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Deciphering the biological mechanisms driving the phenotype of interest 

Abstract 

 The two key concepts of Neo-Darwinian evolution theory are genotype and phenotype. Genotype 

is defined as the genetic constitution of an organism and phenotype refers to the observable 

characteristics of that organism. Schematically the relationship between genotype and phenotype 

can be settled as 

!"#$%&'"! + !!"#$%&"'(")! + !!"#$%&!!"#$"%$&'! !"#$%& !!ℎ!"#$%&! 

This schematic representation has led to the fundamental problem of given the interactions of the 

genes and environment, up to what extent is possible to establish a relationship between gene 

structure and function to the phenotype (Weatherall, D. J., et. al., (2001)). Since R. A. Fisher 

establishing the basis of quantitative trait loci up to the work of Subramanian, et. al., (1995) gene 

set enrichment analysis, several statistical methods have been devoted to answer this question, 

some with more success and scientific repercussion than others. 

  In this work we attempt to answer to this question by delineating the biological 

mechanisms driven by the genes that are characterize the differences and actions of the 

phenotypes of interest. Our contribution resides on two pillars: we present an alternative way to 

conceive gene expression measurements and the use of functional gene set annotation systems as 

guided prior knowledge of the biological mechanisms that drive the phenotype of interest. Based 

on these two pillars we propose a method to infer the Functional Network Inference and an 

alternative method to perform expression Quantitative Trait Loci analysis. (eQTL) From the 

Functiona Network Inference method we are able to identify what mechanisms describe the 

behavior of most of the, there fore establishing its importance. The alternative method to perform 

eQTL analysis that we present, is more direct way to associated variations at a sequence level and 
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the biological mechanisms it affects. With this proposal we attempt to address two important 

issues of traditional eQTL analysis: statistical power and biological implications. 
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Chapter 1: Introduction 

 There are two main concepts in Neo-Darwinian evolution theory: Genotype and 

Phenotype. Genotype refers to the all the genetic information that constitutes an organism. 

Phenotype refers to all the observable traits or characteristics of that organism. Considering gene 

expression as an observable trait, the main focus of all the reverse engineering methods is to 

model the complex relationships, functions and structure among the genes and elements it 

encodes. Over the past two decades the reduction of the costs to generate genomic data have 

increased its availability, enabling the possibility to develop reverse engineering methods to 

delineate the genetic architecture of gene regulation from gene expression measurements. With 

the aim to capture and model the complex behavior of the genes several statistical methods have 

been developed; the Linear Models for Microarray Data (LIMMA) (Smyth, G. K., et. al. (2002)); 

the Bayesian Estimation of Temporal Regulation (BETR) (Aryee, M., et. al. (2009)); Gene Set 

Enrichment Analysis (GSEA) (Mootha, V. K., et. al. (2003)); the Database for Annotation, 

Visualization, and Integrated Discovery (DAVID) (Dennis, G., et. al. (2003)). All these statistical 

methodologies test genes independently, ignoring their potential relationships aiming to infer the 

mechanisms that drive the disease of interest. Even though this gene-based approach had success, 

these methods often are not reproducible among independent datasets.  

 In this work we propose to make use of prior biological knowledge and the concept of 

repeated measurements of groups. As sources of prior biological knowledge throughout this work 

we mean functional gene set annotations such as REACTOME pathways (Croft, D., et. al., 

(2011)) or the Gene Ontology terms (Ashburner, M., et. al., (2000)). These functional annotations 

will be thought as gene groups throughout this work. The concept of integration of measurements 

will turn around the idea of genes thought as repeated measurements of such gene groups. The 

aim of this unification is to improve the robustness of the inferences by enhancing the 
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reproducibility of the results. In doing so we expect to obtain a better understanding of the 

mechanisms driving the disease of interest.  

 Based on the repeated measurement gene set approach we will focus in the development 

of three methods that have the goal to identify the mechanisms driving the disease of interest: 

• A gene set selection method to identify the gene groups that differ most among the 

different stages of the disease under study making use of all the available information 

(genome wide scale) and treating genes as repeated observations of known biological 

classes. 

• An algorithm to infer functional networks. In comparison to the existing gene set 

enrichment methods, our method attempts to identify biological classes that drive the 

behavior of distinct phenotypes of interest. 

• A modification to the existing expression Quantitative Trait Loci (eQTL) methods. Our 

method attempts to identify significant associations between chromosomal regions and 

gene functional groups, exploiting the idea that its processes that are regulated rather than 

induced ones.  

 This work is divided in the following chapters: Chapter 2 presents the gene set selection 

method developed, along with an application and an analysis of its performance. Chapter 3 

presents the method for functional network inference and exploits its application. Chapter 4 

presents the alternative approach to the classical eQTL analysis: functional QTL (fQTL) and 

compares it with other methods.  
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Chapter 2: Gene set selection method  

 A wide range of statistical procedures for the analysis of DNA microarrays have been 

devoted to identifying sets of genes associated with biologically relevant phenotypes and which 

distinguish these from others (Golub, T. R., et. al., (1999), Van't Veer, L. J., et. al., (2002) and 

Wang, Y., et. al., (2005)). The standard approach is to first identify a "significant gene list" and 

then place these into a biological context by searching for enrichment of gene functional classes. 

The focus on biological functions is more informative than a simple "significant gene list". This 

“significant gene list” paradigm, while widely used, has not been universally successful, given 

that most gene set-based expression signatures have not been validated in subsequent studies. 

There are many potential reasons for this, including the molecular heterogeneity of seemingly 

homogeneous biological samples, the sensitivity of gene expression measurements to small 

variations in the environment, the fact that genes themselves do not operate in isolation but rather 

function as elements of complex pathways which themselves are more important and informative 

than individual genes, and the robustness of the methods we use to select genes and classify 

samples. 

 Here we propose an alternative approach to the “significant gene list” paradigm based on 

the concept of repeated measurements of gene sets. Our objective is to provide robust inferences, 

in the sense of being replicable among independent datasets. By doing, so we hope to obtain a 

better understanding of the biological processes driving the differences between phenotypes. The 

proposed approach is based on Bayesian statistical modeling methods.  

 In this chapter we will present the proposed methodology together with an application to 

a public accessible breast cancer dataset. We will examine the performance and robustness of our 

method by analyzing two independent public accessible Breast cancer datasets. Finally we 

present the conclusions of the proposed methodology. 
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2.1 The methodology 

 Our goal is to identify biological functions that describe in a concise way the mechanisms 

that differentiate phenotype states. We will use the Reactome pathways of the Gene Ontology 

(GO) to define functional gene groups. We will use a linear model based on the mean expression 

of these gene groups to compare the behavior between phenotypes. The linear model assumption 

allows analysis of datasets collected using a wide variety of exploratory design; from cross-

sectional disease comparisons to time series analysis. To control for multiple comparisons we will 

use the sparsity priors proposed by Carvalho, C. M. et. al., (2008). These sparsity priors have 

been successfully applied in a wide variety of scenarios: from denoising musical audio (Févotte, 

C., et. al., (2008)) to genomics.  

 As an example, consider a time series experiment in which there are two stages of the 

disease of interest, A and B. There is a total of J samples and an irregular time course sampling 

with H time points. We assume there are I gene groups and a total of K genes being assayed. In 

this scenario it is possible that genes can be in several gene groups. Let i denote the gene group, j 

the sample, ki the total number of genes (repeated measurements) associated with gene group i 

and th a point of the time course. For each sample j, at each time point, we measure the mean gene 

expression level y for gene group i, and assume that these measurements are normally distributed: 

(!!"
!! , !!"

!! , . . . , !!"
!!)~!! !!,

Σ!
!!

 

The model of the mean for each gene group i is: 

!! = !! + !!∗1 !"#$% = ! , 

where !! = !!!,!!!, . . . ,!!! . Here  !! is the average expression level of gene group i across time 

points. And !!∗  captures the disease-time interaction: the average time expression level 
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differences between the stages of the disease of interest. Biologically, !!∗ captures two behaviors 

of time series data: trajectories that between stages of the disease present a non-parallel behavior 

(NPB) which are crucial in the understanding of the biological mechanisms that drive a 

differential response and the trajectories that between stages of the disease present a parallel 

behavior (PB), which represent a similar response only distinctive by intensity across time 

between stages. To model (NPB) trajectories, !!∗ is parameterized as: 

 !!∗ = !!!! + !!!                                                                                               

         = !!!,!!!,⋯ ,!!! + 0,!!!,⋯ ,!!!!!  

                 = !!!,!!!+!!!,⋯ ,!!!! !!!!!  

where, !!! captures a baseline difference in expression between stages of disease across time and 

the !!  characterize the NPB of the trajectories. On the other hand we can model all the 

differential trajectories (PB and NPB) with the following parameterization of !!∗ 

!!∗ = !!!! = ! !!!,⋯ ,!!! . 

On both parameterizations it is !!!  the parameter of interest. As mentioned in the beginning of this 

section the adjustment for multiple comparisons is performed through the sparsity priors 

(Carvalho, C. M., et. al., (2008)) on !!! : 

!!!~!!!!!! 0, Σ! + 1 − !!! !! !! , 

!!!~!!!!"#$ !", ! 1 −! + 1 − !! !!(!!!), 

!! !~!!"#$ !", !(1 − !) . 

Here, !!! is the probability of !! taking a nonzero value. This parameter controls the sparsity 

behavior. In this context sparsity means that many of these probabilities will be small or 0 and 
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only a few of these will take on large values: the gene groups with strongest differential behavior 

between the stages of the disease. The Beta prior distribution for nonzero values of !!! will be 

fairly diffuse favoring large probabilities. The Beta prior distribution for !! is chosen to favor 

very small values. The reasoning behind this selection of prior distributions is that a large fraction 

of gene groups are expected to have uncoordinated behavior among its repeated gene expression 

measurements. Thus a large fraction of !!! are expected to be concentrated around 0 and only a 

small number with high values. For this purpose the parameters of the Beta prior distribution for 

!!! and !! are chose to have a high mean and a diffuse variability and a small mean with diffuse 

variability respectively. The prior distribution for the variance in the model, Σ! and Σ! will follow 

and inverse Wishart distribution in an effort to maintain close form expression on the full 

conditional distributions. This enables to estimate the parameters of interest (!!) through a Gibb’s 

sampler. The selection of gene groups with differential behavior between the stages of the disease 

is based on the parameter: 

!!! = ! !! ≠ 0  

Our focus will be to select gene groups with high values of !!!. It has to be highlighted that the 

gene group selection done by the proposed method have by design, more power than the ones 

obtained by the combined statistical procedures that constitute a classical gene set enrichment 

analysis. 

2.2 Application 

 The proposed method was applied on a dataset with cross-sectional design. Gene 

expression measurements taken from fresh-frozen tumor samples from patients with lymph-node-

negative breast cancer who were treated during 1980-95 (Minn, A. J., et. al., (2007)), for whom 

Estrogen receptor status (ER+ or ER-) was recorded. Estrogens are hormones, which means that 

they function as signaling molecules. Estrogens control multiple physiological processes 
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including growth, differentiation and function of reproductive system. Paradoxically, estrogen 

can be both a beneficial and a harmful molecule. Unlike normal breast cells, cancer cells arising 

in the breast do not always have receptors for estrogen. Breast cancers that do have estrogen 

receptors are said to be “estrogen receptor-positive”. In these cancer cells, growth is under 

control of estrogens and generally has a better prognosis. In contrast, those breast cancers that do 

not possess estrogen receptors are “estrogen receptor-negative”. For this, the growth is not 

governed by estrogen. These cancers are more aggressive and unresponsive to anti-estrogens 

(Rochefort, H., et. al., (2003)). 

 Min and colleagues (Minn, A. J., et. al., (2007)) used Affymetrix U133A GeneChips to 

profile gene expression in 286 fresh-frozen tumor samples from patients with lymph-node-

negative breast cancer who were treated during 1980-95, but who did not receive systemic 

neoadjuvant or adjuvant therapy (Minn). These samples correspond from the data set used in 

(Wang, Y., et. al., (2005)) with GEO reference accession number GSE2034, from the tumor bank 

at the Erasmus Medical Center in Rotterdam, Netherlands. An additional 58 estrogen receptor-

negative samples were added from (Minn, A. J., et. al., (2007)) GEO (GSE5327). In total 209 

tumor samples are classified as ER+ and 135 as ER-. Even though this data set comes from a 5-

year follow-up design, we treat the data as cross-section given our interest to analyze ER status. 

2.2.1 The model under a cross-sectional data design 

 The model for gene group selection we used 

!!",! !~!! !! , !!
!

!!
 , 

where yij,T  stands for the mean gene group measurement for group i, patient j, T for the ER status 

of the patient (positive or negative), and ki the total number of genes associated with group i. Here 
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we assume the variance is different between groups. We define the linear model that describes the 

mean gene group behavior by 

!! = !!! + !!!∗×1(! = !"−). 

In this model !! is the overall average expression level across ER status for the gene group !. And 

!!∗ captures the differential expression between ER status for gene group i. Selection of the gene 

groups relies on the parameter αi. This parameter captures the possible effects ER status and is the 

parameter of interest. For this analysis, Molecular Function (MF) of GO by the Molecular 

Signature Database (MSigDB) at the Broad Institute will be used as source of gene groups ise 

used. Only gene groups with more than four elements were considered on the analysis. In total 

396 MFs were considered. In Figure 2.1 it is presented the MFs identified with a probability of at 

least 90% of being differentially expressed between ER status. It can be seen that the MFs related 

to acetyltransferase are a consistent finding related to ER status by the activity of gene NAT1. 

NAT1 transcript is reported to be good prognostic markers of ER+ status (Wakefield, L., et. al., 

(2008)). Besides this interesting finding, NAT1 is also reported to have an important role in 

breast cancer progression (Wakefield, L., et. al., (2008)). 
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Figure 2.1 Molecular functions (MF) selected by the proposed method with a probability of 90% 
of being differentially expressed between ER status are the ones in blue. The MFs highlighted in 
blue are MFs that had a reported relationship with Breast cancer and ER status. Its association is 
explained in yellow. 

The MFs related to acyltransferase are a consistent finding too with ER status in Breast cancer. It 

has been reported that actyltrasnferase activity enhances growth and resistant of tumors to 

cytotoxic drugs (Ragunathan, N.,et al., (2009)). Its activity also increases the synthesis of 

phospholipids in Breast cancer tumors (Brockmöller, S. F., et. al., (2012)), making the cellular 

membrane of Breast cancer tumor cells more resistant to target drugs. Finally the MF ligand 

dependent nuclear receptor activity is also consistent to ER activity in Breast cancer. It has been 

reported that nuclear receptor co-repressor recruitment is a key feature of ER, which is related to 

Breast cancer progression (Merrell, K. W, et. al., (2011)). 

2.3 Analysis of the performance of the proposed methodology 

 The objective of the proposed methodology is to provide robust inferences. To provide a 

measure of robustness we evaluated the proposed methodology based on concordance and signal 

replicability of the selected groups. By concordance we refer the replicability of such inferences 
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among independent datasets. By signal replicability of the selected groups we refer to selecting 

the gene groups with highest signal among independent datasets.  

 For the performance analysis of the inferences obtained by the proposed methodology 

two independent datasets were analyzed: TRANSBIG data (TRANSBIG) (Desmedt, C., et. al. 

(2007)) consisting of 198 frozen samples with 134 tumor samples classified as ER+ and 64 as 

ER- and the Schmidt M, et al. (2008) (Schmidt) dataset consisting of 200 lymph node-negative 

Breast cancer samples with 162 tumor samples classified as ER+ and 38 as ER-.  

 To obtain an objective insight of the performance of the proposed methodology, we 

provide a comparison against a widely used gene set selection approach: the combination of 

LIMMA to establish a significant gene list with a cut-off of 5% of False Discovery Rate (FDR) 

and then GSEA for the enrichment analysis with a cut off of 5% of Bonferroni correction. We 

divide the gene groups enriched from GSEA into GSEA-L and GSEA-U, to refer to the enriched 

significant gene groups from the lower part of the distribution of the test statistic or from the 

upper part of the distribution of the test statistic respectively. 

2.3.1 Concordance performance 

 The results of the comparison are shown in Figure 2.2. The objective of this comparison 

is to see how concordant are the MFs identified by our proposed methodology and a widely used 

methodology for gene set enrichment analysis among different datasets. From the p-values shown 

on Figure 2.2 we see that the inferences obtained from the three methods between these three 

independent datasets are concordant. Even though having an acceptable performance, the p-value 

measure is sensitive to the total sample size. 
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Figure 2.2 Concordance results from the proposed method and from GSEA-L and GSEA-U. This 
figure shows the concordance of the MFs identified using the Minn dataset as reference. In all the 
contingency tables T stands for "Differentially identified gene group" and F stands for "Not 
differentially identified gene group" 

In this case the proposed method considered 396 gene groups and both GSEA-L and GSEA-U 

considered 307 gene groups only. To address this issue, we used the statistic Phi for a more 

objective measure. The Phi statistic is just the square root of the test statistic of the contingency 

table divided by the sample size. The Phi statistic ranges from -1 to 1. Having Phi set to -1 means 

that there is an inverse association between the variables test on the contingency table. Having 

Phi set 0 means there exist no association at all. And finally having Phi set to 1, means there is a 

strong positive association among the variables tests on the contingency table. From the Phi 

statistic we see that on the comparison of TRANSBIG vs Minn datasets, our proposed method 

does better. On the other hand on the comparison of Schmidt vs Minn datasets all three methods 

have a comparable performance. 
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2.3.2 Signal among independent datasets 

 To analyze the signal of the selected gene groups we establish the following as a signal 

measure 

!"#$%& = !!"! − !!"!
! !"!,!"!

. 

The reasoning is the following: measure the difference in means between ER positive and 

negative weighted by the pooled standard deviation for each gene group. The absolute value is 

taken just for plotting presentation purposes. This measure provides an empirical way to 

objectively analyze the behavior in means between ER status for each gene group. The Minn 

dataset is established as the reference dataset given it has more sample size, enabling a more 

reliable overview of the difference between ER status. 

                                    !

Figure 2.3 Scatter plot showing the signal of each gene group based on the Minn dataset. The 
selected gene groups were identified by the proposed method. 

In Figure 2.3 we can see that, relative to the information of the Minn dataset, the identified gene 

groups by the proposed method are within the MFs with the highest signal.  
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Figure 2.4 Scatter plot showing the signal of each gene group based on the Minn dataset. The 
selected gene groups were identified by GSEA-L. 

In Figure 2.4 we can see the behavior of the gene groups identified by GSEA-L relative to the 

information of the Minn dataset. Even though the identified gene groups by GSEA-L are within 

the MFs with the highest signal, GSEA-L also selects gene groups with low signal. This is not a 

desired characteristic: identifying gene groups with uncoordinated behavior among its repeated 

gene expression measurements is something any gene set selection method should avoid. 

 In Figure 2.5 we can see the behavior of the gene groups identified by GSEA-U relative 

to the information of the Minn dataset. The performance of the selected gene groups is not ideal 

with respect to signal. There is a high number of gene groups with very small signal, which is not 

a desired characteristic.  

 From Figures 2.3, 2.4 and 2.5 we see that the proposed method selects gene groups that 

are among the ones with highest signal. On the other hand the gene groups selected by GSEA-L 

and GSEA-U have also high signal, but along with this desired property on the selected gene 

groups there are a high number of gene groups that do not have signal at all. 
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Figure 2.5 Scatter plot showing the signal of each gene group based on the Minn dataset. The 
selected gene groups were identified by GSEA-U 

!
2.4 Discussion 

 In this chapter we have shown the method we propose for gene set selection. This method 

is based on the proposed unification of prior biological knowledge and the concept of integration 

of measurements. The selection is based on the assumption that a linear model is suitable to 

capture changes between the different stages of the disease of interest. Although simplistic this 

assumption, it enable us to apply our method in wide variety of data designs, from the very 

common cross-sectional to the time course data design.  

 The method was applied to Breast cancer dataset with cross-sectional data design. The 

interest of this application was to identify the Molecular Functions from GO that presented a 

different behavior between ER status. From the eight MFs identified by the proposed method, 

five are consistent with what is known of ER status in Breast cancer. From these MFs selected we 

have learned that the main theme that characterizes the differences between ER status is a 
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differential in prognosis and the cellular functions related to drug resistance. Both of these themes 

are consistent with what is known of ER status and Breast cancer. 

 The objective of the proposed method was to provide robust inferences; inferences that 

can be replicable among independent datasets. To measure the robustness two characteristics 

were analyzed: concordance and signal maintenance among independent datasets. The 

performance of the proposed method was compared against a widely used methodology: LIMMA 

for the significant gene list discovery and GSEA for the enrichment analysis. Based on 

concordance, our method has a comparable performance. On the other hand the proposed method 

has an outstanding performance in identifying gene sets with high signal among independent 

datasets. From the results provided we are able to conclude that are method provide useful results. 

The inferences made by the proposed method replicable across independent data sets and are 

consistent with the biology known with the disease of interest. 

 

 

 

 

 

 

 

 

 



! 16 

Chapter 3: Biological functional networks 

 The philosophy of gene set enrichment methods is to provide biological context to a 

significant gene list. The objective is to infer the mechanisms that characterize the differences 

between the different stages of the disease of interest. From the proposal of DAVID (Dennis, G., 

et. al. (2003)) through the successful GSEA method (Subramanian, A., et. al. (2005)), gene set 

enrichment analysis provides only a list of functional classes. This list of functional classes 

although insightful is somewhat incomplete, in the sense that we aren’t able to identify which 

classes are crucial to activate/drive the disease under study or which ones even though significant, 

have secondary roles. To address this problem we prose a modification to a class of algorithms 

that are design for network inference on large sparse datasets (datasets with high number of 

variables and a small number of samples): the Sparse Candidate Algorithms, proposed by 

Friedman, N., et. al. (1999). Our modification enables the possibility to use the information of 

gene expression measurements to guide the potential links between the gene groups or functional 

classes. Our iterative method provides a set of networks from which we will resume their 

topological properties in order to infer what we define as biological functional networks. We 

provide a new perspective to analyze gene sets that are significantly related to the stages of the 

disease of interest and at the same time attempt to identify the sets that have crucial roles in 

understanding the mechanisms driving the phenotype of interest. 

 In this chapter we present our method for functional network inference. We present the 

iterative procedure. We also present an application to a public accessible Breast cancer data set. 

The performance of the proposed method is measured based on the concordance of the inferences 

obtained. 
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3.1 The method 

 The objective of the proposed work is to analyze how the molecular interactions 

influence the associations between biological functions and whether these associations delineate 

meaningful mechanism with respect to the different stages of the disease of interest. We refer to 

biological functions as predefined gene set annotations from databases like Reactome pathways 

(Croft, D., et. al., (2011)) or the Gene Ontology (Ashburner, M., et. al., (2000)). The associations 

between these functional classes will be estimated through a linear model. These associations will 

be the links of the networks that constitute the output of our method: a set of functional networks. 

 The algorithm for functional network estimation is described for a cross-sectional data 

design framework. A straightforward modification is needed in the case of a time series data 

design.  

3.1.1 The algorithm 

 We will explain in detail the algorithm for functional network inference 

3.1.1.1 The setting 

 Let  be the set of functional classes from the biological 

annotation set of interest where each functional class, , consists of genes . 

Because we are conceiving that genes are repeated measurements of the functional classes (gene 

groups), throughout this work we will conceive the observations of the functional classes as the 

mean expression of the genes within the respective functional class (gene group) k !"! . So each 

!"! will be a vector of dimension !!×!1 where n is the number of samples. The same dimension 

will hold for the observations of the genes !!. It will be assumed that no functional classes will 

have the same exact set of genes and that these classes will have a minimum number of genes, k. 

To infer the associations between functional classes a linear model is assumed: 

FC = fc1, fc2,…, fcm{ }

fci = gi1,gi2,…,gin{ } gil
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!"! = !!! + !!"!!"
!

!!!
,!!!!!!!!!(3.1) 

where Xij belongs to the set FC. The interest of this work is not to estimate the parameters of the 

regression, given that these have a meaningless interpretation. Our interest is to identify the 

variables that take place in the regression, to perform variable selection. This problem is much 

more attainable than to estimate regression parameters. Given the sparsity of the data (more 

functional classes –variables- than samples) it is not practical to apply statistical techniques that 

are ex professo for this ill data setting that identify a solution to (3.1). Instead, the focus of the 

proposed algorithm is to provide a “variety” of solutions that are the most likely predictors for 

each functional class.  

 The algorithm to infer the variables !!" !!! is based on a class of algorithms proposed 

by Friedman, N., et. al., (1999) to infer gene networks: the Sparse Candidate Algorithm. These 

algorithms restrict the possible parents for each gene. Then by making use of a statistical score 

the algorithm attempts to maximize such score by making use of an exhaustive search for the best 

parents within the restricted parent set for each gene. Such procedure presents a crucial drawback; 

it can potentially lead to local maximum. This because once the candidate parents for each 

variable, the algorithm is committed to them. In this work it is proposed to incorporate random 

sampling in the maximization of the statistical score in the selection of the best parents instead of 

the exhaustive search. By this, the proposed procedure has the ability to avoid any local 

maximum. !

3.1.1.2 The algorithm 

 The iterative procedure of the propose algorithm is divided in two stages: the gene stage 

and the functional class stage.  
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 At the gene stage, the update of the network is divided in two steps: the individual step 

and the group step.  

• At the individual step, for each gene, gi, we will focus on the genes that belong to the 

functional classes that serve as predictors of the functional classes for which gene gi 

belongs to (understanding that a gene may be play a function in several biological 

mechanisms).!The process of selecting candidate genes to predict the behavior of another 

is equivalent as searching for the best network that fits the data. This is known to be an 

NP-hard problem. To simplify this search we follow the guidelines of Zhu, J., et al. 

(2004): restrict the number of candidate predictors up to P0. So every gene is considered, 

except gene gi, (only when the experimental data design is a cross-sectional study) and 

randomly a decision is made to select P0 candidate genes weighting them by the number 

of appearances in the functional classes that serve as predictors. Setting the gi as the 

objective, the score of all the possible regression models that can be obtained from these 

P0 predictors is compared against the score of the regression model with the actual 

predictors. The predictors of the regression model with the maximum score are selected 

as proposals.  

• The update at the group level is performed taking into account the overall score of the 

predictors that are proposed against the overall score of the actual predictors, through 

random sampling. 

 At the functional class stage the update of the network is dived in two steps, as in the 

gene stage: the individual step and the group step.  

• At the individual step, for each functional class fci, we will focus on the functional classes 

that are associated to the genes that serve as predictors of the genes that belong to the 

functional class fci. The process of selecting the candidate functional classes is the same 
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as in the individual step at the gene stage, with just a subtle modification. Because some 

biological functions will share a large amount of their genes, the addition of either one to 

the model as predictor would tend to be indistinguishable. This is the reason to be of the 

“Similarity Step”. A set of candidate predictors is discarded if there exist at least one 

among the P0 selected, that is has a similarity measure above a threshold chosen by the 

user with at least one of the actual predictors. As a similarity measure between sets 

Dice’s coefficient was chosen (Equation 3.2):  

!" = 2 ! ∩ !
! + ! ,!!!!!!!!!!!!(3.2) 

 where X and Y are sets.  

• The update at the group level is the same as at the gene stage. 

 The proposed algorithm is an iterative procedure that is run for a total of no.sim number 

of simulations. To avoid any bias respect to the starting networks a burn in period is established 

of burn.in initial iterations. The output of the algorithm is a set of networks, 

ℕ!" = !!!" : ℕ!" = !". !"# − !"#$. !"  where !!!" = !"! ,!!"  for which fck is the 

functional class objective and Xkj is a functional class that serve as predictor of fck. The 

links/associations of interest, !"! ,!!" , are the within the whole set for networks, ℕ!" , that 

satisfy:  

! !"! ,!!" :∃!!!" ∈ ℕ!" , !"! ,!!" ∈ !!!" ≥ !!!!!!!!!!!!!!!!!!(3.3) 

for any c between 0 and 1. These associations, !"! ,!!" , that satisfy (3.3) form a resume 

functional network: the ultimate goal of the algorithm. The associations/links from the resume 

functional network are crucial in identifying the functional classes that act as predictors of others. 

Thus the “key players” of this network are the functional classes that can predict or describe the 
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behavior of most of the other functional classes. It will be these classes the ones that will be of 

interest in our inferences. An outline of the functional network algorithm is presented in Figure 

3.1. 

!!!!!!!!!!!!!!!!!!!!!!! !

Figure 3.1 Outline of the functional network algorithm. We describe the input of the method, each 
step of the iterative procedure and the output generated. 

3.2 Application 

 The functional network algorithm was applied on a dataset with cross-sectional design. It 

consists of gene expression measurements from Breast cancer patients taken from frozen archival 

Input

• A matrix DgXs, consisting of g genes and s samples
• A matrix DfXs, consisting of f functional classes and s samples
• An initial functional class network: NFC,0
• An initial gene network: NG,0
• A parameter P0, indicating maximum number of predictors.
• A decomposable score for the networks at a functional class and a gene level.
• Total number of iterations: no.sim
• "Burn-in" period: burn.in

Output

• A set of size (nsim-"burn-in") of functional networks

Iteration loop: for n=1,2,…,nsim

1. Update the gene network
               Individual Step
                  Update predictors for each gene gj, by selecting the one with best score
               Group Step
                  Random sampling selection for the overall predictor proposal

2. Update the functional class network
                Individual Step  
                  Update predictors for each functional class fci, by random sampling
                Similarity Step
                   Discard proposal if predictors are "similar" to the actual ones
                Group Step                
                    Random sampling selection for the overall predictor proposal
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tumor samples from the TRANSBIG study used on Desmedt, C., et. al. (2007) for whom 

Estrogen receptor status (ER+ or ER-) was recorded. 

 Estrogens control multiple physiological processes including growth, differentiation and 

function of reproductive system. Paradoxically, it can also function as a harmful molecule. Unlike 

normal breast cells, cancer cells arising in the breast do not always have receptors for estrogen. 

Breast cancers that do have estrogen receptors are said to be “estrogen receptor-positive”. In 

these cancer cells, growth is under control of estrogens and generally has a better prognosis. In 

contrast, those breast cancers that do not possess estrogen receptors are “estrogen receptor-

negative”. In this case, the growth is not governed by estrogen. These cancers are more 

aggressive and unresponsive to anti-estrogens (Rochefort, H., et. al., (2003)). 

 Desmedt, C., et. al.,(2007) profiled gene expression measurements from 198 frozen 

archived tumor samples from patients with lymph-node-negative breast cancer clinical diagnosed 

between 1980 and 1998 (GEO ID: GSE7390). From the 198 tumor samples 134 are classified as 

ER+ and 64 as ER-. Even though this data set comes from a 13.6 median-year follow-up design, 

the way the data is conceived for this analysis was cross-sectional. 

3.2.1 Functional network inference for a cross-sectional design 

The proposed algorithm is applied to infer a functional map within each ER status. For 

this purpose the model proposed by equation (3.1) was applied. To learn the links of the resume 

functional network within the patients with ER – and within ER+ only the significantly 

differentiated genes between ER status are considered. Reactome pathways with at least 10 genes 

were selected as source of functional annotation from the MSigDB.  The objective of the resume 

networks is to identify the Reactome pathways that are the key players within each ER status. A 

total of 3 predictors in the linear model are considered at the gene and functional stage and as a 

cut off of Dice's similarity measure (Equation 3.2) 87.5% was chosen. As a decomposable score 
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the Residual Sums of Squares was chosen to analyze the convergence of the algorithm. The 

algorithm was run for a total of 6,000,000 iterations with a burn in period of 5,000,000. In Figure 

3.2 we see the stable behavior reached within the selected range of iterations of the total sum of 

squares of the whole resume network within ER- and ER+. 

               !

Figure 3.2 Plot of the behavior of the Residual sum of squares (SSR) for ER+ (red) and ER- 
(black) for the TRANSBIG dataset. 

 To obtain the Reactome pathways that characterize ER- or ER+ we will focus on each of 

the resume functional networks and obtain the key pathways based on the following measure: 

!"# = ! !"#$%&!!"!!"#$!!"!!ℎ!!!"#$
!"#$%&%!!"#$%&!!"!!"#$%!!"#$!!""!!!"#$!!"!!"#$%&' !!!!!!!!!!! 3.4  

The pathways obtained using this measure defined as the Proportional Edge Count (PEC), 

are pathways involved describing the behavior of other pathways. These pathways will have the 

notion "driving" the activity within the respective ER status. By setting a threshold of 0.8 for the 
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PEC measure seven Reactome pathways were identified as key players in ER+. Among these five 

are related to ER+ and Breast cancer: “p53 independent DNA damage response”, “REV mediated 

nuclear export of HIV1 RNA”, “RNA pol II CTD phosphorylation and interactions with CE”, 

“TrkA signaling from the plasma membrane” and "Formation of early elongation complex". For 

example, “p53 independent DNA damage response” is associated with the fact that p53 is a target 

of estrogen receptor alpha, modulating DNA damage and growth suppression in ER+. The 

pathway “Formation and early elongation complex” and “RNA pol II CTD phosphorylation and 

interaction with CE” are related in the process of expression of the proto-oncogene MYB. MYB 

is expressed in the majority of ER+ breast tumors and is controlled by ERα and a transcriptional 

pausing mechanism involving an attenuation site located downstream from its transcription start 

site. ERα binds close to this site and drives transcription beyond this attenuation site for the 

complete synthesis of the transcripts. In the binding process of ERα the P-TEFb complex 

(CDK9/Cyclin T1) is recruited resulting in an increase RNA polymerase II phosphorylation 

(Mitra, P., et. al., (2012)). Finally is has been reported that estrogen treatment results in an 

increased expression of trkA ((McMillan, P. J., et. al., (1996)), (Sohrabji, F., et. al., (1995))), 

associating “TrkA signaling from the plasma membrane” with ER+ in Breast cancer. On the 

other hand by setting a threshold of 0.8 for the PEC measure eleven Reactome pathways were 

identified as key players. Among these 5 are related to ER- and Breast cancer: "Formation of 

early elongation complex”, "Cell surface interactions at the vascular wall", ”Glucose and other 

sugar SLC transporters”, ”Glucose transport” and "Immunoregulatory interactions between a 

lymphoid and a non lymphoid cell". For example "Formation of early elongation complex” is 

related to ER status and Breast cancer through the activity of the oncogene MYB and as we have 

seen is expressed in the majority of ER+ breast tumors and not in ER- breast tumors. The 

pathways “Glucose and other sugar SLC transporters” and “Glucose transport” are also 

associated with ER- breast cancer. It has been reported that in locally invasive primary breast 

cancer, ER- negative tumors display higher (18)F-FDG than ER+ ones. Gene expression data 
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confirms and identifies genes associated with increase glucose. These findings and the fact that 

patients with higher glycemic load a higher risk of ER- breast cancer than the ones without 

suggest an association of insulin and ER- breast tumor growth. The pathway “Immunoregulatory 

interaction between a lymphoid and non lymphoid cell” has also association in ER- breast tumors. 

It has been reported that Lymphoid stroma and comedo-necrosis correlated with higher tumor 

grade, which appears to have a significant correlation with ER- tumors. 

3.3 Method comparison 

 The objective of the proposed algorithm is to provide robust inferences. To provide a 

measure of robustness the proposed methodology was evaluated based on concordance. By 

concordance we refer the replicability of such inferences among independent datasets. 

 For the performance analysis of the inferences obtained by the proposed methodology an 

independent datasets was analyzed: the Schmidt M, et al. (2008) (Schmidt) dataset consisting of 

200 lymph node-negative Breast cancer samples with 162 tumor samples classified as ER+ and 

38 as ER-. 

 In Figure 3.3 we present the results of the concordance analysis. We compared the key 

players identified on each independent data set. On this analysis the key players are defined as 

Reactome pathways that had a PEC measure (Equation 3.4) greater than 0.8 on the networks 

generated on ER+ and ER- status. To provide an objective measure of whether the concordance 

was significant or not, we provide a p-value for comparisons made for each ER status. This p-

value is generated through a Fisher exact test. By this we take into consideration the number of 

Reactome pathways that are expected and the total number of pathways considered. We see that 

for ER+ and ER- the concordance is significant. Given that this is conclusion is made through a 

Fisher p-value we can reject the hypothesis that the Reactome pathway selections under both 

datasets is not driven by the effect of ER status. 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

Figure 3.3 Results of the concordance analysis from the algorithm for functional network 
inference. The numbers in bold on both Venn diagrams are the number of Reactome pathways 
that had a PEC measure (Equation 3.4) greater than 0.8. The p-values are for the each Venn 
diagram. 

3.4 Discussion 

 In this chapter we present a novel method that attempts to identify gene functional classes 

that can delineate the potential biological mechanisms that characterize phenotype of interest. 

This iterative algorithm is based on a class of algorithms to infer gene networks: Sparse 

Candidate Algorithms (Friedman, N., et. al., (1999)). These algorithms provide a unique solution 

to the network estimation for sparse data sets (small number of samples and high number of 

features).!

 With the inclusion of the random sampling, our method has the opportunity of exploring 

the whole predictor space, with the ability of not getting “trapped” in a local 

maximum/minimum. Based on the unification of prior biological knowledge and the concept of 

genes as repeated measurements, we provide a method to infer networks at a group level by 

exploiting the idea that genes within the same biological mechanism or gene group potentially 

share regulators that perform similar functions. 

4 3 4

TRANSBIG Schmidt, et. al.

ER+

8 3 1

TRANSBIG Schmidt, et. al.

ER-

p-value = 0.0009 p-value = 0.0005

PEC =

#links(node)

max{#links(node)} > 0.8
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 The proposed method was applied to Breast cancer dataset with cross-sectional design. 

The analysis was based on Reactome pathways. From the inferences presented we are able to see 

that the Reactome pathways identified as key players through the PEC measure (Equation 3.4) are 

consistent with reported knowledge with ER status and Breast cancer. 

 The objective of the proposed method is to provide robust inferences: inferences that can 

be replicable among independent datasets. We analyzed the performance of robustness of the 

inferences through the concordance of Reactome pathways identified as key players between 

independent Breast cancer datasets. Based on the results obtained comparing the results between 

the TRANSBIG and Schmidt dataset we see that we have the proposed method presents 

inferences that are significantly concordant among independent datasets. 

 In conclusion, this work presents a method that attempts to identify the key processes that 

can help to understand how the molecular interactions can characterize the differences at a 

phenotype level. From the results provided along with the analysis of the performance we can 

conclude that the method provide useful inferences, and that these inferences are also consistent 

with the biology known of the disease of interest. 
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Chapter 4: Functional QTL analysis 

 The focus of this work relies in understanding the complex architecture of gene 

expression. Our effort focuses in understanding from gene expression measurements the complex 

processes at the genetic level. Microarray gene expression measurements have been used in wide 

variety of contexts, from the classical differential expression analysis up to the classification of 

tissues for disease diagnosis. With the objective in understanding the complex process of gene 

regulation, gene expression measurements have been conceived as continuous trait in the analysis 

of Quantitative Trait Locus analysis. These analyzes aim to identify the chromosomal region, the 

DNA polymorphism (binding site or a regulatory protein -transcription factor-) that affect the 

levels of gene expression in an inheritable way. This statistical tool is been denominated eQTL 

analysis. 

 Traditionally eQTL analysis associates genetic variation to gene expression 

measurements and from there attempt to assign biological function. Even though this technique 

has had several successes and has provided an insight into what can be proxy for regulatory 

associations, the association to biological function lacks of significance meaning given that it 

involves the combination of statistical procedures. 

 In this work we present an alternative approach for eQTL analysis. Our approach is based 

on the unification of prior biological knowledge as sources for gene group definitions and the 

concept of integration of measurements. Our model associates directly genetic variation to 

biological function by conceiving genes as repeated measurements of the gene groups considered 

from the biological annotation chosen. 

 In this Chapter we present our proposed method for eQTL defined as functional 

Quantitative Trait Loci analysis: fQTL analysis. We also present an application to an Alzheimer's 

disease dataset. And finally we present the ongoing work to complete this proposal. 
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4.1 The method 

 The objective of the proposed work is to identify the associations between variations at a 

genetic level and biological functions, based on the concept of genes acting as repeated 

measurements of such biological functions (gene groups). We refer to biological functions as 

predefined gene set annotations from databases like Reactome pathways (Croft, D., et. al., 

(2011)) or the Gene Ontology (Ashburner, M., et. al., (2000)). The associations will be estimated 

through a linear model. These associations provide an insight of the chromosome regions that 

affect the biological functions associated with the disease of interest. 

 We describe in detail the model for the fQTL analysis method proposed. There are a total 

of K subjects, J single nucleotide polymorphisms (SNPs), I gene groups and H genes. Let k 

denoted the subject, j the SNP, i the gene group and hi for the gene within gene group i. The 

fQTL model is 

!!"#!! = !!!" + !!!" !"#:!""! + !!!"1 !ℎ! = 1 + !!!" !"#:!""! ∗ 1 !ℎ! = 1 !

!!"#!!~! 0,!!"! . 

From this setting it is immediate to see that our model by design will capture associations 

between SNPs and biological functions with more power than a traditional eQTL analysis would. 

Our main interest is to identify the associations between SNPs and gene groups for which the 

effect differs among stages of the disease under study. This effect relies in !!!", which are the 

parameters of interest.  

  4.2 Application 

 In this work we provide an fQTL analysis on a cohort of control and late-onset Alzheimer 

disease (LOAD) human brain samples provided by Webster, J. A., et. al. (2009). Raw genotype 

data and normalized gene expression data is provided. For our analysis we preprocessed the raw 
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genotype data, excluding genotypes with less than 90% in sample call rate and in SNP call rate. 

We also excluded genotypes that rejected the Hardy-Weinberg test to 0.05 significant level. 

Finally we excluded the genotypes that had less than five subjects for each allele class (cero, one 

or two minor alleles). In the end our analysis considered 208,631 SNPS, 363 subjects, 187 

controls and 176 LOAD. Gene expression measurements we normalized with the rank invariant 

transformation. 

 According to the National Institute of Aging Alzheimer’s disease is an irreversible, 

progressive brain disease that slowly destroys memory and thinking skills, and eventually even 

the ability to carry out the simplest tasks. This disease is among the most common cause of 

dementia among older people, affecting an approximate 5.1 million people in America. 

 For this analysis we used the Molecular Functions (MFs) provided by GO. Only the MFs 

with more than 7 elements were considered. Our interest is on the associations between SNPs and 

gene groups for which the effect differs among stages of the disease under study (!!!"). The 

significant effects were identified using a Bonferroni significance level of 0.05. Figure 4.1 

presents a composite Manhattan plot showing all the SNPs presenting an association with a MF 

for which there is an effect between Alzheimer status. From this Manhattan plot we are able to 

see that there are twenty-two MF identified. From these eleven MFs consistent with what is 

known about the mechanisms associated to Alzheimer (Figure 4.2). These elven MFs provide a 

wide overview of the potential mechanisms that are affected by sequence variations. From the 

activity of small GTPase regulator activity that enhances the generation of Beta amyloid and 

synaptic dysfunction up to Vitamin binding, that is associated with hormone receptors in patients 

with Alzheimer's disease. 
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!

Figure 4.1 Composite Manhattan plot, showing the locations of the SNPs and the MFs that differ 
in effect between Alzheimer status. 

!
!

!
Figure 4.2 Eleven from the twenty-two molecular functions (MFs) having a significant 
association with a SNP for which there is a differential effect of Alzheimer status. These MFs are 
highlighted in blue. Highlighted in yellow are the literature findings reporting the association for 
each MF to Alzheimer. 

  

small GTPase regulator activity

Fatty acid amide hydrolase as a 
biomarker of AD. Macarrone 

2012

Acetylcholine binding 

Hydrolase activity

Oxidative stress, generation of 
Beta amyloid and synaptic 
disfunction. Eckert 2010

Microtubule motor activity

Beta amyloid deregulates the 
mechanisms of microtubules 
resulting of defective mitotic 

structures. Potter 2011

Deacetylase activity

Activated transcription of alpha-
secretase inhibits beta-amyloid 

plaques. Cano 20122

Hormone binding

Increased levels of sex-hormone 
binding globulin are elevated in 

AD. Mayeux 2004 

There is a loss of Acetylcholine 
receptors in AD. Kellas 1988

Calcium channel activity

Calcium channel are 
exaggerated activated in AD. 

Foskett, K

N-Methyltransferase activity

N-Methyltransferase activity is 
decreased in AD. Joh 1987

Vitamin binding

Reduction of Vitamin D  hormone 
receptors in AD. McLachlan 

1992

Neurotransmitter binding

Phosphatase regulatory activity

Lower activity in gray and white 
brain mater in AD brains. Iqbal 

1993
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4.3 Method comparison 

 The inferences obtained from the proposed fQTL analysis are compared to a classical 

eQTL analysis. We performed a classical eQTL analysis on the same set of genes considered for 

the fQTL analysis and the same linear model. By using the same Bonferroni significance level of 

0.05 a list of genes were identified as being associated to a SNP with a differential effect to 

Alzheimer status. This list of significant genes was enriched using DAVID from the National 

Institute of Allergy and Infectious Diseases (NIAID-NIH). From this enrichment analysis a total 

of twenty-six Molecular functions were identified using a Bonferroni correction of 

!

Figure 4.3 Molecular functions (MFs) identified using DAVID with a Bonferroni significance 
level of 0.05. This enrichment analysis was done using the gene list provided from the classical 
eQTL analysis performed. Highlighted in blue are the MFs identified and in yellow the 
classification themes that clustered them. 

5%. In Figure 4.3 we show these MFs identified from DAVID's enrichment analysis. Even 

though there are more MFs identified their activity can be resumed in five major classes: protein 

protein binding gated channel activity ion transmembrane transporter 
activity

substrate specific 
transmembrane transporter 

activity

catión transmembrane 
transporter activity

ion channel activity

transmembrane transporter 
activity

substrate specific channel 
activity
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passive transmembrane 
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voltage gated channel 
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binding, channel activity, transporter activity, symporter activity and transcription activity. In 

comparison with the MFs identified by the fQTL analysis, our inferences provide a broader and 

consistent view of the mechanisms that are driving by these genetic variations. It has to be 

highlighted that our associations, by design, have more power than the ones obtained by 

combining a classical eQTL and a widely used gene set enrichment tool like DAVID. 

4.4 Discussion and future work 

 In this chapter we have shown the method we propose for Quantitative Trait Loci 

analysis. This method is based on the proposed unification of prior biological knowledge and the 

concept of integration of measurements. This method is a variation to the classical eQTL analysis, 

attempting to associate directly chromosomal regions to biological functions that are affected by 

the disease status. By considering genes as repeated measurements of gene groups, by design, our 

approach has power in identifying such associations than the ones obtained by combining a 

classical eQTL and a widely used gene set enrichment tool like DAVID. 

 The method was applied to cohort of postmortem samples with late-onset Alzheimer 

disease. The interest of this application was to identify the Molecular Functions from GO that 

presented an association with SNPs for which their group behavior is affected by the Alzheimer 

status. Our method presents a broader overview of the MFs that are influenced by the interaction 

of SNPs and Alzheimer status, than a traditional eQTL analysis. 

 As continuation to this work, we propose to analyze an independent dataset in order to 

analyze the performance of the proposed method in terms of concordance: replicability of the 

inferences obtained between independent datasets. Besides this direction we pretend to analyze 

whether the inferred statistical associations provide biological insight, by analyzing the regulatory 

proteins (transcription factors -TFs- or microRNAs) between SNPs and its associated biological 

function. Being able to establish this confirmation at the biological level will enable the 
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possibility to provide insightful and useful biological hypothesis between functions associated to 

the disease of interest and at is potential regulatory mechanisms. 
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