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Lattice protein folding models are a cornerstone of computational biophysics1.

Although these models are a coarse grained representation, they provide use-

ful insight into the energy landscape of natural proteins2–7. Finding low-energy

three-dimensional structures is an intractable problem8–10 even in the simplest

model, the Hydrophobic-Polar (HP) model. Exhaustive search of all possible

global minima is limited to sequences in the tens of amino acids11. Description

of protein-like properties are more accurately described by generalized models,

such as the one proposed by Miyazawa and Jernigan2 (MJ), which explicitly take

into account the unique interactions among all 20 amino acids. There is theo-

retical13–17 and experimental18 evidence of the advantage of solving classical op-

timization problems using quantum annealing14,15,19,20 over its classical analogue

(simulated annealing21). In this report, we present a benchmark implementation

of quantum annealing for a biophysical problem (six different experiments up

to 81 superconducting quantum bits). Although the cases presented here can

be solved in a classical computer, we present the first implementation of lat-

tice protein folding on a quantum device under the Miyazawa-Jernigan model.

This paves the way towards studying optimization problems in biophysics and

statistical mechanics using quantum devices.

The search for more efficient optimization algorithms is an important endeavor with

prevalence on many disciplines ranging from the social sciences to the physical and natural

sciences. Belonging to the latter, the protein folding problem3–6 consists of finding the

lowest free-energy configuration or, equivalently, the native structure of a protein given its

amino acid sequence. Knowing how proteins fold elucidate their three-dimensional structure-

function relationship which is crucial to the understanding of enzymes and for the treatment

of misfolded-protein diseases such as Alzheimer’s, Huntington’s, and Parkinson’s disease.

Due to the high computational cost of modeling proteins in atomistic detail22,23, coarse-

grained descriptions of the protein folding problem, such as those found in lattice models,

provide valuable insight about the folding mechanisms2,4–6,24.

Harnessing quantum-mechanical effects to speed up the solving of classical optimization

problems is at the heart of quantum annealing algorithms (QA)14,15,19,20. In QA, quantum

mechanical tunneling allows for more efficient exploration of difficult potential energy land-

scapes such as that of classical spin-glass problems. In our implementation of lattice folding,
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quantum fluctuations (tunneling) occurs between states representing different model protein

conformations or folds.

The theoretical challenge is to efficiently map the hard computational problem of interest

(e.g., lattice folding) to a classical spin-glass Hamiltonian: such mapping requiring a poly-

nomial number of quantum bits (qubits) with the size of the problem (protein length) is

described elsewhere25. Here we present a new mapping which, due to its exponential scaling

with problem size, is not intended for large instances. The proposed mapping employs very

few qubits for small problem instances, making it ideal for this first experimental demon-

stration and implementation on current quantum devices5. A combination of the existing

polynomial mapping25 and more advanced quantum devices would allow for the simulation

of much larger instances of lattice folding and other related optimization problems.

Solving arbitrary problem instances requires a programmable quantum device to im-

plement the corresponding classical Hamiltonian. We employ quantum annealing on the

programmable device to obtain low-energy conformations of the protein model. We empha-

size that nothing quantum mechanical is implied about the protein or its folding process;

rather quantum fluctuations are a tool we use to solve the optimization problem.

The QA protocol performed here is also known as adiabatic quantum computation

(AQC)16,27. Of all the quantum-computational models, AQC is perhaps the most naturally

suited for studying and solving optimization problems16,28. For the experiments presented

here, the small finite temperature of the superconducting device is enough to make the

process less coherent than the original formulation of AQC, where the theoretical limit of

zero temperature and quasi-adiabaticity are usually assumed16,27. As we show in the dis-

cussion, numerical simulations including these unavoidable environmental effects accurately

reproduce our experimental results.

Experimental implementations of QA or AQC are limited either by the number of qubits

available in state-of-the-art quantum devices or by the programmability required to fulfill

the problem specification. For example, the first realization of AQC was performed on a

three-qubit NMR quantum device29 and newer NMR implementations involve four qubit

experiments30. Other experimental realizations of spin systems have been based on mea-

suring bulk magnetization properties of the systems in which there is no control over the

individual spins and the couplings among them18,31. Quantum architectures using supercon-

ducting qubits 32–39 offer promising device scalability while maintaining the ability to control
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individual qubits and the strength of their interaction couplings. During the preparation of

this manuscript, an 84-qubit experimental determination of Ramsey numbers with quantum

annealing was performed40, underscoring the programmable capabilities of the device for

problems with over 80 qubits. In this letter, we present a quantum annealing experimental

implementation of lattice protein models with general (Miyazawa-Jernigan2) interactions

among the amino acids. Even though the cases presented here still can be solved on a

classical computer by exact enumeration (the six-amino acid problem has only 40 possible

configurations), it is remarkable that the device anneals to the ground state of a search

space of 281 possible computational outcomes. This study provides a proof-of-principle that

optimization of biophysical problems such as protein folding can be studied using quantum

mechanical devices.

The quantum hardware employed consists of 16 units of a recently characterized eight-

qubit unit cell5,41. Post-fabrication characterization determined that only 115 qubits out of

the 128 qubit array can be reliably used for computation (see Fig. 1). The array of coupled

superconducting flux qubits is, effectively, an artificial Ising spin system with programmable

spin-spin couplings and transverse magnetic fields. It is designed to solve instances of the

following (NP-hard42) classical optimization problem: Given a set of local longitudinal fields

{hi} and an interaction matrix {Jij}, find the assignment s∗ = s∗1s
∗
2 · · · s∗N , that minimizes

the objective function E(s), where,

E(s) =
∑

1≤i≤N

hisi +
∑

1≤i<j≤N

Jijsisj, (1)

|hi| ≤ 1, |Jij| ≤ 1, and si ∈ {+1,−1}.

Finding the optimal s∗ is equivalent to finding the ground state of the corresponding Ising

classical Hamiltonian,

Hp =
N∑

1≤i≤N

hiσ
z
i +

N∑
1≤i<j≤N

Jijσ
z
i σ

z
j (2)

where σzi are Pauli matrices acting on the ith spin.

Experimentally, the time-dependent quantum Hamiltonian implemented in the superconducting-

qubit array is given by,

H(τ) = A(τ)Hb +B(τ)Hp, τ = t/trun, (3)

with Hb = −
∑

i σ
x
i responsible for quantum tunneling among the localized classical states,

which correspond to the eigenstates of Hp (the computational basis). The time-dependent

4



functions A(τ) and B(τ) are such that A(0)� B(0) and A(1)� B(1); in Fig. 2(b), we plot

these functions as implemented in the experiment. trun denotes the time elapsed between

the preparation of the initial state and the measurement.

QA exploits the adiabatic theorem of quantum mechanics, which states that a quantum

system initialized in the ground state of a time-dependent Hamiltonian remains in the in-

stantaneous ground state, as long as it is driven sufficiently slowly. Since the ground state of

Hp encodes the solution to the optimization problem, the idea behind QA is to adiabatically

prepare this ground state by initializing the quantum system in the easy-to-prepare ground

state of Hb, which corresponds to a superposition of all 2N states of the computational basis.

The system is driven slowly to the problem Hamiltonian, H(τ = 1) ≈ Hp. Deviations from

the ground-state are expected due to deviations from adiabaticity, as well as thermal noise

and imperfections in the implementation of the Hamiltonian.

The first challenge of the experimental implementation is to map the computational

problem of interest into the binary quadratic expression (Eq. 2), which we outline next.

In lattice folding, the sequence of amino acids defining the protein is viewed as a sequence

of beads (amino acids) connected by strings (peptide bonds). This bead chain occupies

points on a two- or three-dimensional lattice. A valid configuration is a self-avoiding walk

on the lattice and its energy is calculated from the sum of interaction energies between

nearest non-bonded neighbors on the lattice. By the thermodynamic hypothesis of protein

folding43, the global minimum of the free-energy function is conjectured to be the native

functional conformation of the protein.

The hydrophobic-polar (HP) model is one of the simplest possible models for lattice

folding44. In this model, the amino acids are classified into two groups, hydrophobic (H)

and polar (P). To describe real protein energy landscapes a more elaborate description needs

to be considered, such as the Mijazawa-Jernigan (MJ) model2 which assigns the interaction

energies for pairwise interactions among all twenty amino acids. The formulation we used

is general enough to take into account arbitrary interaction matrices for lattice models in

two and three dimensions1. In particular, we solved a MJ model in 2D, the six amino-acid

sequence of Proline-Serine-Valine-Lysine-Methionine-Alanine (PSVKMA in the one-letter

amino-acid sequence notation). We solved the problem under two different experimental

schemes (see Schemes 2 and 3 in Fig. 3), each requiring a different number of resources.

Solving the problem in one proposed experimental realization (Scheme 1) requires more
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resources than the number of qubits available (115 qubits) in the device. Scheme 2 and

3 are examples of the divide-and-conquer strategy, in which one partitions the problem

in smaller instances and combines the independent set of results, thereby obtaining the

same solution for the intractable problem. In the SI section, we complement these four MJ

related experiments with two small tetrapeptide instances (effectively HP model instances)

for a total of six different problem Hamiltonians. We used the largest of these two instances

(an 8 qubit experiment) for direct theoretical simulation of the annealing dynamics of the

device. The results from our experiment and the theoretical model, which does not use any

adjustable parameters (all are extracted experimentally from the device), are in excellent

agreement (see panel (b), Fig. 2 of the SI material).

To represent each of the possible N -amino-acid configurations (folds) in the lattice, we

encode the direction of each successive bond between amino acids; thus, for every N -bead

sequence we need to specify N−1 turns corresponding to the number of bonds. For the case

of a two dimensional lattice, a bond can take any of four possible directions; therefore, two

bits per bond are required to uniquely determine a direction. More specifically, if a bond

points upwards, we write “11”. If it points downwards, leftwards or rightwards, we write

“00”, “10”, or “01” respectively. Fixing the direction of the first bond reduces the description

of any N -bead fold to ` = 2(N − 2) binary variables, without loss of generality. As shown

in Fig. 2(a), in the absence of external constraints other than those imposed by the primary

amino acid sequence (see SI for an example with external constraints), we can fix the third

binary variable to “0”, forcing the third amino acid to go either straight or downward and

reducing the number of needed variables to ` = 2N−5. This constraint reduces the solution

space by removing conformations which are degenerate due to rotational symmetry. Thus,

a particular fold is uniquely defined by,

q = 01︸︷︷︸
turn1

0q1︸︷︷︸
turn2

q2q3︸︷︷︸
turn3

· · · q2N−6q2N−5︸ ︷︷ ︸
turn(N−1)

(4)

An example of this encoding for a six-amino-acid sequence is represented in Fig. 2(a).

Using this mapping to translate between the amino acid chain in the lattice and the

2(N − 1) string of bits, we constructed the energy function E(q) in which q denotes the

remaining 2N−5 binary variables. Additionally, we penalized folds which exhibit two amino

acids on top of each other, to favor self-avoiding walk configurations. The energy penalty

chosen for each problem was sufficient to push the energy of invalid folds outside of the
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energy range of valid configurations (those with E ≤ 0). Finally, we took into account the

interaction energy among the different amino acids. A detailed construction of our energy

function for the general case of N amino acids with arbitrary interactions is given elsewhere1.

The experiment consists of the following steps: a) construction of the energy function

to be minimized in terms of the turn encoding; b) reduction of the energy expression to a

two-body Hamiltonian; and finally, c) embedding in the device. These last two steps need

additional resources as explained below. We will focus on the simplest example (Experiment

3, Fig. 3) to show the procedure in detail. The embeddings for the other five experiments

are provided in the SI material. The energy function for Experiment 3, containing the

contributions due to on-site penalties for overlapping amino acids, and pairwise interactions

between amino acids is,

E(q) ≡ Ecubic
exp3 = −1− 4q3 + 9q1q3 + 9q2q3 − 16q1q2q3 (5)

where q10 (q2q3) encodes the orientation of the fourth (fifth) bond (see Fig. 3). From Eq. 5

one can verify by substitution that the eight possible three-bit-variable assignments provide

the desired energy landscape: the six conformations with E ≤ 0 shown in blue in Fig. 3.

Eq. 5 describes the energy landscape of configurations but it is not quite ready for the

device. Experimentally, we can specify up to two-body spin interactions, σzi σ
z
j , and therefore,

we need to convert this cubic energy function (Eq. 5) into a quadratic form resembling Eq. 1

(see SI for details). The resulting expression is

Hunembedded
p = (7σz1 + 9σz2 + 8σz3 − 20σz4 + 9σz1σ

z
3 + 9σz2σ

z
3

− 16σz1σ
z
4 − 18σz2σ

z
4 − 18σz3σ

z
4)/4

(6)

where the original binary variables and spin operators are related by qi → (1 − σzi )/2.

Experimental measurements of σzi yield si = +1 (si = −1) corresponding to qi = 0 (qi = 1).

Since qi = (1 − si)/2, measurement of s1, s2, and s3 allows us to reconstruct the bit string

q10q2q3 which encodes the desired fold.

One ancilla variable was added during the transformation of the three-variable cubic

Hamiltonian into this quadratic four-variable expression. The meaning of the original vari-

ables s1, s2, and s3 remains the same, allowing for the reconstruction of the folds. The

energy of this four-variable expression will not change as long as the measurements of σz1

through σz4 result in values for q1q2q3q4 satisfying q4 = q2q3. This transformation ensures an

energy penalty whenever this condition is violated.
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The architecture of the chip lacks sufficient connectivity between the superconducting

rings for a one-to-one assignment of variables to qubits (see Fig. 4). To satisfy the connec-

tivity requirements of the four-variable energy function, the couplings of one of the most

connected variables, q4, were fulfilled by duplicating this variable inside the device such that

q4 → q4 and q4′ . In the form of Eq. 2 the final expression representing the energy function

of Experiment 3 is given by,

Hp = (7σz2σ
z
1 + 9σz2 + 8σz3 + 9σz1σ

z
3 + 9σz2σ

z
4′ − 2σz4′ − 16σz1σ

z
4′

− 18σz2σ
z
4′ − 18σz4′′ − 18σz3σ

z
4′′ − 36σz4′′σ

z
4′′)/36

(7)

This expression satisfies all requirements for the problem Hamiltonian (Eq. 3), the comple-

tion of which allows for the measurement of the energetic minimum conformation of this

small peptide instance. The embedding of Eq. 7 into the hardware is shown in Fig. 4, where

we label the five qubits used, q1, q2, q3, q4, and q4′ . Since we want the two qubits representing

q4 to end up with the same value, we apply the maximum ferromagnetic coupling (J = −1)

between them, which adds a penalty whenever this equality is violated (last term in Eq. 7).

These maximum couplings are indicated in Fig. 4 by heavy lines. The thinner lines show

the remaining couplings used to realize the quadratic terms in Eq. 7, color coded according

to the sign of the interaction and its thickness representing their strength. Note that every

quadratic term in Eq. 7 has a corresponding coupler. Hereafter, we will denote the outcome

of the five-qubit measurements as qexpo = 010010q10q2q3|q4q4′ , with qi = 0 (qi = 1) whenever

si = 1 (si = −1). Notice that only the bits preceding the divider character | contain physical

information. These are the ones shown under each of the protein fold drawings associated

with Experiment 3 (see Fig. 3).

Similar embedding procedures to the one previously described were used for the larger ex-

periments. For example, in Experiment 1, only 5 qubits define solutions of the computational

problem. We needed 5 auxiliary qubits to transform the expression with 5-body interac-

tions into an expression with only 2-body interactions. Embedding of this final expression

required an additional of 18 qubits to satisfy the hardware connectivity requirements, for a

total of 28 qubits. Table I in the SI material summarizes the number of qubits required in

each step through to the final experimental realizations.

Even though the quantum device follows a quantum annealing protocol, the odds of

measuring the ground state are not necessarily high. For example, in the 81 qubit experi-
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ment, only 13 out of 10,000 measurements yielded the desired solution. We attribute these

low-percentages to the analog nature of the device and to precision limitations in the real

values of the local fields and couplings among the qubits in the experimental setup. When

compared to other problem implementations, physical problems such as lattice folding lack

the structure of the Ramsey number problem40. In the lattice folding problem implemented

here, the parameters defining the problem instances are arbitrary and do not fall into certain

integral distinct values as in the case of the Ramsey number experiment, making precision

issues more pronounced in our implementation.

To gain insights into the dynamics and evolution of the quantum system, we numerically

simulated the superconducting array with a Bloch-Redfield model of the 8-qubit experiment

(see SI material) which takes into account thermal fluctuations in the states due to the finite

temperature (20mK) of the quantum device. For this 8-qubit experiment, the simulation

predicted a ground state probability of 80.7 %, in excellent agreement with the experimen-

tally observed value (80.3%). It is important to note that no adjustable parameters were

used in our simulations to fit the data and all the parameters correspond to values measured

directly from the quantum device. More details about the numerical simulations can be

found in the SI.

As seen in Fig. 2(c), the temperature of the device is comparable with the minimum gap

of the eight-qubit Hamiltonian. Therefore, we expect stronger excitation/relaxation near

the gap closing, τ ≈ 0.6, due to exchange of energy with the environment, when compared

to the other regimes of the annealing schedule where the gap is much larger than kBT . In

the absence of environment (a fully coherent process), our simulations indicate that that

the success probability would be 100%, within numerical error. Fig. 2(d) shows that for the

simulations at 20mK, the probability in the ground state goes down to ∼ 55%, but the same

fluctuations make the system relax back to the ground state, yielding tan 80.27% success

probability. This is due to the advantageous natural tendency of the system to approach a

thermal equilibrium which favors the ground state after crossing the minimum energy gap.

As previously discussed in similar numerical simulations of quantum annealing algorithms46,

strong coupling to the bath and non-Markovianity would require going beyond the Bloch-

Redfield model47, but the agreement between experimental and simulated results support

the validity of the quantum mechanical model used to describe the device. Previously

reported temperature dependence predictions for the tunneling rate on the same qubits5 [3]
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and excellent agreement with the same level of theory used here reinforce the validity of our

simulations for this 8-qubit instances.

We present the first quantum-mechanical implementation of lattice protein models using

a programmable quantum device. We were able to encode and to solve the global minima

solution for a small tetrapeptide and hexapeptide chain under several experimental schemes

involving 5 and 8 qubits for the four-amino-acid sequence (Hydrophobic-Polar model) and

5, 27, 28, and 81 qubits experiments for the six amino-acid sequence under the Miyazawa-

Jernigan model for general pairwise interactions. For the experiment with 8 qubits, we

simulated the dynamics of the quantum device with a Redfield equation with no adjustable

parameters, obtaining excellent agreement with experiment. Since the quantum annealing

algorithm not only finds the ground state but also the low-lying excited states, it provides

information about the relevant minimum energy compact structures of protein sequences48

and it is useful to evaluate designability and stability such as that found in natural protein

sequences, where the global minimum of free energy is well separated in energy from other

misfolded states43. The approach employed here can be extended to treat other problems

in biophysics and statistical mechanics such as molecular recognition, protein design, and

sequence alignment49.
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FIG. 1. The array of superconducting quantum bits is arranged in 4× 4 unit cells that consist of 8

quantum bits each. Within a unit cell, each of the 4 qubits in the left-hand partition (LHP) connects

to all 4 qubits in the right-hand partition (RHP), and vice versa. A qubit in the LHP (RHP) also

connects to the corresponding qubit in the LHP (RHP) of the units cells above and below (to the left

and right of) it. (a) Qubits are labeled from 0 to 127 and edges between qubits represent couplers

with programmable coupling strengths. Grey qubits indicate the 115 usable qubits, while vacancies

indicate qubits under calibration which were not used. The larger experiments (Experiments 1,2,

and 4) were performed on this chip, while the three remaining smaller experiments were run on

other chips with the same architecture. (b) Embedding and qubit connectivity for Experiment

4, coloring the 81 qubits used in the experiment. Nodes with the same color represent the same

logical qubit from the original 19-qubit Ising-like Hamiltonian resulting from the energy function

associated with Experiment 4 (see SI material for details). This embedding aims to fulfill the

arbitrary connectivity of the Ising expression and allows for the coupling of qubits that are not

directly coupled in hardware.
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FIG. 2. (a) Step-by-step construction of the binary representation of lattice protein. Two qubits

per bond are needed and the bond directions are denoted as “00” (downwards), “01” (rightwards),

“10” (leftwards), and “11” (upwards). The example shows one of the possible folds of an arbitrary

six-amino-acid sequence. Any possible N -amino-acid fold can be represented by a string of vari-

ables 010q1q2q3 · · · q`−1q` with ` = 2N − 5. (b)Time-dependence of the A(τ) and B(τ) functions,

where τ = t/trun with trun = 148µs, (c) time-dependent spectrum obtained through numerical

diagonalization, and (d) Bloch-Redfield simulations showing the time-dependent population in the

first eight instantaneous eigenstates of the experimentally implemented 8-qubit Hamiltonian (Eq. 3)

with Hp from Eq. 18 in the SI material. In panel (c), for each instantaneous eigenenergy curve we

have subtracted the energy of the ground state, effectively plotting the gap of the seven-lowest-

excited states with respect to the ground state (represented by the baseline at zero-energy). As a

reference, we show the energy with the device temperature, which is comparable to the minimum

gap between the ground and first excited state. In panel (d), populations are ordered in energy

from top (ground state) to bottom. Although τ = t/trun runs from 0 to 1, we show the region

where most of the population changes occur. As expected, this is in the proximity of the minimum

gap between the ground and first excited state around τ ∼ 0.4 [see panel(c)].
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FIG. 3. (a) Representation of the six-amino acid sequence, Proline-Serine-Valine-Lysine-

Methionine-Alanine with its respective one-letter sequence notation, PSVKMA. We use the pair-

wise nearest-neighbor Miyazawa-Jernigan interaction energies reported in Table 3 of Ref. 2. (b)

Divide and conquer approach showing three different schemes which independently solve the six-

amino acid sequence PSVKMA on a two-dimensional lattice. We solved the problem under Scheme2

and 3 (Experiments 1 through 4). (c) Energy landscape for the valid conformations of the PSVKMA

sequence. Results of the experimentally-measured probability outcomes are given as color-coded

percentages according to each of the experimental realizations described in panel (b). Percentages

for states with energy greater than zero are 32.70%, 59.88%, 8.00%, and 95.97% for Experiments

1 through 4, respectively.
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FIG. 4. Graph representations of (a) the four-qubit unembedded energy function (Eq. 6) and (b)

the five-qubit expression (Eq. 7) as was embedded into the quantum hardware. In graphs (a)

and (b), each node denotes a qubit and the color and extent of its glow denotes the sign and

strength of its corresponding longitudinal field, hi. The edges represent the interaction couplings,

Jij , where color indicates sign and thickness indicates magnitude. Since we want the two qubits

representing q4 (q4 and q4′) to end up with the same value, we apply the maximum ferromagnetic

coupling (J = −1) between them, which adds a penalty whenever this equality is violated. These

maximum couplings are indicated in the figure by heavy lines. For the case of Experiment 3,

the reconstruction of the binary bit stings representing the folds in Fig. 3, from the five-quibt

experimental measurements can be recovered by qexp3 = 010010q10q2q3|q4q4′ , with qi = 0 (qi = 1)

whenever si = 1 (si = −1).
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Supplementary Information

SUMMARY

The paper Finding low-energy conformations of lattice protein models by quantum-

annealing presents the first experimental and largest quantum annealing experiment related

to an optimization problem in the physical sciences. In Sec. I, we summarize the construc-

tion of a more succinct version of the energy function describing the energy landscape of

the six experimental realizations of the generalized lattice-folding model using Miyazawa-

Jernigan pairwise interactions. In Sec. II, we present the necessary steps to transform the

energy function into an expression which can be readily implemented in the quantum device.

In Sec. III, we describe the quantum device used for our experiments and in Sec. IV we

give details about the quantum simulations and results used to support the experimental

outcomes.

I. TRANSFORMATION OF THE ENERGY FUNCTION OF THE

LATTICE-FOLDING MODEL INTO THE EXPERIMENTALLY

REALIZABLE SPIN-GLASS HAMILTONIAN

The energy function for the lattice model can be obtained as a sum of different contribu-

tions,

Ep(q) = Eonsite(q) + Epw(q) + Eext(q) (S1)

where Eonsite(q) penalizes configurations with overlaps among any two amino acids, Epw(q)

accounts for nearest-neighbor pairwise-interaction energies among non-bonded amino acids,

and Eext(q) refers to any external potentials other than the ones coming from interactions

among the amino acids defining the protein. For amino acid sequences in vacuo, only Eonsite

and Epw are needed. The construction of these three-types of energy functions, in 2D and

in 3D, for an arbitrary number of amino acids and interactions among them is explained in

detail in Ref. 1. Hereforth, we will only focus on the case of energy functions in 2D.
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A. Case of the six-amino acid sequence PSVKMA (Experiments 1-4)

For convenience, we reproduce Fig. 3 of the main text as Fig. S1, which illustrates and

defines the six amino-acid sequence PSVKMA.

As explained in the main text, the description of all possible 2D N -amino-acid fold in

vacuo can be described by a bit string of length 2(N − 1), with the first three bits held

constant leaving ` = 2N − 5 binary variables as the computational variables of the problem,

q = 01︸︷︷︸
turn1

0q1︸︷︷︸
turn2

q2q3︸︷︷︸
turn3

· · · q2N−6q2N−5︸ ︷︷ ︸
turn(N−1)

. (S2)

For the case of N = 6 (sequence PSVKMA), the problem is completely specified by the bit

string

q6AA = 01︸︷︷︸
turn1

0q1︸︷︷︸
turn2

q2q3︸︷︷︸
turn3

q4q5︸︷︷︸
turn4

q6q7︸︷︷︸
turn5

. (S3)

By using the construction in Ref. 1, the 7-bit energy function describing the sequence

PSVKMA (Scheme 1 in Fig. S1) is given by,

EPSVKMA(q6AA) = −q2 + 8q1q2 + 15q2q3 − 18q1q2q3 − 3q1q4 + 12q1q2q4 + 4q3q4 + 3q1q3q4

− 6q2q3q4 − 12q1q2q3q4 + 4q2q5 + 3q1q2q5 − 15q2q3q5 + 15q4q5 + 3q1q4q5

− 6q2q4q5 − 12q1q2q4q5 − 15q3q4q5 + 28q2q3q4q5 − 2q1q2q6 − 4q3q6 + 2q2q3q6

+ 13q1q2q3q6 − 2q1q4q6 + 4q1q2q4q6 + 2q3q4q6 + 13q1q3q4q6 + 4q2q3q4q6

− 37q1q2q3q4q6 + 7q5q6 + 2q2q5q6 + 13q1q2q5q6 + 4q3q5q6 + 9q2q3q5q6

− 33q1q2q3q5q6 − 20q4q5q6 + 13q1q4q5q6 + 4q2q4q5q6 − 37q1q2q4q5q6 + 9q3q4q5q6

− 33q1q3q4q5q6 − 37q2q3q4q5q6 + 99q1q2q3q4q5q6 − 4q2q7 + 4q2q3q7 + 7q4q7

+ 2q2q4q7 + 13q1q2q4q7 + 4q3q4q7 + 9q2q3q4q7 − 33q1q2q3q4q7 + 4q2q5q7

− 18q4q5q7 + 9q2q4q5q7 − 33q1q2q4q5q7 − 33q2q3q4q5q7 + 62q1q2q3q4q5q7 + 7q6q7

+ 2q2q6q7 + 13q1q2q6q7 + 4q3q6q7 + 9q2q3q6q7 − 33q1q2q3q6q7 − 20q4q6q7

+ 13q1q4q6q7 + 4q2q4q6q7 − 37q1q2q4q6q7 + 9q3q4q6q7 − 33q1q3q4q6q7 − 37q2q3q4q6q7

+ 99q1q2q3q4q6q7 − 18q5q6q7 + 9q2q5q6q7 − 33q1q2q5q6q7 − 33q2q3q5q6q7

+ 62q1q2q3q5q6q7 + 53q4q5q6q7 − 33q1q4q5q7q7 − 37q2q4q6q6q7 + 99q5q2q4q5q6q7

− 33q3q1q5q6q7 + 62q1q4q4q5q6q7 + 99q2q3q4q5q6q7 − 190q1q2q3q4q5q6q7.

(S4)
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FIG. S1. (a) Representation of the six-amino acid sequence, Proline-Serine-Valine-Lysine-

Methionine-Alanine with its respective one-letter sequence notation, PSVKMA. We use the pair-

wise nearest-neighbor Miyazawa-Jernigan interaction energies reported in Table 3 of Ref. 2. (b)

Divide and conquer approach showing three different schemes which independently solve the six-

amino acid sequence PSVKMA on a two-dimensional lattice. We solved the problem under Scheme2

and 3 (Experiments 1 through 4). (c) Energy landscape for the valid conformations of the PSVKMA

sequence. Results of the experimentally-measured probability outcomes are given as color-coded

percentages according to each of the experimental realizations described in panel (b). Percentages

for states with energy greater than zero are 32.70%, 59.88%, 8.00%, and 95.97% for Experiments

1 through 4, respectively.

As shown in Fig. S1, expressions for each of the different experiments in Schemes 2 and 3

can be sequentially obtained by fixing the value of some of the variables in EPSVKMA(q6AA).

The energy function for Experiment 1 is obtained by evaluating EPSVKMA(q6AA) with
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q1 = 1 (third amino-acid moves to the right) and q2 = 0 (fourth amino-acid moves ei-

ther down or right, exploiting upper/lower half-plane symmetry). After relabeling the

five remaining variables so that their labels go from 1-5 instead of 3-7, i.e., q6AA =

010q1q2q3q4q5q6q7
q1=1,q2=0−−−−−−→

relabel
qexp1 = 01010q1q2q3q4q5, the resulting expression describing

the energy landscape for Experiment 1 is given by

Eexp1

PSVKMA(qexp1) = −3q2 + 7q1q2 + 18q2q3 − 15q1q2q3 − 4q1q4 − 2q2q4 + 15q1q2q4

+ 7q3q4 + 4q1q3q4 − 7q2q3q4 − 24q1q2q3q4 + 7q2q5 + 4q1q2q5 − 18q2q3q5

+ 7q4q5 + 4q1q4q5 − 7q2q4q5 − 24q1q2q4q5 − 18q3q4q5 + 20q2q3q4q5

+ 29q1q2q3q4q5

(S5)

The energy function for Experiment 4 is obtained by evaluating EPSVKMA(q6AA) with

q1 = 0 (third amino-acid moves down). After renaming the six remaining variables so

that their labels span 1-6 instead of 2-7, i.e., q6AA = 010q1q2q3q4q5q6q7
q1=0−−−→

relabel
qexp4 =

0100q1q2q3q4q5q6, the resulting expression describing the energy landscape for Experiment 4

is given by

Eexp4

PSVKMA(qexp4) = −q1 + 15q1q2 + 4q2q3 − 6q1q2q3 + 4q1q4 − 15q1q2q4 + 15q3q4 − 6q1q3q4

− 15q2q3q4 + 28q1q2q3q4 − 4q2q5 + 2q1q2q5 + 2q2q3q5 + 4q1q2q3q5 + 7q4q5

+ 7q5q6 + 2q1q4q5 + 4q2q4q5 + 9q1q2q4q5 − 20q3q4q5 + 4q1q3q4q5 + 9q2q3q4q5

− 37q1q2q3q4q5 − 4q1q6 + 4q1q2q6 + 7q3q6 + 2q1q3q6 + 4q2q3q6 + 9q1q2q3q6

+ 4q1q4q6 − 18q3q4q6 + 9q1q3q4q6 − 33q1q2q3q4q6 + 2q1q5q6 + 4q2q5q6 − 20q3q5q6

+ 9q1q2q5q6 + 4q1q3q5q6 + 9q2q3q5q6 − 37q1q2q3q5q6 − 18q4q5q6 + 9q1q4q5q6

− 33q1q2q4q5q6 + 53q3q4q5q6 − 37q1q3q4q5q6 − 33q2q3q4q5q6 + 99q1q2q3q4q5q6

(S6)

The energy function for Experiment 2 is obtained by evaluating Eexp4

PSVKMA(qexp4) with

q1 = 0 (fourth amino-acid moves either down or right). After renaming the five remaining

variables so that their labels span 1-5 instead of 2-6, i.e., qexp4 = 0100q1q2q3q4q5q6
q1=0−−−→

relabel

qexp2 = 01000q1q2q3q4q5, the resulting expression describing the energy landscape for Exper-

iment 2 is given by

Eexp2

PSVKMA(qexp2) = 4q1q2 + 15q2q3 − 15q1q2q3 − 4q1q4 + 2q1q2q4 + 7q3q4 + 4q1q3q4

− 20q2q3q4 + 9q1q2q3q4 + 7q2q5 + 4q1q2q5 − 18q2q3q5 + 7q4q5 + 4q1q4q5

− 20q2q4q5 + 9q1q2q4q5 − 18q3q4q5 + 53q2q3q4q5 − 33q1q2q3q4q5.

(S7)
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Finally, the energy function for Experiment 3 is obtained by evaluating Eexp4

PSVKMA(qexp4)

with q1 = 1, q2 = 0(fourth amino-acid moves left) and q4 = 0 (fifth amino-acid moves either

down or left), exploiting the constrains imposed by the three fixed amino-acids (P,S, and V).

After renaming the three remaining variables so that their labels are q1, q2 and q3 instead

of q3, q5, and q7, i.e., qexp4 = 0100q1q2q3q4q5q6
q1=1,q2=0,q4=0−−−−−−−−−→

relabel
qexp3 = 010010q10q2q3, the

resulting expression describing the energy landscape for Experiment 3 is given by

Eexp3

PSVKMA(qexp3) = −1− 4q3 + 9q1q3 + 9q2q3 − 16q1q2q3 (S8)

B. Case of the four-amino acid sequence HPPH (Experiment 5)

Besides the six-amino acid sequence considered above, we also constructed the energy

function for the simplest of all sequences within lattice protein models, the HPPH four-

amino acid sequence within the HP model. For N = 4, we can specify any of its folds by the

bit string qexp5 = 010q1q2q3. The three-bit energy function describing the energy landscape

of Experiment 5 (see Fig. S2) is given by,

EHPPH(qexp5) = −q2 + 2q1q2 + 2q2q3 − 3q1q2q3 (S9)

C. Case of the four-amino acid sequence HPPH under external constraints

(Experiment 6)

A more realistic in vivo picture involves the presence of chaperone proteins assisting the

folding dynamics towards the global minima. Chaperones, molecular docking, and molecular

recognition are examples of problems which can be studied by adding external potentials,

Eext(q), beyond the intrinsic interactions defined by the amino-acid chain, Eonsite(q) and

Epw(q) (see Eq. S1). The first consequence of adding an external potential Eext(q) (as the

chaperone-like environment surrounding the small four-amino-acid sequence HPPH, illus-

trated in Fig. S2 by the pink-shaded area near the peptide) is that we can no longer exploit

the symmetry of the solution space for upper and lower half plane conformations. There-

fore, we cannot set the first variable of the turn associated with the third amino-acid to

zero. Under external potentials, we specify arbitrary folds of the four-amino acid problem

by qexp6 = 01q1q2q3q4, where q1q2(q3q4) encodes the orientation of the second (third) bond.
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FIG. S2. Energy landscape for the four amino-acid sequence HPPH, (a) in vacuo (Experiment

5), and (b) under the presence of a chaperone-like environment (Experiment 6) represented by

the red-shaded region. In panel (a) [panel (b)], percentages indicate the experimentally measured

probabilities of each state collected over 10,000 [28,672] runs of the quantum annealing algorithm

described in Sec. III C. In the case of Experiment 6, numerical results from the Bloch-Redfield model

discussed in Sec IV are included in parenthesis. Although the variables involved in Experiment

5 (Experiment 6) are described by qexp5 = 010q1q2q3|q4q4′ (qexp6 = 01q1q2q3q4|q5q6q2′q4′), under

each fold we write only the physically-relevant variables which define the conformation. Since we

show some experimental outcomes also for states with E > 0, then it is natural to find states which

violate either the and condition or the ferromagnetic condition; for these cases we explicitly write

the auxilliary variables which went into the quantum hardware. For example, in Experiment 5

[panel (a)], the state qexp5 = 010101|11 violates the and condition since q4 6= q2q3. In the case

of the state qexp5 = 010010|01 the ferromagnetic condition for q4 is violated since q4 6= q4′ . Each

overlap of the amino acids with the chaperone raises energy by four units, whereas overlaps (red

crossings) among amino acids in the chain raise energy by two units.

The external potential penalizes conformations in which either the third or fourth amino

acid go into the chaperone region is:

Echap(qexp6) = λdext(1− q1)(1− q2) + λrext(1− q1)q2 + λdrext(1− q1)(1− q2)(1− q3)q4

+ λrdext(1− q1)q2(1− q3)(1− q4)
(S10)

The penalty λdext raises energy only when the third amino-acid moves down (q1 = 0, q2 = 0),
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λrext raises energy only when the third amino-acid moves right (q1 = 0, q2 = 1), λdrext raises

energy only when the third amino-acid moves down and the fourth-amino acid moves right

(q1 = 0, q2 = 0, q3 = 0, q4 = 1), and the last penalty, λrdext, raises energy only when the third

amino-acid moves down and the fourth-amino acid moves right (q1 = 0, q2 = 1, q3 = 0, q4 =

0). Each overlap of the amino acids with the chaperone increases energy by four units, i.e.,

λdext = λrext = λdrext = λrdext = 4.

When the third amino acid is also allowed to move upwards, the energy function for the

HPPH chain in vacuo is given by,

EHPPH(qexp6) = q1 − q3 + q1q3 + 2q2q3 − 4q1q2q3 + 2q1q4

− 3q1q2q4 + 2q3q4 − 4q1q3q4 − 3q2q3q4 + 7q1q2q3q4

(S11)

After adding Eq. S10 and Eq. S11, the resulting energy function for the HPPH peptide in

the presence of the “chaperone” environment illustrated in Fig. S2, is given by,

EHPPH,chap(qexp6) = 4− 3q1 + 4q2 − 4q1q2 − q3 + q1q3 − 2q2q3 + 4q4 − 2q1q4

− 8q2q4 + 5q1q2q4 − 2q3q4 + 5q2q3q4 − q1q2q3q4,
(S12)

II. EMBBEDDING OF PROBLEM INSTANCES INTO THE QUANTUM

HARDWARE

A. Reduction of high-order terms to a 2-body Ising-like Hamiltonian

As explained in the main text, although the above energy expressions (Eqs. S4S, S5S, S6S,

S7S, S8S, S9S, and S12S) describe the desired energy landscape, they are not suitable for

experimental implementation. We need to reduce the degree of the high-order terms (cubic,

cuartic, etc) to a quadratic expression (up to 2-body interactions). These high-order terms

indicate many-body interactions which are not experimentally feasible within the current

quantum device. To achieve this without altering the low-energy spectra (E ≤ 0) where the

target minima is supposed to be found, we use the technique described in Ref. 1? . In the

main text, we presented the simplest case where only one reduction was required (expression

for Experiment 3, Eq. S8). In the following we will focus on the next most complex case

(Experiment 6, Eq. S12) which can be easily generalized to obtain any of the 2-body energy

expressions for the larger experiments.
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We introduce two ancilla binary variables, q5 and q6, and substitute Eq. S12 with products

of the form q1q2 into q5 and q3q4 into q6. This substitution transforms the energy expression

(Eq. S12) into a quadratic expression, e.g, the highest-order term which is quadratic, q1q2q3q4,

is replaced by q5q6 which becomes quadratic, as desired. Under these substitutions, whenever

we have six-variable assignments, qexp6 = 01q1q2q3q4|q5q6, such that q6 = q1 ∧ q2 = q1q2

and q6 = q3 ∧ q4 = q3q4, we have the same energy spectrum as the one for the original

quartic, four-variable expression. Since these two ancilla are new variables whose values

are independent of the four original variables, we need to penalize six-variable assignments

whenever q5 6= q1q2 and q6 6= q3q4. For every “collapse” of the form qiqj → rk, we add the

penalty E∧(qi, qj, rk; δij) = δij(3rk + qiqj − 2qirk − 2qjδij), where δij is a positive number

representing a penalty chosen (for more details see Ref. 1) such that assignments violating

this and condition correspond to free-energies E > 0, outside the relevant search region

(E ≤ 0). The function E∧(qi, qj, rk; δij) = 0 only if rk = qiqj and E∧(qi, qj, rk; δij) > 0

if rk 6= qiqj. The six-variable expression resulting from the insertion of the new ancilla

variables plus the penalty function becomes,

E2body
HPPH,chap(q) = EHPPH,chap(q1, q2, q3, q4; q1q2 → q5, q3q4 → q6)

+ E∧(q1, q2, q5; δ12) + E∧(q3, q4, q6; δ34)

= 4− 3q1 + 4q2 + 6q1q2 − q3 + q1q3 − 2q2q3 + 4q4 − 2q1q4 − 8q2q4 + 4q3q4

+ 14q5 − 12q1q5 − 12q2q5 + 5q4q5 + 10q6 + 5q2q6 − 8q3q6 − 8q4q6 − q5q6

(S13)

where according to the criteria in Ref. 1, we have chosen δ12 = 6, and δ34 = 4.

To rewrite this quadratic form in terms of the spin variables {si}, we apply the transfor-

mation qi ≡ 1
2
(1− si) to each of the binary variables,

EIsing
HPPH,chap = 10 +

13

4
s1 +

3

4
s2 +

7

4
s3 +

1

4
s4 − 2s5 − 2s6 +

3

2
s1s2 +

1

4
s1s3 −

1

2
s2s3

− 1

2
s1s4 − 2s2s4 + s3s4 − 3s1s5 − 3s2s5 +

5

4
s4s5 +

5

4
s2s6 − 2s3s6

− 2s4s6 −
1

4
s5s6

(S14)

After substracting the constant (independent term), we can fulfill the requirement that

|hi| ≤ 1 and |Jij| ≤ 1 by scaling all coefficients of Eq. S14 down by the maximum absolute
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value of all coefficients. The renormalized quadratic expression is given by,

Eunembedded
exp6 (s) =

4

13
(Eising

HPPH,chap − 10)

= (13s1 + 3s2 + 7s3 + s4 − 8s5 − 8s6 + 6s1s2 + s1s3 − 2s2s3

− 2s1s4 − 8s2s4 + 4s3s4 − 12s1s5 − 12s2s5 + 5s4s5 + 5s2s6 − 8s3s6

− 8s4s6 − s5s6)/13

(S15)

The final Ising spin-glass Hamiltonian (before embedding into the quantum device) can be

obtained by the substitution si → σzi .

Hunembedded
exp6 = (13σz1 + 3σz2 + 7σz3 + σz4 − 8σz5 − 8σz6 + 6σz1σ

z
2 + σz1σ

z
3 − 2σz2σ

z
3

− 2σz1σ
z
4 − 8σz2σ

z
4 + 4σz3σ

z
4 − 12σz1σ

z
5 − 12σz2σ

z
5 + 5σz4σ

z
5 + 5σz2σ

z
6 − 8σz3σ

z
6

− 8σz4σ
z
6 − σz5σz6)/13

(S16)

B. Embedding into the quantum hardware

Eq. S16 does not fulfill the chip-connectivity requirements (see Fig. S3) for the primal

graph representing Eq. S16. This limitation is fixed at the cost of adding two new qubits

serving as replicas of the two qubits which are linked by more than four connections. To

enforce that the replicas of the i-th qubit (σzi′) produce the same outcome as the original

i-th qubit, we couple σzi and σzi′ with a strong ferromagnetic coupling, such that whenever

the outcomes of the two variables are different they get penalized by a chosen penalty

factor γi > 0. The function which performs this penalization for each replica i-th qubit

is HFM({σzi }; γi) = γi(1 − σzi σ
z
i′). Notice that HFM({σzi }; γi) = 0, if si = si′ = ±1, but

HFM({σzi }; γi) = 2γi, if si 6= si′ . For this study, a value of γ2 = γ4 = 1 suffices to leave

assignments which violate this condition outside the region of interest with E ≤ 0.

The redistribution of the connections among the original and primed qubits is given in the

right panel of Fig. S3. The modified function taking into account the added ferromagnetic
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couplings is,

H̃exp6 = Hunembedded
exp6 (σz2 → {σz2, σz2′};σz4 → {σz4, σz4′})

+HFM({σz2}; γ2 = 1) +HFM({σz4}; γ4 = 1)

= (13σz1 + 3σz2 + 7σz3 + σz4 − 8σz5 − 8σz6 + 6σz1σ
z
2′ + σz1σ

z
3 − 2σz2σ

z
3

− 2σz1σ
z
4′ − 8σz2′σ

z
4 + 4σz3σ

z
4 − 12σz1σ

z
5 − 12σz2σ

z
5 + 5σz4σ

z
5 + 5σz2′σ

z
6 − 8σz3σ

z
6

− 8σz4′σ
z
6 − σz5σz6)/13 + (1− σz2σz2′) + (1− σz4σz4′)

(S17)

Again, we subtract the independent constant terms from the insertion of the HFM functions.

The final expression, which is implementable in the quantum device is,

Hexp6 = H̃exp6 − 2 = (13σz1 + 3σz2 + 7σz3 + σz4 − 8σz5 − 8σz6 + 6σz1σ
z
2′ + σz1σ

z
3 − 2σz2σ

z
3

− 2σz1σ
z
4′ − 8σz2′σ

z
4 + 4σz3σ

z
4 − 12σz1σ

z
5 − 12σz2σ

z
5 + 5σz4σ

z
5 + 5σz2′σ

z
6 − 8σz3σ

z
6

− 8σz4′σ
z
6 − σz5σz6 − 13σz2σ

z
2′ − 13σz4σ

z
4′)/13

(S18)
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FIG. S3. In the graphs presented in (a) and (b), each node denotes a qubit, and the color and

extent of its glow denotes the sign and strength of its corresponding longitudinal field, hi. The

edges represent the interaction couplings, Jij , where color indicates sign and thickness indicates

magnitude. The maximum couplings are indicated in the figure by heavy lines. (a) Primal graph

(left) and the embedded representation of the expression implemented in the quantum hardware for

Experiment 5 (HPPH in vacuo). (b) Primal graph (left) and the embedded eight-qubit expression

(Eq. S18) for Experiment 6 (HPPH in the chaperone-lke environment).
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TABLE I. Number of qubits needed for each one of the six experiments described in Fig. S1 and

Fig. S2. The most compact version of the energy function corresponds to the second column. Each

one of the steps, reduction of high-order terms in the energy function towards a 2-body Ising-like

Hamiltonian and embedding of this Ising expression to fulfill the physical connectivity of the qubits

in the device, requires more auxiliary qubits. The final column reports the number of qubits in the

experimentally implemented expression of the energy function.

Number of qubits needed

Experiment # energy function Ising Hamiltonian hardware-embedded expression

1 5 10 28

2 5 10 27

3 3 4 5

4 6 19 81

5 3 4 5

6 4 6 8

The embeddings for Experiments 3 and 4 are shown in Fig. 4 and Fig. 1 of the main

text, respectively. The embeddings corresponding to Experiment 5 and 6 are represented in

Fig. S3, while the embedding for the medium size problem instances (Experiments 1 and 2)

are represented in Fig. S4.

III. EXPERIMENTAL DETAILS

A. The processor chip

All experiments discussed herein were conducted on a sample fabricated in a four Nb layer

superconducting integrated circuit process employing a standard Nb/AlOx/Nb trilayer, a

TiPt resistor layer, and planarized SiO2 dielectric layers deposited with a plasma-enhanced

chemical vapour deposition process. Design rules included 0.25 µm lines and spaces for

wiring layers and a minimum junction diameter of 0.6 µm. Experiments were conducted in

an Oxford Instruments Triton 400 Cryofree DR at a temperature of 20 mK.

The sample processor chip contains a coupled array of 128 qubits of a design discussed
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FIG. S4. Embedding of Experiments 1 and 2 into the quantum hardware. The 28 qubits (27

qubits) from Experiment 1 (Experiment 2) have been relabeled to show the qubits which were

strongly ferromagnetically coupled representing the same variable and biased to have the same

experimental outcomes. Both problem instances resulted in ten-qubit spin-glass Hamiltonians after

reducing their energy expressions to the Ising-like 2-body interaction expression. The additional

qubits are part of the embedding procedure used to fulfill the arbitrary connectivity of the Ising

expression, allowing for couplings of qubits that are not directly coupled in hardware.

in Ref. 3. Each qubit is an rf-SQUID flux qubit with a double-well potential, as depicted

in Fig. S5. They are magnetically coupled with sign and magnitude tunable couplers in

a manner described in Ref. 4. The array is built up of 16 eight-qubit unit cells. For

example, Experiment 6 was conducted using a single unit cell (highlighted in Fig. S6a). The

connectivity of qubits within the unit cell is shown schematically in Fig. S6b.

Three different chips available with this same architecture were used to run the different

problem instances (Experiments 1-6, Fig. S1 and S2). Experiments 1, 2, and 4 were run in

12



one chip, while Experiment 3 and 5 used a different chip. Experiment 6 used the same chip

and unit cell used in Ref. 5. Since all the chips have the same architecture and design but

different calibration parameters, we will focus on the chip used to run Experiment 6, and

report all the parameters used to run the numerical simulation reported in Sec. IV.

0

1

p

U

Ub

U0
U1

(b)(a)

p

FIG. S5. (a) Illustration of a single rf-SQUID flux qubit. Φ1x is the flux bias applied to the

major (qubit) loop, and Φ2x is the flux bias applied to the minor (CJJ) loop. (b) Cross-section

of the double-well potential of an rf-SQUID flux qubit, with 4 localized energy levels marked. Φ1x

primarily affects the qubit bias ε, whereas Φ2x affects both the barrier height δU0 and ε.

B. Magnetic Environment

The magnetic field in the sample space was controlled with three concentric high per-

meability shields and an innermost superconducting shield. Further active compensation

of residual fields was achieved with compensation coils oriented along three axes, and used

in conjunction with on-chip superconducting quantum interference device (SQUID) magne-

tometers located near each of the four corners of the processor block (Fig. S6a). Compen-

sation coils were adjusted to minimise the magnetic field measured at the magnetometers

while the chip was at 4.2 K. The chip was then thermally cycled just above and then back

down through its superconducting transition temperature at this minimal field. We estimate

that the chip was cooled through its superconducting transition with a field normal to the

chip surface |B⊥| < 2.5 nT, and that parallel to its surface |B‖| < 3.6 nT over the area of

active circuitry.

13



b c

ferromagnetic antiferromagnetic

J=0 (no coupling)

FIG. S6. (a) Optical photograph of a portion of a partially fabricated 128 qubit chip. The block

of eight qubits used in this experiment is outlined in red. (b) Artificial spins are connected in

a complete bipartite graph K4,4, and interact via couplers which are continuously tunable from

ferromagnetic to antiferromagnetic interaction. A line between artificial spins indicates that a

coupler is present. The colouring indicates one possible arrangement of coupler settings. (c) An

example of how a linear ferromagnetic Ising spin chain could be implemented by selectively tuning

some couplers to a ferromagnetic setting (J < 0) (green), and turning off the rest (J = 0).

C. Experimental method

The experiment discussed in the manuscript is outlined in Table II.

TABLE II. Outline of experiment

I. Initialisation

1. Calibration: measure intrinsic device parameters such as junction Ic, qubit inductance,

transformer mutual inductances, etc.

2. Homogenisation: use on-chip programmable flux biases to ensure Ip of the different

qubits match during annealing.

II. Annealing & read-out

1. Set h, J

2. Anneal (reduce A(τ) and increase B(τ))

3. Read state of spins

14



The steps in part I were performed once and would, in general, only be performed once

for a new chip. The calibration step I-1 is performed by measuring the circulating current

Ip in each qubit, and its dependence on the CJJ loop flux bias Φ2x. From this information,

one can extract the qubit critical current Ic and inductance L. Details of this procedure are

discussed in detail in section IV.A of Ref. 3. Given these qubit parameters, the effective

inter-qubit coupling strength attained by the tunable couplers can be determined. This was

done by measuring the difference in magnetic flux coupled into a qubit B between states | ↑〉

and | ↓〉 of a qubit A. This coupled flux was measured as a function of the setting of the

tunable coupler between qubits A and B, in a manner described in detail in Ref. 6.

Once the device parameters for each qubit have been extracted, the effective junction Ic

and inductance L of each qubit are tuned with on-chip tuning structures so as to make them

as similar to each other as possible. The goal of this homogenisation procedure is to ensure

that the circulating currents, Ip, of several qubits remain close to each other in magnitude

while the qubits undergo annealing. This procedure is discussed in detail in Refs. 7 and 8.

On-chip tuning structures enabling this homogenisation are also described in Refs. 3 and

4. Figure S7 shows the superimposed plots of the measured circulating current Ip (left)

and tunnel splitting A(τ) (right) of each of the eight qubits used in this experiment after

homogenisation. Qubit capacitance is extracted by measuring the spacing of macroscopic

resonant tunnelling rate peaks9. At any point in Φ2x, the standard deviation of the measured

Ip across the 8 qubits is less than 25 nA. The uncertainty in each measurement of Ip is about

9 nA. The homogenised device parameters are summarised in Table III.

The steps in II are performed repeatedly. Step II-1 is where the Hamiltonian parameters

hi and Jij from Eq. S18 are programmed. For each such problem specification, steps II-2

and II-3 were repeated to allow collection of statistics about the relative probabilities of

the possible states. For data presented in this paper related to Experiment 6, II-1 was

repeated 8 times, after each of which, II-2 and II-3 were repeated 4096 times, for a total of

32,768 repetitions of II-2 and II-3. However, step II-1 non-negligibly heated the chip, so in

order to allow ample time for the chip to cool back to the base temperature, the first 512

repetitions after each execution of step II-1 were removed, leaving 8× 3, 584=28, 672 total

repetitions of II-2 and II-3. In the case of Experiments 1-5 the statistics were collected

over 10,000 measurements in each experiment and enough thermalization time was allowed.

Therefore, all data was included in the statistics without the need for removing any of the

15
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FIG. S7. (Left) Measured circulating current Ip of each of the eight qubits used in this experiment

after homogenisation (step I-2). (Right) Comparison of measured tunnel splitting A(τ) (labelled

∆q) for the eight qubits used in the experiment, and the A(τ) fit to a physical model of the rf-

SQUID. Fits of measured tunnel splitting A(τ) are used in conjunction with fits to Ip and MRT

rate measurements to estimate parameters shown in Table III.

initial measurements. The experimental results of the probabilities measured are reported

as percentages in Figs. S1 and S2.

Annealing was performed by raising the single qubit tunneling barrier. This is accom-

plished by changing Φ2x linearly in time, from 0.592 Φ0 to 0.652 Φ0, over a period of 148 µs,

as shown in Figure S8. Circulating current Ip shown in Figure S7 is plotted over exactly this

range of Φ2x. This also has the effect of changing parameters A(τ) and B(τ) from Eq. (3) of

the main paper, as shown in Fig. 1b of the main paper, and as discussed in Ref. 10. Control

points α and β in Figure S8 correspond to the beginning and ending times of Fig. 2(b) of

the main text.

After the qubits have completed annealing, when Φ2x has been set to Φ0 as shown on

the right in Figure S8, states of the spins are read with a hysteretic dc-SQUID readout, as

described in Ref. 11.

D. Thermometry

In addition to a Ruthenium Oxide thermometer mounted on the dilution refrigerator

mixing chamber, the effective qubit device temperature obtained during the measurements

16



TABLE III. Total Josephson junction critical current, qubit inductance, inductance of loop 2, and

junction capacitance extracted from circulating current and tunnel splitting measurements, and

Macroscopic Resonant Tunneling (MRT) peak spacing.

Qubit Ic(µA) L1 (pH) L2 (pH) C(fF)

1 3.350 337.9 26 185

2 3.363 339.7 26 190

3 3.340 333.0 26 190

4 3.363 338.5 26 190

5 3.340 334.0 26 195

6 3.352 334.8 26 190

7 3.365 338.8 25 185

8 3.330 332.9 26 190

discussed in the manuscript was determined in two independent ways. The first is based on

analysis of the single-qubit Macroscopic Resonant Tunnelling (MRT) rate, and its depen-

dence on the qubit loop flux bias Φ1x. Measurements and analysis of MRT rates for the

devices used in this experiment are discussed in Ref 12. The second is based on measurement

of the equilibrium P↑ vs. Φ1x attained at fixed barrier height (fixed value of Φ2x). Both of

these techniques are discussed in some detail in Ref. 9.

At a fixed barrier height achieved with a fixed value of Φ2x, the equilibrium probability

P↑ approaches the thermal distribution:

P↑(t→∞) =
1

2

[
1

2
+ tanh

(
IpΦ1x

kBTth

)]
(S19)

where Ip is the value of circulating current obtained at that value of Φ2x and Tth is the

effective device temperature. Fitting a measurement of P↑ as a function of Φ1x to Eq. S19,

combined with a knowledge of Ip, allows us to extract Tth.

Measurement of Tth was performed on two of the devices at each temperature setting.

An average of at least two independent measurements of the device temperature Tth of each

of two qubits is compared against the mixing chamber thermometer temperature reading

(TMXC) in Figure S9. Uncertainty in Tth was dominated by the uncertainty in the fit

transition width for each measurement, which was generally found to be larger than the

standard deviation of the separate measurements.
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FIG. S8. The annealing schedule is defined by the applied flux Φ2x(t). The qubits make a transition

between being monostable and bistable between control points α = (10 µs,−0.592 Φ0) and β =

(158 µs,−0.652 Φ0).

The temperature extracted from MRT transition rate widths (TMRT ) is also plotted vs.

TMXC for temperatures below 40 mK, in Figure S9. From these plots it is clear that the two

methods generally agree with each other as well as with the mixing chamber thermometer

to within 3 mK over the temperature range used in the experiment.

IV. QUANTUM SIMULATIONS

To obtain better quantitative understanding of the behaviour of the system, a simulation

was conducted to model this experiment. The agreement between the numerical simulations

can be seen in panel (b) of Fig. S2, where both percentages [experiment (theory)] are reported

next to each other for each one of the low-energy conformations.

Our simulation strategy is as follows: We first write a Hamiltonian for the superconduct-

ing circuit based on standard circuit models for capacitances, inductances, and Josephson

junctions. This Hamiltonian is expected to correctly describe the behaviour of coupled

rf-SQUIDs. We then numerically calculate the evolution of the system based on this Hamil-

tonian using quantum mechanical equations of motion which take into account coupling to

an environment. Therefore, we predict the quantum evolutions for the same system Hamil-
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FIG. S9. Plots of Tth (black circles) and TMRT (red triangles) vs. the temperature measured with

the Ruthenium Oxide thermometer mounted on the mixing chamber TMXC .

tonian, the same coupling to environment, and the same type of noise spectral densities.

This provides a fair comparison to the experimental data.

A. rf-SQUID Hamiltonian

A simplified version of the rf-SQUID qubit used in our processor is illustrated in Fig. S5a.

(A more complete description of the actual qubits can be found in Ref. 3.) It has two main

superconducting loops and therefore two flux degrees of freedom Φ1 and Φ2, subject to

external flux biases Φ1x and Φ2x, respectively. The Hamiltonian of such an rf-SQUID is

written as

HSQUID =
q2

1

2C1

+
q2

2

2C2

+ U(Φ1,Φ2) (S20)

where C1 and C2 are parallel and series combinations of the junction capacitances, q1 and q2

are the sum and difference of the charges stored in the two Josephson junctions respectively,

and

U(Φ1,Φ2) = (Φ1 − Φ1x)
2/2L1 + (Φ2 − Φ2x)

2/2L2

−2EJ cos(πΦ2/Φ0) cos(2πΦ1/Φ0), (S21)

19



is a 2-dimensional potential with Li being the inductances of the two loops and Φ0=h/2e,

the flux quantum. We have assumed symmetric Josephson junctions with Josephson energies

EJ= IcΦ0/2π, where Ic is the junctions’ critical current. (A small asymmetry can be tuned

away in situ in the physical implementation3.)

At Φ1x ≈ Φ0/2, the potential can become bistable and therefore form a two-dimensional

double-well potential. If L2 is small enough so that the deviation of Φ2 from Φ2x can be

neglected, then the two-dimensional classical potential U(Φ1,Φ2) can be approximated by

a one-dimensional double-well potential, as shown in Fig. S5b. However, with our realistic

qubit parameters, Φ2 cannot be neglected and therefore is accounted for in all our numerical

calculations. When Φ1x = Φ0/2, the two wells are symmetric with no energy bias between

them. One can tilt the potential by changing Φ1x and establish an energy bias, as depicted

in Fig. S5b. It is also possible to change the barrier height by changing Φ2x.

An array of such qubits can be modelled by summing contributions of Eq. (S20) from

each device plus terms that describe magnetic coupling of the loops:

HS =
∑
i

H
(i)
SQUID +

∑
i>j

H
(ij)
coupl (S22)

Coupling between qubits i and j can be modelled as a mutual inductance Mij between loop

1 of each pair of coupled qubits:

H
(ij)
coupl = (Φ

(i)
1 − Φ

(i)
1x)(Φ

(j)
1 − Φ

(j)
1x )Mij/L

(i)
1 L

(j)
1 (S23)

As discussed in Section III C above, all parameters, i.e., inductances L
(i)
α , capacitances C

(i)
α ,

and Josephson critical currents I
(i)
c , are measured independently for each qubit.

To describe the system accurately we also need to introduce interaction with environment.

Flux noise, which is the dominant noise in flux qubits, couples to the ith qubit as fluctuations

δΦ
(i)
αx of the external flux Φ

(i)
αx:

Hint = −
2∑

α=1

∑
i

Φ
(i)
α − Φ

(i)
αx

L
(i)
α

δΦ(i)
αx (S24)

The noise is much smaller for the smaller loop Φ
(i)
2x than for the larger loop Φ

(i)
1x due to the

loop size. The flux noise δΦ
(i)
αx is assumed to be uncorrelated between the qubits, which

agrees with recent experimental observation13.
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1. Chip calibration and device parameter extraction

Device parameters were extracted for the simulations through a series of independent

measurements of qubit circulating current, tunnel splitting ∆, and MRT peak spacing. A

discussion of how these measurements are performed is given in Ref. 3. Parameter values

used in simulations are summarised in Table III.

B. Quantum Simulation

To simulate the quantum mechanical dynamics of the system, we treat (S22)-(S24) as

quantum mechanical Hamiltonians. In that case, the charge q
(i)
α is taken to be an operator,

which is the momentum conjugate to the flux operator Φ
(i)
α with commutation relation:

[Φ
(i)
α , q

(i)
α ] = i~. Unfortunately, it is impossible to calculate the dynamics of the system

directly on the 2N -dimensional continuous potential quantum mechanically. Instead, we use

energy discretization as a means to simplify the calculation. The simplest way to accomplish

this is to treat an rf-SQUID as a 2-state system or qubit and replace (S22) by a coupled

qubit Hamiltonian. One may go further and keep more than two states per rf-SQUID in the

calculation, as we shall discuss below.

We first numerically diagonalise the single rf-SQUID Hamiltonian (S20) to obtain the

lowest eigenvalues and eigenvectors. We treat the lowest few energy levels as the subspace

relevant for computation. We then write the Hamiltonian in the basis of states that are

localised within the wells. Such states are not true eigenfunctions of the Hamiltonian and,

therefore, are metastable towards tunnelling to the opposite well. Hence, the resulting

Hamiltonian in such a basis will have off-diagonal terms between states in the opposite

wells but not between states within each well. The latter is because those states should be

stationary within their own wells; any transition (relaxation) between them is only induced

by the environment.

Let |l〉 denote localised states within the wells. We use even (odd) state numbers, i.e.,

l = 2n (2n+1), with n = 0, 1, 2, ..., to denote states that are localised in the left (right)

well. For the lowest M energy levels (M is taken to be even), the effective M×M tunnelling
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Hamiltonian is written as

HS =
M−1∑
l=0

El|l〉〈l|+
M/2−1∑
n,m=0

K2n,2m+1(|2n〉〈2m+1|+ |2m+1〉〈2n|) (S25)

where El is the energy expectation value for state |l〉 andK2n,2m+1 is the tunnelling amplitude

between states |2n〉 and |2m+1〉, which exist in opposite wells. Notice that there is no

matrix element between states on the same well: 〈2n|HS|2m〉 = 〈2n+1|HS|2m+1〉 = 0,

which means that the states are metastable only towards tunnelling to the other side, or

the states are quasi-eigenstates of the Hamiltonian within their own sides. All parameters

of the tunnelling Hamiltonian, i.e., El and Kll′ are extracted from the original rf-SQUID

Hamiltonian (S20). For the 2-state qubit model we keep only the lowest two energy levels

of (S25). The effective qubit Hamiltonian can be written as

Heff = −1

2
(εσz + ∆σx) (S26)

where

ε = E0 − E1, ∆ = −2K01, (S27)

We also go beyond the 2-state model and keep 4 states per rf-SQUID. Those 4 states can

be represented by two coupled qubits, one of which represents the direction of persistent

current or flux, and the other one generating intrawell energy levels. We represent the first

(logical) qubit by Pauli matrices σα, and the extra (ancilla) qubit by Pauli matrices τα. The

effective Hamiltonian for those two coupled qubits can be written as

Heff = −1

2
(εσz + ∆σx) +

1

2
[ωpτz + κxzσx(1 + τz) + κxxσxτx]. (S28)

It is easy to show that (S28) is equivalent, up to a constant energy, to Hamiltonian (S25),

with M = 4, if

ε = E0 − E1 = E2 − E3, ωp = E2 − E0 = E3 − E1, ∆ = −2K01, (S29)

κxz = K23 −K01 ≈ K23, κxx = 2K03 = 2K12. (S30)

As can be seen, the coupling between logical and ancilla qubits are of XX+XZ type. Coupling

qubits to each other is accomplished using σz operators which represent the direction of the

induced flux. The ancilla qubits remain uncoupled from each other and from other qubits. It

should be noted that the readout at the end of the evolution can only distinguish “left” well
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FIG. S10. Parameters of the 4-level model for rf-SQUID qubit as a function of time during anneal-

ing.

from “right” well in the double-well potential and cannot distinguish levels within each well.

This is equivalent to reading out logical qubits and not ancilla qubits, but as we mentioned

above, only logical qubits carry information.

To properly treat the environment, we need to write the interaction Hamiltonian (S24) in

the subspace of the lowest energy levels in terms of Pauli matrices. For quantum simulations

we only consider noise coupling to the larger loop in Fig. S5a. Let us consider a single rf-

SQUID and write the interaction Hamiltonian as

Hint = −Φ1 − Φ1x

L1

δΦ1x (S31)

We define the qubit persistent current by

Ip =
1

L1

|〈l|(Φ1 − Φ1x)|l〉| . (S32)

Here, we take Ip to be independent of |l〉 for the low lying states considered, although in

reality there could be a small dependence. The interaction Hamiltonian can then be written

as

Hint = −1

2
(σz + λτx)Q, (S33)

where

Q = 2IpδΦ1x, λ =
〈0|Hint|2〉

2IpL1

=
〈1|Hint|3〉

2IpL1

(S34)

The matrix elements 〈0|Hint|2〉 or 〈1|Hint|3〉 are calculated directly via Eq. S31 using the

eigenfunctions of the rf-SQUID Hamiltonian, Eq. S20). The values of Ip and λ can therefore
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be calculated numerically from the original rf-SQUID Hamiltonian. Only Q remains which

should be characterised via its spectral density, which is the subject of Appendix A.

Quantum evolution of the system was calculated using a Markovian master equation for

the density matrix described in Ref. 14. Since the evolution is very slow (adiabatic) and

temperature is low, only a small number of energy levels are expected to be occupied during

the evolution. We write the density matrix in the instantaneous energy eigenstate basis and

truncate it to the lowest 24 energy levels, which was found to sufficiently describe the type of

evolution studied here. We use both 2-state and 4-state models for rf-SQUIDs, as described

above, in our simulations. The result of the 4-level model simulation is shown in Fig. S2b.

Appendix A: Noise spectral density

The quantum noise operator Q = 2IpδΦ1x is related to the flux noise as expected (for

simplicity we only consider one rf-SQUID), and is characterised by its correlation function.

Let us define the spectral density

S(ω) =

∫ ∞
−∞

dt eiωt〈Q(t)Q(0)〉 = 4I2
pSΦ(ω) (S1)

where

SΦ(ω) =

∫ ∞
−∞

dt eiωt〈δΦ1x(t)δΦ1x(0)〉 (S2)

is the spectral density of the flux noise. No direct measurement of SΦ(ω) at all frequencies

is available. We assume the spectral density is a sum of low frequency and high frequency

components: SΦ(ω) = SLF (ω) + SHF (ω). For the low frequency component we use

SLF (ω) =
(A2/kBT )~ω|ω|−α

1− e−~ω/kBT
, (S3)

with α ≈ 1, which at low ω behaves as 1/f noise: ∼ A2|ω|−α. Parameter A is measured from

low frequency noise measurement15 and is found to be A ≈ 3 nΦ0.

The high frequency parts of the spectral density is assumed to be ohmic,

SHF (ω) =

(
~2

4I2
p0

)
ηωe−|ω|/ωc

1− e−~ω/kBT
, (S4)

where ωc is the upper cutoff frequency, η is the dimensionless coupling coefficient, and Ip0

is the value of persistent current at which η is measured. The coupling coefficient and the
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persistent current are found, using Macroscopic resonant tunnelling experiment (MRT), to

be η ≈ 0.4 and Ip0 ≈ 1 µA. The details of extraction of η via MRT are presented elsewhere12.

This leaves no free parameters for the quantum simulations.
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