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Abstract

Background: In microarray experiments with small sample sizes, it is a challenge to estimate p-values accurately
and decide cutoff p-values for gene selection appropriately. Although permutation-based methods have proved to
have greater sensitivity and specificity than the regular t-test, their p-values are highly discrete due to the limited
number of permutations available in very small sample sizes. Furthermore, estimated permutation-based p-values
for true nulls are highly correlated and not uniformly distributed between zero and one, making it difficult to use
current false discovery rate (FDR)-controlling methods.

Results: We propose a model-based information sharing method (MBIS) that, after an appropriate data
transformation, utilizes information shared among genes. We use a normal distribution to model the mean
differences of true nulls across two experimental conditions. The parameters of the model are then estimated
using all data in hand. Based on this model, p-values, which are uniformly distributed from true nulls, are
calculated. Then, since FDR-controlling methods are generally not well suited to microarray data with very small
sample sizes, we select genes for a given cutoff p-value and then estimate the false discovery rate.

Conclusion: Simulation studies and analysis using real microarray data show that the proposed method, MBIS, is
more powerful and reliable than current methods. It has wide application to a variety of situations.

Background
Microarray technology has been successfully used by
biological and biomedical researchers to investigate gene
expression profiles at the genome-wide level. Usually,
the sample sizes are small compared to the number of
genes to be investigated, making estimation of standard
error for statistical tests very inaccurate. Furthermore,
thousands of hypotheses (one corresponding to each
gene or set of genes, in general) are tested at once,
which greatly increases the probability of Type I error.
This problem is also called the “multiple comparison
problem” in hypothesis testing. A very small cutoff p-

value is then needed to avoid picking a large number of
false positives (FP); however, the price of that decision is
failing to find many true positives whose p-values are
larger than the cutoff value. When the sample sizes are
extremely small, the problem worsens because as the
sample size decreases so do the detection power and the
ability to estimate p-values.
When the sample sizes are large enough, even if the

data across two conditions are not normally distributed,
we can still use a two-sample t-test to estimate the p-
value for each gene. In practice, to avoid the normal dis-
tribution assumption, we may also choose non-para-
metric (rank-based) or permutation-based procedures.
However, when sample sizes are very small, the t-test is
not reliable due to the poor estimation for variances;
many genes will have small p-values only because their
estimated variances are too small. Furthermore, the
t-test method treats each gene independently and does
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not utilize information shared among them. To borrow
information from other genes, modified t-test methods
have been proposed [1,2]. The modified t-test statistic is:

Ti =
di

sei + s0
(1)

where di is the difference of means under two condi-
tions for gene i; sei is the estimated standard error for di
and s0 is a constant, which is used to avoid too large
absolute values of regular t-statistics due to very small
estimated standard errors.
When we use test statistics in (1), we will lose the

information about the distribution of true nulls since we
do not know the distribution of (1). To overcome this
problem, permutation-based procedures have been pro-
posed [2]. One extensively used method in microarray
data analysis is called SAM for “Significance Analysis of
Microarray” [2]. SAM uses test statistics in (1) and then
permutes sample labels to estimate the p-value for each
gene.
The absolute values of statistics in (1) are usually

smaller than that of regular t-statistics. When sample
sizes are extremely small, the total number of distin-
guished permutations is limited and, therefore, permuta-
tion-based methods, such as SAM, will have larger p-
values than those from regular t-test, especially for dif-
ferentially expressed (DE) genes. For example, in experi-
ments where there are only three replicates for two
conditions (a typical scenario) there exist only ten differ-
ent available permutations. The coarseness of the possi-
ble selections creates a problem for finding a reasonable
cut-off p-value.
To select DE genes, we use a cutoff p-value and pick

those genes whose p-values are smaller than the given
cutoff value. Understood in this process and in any gene
selection is the trade-off between false positives (type I
error) and false negatives (type II error). If we want to
control family-wise error rate (FWER), we need a very
small cutoff p-value that will fail to find many true posi-
tives. Some researchers have proposed a strategy of,
instead of controlling FWER, controlling false discovery
rate (FDR) to allow some FPs in the set of selected
genes, but to control the mean of the ratio of number
of FPs to the number of total declared DE genes [3-5].
To control FDR, we need to estimate the number and
the distribution of true nulls, which is quite difficult.
Since it is difficult to separate non-DE genes from DE
genes when doing permutations, the resulting estimated
number and the distribution of the p-values for true
nulls may not be accurate. Although several improve-
ments for SAM have been proposed [6-8], Qiu et al
showed that the permutation-based methods may have
large variance and, therefore, are not reliable [9]. Yang

and Churchill have noticed the problem of permutation-
based methods when applied to small microarray experi-
ments [8].
As part of SAM, Storey’s FDR-controlling method has

been proven to be more accurate than Benjamini and
Hochberg’s procedure and has been used extensively in
microarray data analysis [4]. They defined a quantity
called q-value. Similar to p-value, “a q-value threshold
can be phrased in practical terms as the proportion of
significant features that turn out to be false leads” [5].
Its R package, “qvalue,” is publicly available [10]. “qva-
lue” first estimates the q-value for each p-value (gene)
based on all p-values and then calculates the cutoff p-
value for a given cutoff q-value. Although the authors
claimed that “qvalue” usually conservatively controls the
FDR in that its true false discovery rate is smaller than
the given cutoff q-value [11], Jung and Jang have found
that it could also be anti-conservative for small cutoff q-
values [12]. In some cases, when the given cutoff q-
values are small, “qvalue” may select very few or no DE
genes.
In this paper, we show that when sample sizes are

extremely small, the t-test has poor performance in
terms of sensitivity and specificity and SAM (and “qva-
lue”) may not be applicable due to the difficulty of con-
trolling FDR for GeneChip array data. To circumvent
those problems, we propose a new model-based method
we call model-based information sharing method
(MBIS). To evaluate the performance of our new
method, we compare it with others by using both simu-
lation data and real data.

Method
Fold change, equal variance, and data transformation
The ratio of the expression levels across two conditions
is called fold change (FC); it has been used in the early
comparative experiments [13,14]. This criterion is argu-
able since, depending on the decision-makers, choosing
cutoff FC is arbitrary. Furthermore, the FC method does
not take into account the variability with gene expres-
sion measurements, or, even worse, it assumes that the
variability for all expression measurements is the same,
which is likely to be false for most gene expression
experiments. However, FC criteria have their own
advantages. First, they are biologically meaningful and
easily interpreted. Second, more importantly, many stu-
dies have shown that FC-based methods, if used appro-
priately, outperform other methods [15-19].
One way to obtain equal variance from gene to gene is

to transform the data, usually with a logarithmic trans-
formation. After this transformation, a FC (log scale)
can be calculated from the difference of means across
two conditions. However, different data sets may require
different variance-stabilization transformations. Several
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variance-stabilization and normalization transformation
methods, which try to transform expression values to be
equal variance and normally distributed for each gene,
have been proposed [19-23].

Model-based information sharing (MBIS)
MBIS makes the assumption that an appropriate data
transformation is available and has been applied to the
raw gene expression data. This transformation has
furthermore stabilized the variance. Therefore, the var-
iance for each gene is a constant, denoted by s2, after
transformation. If we can estimate s2 from data, then we
can calculate p-value easily for each gene.

Estimation of s2

Suppose there are n1 and n2 replicates for condition one
and two, respectively, and G genes to be tested. Under
the assumptions of normality and equal variance, the
estimated variance from each individual gene is an
unbiased estimate for s2 and has a Chi-square distribu-
tion with degrees of freedom n1 + n2 - 2. Therefore the
average of the estimated variances from all genes is also
an unbiased estimate for s2:

s̄2 =
1
G

G∑
i=1

s̄2
i (2)

where s̄2
i is the estimated variance from individual

gene i and G is the number of genes. Then we use the
square root of s̄2, s̄, as the estimated standard variance
for each gene. From the equal variance assumption, we
can use a normal distribution to approximate the mean
difference of non-DE genes:

d ∼ N(0, s2(
1
n1

+
1
n2

)) (3)

Based on this normal distribution, we calculate the p-
value for gene i:

pi = 2 ∗ (1 − �(
|di|

s̄

√
1
n1

+
1
n2

))
(4)

where di is the difference of the means for gene i
across two conditions and F(.) is the cumulative distri-
bution function (CDF) of the standard normal
distribution.

Estimation of total number of non-DE genes G0

For a given value μ (0 <μ < 1), we count the number
(Nu) of genes with p-values greater than or equal to μ.
Then an estimate of G0 is Nμ/(1-μ). To reduce the influ-
ence of DE genes since they have relatively small p-
values, a relatively large μ is preferable. We can also use

a vector of μ’s and calculate the corresponding esti-
mated Ḡ0’s and then take their (weighted) mean as the
final estimate for G0.

Gene selection and estimations for false positives and
FDR
For a given cutoff p-value, p0, we pick those genes with
p-values smaller than p0 as DE genes. Suppose S genes
are selected. Then we can estimate the number of false
positives,

∧
FP = G0 × p0, and the false discovery rate,∧

FDR = G0 × p0/S.

SAM, t-test and q-value
For the SAM method, we use the R package, SAMr [10],
and choose different values for s0.perc (percentile of esti-
mated se’s): -1 (t-test only, i.e. s0 = 0 in (1)), 20, 40, 60, 80
and 100. SAM will calculate p-values by permutation. For
the t-test method, we calculate p-values from the regular
t-test statistics (i.e. s0 = 0 in (1)) without permutation. We
then use the calculated p-values for each method as the
input for R package “qvalue” and then get the output of
selected DE genes with different preset q-values.

Simulation design
To restrict ourselves to small experiments, we assume the
sample sizes for both conditions are 3, 5 and 8. We simu-
late 10,000 genes with normal distributions for two condi-
tions. For non-DE genes, we assume they are normally
distributed with a mean equal to 0; for DE genes, their
absolute mean difference is uniformly distributed: with
three ranges representing different degrees of differential
expression: U(1,3), low, U(3,6), middle, and U(6,9), high.
We assume the standard deviations are uniformly distribu-
ted as U(1,b), where b is greater than or equal to one. In
the ideal situation, i.e. equal variance, b = 1. However,
even after trying several variance-stabilization transforma-
tions, sometimes this assumption may be too strong for
real data, and we therefore choose different b’s in our
simulations: b = 1, 1.5 and 2. In other words, we simulate
data with equal or near equal variance. The proportion of
DE genes among all genes may also affect the gene selec-
tion results; we then choose three levels of proportions:
0.1, 0.3 and 0.5 (i.e. the numbers of DE genes are 1000,
3000 and 5000, respectively). The output of selected genes
from “qvalue” for each method with different preset cutoff
q-values: 0.05, 0.10, 0.15, 0.20 and 0.25, are compared.

Real data set
We use Affymetrix GeneChip data sets selected from
the GSE2350 series [24], downloaded from the NCBI
GEO database [25] to compare our new method with
others. We use the first three samples from both “con-
trol” (GSM44051, GSM44052 and GSM44053) and
“CD40L treatment” (GSM44057, GSM44058 and
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GSM44059) groups. For the raw intensity data, we use
the “rma” function in R package “affy” [10] to do back-
ground correction, normalization, and summarization
[26]. Then we apply different methods to the summar-
ized expression values (already on log base 2 scale) to
estimate p-values that are the input for the “qvalue.”
To see which method gives more biologically mean-

ingful results, we use the web-based tool, CLASSIFI
algorithm [27-29], that uses Gene Ontology (GO) [30]
annotation to classify groups of genes defined by gene
cluster analysis using the statistical analysis of GO anno-
tation co-clustering. We compare the median p-values
of “topfile” from the output of CLASSIFI. In general, the
smaller the p-value is, the more reasonable the results
in terms of GO classification [27].

Results
Simulation results
Figure 1 plots the Receiver Operating Characteristic
(ROC) curves from different methods for our simulated
data. The curves from regular t-test (without

permutation) and SAM with s0 = 0 (T-Permut, i.e. t-test
with permutation) are almost identical and perform
worst in terms of sensitivity and specificity. Figure 1
clearly shows that information-sharing methods (SAM
with s0>0 and MBIS) perform better. Our new method,
MBIS, outperforms all SAM and t-test methods.
Table 1 gives the numbers of true positives (TP), false

positives (FP), and the observed false discovery rates
(Obs. FDR), FP/(FP+TP), obtained by “qvalue” with pre-
set q-values: 0.05, 0.10, 0.15, 0.20 and 0.25, respectively,
from a simulation. In this simulation, there are 1,000
DE genes out of 10,000 genes, three replicates for both
conditions, b = 1.5, and the absolute mean differences
for DE genes are uniformly distributed between three
and six. For MBIS and t-test without permutation, we
know the distribution of all nulls and, therefore, we can
estimate the number of false positives (Est.FP) for a
given cutoff p-value (calculated from given q-values by
“qvalue”). As the ROC curves show, the regular t-test
method performs more poorly than MBIS. For example,
with preset q-value 0.05, the t-test method can only

Figure 1 ROC Curves. ROC curves of MBIS, SAM with s0.perc = -1, 20, 40, 60, 80 and 100, and t-test from a simulated data set. There are three
replicates for each condition. One thousand out of 10,000 genes are simulated differentially expressed with mean differences uniformly
distributed between 3 and 6. The simulated variance for each gene is uniformly distributed between 1 and 1.5.

Chen et al. BMC Genomics 2011, 12(Suppl 5):S7
http://www.biomedcentral.com/1471-2164/12/S5/S7

Page 4 of 8



select 244 out of 1000 true positives at the price of 19
false positives. However, MBIS can obtain more than
95% true positives with only 94 false positives. Table 1
also shows that the numbers of estimated false positives
from t-test and MBIS are very close to the true numbers
of false positives, indicating that the estimated number
and the distribution for true nulls are accurate for both
the t-test and MBIS.
For the SAM methods with various s0.perc, when the

preset q-value is small, we failed to get any true posi-
tives. For example, when given q-value 0.1, none of the
SAM methods can get any true positives. Interestingly,
when the given q-value is small, a regular t-test per-
forms better than a t-test with a permutation in SAM;
this implies permutation-based methods are not appro-
priate in this situation. Table 1 also indicates that SAM
methods are usually conservative, as the authors of “qva-
lue” claimed [4]. However, it is not the case for MBIS
and regular t-test. In general, the observed false discov-
ery rates (Obs. FDR in Table 1) from MBIS and regular
t-test methods are larger than the preset q-values, while
SAM methods are usually too conservative and need
large q-values to get a reasonable proportion of true
positives. For different setups in our simulations, we
obtained similar comparison results.

Results from real data set
For the real data set, we use MBIS, regular t-test, and
SAM to calculate the p-values for each gene and then
use “qvalue” to select DE genes with cutoff q-values
equal to 0.01, 0.025, 0.05, 0.075 and 0.1, respectively. By
using “qvalue,” we calculate the corresponding cutoff p-
values from each cutoff q-value for these three methods.
Since we know the distributions of nulls from MBIS and
t-test (they have a uniform distribution for the p-values
of nulls), and we can also estimate the number of true
negatives for a given cutoff p-value, we can estimate the
number of false positives and the false positive rates.
Table 2 summarizes the results. For a given cutoff q-

value, the cutoff p-values calculated from “qvalue” for
our new method and t-test are usually similar, but both
are larger than that for SAM. Our new method usually
selects more genes than the t-test does, which selects
more genes than SAM does. In fact, for small cutoff q-
values, for example, 0.01 and 0.025, SAM fails to select
any genes due to the fact that the minimum of the esti-
mated q-values from “qvalue” for SAM is 0.04, larger
than 0.01 and 0.025. However, when the cutoff q-value
increases to 0.05, the number of genes selected by SAM
jumps to 3695. On the other hand, although the num-
bers of selected genes by our new method and the t-test
increase as the cutoff q-values increase, as expected, the
increments are more stable. All these observations are
consistent with what we have observed in our
simulations.
The selected gene sets from MBIS and the t-test are

usually different. For example, when the cutoff q-value
is equal to 0.05, MBIS and the t-test select 5550 and
4748 genes, respectively; the number of common genes
by these two methods is 3694. In other words, about
1000 genes are selected by the t-test that are not in the
list from the MBIS. However, SAM selected genes also
usually selected by MBIS.

Table 1 Simulation results of numbers of TPs, and FPs
from different methods (nde = 1000, rep = 3, b = 1.5,
diff = c(3,6))

q-value MBIS SAM-T

S0 = 0 20 40 60 80 100

0.05 TP 957 244 0 0 0 0 0 0

FP 94 19 0 0 0 0 0 0

Est. FP 95 16

Obs. FDR 0.09 0.07 0 0 0 0 0 0

0.10 TP 976 669 0 0 0 0 0 0

FP 203 99 0 0 0 0 0 0

Est. FP 211 106

Obs. FDR 0.17 0.13 0 0 0 0 0 0

0.15 TP 983 821 0 771 835 821 877 891

FP 324 228 0 16 26 16 27 26

Est. FP 289 232

Obs. FDR 0.25 0.22 0 0 0.02 0.03 0.02 0.03

0.20 TP 992 896 474 893 910 909 917 932

FP 488 379 44 80 92 81 85 75

Est. FP 474 388

Obs. FDR 0.33 0.30 0.08 0.08 0.09 0.08 0.08 0.07

0.25 TP 994 924 704 916 926 929 935 949

FP 632 529 116 145 142 134 141 129

Est. FP 620 552

Obs. FDR 0.39 0.36 0.14 0.14 0.13 0.13 0.13 0.12

Table 2 Results from real data for given cutoff q-values

q-value 0.01 0.025 0.05 0.075 0.1

p- cutoff
(from “qvalue”)

MBIS 0.00685 0.0240 0.0617 0.108 0.162

T 0.00144 0.0155 0.0613 0.123 0.192

SAM 0 0 0.00741 0.0560 0.0969

# DE genes MBIS 3075 4306 5550 6458 7276

T 561 2402 4748 6345 7435

SAM 0 0 3695 4734 5335

# common
DE genes

MBIS, T 459 1954 3861 5261 6330

MBIS, SAM 0 0 3694 4734 5335

T, SAM 0 0 3327 4504 5228

Est. FDR MBIS 0.0177 0.0443 0.0884 0.133 0.177

T 0.0186 0.0468 0.0937 0.141 0.187
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From the CLASSIFI output with cutoff q-value 0.05,
the median p-values (-log10 scale) are 15.30, 7.05 and
6.01 for MBIS, SAM, and t-test, respectively, indicating
that SAM performs better than the t-test but worse
than MBIS in terms of co-clustering for genes with
similar function according to GO.
Since the cutoff p-values from the same cutoff q-value

are different for these three methods, we then use the
same cutoff p-values for each method and compare
their selected genes. Table 3 gives the comparisons with
cutoff p-values equal to 0.05, 0.025, 0.01, 0.005, and
0.0025. The corresponding cutoff q-values obtained by
“qvalue” are always larger for SAM than for t-test and
MBIS. But the number of selected genes by SAM is
much smaller than those by t-test, and MBIS for each
given cutoff p-value. Again, for a given cutoff p-value,
the gene sets selected by t-test and MBIS are different,
while SAM still selects almost a subset of genes
obtained by MBIS. The observed FDRs from the t-test
and MBIS are always larger than those estimated from
the “qvalue,” a finding that is consistent with our obser-
vations in simulations. The median p-values (-log10
scale) from CLASSIFI are 16.32, 8.31, and 6.76 for
MBIS, SAM, and t-test, respectively, when the cutoff p-
value is 0.01, indicating that MBIS outperforms SAM
that, in turn, performs better than the t-test.

Discussion
When sample sizes are small, information shared by
genes is helpful and should be used. While t-test treats
each gene independently, both SAM and MBIS, use
information shared among genes. When the equal var-
iance assumption in MBIS is met, the estimated variance
for gene i in the t-test has a Chi-square distribution
with degrees of freedom of n1 + n2 - 2:

s̄2
i ∼ s2χ2(n1 + n2 − 2) (5)

The variance for s̄2
i is:

Var(s̄2
i ) = 2s4(n1 + n2 − 2) (6)

And the square of standard error estimated in t-test
has variance:

Var(se2
i ) = Var(s̄2

i (
1
n1

+
1
n2

)) = 2s4(n1 + n2 − 2)
(n1 + n2)2

n2
1n2

2

(7)

However, (2) has a Chi-square distribution with
degrees of freedom G(n1 + n2 - 2), and its variance is:

var (s̄2) = var (
1
G

G∑
i=1

s̄2
i ) =

1
G2

G∑
i=1

var (s̄2
i ) =

2
G

s4(n1 + n2 − 2) (8)

The square of standard error estimated for our new
method is:

Var(se2) = Var(s̄2(
1
n1

+
1
n2

)) =
2
G

s4(n1 + n2 − 2)
(n1 + n2)2

n2
1n2

2
(9)

In a typical microarray experiment, the number of
genes, G, is usually between 10K and 50K, indicating
that the variance in (9) is very close to 0 and the esti-
mated value in (2) is close to the true value; therefore a
normal distribution is appropriate to approximate the
mean differences of the true nulls.
In comparing (7) with (9), we can see that, while the

regular t-test method gives a much larger variance for
each estimated variance (each individual t-test will lose
two degrees of freedom due to variance estimation),
MBIS, a method that utilizes information among genes,
has a more precise estimate for the common variance.
Therefore, MBIS always outperforms the t-test.
On the other hand, the Chi-square distribution is right

skewed, implying that its mean is larger than its median. If
s̄2
i ’s have a Chi-square distribution, they are more likely to
have estimated values less than the mean (true value) than
estimated values greater than the mean. In other words, s̄2

i
are more probable to underestimate than overestimate the
constant variance. Therefore many true nulls may have
very small p-values from a t-test only because they have
small estimated standard errors. This explains why there
are so many FPs from t-test in our simulations; and conse-
quently t-test selects so many different DE genes than
SAM and MBIS do in real data. Because of the same rea-
son, adding a common number to each individual sei in
(1) will potentially decrease the bias (for small s0.perc in
SAM) and/or decrease the relative difference of estimated
variances for most genes; therefore SAM usually improves
the test statistics, although still not as favorably as MBIS.
This explains why SAM performs better than t-test but
worse than MBIS in terms of sensitivity and specificity.
When sample sizes are extremely small, as we men-

tioned before, SAM will have relatively larger p-values

Table 3 Results from real data for given cutoff p-values

p-value 0.05 0.025 0.01 0.005 0.0025

q-cutoff
(from “qvalue”)

MBIS 0.0422 0.0257 0.0132 0.00788 0.00468

T 0.0446 0.0313 0.0210 0.0158 0.0122

SAM 0.0738 0.0600 0.0556 0.0546 0.0544

# DE genes MBIS 5290 4352 3383 2835 2383

T 4355 3096 1849 1230 792

SAM 3613 2223 958 482 242

# common
DE genes

MBIS, T 3503 2411 1371 890 556

MBIS, SAM 3608 2223 958 482 242

T, SAM 3145 1870 767 396 202

Est. FDR MBIS 0.0742 0.0451 0.0232 0.0138 0.00823

T 0.0834 0.0586 0.0393 0.0295 0.0229
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due to a limited number of permutations available,
affecting the estimation of q-values by “qvalue”. “qvalue”
does not perform very well in this situation. For a given
cutoff q-value, the corresponding cutoff p-value calcu-
lated by “qvalue” could be too large (as seen in the
results from t-test and MBIS in simulation and real
data) or too conservative (as in the results from SAM), a
finding consistent with those from Jung and Jang [12].
Another difficulty for “qvalue” is that the number of

selected genes can be very sensitive to the cutoff q-
value, especially the very small preset q-value (see Table
2), that is desirable in practice; in this situation, SAM
even performs worse than the regular t-test in terms of
proportion of the DE genes selected. This raises the
question of how to choose an appropriate q-value in
practice to which there is no absolute answer. Some-
times, even for large q-values (as seen in the results
from SAM in Table 1), the “qvalue” gives us a small
proportion of true positives; on the other hand, we
could select a large number of genes with a small q-
value (as seen in the results from MBIS and t-test for
real data in Table 2). We recommend that in this situa-
tion (small sample sizes), instead of using q-value only,
one should choose a cutoff p-value to select DE genes
first and then estimate FDR if desired.
Although we assume equal variance in the MBIS, we

also evaluate this new method under situations when
this assumption is violated. By simulation, we have
shown that, when the variances of gene expressions are
near constant, MBIS still outperforms both the t-test
and SAM, making our method applicable in various
situations.
From our experience, variances estimated from raw

expression data are highly variable. We should trans-
form data before applying MBIS. Several variance-stabi-
lization and normalization transformation procedures,
such as logarithm, Box-Cox transformation, generalized
logarithm [19], variance stabilization [21] and data-dri-
ven Haar-Fisz transformation for microarrays (DDHFm)
[22], are already available. In addition, choosing appro-
priate preprocessing procedures (background correction,
normalization and summarization) is also very impor-
tant for downstream analyses, including gene selection
[16,26,31-34].

Conclusions
For microarray data with extremely small sample sizes, a
modified t-test like SAM performs better than a regular
t-test in terms of sensitivity and specificity. However, to
control FDR, for small preset q-values, SAM fails to
select enough true positives and performs worse than
the t-test. To circumvent this problem, we propose a
model-based information sharing method (MBIS) that

uses information shared by genes. We show, using both
simulation and real microarray data, that this new
method outperforms the t-test and SAM.
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