D�O�O���W�7�$���U�W�7�$��

strains: tTA-�)�������·- CgCTgTggggCATTTTACTTTAg -���·�����W�7�$-�5�������·- 

CATgTCCAgATCgAAATCgTC-���·�����H�[�S�H�F�W�H�G���E�D�Q�G���V�L�]�H���������������&�R�Q�W�U�R�O���J�H�Q�R�W�\�S�L�Q�J���3�&�5����

TCRD-�)�������·- CAAATgTTgCTTgTCTggTg -3, TCRD-�5�������·- gTCAgTCgAgTgCACAgTTT -

���·�����H�[�S�H�F�W�H�G���E�D�Q�G���V�L�]�H�����������E�S�������$�O�O���J�H�Q�R�W�\�S�L�Q�J���3�&�5�V���Z�H�U�H���U�X�Q���D�V���I�R�O�O�R�Z�V���������ž�&�������P�L�Q�����������ž�&��

45 sec, 58 ºC 45 sec, 72 ºC 60 sec, repeat from second 95 ºC step 25X, 72 ºC 5 min, 4 ºC 

final.  PCR products were run on a 2% agarose gel.   
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Mammary gland harvesting and preparation. Mice were sacrificed and harvested for 

mammary glands.  Lymph nodes were removed from inguinal gland #4.  Mammary tissue 

was manually minced, placed in culture medium (DMEM/F12 + 500 ng/ml hydrocortisone 

+ �������Q�J���P�O���(�*�)�����������¬�J���P�O���L�Q�V�X�O�L�Q�������������Q�J���P�O���F�K�R�O�H�U�D���W�R�[�L�Q�������������3�H�Q���6�W�U�H�S����[12] with 

600 U/ml collagenase and 200 U/ml hyaluronidase and shaken at 37ºC for 1-1.5 hrs.  

Digested tissue was pelleted and resuspended in a mixture of .25% Trypsin-EDTA (Gibco 

#15050-065), 5 mg/ml dispase (Roche 04942078001) and .1 mg/ml DNAse (Sigma # 

D5319) for 5-7 minutes.  Trypsin digestion was quenched with DMEM/F12+10% FBS.  

Cells were pelleted and resuspended in Tris-buffered .64% NH3Cl for 3 minutes on ice, and 

filtered sequentially through 100um and 40um filters.   

Flow Cytometry. Single cell suspensions were blocked in FACS buffer (PBS + 2 mM 

EDTA + 0.1% BSA) containing 1:25 normal rat serum (eBioscience 24-5555) and 1:25 anti-

mouse FC receptor block (eBioscience 16-0161) for 10 minutes, stained in FACS buffer 

containing directly conjugated antibodies for 20 minutes.  Cells were resuspended in FACS 

�E�X�I�I�H�U�����F�R�Q�W�D�L�Q�L�Q�J�����¬�J���P�O���'�$�3I for viability analysis) and analyzed on a BD Aria II or 

FACS Canto II using BD Aria software.  Antibodies used for flow cytometry included 

�&�'�����‡�3�(�����H�%�L�R�V�F�L�H�Q�F�H������-���������������&�'�����‡�$�3�&�����%�L�R�O�H�J�H�Q�G���������������������&�'�����I���‡�%�L�R�W�L�Q��

(eBioscience 13-���������������&�'�����‡�3�H�&�\�������H�%�L�R�V�Fience 25-���������������&�'�����‡�3�H�&�\�������H�%�L�R�V�F�L�H�Q�F�H������-

���������������7�H�U�������‡�3�H�&�\�������H�%�L�R�V�F�L�H�Q�F�H������-5921) and Streptavidin APC-eFluor 780 (eBioscience 

47-4317-82). All populations were double-sorted with doublet discrimination to ensure 

purity, and were recounted by hemocytometer post-sort to obtain an accurate cell count.   

Antibodies used for flow cytometry studies described in the �$�S�S�H�Q�G�L�[���L�Q�F�O�X�G�H�G���$�O�&�D�P�‡�3�(��

(eBioscience 12-1661-81), amphiregulin (R&D BAF989), CD14 (eBioscience 13-0141-80), 

CD24 (eBioscience 13-0242-80 ), CD44 (eBioscience 13-0441-81), CD49b (eBioscience 13-
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5971-80), CD49f (eBioscience 13-0495), CD55 (eBioscience 12-0559-71), CD61 

(eBioscience 13-0611-80), CD86 (eBioscience 13-0862-�����������&�'���������6�\�Q�G�H�F�D�Q�‡�3�(�����5�	�'��

FAB2966P), CD164 (R&D BAF3118), c-Kit (eBioscience 13-1171-81), CXCL16 (R&D 

BAF503), E-cadherin (eBioscience 13-3249-80), EpCAM (eBioscience 13-5791-80), 

�)�*�)�5���‡�3�(�����5�	�'���)�$�%�������$�������,�/���5���‡�3�(�����5�	�'���)�$�%���������3�������,�/���������5�	�'���%�$�)��������������

�-�D�J���‡�3�(�����(�E�L�R�V�F�L�H�Q�F�H������-3391-80), Muc1 (AbCam ab13970), Osteoactivin (R&D BAF2330), 

PRLR (R&D BAF1445), and Sca-1 (eBioscience), Secondary antibodies included 

Streptavidin APC-eFluor 780 (eBioscience 47-4317-82), Anti-rabbit Alexa750 (Invitrogen A-

21039) 

Mammary fat pad clearing and transplantation. Sorted cells were counted and 

resuspended in growth factor-reduced Matrigel (BD Biosciences 354230) for injection.  

Three week-old female mice between 10-12g were obtained from Charles River 

Laboratories.  Mice were anesthetized with 4mg/10g body weight Avertin (Sigma #T48402); 

abdomens were shaved and cleaned with 70% ethanol and Betadine.  An inverted Y-shaped 

incision was made along the thoracic-inguinal region and mammary glands were exposed.  

The nipple and mammary artery connecting the #4 and #5 glands were cauterized.  

Endogenous epithelium was removed from the inguinal (#4) mammary glands of 3 week-old 

female mice; removed epithelium was fixed and stained with carmine alum to verify 

�F�R�P�S�O�H�W�H���F�O�H�D�U�L�Q�J�������&�H�O�O�V���Z�H�U�H���L�Q�M�H�F�W�H�G���L�Q�W�R���W�K�H���F�O�H�D�U�H�G���I�D�W���S�D�G���S�D�G�V���L�Q���������¬�O���Y�R�O�X�P�H�V�����X�V�L�Q�J���D��

Hamilton syringe.  Incisions were then closed with wound clips.  Mice were administered 

with two doses of 0.5 mg/kg body weight Buprenorphine (Webster Vetinary #07-867-1196) 

in the 24 hours after surgery.  Mammary fat pads were harvested 6 weeks after injection, 

unless pregnancy induction required an earlier harvest date.  Harvested tissues were either 
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whole mounted and scored for mammary outgrowths or dissociated for re-analysis and/or 

serial transplants. [103]   

Pregnancy induction. Adult males were housed with post-transplant females 3-4 weeks 

after surgery.  Plugs were checked daily to verify the timing of pregnancies.  Females were 

sacrificed and mammary glands were harvested between day 14-20 of the pregnancy.     

Whole Mounts. Mice were sacrificed and #4 mammary glands were dissected, spread onto 

slides, air-dried for 5 minues and fixed in Methyl Carnoy (1:3:6 glacial acetic acid, 

chloroform, methanol) for 4-24 hrs.  Tissues were treated with successive washes of 100%, 

75%, 50% and 25% EtOH, distilled water, and then stained overnight in carmine alum 

staining solution (2 g/l carmine + 5 g/l aluminum potassium sulfate).  Mammary glands 

were dehydrated in washes of 70% and 100% EtOH, washed twice in xylenes and then 

mounted in Permount (Fisher SP15-100) and coverslipped.  Whole mounts were scored and 

imaged using a dissecting microscope [103].  All mammary outgrowths observed by carmine 

alum staining were confirmed by tissue sectioning and immunostaining.   

Statistical Analysis of Transplant Data. MRU frequencies were calculated using single-hit 

Poisson statistical methods [104].  Poisson9 software developed by the Iscov lab was used 

for these analyses.  (http://www.uhnresearch.ca/labs/iscove/homebrew.html)   

RNA Isolation and Microarray Analysis.  RNA was harvested from sorted cells using the 

Qiagen RNeasy Micro Kit (Qiagen 74004), amplified using the NuGen RNA amplification 

system, and analyzed for differences in gene expression on the Illumina Mouse platform.   

qPCR.  For qPCR confirmation of the microarray experiments, RNA was harvested from 

sorted cells using the Qiagen RNeasy Micro Kit and amplified using the NuGen RNA 

amplification system, and labeled using the SYBR Green Master Mix (Applied Biosystems 

4309155).  qPCR reactions were run on an Applied Biosystems 7900HT.  qPCR primers 
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were: Esr1-�)�����·- tgggcgacattcttctcaa-���·�����(�V�U��-�5�����·-tggaccagaggtacatccatt-���·�����3�5�/�5-�)�����·- 

ggttatagcatgatgacctgcat-���·�����3�5�/�5-�5�����·- cagttcttcagacttgcccttc -���·�����$�5�(�*-�)�����·- 

gcgaatgcagatacatcgag-���·�����$�5�(�*-�5�����·- ccacaccgttcaccaaagta-���·�����)�*�)�5��-�)�����·-

gagcgctgccattcaagt-���·�����)�*�)�5��-�5�����·-ttgctgttgttactgctgttcc-���·�����0�X�F��-�)�����·-ctgttcaccaccaccatgac-

���·�����0�X�F��-�5�����·-cttggaagggcaagaaaacc-���·�����:�Q�W���D-�)�����·- acgcttcgcttgaattcct -���·�����:�Q�W���D-�5�����·-

cccgggcttaatattccaa-���·�����,�O���5��-�)�����·-cgaaccgtgaacaacacaaa-���·�����,�O���5��-�5�����·- aatctccagcgacagcagag-

���·�����&�D�Y��-�)�����·- acgacgacgtggtcaagatt-���·�����&�D�Y��-�5�����·-cacagtgaaggtggtgaagc-���·�����5�R�E�R��-�)�����·-

ccacccaccagacaggag-���·�����5�R�E�R��-�5�����·-gtatgaggtggggaaattgg-���·�����/�\���D-�)�����·- cccctaccctgatggagtct-

���·�����/�\���D-�5�����·- tgttctttactttccttgtttgagaa-���· 

3D Matrigel assays. Matrige�O�Œ�����%�'���%�L�R�V�F�L�H�Q�F�H�V�������������������Z�D�V���S�L�S�H�W�W�H�G���L�Q�W�R���W�K�H���Z�H�O�O�V���R�I���D�Q��

8-well chamber slide and allowed to polymerize for 15 minutes at 37ºC.  Sorted MECs were 

plated at 1,000 cells/well in growth media (DMEM/F12 + 500 ng/ml hydrocortisone + 10 

�Q�J���P�O���(�*�)�������������¬�J���P�O��insulin + 20 ng/ml cholera toxin + 1% Pen/Strep + 1% FCS) for 

�����Z�H�H�N�����D�Q�G���G�L�I�I�H�U�H�Q�W�L�D�W�L�R�Q���P�H�G�L�D�����'�0�(�0���)���������������¬�J���P�O���L�Q�V�X�O�L�Q���������������Q�J���P�O��

�K�\�G�U�R�F�R�U�W�L�V�R�Q�H�����������¬�J���P�O���S�U�R�O�D�F�W�L�Q�������������)�&�6����[12].   

Immunostaining. For whole tissue sections, mammary glands were either fixed in Methyl 

Carnoy, or, if stained previously with carmine alum, unmounted by washing in xylenes.  

Tissues were paraffin-embedded and sectioned.  Slides were deparaffinized in xylenes, and 

rehydrated in decreasing concentrations of EtOH, followed by 20 minutes boiling in 10 mM 

sodium citrate for antigen retrieval.  For frozen sections, freshly dissected tissues were 

mounted in OCT (Sakura 4583), flash-frozen in liquid nitrogen and sectioned.   

For cytospins and colony assays, slides and coverslips were fixed in 4% PFA and 

rinsed with PBS for staining.  3D matrigel cultures were fixed and stained as described by 



27 
 

Debnath et al[105].  Primary antibody staining was performed at 4ºC overnight; secondary 

antibody staining was performed at room temperature for 1 hr.   

Primary antibodies used for immunostaining included cytokeratin 8/TROMA-1 

(Developmental Studies Hybridoma Bank TROMA-I-c), cytokeratin 18 (Covance SIG-

3466), cytokeratin 14 (Lifespan Biosciences LS-�&�����������������S���������%�L�R�O�H�J�H�Q�G���������������������¢�����L�Q�W�H�J�U�L�Q��

(BD Biosciences 550531), estrogen receptor (Santa Cruz SC-542), progesterone receptor 

(DAKO A0098), glucocorticoid receptor (Santa Cruz SC-1004), milk (Nordic 

Immunological Laboratories RAM/MSP), and amphiregulin (Santa Cruz sc-25436).  All 

secondary antibodies were Alexa Fluor-conjugatedantibodies from Invitrogen.   
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Chapter 3 Histone Label Retention in 
the Mouse Mammary Gland   
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Introduction  

 Adult stem cells have been observed to retain a DNA-based label for extended 

periods of time.  This has been hypothesized to be either the result of relative mitotic 

quiescence, or due to stem cell retention of the �R�O�G�H�U���´�S�D�U�H�Q�W�D�O�µ���'�1�$���V�W�U�D�Q�G�������/�D�E�H�O��

retention has been utilized to identify adult stem cells/progenitors and locate stem cell 

niches in several tissue systems [72, 77].  In the mammary gland, label retaining cells (LRCs) 

have been found preferentially in the myoepithelial/basal compartment, which is 

hypothesized to contain mammary stem cells [88].  Although their activity in mammary 

development is still unclear, mammary LRCs have been observed to be actively undergoing 

mitosis, which suggests parental strand retention, and might play a role in alveologenesis [86, 

90].   

 The major limitation of the DNA label retention system is that it precludes isolation 

of live LRCs for functional characterization.  These DNA-based labels also damage DNA 

and can stimulate repair pathways and/or cell division [106].  To enable isolation of live 

LRCs by fluorescence-activated cell sorting (FACS), Tumbar et al. developed a transgenic 

mouse carrying the tetracycline-inducible histone 2B/eGFP fusion (H2BGFP), which can be 

regulated in a tissue- or cell-specific manner by crossing to another strain expressing the 

tetracycline transactivator driven by a specific promoter [85].   This technique has been 

effective in isolating prospective adult stem cells in the epidermis, the ovarian coelomic 

epithelium, the kidney papilla and the hematopoietic system [85, 96, 97, 99].  

To identify and isolate prospective stem cells and progenitors through label retention 

in the mammary gland, I crossed H2BGFP transgenic mice with four different inducible 

lines, one that expresses the tetracycline transactivator, MMTVtTA [101, 107] and   
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Figure 3- 1. H2BGFP induction under control of tetracycline transactivator vs. reverse tetracycline transactivator.  
Administration of doxycycline turns off transgene expression in tTA systems (left) and turns on transgene expression in 
rtTA systems (right). 
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and three that express the reverse tetracycline transactivator, CMVrtTA [100], Rosa26rtTA 

[102], MMTVrtTA [65] (Figure 3-1).  (Tetracycline transactivator is inhibited by 

tetracycline/doxycycline treatment, and reverse tetracycline transactivator is activated by 

these drugs.)  These strains were selected for their probable expression in mammary 

epithelial cells.  Double transgenic mice were assessed for H2BGFP induction by 

immunostaining and flow cytometry.  Transgene expression was induced until four weeks 

after birth, and then turned off for six to eight weeks, allowing the high level of mammary 

�S�U�R�O�L�I�H�U�D�W�L�R�Q���G�X�U�L�Q�J���S�X�E�H�U�W�\���W�R���D�F�W���D�V���D���´�F�K�D�V�H�µ���S�H�U�L�R�G�����)�L�J�Xre 2-2).  Label retaining cells 

were isolated from the mammary gland by FACS and were analyzed for stem cell 

characteristics and activity.  This chapter describes the results of these crosses and the 

characterization of H2BGFP label-retaining cells in the mammary gland.   

Results 

CMVrtTA does not induce H2BGFP expression in the mammary gland 

 The cytomegalovirus (CMV) promoter is known for its high activity in many tissue 

types and is therefore commonly used to express target genes in both in vitro and in vivo 

studies [108].  Kistner et al. developed a transgenic mouse expressing the reverse tetracycline 

Figure 3- 2. H2BGFP label retention in the mammary gland.  H2BGFP expression is induced in the mammary gland 
until four weeks after birth (left) and turned off for 6-8 weeks.  At the end of puberty, H2BGFP LRCs remain in the adult 
mammary gland (right). 
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transactivator under control of the CMV promoter.  This transgene is reported to induce 

tetracycline-responsive genes in the pancreas, kidney, stomach, muscle, thymus, heart and 

tongue; no previous studies of this mouse tested for CMVrtTA activity in the mammary 

gland [100].   

 I crossed the CMVrtTA strain to the H2BGFP transgenic mouse.  Because this 

transgene expresses the reverse tetracycline transactivator, which is activated by tetracycline 

or doxycycline treatment, I maximized H2BGFP induction by treating experimental breeders 

and pups with doxycycline throughout breeding, pregnancy, lactation, and after weaning, 

until sacrifice.  At four weeks post-birth, female double transgenic mice were sacrificed.  A 

selection of tissues was harvested and cut for frozen sections for direct assessment of 

endogenous H2BGFP expression.  As controls, tissues were analyzed from doxycycline-

treated H2BGFP single transgenic mice and double transgenic mice that had not received 

any drug.   

 H2BGFP expression was assessed by monitoring direct fluorescence of frozen tissue 

sections with DAPI and phalloidin counterstaining.  Mosaic H2BGFP expression was 

observed in the thymus, stomach, pancreas, kidney and muscle, but not in the lung, liver, 

spleen and mammary gland (Figure 3-3).  No H2BGFP expression was detected in the 

tissues of untreated mice or single transgenic mice (data not shown).  The pattern of 

H2BGFP detection in the thymus, stomach, pancreas, kidney and muscle was consistent 

with previous reports, indicating that the absence of H2BGFP detection in the lung, liver, 

spleen and mammary gland were not due to technical issues in my analysis.   

 To ask whether H2BGFP was expressed at levels below the threshold of 

microscopic visualization, mammary glands were harvested from CMVrtTA/H2BGFP mice,  
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Figure 3- 3. CMVrtTA/H2BGFP expression in various tissues. H2BGFP expression at 4 weeksin a) mammary gland 
b) spleen c) thymus d) lung e) liver f) stomach g) pancreas h) kidney i) muscle 
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mammary glands from induced double transgenic four week-old females were dissociated 

into a single cell suspension and analyzed by flow cytometry.  There was no evidence of 

H2BGFP expression in CMVrtTA/H2BGFP mice when compared with either single 

transgenic mice or double transgenic mice that had received no doxycycline treatment 

(Figure 3-4).  I therefore discontinued use of the CMVrtTA mouse model.   

MMTVtTA expression and label retention in the mammary gland 

 The MMTV promoter is frequently used to direct transgene expression in the 

mammary gland.  To create an inducible system for transgene expression in the mammary 

gland, Furth et al. developed the MMTVtTA mouse, which expresses the tetracycline 

transactivator under control of the MMTV promoter.  This transgenic mouse was found to 

have tetracycline transactivator activity in the seminal vesicle, salivary gland, epidermis and 

mammary gland [107].  Later studies demonstrated that MMTVtTA also is expressed in 

lymphoid cells [66].   

 To express H2BGFP inducibly in the mammary gland for label retention studies, I 

crossed the MMTVtTA transgenic strain with H2BGFP mice.  Because this system 

expresses the tetracycline transactivator, which is deactivated by tetracycline or doxycycline 

Figure 3- 4. CMVrtTA/H2BGFP expression in the mammary gland.  Mammary glands were harvested, dissociated 
and analyzed by flow cytometry from four week old transgenic females which were a) H2BGFP single transgenic b) 
CMVrtTA/H2BGFP, no doxycycline treatment c) CMVrtTA 
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treatment, mice were kept off of doxycycline until the start of the chase period for the label 

retention experiment.  Tissues were assessed by immunofluorescence and flow cytometry for 

H2BGFP expression at four weeks after birth, to measure transgene induction, and after 6 

weeks of doxycycline treatment, to measure label retention.  By flow cytometry, 

MMTVtTA/H2BGFP induction was detected in 5.8±2.1% of MECs, which was reduced to 

0.8±0.2% after six weeks of doxycycline treatment (Figure 3-6).  By immunofluorescence, no 

correlation was observed between CK14 or CK8 expression and H2BGFP induction or label 

retention (Figure 3-5).  H2BGFP induction and label retention also were observed in 

hematopoietic tissues at levels higher than those found in the mammary gland.  

 Although initial experiments with the MMTVtTA mouse were promising, I 

ultimately discarded this model of H2BGFP induction because the relatively high level of 

H2BGFP expression in the lymphoid system compared to the mammary gland made the 

MMTVtTA system unsuitable for further use.  Although the flow cytometry assays are gated 

to exclude hematopoietic lineages, label retention assays necessarily isolate very small 

populations and are therefore particularly sensitive to contamination.  Additionally, in 

parallel crosses of other tetracycline transactivator strains with H2BGFP, I found that 

crosses between H2BGFP and the MMTVrtTA or the Rosa26rtTA strains resulted in  

Figure 3- 5 MMTVtTA/H2BGFP Expression and Label Retention in the Mammary Gland - 
Immunofluorescence. Mammary glands were harvested and stained from female mice a) H2BGFP single transgenic b) 
MMTVtTA/H2BGFP, four weeks induction c) MMTVtTA/H2BGFP, 4 weeks induction 
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Figure 3- 6. MMTVtTA/H2BGFP Induction and Label Retention �² Flow Cytometry. Representative plots for flow 
cytometric analysis of MMTVtTA/H2BGFP model.. a) Mammary gland, H2BGFP single transgenic b) Mammary gland, 
MMTVtTA/H2BGFP, 4 weeks induction c) Mammary gland, MMTVtTA/H2BGFP, 4 weeks induction + 6 weeks chase 
d) Bone marrow, H2BGFP single transgenic e) Bone marrow, MMTVtTA/H2BGFP, 4 weeks induction f) Bone marrow, 
MMTVtTA/H2BGFP, 4 weeks induction,+ 6 weeks chase g) Spleen, H2BGFP single transgenic h) Spleen, 
MMTVtTA/H2BGFP, 4 weeks induction i) Spleen, MMTVtTA/H2BGFP, 4 weeks induction + 6 weeks chase 
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significantly higher levels of transgene induction in the mammary gland, making those two 

models better suited for my experiments than MMTVtTA.   

Rosa26rtTA/H2BGFP expression and label retention in the mammary gland 

 The Rosa26 reverse tetracycline transactivator (Rosa26rtTA) mouse was developed 

to allow inducible expression of transgenes in multiple tissues at different stages of 

development [102].  To ask whether Rosa26rtTA could induce H2BGFP expression in the 

mammary gland, I crossed the Rosa26rtTA mouse with the H2BGFP strain.   

 To determine which tissues expressed H2BGFP under the control of Rosa26rtTA, I 

harvested tissues from four week-old female mice that had undergone constant doxycycline 

treatment.  H2BGFP fluorescence was directly visualized in frozen sections with a DAPI 

and phalloidin counterstain (Figure 3-7).  H2BGFP expression was observed in the 

mammary gland, lung, liver, muscle, small intestine, pancreas, kidney, spleen, ovary and 

fallopian tubes.  This expression pattern is in accordance with findings reported previously 

for the Rosa26rtTA transgenic mouse[102, 109].     

 Mammary glands from four week-old female double transgenics undergoing 

doxycycline treatment were harvested and analyzed by flow cytometry and 

immunofluorescence.  By flow cytometry, H2BGFP expression was detected in 8.6±1.2% of 

MECs.  In the CD24+/CD29+ compartment, which contains mammary stem cells, 13±9.3% 

of MECs were H2BGFP+ and in the CD24+/CD29lo progenitor compartment, 4±2.5% of 

MECs were H2BGFP+ (Figure 3-8).  Given that 10±3.7% of H2GFP+ MECs were found to 

be CD24+/CD29+ and 17±7.4% of H2BGFP+ MECs were CD24+/CD29lo, I concluded 

that most H2BGFP+ MECs were differentiated and that there is no special correlation 

between H2BGFP expression and mammary stem cell/progenitor populations.  (Averages 

and standard deviations were derived from experimental n = 4).  Tissue sections from four-  
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Figure 3- 7. Rosa26rtTA/H2BGFP Induction �² Immunofluorescence. Tissues were harvested from 4 week old 
double transgenic females treated with constant doxycycline.  Direct visualization of frozen sections from a) Mammary 
gland b) Mammary gland 40x c) Brain d) Lung e) Liver f) Muscle g) Small intestine h) Pancreas i) Kidney j) Spleen k) Ovary 
l) Fallopian tube 
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week old induced Rosa26rtTA/H2BGFP female mice were immunostained for the 

mammary lineage markers CK18 and CK14 (Figure 23-9).  By immunofluorescence, no 

correlation was observed between H2BGFP expression and known mammary lineages.   

Although this level of H2BGFP induction was lower than what was originally hoped 

for at the start of a label retention experiment, it remained possible that label-retaining cells 

derived from a small percentage of total MECs could still yield a novel population with 

potentially interesting stem cell/progenitor properties.  Therefore, Rosa26rtTA/H2BGFP 

transgenic mice were removed from doxycycline treatment at four weeks post-birth for a six 

Figure 3- 8. Rosa26rtTA/H2BGFP Induction �² Flow Cytometry. Mammary glands were harvested from Rosa26rtTA/ 
H2BGFP doxycycline-treated females at 4 weeks.  Flow cytometric analysis was performed on a) Wild-type MECs b) 
Rosa26rtTA/H2BGFP MECs, H2BGFP expression c) Rosa26rtTA/H2BGFP MECs, CD24/CD29 expression d) 
Rosa26rtTA/H2BGFP MECs, CD24+/CD29+ gate, H2BGFP expression e) Rosa26rtTA/H2BGFP MECs, 
CD24+/CD29lo gate, H2BGFP expression f) Rosa26rtTA/H2BGFP MECs, H2BGFP+ gate, CD24/CD29 expression 
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�W�R���H�L�J�K�W���Z�H�H�N���´�F�K�D�V�H�µ���S�H�U�L�R�G�����D�I�W�H�U���Z�K�L�F�K���P�D�P�P�D�U�\���J�O�D�Q�G�V���Z�H�U�H���K�D�U�Y�H�V�W�H�G���D�Q�G���D�Q�D�O�\�]�H�G���E�\��

flow cytometry and immunofluorescence.  After the chase period, 2.9±0.9% of all MECs 

remained H2BGFP+.  Within the CD24+/CD 29+ population, 2.7±1.6% of MECs were 

2BGFP+, while only 0.6±0.4% of CD24+/CD29lo MECs retained H2BGFP label (Figure 3-

10).  (Averages and standard deviations were derived from experimental n = 5)   H2BGFP+ 

cells declined in both number and intensity over the chase period, suggesting label dilution 

through successive mitoses.  No correlation was observed between LRCs and markers of 

mammary stem cells/progenitors (Figures 3-9, 3-10).  However, given the limited number of 

verified markers of mammary stem cells and progenitors, the possibility remained that 

mammary LRCs could represent a previously undefined functional mammary epithelial 

population.  To test this hypothesis, mammary LRCs were isolated by FACS and tested by 

transplantation.   

NOD -SCID mice exhibit a mammary transplant growth defect 

Figure 3- 9. Rosa26rtTA/H2BGFP Induction and Label Retention - Immunofluorescence. Immunofluorescent 
staining of Rosa26rtTA/H2BGFP mammary glands after a) 4 weeks induction, left b) 4 weeks induction + 6 weeks chase, 
right.  Blue = DAPI, Green = GFP, Yellow = CK18, Red = CK14 
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The cleared mammary fat pad transplant is the standard in vivo assay for testing the 

stem cell function of MECs.  At three weeks of age, the mouse mammary gland has not yet 

fully penetrated the mammary fat pad.  The pubertal mammary epithelium can be surgically 

removed, and other cells or tissue pieces can be grown in the remaining fat pad without 

interference from endogenous mammary tissue.  Injected cells are sometimes mixed with 

reconstituted basement membrane (Mat�U�L�J�H�O�Œ�������Z�K�L�F�K���S�R�O�\�P�H�U�L�]�H�V���D�W���E�R�G�\���W�H�P�S�H�U�D�W�X�U�H���D�Q�G��

can therefore physically stabilize the cells in the mammary gland.  In control experiments, 

single cell suspensions of mammary glands were gated for viability and against hematopoietic 

and endothelial lineages, and sorted for MEC populations with known repopulation activity.  

I injected these MECs into the cleared fat pads of syngeneic mice (Figure 3-11).  In parallel, I 

transplanted cells from the experimental populations.  This approach allowed me to control 

Figure 3- 10. Rosa26rtTA/H2BGFP Label Retention �² Flow Cytometry. Doxycycline was removed from 
Rosa26rtTA/H2BGFP females four weeks post birth.  After 6 weeks of chase, mammary glands were harvested 
and analyzed for label retention. a) Total MECs from 4 weeks Rosa26rtTA/H2BGFP induction b) Total MECs 
after 6 weeks of chase, total LRCs c) LRCs within the CD24+/CD29+ population d) LRCs within the 
CD24+/CD29lo population e) Total MECs from 4 weeks Rosa26rtTA/H2BGFP induction f) Total MECsafter 6-8 
weeks chase g) CD24/CD29 expression of LRCs h) Comparison of intensity of H2BGFP+ cells before (green) 
and after (red) label retention 
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for technical variability between individual experiments.  The calculated mammary 

repopulation frequency was determined to be 1/2,600, with a 95% confidence interval of 

1/1,900 to 1/3,500, for total MECs.  The repopulation frequency for the CD24+/C D29+ 

stem cell population was 1/85, with a 95% confidence interval of 1/55 to 1/130.  These data 

fall within the range of previously published mammary repopulation data for both total 

MECs (1/1,400 - 1/4,900) and CD24+/CD29+ cells [12, 13].   

To assess the repopulation ability of label-retaining cells from the 

Rosa26rtTA/H2BGFP crosses, LRCs were isolated by flow cytometry after the chase 

period.  Because the H2BGFP transgenic line and the Rosa26rtTA mice were on different 

genetic backgrounds, these mixed background MECs were transplanted into NOD-SCID 

mice.  To assay the comparative stem cell function of label retaining cells and MECs from 

the CD24+/CD29+ compartment, limiting dilutions of label-retaining CD24+/CD29+ cells, 

label-retaining non-CD24+/CD29+ cells and CD24+/CD29+ cells that had not retained 

H2BGFP were injected into the cleared fat pads of 3 week old NOD-SCID mice (Figure 3-

Figure 3- 11. Cleared Fat Pad Transplants of Control Populations. Mammary epithelial cells were sorted and 
transplanted at limiting dilutions into the cleared mammary fat pads of syngeneic mice.  Mammary fat pads were harvested 
after 6 weeks.  Transplants were conducted as follows  a) Control clearings, no MEC injection b) Unfractionated mammary 
epithelial cells, gated against other lineages c) MECs gated from the CD24+/CD29+ stem cell compartment d) 
Differentiated MECs 
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12).  I calculated the mammary repopulating unit (MRU) frequency of each population, using 

single-hit Poisson statistical methods [104]. 

Unexpectedly, the mammary repopulation rate for these injections was extremely 

low.  The label retaining CD24+/CD29+ cells had a calculated MRU frequency of 1/7,200 

and the label retaining non-CD24+/CD29+ cells had a MRU frequency of 1/7,000.  Non-

label retaining CD24+/CD29+ MECs had an MRU frequency of 1/6,000.  As the LRC 

population was not enriched for stem cells, the non-label retaining CD24+/CD29+ cells were 

expected to have an MRU frequency comparable to what was previously published for the 

unfractionated CD24+/CD29+ compartment, 1/64 [12].  The outgrowths from these 

transplants were also observed to be significantly smaller than mammary glands grown from 

syngenic transplants (Figure 3-13). 

 There are several possible explanations for these results.  Given the cellular 

heterogeneity of the mammary gland single cell suspensions used in FACS and the broad 

tissue spectrum of Rosa26rtTA activity, it is possible that the H2BGFP+ label retaining cells  

isolated from the Rosa26rtTA/H2BGFP cross are heavily contaminated with GFP+ non-

mammary cells.  However, the repopulation activity of H2BGFP-/CD24+/CD29+ cells in  

Figure 3- 12. Rosa26rtTA/H2BGFP Label Retention - Transplant Assays. Mammary epithelial cells were sorted from 
Rosa26rtTA/H2BGFP mice after a 6-8 week chase period, and injected into cleared fat pads of NOD-SCID mice at 
limiting dilutions.   
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Figure 3- 13. Whole Mounts from Rosa26rtTA/H2BGFP label retention transplants. Mammary fat pad whole 
mounts from transplants of  a) Rosa26rtTA/H2BGFP CD24+/CD29+ LRCs into NOD-SCID fat pads b) 
Rosa26rtTA/H2BGFP non-CD24+/CD29+ LRCs, into NOD-SCID fat pads c) Rosa26rtTA/H2BGFP CD24+/CD29+ 
non-LRCs, into NOD-SCID fat pads d) 100 CD24+/CD29+ MECs into syngenic fat pads e) 1,000 unfractionated MECs 
into syngeneic fat pads 



45 
 

NOD-SCID mice was much lower than was found in injections into syngeneic fat pads, 

which suggests the problem is with the assay, not the donor cells.  As the 

Rosa26rtTA/H2BGFP MECs were derived from fully developed adult mammary glands, the  

growth defect is probably not caused by any intrinsic or genetic factors within the MECs.  It 

also is unlikely that the problem is associated with Matrigel, or any other injection-related 

reagents, as successful cleared fat pad transplants were being performed concurrently with 

these experiments.   

As this unusually low reconstitution rate occurred only when NOD-SCID mice were 

used, and all other transplants were performed by injecting MECs into syngeneic 

backgrounds, I concluded that the low reconstitution rate was the result of the NOD-SCID 

mammary fat pad environment.  Although mouse mammary tumor cells are routinely 

injected into the cleared fat pads of NOD-SCID mice, it is possible that successful 

transplants of normal MECs require an immune component lacking in NOD-SCID mice; 

for example, macrophage activity, which is required for normal mammary development, is 

impaired in NOD-SCID mice [110, 111].  Alternatively, the mammary fat pads of NOD-

SCID mice might be missing growth factors necessary to the engraftment or proliferation of 

normal mammary epithelial cells; human MECs grown in NOD-SCID mammary fat pads 

require the pre-implantation of human stromal cells for the creation of a viable environment 

[112].  NOD-SCID females are able to nurse their own pups, so this fat pad defect is either 

compensated for in NOD-SCID MECs or is critical only to mammary glands which are 

transplanted after birth.   

Given the report of successful transplants of normal MECs into NOD-SCID 

mammary fat pads [35], it is possible that the mammary fat pad defect observed in my 

experiments were not general to all NOD-SCID mice, but to the specific mice used for these 
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experiments.  NOD-SCID mice were primarily obtained from Charles River Laboratories, 

and it is possible that any mammary fat pad growth defect is caused by either the genetic 

sub-strain of the Charles River colony, or to the environmental conditions in which this 

colony was raised.  Dietary alterations have been demonstrated to affect mammary 

development during puberty [113, 114].   

This NOD-SCID problem could have been circumvented by crossing the 

Rosa26rtTA and H2BGFP transgenic strains onto the same inbred background, obviating 

the need for transplants into NOD-SCID mice.  Alternatively, other immunodeficient strains 

(e.g. Nu/Nu, RAG-1) might be able to grow transplanted, non-tumor mammary cells.  

Concurrent experiments using the MMTVrtTA transgenic mouse demonstrated H2BGFP 

expression in the mammary gland at a significantly higher level than Rosa26rtTA.  

Additionally, MMTVrtTA induced minimal H2BGFP expression outside of the mammary 

gland, reducing the risk of contamination from other H2BGFP+ cell types.  Therefore, I 

discontinued the Rosa26rtTA/H2BGFP experiments in favor of the MMTVrtTA system.   

MMTVrtTA induces H2BGFP preferentially in mammary epithelial cells 

expressing markers of stem cells and progenitors 

 The MMTVrtTA transgenic mouse was developed by Gunther et al. to express 

transgenes inducibly in the mammary gland.  When crossed with transgenic mice carrying 

tet-inducible strains, doxycycline treatment reportedly induces transgene expression in the 

mammary gland, and at low levels in the salivary gland [65].  By contrast, other MMTV- 

driven transgenes reportedly are expressed in the seminal vesicles and lymphoid cells as well 

[60, 101].  These findings suggest that the tissue-specific activity of MMTV depends on its 

insertion site and can vary significantly between transgenic lines.  In six week-old 
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MMTVrtTA/LacZ mice, 72 hours of doxycycline treatment was found to induce LacZ 

expression in the mammary gland in a dose-dependent, homogenous and completely 

penetrant fashion[65]�������%�H�F�D�X�V�H���0�0�7�9�U�W�7�$���L�Q�G�X�F�W�L�R�Q���U�H�V�X�O�W�H�G���L�Q���¢-galactosidase activity in 

100% of the mammary epithelium, this strain appeared ideal for a label retention study in the 

mammary epithelium.   

 I crossed the MMTVrtTA transgenic strain with H2BGFP mice.  Because both the 

CMVrtTA and MMTVrtTA transgenic strains were on the FVB genetic background, the 

H2BGFP mice were backcrossed onto FVB, allowing syngeneic transplants of any label 

retaining cells from these crosses.  MMTVrtTA/H2BGFP breeders and pups were 

maintained constantly on doxycycline until the pups were four weeks of age.  Mammary 

glands were harvested from four week-old double transgenic MMTVrtTA/H2BGFP females 

and the induction of H2BGFP  was assessed by immunofluorescence and flow cytometry at 

the beginning of the label retention experiment (Figure 3-14, 3-15, 3-16, 3-17, 3-18).   

 Unexpectedly, H2BGFP expression was observed in only a fraction (18 ±3.1%) of 

all MECs (Figure 3-14a).  Doxycycline obtained from various sources was tested in induction 

experiments and found to evoke the same degree of H2BGFP expression (data not shown).  

To determine whether MMTVrtTA-induced H2BGFP expression correlated with specific 

MEC populations, H2BGFP+ cells were analyzed for expression of the known mammary 

stem cell/progenitor markers CD24, CD29 and CD49f.  Notably, all H2BGFP+ MECs 

stained positive for markers of either the mammary epithelial stem cell (CD24+/CD29+, 

CD24+/CD49f+) or progenitor (CD24+/CD29lo, CD24+/CD49f lo) compartments (Figure 3-

14d, g).  Of the H2BGFP+ cells, 47±11% were CD24+/CD29+, 39±11% were 

CD24+/CD29lo.  Of the CD24+/CD29+ and CD24+/CD29lo MECs, 55±6.7% and 15±4.4% 
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were H2BGFP+, respectively (Figure 3-14e, f).  (Averages and standard deviations were 

derived from an n = 10.) 

By CD24/CD49f analysis, 36±7.1% were CD24+/CD49f+ and 50±1.7% were 

CD24+/CD29lo (Figure 3-14d, g).  In the CD24+/CD49f+ compartment, 46±2.6% of MECs 

were H2BGFP+, and 21±2.7% of CD24+/CD49f lo MECs were H2BGFP+ (Figure 3-14h, i).  

While all H2BGFP+ subpopulations exhibited a range of H2BGFP expression levels, 

CD24+/CD29lo and CD24+/CD49f lo progenitor-containing populations were found to have 

a higher range of fluorescence intensity than CD24+/CD29+ and CD24+/CD49f+ stem cell-

containing compartments.  (Averages and standard deviations were derived from an n = 4.) 

To characterize the pattern of MMTVrtTA/H2BGFP expression in situ, mammary glands 

from four week-old double transgenic, doxycycline-induced females were sectioned and 

�L�P�P�X�Q�R�V�W�D�L�Q�H�G���I�R�U���&�.�������&�.���������S���������D�Q�G���¢�����L�Q�W�H�J�U�L�Q�����&�'����).  Consistent with the flow 

cytometry data, MMTVrtTA induced a mosaic pattern of H2BGFP expression, with a range 

of fluorescence levels.  Luminal, myoepithelial and basal/cap cell populations contained 

some H2BGFP+ MECs (Figure 3-15).  The majority of H2BGFP+ MECs were detected 

within the basal layer of the ductal tree and the cap cells of the terminal end buds.  These are 

known niches for mammary stem cells and correlate with our finding that approximately half 

of all CD24+/CD29+ cells were H2BGFP+ [12].  Fewer H2BGFP+ cells were detected within 

the luminal layer, which also is consistent with ~15% of the cells within the CD24+/CD29lo 

population being H2BGFP+. 

MMTVrtTA/H2BGFP mammary glands also were immunostained to detect 

expression of steroid hormone receptors, which is associated with differentiated MEC 

populations [12, 13, 40].  MMTVrtTA/H2BGFP induced mammary glands were sectioned 



49 
 

 

 

  

Figure 3- 14. . Flow cytometric analysis of MMTVrtTA/H2BGFP induction.  Representative FACS plots from 
MMTVrtTA/H2BGFP induction mammary glands.  Analysis of total MEC population by expression of a) H2BGFP b) 
CD24/CD29 c) CD24/CD49f.  H2BGFP expression within the e) CD24+/CD29+ gate f) CD24+/CD29lo+ gate h) 
CD24+/CD49f+ gate i) CD24+/CD49f lo gate.  Stem cell/progenitor marker expression within the H2BGFP+ 
population d) CD24/CD29 g) CD24/CD49f   
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and immunostained for ER (Figure 3-16), PR (Figure 3-17) and glucocorticoid receptor (GR) 

(Figure 3-18), which activates the MMTV promoter and plays a role in mammary 

proliferation during pregnancy.  In these pubertal mice, the majority of cells in the ducts and 

TEBs were found to be ER+ and GR+.  H2BGFP was co-expressed with ER and GR in 

some of these cells.  Interestingly, H2BGFP+ cells were consistently negative for PR staining 

(Figure 3-17).   

MMTVrtTA label retention in the mammary gland 

My discovery that MMTVrtTA induces H2BGFP expression principally in the 

mammary stem cell and progenitor compartments raised the possibility that LRCs found 

using the MMTVrtTA/H2BGFP system could represent novel subpopulations of mammary 

stem cells and/or progenitors and provide new details about the mammary stem cell 

hierarchy.  Therefore, I conducted histone label retention studies in the mouse mammary 

gland using the MMTVrtTA/H2BGFP system.   

MMTVrtTA/H2BGFP females were treated constantly with doxycycline until four 

weeks post-birth, at the beginning of the chase period.  Experimental mice were kept from 

doxycycline for a six to eight week chase period.  At the end of the chase period, mammary 

glands were harvested from experimental mice, and purified by FACS (Figure 3-19).  

H2BGFP+ MECs post-chase were reduced in both number and intensity (Figure 3-19 b, h).  

After this chase period, 2±0.8% of all MECs were found to be H2BGFP+.  Of the 

CD24+/CD29+ cells analyzed, 4.8±1.9% were H2BGFP+ LRCs, while 1.4±1.0% of 

CD24+/CD29lo cells were LRCs.  This is consistent with an approximately ten-fold 

reduction of detectable H2BGFP+ cells across the entire mammary gland.  Among the 

LRCs, 46.6±14.7% were found to be CD24+/CD29+, which corresponded with pre-chase   
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Figure 3- 15. Analysis of Lineage Marker Expression in MMTVrtTA induction of H2BGFP expression in the 
mammary glands. Representative immunostainings of mammary glands harvested from 4 week old double transgenic 
�I�H�P�D�O�H�V���W�U�H�D�W�H�G���Z�L�W�K���G�R�[�\�F�\�F�O�L�Q�H�����V�H�F�W�L�R�Q�H�G���D�Q�G���V�W�D�L�Q�H�G���Z�L�W�K���D�����&�.�����E�����&�.�������F�����S�������G�����¢�����L�Q�W�H�J�U�L�Q�����3�K�R�W�R�J�U�D�S�K�V���G�H�S�L�F�W��
normal ducts (left) and terminal end buds (right).   
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Figure 3- 16. Immunostaining of MMTVrtTA/H2BGFP Mammary Glands for Estrogen Receptor. Mammary 
glands from four week old doxycycline-treated females were sectioned and stained for estrogen receptor a) Mammary duct 
b) Terminal end bud 
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Figure 3- 17. Immunostaining of MMTVrtTA/H2BGFP Mammary Glands for Progesterone Receptor. Mammary 
glands from four week old doxycycline-treated females were sectioned and stained for progesterone receptor a) Mammary 
duct b) Terminal end bud 
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Figure 3- 18. Immunostaining of MMTVrtTA/H2BGFP Mammary Glands for Glucocorticoid Receptor.  Mammary 
glands from four week old doxycycline-treated females were sectioned and stained for glucocorticoid receptor. a) Mammary 
duct b) Terminal end bud 
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analysis of H2BGFP+ MECs.  However, only 25.7±16.8% were CD24+/CD 29lo, which is  

lower than the pre-chase proportion; this can be accounted for by considering the greater 

[proliferation activity and label dilution of CD24+/CD29lo progenitors (Figure 3-19g, 3-14d).  

(Averages and standard deviations were derived from an n = 12.)  

Label retention within the CD24+/CD29+ stem cell compartment was expected, but 

the sizeable fraction of CD24+/CD29lo LRCs required some consideration of mammary 

gland dynamics.  If the pubertal mammary gland follows the classical stem cell hierarchy, 

with stem cells generating progenitors and progenitors giving rise to large numbers of 

differentiated cells, active progenitors during puberty would not be expected to indefinitely 

retain an H2BGFP label.  However, H2BGFP+/CD24+/CD29lo MECs exhibited a higher 

range of fluorescence at 4 weeks than H2BGFP+/CD24+/CD29+ MECs.  Therefore, it is

 

Figure 3- 19. MMTVrtTA/H2BGFP Label Retention.  Doxycycline was removed from MMTVrtTA/H2BGFP females 
four weeks post birth.  After 6-8 weeks of chase, mammary glands were harvested and analyzed for label retention. a) Total 
MECs from 4 weeks MMTVrtTA/H2BGFP induction b) Total MECs  after 6-8 weeks of chase, total LRCs c) LRCs within 
the CD24+/CD29+ population d) LRCs within the CD24+/CD29lo population e) Total MECs from 4 weeks 
MMTVrtTA/H2BG FP induction f) Total MECs after 6-8 weeks chase g) CD24/CD29 expression of LRCs h) Comparison 
of H2BGFP intensity before (green) and after (red) label retention 
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possible that H2BGFP+/CD24+/CD29lo cells had not gone through enough mitoses by the 

end of puberty to dilute H2BGFP below the threshold of detection in progenitors.  

Alternatively, the label-retaining H2BGFP+/CD24+/CD29lo MECs might have been or 

become mitotically quiescent during puberty, suggesting a role for these cells other than that 

of active progenitor during puberty.  Therefore, H2BGFP+/CD24+/CD29lo LRCs could 

represent terminally differentiated cells, which maintained H2BGFP label because they had 

completed all of their allotted mitoses, or they could be label-retaining progenitor cells, 

which function at later stages of mammary development, such as estrus or pregnancy.  

Finally, it is possible that these CD24+/CD29lo LRCs are progenitors that retain label 

through asymmetric histone distribution, suggesting a novel mechanism for histone 

segregation in mammary stem cells and/or progenitors.   

To assess the functional significance of the H2BGFP LRCs, label retaining and non-

label retaining MECs from both the CD24+/CD29+ and CD24+/CD29lo compartments were 

sorted and transplanted into the cleared fat pads of syngenic mice.  All populations were 

double-sorted with doublet discrimination to ensure purity, and were recounted by 

hemacytometer post-sort to obtain an accurate cell count.  Recipient mice were maintained 

on doxycycline to continue transgene induction.  Mammary fat pads were harvested after a 

six week growth period and stained with carmine alum to visualize mammary outgrowths.  

The resulting mammary glands were scored, and the mammary repopulating unit (MRU) 

frequency of each sorted population was calculated using single-hit Poisson statistics [104]  

(Figure 3-20). 

Within the CD24+/CD29+ population, the LRCs were found to have a calculated 

MRU frequency of 1/160, with a 95% confidence interval of 1/110 to 1/240, and non-LRCs 

had an MRU frequency of 1/270, with a confidence interval of 1/160 to 1/460.  Given the 
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overlapping confidence intervals, this 1.7-fold difference in mammary repopulation ability is 

unlikely to represent a significant functional difference between LRCs and non-LRCs in the 

CD24+/CD29+ compartment.  (Averages and standard deviations were obtained from 

experimental n= 12) 

Within the CD24+/CD29lo population, the LRCs had an MRU frequency of 1/520, 

compared with the 1/1,900 frequency of non-LRC CD24+/CD29lo MECs.  These results 

were unexpected, as CD24+/CD29lo cells were initially reported to have no in vivo 

repopulation ability[12].  In spite of various technical precautions, the small number of 

mammary outgrowths found in these CD24+/CD29lo injections could have been the result 

Figure 3- 20. MMTVrtTA/H2BGFP Label Retaining Cells - Repopulation Assays. Populations were sorted from 
MMTVrtTA/H2BGFP mammary glands after 6-8 weeks of chase.  Sorted MECs were transplanted into cleared 
fat pads, grown for 6 weeks, harvested, stained with carmine alum and scored.  Mammary repopulation unit 
frequencies were calculated using single-hit Poisson statistics, with 95% confidence intervals.   
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of contamination.  However, because LRCs represented 1.4% of all CD24+/CD29lo MECs, 

it also was possible that I had enriched for a previously unknown sub-population with in vivo 

repopulating activity that had gone undetected in limiting dilution injections of the whole 

CD24+/CD29lo population.    

Induction vs. Label Retention in the MMTVrtTA/H2BGFP model  

Based on the above data, it was possible that I had isolated a unique mammary 

progenitor through H2BGFP label retention in the CD24+/CD29lo population.  However, 

the induction of MMTVrtTA/H2BGFP in subpopulations of the CD24+/CD29+ and 

CD24+/CD29lo compartments meant that it was possible that any enrichment in stem 

cell/progenitor activity might be due to H2BGFP induction, not H2BGFP label retention.  

Although MMTV promoter activity is known to be dependent on its location within the 

genome, the MMTV promoter might be turned on preferentially in mammary stem cells and 

progenitors; from the perspective of viral evolution, stem cells and progenitors are able to 

effectively propagate the viral genome through their numerous progeny, making stem 

cell/progenitor-specific activity a useful survival strategy.   

To determine whether H2BGFP label retention or induction was responsible for the 

observed mammary repopulation phenotype of LRCs, CD24+/CD29+ and CD24+/CD29lo 

populations with and without H2BGFP expression were isolated from doxycycline-treated 

MMTVrtTA/H2BGFP females four weeks post-birth, without any chase.  MEC populations 

were purified by FACS and subjected to limiting dilution transplantation analysis (Figure 3-

20).  H2BGFP+/CD24+/CD29+ MECs had an MRU frequency of 1/80, with a 95% 

confidence interval of 1/60 to 1/120 and H2BGFP-/CD24+/CD29+ MECs had an MRU 

frequency of 1/100, with a confidence interval of 1/80 to 1/150.  This minimal difference 
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demonstrates that in primary transplants, there is no difference in the repopulation ability of 

H2BGFP+ and H2BGFP- MECs in the CD24+/CD29+ compartment of induced 

MMTVrtTA/H2BGFP MECs.  Surprisingly, induced H2BGFP+/CD24+/CD29lo MECs had 

a calculated repopulation rate of 1/710, with a confidence interval of 1/370 to 1/1,400.  

Many of these mammary outgrowths were diminutive when compared to the glands 

produced by the CD24+/CD29+ populations (Figure 3-22).  By contrast, H2BGFP-

/CD24+/CD29lo cells did not produce any mammary outgrowths, which is consistent with 

the lack of reported repopulating activity of bulk CD24+/CD29lo cells [12].  Therefore, the 

apparent improvement in mammary repopulating ability in H2BGFP+/CD24+/CD29lo cells 

seen in label retention experiments was not actually due to enrichment by label retention, but 

Figure 3- 21. MMTVrtTA/H2BGFP Induction - Repopulation Assays. Populations were sorted from mammary 
glands of doxycycline-treated MMTVrtTA/H2BGFP females four weeks post-birth.  Sorted MECs were transplanted into 
cleared fat pads, grown for 6 weeks, harvested, stained with carmine alum and scored.  Mammary repopulation unit 
frequencies, with 95% confidence intervals, were calculated using single-hit Poisson statistics.   
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rather reflected differential properties of the H2BGFP+/CD24+/CD29lo and H2BGFP-

/CD24+/CD29lo marked by MMTVrtTA/H2BGFP induction.   

H2BGFP+/CD24+/CD29lo MECs represent only 15% of the CD24+/CD29lo 

compartment, giving the repopulating cell a frequency of 1/4,700 within the CD24+/CD29lo 

MECs.  This low frequency might mean that the H2BGFP+/CD24+/CD29lo population 

contains a population of previously undetected mammary stem cells or progenitors.  It also 

is possible that the mammary structures produced by this population were previously 

overlooked because of their size.  In either case, the H2BGFP+/CD24+/CD29lo population 

merited further examination, which is the topic of Chapter 3.   

Discussion & Future Directions 

Figure 3- 22. H2BGFP+/CD24+/CD29lo Induction �² Whole Mounts. Whole mount carmine alum stainings of 
mammary fat pads from injections of the H2BGFP+./CD24+/CD29lo population.  Circles were drawn around particularly 
difficult-to-detect mammary outgrowths.  All outgrowths were verified by sectioning and immunostaining 
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 Through the use of the tetracycline-inducible H2BGFP transgenic mouse model, I 

have investigated the possibility of identifying and isolating novel mammary stem cells and 

progenitors through histone label retention.  Previous DNA label retention studies in the 

mammary gland have used pubertal proliferation, or a hormone-enhanced variant of the 

same, for label dilution studies [29, 86].  These studies identified LRCs with potentially 

interesting properties, but direct isolation of LRCs for growth assays was technically 

unfeasible.   

My H2BGFP label retention studies were directed at the isolation and 

characterization of histone label retaining cells in the mammary gland.  H2BGFP induction 

requires expression of a tetracycline transactivator, which, for such studies, ideally would be 

active in all mammary epithelial cells, and absent from any potentially contaminating 

lineages, such as fibroblasts, endothelial cells and circulating hematopoietic cells.  Label 

retention assays, which require the isolation and characterization of a small population, are 

sensitive to contamination, particularly in heterogeneous tissues such as the mammary gland.  

I found that the CMVrtTA transgenic line did not express H2BGFP in the mammary gland.  

The MMTVtTA model was found to induce H2BGFP expression in ~6% of MECs, but was 

determined to be unsuitable for label retention due to a combination of low expression in 

the mammary gland and higher levels of H2BGFP expression in the lymphoid system.   

Rosa26rtTA induced H2BGFP expression in 9% of MECs, and numerous other 

tissues; withdrawal of doxycycline in early puberty resulted in H2BGFP label dilution (Figure 

3-10).  However, I found that the calculated MRU frequency of CD24+/CD29+ MECs 

transplanted into NOD-SCID fat pads was almost 100x lower than expected (Figure 3-12).  

Because control transplants of MECs into syngenic mammary fat pads produced mammary 
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outgrowths at the expected frequency (Figure 3-11), I concluded that NOD-SCID mammary 

fat pads lack a critical component required for growth of exogenous MECs.   

 The MMTVrtTA/H2BGFP transgenic model resulted in H2BGFP expression in 

18% of all MECs, as detected by flow cytometry.  Unexpectedly, I discovered that 

MMTVrtTA induced H2BGFP expression principally within MECs expressing markers for 

mammary stem cells and progenitors.  These findings contrasted with data from Gunther et 

al. who found MMTVrtTA activity in 100% of the mammary epithelium [65].  The most 

likely explanation for this discrepancy is that MMTVrtTA activity was monitored by 

expression of LacZ; the �¢-galactosidase assay is more sensitive than fluorescence detection.   

Based on the lack of association between H2BGFP expression and mammary stem 

cell/progenitor markers in the Rosa26rtTA/H2BGFP model, I concluded that the 

unexpected expression pattern exhibited by the MMTVrtTA/H2BGFP model was unlikely 

to be caused by the H2BGFP transgene.  Given that I detected MMTVrtTA induction 

exclusively in mammary stem cell and progenitor populations, it is possible that H2BGFP 

protein exists in all MECs, through inheritance from an H2BGFP-expressing progenitor, but 

at a level below the threshold of fluorescence detection.  Alternatively, H2BGFP protein 

could be less stable than LacZ in differentiated cells.  Nevertheless, my finding of mosaic 

MMTVrtTA activity in this transgenic line suggests that other studies that have utilized these 

mice might require reexamination, particularly if the conclusions drawn from these studies 

were dependent on homogenous transgene induction across the entire mammary epithelium.  

For example, studies where this MMTVrtTA transgene was used to induce tumorigenesis 

might be subject to different interpretation if these tumors arose exclusively from stem cell 

and progenitor populations.   
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The MMTVrtTA/H2BGFP induction data also differed from the expression pattern 

observed in the Rosa26rtTA/H2BGFP model, which found no correlation between 

H2BGFP expression and mammary lineage markers by either flow cytometry or 

immunostaining, even after label retention.  Although the MMTVtTA/H2BGFP might be 

expected to have an expression pattern similar to that of MMTVrtTA/H2BGFP, 

MMTVtTA gene induction was found to be significantly lower in the mammary gland, and 

higher in the lymphoid system than in the MMTVrtTA system.  This is most likely to be the 

result of different transgene locations, although it is possible that the different expression 

patterns are due to differences between the reverse tetracycline transactivator and 

tetracycline transactivator.  The location of the MMTV promoter on the nucleosome has 

been previously reported to strongly affect MMTV promoter activity [58].  Unfortunately, at 

the time I was conducting experiments using the MMTVtTA mice, markers for mouse 

mammary stem cells and progenitors had not been published; therefore, I have no data to 

directly compare MMTVtTA induction with the MMTVrtTA induction in mammary stem 

cell/progenitor compartments.  Although this remarkable pattern of MMTVrtTA induction 

of H2BGFP is most likely due to MMTVrtTA activity, I can draw no conclusion about 

whether the MMTV promoter itself, �W�K�H���W�U�D�Q�V�J�H�Q�H�·�V���O�R�F�D�W�L�R�Q���L�Q���W�K�H���J�H�Q�R�P�H�����R�U���E�R�W�K�����D�U�H��

directly responsible for the pattern of MMTVrtTA activity in the mammary epithelial stem 

cell/progenitor compartments.   

The observed expression pattern in MMTVrtTA/H2BGFP MECs raised the 

possibility that any increased stem cell/progenitor activity in LRC populations was a product 

of H2BGFP label retention or induction.  Therefore, I performed limiting dilution 

transplants of H2BGFP+ and H2BGFP- MEC populations from mammary glands that had 
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been induced but not chased, as well as glands from label retention experiments.  I observed 

no improvement in repopulation ability due to label retention.   

Based on these experiments, I am unable to draw any conclusions about histone 

label retaining cells in the mammary gland.  It remains possible that histone label retention 

assays could yield previously unknown mammary epithelial cell types.  At present, the 

H2BGFP label retention system is limited by the available reagents for inducing H2BGFP 

expression in specific tissues.   

Interestingly, I found that H2BGFP+/CD24+/ CD29lo MECs were able to produce 

mammary outgrowths while H2BGFP-/CD24+/CD29lo cells were unable to do so (Figure 3-

21, 3-22).  I concluded that MMTVrtTA/H2BGFP induction in the mammary gland labels a 

subpopulation within the CD24+/CD29lo compartment which has different properties from 

the bulk of the CD24+/CD29lo cells, and might represent a novel multipotent progenitor 

with in vivo reconstitution ability.  Characterization of the MEC populations labeled by 

MMTVrtTA/H2BGFP induction is covered in the next chapter of this thesis.   
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Chapter 4 Evidence for a novel 
multipotent mammary progenitor with 
pregnancy-specific activity 
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Introduction  

 Studies of mammary gland development have contributed to our understanding of 

the mammary stem cell hierarchy, which establishes the mammary architecture during 

puberty and gives rise to milk-producing alveoli during pregnancy.  The existence of 

mammary stem cells was established by demonstrating that a single mammary epithelial cell 

can give rise to a fully functional mammary gland [12, 13, 25].  Lineage tracing and 

differentiation studies have provided evidence for lineage-specific mammary progentiors [12, 

13, 38].  Although markers for mammary stem cells and progenitors have been identified, 

these populations have not been isolated to purity and our understanding of how they 

function in different stages of mammary development remains incomplete.   

 In the previous chapter of this thesis, I described experiments in which I attempted 

to isolate and characterize mammary stem cells and progenitors through isolation of cells 

that retain fluorescently tagged histone 2B after a chase period.  I unexpectedly discovered 

that MMTVrtTA induced H2BGFP expression principally in the CD24+/CD29+ and 

CD24+/CD29lo populations, which contain stem cells and progenitors, respectively.  

Furthermore, I found that the H2BGFP+/CD24+/CD29lo population was able to give rise to 

multi-lineage mammary outgrowths in vivo.  The CD24+/CD29lo population was originally 

reported to have no in vivo repopulation ability; however, while my work was in progress, 

other groups also reported that CD24+/CD29lo MECs could give rise to limited mammary 

outgrowths [35, 36].  Additionally, CD24+/CD49f lo MECs, which were also reported to have 

no in vivo potential, were found to give rise to mammary outgrowths able to form alveoli in 

pregnant recipients [35].  These studies suggested the existence of multipotent mammary 

progenitors in these compartments.   
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To determine whether MMTVrtTA/H2BGFP expression labels novel mammary stem cells 

or progenitors, I have assayed these MMTVrtTA/H2BGFP MEC populations for in vivo and 

in vitro growth ability and studied their gene expression profiles.  This chapter reports 

evidence for a novel pregnancy-activated multipotent progenitor within the mouse 

mammary gland, and describes its functional properties.   

Results 

MMTVrtTA/H2BGFP expression in the CD24+/CD29+ compartment does 

not label long term mammary stem cells 

 In the hematopoietic system, stem cells have been sub-categorized based on their 

ability to reconstitute multi-lineage tissues over numerous serial transplants.  Hematopoietic 

stem cells capable of sustaining developmental proliferation indefinitely are referred to as 

long-term stem cells, while stem cells that are only able to regenerate for only a few rounds 

of serial transplantation are known as short-term stem cells[115].  Analogous populations 

may exist in the mammary gland, but have not yet been positively identified.   

 Previous transplant experiments comparing MEC populations from mammary 

glands of induced MMTVrtTA/H2BGFP mice demonstrated that 

H2BGFP+/CD24+/CD29+ and H2BGFP-/CD24+/CD29+ MECs were functionally 

indistinguishable (Figure 3-21).  Both populations repopulated the mammary gland at similar 

frequencies, which were consistent with previously published in vivo transplant frequencies of 

the unfractionated CD24+/CD29+ cells [12].  However, these assays did not address the 

long-term repopulation potential of these populations, as defined by the ability of these cells 

to serially transplant over many generations.   
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 To test the long-term repopulating activity of MMTVrtTA/H2BGFP MECs, each of 

the four populations was sorted from the mammary glands of four week-old 

MMTVrtTA/H2BGFP females by flow cytometry.  In each experiment, each MEC 

population was injected into 10 cleared fat pads of syngeneic mice in 500-cell aliquots.  

Recipient mice were treated with doxycycline to promote H2BGFP expression.  After six 

weeks, transplanted fat pads were harvested and pooled according to transplanted cell type, 

analyzed by flow cytometry and re-transplanted. MMTVrtTA/H2BGFP populations were 

serially transplanted to secondary transplants in two experiments, and to a tertiary transplant 

in one experiment.  H2BGFP+/CD24+/CD29+ and H2BGFP-/CD24+/CD29+ MECs gave 

rise to serially transplantable mammary glands (Figure 4-1c, d).  The transplanted 

CD24+/CD29+ gave rise to smaller percentages of CD24+/CD29+ and CD24+/CD29lo 

MECs than was found in the control glands; since serial transplants took place at six-week 

intervals, and mouse mammary fat pads are usually filled around eight to ten weeks post-

birth, these percentages probably reflect incompletely filled mammary fat pads and higher 

percentages of non-epithelial cells.  Surprisingly, only H2BGFP+/CD24+/CD29+ cells gave 

rise to mammary glands expressing H2BGFP.  This result suggested that H2BGFP 

expression was permanently turned off in the H2BGFP-/CD24+/CD29+ populations.  To 

eliminate the possibility that the apparent H2BGFP-/CD24+/CD29+ outgrowths were 

actually the product of endogenous MECs from incompletely cleared mammary fat pads, 

genomic DNA was harvested from transplant mammary glands after tertiary transplants and 

tested by PCR for MMTVrtTA and H2BGFP transgenes.  Both transgenes were present in 

H2BGFP+/CD24+/CD29+ and H2BGFP-/CD24+/CD29+-derived glands, demonstrating 

their transgenic origin.  Therefore, both CD24+/CD29+ populations are capable of long 

term in vivo stem cell activity, but H2BGFP expression in the CD24+/CD29+ population is  
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Figure 4- 1. Serial Transplants Analysis of MMTVrtTA/H2BGFP Populations. Representative flow cytomtetry 
plots of serial transplants.   MMTVrtTA/H2BGFP MEC populations were sorted and transplanted at six week intervals; 
two experiments were carried out to secondary transplants, and one experiment was carried to tertiary transplant.  Serially 
transplanted glands were analyzed by flow cytometry for expression of CD24/CD29 (left) and H2BGFP (right).  Analysis 
of a) WT MECs b) empty mammary fat pads c) H2BGFP+/CD24+/CD29+ d) H2BGFP-/CD24+/CD29+ e) 
H2BGFP+/CD24+/CD29lo f) H2BGFP-/CD24+/CD2 9lo 
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epigenetically inherited and does not distinguish functionally different populations of 

CD24+/CD29+ cells.   

Notably, the H2BGFP+/CD24+/CD29lo population was unable to serially transplant, 

suggesting a progenitor origin for H2BGFP+/CD24+/CD29lo-derived mammary 

outgrowths.   

H2BGFP+/CD24+/CD29lo contain a population of pregnancy-activated 

multipotent mammary progenitors 

 In Chapter 3, I showed that H2BGFP+/CD24+/CD29lo cell transplants were able to 

form small mammary glandular structures (Figure 3-21, 3-22).  Although diminutive, these 

structures contained both luminal and myoepithelial/basal lineages and were able to produce 

milk, but had no serial transplantation ability (Figure 4-1).  By contrast, H2BGFP-

/CD24+/CD29lo MECs were unable to produce any mammary outgrowths in vivo, suggesting 

different functions for H2BGFP+ and H2BGFP- cells within the CD24+/CD29lo 

compartment.  Therefore, MMTVrtTA induction of H2BGFP labels a CD24+/CD29lo sub-

population containing a previously uncharacterized multipotent mammary progenitor with in 

vivo repopulation potential.   

 In the transplant experiments reported in Chapter 2, some transplant recipient mice 

were maintained as virgins and others were mated post- transplant to induce pregnancy and 

increase the size and visibility of the mammary outgrowths.  To determine whether 

pregnancy affects the repopulation rate of MMTVrtTA/H2BGFFP populations, the limiting 

dilution data from virgin and pregnant mice were reanalyzed (Figure 4-2).  Mammary 

outgrowths from these experiments were also scored for their size (Figure 4-3, Figure 4-4, 

Figure 3-22).  The mammary repopulation abilities of the H2BGFP+/CD24+/CD29+ and 
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H2BGFP-/CD24+/CD29+ populations were similar in virgin and pregnant recipients (Figure 

4-2a, b, e, f).  Based on these data, I conclude that MMTVrtTA/H2BGFP expression in the 

CD24+/CD29+ compartment does not label MECs with different repopulating activity 

during pregnancy.   

 By contrast, the repopulating activity of H2BGFP+/CD24+/CD29lo MECs was 

nearly five-fold higher in pregnant mice compared to virgins.  The functional MRU 

frequency was 1/350 in pregnant mice, compared to 1/1,600 in virgins (Figure 4-2c, g).  As 

described in Chapter 2, outgrowths from H2BGFP+/CD24+/CD29lo MECs were smaller 

than glands derived from CD24+/CD29+ populations (Figures 3-22, 4-4, 4-5, 4-6), but still 

contained all mammary lineages and were able to produce milk (Figure 4-7).  H2BGFP-

/CD24+/CD29lo MECs were unable to produce mammary outgrowths in either virgin or 

pregnant mice (Figure 4-2d, h). 

To directly address whether H2BGFP+/CD24+/CD29lo MECs selectively expand 

during pregnancy, I performed a controlled, separate series of cleared mammary fat pad 

transplants (n=3), focusing specifically on the H2BGFP+/CD24+/CD29lo population.  Half 

of the mice injected with H2BGFP+/CD24+/CD29lo MECs were systematically made 

pregnant post-transplant for a direct comparison of H2BGFP+/CD24+/CD29lo 

repopulation ability in virgin vs. pregnant mice (Figure 4-6).  In these experiments, the 

calculated MRU frequency was 1/3,800 in virgin mice and 1/280 in pregnant mice.  These 

data indicated that MMTVrtTA/H2BGFP expression in the CD24+/CD29lo compartment 

labels a population containing multi-potent progenitors that exhibit proliferative activity 

preferentially during pregnancy.  

Shackleton et al. demonstrated that the CD24+/CD29+ and CD24+/CD29lo MEC 

populations could give rise to different structures when grown on a commercially available    
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Figure 4- 2. MMTVrtTA/H2BGFP Populations in Virgin Vs. Pregnancy. Limiting dilution transplants in virgin 
recipients (a-d) and pregnant recipients (e-h) of MMTVrtTA/H2BGFP populations a,e) H2BGFP+/CD24+/CD29+ b,f) 
H2BGFP-/C D24+/CD29+ c,g) H2BGFP+/CD24+/CD29lo d,h) H2GFP-/CD24+/CD29lo 
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Figure 4- 3. Mammary Outgrowth Size Scoring. Transplanted mammary fat pads were fixed, stained for carmine alum 
and scocred for size as follows.   
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Figure 4- 4. Mammary Outgrowth Size Scoring of MMTVrtTA/H2BGFP Population Transplants. Outgrowths 
from MMTVrtTA/H2BGFP induction transplants were scored for size based on ability to fill the fat pad (see Figure 3-5) in 
virgin recipients (a-d) and pregnant recipients (e-h) of MMTVrtTA/H2BGFP populations a,e) 
H2BGFP+/CD24+/CD29+ b,f) H2BGFP-/CD24+/CD29+ c,g) H2BGFP+/CD24+/CD29lo d,h) H2GFP-
/CD24+/CD29lo 
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�U�H�F�R�Q�V�W�L�W�X�W�H�G���E�D�V�H�P�H�Q�W���P�H�P�E�U�D�Q�H���J�H�O�����0�D�W�U�L�J�H�O�Œ�������&�'����+/CD29+ MECs gave rise to 

bilayer acinar structures, filled aciniar structures and tubular growths, while CD24+/CD29lo 

MECs gave rise to single-layer acini which were consistently hollow.  These Matrigel growth 

phenotypes are believed to be reflective of the stem/progenitor fate of these MEC 

populations.  To test the 3D growth of MMTVrtTA/H2BGFP populations, MECs were 

sorted and grown on Matrigel [12, 13].  H2BGFP+/CD24+/CD29+ and H2BGFP-

/CD24+/CD29+ MECs produced 11±5 and 13±3 acini per 1,000 cells cultured, respectively.  

Within the CD24+/CD29lo population, H2BGFP+ MECs gave rise to 100±11 and H2BGFP-

/CD24+/CD29lo MEC gave rise to 126±17 acini per 1,000 cells cultured.  Therefore, no 

differences in 3D acini growth were detected in H2BGFP+ and H2BGFP- subpopulations of   

Figure 4- 5. H2BGFP+/CD24+/CD29lo Transplants - Virgin vs. Pregnancy. H2BGFP+/CD24+/CD29lo MECs 
were sorted and transplanted in limiting dilutions.  Mammary glands were scored for outgrowths (a, b) and size (c, d) in 
virgins (a, c) and pregnant mice (b, d)  
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Figure 4- 6. Mammary Outgrowth from H2BGFP+/CD24+/CD29lo MECs. Transplanted fat pads were harvested, 
�I�L�[�H�G���D�Q�G���Y�L�V�X�D�O�L�]�H�G���E�\���D�����Z�K�R�O�H���P�R�X�Q�W�L�Q�J�����I�R�O�O�R�Z�H�G���E�\���V�H�F�W�L�R�Q�L�Q�J���D�Q�G���V�W�D�L�Q�L�Q�J���I�R�U���E�����*�)�3���D�Q�G���¢�����L�Q�W�H�J�U�L�Q���������[�����F�����&�.������
�*�)�3���D�Q�G���S�������������[�����G�����&�.���������*�)�3���D�Q�G���¢�����L�Q�W�H�J�U�L�Q���������[�����H�����'�$�3�,�����*�)�3���D�Q�G��milk 
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Figure 4- 7. H2BGFP+/CD24+/CD29lo Transplants �² Second Set, Whole Mounts. Mammary fat pads injected with 
limiting dilutions of H2BGFP+/CD24+/CD29lo MECs were harvested, fixed and stained with carmine alum.  Mice were 
either maintained as virgins (lower right fat pad) or made pregnant (all other whole mounts). 
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either CD24+/CD29+ or CD24+/CD29lo MECs.  

Gene expression analysis supports biologically distinct roles for 

H2BGFP+/CD24+/CD29lo and H2BGFP -/CD24+/CD29lo populations  

 The above data provides evidence that H2BGFP+ CD24+/CD29lo MECs contain a 

subpopulation of pregnancy-activated multipotent progenitors.  Although the in vivo data was 

striking, it shed little light on the biochemical or molecular mechanisms of  these 

progenitors.   To further characterize the MMTVrtTA/H2BGFP MEC populations, RNA 

was isolated from each of the four MMTVrtTA/H2BGFP populations sorted from four 

week old double transgenic females and analyzed for differences in gene expression on the 

Illumina Mouse Microarray platform.  Unsupervised clustering of the data sets segregated 

the samples into the original FACS-sorted populations, as predicted by H2BGFP expression 

and functional differences.  Because I was unable to find any functional difference between 

the CD24+/CD29+ populations in primary transplants in virgin and pregnant mice, serial 

transplants and 3D in vitro growth assays, this gene expression segregation suggests that there 

may be a difference between the H2BGFP+/CD24+/CD29+ and H2BGFP-/CD24+/CD29+ 

populations which I have been unable to detect.   

This analysis was focused on gene expression data from the CD24+/CD29lo 

populations.  Comparison of the gene expression levels of the H2BGFP+/CD24+/CD29lo 

and H2BGFP-/CD24+/CD29lo populations revealed that 257 probes showed statistically 

significant differences in expression between the H2BGFP+  and H2BGFP- populations of 

the CD24+/CD29lo compartments, based on the t-test p-value threshold of p<0.05.  

Fourteen of these probes, representing eleven genes, were associated with mammary gland 

development and differentiation as defined by the Gene Ontology database.  Each of the 
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mammary-related transcripts, except for mucin 1 (Muc1), were expressed at much lower 

levels in the H2BGFP+/CD24+/CD29lo population (Figure 4-8).  These included well-

documented mediators of mammary gland development, such as estrogen receptor 1, 

fibroblast growth factor receptor 2, prolactin receptor, and amphiregulin.  To validate the 

microarray data, mRNA was harvested from sorted H2BGFP+/CD24+/CD29lo and 

H2BGFP-/CD24+/CD29lo MECs from four week old double transgenic mice and 

analyzed by qPCR to determine the expression levels of genes of interest (Figure 4-9).  The 

qPCR assays confirmed the microarray data for nine of the eleven mammary development 

genes: amphiregulin (AREG), caveolin 1 (Cav1), estrogen receptor 1 (Esr1), fibroblast 

growth factor receptor 2 (FGFR2), stem cell antigen 1 (Ly6a/Sca-1), mucin 1 (Muc1), 

prolactin receptor (PRLR), roundabout homolog 1 (Robo1) and wingless-type MMTV 

integration site family, member 5A (Wnt5a).   

 To compare the H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo 

populations with known mammary epithelial subtypes, data from this microarray was 

Figure 4- 8. Microarray Data for Mammary Development and Differentiation Genes. 257 probes were found to have 
statistically significant differences between H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo.  The 14 probes 
displayed above are associated with mammary development and differentiation, according to the Gene Ontology database.   
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analyzed with previously reported data from mammary stem cells (CD24+/CD29+), luminal 

progenitors (CD24+/CD29lo/CD61+) and mature luminal MECs (CD24+/CD29lo/CD61-), 

focusing on the differentially expressed genes in H2BGFP+/CD24+/CD29lo and H2BGFP-

/CD24+/CD29lo MECs [116] (Figure 4-10).  Transcripts for these genes were significantly 

enriched (p = 2.8x10-35) in genes that distinguished between the CD24+/CD29+, 

CD24+/CD29lo/CD61+ and CD24+/CD29lo/CD61+  subpopulations (p<0.05).  This result 

Figure 4- 9. Relative Fold Difference of Mammary Development and Differentiation Genes Identified by 
Microarray. Relative fold difference between transcripts in H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo 
cells.  Results are displayed in a linear plot (top) and a log plot (bottom). 
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was expected since CD24 and CD29 were used in the isolation of both populations.  

However, transcripts expressed at higher levels in H2BGFP+/CD24+/CD29lo are 3.6-fold 

enriched (p=2.5x10-16) in genes which were also expressed highly in the 

CD24+/CD29lo/CD61+  MECs, lower levels in CD24+/CD29lo/CD61-  mature cells and 

lowest levels in the CD24+/CD29+ stem cell compartment.  By contrast, the genes which 

were expressed at low levels in the H2BGFP+/CD24+/CD29lo population were enriched 

(p=1.4x10-20) in genes which also expressed at the lowest levels in CD24+/CD29+ MECs and 

the highest in the CD24+/CD29lo/CD61-   mature luminal population.  These data provide 

evidence that H2BGFP+/CD24+/CD29lo cells share characteristics with both mammary 

stem cells and luminal-limited progenitors, a phenotype which could be expected in a 

multipotent progenitor.  To further characterize the properties of MMTVrtT/H2BGFP 

MEC populations, the four populations were isolated by FACS, cytospun onto slides and 

immunostained for various mammary lineage markers (Figure 4-11).  The immunostaining of 

�¢�����L�Q�W�H�J�U�L�Q���Z�D�V���K�L�J�K�H�U���L�Q���E�R�W�K���&�'����+/CD29+ populations, confirming the flow cytometry 

data.  CD24+/CD29+ populations were found to express higher levels of p63 and CK14 and 

CD24+/CD29lo populations were found to express more CK8.  These data match previous 

observations on the unfractionated CD24+/CD29+ and CD24+/CD29lo populations [40].  

Interestingly, the cytospin immunostainings confirmed the microarray and qPCR data that 

H2BGFP-/CD24+/CD29lo cells express higher levels of AREG.  H2BGFP-/CD24+/CD29lo 

cells also expressed higher levels of PR and GR, which suggests a more differentiated fate 

for these cells.  It is interesting to note that higher levels of PR and GR in an H2BGFP- 

population supports the hypothesis that the location of the MMTVrtTA transgene, not  
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Figure 4- 10. Comparison of MMTVrtTA/H2BGFP Microarray Data with Visvader Microarray. Expression of 
genes which were differentially regulated between H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo (left 
columns) were analyzed previously published arrays of mammary stem cells (CD24+/CD29+), luminal progenitors 
(CD24+/CD29lo/CD61+) and mature luminal MECs (CD24+/CD29lo/CD61-). 
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MMTV promoter activity, is responsible for the labeling of CD24+/CD29lo cells with 

unique properties in vivo.  

Discussion & Future Directions 

 Using the MMTVrtTA transgenic mouse to induce H2BGFP expression in the 

mammary gland, I have found that H2BGFP induction in the CD24+/CD29lo progenitor-

containing compartment labels a population which contains a multipotent progenitor that is 

specifically activated during pregnancy.  This conclusion that GFP expression distinguishes 

two distinct populations of MECs is corroborated by data from mRNA expression analyses, 

which demonstrate that a large set of transcripts are differentially expressed in 

H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo cells.  In contrast, I was unable 

to observe any functional differences between the H2BGFP+/CD24+/CD29+ and H2BGFP-

/CD24+/CD29+ populations.   

Figure 4- 11. Cytospin Analysis of MMTVrtTA/H2BGFP Populations. MMTVrtTA/H2 BGFP MECswere 
sorted, cytospun and immunostained for various markers.   
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H2BGFP+/CD24+/CD29lo MECs can form small mammary glandular structures in 

vivo, an ability which increases five- to ten-fold when the recipient mice are made pregnant 

post-transplant (Figure 4-2).  H2BGFP-/CD24+/CD29lo MECs are unable to form 

detectable mammary structures in vivo.  H2BGFP+/CD24+/CD29lo-derived outgrowths are 

significantly smaller than outgrowths from CD24+/CD29+ MECs, but have the same 

bilayer structure and cellular composition of normal mammary glands, and are able to 

produce milk; however, H2BGFP+/CD24+/CD29lo-derived mammary structures cannot be 

serially transplanted.  Expression profiling of these MEC populations suggests that they are 

distinct, and that H2BGFP+/CD24+/CD29lo MECs are less differentiated than H2BGFP-

/CD24+/CD29lo MECs.  This provides evidence that the H2BGFP+/CD24+/CD29lo 

compartment contains a population of pregnancy-activated multipotent mammary 

progenitors.   

 These progenitors were identified in a population isolated from female mice during 

early puberty.  The existence of pregnancy-activated progenitors in the mammary gland 

before sexual maturity indicates that these progenitors are produced during pubertal 

development and remain dormant until pregnancy.  For the in vivo growth assays, cleared fat 

pad transplants were performed on three week old mice, and mammary fat pads were 

harvested six weeks later, at the end of puberty, or during late pregnancy.  In 

H2BGFP+/CD24+/CD29lo MEC transplants, few mammary outgrowths had developed in 

virgin mice by the end of puberty, suggesting that the progenitor cells are relatively 

unresponsive to the hormonal signals of puberty and require pregnancy hormones to 

develop an outgrowth detectable by carmine alum staining.  Because pregnancy was induced 

3-4 weeks post-transplant, these pregnancy-activated progenitors apparently survive in virgin 
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mice, but are for the most part unable to develop into detectable mammary epithelial 

structures in the mammary fat pads.   

It is unknown whether H2BGFP-/CD24+/CD29lo cells do not form mammary 

outgrowths in vivo because of a lack of proliferation or a failure to survive.  Further studies 

using these MEC populations in combination with a powerful label, such as luciferase, which 

can be detected by imaging the live animal, could determine whether proliferation, survival 

or both are critical to the activity of mammary progenitors in vivo.   

The evidence that a few mammary outgrowths were found in virgin mice suggests 

that either these H2BGFP+/CD24+/CD29lo MECs can proliferate, albeit minimally, in 

response to pubertal signaling or that H2BGFP+/CD24+/CD29lo MECs contain a mixed 

population of progenitors that respond to puberty and another larger number of progenitors 

that respond to pregnancy.  As the existence of pregnancy-independent multipotent 

mammary progenitors has been reported [35, 36], and the calculated MRU frequencies of 

H2BGFP+/CD24+/CD29lo cells suggest that these MECs represent a mixed population, 

either hypothesis could be correct.  Further purification and in vivo testing of 

H2BGFP+/CD24+/CD29lo MECs is required to determine whether this population contains 

more than one class of multipotent mammary progenitor.   

The results from expression analysis of H2BGFP+/CD24+/CD29lo MECs and 

H2BGFP-/CD24+/CD29lo MECs supports the hypothesis that these populations are 

biologically distinct, and that H2BGFP expression labels a progenitor population within the 

CD24+/CD29lo compartment.  H2BGFP+/CD24+/CD29lo MECs express markedly lower 

levels of transcripts involved in mammary development and differentiation.  These 

transcripts include Sca-1, which is upregulated in differentiated MECs [12], AREG, which is 

required for ductal elongation [117], PRLR and Cav1, which are involved in alveologenesis 
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[118, 119], and FGFR2, which is required for TEB development, mature luminal cell survival 

and alveologenesis [120, 121].  Interestingly, Muc1, which is associated with luminal cells, has 

increased transcript levels in H2BGFP+/CD24+/CD29lo cells, contrasting with the 

multipotent progenitor function of the H2BGFP+/CD24+/CD29lo population.  

Interestingly, when compared with populations of mammary stem cells, luminal progenitors 

and luminal cells as defined by expression of CD24, CD29 and CD61, the 

H2GFP+/CD24+/CD29lo population bore characteristics of both stem cells and luminal 

progenitors.  In particular, it is suggestive that genes  expressed highly in H2BGFP+/ 

CD24+/CD29lo are enriched for luminal progenitor transcripts, while 

H2BGFP+/CD24+/CD29lo MECs share inhibited transcripts with mammary stem cells.  

This implies that the H2BGFP+/CD24+/CD29lo population has a common origin with, or 

may even give rise to CD24+/CD29lo/CD61+  MECs, but are less differentiated than 

luminal progenitors.  These data support my hypothesis that H2BGFP+/CD24+/CD29lo 

MECs contain multipotent progenitors.    

 The CD24+/CD29+ compartment has been reported to contain both mammary stem 

cells and myoepithelial-restricted progenitors [38].  Therefore, a subdivision of the 

CD24+/CD29+ population could represent the differentiation of functionally different MEC 

subtypes.  Expression profiling data from H2BGFP+/CD24+/CD29+ and H2BGFP-

/CD24+/CD29+ MECs independently segregated, suggesting a functional difference 

between these populations.  However, functional proof of this difference has been elusive.  

Similar mammary repopulation rates and outgrowth morphologies of H2BGFP+ and 

H2BGFP- MECs in the CD24+/CD29+ compartment suggest that MMTVrtTA/H2BGFP 

expression does not distinguish between these populations in primary transplants.  Another 

possibility was that H2BGFP expression in the CD24+/CD29+ compartment delineates long 
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term and short term stem cells, which would be expected to have differential repopulation 

abilities in serial transplants.  However, no difference in serial transplant ability was detected 

between these populations.  Given that mammary epithelial cells have demonstrated a limit 

of between four and seven rounds of serial transplantation before they can no longer form a 

detectable gland [122], it is possible that more extensive experimentation could demonstrate 

currently undetected differences between these populations.    

 My unexpected finding from these experiments is that CD24+/CD29+ -derived 

glands maintain the H2BGFP expression of the parental population.  Outgrowths from 

H2BGFP-/CD24+/CD29+ MECs did not express H2BGFP, even when recipients were 

constantly treated with doxycycline.  This result suggests that transcription of either rtTA or 

H2BGFP is epigenetically silenced in the stem/progenitor cells of this population and raises 

questions about the timing and initiation of MMTVrtTA induction of H2BGFP in the 

mammary gland.  Because MECs were transplanted into pubertal females, this data suggests 

that MMTVrtTA/H2BGFP expression is determined (if not necessarily initiated) by three 

weeks of age, and that this fate is inherited by all descendants.  At present, it is unknown 

whether MMTVrtTA induction of H2BGFP is a stochastic event or whether it is due to 

MMTV promoter activity and/or the insertion site of the MMTVrtTA transgene.  However, 

the difference in in vivo repopulating activity and differential gene expression profiles of the 

H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo populations suggests that 

H2BGFP delineation of these two populations is not a random event.   

  A secondary goal of the microarray analysis was the identification of potential cell 

surface markers which could replace or even improve upon MMTVrtTA/H2BGFP 

expression for isolation of the H2BGFP+/CD24+/CD29lo population.  As is discussed in the 

Appendix, 24 different candidate cell surface markers were selected from the microarray and 
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from known markers of the mammary stem cell hierarchy and tested for the ability to 

distinguish the H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo populations.  

Although no markers clearly separated these two populations, CD14 was identified as a 

promising potential marker for H2BGFP+/CD24+/CD29lo MECs.  While these experiments 

were being conducted, Visvader and colleagues also identified the 

CD24+/CD29lo/CD14+/c -Kit - population as an alveolar progenitor population based on in 

vitro activity [32].  My findings support the hypothesis that CD14 might act as a marker for 

populations with pregnancy-specific activity.   The CD24+/CD29+ compartment has been 

reported to contain both mammary stem cells and myoepithelial-restricted progenitors [38].  

Therefore, a subdivision of the CD24+/CD29+ population could represent the 

differentiation of functionally different MEC subtypes.  However, the similar mammary 

repopulation rates and outgrowth morphologies of H2BGFP+ and H2BGFP- MECs in the 

CD24+/CD29+ compartment suggest that MMTVrtTA/H2BGFP expression does not 

distinguish between these populations.  Another possibility was that H2BGFP expression in 

the CD24+/CD29+ compartment delineates long term and short term stem cells, which 

would be expected to have differential repopulation abilities in serial transplants.  However, 

no difference in serial transplant ability was detected between these populations.  Given that 

mammary epithelial cells have demonstrated a limit of between four and seven rounds of 

serial transplantation before they can no longer form a detectable gland [122], it is possible 

that more extensive experimentation could demonstrate currently undetected differences 

between these populations.    

 Unexpectedly, these experiments demonstrated that CD24+/CD29+ -derived glands 

maintain the H2BGFP expression of the parental population.  H2BGFP-/CD24+/CD29+ 

MECs were able to give rise to serially transplantable mammary outgrowths that did not 
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express H2BGFP, even when recipients were constantly treated with doxycycline.  This 

result suggests that transcription of either rtTA or H2BGFP is epigenetically silenced in the 

stem/progenitor cells of this population and raises questions about the timing and initiation 

of MMTVrtTA induction of H2BGFP in the mammary gland.  Because MECs were 

transplanted into pubertal females, this data suggests that MMTVrtTA/H2BGFP expression 

is determined (if not necessarily initiated) by three weeks of age, and that this fate is inherited 

by all descendants.  At present, it is unknown whether MMTVrtTA induction of H2BGFP is 

a stochastic event or whether it is due to MMTV promoter activity and/or the insertion site 

of the MMTVrtTA transgene.  However, the different in vivo repopulating activity and 

different gene expression profiles of the H2BGFP+/CD24+/CD29lo and H2BGFP-

/CD24+/CD29lo populations suggests that H2BGFP delineation of these two populations is 

a non-random event. 

Studies have demonstrated that disruption of specific signaling pathways can 

abrogate mammary development during either puberty without affecting alveologenesis, or 

vice versa [123-125].  This has established that mammary proliferation during puberty and 

pregnancy are separate processes, involving different biochemical mechanisms.  The data 

discussed in this chapter of my thesis provides evidence that different mammary epithelial 

cell types are involved in these different modes of mammary development.  While previously 

characterized stem cells are responsible for ductal elongation and formation of the mammary 

tree, a different population of pregnancy-activated progenitors could give rise to the milk-

producing alveoli during pregnancy.  This is supported by the evidence of Smith and 

colleagues, who found a population of parity-induced MECs (PI-MECs) which were able to 

contribute to alveoli during pregnancy, but were unable to form mammary ducts during 

puberty [42, 126].  Furthermore, Van Keymeulen et al., discovered in lineage tracing studies 
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of K8-expressing cells that some of these MECs were able to repeatedly give rise to alveoli, 

but that not all alveoli were derived from K8 lineage cells; this suggests that K8 expression 

identified some, but not all pregnancy-activated progenitors in the mammary gland [38].  My 

data contributes to evidence for a pregnancy-activated multipotent progenitor in the 

mammary gland.   

Further purification and study of the multipotent pregnancy-activated progenitor 

population could further illuminate the dynamics of the mammary gland during pregnancy, 

providing valuable insights about mammary gland biology and breast cancer.   
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Thesis Summary 

 The original goal of my thesis research was to identify, isolate and characterize 

mouse mammary epithelial cells with stem cell or progenitor activity.  My initial approach 

was to determine whether histone label retention enriches for mammary epithelial stem 

cells/progenitors.  In Chapter 3 of this thesis, I examined transgenic models in which 

H2BGFP was induced in different tissue contexts, using the tetracycline transactivator or the 

reverse tetracycline transactivator under the control of four different promoters.  I found 

that CMVrtTA did not express in the mammary gland.  MMTVtTA and Rosa26rtTA were 

determined to be unsuitable for H2BGFP label retention experiments due to a combination 

of low H2BGFP induction in the mammary gland and potential contamination from non-

mammary tissues expressing H2BGFP.  In the course of these studies, I also observed that 

transplantation of normal MECs into the cleared fat pads of NOD-SCID mice resulted in 

low levels of mammary gland reconstitution, which led to the hypothesis that NOD-SCID 

mammary fat pads lack a critical factor for the development of transplanted MECs.  The 

best model tested expressed the reverse tetracycline transactivator under control of the 

Mouse Mammary Tumor Virus promoter (MMTVrtTA).  This model demonstrated 

mammary-specific induction of H2BGFP, as well as the highest level of H2BGFP 

expression in MECs.   

Histone label retention experiments were performed using the 

MMTVrtTA/H2BGFP transgenic system.  This led to the unexpected observation that 

MMTVrtTA-induced expression of H2BGFP in the mammary gland occurred exclusively in 

MECs within the CD24+/CD29+ and CD24+/CD29lo compartments, which contain stem 

cells and mammary progenitors, respectively.  When MMTVrtTA/H2BGFP label retaining 

cells were tested in transplant assays, they were found to have comparable in vivo 
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reconstitution activity as H2BGFP-expressing MECs prior to label retention.  I concluded 

that histone label retention does not enrich for mammary stem cell/progenitor populations.  

However, MMTVrtTA/H2BGFP expression within the mammary stem cell and progenitor 

compartments could potentially label novel populations within these MEC compartments.  

Interestingly, I found that H2BGFP expression in the CD24+/CD29lo compartment labeled 

a MEC population with the ability to develop into small mammary outgrowths in vivo.  This 

suggested the existence of a subpopulation of multipotent progenitors in the CD24+/CD29lo 

compartment.  At the time of these experiments, CD24+/CD29lo MECs had demonstrated 

no in vivo repopulation ability, and therefore this was a notable finding.   

In Chapter 4 of this thesis, I described my investigations of the functional properties 

of H2BGFP+/CD24+/CD29+, H2BGFP-/CD24+/CD29+, H2BGFP+/CD24+/CD29lo and 

H2BGFP-/CD24+/CD29lo cells.  I found that H2BGFP+ and H2BGFP- populations in the 

CD24+/CD29+ compartment could not be distinguished based on the repopulation activity 

of primary transplants in virgin or pregnant mice, the ability to be serially transplanted or 

behavior in 3D spheroid growth assays.  However, H2BGFP+ cells within the 

CD24+/CD29lo compartment had the ability to develop mammary outgrowths in vivo, while 

H2BGFP-/CD24+/CD29lo MECs were unable to do so.  Althought these outgrowths were 

significantly smaller than the glands derived from CD24+/CD29+ MECs and were unable to 

serially transplant, they contained luminal and myoepithelial/basal cells and were able to 

produce milk.  Further investigations revealed that the repopulating ability of 

H2BGFP+/CD24+/CD29lo MECs is five- to ten-fold higher when recipient mice were made 

pregnant.  Expression analysis of H2BGFP+/CD24+/CD29lo MECs compared to H2BGFP-

/CD24+/CD29lo MECs confirmed that these populations were significantly different, and 

revealed that H2BGFP+/CD24+/CD29lo MECs expressed lower levels of transcripts 
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involved in mammary development and differentiation.  Taken together, these data support 

the hypothesis that the H2BGFP+/ CD24+/CD29lo compartment contains a heretofore 

uncharacterized population containing a multipotent, pregnancy-activated mammary 

progenitor.  Further study of the H2BGFP+/CD24+/CD29lo population is required to 

determine which signals trigger pregnancy-activated proliferation, and the function of these 

cells in repeated pregnancies. 

In the Appendix of this thesis, I described further experiments to evaluate candidate 

cell surface markers for isolation of the pregnancy-activated multipotent progenitors 

contained within the H2BGFP+/CD24+/CD29lo population.  These markers were selected 

from genes that are differentially regulated in H2BGFP+/CD24+/CD29lo and H2BGFP-

/CD24+/CD29lo cells as assessed by my microarray experiments, and from previously 

identified markers of the mammary stem cell hierarchy.  Unfortunately, no single marker or 

combination of tested markers was able to separate the H2BGFP+/CD24+/CD29lo and 

H2BGFP-/CD24+/CD29lo.  However, six markers (CD14, CD49b, EpCAM, FGF2, Jag1 

and Sca-1) demonstrated some degree of separation between the H2BGFP+/CD24+/CD29lo 

and H2BGFP-/CD24+/CD29lo populations, suggesting that these markers could be used 

alone or in combination to separate the pregnancy-activated multipotent progenitor 

population from the bulk of the CD24+/CD29lo MECs.  Further flow cytometry analysis 

demonstrated that CD14 alone was the most promising candidate marker.  Unfortunately, 

transplants of CD24+/CD29lo/CD14+ and CD24+/CD29lo/CD14- MECs in virgin and 

pregnant mice resulted in a mammary repopulation rate far greater than was predicted based 

on analysis of CD14 expression in the CD24+/CD29lo compartment and my previous 

transplant experiments.  This result might have been due to an unusually high concentration 

of growth factors or other biochemical components within the Matrigel used for these 
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injections.  More extensive experiments are required to determine which critical factors in 

Matrigel encourage mammary development, and whether or not they have a physiological 

role.  Simultaneous with these experiments, another group reported that 

CD24+/CD29lo/CD14+/c -Kit - MECs can rise to lactogenic colonies in vitro [32], providing 

evidence for CD14 as a strong candidate marker for isolation of pregnancy-activated 

multipotent progenitors in the mammary gland.   

My findings contribute to the increasing body of work on the mammary epithelial 

stem cell hierarchy, and provide evidence that mammary development during puberty and 

pregnancy are separate processes, involving not only different signaling pathways, but 

different target cells.   

Histone Label Retention in the Mammary Gland 

 Evidence for label retaining cells with stem/progenitor function in the mammary 

epithelium was first provided by the work of Smith and colleagues through experiments in 

which DNA-based labels and estrogen-enhanced pubertal proliferation were utilized to 

identify mammary LRCs [86].  These LRCs were found to be actively cycling, which was 

interpreted as evidence for immortal strand retention, and to express ER and PR [89].  These 

LRCs also were found to contribute to alveologenesis during successive pregnancies [89].  

Notably, subsequent work demonstrated that expression of steroid hormone receptors is 

absent in mammary stem cells (CD24+/CD29+ and CD24+/CD49f+), whereas ~40% of the 

more differentiated CD24+/CD29lo compartment expresses ER and/or PR [40].  These 

results suggest that either DNA label retention identifies a new class of mammary stem cells 

with steroid hormone receptor expression and activity in pregnancy, or that these LRCs are 

progenitor cells, with persistent proliferation capacity during pregnancy.   
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 Label retention assays have been used previously to identify putative stem cells and 

stem cell niches [72, 76, 77]; however, label retention can be technically difficult and 

functionally limited.  Adult stem cells are believed to retain label due to either relative mitotic 

quiescence or asymmetric division of labeled molecules. In either case, label dilution can still 

occur, resulting in a difficult-to-detect signal, particularly if the tissue in question does not 

have a niche containing a concentration of stem cells, such as the epidermal bulge.  

Additionally, DNA label retention using molecules such as BrdU or tritiated thymidine does 

not permit the isolation of live LRCs, limiting the ability to test the functional properties of 

LRCs.  New developments in DNA labeling, such as the use of nucleotide analogs with 

native fluorescence, might eventually eliminate this difficulty [127].   

Currently, the best tool for isolation of LRCs is the tetracycline-inducible H2BGFP 

transgenic mouse.  However, as demonstrated in Chapter 2, H2BGFP pulse-chase 

experiments are limited by the availability of transgenic models able to direct expression of 

H2BGFP in the desired tissue.  Rosa26rtTA and MMTVtTA were able to induce H2BGFP 

expression in the mammary gland, but not exclusively.  Unfortunately, the mammary gland is 

a highly heterogeneous tissue and label retention experiments necessarily result in the 

isolation of a small percentage of cells; therefore, H2BGFP+ non-epithelial cells in the 

mammary gland are a potential source of contamination.  This problem could be 

circumvented by transplanting H2BGFP-induced MECs into the cleared fat pad of a non-

H2BGFP mouse, and monitoring H2BGFP label dilution during pubertal expansion; this 

would, however, greatly increase the expense and difficulty of generating enough LRCs for 

stem cell/progenitor assays.   

 I performed H2BGFP label retention experiments using the Rosa26rtTA and 

MMTVrtTA transgenic systems.  Transplants of the Rosa26rtTA/H2BGFP LRCs produced 
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disappointing results, most likely due to a defect in the NOD-SCID mammary fat pad. 

However, these transgenic mice might still be used to isolate mammary LRCs, after a 

backcross of both strains into the same genetic background and with due consideration for 

potential contamination from non-mammary lineages.  LRCs isolated from the 

MMTVrtTA/H2BGFP system demonstrated no enrichment in mammary stem 

cells/progenitors after pubertal dilution of H2BGFP signal.  However, given the evidence 

that pubertal, estrous and pregnancy-associated expansion of the mammary gland are 

separate processes [35, 123, 124, 128, 129], it is possible that label retention assays conducted 

using repeated estrus cycles or pregnancies could result in the isolation of LRCs with novel 

stem/progenitor functions.   

 Alternatively, future H2BGFP label retention experiments could utilize tetracycline-

inducible strains distinct from the ones that I examined in this thesis research.  For example, 

a model where the CD24+/CD29+ compartment was completely labeled at the beginning of 

a label retention experiment could allow the isolation of functionally significant LRCs in this 

compartment.  However, each of these transgenic models would require thorough 

characterization and testing to ensure that the desired pulse-chase kinetics are achieved.  For 

example, one study has reported the use of CK14rtTA to induce H2BGFP in the mammary 

gland, resulting in induction only in the myoepithelial/basal layer [130]; use of this strain 

would result in myoepithelial lineage-specific LRCs.  The reverse tetracycline transactivator 

driven by the cytokeratin 5 promoter (CK5rtTA) was used for H2BGFP label retention in 

the epidermis, and could also be used in the mammary gland, as early mammary epithelial 

lineages are known to express CK5 [85]; however, lineage tracing studies have suggested that 

K5 is also active exclusively in the myoepithelial layer of the adult mammary gland, which 

could limit use of K5rtTA in H2BGFP LRC studies [38].  Tetracycline transactivators under 
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the control of pregnancy/lactation-dependent promoters, such as BLG, would require 

pregnancy and lactation for induction, and possibly for label dilution as well; a label retention 

study using the WAPrtTA/H2BGFP system has been reported, with inconclusive results on 

the survival of LRCs after involution  [87, 131].   

 The lack of a reliably mammary-specific promoter with pre-pregnancy activity has 

been a long-standing technical difficulty in mammary gland research.  However, this 

drawback could result in adaptations of the label retention assay that could lead to new 

discoveries.  For example, label dilution through mammary proliferation during estrus or 

pregnancy could be explored productively.  Alternatively, tetracycline transactivator strains 

under the control of lineage-specific promoters such as CK14 could identify myoepithelial or 

luminal LRCs.  It remains possible that H2BGFP label retention could provide valuable new 

insights into the mammary stem cell hierarchy, but thorough consideration of the technical 

and scientific limitations is required for productive experimentation and analysis of label 

retention in the mammary gland.   

Evidence for a pregnancy-activated multipotent progenitor in the 

H2BGFP+/CD24+/CD29lo population  

Investigations of mammary development have found evidence for a mammary stem 

cell hierarchy, consisting of stem cells capable of reconstituting the original mammary gland 

[12, 13], multipotent progenitors capable of giving rise to more than one mammary subtype 

[35, 38], unipotent progenitors committed to producing single-lineage MECs [32, 38] and 

differentiated cells with limited to no proliferation capacity [38, 116].  The roles that these 

MEC populations play during different stages of mammary development are still being 

characterized.  Mammary stem cells are involved in the establishment of the mammary 
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architecture during puberty, and studies demonstrating the expansion of the CD24+/CD49f+ 

stem cell compartment during estrus and pregnancy suggest that mammary stem cells also 

proliferate during estrus and pregnancy expansion [2, 132].  However, a lineage-tracing study 

found that non-stem populations within the CD24+/CD29+ compartment, which 

corresponds with the  CD24+/CD49f+ population, include myoepithelial cells that can 

expand during pregnancy [38].  Additionally, mammary glands that are missing luminal 

progenitor populations, as a consequence of the deletion of Stat5A/5B or expression of 

mutant cyclin D1, can form normal mammary glands but were unable to undergo 

alveologenesis [35, 123, 124].   If pregnancy proliferation was only dependent on stem cells, 

the loss of a pre-pregnancy progenitor population should not affect alveologenesis.  These 

data support the rival hypothesis that while stem cells are involved in mammary pubertal 

proliferation, progenitors give rise to alveoli during pregnancy.   

Studies that have examined the disruption of signaling pathways in the mammary 

gland have established that mammary proliferation during puberty and pregnancy are 

separate functions.  Pubertal mammary development is dominated by estrogen signaling, 

whereas estrus and pregnancy proliferation in the mammary gland are progesterone-

dependent.  Loss of Stat5A/5B or CyclinD1 in the mammary gland results in the 

development of morphologically normal glands that are unable to develop alveoli during 

pregnancy; both Stat5A/5B- and CyclinD1- deficient mammary glands lack 

CD24+/CD29lo/CD61+ luminal progenitors [35, 123, 124].  Interestingly, mice missing 

Stat5A in the mammary gland or expressing mutant CyclinD1 demonstrate increased latency 

in the development of mammary tumors, suggesting that these missing progenitors could be 

important for tumorigenesis [35, 133].  Mice expressing a dominant negative form of ErbB2 

in the mammary gland develop normally, but form incomplete alveoli during pregnancy and 
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cannot lactate [128].  Conversely, mammary glands that �R�Y�H�U�H�[�S�U�H�V�V���7�J�I�¢���D�Q�G���R�U���O�D�F�N��

amphiregulin are severely defective in ductal development, but can form alveoli in response 

to pregnancy [117, 129].  In some of these studies, it was not established conclusively that 

the observed defect was due to a missing mammary cell population; however, further 

examination of these mammary development models might reveal which mammary 

stem/progenitor cells are directly responsible for pubertal vs. pregnancy proliferation.   

The goal of my studies was to identify and characterize novel mammary stem 

cell/progenitor populations and investigate their role in various stages of mammary 

development.  Although puberty-mediated label retention in the MMTVrtTA/H2BGFP 

transgenic system did not enrich for mammary stem cells or progenitors in the LRCs, I made 

the serendipitous discovery that the H2BGFP+/CD24+/CD29lo population could give rise to 

diminutive mammary structures in vivo.  These outgrowths reproduced the original mammary 

cell composition and structure, and could produce milk when recipient mice were made 

pregnant (Figure 4-7).  At the time these experiments were conducted, this finding was 

unexpected because CD24+/CD29lo MECs were initially reported to contain luminal 

progenitors and to have no in vivo repopulation activity [12].  Because 

H2BGFP+/CD24+/CD29lo MECs were found to have a mammary repopulating unit 

frequency of 1/710 in the initial experiments (Figure 3-21), and these MECs comprised only 

~15% of the CD24+/CD29lo compartment (Figure 3-14), these cells would have gone 

undetected in the limiting dilution transplants described by Shackleton et al. [12].   

 When the H2BGFP+/CD24+/CD29lo transplant data were analyzed with respect to 

the pregnancy status of the recipient mice, I found that pregnancy increased the mammary 

repopulation ability of these MECs five- to ten-fold (Figure 4-2, 4-6).  These data, in 

combination with the fact that these structures could not serially transplant (Figure 4-1), 
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suggested that MMTVrtTA-induced H2BGFP expression in the CD24+/CD29lo 

compartment labeled a population containing pregnancy-activated multipotent progenitors.  

Because this population was isolated from female mice during early puberty, and because 

immunofluorescence data suggests that H2BGFP+/CD24+/CD29lo MECs are located at 

intervals in the luminal layer of the mammary gland, I surmise that these pregnancy-activated 

progenitors are established in the mammary gland along with the rest of the ductal 

architecture, but remain dormant until stimulated by signals generated during pregnancy.   

 Because mammary outgrowths were detected in both virgin and pregnant mammary 

glands, although at drastically different rates, it also is possible that the 

H2BGFP+/CD24+/CD29lo population contains two types of progenitors, one that helps 

mammary gland growth during puberty, and a progenitor that is present in higher numbers 

and is active only during pregnancy.  The studies that reported in vivo mammary proliferation 

in CD24+/CD29lo and CD24+/CD49f lo cells were performed in virgin mice, suggesting the 

existence of puberty-activated multipotent mammary progenitors [35, 36].  Because 

pregnancy would occur after the bulk of pubertal mammary development had taken place, 

the data from my pregnancy experiments would include outgrowths from both puberty- and 

pregnancy-specific progenitors.  One method that could be employed to address whether 

more than one progenitor is present in the H2BGFP+/CD24+/CD29lo population would be 

to express a more readily detectable biomarker, such as luciferase, in the 

H2BGFP+/CD24+/CD29lo cells prior to transplant.  Regular body scans of 

H2BGFP+/CD24+/CD29lo transplant recipient mice could detect the dynamics of 

H2BGFP+/CD24+/CD29lo-derived outgrowths, and determine whether these cells 

proliferate in response to puberty and pregnancy, or only pregnancy.  Alternatively, co-

transplantation of H2BGFP+/CD24+/CD29lo and unlabeled CD24+/CD29+ MECs, 
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followed by tracing the contribution of H2BGFP+/CD24+/CD29lo-derived cells to the 

mammary gland during puberty and pregnancy could determine whether or not the 

H2BGFP+/CD24+/CD29lo population contains puberty progenitors.  At present, I can 

conclude only that H2BGFP+/CD24+/CD29lo contains a population of multipotent 

progenitors with preferential proliferation during pregnancy.   

 Evidence for the existence of pregnancy-specific progenitors has been reported by 

the Smith and Wagner labs, who utilized the WAP-cre/LacZ transgenic system to carry out 

lineage tracing of pregnancy-activated cells.  This resulted in the labeling of parity-induced 

MECs (PI-MECs) which were found to give rise to alveoli over multiple pregnancies [42].  

As was the case with the H2BGFP+/CD24+/CD29lo pregnancy-activated progenitors, PI-

MECs were found to exist in the mammary gland prior to pregnancy, suggesting that their 

cell fate was established during puberty [43].  Although PI-MECs were initially reported to 

have no mammary repopulating ability in vivo, a later study found that they could occasionally 

give rise to fully functional mammary glands and that they contained a small population of 

CD24+/CD49f+ stem cells [44].  The H2BGFP+/CD24+/CD29lo population might contain 

more than one kind of mammary progenitor, but all of my experiments have indicated that 

these MECs have no self-renewal capacity, as is indicated by their lack of serial transplant 

activity.  Because transplant recipient mice were made pregnant only once, I can draw no 

conclusion about whether the H2BGFP+/CD24+/CD29lo progenitor can give rise to 

repeated mammary outgrowths in vivo.   Experiments that track the in vivo kinetics of the 

transplanted H2BGFP+/CD24+/CD29lo population across multiple pregnancies, similar to 

the one described above to determine whether this population contains puberty-specific 

progenitors, could determine whether these pregnancy-activated progenitors can proliferate 

during multiple pregnancies.   
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 It is notable that expression of CD61, which has been found to distinguish between 

luminal progenitors and mature luminal cells within the CD24+/CD29lo compartment [116], 

did not differ between the H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo 

populations (Figure A-3i).  This result, in combination with comparison of gene expression 

profiles of CD24+/CD29lo MECs distinguished by CD61 expression (Figure 4-10) provides 

convincing support for the idea that H2BGFP expression in the CD24+/CD29lo identifies a 

different and probably novel mammary progenitor.  It is possible that 

MMTVrtTA/H2BGFP expression in the CD24+/CD29lo compartment labels pregnancy 

progenitors, whereas CD61 expression identifies CD24+/CD29lo progenitors with activity 

during puberty.  Interestingly, Jeselsohn et al. found that CD24+/CD49f lo MECs, which were 

also initially found to have no in vivo repopulating ability, could give rise to mammary 

outgrowths in both pregnant and virgin hosts, also suggesting the existence of mammary 

progenitors which do not require the stimulus of pregnancy for in vivo repopulation activity; 

it is also notable that development of these outgrowths required co-injection of Matrigel.  

The pregnancy activation experiments described in this thesis and by Jeselsohn et al. could 

be applied to other MEC populations to discover any pregnancy-specific activities of other 

mammary progenitor populations [35].   

In contrast to the differential cell activity found in the CD24+/CD29lo populations, 

my studies found no functional difference in the H2BGFP+/ CD24+/CD29+ and H2BGFP-

/CD24+/CD29+ populations.  H2BGFP+/CD24+/CD29+ and H2BGFP-/CD24+/CD29+ 

MECs had similar mammary repopulation rates in pregnancy and in virgin mice (Figure 4-2) 

and the same serial transplantation ability (Figure 4-1).  The main difference between these 

populations was that their descendants inherited the H2BGFP status of the original stem 

cell.  This raises the question of how H2BGFP was induced in the CD24+/CD29+ 
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compartment and whether this affects H2BGFP expression in the downstream 

CD24+/CD29lo compartment.  All of the functional evidence points to distinct differences 

between the H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo populations, 

making it more likely that H2BGFP expression is induced rather than epigenetically inherited 

in the CD24+/CD29lo population.  Additionally, expression analysis was able to separate the 

H2BGFP+/CD24+/CD29+ and H2BGFP-/CD24+/CD29+ populations, suggesting that 

these populations might have different functions which have not been detected by the assays 

already conducted.  Although further studies could discover a functional difference between 

the CD24+/CD29+ populations, I conclude, based on the current evidence, that the most 

likely possibility is that MMTVrtTA/H2BGFP expression in this compartment is stochastic 

and without significance to the mammary epithelial stem cell hierarchy.   

 Expression analysis also provides evidence that the H2BGFP+/CD24+/CD29lo 

population contains a population of progenitors distinct from the bulk H2BGFP-

/CD24+/CD29lo population.  A significant number of genes involved in mammary 

development and differentiation are expressed at lower levels in the 

H2BGFP+/CD24+/CD29lo population, which is consistent with biological differences 

between the two CD24+/CD29lo populations.  For example, Esr1 and AREG are required 

for ductal elongation, a process limited to pubertal proliferation [117, 129].  An analysis of 

genes which differ between H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo 

MECs in a previously reported microarray of mammary stem, luminal progenitor and mature 

luminal populations found that H2BGFP+/CD24+/CD29lo expression had striking 

commonalities with both stem cells and luminal progenitors[116].  

H2BGFP+/CD24+/CD29lo MECs express genes highly in common with 

CD24+/CD29lo/CD61+ luminal progenitors, but repress other transcripts in common with 
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the mammary stem cell compartment, suggesting the possibility that they either share a 

common origin with or give rise to luminal progenitors.  This analysis supports the role of 

H2BGFP+/CD24+/CD29lo MECs as a multipotent mammary progenitor.  In all of the 

mammary transplant studies described in this thesis, MEC populations were co-injected with 

�E�D�V�H�P�H�Q�W���P�H�P�E�U�D�Q�H���P�D�W�U�L�[�����J�U�R�Z�W�K���I�D�F�W�R�U���U�H�G�X�F�H�G���0�D�W�U�L�J�H�O�Œ�������7�Kis is notable because 

although CD24+/CD29lo MECs were originally observed to have in vivo activity, Valliant et 

al. later observed that CD24+/CD29lo MECs could form small mammary outgrowths if co-

injected with Matrigel [36].  Another study found that CD24+/CD49f lo MECs, which also 

were also originally reported to have no in vivo activity, formed lobular-alveolar structures in 

both virgin and pregnant mice in the presence of Matrigel [35].  These data contribute to a 

growing body of evidence for an unknown component or growth factor in Matrigel that 

increases transplant uptake, by assisting either cell survival or proliferation [134].  

Additionally, lineage tracing demonstrated that myoepithelial-limited progenitors could give 

rise to mammary gland structures in vivo, but only if co-injected with a critical ratio of luminal 

cells, suggesting that paracrine signals can alter progenitor cell activity in vivo [38].  It is 

notable that in previous studies, neither Matrigel nor the addition of other mammary cells 

was able to affect the mammary growth protential of the stem cell compartments identified 

by expression of CD24+/CD 29+ or CD24+/CD49f+ [12, 36].  Determining which additional 

components required for in vivo progenitor activity are fulfilled by the addition of Matrigel, 

and whether these components are involved in normal mammary development, would 

contribute to our understanding of mammary development.   

 Altogether, this thesis provides evidence that H2BGFP+/CD24+/CD29lo MECs 

contain a population of pregnancy-activated multipotent mammary progenitors.  Future 

directions for this project could include experiments to understand the basis for the 
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pregnancy-specific activity of H2BGFP+/CD24+/CD29lo MECs; mice transplanted with 

H2BGFP+/CD24+/CD29lo MECs could be treated with pregnancy hormones, such as 

progesterone and prolactin, to determine which signals trigger H2BGFP+/CD24+/CD29lo 

outgrowths.  Alternatively, H2BGFP+/CD24+/CD29lo MECs could be co-transplanted with 

defined extracellular matrix components and/or growth factors to determine which are most 

crucial to mammary progenitor activity in vivo.  H2BGFP+/CD24+/CD29lo MECs could also 

be co-transplanted with unlabeled populations of different MEC subtypes, such as 

CD24+/C D29+ cells or CD24+/CD29lo/CD61± populations to determine if paracrine 

signaling from these MECs can affect the in vivo repopulating ability of 

H2BGFP+/CD24+/CD29lo MECs.  Additionally, co- transplantation of 

H2BGFP+/CD24+/CD29lo MECs with unlabeled CD24+/ CD29+ cells could determine the 

contribution of H2BGFP+/CD24+/CD29lo MECs to the mammary gland during puberty 

and pregnancy.  Additionally, in vivo development of H2BGFP+/CD24+/CD29lo MECs 

could be monitored to elucidate the dynamics of H2BGFP+/CD24+/CD29lo activity during 

different stages mammary development.   

Although the ability to repopulate the cleared mammary fat pad remains the best in 

vivo assay for mammary stem cells/progenitors, the development of mammary glands from 

transplanted MECs is a non-physiological phenomenon.  Transplanted MECs do not 

undergo any of the stages of mammary development prior to three weeks of age.  Therefore, 

mammary fat pad transplants might detect progenitors responsible for mammary 

proliferation during puberty, rather than stem cells.  Serial transplant studies have found that 

normal mammary glands can be transplanted 4-7 times, and that later transplants give rise to 

outgrowths of diminishing size [122].  As stem cells theoretically can propagate indefinitely, 

this gradual decrease in proliferative ability suggests that transplant assays either select for 
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progenitor-derived outgrowths, or that the transplantation process itself causes stem cells to 

terminally differentiate.   

The lineage tracing study conducted by Van Keymeulen et al. found that all 

mammary lineages are descended from embryonic MECs expressing CK14.  However, they 

were unable to identify a post-natal MEC population which gave rise to more than a single 

mammary lineage, without transplantation.  Under the physiological conditions of mammary 

development, this study found no evidence of a post-natal mammary stem cell, and 

demonstrated that a bipotent cell fate can be artificially induced in a myoepithelial progenitor 

when transplanted with luminal cells [38].  It is possible that H2BGFP+/CD24+/CD29lo 

repopulation is the result of contamination and co-transplantation, and that furthermore, the 

pregnancy activation observed is the result of increased paracrine signaling between luminal 

cells and myoepithelial progenitors.  Since the myoepithelial progenitors described by Van 

Keymeulen et al. are CD24+/CD29+, this is unlikely, but still possible.   

The best strategy to eliminate the posibility of artificial differentiation through 

transplantation in the H2BGFP+/CD24+/CD29lo MECs would be to conduct a lineage 

tracing study.  However, the only tool for investigating the H2BGFP+/CD24+/CD29lo 

population at present is the MMTVrtTA/H2BGFP model.  Unfortunately, use of the 

MMTVrtTA transgenic system in a lineage tracing study is unlikely to be informative, since 

MMTVrtTA is active in CD24+/CD29+ populations as well as CD24+/CD29lo populations.  

This consideration also precludes use of the MMTVrtTA model to selectively kill, transform 

or otherwise manipulate the H2BGFP+/CD24+/CD29lo population.  Unless other methods 

are found to identify the H2BGFP+/CD24+/CD29lo population, study of these MECs is 

limited to use of the MMTVrtTA/H2BGFP system and transplantation assays.   



108 
 

Candidate Cell Surface Markers for the H2BGFP+/CD24+/CD29lo 

population 

 Although mammary epithelial subpopulations have been identified by various 

indirect means, such as histology [26] and mammary outgrowth analysis [37], isolation of 

MEC populations through the use of cell surface markers and FACS remains the most 

reliable tool for characterization of MEC subtypes.  MEC subpopulations that have been 

identified by cell surface markers include stem cells (CD24+/CD29+, CD24+/CD49f) [12, 

13], luminal progenitors (CD24+/CD29lo/CD61+) [116], myoepithelial progenitors (non-

stem CD24+/CD29+, CD24loCD49f+) [13, 38], mature luminal cells (CD24+/CD29lo/CD61-) 

[116] and alveolar progenitors (CD24+/CD29lo/CD14+/c -Kit-) [33].   

 In the Appendix of this thesis, I describe the testing and evaluation of various 

candidate cell surface markers for the H2BGFP+/CD24+/CD29lo population.  Candidates 

were selected from cell surface markers identified in microarray experiments and from 

markers already known to identify populations of interest in the mammary gland.  Of the 

twenty-four candidate markers tested, six displayed differences in expression between 

H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo cells, and only one, CD14, was 

found to express in the majority of the H2BGFP+/CD24+/CD29lo population.  

Unfortunately, in vivo testing of this marker was inconclusive because of an unusually high 

repopulation rate of transplanted MECs, which might be the result of an anomalous lot of 

Matrigel.  Repetition of these experiments with a different lot of Matrigel would probably 

demonstrate that CD14 is able to isolate pregnancy-specific mammary progenitors.   

 The identification of CD14 as an upregulated transcript and potential cell surface 

marker for the H2BGFP+/CD24+/CD29lo population has interesting implications.  Asselin-

Labat et al have identified CD24+/CD29lo/CD14+/c -Kit- MECs as alveolar progenitors [32, 
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33].  However, this classification is based on in vitro testing and immunostaining of mammary 

glands, and has not yet been verified in vivo.  One possible future experiment could involve 

lineage tracing, using the CD14 promoter to identify these cells and their descendants in situ.  

Further studies may identify other markers which, in combination with CD14, can isolate the 

pregnancy-activated multipotent progenitors within the H2BGFP+/CD24+/CD29lo 

population.   

Final Note 

 Although much progress has been made, the mammary epithelial stem cell hierarchy 

remains incompletely understood.  In this thesis, I have presented evidence for a pregnancy-

activated multipotent mammary progenitor.  This supports the hypothesis that different cell 

types as well as different signaling pathways are activated during the fundamentally distinct 

processes of pubertal mammary proliferation and pregnancy-mediated alveologenesis.  

Future directions for this project include identifying other cell surface markers for isolation 

of this population, elucidating unknown factors involved in progenitor activity such as 

Matrigel, and studying the dynamics of pregnancy-activated progenitors in vivo. 
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Introduction  

 In the course of histone label retention experiments, I found that MMTVrtTA-

induced expression H2BGFP in the mammary gland labeled a sub-population of the 

CD24+/CD29lo compartment that contained a novel multipotent progenitor with pregnancy-

specific activity.  Further study of this progenitor could provide valuable new insights into 

the mechanisms of proliferation in the mammary gland at different stages of development.  

However, studies of the H2BGFP+/CD24+/CD29lo population are currently limited by the 

need to use the MMTVrtTA/H2BGFP transgenic mouse system to isolate these MECs.   

 To further characterize these progenitors, I carried out transcription profiling of the 

H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo populations, as was described in 

Chapter 3.  A secondary goal of these microarrays was to identify cell surface proteins that 

might be candidate markers for separating these populations by FACS.  Ideally, such a 

marker would be strongly expressed in the cell subtype of interest, allowing for positive 

selection, and have commercially available antibodies already shown to be effective for flow 

cytometry.  As the H2BGFP+/CD24+/CD29lo population is mixed and additional purity 

could be obtained from a more selective marker, a marker that labeled only a fraction of 

H2BGFP+/CD24+/CD29lo cells would be considered a strong candidate marker.  

Alternatively, two or more markers could be combined to isolate the population.  Based on 

the microarray data, I tested candidate cell surface markers for the 

H2BGFP+/CD24+/CD29lo population.  This appendix reports the results of these 

experiments and additional considerations for future research on the mammary epithelial 

stem cell hierarchy.   

Results 
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Candidate cell surface markers for independent isolation of 

H2BGFP+/CD24+/CD2 9lo MECs 

 Candidate cell surface markers for separation of the H2BGFP+/CD24+/CD29lo 

population from the H2BGFP-/CD24+/CD29lo MECs were selected based on various 

factors.  These selection criteria included differential expression detected by microarray, 

availability of commercial antibodies, previous identification as a marker in the mammary 

stem cell hierarchy and identification as a marker in other adult stem cells/progenitors or 

developmental pathways.   

 In order to identify potential cell surface markers, the 256 microarray probes 

demonstrating statistically significant differences between H2BGFP+/CD24+/CD29lo and 

H2BGFP-/CD24+/CD29lo populations were surveyed for cell surface proteins as identified 

by the Gene Ontology database (Figure A-1).  Candidate markers selected from this group 

included mucin 1 (Muc1, expressed in luminal cells), Alcam, CD86, Ly6a/Sca-1 (expressed in 

differentiated MECs [12]), FGFR2 and Il1R1.  Other candidate markers not on the Gene 

Ontology list were identified from the microarray (Figure A-2), including CD138/syndecan, 

CD14, CD55, CD164, CXCL16, interleukin 33 (Il33), jagged 1 (Jag1), osteoactivin,  AREG 

and PRLR.  Markers selected on the basis of previous identification in the mammary stem 

cell hierarchy or other adult stem cell populations include CD44 [135], CD49b [31], CD61 

[136], EpCam [137], E-cadherin and c-Kit.  A different CD24 antibody from the one used in 

previous assays was selected based on evidence that mammary progenitors and stem cells 

could be distinguished by their level of CD24 expression using this clone(i.e. CD24mid vs. 

CD24hi) [34, 35].   

 To test the selected antibodies, MECs were isolated from four week-old 

MMTVrtTA/H2BGFP mice and stained with the antibodies for candidate cell surface 



113 
 

markers, in addition to the markers used in the original analysis.  The 

H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo populations were gated and 

analyzed for staining of the experimental antibody; histograms of isotype controls or MECs 

stained only with secondary antibodies were used as control curves for comparison.  A total 

of twenty-four candidate cell surface markers were assayed in at least three different 

experiments (Figure A-3).   

 Of the twenty-four markers tested, none demonstrated a complete separation of 

H2BGFP+/CD24+/CD29lo cells from the H2BGFP-/CD24+/CD29lo population, nor were 

any identified as marking only part of the H2BGFP+/CD24+/CD29lo population.  Thirteen 

antigens (AlCAM, AREG, CD44, CD55, CD86, CD138, CD164, CXCL16, E-cadherin, Il33, 

Muc1, osteoactivin, PRLR) showed equivalent levels of expression between 

H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo cells.  Five candidate markers 

(CD24, CD49f, CD61, c-Kit, IL1R1) demonstrated minimal differences in expression level 

between the two populations.  Because all of these antibodies, except for the IL1R1 

Figure A-1. Expression of Cell Surface Markers in CD24+/CD29lo Populations. Of the 257 probes found to 
demonstrate statistically significant differences between H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo 
populations, these probes were identified as cell surface proteins by the Gene Ontology database. 
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antibody, have been used repeatedly in flow cytometric studies, it can be concluded that 

these data accurately represent the protein expression level of these candidate markers on 

the cell surface of the tested MEC populations.   

Six markers (CD14, CD49b, EpCAM, FGFR2, Jag1, Sca-1) were expressed 

differentially in the H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo populations.  

Although none of these antibodies clearly distinguished the H2BGFP+ from the H2BGFP- 

populations, the histograms for these antibodies suggested possibly different sub-

populations with distinct properties.  For example, most H2BGFP+/CD24+/CD29lo MECs 

were CD14+, whereas the H2BGFP-/CD24+/CD29lo compartment contained a mixed 

population of CD14+ and mostly CD14- MECs.  H2BGFP+/CD24+/CD29lo MECs were 

found to be Sca-1-, but H2BGFP-/CD24+/CD29lo MECs contained both Sca-1+ and Sca-1- 

cells.  H2BGFP+/CD24+/CD29lo MECs expressed higher levels of CD49b than H2BGFP-

/CD24+/CD29lo MECs, but there was no obvious separation of CD49b subpopulations  

Figure A-2. Expression of Candidate Cell Surface Markers in CD24+/CD29lo Populations. Transcripts identified as 

candidate stem cell markers for separation of H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo populations in 

the MMTVrtTA/H2BGFP microarray.    
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Figure A-3. Flow Cytometric Analysis of Candidate Cell Surface Markers. MMTVrtTA/H2BGFP MECs were stained 
for antibodies for candidate cell surface markers.  Staining was compared between H2BGFP+/CD24+/CD29lo (green) 
MECs, H2BGFP-/CD24+/CD29lo (red) MECs and control (gray). 
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within these compartments.  The EpCAM, FGFR2 and Jag1 histograms also suggested a 

mixed H2BGFP-/CD24+/CD29lo population, but these differences were not sufficiently 

large for FACS isolation to be attempted.  Based on this data, I concluded that CD14 and 

CD49b were the best candidates for cell surface markers able to enrich for 

H2BGFP+/CD24+/CD29lo MECs.   

To determine whether these were suitable markers for alternative isolation of 

H2BGFP+/CD24+/CD29lo MECs, CD14 and CD49b were tested, both individually and in 

combination, for their ability to enrich for H2BGFP+ cells in the CD24+/CD29lo CD14 as a 

marker of pregnancy-activated multipotent progenitors in the mammary epithelium.  Based 

on the above experiments, I determined that CD14 was the most promising candidate cell 

surface marker for isolation of the multipotent pregnancy-activated progenitors within the 

H2BGFP+/CD24+/CD29lo population.  In the microarray, CD14 transcript levels were 

found to be slightly elevated in H2BGFP+/CD24+/CD29lo MECs compared with 

H2BGFP-/CD24+/CD29lo MECs.  This is consistent with the flow cytometry data, which 

found that H2BGFP+/CD24+/CD29lo cells were almost entirely CD14+, whereas H2BGFP-

/CD24+/CD29lo cells contained a mixed population of CD14+ and CD14- cells (Figure A-

3c).  populations (Figure A-4).  In these experiments, 21±4.7% of CD24+/CD29lo MECs 

were GFP+.  The GFP+ population was 33±4.4% of CD24+/CD29lo/CD14+ MECs and 

35±2.5% of CD24+/CD29lo/CD49b+ cells (Figure A-4f, i).  (Averages and standard 

deviations were derived from n= 3)  However, CD24+/CD29lo/CD14+/CD49b+ MECs 

were 35±6.3% GFP+, demonstrating no additional enrichment when CD14 and CD49b 

were used in combination.  CD14 was determined to be the better marker for subdivision of 

the CD24+/CD29lo compartment because CD14 divides  
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Figure A-4. CD14 and CD49b as markers for H2BGFP+/CD24+/CD29lo MECs. CD14 and CD49b were tested 
separately and in combination as potential markers for isolation of H2BGFP+/CD24+/CD29lo MECs.  Analysis of a) 
GFP expression in total MECs b) CD14 expression in H2BGFP+ vs. H2BGFP- populations c) CD49b expression in 
H2BGFP+ vs. H2BGFP- populations d) CD14 expression in CD24+/CD29lo population e) correlation of GFP and CD14 
in CD24+/CD29lo population f) GFP expression in CD24+/CD29lo/CD14+ g) CD49b expression in CD24+/CD29lo 
population h) correlation of GFP and CD49b in CD24+/CD29lo population i) GFP expression in 
CD24+/CD29lo/CD49b+ j) CD14 and CD49b expression in CD24+/CD29lo population k) GFP expression in 
CD24+/CD29lo/CD14+/CD49b+ 
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the CD24+/CD29lo population into distinct CD14+ and CD14- populations, whereas CD49b 

expression was less distinct (Figure A-4b, c).  (Averages and standard deviations were 

derived from an n = 4) 

The CD24+/CD29lo/CD14+ population contained 78±6.2% of the 

H2BGFP+/CD24+/CD29lo population; however, 63±3.5% of the CD24+/CD29lo/CD14+ 

population was H2BGFP-/CD24+/CD29lo cells.    Therefore, CD14 clearly is not an ideal 

marker for isolating the multipotent pregnancy-activated progenitor within the 

CD24+/CD29lo population.  Nevertheless, an imperfect marker is still less cumbersome than 

the requirement for two strains of transgenic mice, and can be used more broadly to test 

changes in the pregnancy progenitor population in studies of other transgenic mice with 

mammary phenotypes.  Therefore, I tested the ability of CD24+/CD29lo/CD14+ MECs to 

form mammary structures in vivo compared to the CD24+/CD29lo/CD14- population, in 

both virgin and pregnant recipients.   

Surprisingly, all transplants produced far more outgrowths than were anticipated 

based on published studies and my multiple previous experiments, resulting in calculated 

MRU frequencies much higher than expected.  CD24+/CD29lo/CD14+ MECs had a 

calculated MRU frequency of 1/460 in virgin recipients and 1/180 in pregnant recipients 

(Figure A-5a, c).  CD24+/CD29lo/CD14- MECs had a calculated MRU frequency of 1/1,300 

in virgins and 1/220 in pregnant mice (Figure A-5b, d).  In order to eliminate any possibility 

of contamination from H2BGFP- populations, mammary outgrowths were sectioned and 

immunostained, and only outgrowths that stained positive for GFP were counted.  The 

recalculated MRU frequency for CD24+/CD29lo/CD14+ cells was 1/1,100 in virgins 

and1/550 in pregnant mice, whereas CD24+/CD29lo/CD14- cells did not give rise to GFP+ 

outgrowths in virgins and had a calculated MRU frequency of 1/880 in pregnant mice.   
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Figure A-5. Limiting Dilution Transplants of CD14 Populations in Virgins and Pregnant Mice. MECs were isolated 
from four week old MMTVrtTA/H2BGFP females and CD24+/CD29lo/CD14+ and CD24+/CD29lo/CD14- 
populations were sorted and transplanted into mice which were left virgin (a, c) or made pregnant (b, d).  Mammary glands 
were counted (upper) and scored for size (lower).   
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Figure A-6. Limiting Dilution Transplants of CD14 Transplants - GFP+ glands only. Data from Figure A-5 was 
filtered to include only mammary glands which demonstrated GFP+ expression.   
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These recalculated repopulation rates are still well above the expected repopulation rates of 

the injected CD24+/CD29lo subpopulations.   

Discussion & Future Directions 

 In the search for a cell surface marker that could isolate the pregnancy-activated 

multipotent progenitor within the H2BGFP+/CD24+/CD29lo population independently of 

MMTVrtTA/H2BGFP transgene activity, twenty-four antibodies were tested by flow 

cytometry.  These antigens were selected from the microarray comparing the 

H2BGFP+/CD24+/CD29lo cells with H2BGFP-/CD24+/CD29lo cells, and from known 

markers of the mammary stem cell hierarchy.  For eighteen of these antibodies, I found no 

difference or minimal differences in staining between H2BGFP+/CD24+/CD29lo and 

H2BGFP-/CD24+/CD29lo populations.  Whether these assays accurately represent the 

expression of these proteins on the cell surface, or whether these antibodies did not function 

in flow cytometry is unknown.  Some of the antibodies (AREG, CD164, Il33, Muc1, PRLR) 

used were not previously tested in flow cytometry, or were tested in non-physiological 

conditions, such as transgenic overexpression of the antigen, that could have resulted in the 

apparent success of a relatively weak antibody.   

 Notably, CD61 did not differentiate between the H2BGFP+ and H2BGFP- 

subpopulations of the CD24+/CD29lo compartment.  On the basis of in vitro  assays, 

CD24+/CD29lo/CD61+ cells have been reported to represent luminal progenitors, whereas 

CD24+/CD29lo/CD61- cells were reported to be a more differentiated cell population.  

Because CD61 expression did not differ significantly between H2BGFP+/CD24+/CD29lo 
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and H2BGFP-/CD24+/CD29lo MECs, H2BGFP+ cells must represent a distinct sub-

division of functional mammary cells within the CD24+/CD29lo compartment.   

 The H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo populations 

demonstrated different flow cytometry profiles for six of the antibodies tested.  For these 

antibodies, the data suggested that either the H2BGFP+ or H2BGFP- compartments 

contained distinct subpopulations with different expression of the tested cell surface 

markers.  These results were not surprising, as the CD24+/CD29lo subpopulations are 

expected to be mixed, based on quantitative transplantation studies and in vivo assays.  Of the 

candidate cell surface markers displaying differences within the CD24+/CD29lo populations, 

the differences in EpCAM, FGFR2 and Jag1 were deemed too small to be useful for cell 

separation; however, the future development of more effective antibodies against these 

antigens could potentially be used for isolation of the H2BGFP+/CD24+/CD29lo 

populations.  The H2BGFP-/CD24+/CD29lo population was found to contain a Sca-1+ 

subpopulation, which was expected, as Sca-1 is expressed in differentiated MECs [12]; 

however, this confirmation of previously reported data was not useful for separation of the 

H2BGFP+/CD24+/CD29lo and H2BGFP-/CD24+/CD29lo cells, because the Sca-1+ and 

Sca-1- populations overlapped significantly.  CD49b and CD14 were tested, separately and in 

combination, as possible markers for isolation of H2BGFP+/CD24+/CD29lo MECs; CD14 

was found to be the more effective marker because of its ability to distinguish distinct 

CD14+ and CD14- populations, and was therefore used to isolate CD24+/CD29lo 

subpopulations that were tested for pregnancy-specific activity.   

 The results of the cleared fat pad transplants followed the predicted mammary 

outgrowth pattern only insofar as CD24+/CD29lo/CD14+ cells had a higher repopulation 

rate than CD24+/CD29lo/CD14- cells, and that pregnancy increased the calculated MRU rate 
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of both populations.  However, the mammary repopulation rates for transplants of 

CD24+/CD29lo/CD14+ and CD24+/CD29lo/CD14- cells were very high.  Even when the 

data were filtered to include only GFP+ outgrowths, the mammary repopulation rate 

remained far higher than expected.  Because H2BGFP+/CD24+/CD29lo MECs had a 

calculated MRU frequency of ~1/300 in pregnant recipients (Figures 3-4, 3-8), and because 

approximately 30% of the CD24+/CD29lo/CD14+ cells were H2BGFP+, the expected MRU 

frequency of CD24+/CD29lo/CD14+ MECs was ~1/1,000.  Because the 

CD24+/CD29lo/CD14- population also contained ~20% of the H2BGFP+/CD24+/CD29lo 

cells, it was possible, if unlikely, that the multipotent mammary progenitors were contained 

in the CD14- population.  Yet, neither of these possibilities explains the extremely high rate 

of fat pad repopulation observed in these transplants.  This result is surprising, particularly 

because the CD24+/CD29lo compartment is believed to contain no stem cells and was 

originally reported to have no repopulation activity.  Because my numerous previous 

transplant experiments have agreed with published data concerning mammary repopulation 

rates (Figures 2-11, 3-4, 3-8), I concluded that this anomalous result is not due to problems 

with the mammary fat pad transplants.   

 There are several possible explanations for these unexpected data.  One possibility is 

that some minor change in the enzymatic digestion conditions or cell sorting protocol has 

resulted in the addition of doublets (i.e. stem cells adhering to progenitors or mature 

mammary cells) or other contaminating cells to the population of MECs sorted for 

transplant.  Because the digestive enzymes used in these experiments have changed lots 

repeatedly over the years, with no noticeable change in mammary repopulation rate, and 

because the same cell sorting protocols and FACS machines were used for all experiments in 

this thesis, this explanation is possible, but unlikely.  It is also unlikely that the transplant 
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recipient mice, which were obtained from commercial vendors, had different circulating 

hormone levels or otherwise provided a better in vivo environment for growth of mammary 

structures.   

The most likely explanation for this dramatic increase in mammary repopulation 

ability of the CD24+/CD29lo population is a change in the Matrigel co-injected with 

transplanted MECs.  All MECs transplanted in my experiments were co-injected with 

growth factor reduced Matrigel (see Chapter 2, Materials & Methods).  Matrigel can vary 

widely between lots, and contains growth factors or other molecules able to affect cell 

proliferation and differentiation [105].  Valliant et al. reported that CD24+/CD29lo cells were 

unable to form mammary structures in vivo unless co-injected with Matrigel [36]; therefore, it 

is highly likely that different lots of Matrigel could affect the rate of repopulation in 

CD24+/CD29lo cells.  (The CD24+/CD29+ stem cell compartment was unaffected by 

addition of Matrigel [36].)  Because my in vivo transplantation data was heretofore consistent 

across numerous lots of Matrigel, the  batch used in these latest experiments was probably 

anomalous, containing unusually high levels of mammary growth-promoting components.  

Transplants of CD24+/CD29lo/CD14+ and CD24+/CD29lo/CD14- populations using a 

different lot of Matrigel would probably result in the predicted mammary repopulation rate.   

 The fact that Matrigel can so dramatically affect the in vivo growth ability of 

CD24+/CD29lo cells raises the question of what Matrigel components cause this change.  

Van Keymeulen et al. recently reported that myoepithelial progenitors could give rise to fully 

functional mammary structures when transplanted with a critical concentration of luminal 

cells, and speculated that paracrine signaling between the populations was responsible for 

this phenomenon.  It is plausible that the growth factors responsible for such signaling 

might be contained within certain formulations of Matrigel.  Alternatively, previous studies 
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have demonstrated that extracellular matrix stiffness can affect the differentiation of 

mesenchymal stem cells [138].  It is possible that the mechanical structure provided by 

Matrigel, which polymerizes at body temperature, might result in the activation of different 

proliferation or differentiation programs depending on the stiffness of the Matrigel in which 

the transplanted MECs are embedded.  Positive identification of the factor(s) in Matrigel 

that promotes in vivo mammary growth and development could provide a significant 

contribution to our understanding of mammary development.   

 The identification of CD14 as a likely  marker for the pregnancy-activated 

multipotent mammary progenitor subpopulation within the CD24+/CD29lo compartment is 

interesting.  CD14 is a co-receptor for bacterial lipopolysaccharide and mediates the immune 

response to bacterial infections.  A truncated form of CD14 is secreted into breast milk, 

which has been hypothesized to mediate infant gut-bacterial interactions [139].  CD14 also is 

expressed at high levels in the mammary gland during involution, possibly as a signal to the 

immune system to assist in clearing apoptotic cells [140].  Various groups have identified 

CD14 as a potential marker for alveolar progenitors [32, 33]; for example, 

CD24+/CD29lo/CD14+/c -Kit- MECs can form lactogenic colonies in vitro.  Mice that are 

null for the CD14 gene have no reported mammary phenotype; however, study of MEC 

populations in these mice could provide further details about the mechanisms of mammary 

development [141].   

My data suggests that CD14 is a marker for multipotent, pregnancy-activated 

mammary progenitors, but until the effect of Matrigel on the in vivo assays can be clarified, 

the in vivo role of CD14 populations will remain incompletely understood.  In any event, 

CD14 does not provide complete purification of the H2BGFP+/CD24+/CD29lo population.  
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Future studies could identify the other markers that are required in combination with CD14, 

CD24 and CD29 to isolate these pregnancy-activated progenitors.    
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