Efficient Derivation of Human Cardiac Precursors and Cardiomyocytes from Pluripotent Human Embryonic Stem Cells with Small Molecule Induction

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.3791/3274</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:10405990</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Efficient Derivation of Human Cardiac Precursors and Cardiomyocytes from Pluripotent Human Embryonic Stem Cells with Small Molecule Induction

Xuejun H. Parsons1,2, Yang D. Teng3,4, James F. Parsons1,2, Evan Y. Snyder1,2,5, David B. Smotrich1,2,6, Dennis A. Moore1,2
1San Diego Regenerative Medicine Institute
2Xcelthera
3Department of Neurosurgery, Harvard Medical School
4Division of SCI Research, VA Boston Healthcare System
5Program in Stem Cell & Regenerative Biology, Sanford-Burnham Medical Research Institute
6La Jolla IVF

Correspondence to: Xuejun H. Parsons at parsons@SDRMI.org

URL: http://www.jove.com/video/3274/
DOI: 10.3791/3274

Keywords: Developmental Biology, Issue 57, human embryonic stem cell, human, cardiac progenitor, cardiomyocytes, human pluripotent cell, cardiac differentiation, small molecule induction, cell culture, cell therapy.

Date Published: 11/3/2011

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

To date, the lack of a suitable human cardiac cell source has been the major setback in regenerating the human myocardium, either by cell-based transplantation or by cardiac tissue engineering1-3. Cardiomyocytes become terminally-differentiated soon after birth and lose their ability to proliferate. There is no evidence that stem/progenitor cells derived from other sources, such as the bone marrow or the cord blood, are able to give rise to the contractile heart muscle cells following transplantation into the heart1-3. The need to regenerate or repair the damaged heart muscle has not been met by adult stem cell therapy, either endogenous or via cell delivery1-3. The genetically stable human embryonic stem cells (hESCs) have unlimited expansion ability and unrestricted plasticity, proffering a pluripotent reservoir for in vitro derivation of large supplies of human somatic cells that are restricted to the lineage in need of repair and regeneration4,5. Due to the prevalence of cardiovascular disease worldwide and acute shortage of donor organs, there is intense interest in developing hESC-based therapies as an alternative approach. However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity6-8 (see a schematic in Fig. 1A). In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic9-11. To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules12 (see a schematic in Fig. 1B). After screening a variety of small molecules and growth factors, we found that such defined conditions rendered nicotinamide (NAM) sufficient to induce the specification of cardiomesoderm direct from pluripotent hESCs that further progressed to cardioblasts that generated human beating cardiomyocytes with high efficiency (Fig. 2). We defined conditions for induction of cardioblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human cardiac cells across the spectrum of developmental stages for cell-based therapeutics.

Video Link

The video component of this article can be found at http://www.jove.com/video/3274/

Protocol

1. Solution and Media Preparation

1. Gelatin coating solution: 0.1% (w/v) gelatin in ddH2O, autoclaved and store at 4°C.
2. Matrigel coating solutions. Stock solution: slow thaw Matrigel (10 ml) at 4°C overnight, add 10 ml ice-cold DMEM or DMEM/F12, mix well and aliquot 1 ml/tube underneath sterilized tissue culture hood, store at -20°C. Working solution: slow thaw 1 ml Matrigel aliquot at 4°C for 1-2 hour, transfer to 14 ml chilled DMEM or DMEM/F12 and mix well underneath sterilized tissue culture hood immediately before coating.
3. Human laminin coating solution: dilute 1 ml human laminin solution (0.5 mg/ml in Tris Buffered NaCl, store at -80°C, slow thaw at 4°C for 1-2 hour) with ice-cold DMEM or DMEM/F12 to 12.5 ml working solution (40 μg/ml) underneath sterilized tissue culture hood immediately before coating.
4. Growth factor stock solutions (500-1000X): dissolve growth factor at 10 μg/ml in sterilized buffer (0.5% BSA, 1.0 mM DTT, 10% glycerol, 1XPBS) and store as 50-100 μl/tube aliquots at -80°C.
5. Representative Results:

5.1. Continuing Cardiac Differentiation in Suspension Culture

Nicotinamide (NAM) is rendered sufficient to induce hESCs maintained in the defined culture system to transition from pluripotency exclusively to a cardiomesodermal phenotype (Fig. 2B). Upon exposure of undifferentiated hESCs to NAM, all the cells within the colony will undergo morphology changes to large differentiated cells that down-regulate the expression of Oct-4 and begin to express the cardiac specific transcription factor (Csx) Nkx2.5 and α-actinin, consistent with a cardiomesoderm phenotype (Fig. 2B).

5.2. Cardiac Induction of hESCs under Defined Culture System with Nicotinamide

At day 3 after seeding, remove most of old media from each well of the plate and leave enough media to allow hESC colonies to be submersed (never allow hESCs to dry out). Replace with 4 ml/well fresh hESC media containing 20 ng/ml bFGF and 10 mM nicotinamide (NAM).

5.3. Passaging and Seeding Undifferentiated hESCs under Defined Conditions

1. Allow hESC colonies grow to 5-7 days old, and take hESC culture plate to dissecting microscope (pre-warm dissecting stage to 37°C) underneath dissecting sterilized hood.
2. Select hESC colonies to be split. Morphologically, these colonies should have > 75% undifferentiated hESCs (small compact cells), usually slightly opaque (not white-piled-up cells, not clear-differentiated cells) with defined edge underneath the dissecting microscope. Carefully outline the selected colonies and remove differentiated fibroblast layer surrounding the colony and all differentiated parts (if any) of the colony with the edge of P2 sterile pipette tip or pulled glass capillary.
3. Cut the cardiac-induced hESC colonies into small pieces, and detach with sterile pipette tip or pulled glass capillary.
4. Cut the undifferentiated hESC colonies into small pieces, and detach with sterile pipette tip or pulled glass capillary.
5. Pool the media containing detached colony pieces together in a 50 ml conical tube. Wash the plate once with 1 ml/well hESC media containing 20 ng/ml bFGF and pool together.
6. Aspirate the Matrigel or human laminin solution from the coated fresh plates. Aliquot 4 ml/well hESC media containing colony pieces to a 6-well plate. Gently transfer the plate to incubator without shaking and allow colony pieces seed overnight without disturbing in a humidified 37°C incubator with an atmosphere of 5% CO₂.
multiply and the colonies increase in size. Increased intensity of Nkx2.5 will be usually observed in areas of the colonies where cells begin to pile up (Fig. 2B). After detached, the NAM-treated hESCs will form floating cellular clusters (cardioblasts) in a suspension culture to continue the cardiac differentiation process. After permitting the cardioblasts to attach and continuing to treat with NAM for 1 week, beating cardiomyocytes will begin to appear in about 1-2 weeks of continuous cultivation after withdrawal of NAM with a drastic increase in efficiency as compared to spontaneous multi-lineage differentiation of hESCs without treatment over the same time period (Fig. 2C). Cells within the beating cardiomyocyte clusters will express markers characteristic of cardiomyocytes, including Nkx2.5 and α-actinin (Fig. 2C). The contractions of the beating cardiomyocytes were confirmed by electrical profiles to be strong, rhythmic, well-coordinated, and well-entrained, with regular impulses reminiscent of the p-QRS-T-complexes seen from body surface electrodes in clinical electrocardiograms (Fig. 2C, also see the Video). The cardiomyocytes could retain their strong contractility for over 3 months.

Figure 1. Overall schemes of conventional approach versus small-molecule-induction approach for differentiation of human pluripotent stem cells towards specialized functional cells. (A) A schematic of conventional approach using multi-lineage inclination of human pluripotent stem cells through spontaneous germ layer differentiation. (B) A schematic of well-controlled efficient induction of human pluripotent stem cells exclusively to a particular clinically-relevant lineage by simple provision of small molecules.
XHP has been supported by National Institute of Health (NIH) grants from National Institute on Aging (NIHK01AG024496) and The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NIHR21HD056530).
References

