
Small-Molecule Suppressors of Cytokine-Induced 
Beta-Cell Apoptosis

Citation
Chou, Danny Hung-Chieh. 2011. Small-Molecule Suppressors of Cytokine-Induced Beta-Cell 
Apoptosis. Doctoral dissertation, Harvard University.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10121978

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:10121978
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Small-Molecule%20Suppressors%20of%20Cytokine-Induced%20Beta-Cell%20Apoptosis&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=f652f942e3e19889dbe3af669bc46686&departmentChemistry%20and%20Chemical%20Biology
https://dash.harvard.edu/pages/accessibility


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2011- Hung-Chieh Chou 

All rights reserved. 

 



iii 

 

Professor Stuart Schreiber                Danny Hung-Chieh Chou 

 

Small-molecule suppressors of 

cytokine-induced beta-cell apoptosis 

Abstract 

Type-1 diabetes is caused by the autoimmune destruction of insulin-producing beta 

cells in the pancreas. Beta-cell apoptosis involves a complex set of signaling cascades 

initiated by interleukin-1 (IL-1), interferon- (IFN-), and tumor necrosis factor- (TNF-

). IL-1 and TNF- induce NFB expression, while IFN- induces STAT1 activation. 

These cytokines lead to a decrease of beta-cell function. The goal of this thesis is to 

identify small-molecule suppressors of cytokine-induced beta-cell apoptosis using high-

throughput screening approach. Using the rat INS-1E beta-cell line, I developed an 

assay to measure cellular viability after 48 hours of cytokine treatment. I screened 

29,760 compounds for their ability to suppress the negative effects of the cytokines. I 

identified several compounds to be suppressors of beta-cell apoptosis. These efforts led 

to the discovery of GSK-3 and HDAC3 as novel targets for suppressing beta-cell 

apoptosis. 

I also followed up on BRD0608, a novel suppressor that increased ATP levels and 

decreased caspase activity in the presence of cytokines. To follow up this compound, 35 

analogs related to BRD0476 were synthesized using solid-phase synthesis and tested 

for their protective effects in the presence of cytokines. A structurally related analog, 
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BRD0476, was found to be more potent and active in human islets, decreasing caspase 

activation and increasing insulin secretion after a 6-day treatment.  

I performed gene-expression profiling of INS-1E cells treated with the cytokine 

cocktail in the absence or presence of 10M BRD0476. Gene-set enrichment analysis 

revealed that the gene sets most significantly changed by BRD0476 involved cellular 

responses to IFN-. I therefore assessed the effects of BRD0476 on STAT1 

transcriptional activity. Cytokine treatment increased the reporter-gene luciferase activity, 

while co-treatment with BRD0476 reduced this activity significantly.  

To identify the intracellular target(s) of BRD0476, I collaborated with the 

Proteomics Platform in Broad Institute using SILAC (stable isotope labeling by amino 

acids in cell culture). SILAC is a mass spectrometry-based method to identify proteins 

that bind a small molecule attached to a bead. Deubiquitinase USP9X was pulled down 

by BRD0476. Knock-down of USP9X by siRNA phenocopied the protective effects of 

BRD0476. Binding assays were performed to identify interactions between BRD0476 

and USP9X. 
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Thesis roadmap  

My thesis research entails (1) assay development toward screening for 

suppressors of cytokine-induced beta-cell apoptosis, (2) identification of HDAC3 as a 

target for suppressing cytokine-induced beta-cell apoptosis and (3) discovery and target 

identification of BRD0476 in suppressing cytokine-induced beta-cell apoptosis. 

Chapter 1 begins with an introduction to type-1 diabetes overview, pancreatic beta-

cell apoptosis and cytokine signaling pathways in beta cells. Subsequently, it introduces 

previous works using either genetic approaches or small molecules to suppress 

cytokine-induced beta-cell apoptosis. It ends with discussion of high-throughput screens 

performed in the context of beta cells. 

Chapter 2 describes assay development and execution of a small-scale pilot 

screen. I worked closely with Nicole Bodycombe, Hyman Carrinski and Dr. Paul 

Clemons in the Chemical Biology Program at the Broad Institute. They were largely 

involved in the computational chemical biological part of this chapter. This part of study 

was published in ACS Chemical Biology. 

Chapter 3 describes the effects of different HDAC inhibitors in cytokine-induced 

beta-cell apoptosis. Later, using siRNAs to knock down individual HDAC, HDAC3 was 

found to be a target for suppressing cytokine-induced beta-cell apoptosis. Most of the 

HDAC inhibitors used here were obtained from Drs. Tim Lewis, Ed Holson and Florence 

Wagner in Broad Institute. HDAC3-selective inhibitors were from Dr. Jacob Hooker in 

Massachusetts General Hospital. This part of study was submitted for publication in 

Chemistry & Biology. 

Chapter 4 describes a 29,760-compound high-throughput screen. Dr. Patrick 

Faloon was a “chaperon” from Chemical Biology Platform at the Broad Institute to help 

me finish the screen and analyze the screening data. BRD0608, a novel suppressor that 
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increased ATP levels and decreased caspase activity in the presence of cytokines, was 

discussed. To follow up this compound, 35 analogs related to BRD0476 were 

synthesized using solid-phase synthesis. Dr. Jeremy Duvall from Chemical Biology 

Platform at the Broad Institute worked closely with me for this part. The synthesis part of 

this chapter was published in ACS Medicinal Chemistry Letters. 

Chapter 5 describes the efforts to identify targets for BRD0476. Gene-expression 

profiles were performed as a service from Genome Analysis Platform in Broad Institute. 

Quantitative proteomics study is a collaboration with the Proteomics Platform at the 

Broad Institute. These two approaches led to the discovery of the JAK-STAT pathway 

and USP9X as putative targets for BRD0476. 

 

 
 



Chapter 1 Introduction to type-1 diabetes, cytokine-induced beta-cell apoptosis 

and small-molecule screening 

1.1 Type-1 diabetes overview 

Type-1 diabetes is one of the most severe chronic autoimmune diseases with 

30,000 new cases annually in the United States(1). It is caused by an immune 

destruction of the insulin-secreting beta cells in the islets of Langerhans within the 

pancreas. A number of effector molecules produced by immune cells that infiltrate 

pancreatic islets led to beta-cell death(2). Once beta cells are destroyed, type-1 diabetic 

patients lose blood glucose control, which can result in severe conditions including 

hyperglycemia, heart disease, blindness and kidney failure(3). Although type-1 diabetes 

is described as an autoimmune disease, the precise immunological, genetic and 

physiologic events that control the disease initiation and progression remain unclear. 

The current type-1 diabetes therapies are the insulin injection and islet transplantation(4-

5). Injection of recombinant insulin is used for patients to control their own blood glucose 

levels. However, if patients cannot ensure optimal glycemic control, complications would 

ultimately develop. Islet transplantation, on the other hand, provides a better regulation 

of blood glucose levels. However, due to the limited amount of qualified donor islet cells, 

islet transplantation is not available to most type-1 diabetes patients. Moreover, one-time 

transplantation is not enough for life-long insulin independence. 

Two key models of type-1 diabetes-the BioBreeding (BB) rat(6) and non-obese 

diabetic (NOD) mouse(2, 7)- have been widely used to study the pathophysiology of the 

spontaneous form of type-1 diabetes. The two models share many similarities in loci of 

genetic susceptibility and pathogenesis of the disease. Therefore, the current 

understanding about the disease initiation and progression is mostly from the rodent 
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models. The studies in rodent models have shown that a breakdown of immune 

regulation results in the expansion of autoreactive CD4+ and CD8+ T cells, autoantibody-

producing B cells and activation of the innate immune system, which then collaborate to 

destroy the insulin-secreting beta cells(8-10). These results are consistent with human 

type-1 diabetes since 19 out of the 26 loci identified through genome-wide association 

study of human type-1 diabetes are associated with immune regulations(11-12). 

Observations in NOD mice have shown that the first immune cells to infiltrate the 

pancreatic islets are macrophages and dendritic cells(13). These cells probably migrate 

to the pancreatic lymph nodes to recruit CD4+ T cells(14). Consistent with this 

observation, removal of pancreatic lymph nodes at 3 weeks of age protects NOD mice 

against the development of insulitis(14). Macrophages and dendritic cells become 

antigen-presenting cells (APCs) and activate the naive Th0 CD4+ T cells via presentation 

of beta-cell antigens on their MHC class II molecules, favoring the differentiation in Th1 

cells(14). The Th1 CD4+ T cells then secrete interleukin-2 (IL-2) and interferon-gamma 

(IFN-gamma) which further stimulate APC to secrete other cytokines, such as IL-1beta 

and tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO). These secreted 

cytokines activate the migration of CD8+ cytotoxic T cells into the islets and stimulate 

beta cells to release chemokines and IL-15 which further induce the activation of 

immune cells(15). 

Usually, more than 70% of the beta-cell population is destroyed upon diagnosis of 

type-1 diabetes(16). Apoptosis is the main form of beta-cell death observed in rodent 

models and in human islets from T1D patients(17). The mechanisms of beta-cell 

destruction in T1D have not yet completely clarified, but pro-inflammatory cytokines, 

including IL-1beta, TNF-alpha and IFN-gamma, by the immune cells infiltrating the islet 

are main mediators for the destruction of beta cells(17). The aim of this thesis is to 

2



discover novel suppressors of cytokine-induced beta-cell apoptosis as probes to study 

beta-cell biology. 

 

1.2 Beta-cell apoptosis 

Apoptosis, or programmed cell death, normally describes the regulated death of a 

cell. When cells sense the “apoptosis signal”, they shrink and undergo processes 

including chromatin condensation, DNA degradation, and protein cleavage. Eventually, 

apoptotic cells are cleared by neighboring cells by phagocytosis. Apoptosis is different 

from necrosis, which would lead to cell swelling and disruption of organelles. It has 

become increasingly evident that beta-cell apoptosis contributes to the development of 

both type-1 and type-2 diabetes(16). In the case of type-1 diabetes, the mechanisms by 

which pancreatic beta cells are selectively killed by the immune system have been 

thought to involve several pathways including 1) expression of Fas ligand (FasL) and its 

receptor Fas at the surface of the activated CD8+ T-cells and pancreatic beta cells 

respectively; 2) secretion of perforin and granzyme B by activated CD8+ T-cells; 3) 

secretion of pro-inflammatory cytokines, including IL-1beta, IFN-gamma and TNF-alpha 

by the diverse immune cells infiltrating the islet (Figure 1-1) (17). Fas and FasL were 

expressed at the surface of beta cells and infiltrating T cells, respectively(18). Although 

the expression of Fas in beta cells is low, it was shown that Fas expression can be 

induced in rodent beta cells by IL-1beta and IFN-gamma(18). Activation of Fas by FasL 

converts pro-caspase-8 to active caspase-8. Caspase-8 then acts via the pro-apoptotic 

BH3-only Bcl family member Bid to induce permeabilization of the mitochondrial outer 

membrane and release of cytochrome c(19). Bid interacts directly with the pro-apoptotic 

effector Bcl protein Bax and activates its channel-forming functions in the outer 
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mitochondrial membrane. One study specifically overexpressed a dominant negative 

form of Fas in beta cells of the NOD mice and observed a delay of the onset of 

diabetes(20). This suggests a role of Fas in beta-cell apoptosis. Another pathway of 

beta-cell apoptosis in type-1 diabetes involves perforin and granzyme B, They are both 

cytotoxic components secreted by CD8+ T cells. Perforin is involved in pore formation 

across the plasma membranes of beta cells. This pore enables the entry of the serine 

protease granzyme B inside the cell. Granzyme B cleaves multiple substrates in beta 

cells, causing the cleavage and activation of several targets, such as effector caspases  

 

Figure 1-1. Effector molecules contributed to beta-cell apoptosis in type-1 diabetes 

and the BH3 only protein Bid. NOD mice without perforin have reduced diabetes 

incidence compared with normal NOD controls; however, they still developed severe 

insulitis(21). Pro-inflammatory cytokines are detectable during early stage of diabetes 

onset in both NOD mice and BB rats. Moreover, in vitro exposure of beta cells to IL-

1beta plus IFN-gamma causes functional impairment similar to those observed in pre-

diabetic animal models and human patients(22). Prolonged exposure of pro-
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inflammatory cytokine cocktails, but not each cytokine alone, converts the functional 

impairment to beta-cell death. The detailed effects of each cytokine in beta cells will be 

described in next section. 

Glucose toxicity, lipotoxicity, and ER stress are also some other mediators resulting 

in beta-cell apoptosis; however, they are more relevant in the situation of type-2 

diabetes(16, 23). Beta cells are very sensitive to glucose concentration because they 

need to regulate the blood glucose level by secreting insulin. In order to release insulin, 

glucose enters beta cells, undergoes glycolysis and the respiratory cycle and results in 

the generation of ATP inside the cell. High ATP levels can close the ATP-

dependent potassium channels, and the cell membrane depolarizes. On depolarization, 

voltage-controlled calcium channels open, calcium flows into the cells and beta cells 

release insulin. Constant high glucose levels can induce beta-cell apoptosis in several 

ways. First, reactive oxygen species (ROS) are generated by hyperactive mitochondria 

and ROS are toxic to beta cells(24). Constant high calcium ion levels are also toxic to 

the overworked beta cells(25). Moreover, prolonged hyperglycemia may induce Fas-

mediated beta-cell apoptosis. Although the importance of glucose toxicity in the 

development of diabetes is still debated, glucose toxicity is definitely one of the factors 

contributing to beta-cell death. Lipotoxicity is more or less thought to be related to type-2 

diabetes since obesity is thought to trigger the disease by causing hyperlipidemia and 

insulin resistance(23). Elevated fatty acids, such as palmitate and oleate, have direct 

toxic effects on beta cells, For example, palmitate activates caspase-3 dependent 

apoptosis pathway in beta cells(26). In another study, palmitate reduces the expression 

of Bcl-2, an antiapoptotic protein(27). Moreover, lipotoxicity is also thought to be 

synergistic with the detrimental effects of glucose toxicity(28). Fatty acids-induce beta-

cell death also occurs at the ER level, where fatty acid esterification happens(29). A high 
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fatty acid load would exceed the capacity of beta cell’s esterification capacity, impair ER 

function and lead to ER stress. When the ER cannot function well, lots of unfolded 

proteins are generated, which results in the unfolded protein response. Three ER-

signaling molecules, PERK, ATF6, and IRE1, trigger cellular responses and lead to beta-

cell apoptosis if the ER stress is not alleviated(29). ER stress has been proposed as the 

molecular mechanism linking obesity with insulin resistance but it is still debated(29). 

 

1.3 Cytokine signaling pathways in pancreatic beta cells 

Pro-inflammatory cytokines are thought to be the main mediators of beta-cell 

apoptosis, especially in the early stage of the disease. They induce stress-response 

genes that are either protective or deleterious for beta-cell survival. Gene-expression 

profile experiments revealed about 700 genes that are regulated after 1–24 hour of 

exposure to IL-1beta and IFN-gamma in rat beta cells(30). Among them, Nuclear Factor 

kappa B (NFκB) and STAT1 are the main regulators of the pathways triggered by these 

pro-inflammatory cytokines. Here, the pathways controlled by IL-1beta, IFN-gamma and 

TNF-alpha will be discussed (Figure 1-2). 

IL-1beta binding to its receptor (IL-1R) induces the formation of a multi-protein 

complex and activates TNF-receptor associated factor-6 (TRAF-6) by phosphorylation. 

TRAF-6 then activates the NFκB and the mitogen activated protein (MAPK) pathways. 

TRAF-6 activates the IkappaB kinase (IKK) complex, which then phosphorylates the 

inhibitors of NFκB, IκBs, causing their degradation. This event releases NFκB and 

initiates its translocation into the nucleus, where it regulates the transcription of target 

genes. Activation of the NFκB pathway causes apoptosis in pancreatic beta cells. 

Overexpression of an NFκB super-repressor protects rodent pancreatic beta cells 
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against cytokine-induced apoptosis(16). IL-1R deficient NOD mice present a delayed 

onset of diabetes, which further proves the role of IL-1beta in in vivo beta-cell 

 

Figure1-2. Cytokine signaling pathways in beta cells 

apoptosis(31). Moreover, blocking IL-1 signaling with an IL-1 receptor antagonist delays 

the onset of diabetes in NOD mice(31). IL-1beta also affects beta-cell function. For 

example, IL-1beta alone presents a progressive inhibition of glucose-stimulated insulin 

secretion (GSIS) in rodent beta cells(32). In human beta cells, IL-1beta, in combination 

with IFN-gamma, impairs conversion of pro-insulin into mature insulin and triggers beta-

cell apoptosis after 7 days(22).	  

IFN-gamma binding to its receptor, IFN-R, induces the recruitment of two members 

of the Janus kinase (JAK) family, JAK1 and JAK2. Once activated by phosphorylation, 

JAK1 and 2 recruit STAT1 and trigger its activation by phosphorylation. STAT1 then 
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homodimerizes and migrates to the nucleus where it regulates the expression of genes 

containing gamma-activated sequence (GAS) elements in their promoter. The JAKs also 

activate the extracellular signal-regulated kinase (ERK) in beta cells. Experiments using 

IFN-R deficient NOD mice has provided inconsistent results, with one study showing a 

marked inhibition of insulitis while the other has no changes in the prevalence of 

insulitis(33-34). However, inhibition of STAT1, the main signaling pathway of IFN-

gamma, by siRNA prevents cytokine-induced apoptosis in the rat beta-cell line INS-1 

(35). 

TNF-alpha binding to the TNF receptor 1 (TNF-R1) leads to its trimerization and 

recruitment of the adaptor protein TNF receptor-associated death domain protein 

(TRADD). TRADD then recruits TRAF-2 and the serine-threonine kinase Rip. TRAF-2 

collaborates with Rip to induce NFκB via activation of the IKK complex. Besides TRAF-

2-mediated events, TNF-R1 recruits FADD which in turn leads to pro-caspase-8 

recruitment and activation of effector caspases such as caspase-3. TNF-R1 deficient 

NOD mice fail to develop spontaneous diabetes, which indicates the role of TNF-alpha in 

beta-cell death(13). Consistent with this finding, anti-TNF-alpha antibodies block the 

development of diabetes in NOD mice(36). 

Although each cytokine triggers different pathways inside beta cells, their 

downstream effectors “crosstalk” with each other. Several studies observed synergistic 

effects of cytokines in causing beta-cell apoptosis in vitro(37). The resulting gene 

networks triggered by the cytokine cocktail are too complicated to select a single target 

for suppressing this cell death with small molecules. The next two sections will review 

up-to-date efforts in suppressing cytokine-induced beta-cell apoptosis using various 

approaches. 
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1.4 Genetic approaches to suppress cytokine-induced beta-cell apoptosis 

Because of the important roles of cytokines in causing beta-cell apoptosis, various 

genetic approaches have been used to suppress beta-cell death. As mentioned earlier, 

removal of cytokine receptors could either prevent or delay the onset of diabetes in NOD 

mice. However, since individual cytokine receptors are conserved in different cell types, 

universal blockage of cytokine receptors would affect the functions of these cytokines in 

other physiological events. The NFκB pathway is a key pro-apoptotic pathway induced 

by IL-1beta and TNF-alpha. Numerous studies investigated the potential of blocking 

NFκB pathway to suppress cytokine-induced beta-cell death. Among them, one study 

generated a transgenic mouse line expressing a degradation-resistant NFκB protein 

inhibitor (ΔNIκBα), acting specifically in beta cells, in an inducible and reversible 

manner(38). In vitro, islets expressing the ΔNIκBα protein were resistant to the 

deleterious effects of IL-1beta and IFN-gamma, as assessed by reduced NO production 

and beta-cell apoptosis. This study indicated the whole NFκB pathway as a possible 

target for suppressing beta-cell death induced by cytokines. Like the NFκB pathway, the 

JAK-STAT pathway is activated by IFN-gamma and would also lead to cell death 

eventually. When activated, STAT1 is a master transcription factor and regulates genes 

that have gamma-activating sequences (GAS) in their promoter regions. Therefore, a 

study used siRNA specific for STAT1 to transfect rat INS-1E cells to investigate the 

protective role of STAT1 knockdown for beta cells(35). siRNA-mediated STAT1 

knockdown protects INS-1E and primary rat beta cells against cytokine-induced 

apoptosis. This study suggested STAT1 as a target for suppressing beta-cell death 

induced by cytokines. Although STAT1 is an important protein in beta-cell biology and 

other human diseases, there is still no direct small-molecule inhibitor or binder in the 
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literature to block the function of STAT1. Nevertheless, upstream proteins that regulate 

STAT1 activity such as JAKs were used to modulate STAT1 activities. 

In addition to targeting pathways or proteins that are directly activated by individual 

cytokines, other pathways related to apoptosis were also investigated in order to 

suppress beta-cell apoptosis. One study used adenovirus-mediated overexpression of 

the anti-apoptotic protein, Bcl-XL, to suppress apoptosis of rat RIN beta cells induced by 

cytokines(37). Considering these anti-apoptotic proteins are potential oncogenes, 

overexpression of these proteins does not seem to be a good approach in suppressing 

beta-cell death. One interesting study investigated the role of SIRT1, a class III histone 

deacetylase, in protecting beta cells(39). SIRT1 is known to interfere with the NFκB 

pathway and thereby thought to have an anti-inflammatory function. Adenovirus-

mediated overexpression of SIRT1 in RIN cells was able to suppress apoptosis induced 

by cytokines. Furthermore, resveratrol, a SIRT1 activator, could suppress beta-cell 

apoptosis in either RIN cells or isolated rat islets in this case. Follow-up experiments 

demonstrated that the mechanism under this protection was by suppressing the NFκB 

pathway probably through deacetylation of p65 by SIRT1. 

 

1.5 Small-molecule precedents to suppress cytokine-induced beta-cell apoptosis 

Because of the important roles of cytokines in mediating beta-cell death, 

researchers have been searching for small molecules that could suppress the effects of 

cytokines. Among these studies, most of them use natural products or plant extracts to 

suppress cytokine-induced beta-cell apoptosis. For example, extracts of Artemisia 

capillaries(40), St John’s wort(41), Radix asari(42), and natural products such as 

flavonoids were all reported to have protective effects in beta cells(43). The common 
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feature is that these compounds or extracts were demonstrated previously to be 

antioxidants or have anti-inflammatory effects in other cell types. Therefore, these are 

not designed specifically for pancreatic beta cells and would not have selective 

protection towards beta cells. Furthermore, the mechanisms of actions were not fully 

studied. Most of them were annotated in the paper as blockers of the NFκB-iNOS 

pathway. One particular polyphenolic flavonoid, silymarin, is a special example in this 

type of compounds(44). Silymarin has a strong antioxidant activity and exhibits 

anticarcinogenic, antiinflammatory, and cytoprotective effects. Matsuda et al. therefore 

studied the effect of silymarin on IL-1beta and IFN-gamma-induced beta-cell damage 

using RINm5F cells and human islets(44). Silymarin dose-dependently inhibited both 

cytokine-induced NO production and cell death in RINm5F cells. Furthermore, silymarin 

prevented cytokine-induced NO production and impairment of glucose-stimulated insulin 

secretion in human islets. These protective effects of silymarin were thought to be 

mediated through the suppression of JNK and JAK/STAT pathways. 

The most interesting findings so far in the literature of small-molecule suppressors 

of cytokine-induced beta-cell apoptosis are the histone deacetylase (HDAC) inhibitors, 

suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA)(45). In 2007, Larsen et 

al. reported that in both INS-1 cells and primary rat islets, SAHA or TSA could prevent 

cytokine-induced beta-cell toxicity(45). This finding seems counterintuitive, because 

HDAC inhibitors were thought to induce apoptosis in different cell types. Moreover, 

SAHA was actually approved by the U.S. Food and Drug Administration (FDA) in 

October 2006 for the treatment of cutaneous T cell lymphoma (CTCL). However, in 

cytokine-treated beta cells, SAHA and TSA reduced the amount of apoptotic cells. The 

expression of iNOS was also reduced by the treatment, which led to lower production of 

nitric oxide. On the other hand, SAHA and TSA failed to restore glucose-simulated 
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insulin secretion, although they could restore the accumulation of insulin over a 24-hr 

period. A follow-up study in the literature demonstrated that another HDAC inhibitor, 

ITF2357, could normalize streptozocin (STZ)-induced hyperglycemia in mice at the 

clinically relevant doses of 1.25-2.5 mg/kg(46). In vitro, at 25 and 250 nmol/L, ITF2357 

increased islet cell viability, enhanced insulin secretion, reduced nitric oxide production, 

and decreased apoptotic cells. iNOS levels decreased in association with reduced islet-

derived nitrite levels. These results point to HDACs as potential targets for suppressing 

beta-cell apoptosis. The mechanism of its protective effect was considered to be down-

regulation of the NFκB pathway. Although similar positive effects of TSA or SAHA in 

cytokine-exposed cells were observed, minor toxicity on insulin secretion and apoptotic 

rate was observed in beta cell lines, especially with TSA. This may be due to the 

nonselective manner of these HDAC inhibitors. In summary, a number of efforts had 

been put in searching for small-molecule inhibitors of beta-cell apoptosis; however, there 

is still no systematic or large-scale approach to look for such inhibitors. 

 

1.6 Small-molecule screening in beta-cell biology 

Small-molecule high-throughput screening (HTS) is a method used for probe or 

drug discovery in both academia and pharmaceutical industry. This allows researchers 

to perform thousands to millions of chemical or biological tests in a relatively short time 

frame. The “hits” generated from HTS can be used as probes to study certain biological 

pathways or as drugs to cure certain diseases. 

Because of the power of HTS, several studies used this approach to generate 

probes for beta-cell biology. In 2009, Wang et al. screened ~850,000 compounds to 

identify small-molecule inducers of pancreatic beta-cell expansion(47). They found a 

group of dihydropyridine derivatives that was shown to reversibly induce beta-cell 
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replication in a mouse R7T1 beta-cell line by activating L-type calcium channels. Later, 

Chen et al. discovered a small molecule, (-)-indolactam V, capable of converting a 

heterogeneous population of embryonic stem cells (HUES 9 cells) towards a pancreatic 

cell fate by inducing Pdx1 expression(48). In 2010, Fomina-Yadlin et al. screened a 

30,710-compound library to identify BRD7389, a compound capable of inducing insulin 

mRNA and protein expression in the alphaTC1 cell line(49). Additionally, Kiselyuk et al. 

screened a library of 1,040 known drugs for modulators of human insulin promoter 

activity in the human fetal islet-derived T6PNE cell line, and found a class of 

phenothiazines that was able to activate the insulin promoter(50). However, no 

systematic screen for suppressors of cytokine-induced beta-cell apoptosis has been 

performed to date. 

 

1.7 Concluding remarks 

Beta-cell death, and the concomitant deficiency in insulin secretion, is a key feature 

of type-1 diabetes. For decades, the standard of care for this disease has been insulin 

therapy via intramuscular injection. Current approaches to develop new treatments have 

focused on islet transplantation and directed stem-cell differentiation, while many 

technological advances have focused on glucose detection and insulin delivery. 

Autoimmune-induced death of beta cells involves a complex set of signaling cascades 

initiated by IL-1beta, IFN-gamma and TNF-alpha. IL-1beta induces NFκB expression, 

while downstream activation of gene expression is thought to occur through nitric oxide 

signaling, which both increases the endoplasmic reticulum stress-response pathway and 

decreases beta-cell-specific functions; this pathway works together with IFN-gamma-

induced STAT-1 signaling to effect beta-cell death. Small molecules that increase beta-

cell survival will be beneficial to early-stage type-1 diabetic patients since there are still a 
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number of beta cells inside the pancreas and beta cells can be protected by preventing 

the attack from cytokines. Thus, the goal of my doctoral research is to develop a set of 

cell-based assays to identify small molecules capable of suppressing cytokine-mediated 

beta-cell death, and potentially of improving glycemic control in the context of the 

development of type-1 diabetes. This study is also one of the first large-scale efforts to 

screen for compounds with an impact on beta-cell biology. 
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Chapter 2: Assay development toward screening for suppressors of 

cytokine-induced beta-cell apoptosis 

2.1 Introduction 

As mentioned in Chapter 1, pro-inflammatory cytokines, IL-1beta, IFN-gamma 

and TNF-alpha, are main mediators in pancreatic beta-cell death in type-1 diabetes. 

Suppressors of beta-cell death could be used as valuable chemical probes to study 

beta-cell biology, or as therapeutic agents for type-1 diabetics in the future. In order to 

identify novel suppressors of cytokine-induced beta-cell death, I planned to use 

high-throughput screening (HTS) to identify such small molecules. HTS is a powerful 

method used by both academic and industrial researchers to screen for small 

molecules with desired properties from libraries of 10,000-1,000,000 compounds. 

Therefore, HTS requires high-throughput and miniaturized primary assays to 

complete the whole campaign in a manageable time. For this reason, I developed a 

suite of cell-based assays to probe for different aspects of beta-cell biology. Moreover, 

HTS requires a huge amount of cells for the campaign. Therefore, it is not practical 

and feasible to use primary beta cells in the primary screen. The choice of the right 

cell line is then crucial for the screening outcome. In this chapter, I will describe my 

efforts in using rat insulinoma cells, INS-1E, to develop four different high-throughput 

cell-based assays. Using cellular ATP levels as the primary readout, I screened a 
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library containing 2,240 compounds and measured the effects of top positive 

compounds in follow-up assays. These efforts led to the discovery of several 

previously unknown suppressors of cytokine-induced beta-cell apoptosis(1). 

 

2.2 Development of four assays in measuring different aspects of beta-cell 

biology in rat INS-1E cell line 

I sought to find a suitable cell line to mimic the physiologically relevant condition 

of the development of type-1 diabetes. Previous studies in the literature had used a 

few beta-cell lines in a two-day cytokine cocktail treatment to mimic physiological 

conditions(2-4). Therefore, I tested different cocktails of cytokines suggested in the 

literature in six different beta-cell lines. These are two rat insulinoma cells, INS-1E 

and RIN-m5f, three mouse insulinoma cells, MIN6, betaTC-6 and NIT-1, and one 

hamster insulinoma cell, HIT-T15. The first three cytokine cocktails tested were 

10ng/mL IL-1beta + 10ng/mL IFN-gamma, 2ng/mL IL-1beta + 50ng/mL IFN-gamma 

and 5ng/mL IL-1beta + 50ng/mL IFN-gamma (Figure 2-1). INS-1E and HIT-T15 are 

the best two cell lines in sensing cytokine cocktail, since the cellular ATP levels of 

treated cells were reduced to ~70% of the control cells (no cytokine treatment). Here, 

cellular ATP levels are measured using the commercial reagent CellTiter-Glo from 
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Promega. CellTiter-Glo contains luciferase and luciferin. When ATP is present, 

luciferase can convert luciferin to oxyluciferin and generate luminescence. The 

luminescence can be detected here to indicate the amount of ATP inside cells. 

 

Figure 2-1. Cell viability assay for six different beta-cell lines. CellTiter-Glo is a 

luciferase-based assay for cellular ATP levels, which can be used as a surrogate of cell 

viability. Higher luminescence signal corresponds to higher cell viability. Blue: no cytokine 

treatment; Pink: 10ng/mL IL-1beta and 10ng/mL IFN-gamma; Yellow: 2ng/mL IL-1beta and 

50ng/mL IFN-gamma; Cyan: 5ng/mL IL-1beta and 50ng/mL IFN-gamma. Concentrations are 

chosen from literature precedents. 

I decided to use INS-1E cells in future experiments for two main reasons. First, 
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INS-1E cells and their parental cell line, INS-1, were well-studied in the literature, 

giving us the opportunity to compare our finding with others in the literature in the 

same cell line. Second, INS-1E is a good cell line for measuring glucose-stimulated 

insulin secretion (GSIS)(5). When beta cells are in a low glucose condition (the fasting 

state), they only secrete a basal level of insulin. When the glucose level rises (after 

meal), beta cells secrete more insulin to reduce the blood glucose levels. The ratio of 

secreted insulin levels is called the stimulation index. In INS-1E cells, GSIS results in 

a stimulation index of greater than 3, which is more similar to primary beta cells 

compared to other beta-cell lines. Several groups have shown in the literature that 

INS-1E cells become apoptotic after 2-day cytokine treatments and their ability to 

secrete insulin in response of high glucose concentration is also impaired due to 

cytokine treatments(6-7). Therefore, the model using INS-1E cells to mimic the 

physiologically relevant condition of the development of type-1 diabetes is 

well-established in literature. 

Next, I wanted to decide the optimal concentration of each cytokine in the cocktail. 

I first did a titration experiment to decide the optimal combination for IL-1beta (0 to 20 

ng/mL) and IFN-gamma (0 to 100 ng/mL). IL-1beta or IFN-gamma alone did not 

reduce the viability of INS-1E cells (Figure 2-2). This observation is consistent with 

previous studies showing that each individual cytokine does not induce apoptosis in 
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pancreatic beta cells, but rather they act synergistically to induce beta-cell 

apoptosis(8). The combination of both cytokines reduced the viability of INS-1E cells 

ranging from 65% to 85% of the untreated control. 

 

 

I decided to add the third pro-inflammatory cytokine, TNF-alpha, because these 

three cytokines are all detected in the pancreas during the development of type-1 

diabetes and are proven to cause beta-cell apoptosis. I then performed another 

titration to decide the optimal condition (Figure 2-3). The addition of TNF-alpha (25 

Figure 2-2. Titration experiment for 

IL-1beta and IFN-gamma. A titration 

experiment was performed using 

cellular ATP levels as a surrogate of 

viability. The relative ATP levels are 

normalized to untreated controls. Data 

are represented as the mean of 12 

independent wells. 

Figure 2-3. Titration 

experiment for IL-1beta, 

IFN-gamma and TNF-alpha. 

A titration experiment was 

performed using cellular ATP 

levels as a surrogate of 

viability. The relative ATP 

levels are normalized to 

untreated controls. Data are 

represented as the mean of 12 

independent wells. 
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ng/mL) further reduced the viability of INS-1E cells to 20% of the control. A higher 

dose TNF-alpha (50 ng/mL) does not lead to lower cell viability. It turns out that 

10ng/mL IL-1beta + 50ng/mL IFN-gamma + 25ng/mL TNF-alpha is the optimal 

cocktail for this readout. This cocktail reduces the cellular ATP levels by 2-fold after 

two-day treatment, while even higher concentrations of cytokines do not further 

reduce cellular ATP levels. 

 

Figure 2-4. Effects of cytokines in four different aspects of beta-cell biology. A) Cell 

viability assay; B) Caspase-3 assay; C) Mitochondrial membrane potential; D) Nitrite assay. 

Data are represented as the mean + standard deviation of 24 independent wells. 

This specific set of conditions was then used as a standard condition in future 

experiments. As a result, I was able to develop a high-throughput assay to measure 
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cellular ATP levels in 384-well plates (Figure 2-4 A). Other than the cellular ATP 

assay, I also developed three different high-throughput assays to measure caspase-3 

activity, mitochondrial membrane potential, and nitrite production. Caspase-3 is a 

downstream effector of the apoptotic pathway, and its activity is increased by a 

two-day exposure of INS-1E cells to the cytokine cocktail. Caspase-3 activity is 

measured by means of the luminometric Caspase Glo3/7 assay. After a two-day 

treatment of cytokine cocktail, caspase-3 activity is elevated by 6-fold compared to the 

no treatment condition (Figure 2-4 B). Cytokine-mediated beta-cell apoptosis has 

been reported to involve mitochondria, specifically through the loss of the 

mitochondrial membrane potential (∆Ψm). JC-1, a dye for the measurement of ∆Ψm, 

is initially green but forms red fluorescent aggregates in response to hyperpolarization, 

enabling a ratiometric calculation upon compound treatment(9). After a two-day 

treatment of cytokine cocktail, mitochondrial membrane potential is reduced by 40% 

compared to the no treatment condition (Figure 2-4 C). Nitric oxide will be measured 

colorimetrically by the nitrite accumulated in the cell-culture media, using the Griess 

reagent (a combination of naphthylenediamine dihydrochloride and sulphanilamide). 

IL-1beta is known to induce expression of the gene encoding iNOS, an effect that is 

potentiated by IFN-gamma. The subsequent formation of NO drives cell death by both 

necrosis and apoptosis. After a two-day treatment of cytokine cocktail, nitrite 
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production is elevated by 4-fold compared to the no-treatment condition (Figure 2-4 

D). 

Among the four assays developed to probe beta-cell biology, the ATP assay 

was chosen as the primary assay for HTS due to its robustness. A standard used to 

judge the robustness of a high-throughput assay is Z’ factor. The assay Z′ factor was 

calculated on the basis of the means and standard deviations of untreated and 

cytokine-treated wells (Equation 2-1) (10). An assay Z’ factor between 0.5 and 1 

means an excellent assay for HTS. The Z’ factor of the high-throughput assay to 

measure cellular ATP levels in INS-1E cells in 384-well plates is 0.5, which means the 

assay is ready for HTS. All three other assays are used as secondary assays to 

further characterize the performance of top positives in protecting beta cells from 

apoptosis. 

 

 

2.3 Pilot screen: results of a 2240-compound library 

I performed a pilot screen of 2,240 compounds to identify small-molecule 

suppressors of the cytokine cocktail on cellular ATP levels in INS-1E cells. These 

Equation 2-1. The equation for calculation Z’ factor. 

σp and σn are standard deviations for positive and 

negative control. µp and µn are means for positive and 

negative control. 
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seven 384-well plates included compounds from diverse sources such as known 

bioactives, natural products, commercial “drug-like” compounds, etc. and were 

screened in duplicate. The high reproducibility of both replicates further demonstrated 

the robustness of using this assay as the primary readout in the following HTS (Figure 

2-5). Compounds were considered “hits” if they increased ATP levels by 3 standard 

deviations relative to the mock-treatment (DMSO) distribution (Figure 2-6). Using this 

criterion, I identified 49 “hits”, including 21 bioactives, 9 compounds synthesized by 

diversity-oriented synthesis(11), 5 natural products, and 14 compounds from 

commercial vendors. Chemical similarity analysis of the 49 “hits” was performed in 

collaboration with Paul Clemons at the Broad Institute, and revealed four clusters 

containing similar compounds by inspection (Figure 2-7A). These clusters included 

two virtually identical compounds (alsterpaullone and kenpaullone), several pyrazole 

derivatives from commercial vendor libraries, nine compounds from diversity-oriented 

synthesis, and eight glucocorticoid derivatives (Figure 2-7). 
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Figure 2-5. Scatter-plot results of the pilot screen. Each plate had been screened twice. 

Yellow dots are mock controls- wells treated with cytokine cocktails and DMSO. Blue dots are 

positive controls- wells treated with DMSO but without cytokine cocktails. Red dots represent 

different compounds. Axis is normalized to the average of positive controls (100% restoration) 

and mock controls (0% restoration). 
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Figure 2-6. Evaluation of the screening results. Cellular ATP levels were assessed after 

treatment with each of 2,240 compounds. The signal change induced by compound treatment 

(“Δsignal”) represents the value for each compound normalized to mock-treated wells. The 

means and standard deviations of mock-treated (DMSO) wells and positive-control (no 

cytokine) wells are shown. Potential suppressors (shaded pink) were identified as those 

resulting in Δsignal three standard deviations above the DMSO distribution. 

 

Figure 2-7. Chemical similarity among screening “hits”. A) Forty-nine compounds  
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Fig. 2-7 (Continued)  

exceeding the “hit” threshold (c.f., Figure 2-6) were selected for cluster analysis (see Methods). 

Pairwise Tanimoto (T) similarity scores were computed among all compounds (heat map; T=0, 

black; T=1, white; linear grayscale), after which “hits” were clustered hierarchically 

(dendrogram). For groups with visually apparent similarities (four white/light blocks in heat 

map; blue bars at bottom), the maximum common substructure for each group is depicted. 

Structures of the compounds tested in this study: B) alsterpaullone, C) pyrazole derivatives, D) 

dexamethasone. 

 

2.4 Follow-up studies of GSK-3β  inhibitors, glucocorticoids, and pyrazoles in 

suppressing beta-cell apoptosis 

I decided to focus initially on a set of commercially available compounds. 

Alsterpaullone (12) (Figure 2-7 B), annotated as an inhibitor of both glycogen 

synthase kinase-3β (GSK-3β) and cyclin-dependent kinase 2/5 (CDK2/5), completely 

restored beta-cell ATP levels in a dose-dependent manner (Figure 2-8 A). Similarly, 

three pyrazole derivatives (Figure 2-7 C) increased ATP levels to >90% of untreated 

controls (Figure 2-8 B). Dexamethasone (Figure 2-7D), chosen as a representative 

glucocorticoid, was slightly less potent in enhancing ATP levels, to approximately 

80% of untreated levels (Figure 2-8 C). Caspase-3 is a downstream effector of the 

apoptotic pathway, and its activity is increased by a two-day exposure of INS-1E cells 

to the cytokine cocktail. This increase in activity was suppressed more than 50% by 1 

µM alsterpaullone (Figure 2-8 D). The pyrazole derivatives also reduced caspase-3 

activity in a dose-dependent manner (Figure 2-8 E), but dexamethasone was only 
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partially effective at reducing this activity. (Figure 2-8 F) These results indicate that 

screening for an increase in ATP levels can identify small molecules capable of 

halting the apoptotic process in the presence of inflammatory cytokines. However, 

secondary assays are still required to eliminate false positives. 

 

Figure 2-8. Suppression of cytokine-induced beta-cell damage. INS-1E cells were treated 

with cytokine cocktail in the presence of increasing concentrations of alsterpaullone (A,D), 

pyrazole derivatives (B, E), or dexamethasone (C, F), all expressed as micromolar 

concentrations. Cellular ATP levels (A, B, C) and caspase-3 activities (D, E, F) were measured 

and normalized to untreated controls. Data are represented as the mean ± standard deviation 

of 24 independent wells. *, p<0.01 relative to cytokine-treated cells. 

IL-1beta induces expression of inducible nitric oxide synthase (iNOS), an effect 

potentiated by IFN-gamma and TNF-alpha(13); the subsequent formation of NO 

drives β-cell death. Cellular production of nitrite, a stable oxidized product of NO used 

as a surrogate for NO levels, increased 3.5-fold after cytokine treatment and was 

completely inhibited by 2 µM alsterpaullone (Figure 2-9 A). The pyrazole derivatives 

were also effective in reducing nitrite production, though less so than alsterpaullone 
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(Figure 2-9 B). Interestingly, dexamethasone had no effect on cytokine-induced nitrite 

production (Figure 2-9 C). Finally, I examined the effects of these compounds on 

GSIS in INS-1E cells. Under normal conditions, stimulation with 15 mM glucose leads 

to a 3.6-fold increase in insulin secretion relative to low-glucose (2 mM) conditions 

(Figure 2-9 D). Cytokine treatment reduced GSIS to 1.4-fold. This loss of response 

was largely suppressed by the addition of 4 µM alsterpaullone to the cytokine cocktail, 

with stimulation elevated to 3.2-fold. Treatment with the pyrazole derivative 

SPB07503 resulted in 50% enhancement of GSIS, while dexamethasone had no 

effect. Together, these results suggest that cellular nitrite levels are correlated with 

GSIS in INS-1E cells; compounds that are capable of reducing nitrite production in the 

face of cytokine treatment also restore GSIS. 

 

Figure 2-9. Reduction of nitrite production correlates with restoration of  
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Fig. 2-9 (Continued) 

glucose-stimulated insulin secretion. Cellular nitrite production was measured after 

treatment with cytokine cocktail and increasing concentrations of A) alsterpaullone, B) 

pyrazole derivatives, or C) dexamethasone. Data represent the mean ± standard deviation of 

24 independent wells. D) Glucose-stimulated insulin secretion was measured in the presence 

of 2 mM glucose (white bars) and 15 mM glucose (gray bars) in the absence or presence of 

cytokines and alsterpaullone (4 µM), the pyrazole derivative SPB07503 (12 µM), or 

dexamethasone (10 µM). Data are represented as the mean ± standard deviation of 8 

independent wells. *, p<0.01 relative to cytokine-treated cells. 

 

Another GSK-3β inhibitor, Ro 31-8220, was, like alsterpaullone, among the 

top-scoring compounds. Although these kinase inhibitors likely interact with several 

targets, I reasoned that GSK-3β could be a relevant target accounting for the 

protective effect on β cells. Ro 31-8220 increased ATP levels, decreased caspase-3 

activity, and reduced cellular nitrite production (Figure 2-10 A,B,C). Similarly, the 

selective GSK-3β inhibitors lithium chloride(14) and CHIR99021(15) increased ATP 

levels in the presence of cytokines (Figure 2-10 D,G). However, lithium chloride 

completely abolished nitrite production, while CHIR99021 only decreased nitrite by 

20% (Figure 2-10 E,H). On the other hand, lithium cannot reduce caspase-3 activity 

but CHIR-99021 was able to decrease caspase-3 activity dose-dependently (Figure 

2-10 F,I). 
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Figure 2-10. Suppression of cytokine-induced beta-cell damage by GSK-3β  kinase 

inhibitors. INS-1E cells were treated with cytokine cocktail in the presence of increasing 

concentrations of Ro 31-8220 (A, B, C), lithium chloride (D, E, F), or CHIR-99021 (G, H, I). 

Cellular ATP levels were assessed by luciferase-based luminescence (A, D, G) and 

normalized to untreated controls. Cellular nitrite production was determined using the Griess 

reagent (B, E, H) and represented as micromolar concentrations of nitrite. Caspase-3 activity 

was measured with a commercial kit (C, F, I) and normalized to the untreated controls. Data 

are represented as the mean ± standard deviation of 24 independent wells. 

 

To evaluate the specificity of these responses, I knocked down GSK-3β in 

INS-1E cells with small-interfering RNA (siRNA) constructs. Knock-down 

of GSK3B resulted in ATP levels that were 75% that of the mock-transfected control 

(Figure 2-11 A), in a complete reduction of caspase-3 activity, and in a 20% reduction 

in nitrite production (Figure 2-11 C). These results were similar to those achieved by 
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CHIR99021 and suggest that selective inhibition of GSK-3β is only partially protective 

of cytokine-treated INS-1E beta cells. 

 

Figure 2-11. Effects of genetic silencing of GSK-3β  on beta-cell viability. (A) Cellular 

ATP levels were determined in INS-1E treated with cytokine cocktail in the presence of mock 

transfection, scrambled siRNA, and GSK-3β-specific siRNA. Decreases in GSK-3β protein 

levels after siRNA transfection are shown by Western blot. (B) Caspase-3 activity and (C) 

cellular nitrite production under the same gene-silencing conditions. Data are represented as 

the mean ± standard deviation of 24 independent wells. 

 

2.5 Discussion and conclusion 

Inhibition of GSK-3β has been reported to protect beta cells against 

glucolipotoxicity and endoplasmic reticulum stress-induced β-cell death(16-17). There 

are key differences between these mechanisms and cytokine-induced apoptosis, so 

the fact that GSK-3β inhibitors could also suppress cytokine-induced β-cell apoptosis 

is not intuitively obvious. For example, the expression of iNOS and IκBα is 

upregulated by cytokines but not by high glucose concentrations(18-19). Further, fatty 

acids such as oleate and palmitate do not activate the NFκB pathway in either INS-1E 

or rat islets, and fatty acid-induced beta-cell death is independent of iNOS or nitrite 
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production(20). Because I observed a correlation between cellular nitrite production 

and GSIS, it is likely that inhibition of GSK-3β alone is insufficient to enhance beta-cell 

function lost due to inflammatory cytokines. These results suggest that alsterpaullone 

acts through multiple mechanisms, including GSK-3β inhibition, to protect beta cells 

from cytokine-induced apoptosis. 

Glucocorticoids are a class of steroid hormones that bind to nuclear hormone 

receptors, which in turn translocate to the nucleus and upregulate the expression of 

anti-inflammatory proteins(21). Although glucocorticoids are generally detrimental to 

β-cell development and insulin secretion(22), a recent study showed that high doses 

of dexamethasone increase beta-cell proliferation in rat islets(23). Here, I 

demonstrate that low-micromolar concentrations of dexamethasone increased cellular 

ATP levels and reduced caspase-3 activity in the presence of cytokines. However, 

dexamethasone neither reduced cytokine-induced nitrite production nor restored 

GSIS. These results indicate that glucocorticoids can only partially increase β -cell 

viability in this system. 

The novel pyrazole derivatives were obtained from commercially available 

libraries. I observed that these compounds protected cells against the detrimental 

effects of cytokines in all assays tested. To my knowledge, there have been no 

previous reports of the biological activities of these or related structures. These data 
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suggest that the pyrazole derivatives in this study could protect beta cells by an as-yet 

unknown mechanism. 

Because of the importance of pro-inflammatory cytokines to the beta cell, many 

efforts have been made to identify genetic or small-molecule approaches to protect 

beta cells from cytokine-induced death(3-4, 24-26). I have demonstrated the feasibility 

of cell-based screening to identify small molecules that prevent loss of β-cell viability 

in the presence of cytokines. I also find that reduction of cytokine-induced caspase 

activity and nitrite production appear to be prerequisites for enhancing physiological 

beta-cell function. The cytokines used here have numerous effects on beta cells, but I 

believe the use of this cocktail is a relatively fair model of the development of type-1 

diabetes. The suppressors identified here could be used as chemical probes to study 

beta-cell biology in the future. 

 

2.6 Methods and Materials 

Cell culture and reagents. INS-1E cells (generously provided by C. Wollheim and P. 

Maechler, University of Geneva) were maintained in RPMI 1640 containing 11 mM 

glucose, 10% fetal bovine serum, 10 mM HEPES, 50 µM 2-mercaptoethanol, 1 mM 

sodium pyruvate, cultivated at 37C with 5% CO2 in a humidified atmosphere, and split 
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every week. Recombinant rat IL-1β and recombinant mouse TNF-α were purchased 

from R&D Systems. Recombinant mouse IFN-γ, Griess reagent, and dexamethasone 

were purchased from Sigma. CellTiter-Glo and Caspase-Glo 3/7 reagents were 

purchased from Promega. Alsterpaullone and Ro 31-8220 were purchased from EMD 

Biosciences. The pyrazole derivatives were purchased from Maybridge. CHIR99021 

was synthesized as described (27) by Dr. Tim Lewis in Broad Institute. 

 

High-throughput screening for compounds affecting cellular ATP levels. INS-1E 

cells were seeded at 10,000 cells/well using a Multidrop Combi (Thermo Labsystems) 

in white optical 384-well plates (Corning Life Sciences). After overnight incubation, 

medium was removed and 50 µL RPMI containing 1% FBS and a combination of 

cytokines (10 ng mL-1 IL-1β, 50 ng mL-1 IFN-γ, 25 ng mL-1 TNF-α) was added to every 

well. Using libraries of compounds dissolved in DMSO and a CyBi-Well pin-transfer 

robot (CyBio Corp.), 0.1 µL of each compound was added. After 48 hr, medium was 

removed and 20 µL CellTiter-Glo reagent was added. Luminescence was measured 

after 10-min incubation using an EnVision plate reader (PerkinElmer). 

 

Screening data analysis. Instrument output files were processed using Pipeline Pilot 

(Accelrys) and input to MATLAB (The MathWorks) for data normalization. Compound 
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performance scores relative to a distribution of mock-treated (DMSO) wells were 

calculated using a revised version of the scoring system underlying ChemBank (28). 

The role of replicate treatments was further developed as follows: first, 

mock-treatment distributions were modeled using all mock-treated wells measured on 

a single day, regardless of their nominal replicate; second, per-compound scores 

weighted each in-plate background-subtracted measurement by the uncertainty in 

that measurement, using the method of maximum likelihood (29). The uncertainty in a 

single background-subtracted measurement was estimated using the number of 

mock-treated wells on the plate and, as a measure of the assay noise, the standard 

deviation of the per-day mock-treatment distribution. The signal, a weighted average 

of differences, was scaled by the noise, the standard deviation of the mock-treatment 

distribution. 

 

Chemical similarity analysis. Cluster analysis was performed using Pipeline Pilot 

extended connectivity fingerprints (unfolded ECFP_4s). Bits representing 

substructures present in more than 10%, and less than 90%, of the 49 compounds 

were selected to generate 96-bit representations for each structure. Pairwise 

Tanimoto (T) similarity scores were computed among all compounds, after which 

“hits” were clustered hierarchically (complete linkage), both using MATLAB. Maximum 
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common substructures for each group with similarities apparent by inspection were 

determined using Pipeline Pilot. 

 

Measurement of cellular nitrite production. INS-1E cells were seeded and treated 

as described for high-throughput screening. After treatment with cytokine and 

compounds for 48 hr, 10 µL modified Griess reagent (1:1 mixture of 1% sulfanilamide 

in 30% acetic acid and 0.1% N-(1-naphthyl) ethylenediamine dihydrochloride in 60% 

acetic acid) was added to each well. After 5-min incubation at room temperature, the 

absorbance at 540 nm was measured using an Envision plate reader. 

 

Caspase-3 activity assay. INS-1E cells were seeded at 5,000 cells/well in white 

optical 384-well plates and treated as described for high-throughput screening. After 

treatment with cytokines and compounds for 48 hr, medium was removed and 20 µL 

Caspase-Glo 3/7 reagent was added. Luminescence was measured after 2-hr 

incubation using an Envision plate reader. 

 

RNA interference and Western blotting. Small-interfering RNA against Gsk3b was 

obtained from Dharmacon. siRNAs (100 nM) were transfected into INS-1E cells 

(5,000 cells/well in a 384-well plate) using DharmaFECT reagent. Transfected cells 
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were cultured for 72hr, then collected for Western blot analysis and cell-based assays. 

For Western blotting, cells were lysed in RIPA buffer. Total protein was separated by 

4-12% SDS-PAGE and transferred to a PVDF membrane. Blots were developed 

using the chemiluminescence detection system SuperSignal (Thermo Fisher 

Scientific) and light emission was captured using an Imaging Station 4000MM 

(Carestream). 

 

Glucose-stimulated insulin secretion. INS1-E cells were seeded in 96-well plates 

at 20,000 cells/well and incubated for 48 hr in 100 µL fresh RPMI containing 1% FBS 

and the cytokine cocktail, in the presence or absence of compounds. Cells were 

washed and incubated for 2 hr in KRBH (135 mM NaCl, 3.6 mM KCl, 5 mM NaHCO3, 

0.5 mM NaH2PO4, 0.5 mM MgCl2, 1.5 mM CaCl2, 10 mM HEPES, pH 7.4, 0.1% BSA) 

buffer without glucose. Cells were subsequently incubated with KRBH buffer 

containing 2 mM or 15 mM glucose for 1 hr. The supernatant was taken for 

measurement of released insulin, and 100 µL acidified ethanol added to each well for 

extraction and measurement of cellular insulin content. Insulin was measured with a 

rat insulin ELISA kit (Alpco). 
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Chapter 3: Identification of HDAC3 as a target for suppressing 

cytokine-induced beta-cell apoptosis 

3.1 Introduction 

Protein acetylation has emerged as an important post-translational modification 

that regulates multiple cellular functions, including chromatin remodeling and 

transcriptional regulation(1-2), microtubule dynamics and intracellular transport(3-4), 

metabolism, and ageing(5). Histone deacetylases (HDACs) and histone 

acetyltransferases (HATs) regulate these processes by modulating the lysine 

acetylation of proteins. Much research has focused on the acetylation of histones — 

major components of chromatin — owing to the important roles these proteins have in 

vital cellular functions and in disease(6-7). Levels of histone acetylation depend on 

the activities of HATs and HDACs, which add or remove acetyl groups from protein 

substrates, respectively. In general, an increase in histone acetylation causes 

remodeling of chromatin from a tightly packed configuration to a loosely packed 

configuration, which subsequently leads to transcriptional activation. Conversely, a 

decrease in histone acetylation may cause chromatin structure to condense and 

result in transcriptional silencing. Therefore, upregulation of transcription can be 

achieved in cells either by stimulation of HAT or by inhibition of HDAC activities 

Traditionally, HDACs have been classified based on the molecular analysis of 
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protein structure and their homology to yeast enzymes(8). Class I (HDAC1, HDAC2, 

HDAC3 and HDAC8), class IIa (HDAC4, HDAC5, HDAC7 and HDAC9), class IIb 

(HDAC6 and HDAC10) and class IV (HDAC11) HDACs contain zinc-dependent 

deacetylase domains. The class III HDACs (sirtuins, SIRT1–SIRT7) belong to a 

distinct class of NAD+-dependent hydrolases. Class I and class II HDACs share 

significant structural homology, especially within the highly conserved catalytic 

domains. HDAC1 was the first HDAC to be identified and characterized. HDAC1 was 

isolated by affinity chromatography with a derivative of a natural product, trapoxin A, 

which was discovered in a phenotypic screen involving the change in the spindle-like 

morphology of v-sis-transformed NIH 3T3 cells to the flattened morphology 

of fibroblasts(9). Subsequently, trapoxin A was shown to inhibit the histone 

deacetylase activity(10-11). By affinity chromatography, trapoxin A was found to bind 

to a previously unidentified protein, HDAC1(12). This discovery of HDAC1 opened up 

many investigations of histone deacetylase function and quickly led to the observation 

that HDACs both deacetylate histones in vitro and silence gene expression in 

vivo(12-13). 

In the past decade, a number of HDAC inhibitors were developed as tool 

compounds for studying chromatin biology and clinical candidates of cancer(14). 

Crystallographic study using HDAC inhibitors, trichostatin A (TsA) and 
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suberoylanilide hydroxamic acid (SAHA), indicates that these compounds inhibit 

HDAC activity by interacting with the catalytic site of HDACs(15). Recently, a study 

demonstrated that erstwhile pan-HDAC inhibitors possess different isoform selectivity 

based on their activities in biochemical assays(16). For example, suberoylanilide 

hydroxamic acid (SAHA) inhibits the activities of HDAC1, 2, 3, 6, and 8, while MS-275 

only inhibits the activities of HDAC1, 2, and 3. Therefore, structurally diverse HDAC 

inhibitors may have different cellular effects because of different isoform selectivity. 

Intensive therapeutic development efforts have focused on small-molecule HDAC 

inhibitors. Initially, this interest was precipitated by the discovery of the anticancer 

potential of HDAC inhibitors(17). Subsequently, potential therapeutic applications 

were broadened to include other human illnesses, including CNS diseases(18) and 

cystic fibrosis(19). Therefore, although cancer remains a primary target for 

HDAC-based therapy, significant efforts have been made to develop compounds, 

especially isoform-selective inhibitors, for the treatment of numerous diseases. 

Recently, an important role for histone deacetylases (HDACs) in suppressing 

beta-cell apoptosis was suggested, perhaps by decreasing NFκB transactivation 

(reviewed in (20)). Larsen et al. demonstrated that the HDAC inhibitors SAHA and 

trichostatin A (TsA) partially prevented cytokine-induced beta-cell toxicity (21). 

However, neither SAHA nor TsA could restore GSIS. ITF2357, another 
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broad-spectrum HDAC inhibitor, had in vivo activity, protecting mouse islets from 

cytokines and preventing hyperglycemia in streptozocin-treated mice (22). 

In this chapter, I investigated a structurally diverse panel of HDAC inhibitors for 

their cellular effects in cytokine-induced beta-cell apoptosis. I demonstrate that 

MS-275, an inhibitor specific for HDAC1, 2, and 3, prevents beta-cell apoptosis and 

restores GSIS to a greater extent than more promiscuous HDAC inhibitors, such as 

SAHA. I further show that specific inhibition of HDAC3 is responsible for the protective 

effects of MS-275. 

 

3.2 MS-275 and CI-994 are better suppressors than SAHA and TsA in 

suppressing beta-cell apoptosis 

Using cellular ATP levels as a surrogate for cell viability (23), I tested the effects 

of eleven structurally diverse HDAC inhibitors (Figure 3-1) in protecting the rat INS-1E 

insulinoma cell line (24) from cytokine-induced apoptosis. Most of these compounds 

restored ATP levels to varying degrees (Figure 3-2 A). However, we observed very 

different effects on caspase-3 activity after compound treatment. MS-275 and CI-994 

were the only two compounds that reduced caspase-3 activity significantly, while 

other HDAC inhibitors either were inactive or, like PXD101 and SAHA, even increased 

caspase-3 activity (Figure 3-2 B). Most compounds decreased nitrite secretion, a 
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surrogate for nitric oxide production, but the effects were more moderate (Figure 3-2 

C). When I performed hierarchical clustering (Figure 3-2 D), the compounds with the 

most beneficial effects on cytokine-treated beta cells clustered together, and in 

particular were those that selectively inhibited the activities of HDAC1, 2, and 3 

(MS-275 and CI-994) (Figure 3-2 A,B). These results suggest that only certain HDAC 

isoforms are important to cytokine-induced beta-cell apoptosis, and that the selectivity 

of HDAC inhibitors is an important consideration in assessing this activity. 

 

Figure 3- 1. Structures of HDAC inhibitors used in this study. Concentrations used were: 

APHA, 5 µM; pyroxamide, 5 µM; TsA, 0.05 µM; SAHA, 1 µM; apicidin, 0.05 µM; 3, 5 µM; 

CI-994, 10 µM; LAQ824, 1 µM; PXD101, 0.2 µM; MS-275, 5 µM; Scriptaid, 1 µM. 
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Figure 3-2. Phenotypic profiling of eleven HDAC inhibitors in beta cells. Eleven HDAC 

inhibitors were tested for activity in the presence of a cocktail of inflammatory cytokines in rat 

INS-1E cells for (A) cellular ATP levels, (B) caspase-3 activity and (C) nitrite production. (D) 

Results from (A), (B) and (C) was displayed into heat map. Activity was normalized to a range 

of -1 (green), decrease in signal relative to the untreated condition (“NT”), to 1 (red), increase 

in signal relative to the untreated condition. (E) The chemical structures of HDAC inhibitors 

studied in more detail: 1 (MS-275), 2 (SAHA), 3, and 4 (CI-994). 
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Figure 3-3. Cellular ATP levels of INS-1E cells treated with 11 different HDAC inhibitors in the 

absence of the cytokine cocktail were used to determine the maximum concentration of each 

compound used in the follow-up assays. 

 

These measurements were made at a single compound concentration, the 

highest at which the cells remained viable (Figure 3-3). In order to determine 

concentration dependence, we tested MS-275 and SAHA as exemplars of class I 

(HDAC1, 2, 3) and broad-spectrum inhibition, respectively, over a 4- to 5-fold range of 

concentrations. Both MS-275 and SAHA restored ATP levels in INS-1E cells treated 

with cytokines, with SAHA resulting in a greater suppression (Figure 3-4 A). However, 

SAHA slightly increased caspase-3 activity, while MS-275 reduced caspase-3 activity 
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in the presence of cytokines by approximately 50% (Figure 3-4 B). MS-275 and SAHA 

resulted in comparable reduction of nitrite production in the presence of cytokines 

(Figure 3-4 C). Consistent with previous reports that SAHA could not restore the 

impairment in GSIS caused by treatment with cytokines (21), we confirmed that 1 µM 

SAHA had no effect on GSIS, while 5 µM MS-275 restored GSIS in the presence of 

cytokines (Figure 3-4 D). Moreover, MS-275 was also more effective in restoring 

mitochondrial membrane potential, another readout of apoptosis, than SAHA (Figure 

3-5). These results suggest that MS-275 may be a superior suppressor of 

cytokine-induced beta-cell apoptosis than less selective HDAC inhibitors. 

 

 

Figure 3-4. Cytokine-induced 

apoptosis is suppressed by 

MS-275 but not SAHA. (A) Effects 

of MS-275 and SAHA on cellular ATP 

levels in INS-1E cells after 48 hours 

in the presence of the cytokine 

cocktail. (B) Effects of MS-275 and 

SAHA on caspase-3 activity after 

48-h treatment. (C) Effects of 

MS-275 and SAHA on the cellular 

production of nitrite after 48-h 

treatment. (D) Effects of MS-275 and 

SAHA on glucose-stimulated insulin 

secretion after 48-h treatment. Data 

represent the mean ± standard 

deviation of 8 independent wells for 

insulin secretion and 24 independent 

wells for others. * indicates p < 0.01 

as compared to the cytokine 

treatment alone. 
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3.3 siRNA-based knock-down studies identified HDAC3 as a target for 

suppressing of cytokine-induced beta-cell apoptosis 

I then sought to determine the HDAC isoform(s) responsible for suppression of 

cytokine-induced beta-cell apoptosis. MS-275 is a selective inhibitor of HDAC1, 2, 

and 3, while SAHA additionally inhibits HDAC6 and 8(16). I reasoned that inhibition of 

HDAC1, 2, or 3 led to the protective effects of MS-275. To test this hypothesis, I 

performed gene-silencing experiments targeting these HDACs using small-interfering 

RNA (siRNA). siRNA duplexes specific for Hdac1, Hdac2, or Hdac3 were transfected 

into INS-1E cells, leading to a selective decrease in protein expression of the 

appropriate HDAC (Figure 3-6). Each knock-down alone had no effect on viability 

(Figure 3-7).  

Figure 3-5. Effects of MS-275 

and SAHA on restoring 

mitochondrial membrane 

potential (ΔΨm) in the presence 

of cytokines. Data represent the 

mean ± standard deviation of 24 

independent wells. * indicates p < 

0.01 as compared to the cytokine 

treatment alone. 
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Knock-down of Hdac2 or Hdac3 in the presence of cytokines each resulted in a 

35% restoration of ATP levels, while knock-down of Hdac1 had no effect (Figures 3-8 

A). Only knock-down of Hdac3 was sufficient to reduce caspase-3 activity (Figure 3-8 

B). The protective effect of Hdac3 knock-down is verified using two different siRNA 

constructs (Figure 3-9). Knock-down of either Hdac2 or Hdac3 resulted in slight but 

statistically significant reduction in nitrite production (Figure 3-8 C), while again 

knock-down of Hdac1 had no effect. We observed similar effects of genetic 

knock-downs using a cell death ELISA readout measuring DNA-histone complexes 

(Figure 3-10). Importantly, knock-down of Hdac3 alone led to restoration of GSIS 

(Figure 3-8 D), showing that the beta cells are fully functional. Moreover, knock-down 

of either Hdac2 or Hdac3 resulted in restoration in mitochondrial membrane potential 

(Figure 3-11). These results indicate that inhibition of HDAC3 is responsible for the 

Figure 3-6. A) Western blots 

validating the specificity of each 

siRNA construct in knocking-down 

a single HDAC isoform. B) 

Quantification of Western blots 

shown in (A). 

 

Figure 3-7. Knock-down of 

individual HDAC isoform in the 

absence of cytokine cocktails had 

no effects on cellular ATP levels. 

Data represent the mean ± 

standard deviation of 24 

independent wells. 
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protective effects of MS-275 on beta cells in the presence of inflammatory cytokines. 

Further, insulin secretion does not appear to be correlated with ATP levels alone, but 

rather is more related to caspase activity. 

 

Figure 3-8. Genetic knock-down of Hdac3 suppresses beta-cell apoptosis. The effects of 

knocking down Hdac1, 2, or 3 on (A) cellular ATP levels, (B) caspase-3 activity, (C) nitrite 

production, or (D) glucose-stimulated insulin secretion. Data represent the mean ± standard 

deviation of 8 independent wells for insulin secretion and 24 independent wells for others. * 

indicates p < 0.01 as compared to the cytokine treatment alone. 

 
Figure 3-9. Two independent siRNA constructs of rat Hdac3 restored cellular ATP levels and 

reduced caspase-3 activity in the presence of the cytokine cocktail. Data represent the mean ± 

standard deviation of 24 independent wells. 
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3.4 Further evidence from small-molecule HDAC inhibitors (“Merck 60” and 

HDAC3-seletive inhibitors) 

To further demonstrate the importance of HDAC3 in protecting insulin-secreting 

cells from cytokine-induced apoptosis, I used small-molecule inhibitors to chemically 

isolate HDAC3 activity. CI-994, an inhibitor selective for HDAC1, 2, and 3, restored 

ATP levels and reduced caspase-3 activity in INS-1E cells (Figure 3-12 A, B). A 

2-thiophenyl analog of CI-994, 3 (Figure 3-2 E), exhibits inhibitory activity toward 

HDAC1 and 2 only (IC50 7 and 49 nM, respectively, vs. 10 µM for HDAC3) (25). Thus, 

I could indirectly assess the effects of HDAC3 inhibition by comparing the activities of 

Figure 3-11. Effects of knocking down 

each HDAC isoform on restoring 

mitochondrial membrane potential (ΔΨm) 

in the presence of cytokines. Data 

represent the mean ± standard deviation 

of 24 independent wells. 

Figure 3-10. Effects of knocking down 

each HDAC isoform on reducing 

DNA-histone complexes released from 

the nucleus to the cytoplasm in the 

presence of cytokines. Data represent the 

mean ± standard deviation of 4 

independent wells. Data were normalized 

to the cytokine-treated, scrambled siRNA 

condition (100%). 
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3 and CI-994. Although 3 restored ATP levels (Figure 3-12 A), it did not reduce 

caspase-3 activity (Figure 3-12 B). Mitochondrial membrane potential was completely 

restored by CI-994, but not by 3 (Figure 3-13). These results further demonstrate the 

crucial role of HDAC3 in cytokine-induced beta-cell apoptosis. 

 

Figure 3-12. Analysis of chemical HDAC3 inhibition on beta-cell apoptosis. Effects of 3 

and 4 (CI-994) on (A) cellular ATP levels and (B) caspase-3 activity in the presence of 

cytokines. Data represent the mean ± standard deviation of 24 independent wells. * indicates p 

< 0.01 as compared to the cytokine treatment alone. 

 

I also tested some HDAC inhibitors that show selectivity toward HDAC3, but not 

HDAC1 and HDAC2. These compounds were synthesized by Professor Jacob 

Figure 3-13. Effects of 3 and CI-994 on 

restoring mitochondrial membrane potential 

(ΔΨm) in the presence of cytokines. Data 

represent the mean ± standard deviation of 

24 independent wells. * indicates p < 0.01 

as compared to the cytokine treatment 

alone. 
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Hooker at Massachusetts General Hospital (Figure 3-14), originally as part of an effort 

to identify potential in vivo imaging agents for HDAC activity. Compound 5-9 are 

HDAC inhibitors that show selectivity toward HDAC3. However, compound 10, like 3, 

has an aromatic substituent in the biasing element and is selective toward HDAC1 

and HDAC2. 

 

Figure 3-14. HDAC inhibitors synthesized by Prof. Jacob Hooker, a collaborator at MGH. 

Biochemical assay was done using caliper assay (Caliper Life Sciences). 

In measuring cellular ATP levels in the presence of cytokines, I found that all the 

compounds were able to restore cell viability in the presence of cytokines (Figure 

3-15). This result is consistent with the result of CI-994 and compound 3. However, 

only compounds 5-9 were able to reduce caspase-3 activity by 40% in the presence of 

cytokines (Figure 3-16). Compound 10 cannot reduce caspase-3 activity. Here, the 
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results from small-molecule HDAC3-selective inhibitors further show the important 

role of HDAC3 in cytokine-induced beta-cell apoptosis. 

 

 

 

3.5 Conclusion 

In conclusion, I evaluated a panel of eleven clinically advanced HDAC inhibitors 

and found that MS-275 and CI-994 suppress cytokine-induced beta-cell apoptosis, 

while the less selective inhibitors SAHA and TsA do not. By comparing these results 

to biochemical activities, I narrowed down the possible HDAC targets to a 

combination of HDAC1, 2, or 3. Using siRNA reagents and isoform-selective inhibitors, 

I observed that inhibition of HDAC3 appears to be critical for the protective effects of 

Figure 3-15. Analysis of small-molecule 

HDAC3 inhibition on beta-cell apoptosis. 

Effects of 5 to 10 were tested in cellular ATP 

levels. Concentrations used were: 5, 2.5 µM 

and 5 µM; 6, 5 µM and 10 µM; 7, 5 µM and 10 

µM; 8, 5 µM and 10 µM; 9, 5 µM and 10 µM; 

10, 5 µM and 10 µM. 

Figure 3-16. Analysis of small-molecule 

HDAC3 inhibition on beta-cell apoptosis. 

Effects of 5 to 10 were tested in caspase-3 

activity. Concentrations used were: 5, 2.5 µM 

and 5 µM; 6, 5 µM and 10 µM; 7, 5 µM and 10 

µM; 8, 5 µM and 10 µM; 9, 5 µM and 10 µM; 

10, 5 µM and 10 µM. 
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HDAC inhibitors, while the inhibition of additional isoforms may be deleterious to 

beta-cell function. The lack of correlation between ATP levels and caspase activity 

after treatment with some of these compounds suggests that these assays are 

reading out different aspects of cell toxicity. This notion is consistent with a previous 

analysis of the lack of overlap between viability assay readouts in hepatoma cells (26). 

Larsen et al. demonstrated that inhibition of the NFκB pathway is responsible for the 

protective effects of HDAC inhibitors. The p65 subunit of NFκB is acetylated by both 

p300 and PCAF on lysines 122 and 123(27). Acetylated p65 is subsequently 

deacetylated through a specific interaction with HDAC3(28). Acetylation of p65 

reduces its ability to bind κΒ-DNA(27). Moreover, acetylation of p65 facilitated its 

removal from DNA and consequently its IκΒα-mediated export from the nucleus(27). 

Therefore, inhibition of HDAC3 could reduce the activity of NFκB. This is totally 

consistent with my finding that selective inhibition of HDAC3 is responsible for 

preventing cytokine-induced beta-cell apoptosis. This study suggests the 

development of more selective HDAC3 inhibitors, and exploration of their potential 

uses in protecting pancreatic beta cells from inflammatory attack during the 

development of type-1 diabetes. 

 

3.6 Methods and Materials 
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Cell culture and reagents. INS-1E cells (generously provided by Claes Wollheim 

and Pierre Maechler, University of Geneva, Switzerland) were maintained in culture 

medium (RPMI 1640 containing 11 mM glucose, 10% fetal bovine serum, 10 mM 

HEPES, 50 µM 2-mercaptoethanol, 1 mM sodium pyruvate) and cultivated at 37C 

with 5% CO2 in a humidified atmosphere. Recombinant rat IL-1β and recombinant 

mouse TNF-α were purchased from R&D Systems. Recombinant mouse IFN-γ and 

Griess reagent were purchased from Sigma. CellTiter-Glo and Caspase-Glo 3/7 

reagents were purchased from Promega. Rabbit antibodies for HDAC1, 2 and 3 were 

from CellSignaling. Mouse monoclonal antibody to tubulin was from Sigma. 

Secondary horseradish peroxidase-conjugated goat anti-mouse and anti-rabbit 

antibodies were from Thermo Fisher Scientific. HDAC inhibitors were purchased from 

Sigma or synthesized in-house. 

 

Measurement of cellular ATP levels. INS-1E cells were seeded at 10,000 cells/well 

using a Multidrop Combi (Thermo Labsystems) in white optical 384-well plates 

(Corning Life Sciences). After overnight incubation, medium was removed and 50 µL 

RPMI containing the treated compound, 1% FBS and a combination of cytokines (10 

ng/mL IL-1β, 50 ng/mL IFN-γ, 25 ng/mL TNF-α) was added to every well. After 

incubation for 48 hr, medium was removed and 20 µL CellTiter-Glo reagent was 
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added. Luminescence was measured after 10-min incubation using an EnVision plate 

reader (PerkinElmer). 

 

Measurement of cellular nitrite production. INS-1E cells were seeded at 10,000 

cells/well using a Multidrop Combi (Thermo Labsystems) in white optical 384-well 

plates (Corning Life Sciences). After overnight incubation, medium was removed and 

50 µL RPMI containing the treated compound, 1% FBS and a combination of 

cytokines (10 ng/mL IL-1β, 50 ng/mL IFN-γ, 25 ng/mL TNF-α) was added to every well. 

After treatment with cytokine and compounds for 48 hr, 10 µL modified Griess reagent 

(1:1 mixture of 1% sulfanilamide in 30% acetic acid and 0.1% N-(1-naphthyl) 

ethylenediamine dihydrochloride in 60% acetic acid) was added to each well. After 

5-min incubation at room temperature, the absorbance at 540 nm was measured 

using an Envision plate reader (PerkinElmer). 

 

Measurement of mitochondrial membrane potential. INS-1E cells were seeded at 

10,000 cells/well using a Multidrop Combi (Thermo Labsystems) in white optical 

384-well plates (Corning Life Sciences). After overnight incubation, medium was 

removed and 50 µL RPMI containing the treated compound, 1% FBS and a 

combination of cytokines (10 ng/mL IL-1β, 50 ng/mL IFN-γ, 25 ng/mL TNF-α) was 
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added to every well. After treatment with cytokine and compounds for 48 hr, 20 µL of 

3.25µM JC-1 was added to each well. After 3hr incubation at 37°C, the cells were 

gently washed three times with 50 µL per well of 1X PBS (with Ca2+ and Mg2+). 

Fluorescence was measured with an EnVision plate reader (PerkinElmer) at the 

rhodamine spectra (excitation/emission 530 nm/580 nm) followed by fluorescein 

(excitation/emission 485 nm/530 nm). The ratio of rhodamine to fluorescein intensity 

was determined and represents the degree of mitochondrial membrane potential. 

 

Caspase-3 activity assay. INS-1E cells were seeded at 5,000 cells/well using a 

Multidrop Combi (Thermo Labsystems) in white optical 384-well plates (Corning Life 

Sciences). After overnight incubation, medium was removed and 50 µL RPMI 

containing the treated compound, 1% FBS and a combination of cytokines (10 ng/mL 

IL-1β, 50 ng/mL IFN-γ, 25 ng/mL TNF-α) was added to every well. After treatment with 

cytokines and compounds for 48 hr, medium was removed and 20 µL Caspase-Glo 

3/7 reagent was added. Luminescence was measured after 2-hr incubation using an 

Envision plate reader (PerkinElmer). 

 

Measurement of cellular apoptosis. INS-1E cells were seeded at 10,000 cells/well 

using a Multidrop Combi (Thermo Labsystems) in white optical 384-well plates 
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(Corning Life Sciences). After overnight incubation, medium was removed and 50 µL 

RPMI containing the treated compound, 1% FBS and a combination of cytokines (10 

ng/mL IL-1β, 50 ng/mL IFN-γ, 25 ng/mL TNF-α) was added to every well for a 

48hr-treatment. The degree of cytokine-induced apoptosis was determined by 

cell-death detection ELISA (Roche) measuring the amount of DNA-histone complexes 

present in the cytoplasmic lysates according to manufacturer’s description. This assay 

is based on a sensitive fluorescent nucleic acid stain facilitating the quantification of 

double-stranded DNA in solution. 

 

RNA interference and Western blotting. Small-interfering RNAs against Hdac1, 2 

and 3 were obtained from Dharmacon. siRNAs (100 nM) were transfected into INS-1E 

cells (5,000 cells/well in a 384-well plate) using DharmaFECT reagent. Transfected 

cells were cultured for 72hr, then collected for Western blot analysis and cell-based 

assays. For Western blotting, cells were lysed in RIPA buffer. Total protein was 

separated by 4-12% SDS-PAGE and transferred to a PVDF membrane. Blots were 

developed using the chemiluminescence detection system SuperSignal (Thermo 

Fisher Scientific) and light emission was captured using an Imaging Station 4000MM 

(Carestream). 
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Glucose-stimulated insulin secretion. INS-1E cells were seeded in 96-well plates 

at 20,000 cells/well in 100 µL RPMI and incubated for 48 hr in 100 µL fresh RPMI 

containing 1% FBS and the cytokine cocktail in the presence or absence of 5 µM 

MS-275. Cells were washed and incubated for 2 hr in KRBH buffer (135 mM NaCl, 3.6 

mM KCl, 5 mM NaHCO3, 0.5 mM NaH2PO4, 0.5 mM MgCl2, 1.5 mM CaCl2, 10 mM 

HEPES, pH 7.4, 0.1% BSA) lacking glucose. Cells were subsequently incubated with 

KRBH buffer containing 2 mM or 16 mM glucose for 1 hr. The supernatant was 

collected for measurement of secreted insulin. Insulin was measured with a rat insulin 

ELISA kit (Alpco). 
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Chapter 4: Identification of BRD0476 as a novel suppressor of 

cytokine-induced beta-cell apoptosis 

4.1 Introduction 

Type-1 diabetes is caused by the autoimmune destruction of insulin-producing 

beta cells in the pancreas. The infiltration of pancreatic islets by macrophages and 

secretion of inflammatory cytokines such as IL-1β, IFN-γ, and TNF-α are believed to 

cause beta-cell death(1). Activation of transcription factors such as NFκB and STAT1 

by these cytokines triggers the intrinsic apoptotic pathway in both rodent and human 

cell models(2). A small-molecule probe capable of preventing or reversing 

cytokine-induced beta-cell death could have great potential in developing therapies 

for early-stage type-1 diabetes. 

Previous efforts to suppress beta-cell apoptosis with small molecules involved 

compounds with antioxidant or antiinflammatory activity(3-4), and more recently with 

inhibitors of histone deacetylase activity(5-6). In chapter 2, I described a suite of 

cell-based assays that can be used to identify small-molecule suppressors of beta-cell 

death, and examined the effects of inhibitors of glycogen synthase kinase 3β, 

pyrazole derivatives, and glucocorticoids(7). This pilot-scale screen identified small 

molecules that increased ATP levels, but the majority of these compounds did not 

have effects on other aspects of beta-cell biology, such as insulin secretion. Therefore, 
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I sought to identify more complete suppressors of cytokine-induced beta-cell 

apoptosis that result in normal beta-cell function. 

In this chapter, I will describe a large-scale high-throughput screen (HTS) effort to 

identify suppressors of cytokine-induced beta-cell apoptosis. I screened 29,760 

compounds and identified several hit compounds. Among them, BRD0608, a 

compound synthesized via diversity-oriented synthesis (DOS)(8-10), was chosen for 

follow-up studies. I will also describe the development of a stereochemically diverse 

library of medium-sized rings, which led to the synthesis of BRD0608. Further 

optimization of the initial hit cluster and follow-up biological studies resulted in a 

compound, BRD0476, capable of restoring physiological properties to beta cells in the 

presence of these cytokines. 

 

4.2 Results of a 29,760-compound library screen 

As described in Chapter 2, I developed a high-throughput assay using INS-1E 

cells to screen for suppressors of cytokine-induced beta-cell apoptosis(7). I 

collaborated with Dr. Patrick Faloon in the Chemical Biology Platform of Broad 

Institute to screen a 29,760-compound library. Dr. Faloon provided guidance in using 

screening instruments and analyzing screening data. In the screen, the rat beta cell 

line INS-1E(11) was treated in 384-well format with this library in the presence of a 
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cocktail of inflammatory cytokines (IL-1β, IFN-γ, and TNF-α) for 48 hours. 

Luciferase-based measurement of cellular ATP levels was used as a surrogate of cell 

viability. In the primary high-throughput screen (HTS), compounds were called active 

if they increased cellular ATP levels, indicated by an increase in luminescence. The 

positive control, the pyrazole SPB07503 (Figure 2-7), increased ATP levels at 10 µM, 

and was used to normalize data. For the primary screen and other assays, 

negative-control (NC) wells and positive-control (PC) wells were included on every 

plate. Compounds with activities >3 standard deviation of NC were considered hits 

and chosen for confirmation in dose studies. The raw signals of the plate wells were 

normalized using the software Genedata Assay Analyzer (v7.0.3). The median raw 

signal of the intra-plate NC wells was set to a normalized activity value of 0, while the 

median raw signal of the intra-plate PC wells was set to a normalized activity value of 

100. Experimental wells were scaled to this range, resulting in an activity score 

representing the percent change in signal relative to the intra-plate controls. In total, 

29,760 compounds were screened in duplicate and the two replicates correlated well 

since most of the points were near the diagonal (Figure 4-1). 
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Figure 4-2. Critical path for high-throughput screen. 29,760 compounds were screened in 

HTS. Among them, 294 were chosen for further 8-dose retest confirmation. 54 out of 294 were 

Figure 4-1. Scatter-plot of 

the HTS result. Each plate 

was screened twice. Yellow 

dots are mock controls- wells 

treated with cytokine cocktails 

and DMSO. Blue dots are 

positive controls. Red dots 

represent different compounds. 

Axis is normalized to the 

average of positive controls 

(100% restoration) and mock 

controls (0% restoration). 
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Fig. 4-2 (Continued) 

confirmed to increase cellular ATP levels in a dose-dependent manner. These 54 compounds 

were further tested in secondary assays including caspase-3 activity, mitochondrial membrane 

potential, nitrite production and glucose-stimulated insulin secretion (GSIS). In the end, one 

compound was prioritized for human islets studies. 

 

After the primary screen, I chose 294 compounds for further 8-dose retest 

confirmation (Figure 4-2). The 294 compounds included active compounds selected 

from the primary screen, and their structurally similar analogs. 42 out of the 294 are 

compounds with activities >3 standard deviation of NC. Other active compounds were 

picked using several other analysis methods. The results of the 294 compounds were 

then used to evaluate different analysis methods. Analogs were only chosen for 

chemical similarity without the consideration of any cellular activity. 54 out of 294 were 

confirmed to increase cellular ATP levels in a dose-dependent manner with an EC50 

value in Genedata Assay Analyzer. These 54 compounds were further tested in 

secondary assays, including caspase-3 activity, mitochondrial membrane potential, 

nitrite production, and glucose-stimulated insulin secretion (GSIS). A suppressor of 

beta-cell apoptosis should be able to reduce caspase-3 activity in the presence of 

cytokines. However, most compounds fell out of consideration after running the 

caspase-3 assay. For example, 17-allylamino-17-demethoxygeldanamycin 

(17-AAG), an analog of geldanamycin, increased cellular ATP levels to 150% of the 

positive control in the presence of the cytokine cocktail (Figure 4-3 A). However, it not 
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only could not reduce caspase-3 activity, but further increased its activity by nearly 

50% (Figure 4-3 B). 17-AAG, an Hsp90 inhibitor, is a less toxic and more stable 

analog of geldanamycin(12). 17-AAG induces the degradation of proteins that are 

mutated in tumor cells such as v-src, bcr-abl and p53 preferentially over their normal 

cellular counterparts by inhibiting Hsp90(13). Therefore, it is not surprising that 

17-AAG can increase caspase-3 activity, an apoptosis marker, since it could also 

induce apoptosis in cancer cells. 

 
Figure 4-3. Effects of 17-AAG in dose studies. 17-AAG was tested in 8 does in duplicate 

(circles and triangles are two independent experiments) for A) cellular ATP levels and B) 

caspase-3 activity. The median raw signal of the intra-plate NC wells was set to a normalized 

activity value of 0, while the median raw signal of the intra-plate PC wells was set to a 

normalized activity value of 100. C) Chemical structure of 17-AAG, an analog of 

geldanamycin. 

 

There were also compounds that had the desired protective effects. 

Hemanthamine is a crinine-type alkaloid natural product. The crinine-type alkaloids, 

which have the 5,10b-ethanophenanthridine skeleton as the core structure, 

represented by hemanthidine, pretazettine, and tazettine, have received considerable 

73



attention, since they have been reported to possess antiviral, anticancer, and other 

interesting activities(14-16). Hemanthamine restored cellular ATP levels to ~60% of 

the positive control (Figure 4-4 A) and slightly reduced caspase-3 activity (Figure 4-4 

B). However, owing to the lack of commercial availability and to the difficulty of 

synthesizing this alkaloid, I decided not to pursue hemanthamine in further follow-up 

studies. 

 
Figure 4-4. Effects of hemanthamine in dose studies. Hemanthamine was tested in 8 does 

in duplicate (circles and triangles are two independent experiments) for A) cellular ATP levels 

and B) caspase-3 activity. The median raw signal of the intra-plate NC wells was set to a 

normalized activity value of 0, while the median raw signal of the intra-plate PC wells was set 

to a normalized activity value of 100. C) Chemical structure of hemanthamine. 

 

Another promising compound, 9-methylstreptimidone, was first isolated as an 

antibiotic(17) but later rediscovered from the culture filtrate of Streptomyces species 

by Umezawa and co-workers in 2006 as an inhibitor of NFκB pathway(18). 

9-methylstreptimidone inhibited NO production and iNOS expression in 

lipopolysaccharide-stimulated RAW264.7 macrophage cells and induced apoptosis in 

Jurkat T lymphocytes, similar to other NFκB pathway inhibitors(18). Therefore, 
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9-methylstreptimidone had been suggested as a lead for developing new 

antiinflammatory agents. In this screen, I found that 9-methylstreptimidone restored 

cellular ATP levels to ~40% of the positive control (Figure 4-5 A) and slightly reduced 

caspase-3 activity by 20% (Figure 4-5 B). Since 9-methylstreptimidone was annotated 

as an inhibitor of NFκB pathway, it is not surprising that this compound could block the 

apoptotic effect of cytokines. Because of the lack of commercial availability, 

9-methylstreptimidone was not further studied. 

 

Figure 4-5. Effects of 9-methylstreptimidone in dose studies. 9-methylstreptimidone was 

tested in 8 does in duplicate (circles and triangles are two independent experiments) for A) 

cellular ATP levels and B) caspase-3 activity. The median raw signal of the intra-plate NC 

wells was set to a normalized activity value of 0, while the median raw signal of the intra-plate 

PC wells was set to a normalized activity value of 100. C) Chemical structure of 

9-methylstreptimidone. 

 

I also identified BRD0608, synthesized via diversity-oriented synthesis, as a 

novel suppressor of beta-cell apoptosis. It restored cellular ATP levels to ~100% of 

the positive control (Figure 4-6 A) and reduced caspase-3 activity by 70% (Figure 4-6 

B). Because of the interesting chemical and biological properties, BRD0608 was 
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further studied in other secondary assays. Moreover, analogs of BRD0608 were 

synthesized to improve both potency and maximum effect of the suppressor. In the 

end, one compound, BRD0476, was selected for studies in human islets. BRD0476 

was also used to study the mechanism of action of this series of compounds. 

 

Figure 4-6. Effects of BRD0608 in dose studies. BRD0608 was tested in 8 does in duplicate 

(circles and triangles are two independent experiments) for A) cellular ATP levels and B) 

caspase-3 activity. The median raw signal of the intra-plate NC wells was set to a normalized 

activity value of 0, while the median raw signal of the intra-plate PC wells was set to a 

normalized activity value of 100. C) Chemical structure of BRD0608. 

 

4.3 Identification of BRD0608 and structure-activity relationships 

Diversity-oriented synthesis (DOS) has emerged as a practical strategy to 

assemble compound libraries with a high degree of stereochemical and skeletal 

diversity, serving to augment traditional screening collections of commercially 

available compounds and natural products(19-23). DOS compounds rival natural 

products in terms of complexity (as measured by sp3-content and the presence of 

stereogenic centers)(24-25) yet are designed to be easily modified in order to facilitate 
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downstream chemistry optimization. These principles were highlighted recently by an 

aldol-based ‘build/couple/pair’ (B/C/P) strategy, resulting in a collection of various 

medium- and large-sized rings derived from a common linear intermediate(26). The 

DOS team at the Broad Institute sought to capitalize on this versatile intermediate to 

further increase the diversity of our compound collection. Building on the past success 

with the SNAr reaction for cycloetherification(26), the team aimed to build a library that 

would provide both structure-activity relationships (SAR) and stereochemical 

structure-activity relationships (SSAR) in primary screens for biological activity. 

Coupling this information with the ability to synthesize analogs rapidly, exploiting short, 

modular synthetic pathways, provides a quick and efficient process to optimize hits 

identified in high-throughput screening (HTS). 

  
Scheme 4-1. (a) 2-fluoro-3-nitrobenzoic acid chloride (2), NEt3, DCM, RT, 84-100%. (b) CsF, 

DMF, 85 ºC, 97-99%. (c) 10% Pd/C, H2, EtOH. (d) FmocCl, aq. NaHCO3, dioxane, 65-98% 

over 2 steps. (e) TBSOTf, then HF/pyridine. (f) AllocCl, pyridine. (g) DDQ, pH 7 buffer, 75-89% 

over 3 steps. 

The DOS team within the Chemical Biology Platform at the Broad Institute 
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originally synthesized the whole library. After the identification of BRD0608, I started 

to synthesize analogs using the same synthesis route. The synthesis of the library 

scaffolds leading to the synthesis of BRD0608 commenced with linear intermediate 1, 

which was accessed by coupling a suitably protected γ-amino acid with an amino 

alcohol, followed by reduction of the resulting amide (Scheme 4-1).Error! Bookmark not 

defined. All stereoisomers of both the γ-amino acid and the amino alcohol were coupled 

together, resulting in the generation of 1a-d and ent-1a-d, allowing for the full 

stereochemical matrix of scaffolds to be synthesized. Acylation of 1a-d with 

2-fluoro-3-nitrobenzoic acid chloride (2) proceeded smoothly to give the precursor to 

the key step, an intramolecular SNAr reaction (Scheme 4-1). Regardless of the 

different stereochemistry in the linear chain, all stereoisomers reacted smoothly with 

cesium fluoride for de-silylation followed by cyclization to give desired 3a-d in 

excellent yield. Functional group manipulation to prepare for solid-phase library 

production was achieved through a step-wise process involving: 1) nitro reduction and 

subsequent protection of the aniline as the Fmoc carbamate, 2) protecting group 

exchange from the incompatible Boc group to an Alloc, and 3) PMB removal to reveal 

the site for immobilization onto solid support. The sequence was high yielding and 

could be carried out on a multi-gram scale. 
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Scheme 4-2. (a) TfOH, DCM; then 4a-d, 2,6-lutidine. (b) 20% piperidine/DMF. (c) N-capping 

(R1): RSO2Cl, RNCO, RCOCl, RCHO or skip (30 building blocks). (d) Pd(PPh3)4, barbaturic 

acid. (e) N-capping (R2): RSO2Cl, RNCO, RCHO, skip (31 building blocks). (f) 15% 

HF/pyridine, THF; TMSOMe. 

 

Immobilization of the scaffold first involved activation of SynPhase Lanterns with 

triflic acid to give the silyl triflate, followed by exposure with the scaffold in the 

presence of 2,6-lutidine (Scheme 4-2). Typical loading levels for the immobilization 

step were 15-18 µmol/Lantern. Removal of the Fmoc-protecting group under standard 

conditions followed by capping with sulfonyl chlorides, isocyanates, acid chlorides, or 

formaldehyde (29 building blocks) introduced the first appendage diversity (R1) at the 

aniline. Palladium mediated Alloc deprotection in the presence of barbaturic acid 

revealed the second appendage diversity site (R2) at the amine, which was capped 

with sulfonyl chlorides, isocyanates, acids, or aldehydes (31 building blocks). Release 

from solid support was achieved with HF/pyridine, yielding an average of 14.1 µmol of 

each final compound per Lantern. All possible combinations of building blocks were 
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used for each stereoisomers to afford a 7384-membered library. All compounds were 

analyzed by ultraperformance liquid chromatography (UPLC) and those samples with 

purity >75% at 210 nm (6408 compounds, 87% pass rate) were submitted for HTS. 

The SNAr-based library was included with other DOS and commercial libraries in 

a HTS campaign designed to identify suppressors of cytokine-induced beta-cell 

apoptosis. Several DOS compounds partially restored beta-cell viability in the 

presence of these cytokines, and I was able to determine some SSAR features from 

the primary assay (Figure 4-7). Lactams 4c and ent-4d were the preferred 

stereoisomers demonstrating the importance of the stereochemistry within the 

8-membered ring. The 5R,6R stereochemistry was required for activity while the 

configuration of the exocyclic stereocenter was less critical. Urea substituents 

appeared to be favored at the aniline position, compared to sulfonamides and amides. 

At the amine position, sulfonamides resulted in greater ATP levels compared to ureas 

and amines. (2S,5R,6R)-5, BRD0608, was the most potent member of the library, with 

an EC50 of 4.9 µM in restoring beta-cell viability. 
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Figure 4-7. Performance of the SNAr library in the primary screen. The highlighted blocks 

represented the top-scored compounds identified in the primary screen. 

 

4.4 Synthesis of analogs and discovery of BRD0476 

Using BRD0608, 5, as a starting point, additional SAR was explored via the 

preparation of a variety of analogs and subsequent testing for the restoration of 

cellular ATP levels in INS-1E cells as a readout. We first explored the nature of the 

urea substituent at R1. Based on primary screening results, the bulky naphthyl 

substituent appeared to be preferred over simple phenyl groups, thus we focused on 

subtle modifications to the naphthyl ring. Biological activities of all synthesized 

analogs are in Appendix 1. As shown in Table 4-1, saturation of the naphthyl ring was 

not tolerated (compounds 6 and 7), nor was replacement with a benzofuran ring 
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(compound 8). We next explored modifications to the sulfonamide at R2. When the 

para-methoxyl group was moved to either the ortho- or meta-position (compound 9 

and 10), the activity was abolished. Replacement with a more bulky phenoxy group  

 
Table 4-1. EC50 (µM) and maximum activity of synthesized analogs in restoring 

cytokine-induced β-cell death. 

(compound 11) also resulted in a loss of activity. Potency was retained and even 
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increased with the introduction of a m,p-disubstituted analogs (compound 12 and 13). 

Compound 13 (BRD0476) in particular was a potent suppressor of beta-cell 

death, resulting in the best performance among all analogs, with an EC50 of 0.78 µM 

and 99% maximum activity. The 2,3-dichlorophenyl urea was also synthesized and 

tested (compound 14) to explore further the replacement of the naphthyl ring, 

however this compound was inactive. Removal of the primary alcohol did not affect 

activity (compound 15 and 16). 

The most potent analog, compound 13 (BRD0476), was chosen for further 

characterization of its effects on different aspects of beta-cell biology. Caspase-3 

activity is normally highly elevated in apoptotic beta cells. Inflammatory cytokines 

induced a 6.5-fold increase in caspase-3 activity (Figure 4-8 A). Treatment with 13 in 

the presence of cytokines reduced caspase-3 activity in a dose-dependent manner. 

IL-1β is known to induce gene expression of nitric oxide synthase (iNOS), an effect 

that is potentiated by IFN-γ.(27) The subsequent formation of NO drives cell death by 

both necrosis and apoptosis. Nitrite production is a surrogate measurement of nitric 

oxide generated by cytokine-treated INS-1E cells, and is measured colorimetrically 

using the Griess reagent (a commercially available mixture of naphthylenediamine 

dihydrochloride and sulfanilamide). Compound 13 induced a dose-dependent 

decrease in the production of nitrite (Figure 4-8 B), although the effect was more 
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modest than caspase-3 activity. Cytokine-mediated beta-cell apoptosis has been 

reported to cause a loss of the mitochondrial membrane potential (ΔΨm). JC-1 is a dye 

commonly used to measure ΔΨm. Mitochondrial membrane potential was reduced 

2.5-fold in the presence of cytokines, and is restored to normal levels by treatment 

with compound 13 (Figure 4-8 C). Finally, glucose-stimulated insulin secretion (GSIS) 

is one of the most important physiological functions of beta cells. After brief starvation  

 

Figure 4-8. Cellular effects of 13 in cytokine-induced β-cell death. A) Effects of 13 on 

caspase-3 activity after 48-h treatment. B) Effects of 13 on the cellular production of nitrite 

after 48-h treatment. C) Effects of 13 on mitochondrial membrane potential after 48-h 

treatment. D) Effects of 13 on glucose-stimulated insulin secretion after 48-h treatment. Data 

represents the mean ± standard deviation of 8 independent wells for insulin secretion and 24 

independent wells for A-C. * indicates p < 0.01 as compared to the cytokine treatment alone. 
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followed by challenge with high (16 mM) glucose levels, beta cells secrete insulin into 

the cell-culture media. GSIS was abolished after two-day treatment with inflammatory 

cytokines; however, simultaneous treatment with 5 µM of compound 13 restored 

GSIS to nearly normal levels (Figure 4-8 D). 

 

4.5 Conclusion 

In summary, I identified novel small-molecule suppressors of cytokine-induced 

beta-cell apoptosis. I chose BRD0608 for further chemistry studies because of its 

interesting SSAR property. These results show that the improved DOS analog 13 

(BRD0476) protected rat beta cells from inflammatory cytokines, and may represent a 

viable strategy to protecting pancreatic beta cells in the context of type-1 diabetes. In 

chapter 5, I will focus on the identification of the lead compound's mechanism of 

action. 

 

4.6 Methods and Materials 

Cell culture and reagents. INS-1E cells (generously provided by Claes Wollheim 

and Pierre Maechler, University of Geneva, Switzerland) were maintained in culture 

medium (RPMI 1640 containing 11 mM glucose, 10% fetal bovine serum, 10 mM 

HEPES, 50 µM 2-mercaptoethanol, 1 mM sodium pyruvate) and cultivated at 37C 
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with 5% CO2 in a humidified atmosphere. Recombinant rat IL-1β and recombinant 

mouse TNF-α were purchased from R&D Systems. Recombinant mouse IFN-γ and 

Griess reagent were purchased from Sigma. CellTiter-Glo and Caspase-Glo 3/7 

reagents were purchased from Promega. JC-1 was obtained from Invitrogen. 

 

High-Throughput Screening for Compounds Affecting Cellular ATP Levels 

INS-1E cells were seeded at 10,000 cells per well using a Multidrop Combi (Thermo 

Labsystems) in white optical 384-well plates (Corning Life Sciences). After overnight 

incubation, medium was removed and 50 µL of RPMI containing 1% FBS and a 

combination of cytokines (10 ng mL−1IL-1β, 50 ng mL−1 IFN-γ, 25 ng mL−1 TNF-α) was 

added to every well. Using libraries of compounds dissolved in DMSO and a 

CyBi-Well pin-transfer robot (CyBio Corp.), 0.1 µL of each compound was added. 

After 48 h, medium was removed and 20 µL of CellTiter-Glo reagent was added. 

Luminescence was measured after 10 min of incubation using an EnVision plate 

reader (PerkinElmer). 

 

Solid-phase synthesis of analogs: 

General Methods: Solid-phase synthesis was conducted on silicon-functionalized 

polystyrene SynPhaseTM Lanterns (L-series). Quality-control Lanterns were included 
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at each synthesis step for reaction monitoring by UPLC (UV 210 nM) after 

HF-cleavage. All reactions were conducted in heavy wall pressure vessels from 

ChemGlass with agitation in New Brunswick Scientific incubator shakers. 

Scaffold loading: The starting material was provided by Dr. Jeremy R. Duvall from 

Broad Institute. To a flame-dried flask containing silicon-functionalized Lanterns was 

added a freshly prepared solution of TfOH in anhydrous DCM (9.0 equiv, 5 g of 

TfOH/100 mL of DCM) was added. Each flask was shaken at RT for 10 min at which 

time the Lanterns had turned bright orange. The deep red TfOH solution was removed 

via cannula and anhydrous 2,6-lutidine (12.0 equiv relative to Si) was added. Once 

the Lantern color had changed from orange to white, the scaffold (1.2 equiv. relative 

to Si) was added as a solution in anhydrous DCM (0.4 mL/Lantern) and the reaction 

mixture was shaken for 48h overnight. The loading mixture was removed and set 

aside (to recover any unreacted alcohol) and the Lanterns were washed with the 

following solvents for 30 min intervals: DCM, THF, 3:1 THF/IPA, 3:1 THF/H2O, DMF, 

3:1 THF/H2O, 3:1 THF/IPA, THF, DCM. The Lanterns were then dried on a lyophilizer 

overnight prior to sorting.  

Fmoc removal: To a flask containing Lanterns was added a solution of 20% 

piperidine in DMF (0.8mL/Lantern). After shaking at rt for 30 min, the piperidine 

solution was removed and the Lanterns were washed with the following solvents for 
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30 min intervals: DMF, 3:1 THF/H2O, 3:1 THF/IPA, THF, DCM. The Lanterns were 

then dried on a lyophilizer overnight prior to sorting.  

N-Capping/Isocyanates: To each flask containing Lanterns was added DCM (0.8 

mL/Lantern) followed the desired isocyanate (15 equiv). The Lanterns were shaken at 

rt overnight and then washed with following solvents for 30 min intervals: DCM, DMF, 

3:1 THF/ H2O, 3:1 THF/IPA, THF, DCM. The Lanterns were then dried on a lyophilizer 

overnight prior to sorting.  

Alloc removal: To the reaction vessel containing Lanterns, THF (0.8 mL/Lantern) 

was added, followed by Pd(PPh3)4 (1 equiv) and 1,3-dimethylbarbituric acid (30 equiv). 

The flask was sealed and shaken at rt for 1 day. The reaction mixture was removed 

and the Lanterns were washed with DMF until the washings were clear (without any 

yellow color). Subsequently the Lanterns were washed with the following solvents for 

30 min intervals: 3:1 THF/H2O, 3:1 THF/IPA, THF, DCM. The Lanterns were then 

dried on a lyophilizer overnight prior to sorting.  

N-Capping/Sulfonyl Chlorides: To each flask containing Lanterns was added DCM 

(0.8 mL/Lantern) followed by 2,6-lutidine (20 equiv) and the desired sulfonyl chloride 

(35 equiv). The Lanterns were shaken at rt overnight and then washed with following 

solvents for 30 min intervals: DCM, DMF, 3:1 THF/H2O, 3:1 THF/IPA, THF, DCM. The 
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Lanterns were then dried on a lyophilizer overnight prior to sorting.  

Cleavage Protocol: To a 96-well plate containing Lanterns was added a 15% 

solution of HF/pyridine in stabilized THF (350 µL/Lantern). After 2 h the cleavage 

solution was quenched with TMSOMe (700 µL/Lantern) and the contents of each well 

were transferred to a pre-weighed 2-mL vial. The Lanterns were washed with an 

additional 200 µL of stabilized THF (or THF/MeOH) and the solution was transferred 

to the 2-mL vial. The samples were concentrated on a Genevac® solvent evaporation 

system overnight without heating. 

Characterization of active analogs: Chemical characterization of active analogs are 

in Appendix 2. 

 

Measurement of cellular ATP levels. INS-1E cells were seeded at 10,000 cells/well 

using a Multidrop Combi (Thermo Labsystems) in white optical 384-well plates 

(Corning Life Sciences). After overnight incubation, medium was removed and 50 µL 

RPMI containing the treated compound, 1% FBS and a combination of cytokines (10 

ng/mL IL-1β, 50 ng/mL IFN-γ, 25 ng/mL TNF-α) was added to every well. After 

incubation for 48 hr, medium was removed and 20 µL CellTiter-Glo reagent was 
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added. Luminescence was measured after 10-min incubation using an EnVision plate 

reader (PerkinElmer). 

 

Measurement of cellular nitrite production. INS-1E cells were seeded at 10,000 

cells/well using a Multidrop Combi (Thermo Labsystems) in white optical 384-well 

plates (Corning Life Sciences). After overnight incubation, medium was removed and 

50 µL RPMI containing the treated compound, 1% FBS and a combination of 

cytokines (10 ng/mL IL-1β, 50 ng/mL IFN-γ, 25 ng/mL TNF-α) was added to every well. 

After treatment with cytokine and compounds for 48 hr, 10 µL modified Griess reagent 

(1:1 mixture of 1% sulfanilamide in 30% acetic acid and 0.1% N-(1-naphthyl) 

ethylenediamine dihydrochloride in 60% acetic acid) was added to each well. After 

5-min incubation at room temperature, the absorbance at 540 nm was measured 

using an Envision plate reader (PerkinElmer). 

 

Measurement of mitochondrial membrane potential. INS-1E cells were seeded at 

10,000 cells/well using a Multidrop Combi (Thermo Labsystems) in white optical 

384-well plates (Corning Life Sciences). After overnight incubation, medium was 

removed and 50 µL RPMI containing the treated compound, 1% FBS and a 

combination of cytokines (10 ng/mL IL-1β, 50 ng/mL IFN-γ, 25 ng/mL TNF-α) was 
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added to every well. After treatment with cytokine and compounds for 48 hr, 20 µL of 

3.25µM JC-1 was added to each well. After 3hr incubation at 37°C, the cells were 

gently washed three times with 50 µL per well of 1X PBS (with Ca2+ and Mg2+). 

Fluorescence was measured with an EnVision plate reader (PerkinElmer) at the 

rhodamine spectra (excitation/emission 530 nm/580 nm) followed by fluorescein 

(excitation/emission 485 nm/530 nm). The ratio of rhodamine to fluorescein intensity 

was determined and represents the degree of mitochondrial membrane potential. 

 

Caspase-3 activity assay. INS-1E cells were seeded at 5,000 cells/well using a 

Multidrop Combi (Thermo Labsystems) in white optical 384-well plates (Corning Life 

Sciences). After overnight incubation, medium was removed and 50 µL RPMI 

containing the treated compound, 1% FBS and a combination of cytokines (10 ng/mL 

IL-1β, 50 ng/mL IFN-γ, 25 ng/mL TNF-α) was added to every well. After treatment with 

cytokines and compounds for 48 hr, medium was removed and 20 µL Caspase-Glo 

3/7 reagent was added. Luminescence was measured after 2-hr incubation using an 

Envision plate reader (PerkinElmer). 

 

Glucose-stimulated insulin secretion. INS-1E cells were seeded in 96-well plates 

at 20,000 cells/well in 100 µL RPMI and incubated for 48 hr in 100 µL fresh RPMI 
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containing 1% FBS and the cytokine cocktail in the presence or absence of 5 µM 

MS-275. Cells were washed and incubated for 2 hr in KRBH buffer (135 mM NaCl, 3.6 

mM KCl, 5 mM NaHCO3, 0.5 mM NaH2PO4, 0.5 mM MgCl2, 1.5 mM CaCl2, 10 mM 

HEPES, pH 7.4, 0.1% BSA) lacking glucose. Cells were subsequently incubated with 

KRBH buffer containing 2 mM or 16 mM glucose for 1 hr. The supernatant was 

collected for measurement of secreted insulin. Insulin was measured with a rat insulin 

ELISA kit (Alpco). 
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Chapter 5: Mechanistic studies of BRD0476 in suppressing of cytokine-induced 

beta-cell apoptosis 

5.1 Introduction 

In Chapter 4, I discussed the efforts using high-throughput screening to discover 

novel suppressors of cytokine-induced beta-cell apoptosis. Several different classes 

of compounds were identified for their ability to preserve cell viability in the presence 

of the cytokine cocktail. Specifically, BRD0608, a compound synthesized via 

diversity-oriented synthesis, was prioritized due to its interesting biological and 

chemical properties. Follow-up medicinal chemistry efforts led to the synthesis of 

BRD0476, a more potent analog of BRD0608. BRD0476 has an EC50 of 0.78 µM in 

preserving cellular ATP levels of INS-1E cells in the presence of cytokines. Moreover, 

BRD0476 could reduce cytokine-induced caspase-3 activity, increase the 

mitochondrial membrane potential, and decrease nitrite production in a 

dose-dependent manner. Insulin secretion, the most important physiological function 

for beta cells, was also restored by addition of BRD0476. These results show that the 

BRD0476 protects a rat beta-cell line from inflammatory cytokines, and may represent 

a viable strategy to protect pancreatic beta cells in the context of type-1 diabetes. 

Because of the previously promising results of BRD0476 on rat beta cells, I 

wanted to study the effects of BRD0476 on primary human pancreatic islets. 
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Furthermore, since BRD0476 is a novel suppressor of beta-cell apoptosis, I sought to 

determine the mechanism of action in protecting beta cells from cytokine-induced 

apoptosis. I will describe my efforts in these two directions in the following sections. 

 

5.2 Effects of BRD0476 on primary dissociated human islets 

BRD0476 suppresses cytokine-induced apoptosis in INS-1E cells. I wanted to 

know whether its protective effect could be phenocopied in primary human islets. If so, 

the value of BRD0476 as a probe for beta-cell apoptosis would be enhanced. Before 

experimenting on human islets, I wanted to make sure that BRD0476 is selective 

toward cytokine-induced apoptosis, and is not a generic inhibitor of apoptosis. For this 

purpose, I used thapsigargin, tunicamycin, and high glucose as apoptosis inducers in 

INS-1E cells. As described in Chapter 1, these agents can induce ER stress or 

glucotoxicity in pancreatic beta cells. In this experiment, INS-1E cells were treated 

with a series of concentrations of these compounds, as well as either DMSO vehicle 

or 10µM BRD0476. As measured by cellular ATP levels, INS-1E started to die at 

16nM thapsigargin, 16µg/mL tunicamycin, or 125mM glucose (Figure 5-1). Unlike its 

ability to restore cell viability in the presence of cytokines, BRD0476 could not restore 

INS-1E viability in the presence of each of the three apoptosis inducers (Figure 5-1). 

This result suggests that BRD0476 is not a generic apoptosis blocker that can restore 
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cell viability in response of various apoptosis inducers; instead, BRD0476 shows 

selectivity toward cytokine-induced apoptosis in INS-1E beta cells. 

 

 

Figure 5-1. Effects of BRD0476 on beta-cell apoptosis induced by different apoptosis 

inducers. INS-1E cells were treated with 11 different concentrations of A) thapsigargin; B) 

tunicamycin; and C) glucose. ATP measurements were normalized to the no-treatment 

condition. Data represent the mean ± standard deviation of 24 independent wells. 

 

Next, I wanted to study whether the protective effect of BRD0476 in INS-1E cells 

can be translated to primary human islets. It has been reported that primary human 

islets treated with pro-inflammatory cytokines were undergoing apoptosis after 6-9 

days (1-2). In our lab, Deepika Walpita had developed a system for culturing primary 

dissociated human islet cells (Walpita et al., manuscript submitted). Briefly, the 

human bladder cell line HTB9 was cultured in 384-well plates. HTB9 cells secrete 

extracellular matrix (ECM) on the bottom of the wells. After several days of culture, 

HTB9 cells were washed away while leaving ECM on the plates. Human pancreatic 

islets were then cultured on top of the ECM. I used this system to measure the 

apoptotic effect of cytokines in primary human islets. The quality and quantity of 
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human islets have donor-to-donor variability. Therefore, the data generated from 

human islets is not as consistent as in cell-line models. Moreover, since human islets 

contain a mixed population of cells, including insulin-releasing beta cells, 

glucagon-releasing alpha cells, and somatostatin-releasing delta cells, a simple cell 

viability assay may not represent the viability of beta cells alone. In the literature, beta 

cells were found to be more sensitive to cytokines compared to other cell types in the 

islets (3). A cell viability assay would only observe a small decrease in signal in this 

case. For this reason, I decided to use caspase-3 activity as the measurement. The 

addition of cytokines should lead to an increased signal of caspase-3 activity, which is 

easier to detect. Moreover, since beta cells are the only cells that can secrete insulin 

in a glucose-responsive manner, an insulin secretion assay would be another suitable 

assay to measure the viability of beta cells. 

When primary dissociated human islets were treated with the cytokine cocktail 

for six days, caspase-3 activity was elevated nearly 2-fold (Figure 5-2). The same 

trend was observed in islets from two different donors. Addition of BRD0476 reduced 

caspase-3 activity dose-dependently to normal levels (Figure 5-2). Normally, primary 

dissociated human islets secreted 2-3-fold amounts of insulin when challenged with a 

high glucose concentration (Figure 5-3). This fold change is less than that of intact 

islets, but it is still very detectable by ELISA. When islets were treated with the 
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cytokine cocktail for 6 days, insulin secretion was impaired (Figure 5-3). I observed 

this effect in islet samples from two different donors. Addition of BRD0476 fully 

restored the insulin secretion in donor 3 and partially, but significantly, restored the 

insulin secretion in donor 4 (Figure 5-3). BRD0476 seemed to have a better protective 

effect in donor 3 than in donor 4. Nevertheless, BRD0476 appears to have protective 

effects in primary dissociated human islets from several donors. 

 

 
Figure 5-2. Effects of BRD0476 on caspase-3 activity in dissociated human islet cells 

undergoing cytokine-induced apoptosis. Cells were treated with cytokines and different 

doses of BRD0476 for six days. Data represent the mean ± standard deviation of 12 

independent wells. 

 

 
Figure 5-3. 
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Figure 5-3. (Continued) Effects of BRD0476 on glucose-stimulated insulin secretion in 

dissociated human islet cells undergoing cytokine-induced apoptosis. Cells were 

treated with cytokines and different doses of BRD0476 for six days. Data represent the mean ± 

standard deviation of 4 independent wells. 

 

5.3 Genome-wide gene expression profile revealed the JAK-STAT pathway as a 

target for the effects of BRD0476 

Recognition of some of the limitations of target-based drug and probe discovery 

has led to the phenotype-based approach, in which complex biological systems are 

investigated for phenotypic changes upon exposure to small molecules(4-7). The 

subsequent identification of the molecular targets that underlie an observed 

phenotype is not only important for elucidating the mechanisms of action, but will also 

greatly allow efficient structure-activity relationship studies to be carried out in 

follow-up chemistry by use of target-specific assays. Therefore, target identification is 

an important aspect of a phenotypic screen(8-9). 

BRD0476 has shown a great potential in protecting beta cells from 

cytokine-induced apoptosis in both rat INS-1E cells and primary dissociated human 

islets. Since BRD0476 was identified in a phenotypic screen and had no biological 

annotation, I wanted to study the mechanisms of actions for BRD0476. One approach 

to investigate the genes and pathways that BRD0476 interacts with is to use 

genome-wide gene-expression microarrays to look for genes or gene sets that are 

regulated by BRD0476. The underlying principle is to compare the gene-expression 
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profiles of samples between cytokines alone and cytokines plus BRD0476. The 

difference in mRNA levels may point to genes that are regulated by BRD0476 in the 

presence of cytokines. For this purpose, I treated rat INS-1E cells with 10µM 

BRD0476 for 6, 12, and 48 hours in the presence of cytokines. The detailed 

conditions are shown in Table 5-1 and each condition consisted of three biological 

replicates. 

 

After the indicated treatments, I isolated the RNA from all the samples and 

submitted them to the Genetic Analysis Platform (GAP) at the Broad Institute. The 

GAP team used the Affymetrix rat 230 2.0 array for acquiring gene-expression data. 

The information about each probe on the chip is extracted from the image data by 

image analysis software. The information is stored in the CEL file. The CEL file, 

provided by the GAP team, includes an intensity value, standard deviation of the 

intensity, the number of pixels used to calculate the intensity value, a flag to indicate 

an outlier as calculated by the algorithm, and a user defined flag indicating the feature 

Table 5-1. Time doses and treatments for all 

microarray samples 
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should be excluded from future analysis. After I processed the CEL files and 

converted the expression of each probe to fold changes over the mean signal of the 

no cytokine control, I first looked at the number of genes that are regulated 

significantly by BRD0476 alone. Very few genes were regulated by BRD0476 in the 

absence of cytokines (Scheme 5-1). Among 20,494 genes tested, only 15 genes were 

up-regulated and 2 genes were down-regulated greater than 2-fold after 6-hour 

treatment. At 12 hours, only 7 genes were up-regulated and 5 genes were 

down-regulated more than 2-fold. As a comparison, 147 genes were up-regulated and 

417 genes were down-regulated more than 2-fold in the presence of cytokines after 6 

hours, and at 12 hours, 381 genes were up-regulated and 739 genes were 

down-regulated more than 2-fold by cytokines. This result indicates that BRD0476 

has little effect on regulating gene expression in normal conditions. However, in the 

presence of pro-inflammatory cytokines, BRD0476 regulates more genes. 

 

 

I then decided to use Gene-Set Enrichment Analysis (GSEA) to look for gene 

sets that are regulated by the addition of BRD0476. GSEA is a computational method 

Scheme 5-1. Numbers of genes up- and 

down-regulated by BRD0476 in the absence 

and presence of cytokines. 
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that determines whether an existing defined set of genes shows statistically 

significant, concordant differences between two biological states (10). The method 

derives its power by focusing on gene sets, groups of genes that share common 

biological function, chromosomal location, or regulation. Since single-gene analysis 

may find little similarity between two independent samples or may miss other 

important effects on pathways, GSEA reveals many biological pathways in common. I 

used GSEA to compare cytokine treatment with cytokines plus BRD0476 at the three 

different time points. mRNA levels are thought to be regulated in a relatively short time 

frame compared to protein levels. Therefore, I expected to see more gene expression 

changes in both 6- and 12-hour treatments. At 48 hours, cells would achieve a new 

homeostasis and some acute changes would probably not been discovered in this 

case. 

The analysis revealed that the top gene sets regulated by BRD0476 in the 

presence of cytokines are gene sets that are related to interferon pathways (Table 

5-2). The same gene sets were observed at all three time points. In the gene set 

“Browne_interferon_responsive_genes” (the set names are annotated by the name of 

the researcher who submits the set), most of the genes are increased by cytokines 

and expressed at lower levels when BRD0476 was added (Figure 5-4 A). These 

genes are all related to the JAK-STAT pathway, which is activated by IFN-γ, one of 
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the three cytokines in the cocktail (Figure 5-4 B). This result shows that BRD0476 

downregulates genes that are activated by IFN-γ, leading to the hypothesis that 

BRD0476 may protect beta cells from cytokine-induced apoptosis by blocking the 

JAK-STAT pathway. 

 

 
 

Table 5-2. Microarray data analyzed by GSEA. Gene sets were ranked by NES (normalized 

enrichment score). NES accounts for differences in gene set size and in correlations between 

gene sets and the expression dataset; therefore, NES can be used to compare analysis results 

across gene sets. The highlighted gene sets are related to interferon pathways. 
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Figure 5-4. Detailed information on a gene set regulated by BRD0476.  A) Genes in the 

“Browne_interferon_responsive_genes” gene set are mostly correlated in one direction. B) 

Most of the genes are highly expressed in the cytokine alone treatment and expressed at 

lower levels when BRD0476 was added. The highest and lowest fold changes are 12- and 

1-fold relative to the no cytokine control. 

 

As mentioned in Chapter 1, IFN-γ binding to its receptor, IFN-R, induces the 

recruitment of the kinases JAK1 and JAK2. Once activated by phosphorylation, JAK1 

and 2 recruit STAT1 and trigger its activation by phosphorylation. STAT1 then 

homodimerizes and translocates to the nucleus, where it regulates the expression of 

genes containing gamma-activated sequence (GAS) elements in their promoter 
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(Figure 5-5 A). The microarray data suggests that BRD0476 may block the activation 

of the JAK-STAT pathway. To see whether that is the case, I transfected a plasmid 

containing a firefly luciferase gene with six GAS in the promoter region, and a Renilla 

luciferase gene for control (Figure 5-5 B). The Renilla luciferase is driven by a CMV 

promoter; therefore, the signal of Renilla luciferase is proportional to the total number 

of cells. The ratio of luciferase activity from firefly and Renilla luciferases thus reflects 

the transcriptional activity of STAT1. After a 12-hour treatment with cytokines, the 

transcriptional activity of STAT1 was elevated 12-fold compared to the no-cytokine 

control (Figure 5-5 C). In the absence of cytokines, BRD0476 did not change the low 

basal transcriptional activity of STAT1. However, in the presence of cytokines, the 

transcriptional activity of STAT1 was reduced by 60% when 10µM BRD0476 was 

added (Figure 5-5 C). These results are consistent with the microarray data: 

BRD0476 alone has little effect under normal conditions, but it appears to block the 

JAK-STAT pathway in the presence of cytokines. 
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Figure 5-5. The JAK-STAT pathway and measurement of STAT1 transcriptional activity. 

A) The JAK-STAT pathway is activated by IFN-γ, one of the cytokines added to induce 

apoptosis in this model. (This part of the figure is modified from a figure taken from Cell 

Signaling website.) B) Two plasmids were transfected into INS-1E cells for the measurement 

of STAT1 transcriptional activity. C) Measurement of STAT1 transcriptional activity after 

12-hour treatment with cytokines. 

 

Next, I studied the protein levels of STAT1 by Western blot. The mRNA levels of 

STAT1 were increased by cytokines, and reduced by BRD0476 (Figure 5-4B). By 

protein level, the same trend was observed. STAT1 protein was elevated and reached 

its peak at 12 hours of cytokine treatment (Figure 5-6). When BRD0476 was added, 

the level of STAT1 was moderately reduced (Figure 5-6). There are two main 

phosphorylation sites for STAT1: tyrosine 701 (Y701) and serine 727 (S727). The 

Y701 site is the predominant one for phosphorylation by JAK2. The level of p-STAT1 

at Y701 was elevated as soon as the first hour, and reached its peak at 4 hours 
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(Figure 5-6). The level then reduced back to normal after 4 additional hours. Addition 

of BRD0476 nearly completely blocked the phosphorylation of STAT1 at Y701, with 

only a weak signal observed at 4 hours (Figure 5-6). At the S727 site, the level of 

p-STAT1 was slightly elevated within 4 hours, but the level sustained after 4 more 

hours. Addition of BRD0476 reduced the level after 4 hours. Taken together, 

BRD0476 moderately reduced the protein levels of STAT1 and also blocked the 

phosphorylation of STAT1 at both Y701 and S727. This is consistent with my previous 

results, since STAT1 should not homodimerize and migrate into nucleus in a 

non-phosphorylated form. To show this, I used a nuclear extraction kit to isolate 

nucleus from cytoplasm, using histone H3 as a control for nuclear proteins. Addition of 

cytokines increased STAT1 protein levels in the nucleus (Figure 5-7). STAT1 levels 

were then reduced when BRD0476 was added, although the level did not completely 

return to normal levels (Figure 5-7). In the cytoplasm, addition of cytokines only 

slightly reduced STAT1 protein level (Figure 5-7). This could be explained by a higher 

total STAT1 level in cytokine-treated cells. Therefore, the decrease in the cytoplasm is 

not striking. Addition of BRD0476 also slightly increased STAT1 level in the cytoplasm 

(Figure 5-7). Taken together, these results suggest that BRD0476 inhibits STAT1 

phosphorylation and its migration into the nucleus. 
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5.4 SILAC studies suggested USP9X as a possible primary target for BRD0476 

In the last section, I used genome-wide gene-expression microarray data to 

identify the genes and gene sets that BRD0476 regulates. This led to the hypothesis 

that BRD0476 blocks the JAK-STAT pathway. However, I still did not know the direct 

cellular binding target(s). Uncovering direct targets would not only help to understand 

the mechanisms of action for BRD0476, but would also significantly aid follow-up 

medicinal chemistry studies. For this purpose, I collaborated with the Proteomics 

Platform at the Broad Institute to take a quantitative proteomics approach to identify 

potential cellular binding proteins. 

The Proteomics Platform has adapted a robust and unbiased method for 

probing the proteins that bind to the small molecule of interest in a biologically 

Figure 5-6. Western blots of 

STAT1 and phosphorylated STAT1 

after 10µM BRD0476 treatments. 

Figure 5-7. Western blots of 

STAT1 in nucleus and cytoplasm. 

The concentration of BRD0476 is 10µM.  

110



relevant setting. This method, Stable Isotope Labeling by Amino acids in Cell culture 

(SILAC), is a powerful approach in mass spectrometry (MS)-based quantitative 

proteomics (Figure 5-8) (11-13). SILAC labels cellular proteomes through normal 

metabolic processes, incorporating non-radioactive, stable isotope containing amino 

acids in newly synthesized proteins. Growth medium is prepared where natural 

(‘light’) arginines are replaced by ‘heavy’ C13 and N15 arginines. INS-1E cells grown in 

this medium incorporate the heavy amino acids after seven to eight cell passages and 

the heavy amino acids have no effect on cell morphology or growth rates. When light 

and heavy cell populations are mixed, they remain distinguishable by MS, and protein 

abundances are determined from the relative MS signal intensities. 

 
Figure 5-8. Steps for target identification using Stable Isotope Labeling 

by Amino acids in Cell culture (SILAC) and quantitative proteomics. After the 

incorporation of special amino acids, both lysates were incubated with the bait, but 
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(Figure 5-8. continued) excess free CR-6 was added to one lysate, to competitively 

displace target proteins. The beads from both lysates were then washed, combined, 

and proteins that remained bound to the immobilized small molecule were eluted off. 

Eluted proteins were separated using gel electrophoresis. Proteins were trypsin 

digested and analyzed on a mass spectrometer. This figure was modified from a 

figure made by Dr. Shao-En Ong at the Broad Institute. 

 

In order to “pull down” binding proteins, generation of the affinity reagent (bait) 

is a critical first step, which involves tethering the BRD0476 to solid support. The 

synthesis of this bait was performed by Dr. Eamon Comer and Ms. Claire Reddy in 

the Chemical Biology Platform. In Chapter 4, I described the structure-activity 

relationship (SAR), which suggested that the alcohol group in the side chain of 

BRD0476 is not crucial for the protective effect of BRD0476. Therefore, a PEG linker 

was placed at this position, and CR-6 was synthesized in two steps from BRD0476 

(Figure 5-9). I then tested CR-6 in the cellular ATP and caspase-3 assays to ensure 

that the protective activity was retained. In the presence of cytokines, CR-6 restored 

cellular ATP levels and reduced caspase-3 activity in a dose-dependent fashion, 

similar to BRD0476 (Figure 5-10). After the activity of CR-6 was confirmed, the 

compound was attached to solid support and the resulting bait could be used for 

pull-down studies. 
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Figure 5-9. Synthetic route to the synthesis of CR-6. The side-chain hydroxyl 

group was first activated by 1,1’-carbonyldiimidazole and followed by nucleophilic attack of the 

Boc-protected amine. Acid-catalyzed removal of the Boc group gave CR-6. 

 

 
Figure 5-10. Effects of CR-6 on cytokine-induced beta-cell apoptosis.  Cells 

were treated for two days and tested for A) cellular ATP levels and B) caspase-3 activity. 

 

The proteomics team then used SILAC-labeled INS-1E lysates in pull-down 

experiments. Both lysates were incubated with the bait, but 30-fold excess free CR-6 

was added to one lysate, to competitively displace target proteins. The beads from 

both lysates were then washed, combined, and proteins that remained bound to the 
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immobilized small molecule were reduced by DTT and alkylated by iodoacetylamide. 

Proteins were then eluted by LDS buffer and separated by molecular weight using gel 

electrophoresis. The entire gel lane was then cut into several bands to simplify the 

process, and proteins were trypsin digested and analyzed on a mass spectrometer. 

The proteomics team then identified and compared the relative enrichment of target 

proteins, generating differential SILAC ratios between the two states (Table 5-3). 

Each protein’s rank is based on the fold enrichment, which is then converted to a 

p-value. The list here includes all the proteins that have a p-value less than 0.05. 

There were two importins and one exportin in the list, which are involved in nuclear 

transport. 

 
Table 5-3. A list of proteins pull down by CR-6. Proteins are ranked by fold 

changes. The fold change is calculated between the signals of the protein in the absence and 

presence of soluble competitor, CR-6.  
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I decided to use siRNAs to knock down individual genes from the protein list, to 

test whether the knock-down can phenocopy the protective effect of BRD0476. The 

rationale is based on the hypothesis that BRD0476 is a direct inhibitor of a particular 

target. On the other hand, I also wanted to test whether the protective effect of 

BRD0476 would be impaired if a protein was knocked down. Therefore, if BRD0476 is 

an activator of a given protein, I would expect to see no protective effect for BRD0476 

if the protein was knocked down. Based on these ideas, I tested a number of proteins 

from the list (Table 5-4). Here, I would like to focus on two of the proteins, Mcm6 and 

Usp9x. 

 

 

 

MCM6, a DNA replication licensing factor, was the top-ranked protein on the list. 

MCM6 acts as component of the MCM2-7 complex, which is the replicative helicase 

essential for DNA replication initiation and elongation in eukaryotic cells (14). 

Therefore, MCM6 is an important protein for DNA replication, but had no reported 

relationship with cytokine signaling pathways. When I knocked down MCM6 (Figure 

Table 5-4. Summary of 

knock-down studies. The effect 

of knock-down was confirmed by 

either qPCR or western blots.  
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5-11 A) and treated INS-1E cells with cytokines, I did not see a restoration of cellular 

ATP levels (Figure 5-11 B). Furthermore, knock-down of MCM6 had no influence on 

the protective effect of BRD0476 (Figure 5-11 C). This result suggested that MCM6 is 

not a direct target that leads to the protective effect of BRD0476. Similar results were 

observed for IPO4, IPO9, XPO1, BLVRA, GAPDH, and CAND1. 

 

 
Figure 5-11. Effects of knocking down MCM6 in cytokine-induced beta-cell 

apoptosis . A) Validation of siRNAs using quantitative PCR . B) Effects of MCM6 

knock-down on ATP levels in the presence of cytokines. C) Effects of MCM6 knock-down on 

ATP levels in the presence of cytokines and 10µM BRO0476. 

 

USP9X is a member of the peptidase C19 family and is a deubiquitinase. 

Though this gene is located on the X chromosome, it is one of the 15% of genes that 

escape X-inactivation. It is involved in the processing of both ubiquitin precursors and 

of ubiquitinated proteins (15-17). Therefore, it may play an important role at the level 

of protein turnover, by preventing degradation of proteins through the removal of 

conjugated ubiquitin. When I knocked down USP9X (Figure 5-12 A) and treated 

INS-1E cells with cytokines, I observed a full restoration of cellular ATP levels (Figure 
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5-12 B) and reduction of caspase-3 activity (Figure 5-12 C). Knocking down USP9X 

also restored mitochondrial membrane potential in the presence of cytokines (Figure 

5-12 D). These effects were observed in three different siRNA constructs. The effect 

of knocking down USP9X is similar to that of BRD0476, suggesting that USP9X may 

be a binding target of BRD0476. 

 

 
Figure 5-12. Effects of knocking down USP9X in cytokine-induced beta-cell 

apoptosis . A) Validation of siRNAs using Western blot. B) Effects of knocking down USP9X 

on ATP levels after 48-h treatment. C) Effects of knocking down USP9X on caspase-3 activity 

after 48-h treatment. D) Effects of knocking down USP9X on mitochondrial membrane 

potential after 48-h treatment. Data represents the mean ± standard deviation of 24 

independent wells for B-D. * indicates p < 0.01 as compared to the cytokine treatment alone. 
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Next, I wanted to see whether there is direct binding between USP9X and 

BRD0476. One way to do that is to use the normal lysate and bait to do a 

low-throughput pull-down assay. I used CR-6-beads as the bait and unloaded beads 

as a negative control. After washing, I boiled the sample and ran a Western blot using 

a USP9X antibody. USP9X was pulled down by the bait but not the control beads 

(Figure 5-13). However, when I added 5 to 40µM BRD0476 as a soluble competitor, I 

saw only a small decrease in the band intensity. This result may be due to the poor 

solubility of BRD0476 in aqueous solution, and the fact that Western blotting is not as 

sensitive as MS methods. Nonetheless, this served as an independent experiment to 

show that USP9X binds BRD0476. However, this result is not strong enough to 

definitively conclude that USP9X is a direct binder of BRD0476. 

 

 

 

In order to further show direct binding, I tried to make recombinant USP9X 

protein, which turned out to be extremely difficult. USP9X is a 295-kD protein. 

Therefore, simple organisms such as bacteria could not be used as the host for 

Figure 5-13. USP9X was pulled 

down by CR-6.  

Cell lysate was preincubated with 

BRD0476 for 1 hour before shaken 

with beads overnight. BRD0476 

cannot be added more due to poor 

solubility in aqueous solution. 
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expression. I was fortunate to obtain a HEK293 cell line containing a 

tetracycline-inducible USP9X-expression plasmid from Dr. Dario Alessi at University 

of Dundee, Scotland (18). I cultured this cell line, used blasticidin and hygromycin B 

for selection, added tetracycline to induce expression, and lysed cells for protein 

purification. The purification process was challenging because both the induction 

efficiency and the protein yield were quite low. I finally arrived at a fraction that was 

“relatively pure”. This fraction still had several bands, one of which was USP9X 

(Figure 5-14 A). 

Using this fraction, I tested the binding between USP9X and BRD0476 using a 

the thermal shift assay. Ligand binding to a target protein can either stabilize or 

destabilize a protein's native state, as shown by the increase in the bound protein's 

melting temperature (19). The midpoint of the melting curve of a protein will either 

increase or decrease in the presence of ligands (Figure 5-14 B). The temperature 

where the midpoint of the melting curve of a protein happens is the melting 

temperature, Tm. Using this assay, I found that BRD0476 decreased the melting 

temperature of the protein fraction by 1.4 degrees compared to the control (Figure 

5-14 C). Normally, a shift larger than 1 degree will be considered significant. 

Therefore, 1.4 degrees of shift is considered a significant shift for thermal shift assays. 

WP1130, a reported nonselective deubiquitinase inhibitor (20), also decreased the 
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melting temperature by 2.1 degrees (Figure 5-14 C). However, I cannot test the 

protective effect of WP1130 on cytokine-induced beta-cell apoptosis because 

WP1130 alone is toxic to INS-1E cells as low as 1µM. This result suggests that at 

least one component of the protein mixture binds BRD0476. Based on the positive 

control from WP1130, it strongly suggests that USP9X is a direct binder of BRD0476.  

 
Figure 5-14. Thermal-shift assay to detect protein bindings.  A) Silver stain of 

the protein fraction and a Western blot using a USP9X antibody. B) A representative melting 

curve. X-axis is the temperature; Y-axis is the fluorescence from the dye, Nile red. C) 

Summary of the melting temperature. Data represents the mean ± standard deviation of 3 

independent wells. 

 

Recently, USP9X was found to stabilize MCL1 and thereby promote cell 

survival in colon cancer cells (21). USP9X binds MCL1 and removes the Lys 48-linked 

polyubiquitin chains that normally mark MCL1 for proteasomal degradation. 
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Knockdown of USP9X increased MCL1 polyubiquitination, which enhanced MCL1 

turnover and sensitized cells to the BH3 mimetic ABT-737. If BRD0476 is an inhibitor 

of USP9X, I would expect to see that addition of BRD0476 can also enhance the 

effect of ABT-737 on cancer cell death. Therefore, I treated the colon cancer cell line 

DLD-1 with different doses of ABT-737 in the presence and absence of 10µM 

BRD0476. Addition of BRD0476 to ABT-737 shifted the curve to the left (Figure 5-15) 

in a very similar way as USP9X knock-down. This result strengthens the hypothesis 

that BRD0476 is an inhibitor of USP9X. 

 

 

 

5.5 Relationship between the JAK-STAT pathway and USP9X 

By using gene-expression microarrays, I discovered that BRD0476 is likely to be 

involved in perturbing the JAK-STAT pathway. From a quantitative proteomics 

approach, USP9X appears to be a direct binding target for BRD0476. In the literature, 

Figure 5-15. Killing 

curves of DLD-1 cells 

DLD-1 cells were treated 

with ABT-737 in the 

absence or presence of 

10µM BRD0476 for 2 

days. 

121



there is no obvious connection between USP9X and the JAK-STAT pathway. Since 

BRD0476 blocks the phosphorylation of STAT1, I hypothesized that BRD0476 might 

be a JAK inhibitor. I submitted BRD0476 to Millipore to test the effects of BRD0476 on 

100 different kinases, including JAK2 and JAK3. However, BRD0476 did not show 

significant inhibition towards any of the kinases tested (Appendix 3). Moreover, I 

tested the effects of two selective JAK2 inhibitors, SD-1029 and Z3, on 

cytokine-induced beta-cell apoptosis (Figure 5-16). However, they are either too toxic 

or have no protective effects. These results suggest that BRD0476 is not a kinase 

inhibitor and likely blocks the phosphorylation of STAT1 in a more indirect manner. 

 

Figure 5-16. Effects of selective JAK2 inhibitors in cytokine-induced 

beta-cell apoptosis . Effects of JAK2 inhibitors on ATP levels after 48-h cytokine treatment 

for A) SD-1029 and B) Z3. Data represents the mean ± standard deviation of 24 independent 

wells. 

 

I also tried to knock down USP9X in INS-1E cells to study the phosphorylation of 

STAT1. Protein levels of STAT1 did not decrease in USP9X-knockdown cells (Figure 
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5-16). More importantly, knock-down of USP9X did not block the phosphorylation of 

STAT1, at either the Y701 or S727 sites (Figure 5-17). These results seemed to be 

confusing in light of my original results. If USP9X is the primary target for BRD0476, 

knock-down of USP9x should also inhibit STAT1 phosphorylation. Thus, the situation 

appears to be more complicated. A possible explanation is that the two events are 

independent of each other, and BRD0476 happens to have effects on both USP9x 

and STAT1. Blocking the JAK-STAT pathway is a known approach to suppress 

cytokine-induced beta-cell apoptosis, as demonstrated by Eizirik and coworkers (22). 

However, knock-down of USP9X would represent a novel approach. Another 

explanation is that USP9X deubiquitinates a protein downstream of the JAK-STAT 

pathway. Therefore, the phosphorylation of STAT1 is too upstream to be influenced 

by knock-down of USP9X. Taken together, although the JAK-STAT pathway and 

USP9X were confirmed to related to the protective effects of BRD0476, further studies 

are still required to completely understand the mechanism of action. 
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5.5 Conclusion 

The process of target identification is a challenging but required part of the probe 

discovery process. BRD0476 is a novel compound synthesized via diversity-oriented 

synthesis capable of suppressing cytokine-induced apoptosis in both rat INS-1E cells 

and primary human dissociated islets. However, the mechanism of action was still 

unknown. By using gene-expression microarrays, I discovered that BRD0476 appears 

to inhibit activation of the STAT1 pathway. I further demonstrated that BRD0476 could 

reduce the protein level of STAT1 and block STAT1 phosphorylation. Moreover, 

BRD0476 also blocks the migration of STAT1 into nucleus and, therefore, reduces the 

transcriptional activity of STAT1. From a quantitative proteomics “SILAC” approach, 

USP9X appears to be a direct binding target for BRD0476. I demonstrated that 

knock-down of USP9X could phenocopy the effect of BRD0476. Moreover, BRD0476 

could shift the melting temperature of a protein fraction containing USP9X. The same 

effect was also seen by using a known USP9X inhibitor, WP1130. However, I could 

Figure 5-17. Western blots of 

STAT1 and phosphoSTAT1 

after knocking down USP9X.  

INS-1E cells were treated with 

Usp9x siRNA overnight and 

cultured for two days before 

treated with cytokines for the 

indicated times. 
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not make a connection between JAK-STAT pathway and USP9X. In the future, a 

gene-expression profile data of USP9X knock-down cells would help to understand 

the underlying mechanism behind the protective effect. Moreover, a better quality and 

quantity of recombinant USP9X protein could help to develop a biochemical assay to 

prove whether BRD0476 is an inhibitor of the enzymatic activity of USP9X. Also, 

global analysis of ubiquitinated proteins would also be helpful to look for substrates of 

USP9X that are related to the protective effects of BRD0476. In conclusion, BRD0476 

suppresses cytokine-induced beta-cell apoptosis by blocking interferon-induced 

STAT1 activation. Moreover, USP9X is a putative direct binding target for BRD0476. 

Knock-down of USP9X phenocopies the effects of BRD0476. However, detail 

connections between the two targets are still unknown. The discovery of USP9X as a 

target to suppress cytokine-induced beta-cell apoptosis could help future screening 

using USP-9X in a target-based screening approach. 

 

5.6 Methods and Materials 

Cell culture and reagents. INS-1E cells (generously provided by Claes Wollheim 

and Pierre Maechler, University of Geneva, Switzerland) were maintained in culture 

medium (RPMI 1640 containing 11 mM glucose, 10% fetal bovine serum, 10 mM 

HEPES, 50 µM 2-mercaptoethanol, 1 mM sodium pyruvate) and cultivated at 37C 
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with 5% CO2 in a humidified atmosphere. Recombinant human IL-1β, recombinant 

human IFN-γ and recombinant human TNF-α were purchased from R&D Systems. 

CellTiter-Glo, Dual-Glo and Caspase-Glo 3/7 reagents were purchased from 

Promega. Antibodies for USP9X, IPO9, IPO4 and XPO1 were from Abcam. 

Thapsigargin, tunicamycin, blasticidin, hygromycin B, nucleus isolation kit and mouse 

monoclonal antibody to tubulin were from Sigma. Secondary horseradish 

peroxidase-conjugated goat anti-mouse and anti-rabbit antibodies were from Thermo 

Fisher Scientific. Antibodies for STAT1 and p-STAT1 were purchased from Cell 

Signaling. GAS reporter assay kit and rat primers for Mcm6 and Blvrb were from 

SABiosciences. All siRNA constructs were from Dharmacon. WP-1130 was 

synthesized in house by Dr. Mingji Dai. ABT-737 was purchase from Selleck Chem. 

JAK2 inhibitors were from EMD4Biosciences. 

 

Human islet culture. Human islets were obtained through variable sources. The 

purity and viability of human islets are reported to be 80–85% and 86–95%, 

respectively, and the average age of donors was 46 y (range 36–58 y; n = 4). Specific 

data on individual donors is reported below. Islets were washed with PBS and 

incubated in CMRL medium supplemented with 10% FBS, 2 mM glutamine, 100 U/mL 

penicillin, and 100 µg/mL streptomycin. Islets were gently dissociated into a cell 
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suspension by incubating in Accutase (37 °C, 10 min), and seeded in 96-well plates 

containing extracellular matrix secreted by the HTB9 human bladder carcinoma cell 

line (23). 

 

 

 

 

Treatment of human pancreatic islets. Human pancreatic islets were treated at 

with 0.5ng/mL human IL-1β, 50ng/mL human IFN-γ and 25ng/mL human TNF-α for 6 

days in white optical 384-well plates or black 96-well plates (Corning Life Sciences).  

 

Measurement of cellular ATP levels. INS-1E cells were seeded at 10,000 cells/well 

using a Multidrop Combi (Thermo Labsystems) in white optical 384-well plates 

(Corning Life Sciences). After overnight incubation, medium was removed and 50 µL 

RPMI containing the treated compound, 1% FBS and a combination of cytokines (10 

ng/mL IL-1β, 50 ng/mL IFN-γ, 25 ng/mL TNF-α) was added to every well. After 

Donor Source 
Islet 
Purity 

Islet 
Viability Age Gender 

Height 
(cm) 

Weight 
(kg) BMI Ethnicity 

1 U Pitt 85% 95% 36 M 190.5 104 28.7 W 

2 Prodo lab 80% 90% 43 N/A N/A N/A 27.0 N/A 

3 Prodo lab 85% 95% 58 N/A N/A N/A 30.4 N/A 

4 U Penn 85% 86% 47 M 177.0 89.5 28.6 B 
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incubation for 48 hr, medium was removed and 20 µL CellTiter-Glo reagent was 

added. Luminescence was measured after 10-min incubation using an EnVision plate 

reader (PerkinElmer). 

 

Measurement of cellular nitrite production. INS-1E cells were seeded at 10,000 

cells/well using a Multidrop Combi (Thermo Labsystems) in white optical 384-well 

plates (Corning Life Sciences). After overnight incubation, medium was removed and 

50 µL RPMI containing the treated compound, 1% FBS and a combination of 

cytokines (10 ng/mL IL-1β, 50 ng/mL IFN-γ, 25 ng/mL TNF-α) was added to every well. 

After treatment with cytokine and compounds for 48 hr, 10 µL modified Griess reagent 

(1:1 mixture of 1% sulfanilamide in 30% acetic acid and 0.1% N-(1-naphthyl) 

ethylenediamine dihydrochloride in 60% acetic acid) was added to each well. After 

5-min incubation at room temperature, the absorbance at 540 nm was measured 

using an Envision plate reader (PerkinElmer). 

 

Measurement of mitochondrial membrane potential. INS-1E cells were seeded at 

10,000 cells/well using a Multidrop Combi (Thermo Labsystems) in white optical 

384-well plates (Corning Life Sciences). After overnight incubation, medium was 

removed and 50 µL RPMI containing the treated compound, 1% FBS and a 
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combination of cytokines (10 ng/mL IL-1β, 50 ng/mL IFN-γ, 25 ng/mL TNF-α) was 

added to every well. After treatment with cytokine and compounds for 48 hr, 20 µL of 

3.25µM JC-1 was added to each well. After 3hr incubation at 37°C, the cells were 

gently washed three times with 50 µL per well of 1X PBS (with Ca2+ and Mg2+). 

Fluorescence was measured with an EnVision plate reader (PerkinElmer) at the 

rhodamine spectra (excitation/emission 530 nm/580 nm) followed by fluorescein 

(excitation/emission 485 nm/530 nm). The ratio of rhodamine to fluorescein intensity 

was determined and represents the degree of mitochondrial membrane potential. 

 

Caspase-3 activity assay. INS-1E cells were seeded at 5,000 cells/well using a 

Multidrop Combi (Thermo Labsystems) in white optical 384-well plates (Corning Life 

Sciences). After overnight incubation, medium was removed and 50 µL RPMI 

containing the treated compound, 1% FBS and a combination of cytokines (10 ng/mL 

IL-1β, 50 ng/mL IFN-γ, 25 ng/mL TNF-α) was added to every well. After treatment with 

cytokines and compounds for 48 hr, medium was removed and 20 µL Caspase-Glo 

3/7 reagent was added. Luminescence was measured after 2-hr incubation using an 

Envision plate reader (PerkinElmer). The same protocol was used for human 

pancreatic islets. 
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RNA interference and Western blotting. siRNAs (100 nM) were transfected into 

INS-1E cells (5,000 cells/well in a 384-well plate) using DharmaFECT reagent. 

Transfected cells were cultured for 72hr, then collected for Western blot analysis and 

cell-based assays. For Western blotting, cells were lysed in RIPA buffer. Total protein 

was separated by 4-12% SDS-PAGE and transferred to a PVDF membrane. Blots 

were developed using the chemiluminescence detection system SuperSignal 

(Thermo Fisher Scientific) and light emission was captured using an Imaging Station 

4000MM (Carestream). 

 

Quantitative PCR for mRNA levels. Following knock-down by siRNA, cells were 

lysed and RNA was isolated using the RNeasy Mini Kit (Qiagen) according to the 

manufacturer's protocol. RNA was reverse transcribed with random primers using the 

High Capacity cDNA Reverse Transcription Kit with RNase inhibitor (Applied 

Biosystems). Quantitative PCR was performed with Power SYBR Green PCR Master 

Mix (Applied Biosystems) on an Applied Biosystems 7900HT real-time PCR machine 

using primers for rat Mcm6 and Blvrb from SABiociences. 

 

Glucose-stimulated insulin secretion. INS-1E cells were seeded in 96-well plates 

at 20,000 cells/well in 100 µL RPMI and incubated for 48 hr in 100 µL fresh RPMI 
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containing 1% FBS and the cytokine cocktail in the presence or absence of 5 µM 

MS-275. Cells were washed and incubated for 2 hr in KRBH buffer (135 mM NaCl, 3.6 

mM KCl, 5 mM NaHCO3, 0.5 mM NaH2PO4, 0.5 mM MgCl2, 1.5 mM CaCl2, 10 mM 

HEPES, pH 7.4, 0.1% BSA) lacking glucose. Cells were subsequently incubated with 

KRBH buffer containing 2 mM or 16 mM glucose for 1 hr. The supernatant was 

collected for measurement of secreted insulin. Insulin was measured with a rat insulin 

ELISA kit (Alpco). The same protocol was used for human pancreatic islets. 

 

GAS reporter assay. INS-1E cells were transfected with plasmids (GAS reporter 

assay kit) using DharmaFECT reagent according to the manufacturer's protocol 

(SABiosciences) in white optical 384-well plates (Corning Life Sciences). After 

overnight incubation, medium was removed and 50 µL RPMI containing the treated 

compound, 1% FBS and a combination of cytokines (10 ng/mL IL-1β, 50 ng/mL IFN-γ, 

25 ng/mL TNF-α) was added to every well. After treatment with cytokines and 

compounds for 18 hr, luminescence was measure using Dual-Glo according to the 

manufacturer's protocol (Promega). 

 

Purification of recombinant USP9X. For each purification, fifty 25-cm dishes of 

confluent HEK-293 cell lines stably expressing wild-type USP-9X (generously 
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provided by Dr. Dario Alessi, University of Dundee, Scotland) were employed. Cells 

were washed twice with ice-cold PBS and lysed in 1 ml of ice-cold lysis buffer. The 

combined lysates were centrifuged at 26000 g for 30 min at 4 °C and the supernatant 

incubated with 0.2 ml of rabbit IgG–agarose beads (Sigma) for 1 h at 4 °C. The 

IgG–agarose was washed extensively with lysis buffer containing 0.15 M NaCl, then 

with several washes in buffer B prior to incubation with 0.250 ml of buffer B containing 

0.1 mg of TEV protease (Invitrogen). After 3 h at 4 °C ~70–90% of the TAP-tagged 

protein had been cleaved from the IgG–agarose and the eluted protein was incubated 

with 0.1 ml of rabbit calmodulin–Sepharose (Roche) equilibrated in buffer C. After 1 h 

at 4 °C, the calmodulin–Sepharose was washed with buffer C. To elute the protein, 

the calmodulin–Sepharose was then incubated with 0.1 ml of buffer D for 10 min at 4 

°C. The eluate was removed from the beads and the elution repeated two or three 

times. To remove the NaCl present in the buffer containing the eluate protein, the 

eluates were centrifuged at 1500 g for 1 min at 4 °C in protein desalting spin columns. 

Lysis buffer contained 50 mM Tris/HCl (pH 7.5), 1 mM EGTA, 1 mM EDTA, 1% (w/v) 

Nonidet P40, 1 mM sodium orthovanadate, 10 mM sodium b-glycerophosphate, 50 

mM sodium fluoride, 5 mM sodium pyrophosphate, 0.27 M sucrose, 1 mM DTT 

(dithiothreitol) and complete proteinase inhibitor cocktail (one tablet/50 ml). Buffer B 

contained 50 mM Tris/HCl (pH 7.5), 0.15 M NaCl, 0.27 M sucrose, 1% (w/v) Nonidet 
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P40 and 1 mM DTT. Buffer C contained 50mM Tris/HCl (pH 7.5), 0.15 M NaCl, 1 mM 

MgCl2, 1 mM imidazole, 2 mM CaCl2, 0.27 M sucrose and 1 mM DTT. Buffer D 

contained 50 mM Tris/HCl (pH 7.5), 20 mM EGTA, 150 mM NaCl and 5 mM DTT. 

TBS-Tween buffer contained 50 mM Tris/HCl (pH 7.5), 0.15 M NaCl and 0.2% (v/v) 

Tween 20. 
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Appendix 1. Complete EC50 values and maximum activity for all synthesized analogs. 

Entry 

Structure 

 

Cellular activity 

 R1 R2 R3 EC50 (M) 
Maximum Activity 

(%) 

1 OH 
 O  

4.89±2.41 62 

2 OH 
  

0.78±0.45 99 

3 OH 
  

3.48±1.40 76 

4 OH 
  

>20 0 

5 OH 
  >20 0 

6 OH 
  

>20 0 

7 OH 
  

>20 0 

8 OH 
  

>20 0 

9 OH 
  

>20 0 
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10 OH 
  

>20 0 

11 OH 
  

>20 0 

12 OH 
  

>20 0 

13 OH 
  

>20 0 

14 OH 
  

>20 0 

15 OH 
  

>20 0 

16 OH 
  

>20 0 

17 OH 
  

>20 0 

18 OH 
 

>20 0 

19 OH 
  

>20 0 

20 OH 
 

>20 0 

21 OH 
  

>20 0 

22 OH 
 O  

>20 0 
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23 OH 

 O  
>20 0 

24 OH 
N
Me   

>20 0 

25 OH 

  
>20 0 

26 OH 
 O  

>20 0 

27 OH 

  
>20 0 

28 OH 

  
>20 0 

29 OH 

 O  
>20 0 

30 OH 

 
>20 0 

31 OH 
  

>20 0 

32 OH 
 O  

>20 0 

33 OH 
  

>20 0 

34 OH 
  

>20 0 

35 H 
 O  

3.06±1.41 76 
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36 H 
  

2.79±1.73 89 
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Appendix 2. Characterization of Active Compounds 

For all the analogs synthesized through solid-phase synthesis, the final amount of each 

analog after purification by HPLC (with >95% purity) is around 1mg, which is not enough 

for detailed chemical characterizations. However, biologically active analogs were 

resynthesized in a larger scale. 1H NMR, 13C NMR and high-resolution mass spec data 

were obtained for these compounds. 

 

N-(((2R,3R)-5-((S)-1-Hydroxypropan-2-yl)-3-methyl-10-(3-(naphthalen-1-yl)ureido)-6-

oxo-3,4,5,6-tetrahydro-2H-benzo[b][1,5]oxazocin-2-yl)methyl)-4-methoxy-

Nmethylbenzenesulfonamide, compound 5 in Table 4-1. 

1H NMR (300 MHz, CDCl3)  8.44 (d, J = 8.0 Hz, 1H), 8.17 (dd, J = 7.5, 18.1 Hz, 2H), 

7.85 (d, J = 7.0 Hz, 1H), 7.69 (d, J = 9.0 Hz, 3H), 7.57-7.41 (m, 3H), 7.13 (dd, J = 7.2, 

16.3 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 4.15 (s, 1H), 3.81 (d, J = 21.9 Hz, 7H), 3.55 (d, J 

= 10.7 Hz, 1H), 3.24 (s, 2H), 3.03 (d, J = 15.3 Hz, 1H), 2.92 (s, 3H), 2.06 (s, 1H), 1.40 (d, 

J = 6.9 Hz, 3H), 0.88 (d, J = 6.7 Hz, 3H). 13C NMR (75 MHz, CDCl3)  169.7, 163.8, 

153.9, 142.8, 134.4, 133.3, 132.5, 131.1, 130.1, 129.2, 128.3, 126.2, 126.0, 125.9, 

125.6, 123.0, 122.7, 122.5, 121.9, 114.7, 85.2, 65.2, 56.1, 55.9, 55.7, 51.9, 38.7, 35.2, 

16.8, 14.4. HRMS (ESI) calcd for C34H38N4O7S [M + H]+: 647.2534, found: 647.2532. 

N-(((2R,3R)-5-((S)-1-Hydroxypropan-2-yl)-3-methyl-10-(3-(naphthalen-1-yl)ureido)-6-

oxo-3,4,5,6-tetrahydro-2H-benzo[b][1,5]oxazocin-2-yl)methyl)-N-methyl-2,3-

dihydrobenzo-[b][1,4]dioxine-6-sulfonamide, compound 13 in Table 4-1.  

 []D
20 -14.0 (c 1.0, CHCl3).  

1H NMR (CDCl3, 500 MHz)  8.45 (d, J = 8.3 Hz, 1H), 8.23-

8.07 (m, 3H), 7.84 (d, J = 7.7 Hz, 1H), 7.69 (dd, J = 7.8, 14.5 Hz, 2H), 7.57-7.41 (m, 3H), 

7.26 (t, J = 10.1 Hz, 2H), 7.18 (t, J = 7.9 Hz, 1H), 7.11 (d, J = 6.6 Hz, 1H), 6.97 (d, J = 

8.5 Hz, 1H), 4.28 (dd, J = 4.6, 16.9 Hz, 4H), 4.15 (s, 1H), 3.88 (d, J = 8.7 Hz, 1H), 3.83-

3.68 (m, 2H), 3.58 (dd, J = 10.9, 15.6 Hz, 1H), 3.25 (s, 2H), 3.03 (d, J = 15.4 Hz, 1H), 

2.94 (s, 3H), 2.07 (d, J = 7.1 Hz, 1H), 1.41 (d, J = 6.9 Hz, 3H), 0.89 (d, J = 6.7 Hz, 3H). 
13C NMR (CDCl3, 125 MHz)  169.7, 153.8, 148.3, 143.9, 142.7, 134.3, 133.2, 132.4, 

130.9, 129.1, 128.2, 126.9, 126.0, 125.9, 125.9, 125.5, 122.9, 122.6, 121.8, 121.7, 

118.1, 117.4, 85.1, 77.2, 76.9, 76.7, 65.2, 64.5, 64.1, 56.1, 55.9, 51.8, 38.8, 35.1, 16.8, 

14.4.  HRMS (ESI) calcd for C35H38N4O8S [M + H]+: 675.2483, found: 675.2491. 
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N-(((2R,3R)-5-((S)-1-Hydroxypropan-2-yl)-3-methyl-10-(3-(naphthalen-1-yl)ureido)-6-

oxo-3,4,5,6-tetrahydro-2H-benzo[b][1,5]oxazocin-2-yl)methyl)-4-methoxy-

Nmethylbenzenesulfonamide, compound 5 in Table 4-1. 

1H spectrum 
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N-(((2R,3R)-5-((S)-1-Hydroxypropan-2-yl)-3-methyl-10-(3-(naphthalen-1-yl)ureido)-6-

oxo-3,4,5,6-tetrahydro-2H-benzo[b][1,5]oxazocin-2-yl)methyl)-4-methoxy-

Nmethylbenzenesulfonamide, compound 5 in Table 4-1. 

13C spectrum 
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N-(((2R,3R)-5-((S)-1-Hydroxypropan-2-yl)-3-methyl-10-(3-(naphthalen-1-yl)ureido)-6-

oxo-3,4,5,6-tetrahydro-2H-benzo[b][1,5]oxazocin-2-yl)methyl)-N-methyl-2,3-

dihydrobenzo-[b][1,4]dioxine-6-sulfonamide, compound 13 in Table 4-1.  

1H spectrum 
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N-(((2R,3R)-5-((S)-1-Hydroxypropan-2-yl)-3-methyl-10-(3-(naphthalen-1-yl)ureido)-6-

oxo-3,4,5,6-tetrahydro-2H-benzo[b][1,5]oxazocin-2-yl)methyl)-N-methyl-2,3-

dihydrobenzo-[b][1,4]dioxine-6-sulfonamide, compound 13 in Table 4-1.  

13C spectrum 

 

144



Appendix 3 Kinase profiling result of BRD0476 

10M of BRD0476 was tested for duplicates in 100 different kinases which were chosen 

to be representatives for different classes of kinases. The values below are % activity of 

each kinase after incubation of 10M BRD0476. 

Kinases 
BRD0476 @ 10 

µM Kinases 
BRD0476 @ 10 

µM 
Abl(h) 99 MAPK2(h) 111 

ALK(h) 65 MAPKAP-K2(h) 93 
AMPKα1(h) 83 MAPKAP-K3(h) 92 

ASK1(h) 99 MEK1(h) 110 
Aurora-A(h) 104 MKK4(m) 112 
Aurora-B(h) 77 MKK6(h) 103 

Axl(h) 89 MKK7β(h) 103 
BTK(h) 109 MLK1(h) 96 

CaMKI(h) 97 Mnk2(h) 97 
CDK1/cyclinB(h) 104 MSK1(h) 89 
CDK2/cyclinA(h) 105 MSK2(h) 86 

CDK5/p25(h) 101 MST1(h) 100 
CDK6/cyclinD3(h) 106 mTOR(h) 94 

CDK7/cyclinH/MAT1(h) 104 NEK2(h) 102 
CDK9/cyclin T1(h) 112 p70S6K(h) 123 

CHK1(h) 104 PAK2(h) 97 
CK1γ1(h) 92 PDGFRβ(h) 102 
CK1(y) 101 PDK1(h) 102 

CK2α2(h) 113 Pim-1(h) 98 
c-RAF(h) 101 PKA(h) 139 

DRAK1(h) 107 PKBα(h) 98 
eEF-2K(h) 128 PKBβ(h) 92 
EGFR(h) 103 PKBγ(h) 99 
EphA5(h) 108 PKCα(h) 94 
EphB4(h) 101 PKCβII(h) 101 

Flt3(h) 109 PKCγ(h) 99 
Fyn(h) 90 PKCδ(h) 111 

GCK(h) 100 PKCε(h) 110 
GSK3α(h) 137 PKCη(h) 112 
GSK3β(h) 111 PKCι(h) 108 
IGF-1R(h) 86 PKCμ(h) 98 
IKKα(h) 130 PKCθ(h) 115 
IKKβ(h) 97 PKCζ(h) 108 

IR(h) 99 PKG1α(h) 73 
IRR(h) 100 Plk3(h) 103 

IRAK1(h) 96 PRAK(h) 60 
IRAK4(h) 103 ROCK-I(h) 107 
JAK2(h) 108 ROCK-II(h) 97 
JAK3(h) 88 Ros(h) 103 
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JNK1α1(h) 107 Rse(h) 100 
JNK2α2(h) 102 Rsk1(h) 102 

JNK3(h) 109 SAPK2a(h) 96 
KDR(h) 101 SAPK2b(h) 94 
Lck(h) 70 SAPK3(h) 115 

LKB1(h) 85 SAPK4(h) 107 
LOK(h) 103 Src(1-530)(h) 107 
Lyn(h) 102 SRPK1(h) 94 

MAPK1(h) 109 TAK1(h) 101 
 

  

 

146


