Loss of Col3a1, the Gene for Ehlers-Danlos Syndrome Type IV, Results in Neocortical Dyslamination

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1371/journal.pone.0029767

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10303291

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Loss of *Col3a1*, the Gene for Ehlers-Danlos Syndrome Type IV, Results in Neocortical Dyslamination

Sung-Jin Jeong, Shihong Li, Rong Luo, Natalie Stokes, Xianhua Piao

Division of Newborn Medicine, Department of Medicine, Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America

Abstract

It has recently been discovered that Collagen III, the encoded protein of the type IV Ehlers-Danlos Syndrome (EDS) gene, is one of the major constituents of the pial basement membrane (BM) and serves as the ligand for GPR56. Mutations in GPR56 cause a severe human brain malformation called bilateral frontoparietal polymicrogyria, in which neurons transmigrate through the BM causing severe mental retardation and frequent seizures. To further characterize the brain phenotype of Col3a1 knockout mice, we performed a detailed histological analysis. We observed a cobblestone-like cortical malformation, with BM breakdown and marginal zone heterotopias in Col3a1^−/−^ mouse brains. Surprisingly, the pial BM appeared intact at early stages of development but starting as early as embryonic day (E) 11.5, prominent BM defects were observed and accompanied by neuronal overmigration. Although collagen III is expressed in meningeal fibroblasts (MFs), Col3a1^−/−^ MFs present no obvious defects. Furthermore, the expression and posttranslational modification of α-dystroglycan was undisturbed in Col3a1^−/−^ mice. Based on the previous finding that mutations in COL3A1 cause type IV EDS, our study indicates a possible common pathological pathway linking connective tissue diseases and brain malformations.

Introduction

Cortical dyslamination is an important cause of neurological morbidity. Cobblestone lissencephaly is one common form of cortical dyslamination, in which neurons migrate beyond the breached pial BM and form ectopias on the surface of the brain [1]. Cobblestone lissencephaly is seen in three types of human congenital muscular dystrophy syndromes; Walker-Warburg syndrome (WWS), Fukuyama-type muscular dystrophy (FCMD), and muscle-eye-brain disease (MEB). WWS is the most severe form of congenital muscular dystrophy, with the vast majority of patients dying in utero or in early infancy. The genetic cause for MEB, FCMD, and some WWS cases is aberrant glycosylation of α-dystroglycan, a receptor for laminin [2].

GPR56 is a member of the adhesion G protein-coupled receptor (GPCR) family. Mutations in GPR56 cause a specific human brain malformation called bilateral frontoparietal polymicrogyria (BFPP) [3–6]. The magnetic resonance images of BFPP brains revealed a thickened cerebral cortex with coarse gyri, shallow sulci, and a “scalloped” appearance at the grey-white matter junction – much like the radiological features of other polymicrogyria malformations. Histological analysis of Gpr56 knockout mouse brains and postmortem human BFPP brains revealed the histopathology of BFPP to be cobblestone lissencephaly [7,8].

Collagen III is a major collagen found in connective tissues. Mutations in one allele of COL3A1 cause type IV EDS, an autosomal dominant connective tissue disorder [9–14]. Recently, we discovered that collagen III is the ligand of GPR56 [15]. In this paper, we carried out a detailed histological analysis of Col3a1^−/−^ mouse brains. We found that the absence of collagen III results in a cobblestone-like cortical malformation.

Results

Cobblestone-like cortical malformation is associated with homozygous deletion of Col3a1

Although losing one allele of the Col3a1 gene is not associated with any obvious defects in mice, the effects of deleting both alleles is catastrophic [16]. Col3a1^−/−^ usually results in perinatal lethality of an unknown etiology, with only 5% of mice reaching adulthood [16]. As for the surviving mice, their phenotype closely resembles the clinical manifestations of patients with type IV EDS, including the rupture of large blood vessels [16]. Due to the severity of this corresponding condition, the Col3a1^−/−^ adult mice experience a significantly shortened lifespan.

After discovering that collagen III serves as the major ligand of GPR56, we sought out to investigate the uncharacterized brain phenotype of Col3a1^−/−^ mice. In order to discern the architecture of the cerebral cortex, we first performed Nissl stainings with a cresyl violet solution on the brains of E18.5 mice. Surprisingly, the pial BM appeared intact at early stages of development but starting as early as embryonic day (E) 11.5, prominent BM defects were observed and accompanied by neuronal overmigration. Although collagen III is expressed in meningeal fibroblasts (MFs), Col3a1^−/−^ MFs present no obvious defects. Furthermore, the expression and posttranslational modification of α-dystroglycan was undisturbed in Col3a1^−/−^ mice. Based on the previous finding that mutations in COL3A1 cause type IV EDS, our study indicates a possible common pathological pathway linking connective tissue diseases and brain malformations.
for layers II–III and VI and CTIP2 for layer V [17–19]. Neurons positive for Cux1, Tbr1 and CTIP2 were detected in the ectopias, suggesting that the ectopic cells in the Col3a12/2 cortex were neurons from both deep and superficial cortical layers, mirroring our observations of Gpr56 null mutant mice (Figure 2B, D and F) [8].

The pial BM is properly formed but is subsequently disrupted in the Col3a12/2 mouse neocortex

To identify the leading pathology associated with Col3a1 depletion, we performed a detailed time course study of the occurrence of the breached pial BM and overmigrated neurons. While collagen III was expressed in the meninges and pial BM of Col3a1+/+ brains (Figure 3A, C, E, and G), the Col3a12/2 mice appeared to be true deletion mutants since collagen III was not present in either the meninges or the pial BM in brains ranging from E10.5–E14.5 (Figure 3B, D, F, and H). Interestingly, in spite of the absence of collagen III, the pial BM was initially properly formed at E10.5 in the mutant mice (Figure 3J). Regional breakdown of the pial BM with concurrent neuronal overmigration was observed in about half of the E11.5 and all embryos older than E12.5 in the Col3a12/2 brains analyzed (arrows, Figure 3L, N, P and Table 1).

Deleting Col3a1 results in abnormal attachment of radial glial endfeet

During normal brain development, radial glial endfeet attach to the pial BM and form an adhesive lining at the pial surface [20]. Since the proper attachment of the radial glial endfeet is relevant to the integrity of the pial BM, we therefore examined the arrangement of the endfeet in relationship to the pial BM by double IHC of nestin and laminin. At E10.5, radial glial endfeet were arranged in an orderly fashion along the intact pial BM in the brains of both Col3a1+/+ and Col3a12/2 mice (Figure 4A and B). We observed protruded endfeet through a breached pial BM in some of the E11.5 and all of the E12.5 Col3a12/2 brains (arrowheads, Figure 4D and F).

Figure 1. Col3a12/2 mice have cortical abnormalities. Sagittal sections from one Col3a1+/+ (A) and three Col3a12/2 forebrains (B–I) stained with Nissl. In contrast to the well-developed cortex in Col3a1+/+ brains (A), cortical malformation was seen in Col3a12/2 brains, characterized by the presence of ectopic clusters of neurons migrating into the marginal zone and disrupting the lamination of the cortex (B–I, arrowheads). Scale bar, 200 μm. doi:10.1371/journal.pone.0029767.g001
Calbindin (calbindin in E18.5 brains of affected by the loss of collagen III, we performed an IHC of (Figure 5B, arrowheads).

Compared the distribution of CR cells in brains of Col3a1 mice, we observed the relatively continuous single layer of CR cells found at the level of E14.5 mice. The cell morphology and the pattern of laminin immunostaining were identical between Col3a1/+ and Col3a1−/− MFs (Figure 6I and J).

α-Dystroglycan is not affected by Col3a1 deletion

Aberrant glycosylation of α-dystroglycan causes human cobblestone lissencephaly, whereas deleting the mouse Dag1 gene results in early embryonic lethality [1,26,27]. To investigate whether the signaling of GPR56 affects the expression and/or glycosylation status in the mouse developing brain, we performed IHC and western blot analysis with a monoclonal antibody that specifically detects the glycosylated form of α-dystroglycan in Col3a1 wild type and mutant mouse brains [28]. We failed to detect any change in the level of α-dystroglycan in the brains of Col3a1−/− mice, arguing that the function of collagen III does not directly affect the expression and glycosylation of dystroglycan (Figure 7).

Discussion

We have shown that homozygous deletion of Col3a1 causes cobblestone-like cortical malformation characterized by pial BM breakdown, neuronal overmigration, radial glial detachment, and formation of marginal zone heterotopias. While the pial BM is established in the absence of collagen III, focal breaks of the pial BM with concurrent neuronal overmigration become obvious in later embryonic development.

In humans, cobblestone lissencephaly is typically seen in three types of congenital muscular dystrophy, namely WWS, MEB, and FCMD [1]. Although aberrant glycosylation of α-dystroglycan is the leading pathology of human cobblestone lissencephaly, we failed to detect any changes in the level of glycosylated α-dystroglycan in Col3a1−/− [26,27]. This finding suggests that collagen III regulates cortical development independent of the dystroglycan pathway. Recent findings that mutations in COL4A1 cause an ocular/muscular/cortical developmental disorder in mice and WWS in humans without affecting the level of glycosylated α-dystroglycan further supports the heterogeneous etiology of cobblestone lissencephaly [29].

Mutant mice with deletions in some members of the integrin family as well as downstream associates of integrins, such as focal adhesion kinase (FAK) and integrin-linked kinase (Ilk) also show cortical migration defects with deficiencies in basal lamina integrity with features that resemble human cobblestone lissencephaly [30–37]. Moreover, it has been shown that GPR56 associates with tetraspanins CD9 and CD81 [38]. The function of this tetraspanin-GPR56 complex remains unclear. Members of the tetraspanin family of cell surface proteins act as molecular scaffolds with known adhesion proteins such as integrins to facilitate their function [39]. It is an intriguing question of whether the receptor-ligand pair of GPR56 and collagen III functions together with integrins in regulating cortical development.
On the surface of the brain lies the three layered meninges – the pia, the arachnoid, and the dura – in which the major cell type is MFs. It has been shown that cellular defects in MFs cause abnormal development of structures adjacent to the meninges, which are the skull and the brain. We have recently discovered that collagen III is expressed in abundance in the MFs [15]. However, we detected no obvious defects in the MFs of the Col3a1\(^{2/2}\) mice, suggesting that the cortical dyslamination seen in Col3a1\(^{2/2}\) mice is not the direct result of cellular defects of MFs, but rather the absence of collagen III, the ligand of GPR56.

EDS is a heterogeneous group of hereditary connective tissue disorders. Individuals with EDS present with joint and skin hyperextensibility and vascular problems, including aortic dissection and excessive bleeding [10–14]. There has been a reported association of EDS and periventricular heterotopia, which is characterized by the presence of nodules of neurons along the periventricular region of the brain [40]. Most reported cases of type IV EDS are associated with mutations in one allele of COL3A1 [14]. However, there is one reported case of recessive type IV EDS with homozygous mutation in COL3A1 gene and a diffuse cortical dysplasia, which was most prominent frontally [41]. We showed here that homozygous deletion of mouse Col3a1 results in perinatal lethality and cobblestone-like cortical malformation. It is possible that mutations in both alleles of COL3A1 associate with a lethal form of cobblestone lissencephaly similar to WWS.

Regulation of pial BM development and remodeling is likely to be dynamic and complex. The pial BM consists of thin sheets of proteins including laminins, collagen IV, nidogens, and perlecan. Collagen III is a type of fibrillar collagen that is thought to be mainly in the ECM of the skin, cardiac, and vascular tissues [42–

---

**Figure 3.** The pial BM is well formed at E10.5 but subsequently disrupted in the Col3a1\(^{-/-}\) neocortex. (A–H) Double IHC of Tuj1 and Collagen III in E10.5, E11.5, E12.5, and E14.5 brains. Collagen III was absent in all analyzed brains of Col3a1\(^{-/-}\) mice. Tuj1\(^{+}\) migrating neurons (green) were well organized beneath the pial BM (red) in both Col3a1\(^{+/+}\) and Col3a1\(^{-/-}\) at E10.5 (A and B), whereas Tuj1\(^{+}\)migrating neurons (green) migrated past the pial BM into the arachnoid space (arrow) in the brains of Col3a1\(^{-/-}\) mice at E11.5 and older (D, F, and H). (I–P) Double IHC of Tuj1 and laminin in E10.5, E11.5, E12.5, and E14.5 mouse brains. Tuj1\(^{+}\) neurons (green) were properly localized beneath the pial BM (red) in the brains of Col3a1\(^{+/+}\) mice at all embryonic days analyzed (I, K, M and O) and Col3a1\(^{-/-}\) mouse at E10.5 (J). In contrast, ectopias were observed in the brains of Col3a1\(^{-/-}\) mice from E11.5 through E14.5 (arrows, L, N, and P). Scale bar, 100 \(\mu\)m. doi:10.1371/journal.pone.0029767.g003
Although there is little knowledge of the presence of collagen III in the developing brain, our recent work confirmed the presence of collagen III in the pial BM by IHC and immunoelectron microscopy [15]. In this report, we revealed the indispensable function of collagen III in cortical development, setting the stage for further mechanistic study of how collagen III regulates brain development.

### Materials and Methods

#### Ethics statement

Experiments were performed in accordance with National Institutes of Health guidelines for the care and use of laboratory animals, and with approval of the Animal Care and Use Committee of Children’s Hospital Boston (approval ID: A3303-01).

#### Antibodies

The antibodies used in the study are peroxidase-conjugated goat anti-mouse IgG antibody (Sigma), rabbit anti-Englebreth-Holm-Swarm laminin (Sigma), rabbit anti-reelin (Chemicon International), mouse anti-Zic (gift from Dr. R. Segal), mouse and rabbit anti-Tuj1 (Covance), rabbit anti-human collagen III (Lifespan Biosciences), rabbit anti-calbindin (Swant), mouse anti-α-dystroglycan, II6C4 (Millipore), rabbit cux1 (a gift from C.A. Walsh, Children’s Hospital Boston), rabbit anti-Thr1 (a gift from R.

#### Table 1. Penetrance of cortical dysplasia in Col3a1 mice.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Wild-type</th>
<th>Heterozygous</th>
<th>Null</th>
</tr>
</thead>
<tbody>
<tr>
<td>E10.5</td>
<td>0/2</td>
<td>0/1</td>
<td>0/3</td>
</tr>
<tr>
<td>E11.5</td>
<td>0/2</td>
<td>0/1</td>
<td>3/5</td>
</tr>
<tr>
<td>E12.5</td>
<td>0/4</td>
<td>0/5</td>
<td>5/5</td>
</tr>
<tr>
<td>E14.5</td>
<td>0/4</td>
<td>0/2</td>
<td>4/4</td>
</tr>
<tr>
<td>E16.5</td>
<td>0/3</td>
<td>0/1</td>
<td>4/4</td>
</tr>
<tr>
<td>E18.5</td>
<td>0/5</td>
<td>0/2</td>
<td>7/7</td>
</tr>
<tr>
<td>Summary</td>
<td>0/20</td>
<td>0/12</td>
<td>23/28</td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pone.0029767.t001

---

Figure 4. Radial glial endfeet protrude into the ectopias of Col3a1<sup>−/−</sup> mice. (A and B) Double IHC of nestin (green) and laminin (red) at E10.5 showed a parallel arrangement of fibers that terminated in well defined endfeet at the pial surface in both Col3a1<sup>−/−</sup> (A) and Col3a1<sup>−/+</sup> mice (B). (C-F) Nestin’ radial glial endfeet (green) lined up nicely along the pial BM (red) in E11.5 and E12.5 Col3a1<sup>−/−</sup> mice (C and E) but were abnormally located in the arachnoid space of ectopias in the region of breached pial BM (arrowheads) in Col3a1<sup>−/+</sup> mice (D and F). Scale bar, 100 μm. doi:10.1371/journal.pone.0029767.g004

Figure 5. Cajal-Retzius cells and interneurons are found in ectopias of Col3a1<sup>−/−</sup> mice. (A and B) Double IHC of Reelin (green) and laminin (red) at E16.5 showed Reelin” CR cells are lined up beneath the pial BM in Col3a1<sup>−/−</sup> (A) but were located within the ectopia of Col3a1<sup>−/+</sup> mice (B, arrowheads). (C and D) Immunostaining of Calbindin (red) at E18.5. Calbindin” interneurons are observed in the ectopias of Col3a1<sup>−/−</sup> mice (D, arrows) but were normally localized within the marginal zone and cortical plate in Col3a1<sup>−/+</sup> brain (C). The pia surface of the brains is outlined in white. Nuclear counterstain was performed by Hoechst 33342 (blue). Scale bars, A and B, 100 μm; C and D, 200 μm. doi:10.1371/journal.pone.0029767.g005
Hevner, Seattle Children’s Research Institute, rat anti-CTIP2
(Abcam), and mouse anti-nestin (BD Transduction Laboratories).

Mice

Col3a1 mice were obtained from the Jackson Laboratory with
the strain name C.129S4(B6)-Col3a1tm1Jae/J in a BALB/c back-
ground as described previously [16]. Most of the homozygous
mutant mice die at birth with only about 5% of them surviving to
adulthood [16]. All breeding was carried out with heterozygote
crossing.

Histology and immunohistochemistry (IHC)

Histology analysis was carried out as previously described
[8,15]. Brains harvested from embryos were fixed using 4%
paraformaldehyde and were cryoprotected by 30% sucrose. Brain
sections obtained by cryostat were stained with 0.1% cresyl violet/
0.5% acetic acid for Nissl staining. Sections were processed for
immunostaining using standard procedures. Primary antibodies
were visualized by appropriate fluorophore-conjugated secondary
antibodies. Nuclei were stained with Hoechst 33342 (Invitrogen,
1:2000). Images were captured using a Nikon 80i upright
microscope. Representative photographs were obtained with the
same exposure setting for control and mutant.

Preparation of mouse primary MFs and
immunocytochemistry

Mouse primary MFs were established from the meninges of
E14.5 Col3a1 wild type or mutant mice and amplified in DMEM
with 10% FBS. MFs were cultured on poly-D-lysine (100 μg/ml)
coated wells for 24 hours, followed by fixation with 4%
paraformaldehyde. Cells were permeabilized with 0.1% Triton-
Function of Col3a1 in Developing Brain

Author Contributions
Conceived and designed the experiments: XP. Performed the experiments: SJ SL RI NS. Analyzed the data: SJ XP. Contributed reagents/materials/analysis tools: SJ NS. Wrote the paper: XP.

Acknowledgments
We would like to thank Drs. Christopher A. Walsh, Robert Hevner, and Rosalind A. Segal for providing antibodies.

References