SC H 0 I—A R S H I P AT H A RVA R D Office for Scholarly Communication

DASH.HARVARD.EDU

DIGITAL ACCESS 10
HARVARD LIBRARY

Liquid and Liquid Crystal Surfaces

Citation
Pershan, Peter S. 1987. Liquid and liquid crystal surfaces. Proceedings of the National Academy
of Sciences 84(14): 4692-4693.

Published Version
http://www.pnas.org/content/84/14/4692

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10357483

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility


http://nrs.harvard.edu/urn-3:HUL.InstRepos:10357483
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Liquid%20and%20Liquid%20Crystal%20Surfaces&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=31bbe712416e73485c2f1c5a60ec6a3f&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Proc. Natl. Acad. Sci. USA
Vol. 84, pp. 4692-4693, July 1987
Symposium Paper

This paper was presented at a symposium “Interfaces and Thin Films,” organized by John Armstrong, Dean E.
Eastman, and George M. Whitesides, held March 23 and 24, 1987, at the National Academy of Sciences,

Washington, D.C.

Liquid and liquid crystal surfaces

P. S. PERSHAN
Harvard University, Cambridge, MA 02138

Specular reflection of x-rays is shown to be a powerful tool
for measuring the structure along the direction of the surface
normal for gas-liquid or gas—solid interfaces. For x-rays in-
cident at an angle 6 from the surface there is essentially 100%
reflectivity for 6 < 6., where the critical angle 6. = 0.2°-0.3°.
One can show that, for x-rays incident at angles 8 >> 6, the
ratio between the actual reflectivity R(6) and the theoretical
reflectivity Rg(0), from an ideal flat surface with a sharp
boundary, is given by (1):
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where Q = (47/N)sin 6, \ is the x-ray wavelength, and
(8p/dz) is the derivative of the total electron density p, taken
along the normal z and averaged over the x—y plane of the
surface.

For example, the effect of a mean-square surface rough-
ness o = (u?) is to change p~%(dp/az) from 8(z), as expected
for a flat surface with a sharp boundary, to the Gaussian
form (1/27w0?) 2 exp(—z2a2/2). The result obtained on
taking the Fourier transform described in Eq. 1 is that the
ratio R(6)/Rg(0) is reduced by a Debye-Waller factor, exp-
(—0%?). We have measured the x-ray reflectivity from
H,0, CCl,, and CH;0H and found this Gaussian law (2, 3).

One of the more interesting features of the reflectivity
measurements is that for these simple liquids the measured
roughness depends ¢:: the resolution of the spectrometer (2,
3). Consider therma iy excited capillary waves at a wave
vector in the plane of the surface q. If the energies of the
capillary waves are dominated by surface tension (i.e., y)
the value for («?) is approximately given by

ksT [ d®q  keT (Lz)
—— | — ===m|Z2],
L,

Aty J, & 2wy
where the upper limit ., = (molecular size)™! = (#/a) and
the lower limit is essentially equal to the reciprocal of the
spectrometer resolution Ag~! = 1/L,, kg is the Boltzman
constant, and T is absolute temperature. It follows that the
roughness is proportional to the logarithm of the resolution:
e.g., (4?) « In(Aga/ ).

The real-space interpretation of this result can be under-
stood in terms of the phase shift between x-rays reflected
from two points on the surface a distance r apart: ([exp(iQ,
[u(r) = u(0)]) =~ exp{~[QX(u(r) — u(0))})]/2}. The predicted
ratio R(0)/Rg(8) is given by integrating this exponential over
the “x-ray coherence area” defined by the spectrometer res-
olution. The integrand is essentially the same as that of Eq. 2
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when gr >> 1; however, since it goes to zero for gr << 1,
the result is approximately the same as that of Eq. 2 if the
lower limit is replaced by L; = «/r. In fact, a spectrometer
that has a resolution Ag measures a reflectivity that is aver-
aged over a length scale of the order of r = #/Aq and the
apparent surface roughness increases as the resolution Ag
becomes finer.

According to theory the average ((u(r) — u(0))%) that de-
fines the surface roughness for simple liquids is dominated
by surface tension effects so long as the distance |r| is less
than something of the order of the depth of the liquid. The
measured value of the roughness of H,O, averaged over a
spectrometer-limited correlation area = 200 A x 75000 A is
o = 3.2 = 0.5 A. The value calculated from Eq. 2 by using
the published value for the surface tension and this spec-
trometer resolution was 2.8 A. The agreement is improved
when the finite size of the water molecule is taken into ac-
count—e.g., =~1.9 A.

For temperatures at which the bulk liquid crystal is in ei-
ther the nematic or isotropic phases the angular reflectivity
from gas-liquid crystal interfaces exhibits structure at Q =
(4m/N)sin 0 = Qo = 2m/d, where d is the smectic layer spac-
ing (4). In the nematic phase, but near to a second-order ne-
matic to smectic-A (NA) transition, there is a temperature-
dependent peak in the specular reflectivity due to the sur-
face-induced local smectic order. The half width at half
maximum (HWHM) of that peak is identical to the reciprocal
of the longitudinal correlation length &(T) of the critical
fluctuations of the bulk nematic (1, 4, 5). Since &(T) di-
verges as T — Tna, the HWHM approaches a value that is
limited by only the spectrometer resolution. We interpret
this to mean that the thickness of the surface-induced smec-
tic region is diverging as T — Tya. Within a few mK of Tya
the measurements place a lower limit on the thickness of the
surface smectic region that exceeds 2 or 3 um.

Surface-induced smectic order is also observed at the gas—
isotropic phase interface near to a first-order isotropic to
smectic-A (IA) transition. In the case of the molecule dodec-
ylcyanobiphenyl (12CB), as the temperature approaches
Tia, the number of smectic layers increases in a stepwise
manner from 0 up 5 layers. There is a triple point in the con-
centration (n 12CB)-temperature phase diagram, and for
mixtures corresponding to n less than approximately 9.55 a
nematic phase intervenes between the isotropic and smectic-
A phases (6). For 9.0 < n < 9.55 the NA transition is first
order, but there is a tricritical point at n = 9, and for n < 9.0
the NA transition is second order (7, 8). Although the num-
bers of surface layers are comparable for decyl-, undecyl-,
and dodecylcyanobiphenyl, the stepwise growth becomés
washed out in changing from dodecyl- to decylcyanobi-
phenyl (9). Although it is not surprising that the thickness of
the surface-induced smectic-A layer should diverge as the
temperature approaches a second-order NA transition, it is
surprising to find that the width of the region of surface-in-
duced smectic order also appears to diverge near to a first-
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order NA transition for which &(T) remains finite (10).

Other liquid surfaces that have been studied include the
microemulsion formed from sodium di-2-ethylsulfosucci-
nate/water mixtures (unpublished results), and the lyotropic
liquid crystal formed from micelles of cesium perfluorooc-
tanoate (11).

Specular reflection can also be used to study the surfaces
of solids, and we have carried out experiments in collabora-
tion with George Whitesides on the structure of silane-coat-
ed silicon wafers. Destructive interference between the x-
rays reflected from the air-hydrocarbon interface and from
the hydrocarbon-substrate interface provides information
on the uniformity of the silane coating, on the roughness of
the two interfaces, and on other features of the structure
along the surface normal (12).
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