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Path integral Monte Carlo with importance sampling for excitons interacting with an

arbitrary phonon bath

Sangwoo Shim1 and Alán Aspuru-Guzik1

Department of Chemistry and Chemical Biology, Harvard University, Cambridge,

Massachusetts 02138, USA

The reduced density matrix of excitons coupled to a phonon bath at a finite temper-

ature is studied using the path integral Monte Carlo method. Appropriate choices

of estimators and importance sampling schemes are crucial to the performance of

the Monte Carlo simulation. We show that by choosing the population-normalized

estimator for the reduced density matrix, an efficient and physically-meaningful sam-

pling function can be obtained. In addition, the nonadiabatic phonon probability

density is obtained as a byproduct during the sampling procedure. For importance

sampling, we adopted the Metropolis-adjusted Langevin algorithm. The analytic ex-

pression for the gradient of the target probability density function associated with

the population-normalized estimator cannot be obtained in closed form without a

matrix power series. An approximated gradient that can be efficiently calculated

is explored to achieve better computational scaling and efficiency. Application to a

simple one-dimensional model system from the previous literature confirms the cor-

rectness of the method developed in this manuscript. The displaced harmonic model

system within the single exciton manifold shows the numerically exact temperature

dependence of the coherence and population of the excitonic system. The sampling

scheme can be applied to an arbitrary anharmonic environment, such as multichro-

mophoric systems embedded in the protein complex. The result of this study is

expected to stimulate further development of real time propagation methods that

satisfy the detailed balance condition for exciton populations.
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I. INTRODUCTION

Recent 2D non-linear spectroscopy experiments suggested the existence of long-lived

quantum coherence during the electronic energy transfer process within the Fenna-Matthews-

Olson complex of green sulfur bacteria, marine algae and plants even under physiological

conditions1–6. These results attracted a large amount of attention from theoretical physicists

and chemists. The energy transfer process usually has been modeled as the dynamics of

excitons coupled to a phonon bath in thermal equilibrium within the single exciton man-

ifold. This approximation leads to the famous spin-Boson Hamiltonian. The solution of

this type of Hamiltonian has been studied extensively. For example, by assuming a certain

relative magnitude between the reorganization energy and coupling terms, one can obtain

quantum master equations valid in specific regimes7–9. Another approximation, the Haken-

Strobl-Reineker model works in both the coherent and incoherent regimes, but incorrectly

converges to the high temperature limit in the long time even at the low temperature 10,11.

More recently, numerically exact approaches which interpolate both limits have been in-

vestigated and applied to many systems of interest. Two of the most popular methods are

the hierarchical equation of motion 12–14 and the quasiadiabatic path integral method15,16.

These methods are being actively developed, improved, and applied to many systems of

interests17.

Although having been successful in many applications, many of the models described

above have assumed the phonon bath to be a set of independent harmonic oscillators and

encode all the complexity of the bath environment in the spectral density, which is essentially

a frequency dependent distribution of exciton-phonon coupling. However, for studying the

anharmonic effects of a very sophisticated bath environment, like the protein complexes of

photosynthesis, being able to directly include the atomistic details of the bath structure into

the exciton dynamics has a distinct advantage. In other words, approaches that can evaluate

the influence functional first suggested by Feynman and Vernon18 have more straightforward

descriptions and are applicable to arbitrary systems. Evaluation of the exact influence

functional for arbitrary environment requires the simulation of the full quantum dynamics,

which is still not practical with currently available computational resources. There have been

several attempts to incorporate atomistic details of the large scale bath by combining the

exciton dynamics and molecular dynamics simulations 19–21. However, these theories are still
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in their early stages and the propagation scheme used does not satisfy some fundamental

properties, like the detailed balance condition at finite temperature. In pursuit of more

accurate theory, it is crucial to know the correct asymptotic behavior in the limit of infinite

time. In this context, we decided to explore the numerically exact reduced density matrix

in a finite temperature using path integral Monte Carlo22–25 method. Recently, Moix et al

applied path integral Monte Carlo for the equilibrium reduced density matrix of the FMO

complex within the framework of open quantum systems26.

II. THEORY

A. Path integral formulation of the reduced thermal density matrix

We want to evaluate the reduced density matrix of an excitonic system coupled to phonons

on arbitrary Born-Oppenheimer surfaces at a finite temperature. For photosynthetic energy

transfer, we usually restrict the excitons to be within the single exciton manifold because at

normal light intensity, in average, one photon is present at a given time in the complexes of

interest. However, the formulation itself is not limited to the single exciton manifold. The

Hamiltonian operator for such a system can be written as

Ĥ =
∑
m

∫
dR [Vm(R)− Vg(R)] |m〉〈m| ⊗ |R〉〈R|+

∑
m6=n

∫
dR Jmn(R)|m〉〈n| ⊗ |R〉〈R|︸ ︷︷ ︸

Ĥexc=ĤS+ĤSB

+ |1〉〈1| ⊗
[
T̂ +

∫
dR Vg(R)|R〉〈R|

]
︸ ︷︷ ︸

ĤB

. (1)

The Hamiltonian was written in terms of the diabatic basis |m,R〉 ≡ |m〉 ⊗ |R〉, where m

is the index for the exciton state and R is the phonon coordinate. Vg(R) is the potential

energy surface (PES) of the phonons in the electronic ground state and Vm(R) is the PES

of the phonons in the mth exciton state. T̂ is the kinetic operator of the phonons defined as

T̂ = −~2
2
M−1∇2, where M is the mass tensor of the phonons. This expression is generally

applicable to any molecular system with multiple potential energy surfaces. The reduced

thermal density matrix ρS is defined as the partial trace of the full thermal density matrix
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with respect to the bath degrees of freedom:

ρS =
1

Z(β)
TrB exp

(
−βĤ

)
=

1

Z(β)

∫
dR0 〈R0| exp

(
−βĤ

)
|R0〉, (2)

where Z(β) is the partition function of the total system. We proceed by relying on the

following identity:

〈R0| exp(−βĤ)|R0〉 = 〈R0|

{
exp

(
−βĤ
M

)}M

|R0〉

=

∫
dR1

∫
dR2 · · ·

∫
dRM−1

× 〈R0| exp

(
−βĤ
M

)
|RM−1〉〈RM−1| exp

(
−βĤ
M

)
|RM−2〉 · · ·

× 〈R2| exp

(
−βĤ
M

)
|R1〉〈R1| exp

(
−βĤ
M

)
|R0〉. (3)

For any positive integer M , the expression above is exact. When the Trotter decomposi-

tion is applied, an imaginary timestep τ ≡ β~
M

is usually defined for convenience. Then, the

thermal density matrix can be interpreted as an imaginary time evolution. In the limit of an

infinitesimal imaginary timestep, the Trotter decomposition converges to the exact result,

〈R1| exp

(
−βĤ
M

)
|R0〉 = 〈R1| exp

(
−τĤ/~

)
|R0〉

= 〈R1|e−τĤexc/2~e−τĤB/~e−τĤexc/2~|R0〉+O(τ 3)

=

∫
dR2

∫
dR3 〈R1|e−τĤexc/2~|R3〉

× 〈R3|e−τĤB/~|R2〉〈R2|e−τĤexc/2~|R0〉+O(τ 3). (4)

Subsequently, we will recast the system part of Ĥexc as a single matrix to simplify the

notation,

Ĥexc =
∑
m,n

∫
dR Emn(R)|m〉〈n| ⊗ |R〉〈R|,

Emm(R) =

 Vm(R)− Vg(R) for m = n,

Jmn(R) for m 6= n.
(5)
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With the single exciton manifold assumption, Emm corresponds to the optical gap of the

m-th site. Now, the three terms in the integrand of the Eq. 4 can be written without Dirac

notation,

〈R1|e−τĤexc/2~|R3〉 = δ(R1 −R3)e−τE(R3)/2~,

〈R3|e−τĤB/~|R2〉 = (4πτ |λ|)−1/2e−τVg(R3)/2~e−(R3−R2)Tλ−1(R3−R2)/4τe−τVg(R2)/2~ +O(τ 3),

〈R2|e−τĤexc/2~|R0〉 = δ(R2 −R0)e−τE(R0)/2~, (6)

where λ ≡ ~M−1

2
. By the Eq. 4 and Eq. 6,

〈R1| exp

(
−βĤ
M

)
|R0〉 = (4πτ |λ|)−1/2e−τVg(R1)/2~e−(R1−R0)Tλ−1(R1−R0)/4τe−τVg(R0)/2~

× e−τE(R1)/2~e−τE(R0)/2~ +O(τ 3). (7)

Note that Eq. 7 is a matrix with the same dimension as the reduced density matrix of the

system. Substituting Eq. 7 to Eq. 2, we obtain

ρS =
1

Z(β)

∫
dR0

∫
dR1 · · ·

∫
dRM−1

× e−τE(R0)/2~e−τE(RM−1)/~ · · · e−τE(R1)/~e−τE(R0)/2~

× e−τVg(R0)/~e−τVg(R1)/~ · · · e−τVg(RM−1)/~

× e−(R0−RM−1)Tλ−1(R0−RM−1)/4τe−(RM−1−RM−2)Tλ−1(RM−1−RM−2)/4τ

× · · · × e−(R1−R0)Tλ−1(R1−R0)/4τ

=

∫
dR0

∫
dR1 · · ·

∫
dRM−1

× K

Z(β)
e−τE(R0)/2~e−τE(RM−1)/~ · · · e−τE(R1)/~e−τE(R0)/2~︸ ︷︷ ︸

ρPIMC(R0,··· ,RM−1)

× 1

K
e−βVPIMC(R0,R1,··· ,RM−1)︸ ︷︷ ︸

fg(R0,··· ,RM−1)

, (8)

where,

VPIMC(R0,R1, · · · ,RM−1) =
1

M

M−1∑
i=0

Vg(Ri)

+
M−1∑
i=0

M

2β2~2
{Ri −Rmod(i+1,M)}TM{Ri −Rmod(i+1,M)}. (9)
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The expressions above show that the reduced thermal density matrix ρS can be evalu-

ated as an expectation value of ρPIMC(R0, · · · ,RM−1) where the joint probability density

function of the M N -dimensional random variables (R0, · · · ,RM−1) is fg. This type of mul-

tidimensional integral can be efficiently evaluated using Monte Carlo integration. Because

fg(R0, · · · ,RM−1) is invariant to cyclic permutation of the phonon coordinate, usually the

averaged estimator ρPIMC over the cyclic permutation is used in the actual Monte Carlo

evaluation:

ρPIMC =
1

M

M−1∑
i=0

ρPIMC(Ri,Rmod(i+1,M), · · · ,Rmod(i+M−1,M)). (10)

B. Population-normalized estimator and importance sampling

In the previous approach described in Eq. 8, the phonon coordinates are sampled ac-

cording the electronic ground state PES. The estimator should converge to the target

quantity in the long time limit, taking into account the discretization error. As long as

fg(R0, · · · ,RM−1) is positive definite everywhere in the phonon space, the sampling effi-

ciency depends on the selection of the probability density. Obviously, the actual distribution

of the phonon coordinate depends heavily on the excited state PES. Therefore, the Monte

Carlo points coordinates sampled according to the reduced dynamics of the bath by taking

the partial trace with respect to the exciton degrees of freedom, as explored in multiple sur-

face path integral Monte Carlo approaches, are expected to give the better estimates. This

choice of the probability density reweights the estimator in the following way:

fI(R0, · · · ,RM−1) = TrS [ρPIMC(R0, · · · ,RM−1)] fg(R0, · · · ,RM−1),

ρI(R0, · · · ,RM−1) =
ρPIMC(R0, · · · ,RM−1)

TrS [ρPIMC(R0, · · · ,RM−1)]
. (11)

In the expression above, we call ρI(R0, · · · ,RM−1) the population normalized estimator for

the reduced density matrix because the sum of its populations is always constrained to be 1.

The effective energy gap term of − 1
β

log TrρPIMC(R0, · · · ,RM−1) was added to the Eq. 9 to

enable the phonons follow the excited state dynamics depending on the exciton state ρS. For

the estimator of the reduced density matrix in Eq. 8, the normalization must obtained by the

estimates of its diagonal elements, leading to more uncertainties in the coherence. However,

the population-normalized estimator preserves the correct normalization by construction,

and does not suffer from any additional uncertainty.
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Local gradient information can improve the efficiency and scaling of the sampling pro-

cedure by means of a gradient-based approach such as the Metropolis-adjusted Langevin

algorithm (MALA).27,28 However, the exact closed form of the gradient of the effective en-

ergy gap term, log TrSρPIMC(R0, · · · ,RM−1) can only be expressed as a function of a power

series of matrices. Nevertheless, with the following approximation:
n∑
k=0

AkBAn−k ≈
n∑
k=0

1

2n

(
n

k

)
AkBAn−k, (12)

an accurate approximated of the gradient can be obtained and employed in the sampling

procedure,

∂

∂Rij

log TrS [ρPIMC(R0, · · · ,RM−1)] =
TrS

[
∂

∂Rij
ρPIMC(R0, · · · ,RM−1)

]
TrS [ρPIMC(R0, · · · ,RM−1)]

≈
TrS

[
− τ

2~
∂E(Ri)
∂Rij

ρPIMC(R0, · · · ,RM−1)
]

TrS [ρPIMC(R0, · · · ,RM−1)]
,

∇i log fg(R0, · · · ,RM−1) = − β

M
∇iVg(Ri)

+
M

2β~2
M(Rmod(i+1,M) + Rmod(i−1,M) − 2Ri),

µi(R0, · · · ,RM−1) =
TrS

[
− τ

2~
∂E(Ri)
∂Rij

ρPIMC(R0, · · · ,RM−1)
]

TrS [ρPIMC(R0, · · · ,RM−1)]

+∇i log fg(R0, · · · ,RM−1)

≈ ∇i log fI(R0, · · · ,RM−1). (13)

Here, ∇i is the gradient operator with respect to Ri.

Note that if we choose an appropriate Metropolis criterion, no bias in the distribution is

introduced even with the approximate gradient29. Firstly, a trial move R′i obtained by

R′i = Ri + µi(R0, · · · ,RM−1)∆t+ ξi
√

∆t, (14)

where ∆t is the timestep for the Monte Carlo step and ξi is a N -dimensional vector of

independent standard Gaussian random variables. Then, R′i is probabilistically accepted

according to the acceptance ratio,

fI(R
′
0, · · · ,R′M−1)

fI(R0, · · · ,RM−1)
×

∏M−1
i=0 exp

[
− |R

′
i−{Ri+µi(R0,··· ,RM−1)}|2

2∆t

]
∏M−1

i=0 exp
[
− |Ri−{R′i+µi(R′0,··· ,R′M−1)}|2

2∆t

] . (15)

The Monte Carlo timestep ∆t is only a tunable parameter for the Monte Carlo sampling

procedure and not related to the physics of the simulated system.
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Parameters Value

k11 4× 10−5

k22 3.2× 10−5

x11 7

x22 10.5

ε11 0

ε22 2.2782× 10−5

c 5× 10−5

α 0.4

x12 8.75

m 3.6743× 103

TABLE I. Summary of the parameters for the model system by Alexander et al30. All values are

given in atomic units.

III. APPLICATION

A. Alexander’s 1D test model

Our formulation is equivalent to the multiple electronic state extension of matrix multi-

plication path integral (MMPI) method of Alexander22,30 when the population normalized

estimator is chosen and only the vibrational degrees of freedom are considered. Therefore,

the 1D model employed in Ref. 30 was calculated to test the validity of our method. The

elements of the electronic Hamiltonian in this model are given by,

V11(x) =
1

2
k11(x− x11)2 + ε11,

V22(x) =
1

2
k22(x− x22)2 + ε22,

V12(x) = c exp
[
−α(x− x12)2

]
, (16)

The total nuclear probability density evaluated as histograms from the Metropolis random

walk and MALA simulations are compared to the grid-based result from Alexander et al.30

in Fig. 1. The distributions converged to the exact probability density after 2 × 107 steps

with 8 beads at both temperatures of 8K and 30K.
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FIG. 1. The estimated nuclear probability densities of Alexander’s model30 at (a) 8K and (b) 30K.

For path integral Monte Carlo simulations, densities were obtained by histograms with 50 bins.

The discretization number of 8 was enough to converge to the exact probability densitiies.

B. Model of a chromophore heterodimer with displaced harmonic oscillators

To test the proposed method, a system of two chromophores in a photosynthetic complex

was modeled using displaced harmonic oscillator model. In this model, the ground and

excited electronic states of the monomer are modeled as harmonic oscillators with different

displacement, but the same harmonic constant8. The thermal reduced density matrix was

calculated within the single exciton manifold. The Hamiltonian for this model is then given
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Parameter Value

k1 2.227817× 10−3

k2 2.227817× 10−3

d1 3.00000

d2 2.00000

ε1 8.064745× 10−2

ε2 7.976238× 10−2

J −4.738588× 10−4

m1 3.418218× 106

m2 3.418218× 106

TABLE II. Summary of the parameters for the displaced harmonic oscillator model used in

Sec. III B. All values are given in atomic units.

as follows:

Vg(x1, x2) =
1

2
(k1x

2
1 + k2x

2
2),

Ve(x1, x2) =

 1
2
k1{(x1 − d1)2 − x2

1}+ ε1 J

J 1
2
k2{(x2 − d2)2 − x2

2 + ε2}

 ,

M =

m1 0

0 m2

 . (17)

Some of the parameters were set according to our molecular dynamics/quantum chemistry

calculation of the FMO complex19. The parameter values are listed in table II.

The model system was simulated at seven different temperatures ranging from 30K to

300K with a number of beads (discretization number) of 4, 8, 16, 32 and 64. The number

of timesteps propagated in each simulation was 4 × 107. The value of each timestep was

tuned so that the acceptance ratio of the MALA run is close to 0.574, and 0.234 for the

Metropolis random walk as maintaining these acceptance ratio is known to provide most

efficient sampling28. We used non-overlapping batch means31 with a batch size of 106 to

estimate the standard error of the correlated samples. The batch size was adjusted so that

the null hypothesis of uncorrelated batches was not rejected by using Ljung-Box test32 at a

significance level of 5%.
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FIG. 2. Estimates of (1,2) matrix elements of the thermal reduced density matrix evaluated

using MALA and Metropolis random walk at 77K with 64 beads. MALA estimate has a smaller

confidence interval thus a more accurate estimate than that of the Metropolis random walk. The

error bar indicates the 95% confidence interval evaluated with the batch means. The 0.95 quantile

of the χ2 distribution with 13 degrees of freedom is 22.362 and both Ljung-Box statistics (Q) are

smaller. Thus, the uncorrelation hypothesis is not rejected in both cases at the 5% significance

level.

As shown in Fig. 2, the standard error of the simulation decreases modestly as the number

of Monte Carlo steps increases. Fig. 3 shows the temperature dependence of the estimates

of reduced density matrix elements as a function of various discretization numbers using

MALA. Although the Metropolis random walk simulation gives a smaller confidence interval

for the 4 bead case, MALA provides better estimates as the dimension of the sample space

increases. The Metropolis random walk result is given in Fig. 4. While the population of

the low energy site decreases as the temperature increases, the quantum coherence does not

monotonically decrease. We believe that this pheonomenon is an artifact of an insufficient

discretization number at low temperatures. As can be seen in Fig. 3, 64 or more beads

are needed for the coherence to converge at 77K, while 16 beads are enough at 300K with

acceptable accuracy. This is a well known limition of imaginary time path integral Monte

Carlo simulations. Figure 5 shows the probability density function of the phonon coordinate

at 77K and 300K. The population difference in the reduced density matrix is reflected to
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FIG. 3. Estimates of matrix elements of the thermal reduced density matrix evaluated at 30K,

50K, 77K, 140K, 225K and 300K with different discretization numbers of 4, 8 and 16 using MALA.

(a) is the (1,1) element, (b), (c) and (d) are (1,2), (2,1) and (2,2) elements, respectively. The error

bar indicates the 95% confidence interval evaluated with the batch means.

the difference in the probability mass of the two diabatic potential energy minimum at (3, 0)

and (0, 2).

IV. CONCLUSION

We explore a method for obtaining the thermal reduced density matrix of an exciton

system coupled to an arbitrary phonon bath for path integral Monte Carlo simulation.

Note that our scheme is closely related to the path integral Monte Carlo simulation for

nonadiabatic systems for vibrational coherence30,33,34. Although the phonon state can be

obtained as a byproduct, we mainly focused on the evaluation of the reduced density matrix

of the excitonic system to explore the asymptotic behavior of the populations and coherences

in this paper. In addition, we implemented an importance sampling scheme for better spatial

scaling and sampling efficiency. Although the path integral Monte Carlo cannot evaluate the

real time evolution of density matrices, the method gives the exact asymptotic values with all

quantum effects from both the system and bath environments if a sufficient number of beads

are used. We believe that in some of the cases where the bath has a nontrivial coupling
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FIG. 4. Estimates of matrix elements of the thermal reduced density matrix evaluated at 30K,

50K, 77K, 140K, 225K and 300K with different discretization numbers of 4, 8 and 16 using random

walk Metropolis. (a) is the (1,1) element, (b), (c) and (d) are (1,2), (2,1) and (2,2) elements,

respectively. The error bar indicates the 95% confidence interval evaluated with the batch means.
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FIG. 5. The phonon probability density function evaluated at (a) 77K and (b) 300K with 16 beads

using MALA. At the lower temperature, the contribution of the exciton with lower energy at (0, 2)

becomes larger. Therefore, the population differenece becomes more distinct, as can be seen in the

temperature dependence of the exciton population in Fig. 3.
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to the system, or the non-Markovianity of the bath manifests very strongly, treating the

environment around the system of interest as a set of harmonic oscillators is not sufficient.

If this is the case, the system should be studied in its entirety. We are trying to develop a

real time propagation scheme to treat the system exactly, and the bath semiclassically. The

method studied in this paper offers a foundation for it by providing the correct asymptotic

behaviors.
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