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Role of Vascular Endothelial Growth Factor Signaling in Brown Adipocyte 

Survival, Proliferation and Function 

ABSTRACT 

 Both white and brown adipose tissues exhibit extensive vascularity. Increased 

angiogenesis in brown adipose tissue (BAT) is crucial for brown fat activation and 

thermogenesis in animals during cold acclimation. BAT can be similarly activated by food 

intake to generate heat through cellular respiration, in a process known as diet induced 

thermogenesis.  Vascular endothelial growth factor (VEGF) is a potent angiogenic factor that 

regulates both pathological and physiological angiogenesis and can stimulate cell 

proliferation, migration, survival and vessel permeability.  However, VEGF has also been 

shown to affect an increasing number of non-vascular cells such as skeletal muscle and 

kidney podocytes. The expression and function of VEGF in white and brown adipocytes are 

not fully understood. We have previously shown that the expression of VEGF is 

concomitantly regulated with skeletal muscle differentiation.  Here we show that VEGF is 

expressed in BAT and all major white adipose depots in mice. VEGF expression was 

increased during white and brown adipocyte differentiation and was regulated in cultured 

brown adipocytes by the PPARγ agonist troglitazone and by PGC1α in BAT in vivo. 
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Systemic VEGF neutralization led to brown adipocyte apoptosis in vivo, loss of 

mitochondrial cristae and increased mitophagy and was associated with increased 

inflammation and fibrosis. VEGFR2 was expressed in both brown preadipocytes and 

adipocytes. Blockade of VEGF signaling using anti-VEGFR2 antibody DC101 increased brown 

adipocyte apoptosis in vitro. VEGF also functioned as a mitogen and survival factor for 

brown preadipocytes. VEGF 164 and VEGF 188, isoforms that can bind heparan sulfate 

proteoglycans, comprise >98% of total VEGF in BAT, subcutaneous and perigonadal fat 

depots. Embryos that lacked VEGF 164 and 188 displayed abnormal BAT development with 

fewer brown adipocytes, lower levels of mitochondrial uncoupling protein 1 and Cox IV.  

These results indicate a direct role for VEGF signaling in brown adipocytes and 

preadipocytes and suggest the importance of heparan sulfate binding VEGF isoforms in BAT 

development. Elucidation of the role of VEGF signaling in adipocytes is vital to 

understanding adipose tissue expansion and activation and may reveal novel therapeutic 

targets for the activation of brown fat in humans.  
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Adipose Tissue 

Adipose tissue in mammals is categorized to two types, white and brown, according 

to their distinct physiological roles. White adipose tissue (WAT) serves as a storage depot 

for excess calories and functions as an endocrine organ to integrate various homeostatic 

processes. Brown adipose tissue (BAT) is a major thermogenic organ that generates heat 

under regulation of the sympathetic nervous system.  

White Adipose Tissue 

WAT was long thought to be a passive storage depot for excess calories, with few 

other functions. The steep rise in obesity and associated comorbidities, such as type 2 

diabetes and cardiovascular disorders, over the past 30 years has fueled scientific research 

in this area.   

Development and Distribution 

Although most multicellular organisms have cells that store excess energy, 

adipocytes evolved to meet this need at the time of vertebrate radiation. Mammals, birds, 

reptiles, amphibians and many fish have cells that are readily identifiable as adipocytes, 

although their anatomical locations vary considerably across species.  Most mammals have 

WAT dispersed throughout the body in two major types of depots – subcutaneous (SC) and 

intraabdominal (or visceral). In mouse, the inguinal fat is the major SC depot, whereas the 

visceral depots are in the retroperitoneal, periovarian (in females) and epididymal (in males) 

regions. In humans, the major intraabdominal depots of 



Mesenteric 

Epididymal 

Inguinal 

Cervical 

Perirenal and 
retroperitoneal 

Mediastinum 

Interscapular 

Gluteal 

Figure 1.1. Brown and white adipose depots. (A) In humans,  WAT is 
distributed throughout the body with subcutaneous and intra-abdominal 
depots representing the main compartments. BAT is abundant at birth (inset) 
and present in adulthood to a lesser extent. (B)Typical distribution of white and 
brown adipose in a lean mouse at 20C. WAT and BAT depots are present 
throughout life in rodents, but varies depending on weight and environmental 
temperature. Scale bar represents 2 cm. (A) adapted from Gestal et al. 2007, 
(B) adapted from The Adipose Organ, plate 1, Editrice Kurtis Ltd., 1999 

BAT in 
infants 

A 

B 

3 



4 
 

WAT are around the omentum, intestines and perirenal areas, whereas SC depots are in the 

buttocks, thighs and abdomen. In addition, WAT can be found in many other areas, 

including in the retro-orbital space, on the face and extremities, and within the bone 

marrow (Gesta et al. 2007). The distribution of WAT varies considerably, not only across 

species but also between individuals of the same species. In humans, obesity in which fat 

deposition is localized in the SC depot (pear shaped obesity) is correlated with a lower risk 

of associated metabolic disorders while deposition in the intraabdominal depot (apple 

shaped obesity) correlates with a higher risk. How excess calories are directed to one depot 

versus the other is not understood. Gene expression profiling has revealed significant 

differences between different adipose depots in both rodents (Gesta et al. 2006) and 

humans (Vidal 2001; Vohl et al. 2004) (Figure 1.1). 

WAT, similar to muscle and bone, is thought to have a mesodermal origin. 

Development of WAT begins at midgestation (in humans) or shortly after birth (in rodents) 

and gradually increases in size throughout life. Adipose tissue develops in close spatial and 

temporal association with the vasculature, and in a presumptive fat depot arteriolar 

differentiation precedes the appearance of preadipocytes. It was recognized very early on, 

that the development of adipocytes in close proximity to blood vessels indicated that an 

established vascular supply is necessary for adipose tissue development (Clark & Clark 

1940); although, sometimes, adipose development is concurrent with arteriolar 

differentiation, depending on the depot (Hausman & Thomas 1986). In adults, fat depots 

consist of mature adipocytes and adipocyte precursors (as well as stromal and vascular 
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cells). Expansion of adipose tissue occurs through an increase in size of existing adipocytes 

as well as the recruitment of preadipocytes.   

Structure 

White adipocytes are 50 – 100 µm in diameter in humans and can be significantly 

larger in obese subjects. A single lipid droplet occupies more than 90% of the cell volume, 

the remaining consisting of a narrow rim of cytoplasm, a nucleus shunted to the side and 

few elongated mitochondria (Figure 1.2). Each lipid droplet is coated with perilipin, which 

protects the lipid from hydrolysis by lipases (lipolysis) under basal conditions but is 

necessary for stimulated lipolysis (Figure 1.3). WAT is extensively vascularized; virtually 

every adipocyte is in close proximity to at least one capillary (Gersh & Still 1945)  (Figure 

1.4). The microvasculature of adipose tissue, unlike muscle, retina and several other organs, 

does not have a particular orientation but is organized in a loose mesh within the 

connective tissue that surrounds adipocytes (Crandall et al. 1997).  WAT depots vary in 

terms of cellular and tissue organization as well as vascular structure. For instance, in 

mouse the epididymal fat pad is more lobular compared to the SC depot, whereas the 

inguinal depot has brown preadipocytes interspersed amidst white adipocytes, which 

acquire brown-like characteristics upon sympathetic stimulation.  

Function  

WAT primarily functions as the storage site for excess calories, which are deposited 

as triglycerides within the droplet of each adipocyte. However, when glucose is limiting,  
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10 µm 

Connective 
tissue 

25 µm 

Figure 1.4. Microvasculature and stromal cells of WAT. Scanning electron 
micrograph (SEM) of white adipose tissue (A) Periovarian WAT depot of adult 
rat demonstrating large adipocytes associated with connective tissue. Scale bar 
represents 50 µm. (B) SEM of a capillary surrounding a white adipocyte 
demonstrates the association between adipocytes and the vasculature. Scale 
bar represents 10 µm. Reprinted with permission from The Adipose Organ, 
plates 25 (A) and 10 (B), Editrice Kurtis Ltd., 1999 
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neurohormonal stimulation induces lipases to release triglycerides from the lipid droplets 

into the circulation for use by other tissues as fuel.   

WAT is the largest endocrine organ in mammals. Adipocytes synthesize and release 

peptide hormones, known as adipokines, that coordinate and integrate a wide array of 

homeostatic processes such as control of blood pressure, bone mass, thyroid and 

reproductive function and even the immune response (Trayhurn 2005). Notable among 

these adipokines are leptin, adiponectin, visfatin, resistin and omentin. Adipose tissue (but 

not necessarily adipocytes themselves) also secretes several cytokines, including tumor 

necrosis factor (TNF)-α, interleukins 1 and 6. Some of these secreted factors, such as 

adiponectin and visfatin, have a positive effect on overall insulin sensitivity, whereas others, 

like TNFα, reduce insulin sensitivity.  Interestingly, even though obese subjects have more 

adipose tissue, their circulating adiponectin levels are lower compared to lean subjects 

(Yatagai et al. 2003).  

Adipose tissue expansion and obesity 

Fat depots grow by an increase in size of resident adipocytes through storage of 

more lipids as well as by recruitment of new adipocytes. This expansion is accompanied by 

remodeling of the vasculature and associated connective tissue.  However, in most 

instances of diet-induced weight gain, WAT expansion occurs through hypertrophy of 

existing adipocytes, accompanied by insufficient vascular remodeling.  As a result, adipocyte 

size is increased and capillary density is decreased, resulting in reduced perfusion and local 
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tissue hypoxia. In WAT, hypoxia is associated with an increased expression of inflammatory 

genes and decreased expression of adiponectin (Ye et al. 2007).  

Adiponectin is a key insulin-sensitizing adipokine and one of the central mediators of 

insulin resistance. A modest increase in the level of adiponectin in ob/ob mice led to 

improvement across all metabolic parameters associated with obesity, from insulin 

resistance to β-cell dysfunction, although the mice remained obese (Kim et al. 2007). In 

addition, it was recently shown in vivo and in vitro that adiponectin transcription by PPARγ 

was dysregulated by cdk5, a cyclin dependent kinase that is activated by pro-inflammatory 

cytokines (Choi et al. 2010). In addition, increased expression of inflammatory cytokines 

such as monocyte chemotactic protein-1 by local hypoxia and endoplasmic reticular stress 

lead to recruitment of macrophages to adipose tissue, which secreted additional 

inflammatory cytokines such as TNFα and interleukin 1. Inflammatory cytokines contribute 

to insulin resistance by suppressing insulin action on peripheral tissue. Thus, these two 

processes, reduced circulating adiponectin and increased localized inflammation in the 

adipose tissue, contribute to development of obesity-associated insulin resistance and 

progression to type 2 diabetes.  

However, not all who are obese develop type 2 diabetes or cardiovascular disorders.  

For some individuals, referred to as “metabolically healthy obese”, weight gain takes place 

through “healthy adipose tissue expansion” and is not accompanied by pathological 

consequences. Healthy adipose tissue expansion consists of enlargement of a fat pad 

through recruitment of new adipocytes, increased angiogenesis and appropriate vascular  

remodeling; there is no associated hypoxia, and minimal fibrosis and inflammation (Sun et 
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al. 2012).  Thus, although there is increase in fat mass, it is not accompanied by insulin 

resistance and metabolic dysfunction. Recent studies, described later in this chapter, have 

aimed to facilitate healthy adipose tissue expansion in murine models of diet-induced 

obesity  by promoting angiogenesis during the early phase of fat mass expansion (Sun et al. 

2012).  

Brown Adipose Tissue  

Unlike WAT, BAT does not function as a storage depot for triglycerides, instead 

metabolizes them to generate heat when necessary.  Thus, BAT is the major site for 

adaptive non-shivering thermogenesis (NST) in mammals. NST is the process of increased 

heat production, over basal metabolic levels, which is not a result of muscle activity and is 

mediated by the sympathetic nervous system ((SNS). BAT regulates thermogenesis during 

environmental stresses, such as reduced temperatures, to maintain body temperature and 

protect the organism from hypothermia (Smith 1964).  BAT also secretes fatty acids (FA) and 

factors such as leptin (although at a much lower level than WAT), adiponectin, 

triiodothyronine (T3), that are thought to play endocrine roles (Cannon & Nedergaard 

2004). Recent data suggest that BAT activity regulates vascular lipoprotein homeostasis by 

enhancing lipid clearance from plasma during short term cold exposure (Bartelt et al. 2011).  

Distribution of brown adipose tissue 

First described in 1551, BAT was long known to be present in small rodents, 

hibernating animals and newborn mammals, including human infants; essentially mammals 

that are not able to generate heat by shivering (muscular movement) and whose high 
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surface to volume ratio results in increased energy loss as heat (Smith & Horwitz 1969).  In 

rodents, BAT is present in the interscapular, axillary and perinephric depots, of which the 

interscapular depot (often referred to as iBAT) is the largest and most commonly studied. 

It was believed that BAT in humans atrophied with age and was completely absent in 

adults. However, in the last decade several landmark studies provided convincing evidence 

for the presence of metabolically active BAT depots in adult humans (for a review see 

Cypess & Kahn 2010).  BAT in adult humans was originally identified in cancer patients being 

examined by positron emission tomography (PET) – computed tomography (CT) scanning to 

trace the uptake of 18F-fluoro-2-deoxyglucose (18F-FDG) by metabolically active tissue such 

as cancer metastases. In addition to sites of metastasis, this imaging revealed additional 

areas of strong 18F-FDG uptake, particularly in the thoracic region, which were 

symmetrically distributed and hence unlikely to be tumors (Nedergaard et al. 2007); these 

sites were later identified as BAT depots. Currently, it is widely accepted that a significant 

fraction of adult humans possess BAT, although a consensus is yet to be reached regarding 

numbers. Because of the limitations of the 18F-FDG above method in detecting BAT, 

estimates of the prevalence of BAT in the adult population have varied greatly across 

different reports from 7.5 to 25% and even 80% of patients examined (Cypess et al. 2009).  

The two most commonly detected BAT depots in adult humans are located in the 

supraclavicular and neck regions. In addition, a symmetrical pattern of BAT is seen along the 

spinal cord as a paravertebral depot, in the para-aortic area of the mediastinum and around 

the apex of the heart, as well as the perirenal depots, all generally demonstrating weaker 

18F-FDG uptake than those in the thoracic region (Figure 1.5).  While this distribution 
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pattern is similar, but not identical, to BAT distribution in rodents, it closely corresponds 

with the distribution of BAT in human infants (Aherne & Hull 1966). Besides the above 

conventional BAT depots, brown adipocyte precursors are dispersed in certain WAT depots 

of both humans and rodents. These precursors can be induced to differentiate into mature 

brown adipocytes by catecholamines or by the expression of peroxisome proliferator-

activated receptor coactivator 1α (PGC1α) (Tiraby et al. 2003). These induced brown 

adipocytes are referred to as “brite” (brown + white) adipocytes. 

Development  

BAT evolved significantly later than WAT, in parallel with endothermal vertebrates - 

birds and mammals - and their need to regulate body temperature through NST (Gesta et al. 

2007). BAT forms much earlier during development than WAT and reaches its maximum 

mass shortly after birth. In mouse, BAT structures are first observed in the interscapular 

region around embryonic day 15 (E15); fat deposition in the form of single lipid droplets 

begins soon after.  Prior to birth there is rapid expansion of fat mass, which continues 

postnatally accompanied by cell proliferation, a rise in triglyceride content in the form of 

multilocular droplets, an increase in mitochondria number as well as in activity of the 

mitochondrial respiratory enzymes, such as glycerol-3-phosphate dehydrogenase, succinate 

dehydrogenase and cytochrome C and differentiation of mitochondria ultrastructure. At 

birth, there is a temporary depletion of triglycerides, suggesting that BAT might be 

thermogenically active at birth. Postnatal expansion of BAT continues for several days until 
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the tissue is at its peak of differentiation and functional activity between postnatal day 6 

and 15.  In fact, norepinephrine (NE) injected into fetal rats perinatally increases enzyme 

activity significantly, indicating that brown adipose is responsive to NE even at a very early 

stage. Cortisone injections, on the other hand, reduced mitochondrial enzymatic activity, 

although BAT mass increased, possibly due to increased lipid accumulation (Skala & Hahn 

1974).  Around postnatal day 21, a second phase commences marked by involution of BAT 

and reduction of enzymatic activities, which likely coincides with decreasing demand for 

NST as this can be prevented by exposing the animals to cold or NE (Barnard 1969; Zhou et 

al. 2003; Skala & Hahn 1974; Hirning et al. 1989).  

In humans, immature brown adipocytes can be detected as early as in the 29th week 

of gestation. The development of the tissue appears to follow that observed in mouse with 

rapid expansion of cell volume and mitochondrial biogenesis.  Similarly, following birth, cells 

continue to grow, accompanied by a decrease in lipid content. Human infants have an 

estimated 30 g of BAT, about 1% their body weight (Aherne & Hull 1966; Hull 1976). In spite 

of the widespread decline in BAT through the first decade of life, most adults retain some 

functionally active BAT. 

Along with muscle, cartilage, bone and white adipose, BAT has a mesodermal origin, 

but brown adipocytes at different anatomical locations have distinct lineages. In the 

interscapular and perirenal depots of mice, brown adipocytes are derived from a myf5-

expressing progenitor that shares a common myoblastic lineage (Timmons et al. 2007), 

whereas brown adipocyte precursors interspersed within WAT depots and muscle are 

derived from myf5-negative cells that share a common non-myogenic lineage with white 
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adipocytes and have features different from brown adipocytes in the interscapular depot, 

including greater sensitivity to β3-adrenergic stimulation and cold exposure (Timmons et al. 

2007; Seale et al. 2008). When induced by the latter, they differentiate to multilocular 

uncoupling protein (UCP)-1+ thermogenically active cells referred to as “brite” adipocytes 

described above.  

Structure 

There are significant differences between BAT and WAT structure at the tissue and 

cellular level. BAT consists of brown adipocytes interspersed with stromal cells and 

connective tissue in a rich vascular network (Figure 1.6). The blood vessels and individual 

brown adipocytes are directly innervated by the SNS, which regulates its key function, 

adaptive thermogenesis, through the release of NE (Figure 1.7).  

Brown adipocytes are smaller than white adipocytes (38 – 45 µm vs. 50 – 100 µm) 

and are multilocular, containing several small lipid droplets (Figure 1.3). The cytosol is 

densely packed with numerous mitochondria (Figure 1.8), the site of thermogenesis, making 

them the most important organelles in the cell. The number and ultrastructure of the 

mitochondria vary depending on the level of thermogenic activity in BAT.  Table 1 lists the 

major structural features of white and brown adipocytes.  

Function  

The major function of BAT is adaptive NST, which is regulated by the SNS through 

the release of catecholamines, primarily NE.  BAT performs NST under two principal 

conditions: during cold acclimation to maintain body temperature and during diet-induced 
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thermogenesis (DIT). The notion that BAT participated in cold-induced NST was made 

several decades ago and was based on morphological changes observed in BAT  when 

animals were exposed to cold (Smith & Horwitz 1969).  Subsequent studies in rodents 

demonstrated the regulation of the process by the SNS, the role of mitochondria, and 

identified key molecular players in this process, including PGC1α, UCP1 and β-adrenergic 

receptors (Enerbäck et al. 1997; Puigserver et al. 1998). The recent identification of BAT in 

adult humans and measurements of glucose and FA- turnover in BAT using a tracer (Ouellet 

et al. 2012), also demonstrated that BAT functions as a cold-induced effector of NST in 

humans.  

BAT produces heat following food intake, a response known as DIT.  DIT, however, 

does not refer to the heat generated during food digestion. Instead, it refers to the 

induction of BAT thermogenic activity by catecholamines following increased food 

consumption over a prolonged period of time. The concept of metabolic efficiency is central 

to this discussion. Metabolic efficiency refers to the amount of energy stored per unit of 

energy ingested; high metabolic efficiency indicates that a larger fraction of energy is stored 

whereas low efficiency means that a larger fraction of the ingested energy is “lost” as ATP 

or heat. DIT by BAT results in lowered metabolic efficiency since a portion of the ingested 

calories is consumed in thermogenesis, instead of being stored as lipids and glycogen in 

WAT depots.  Thus, by lowering metabolic efficiency, BAT can play a key role in protection 

from diet-induced obesity (DIO).  Accordingly, ablation of BAT reduces energy expenditure 

and increases obesity in response to high-fat diets (Ghorbani et al. 1997; Guerra et al. 1998; 

Lowell et al. 1993).  



Warm Normal 

Cervical 

Supraclavicular 

Paravertebral 

Mediastinum 

Suprarenal 

A 

B 

Figure 1.5. Detection and distribution of BAT in adult humans (A) Cold-induced brown 
adipose tissue activation in adult man. The same patient was investigated by FDG-PET twice 
a few days apart. Left: Patient was kept under warm conditions before injection and until 
imaging. The only uptake visible is that into the brain, heart, kidneys, and bladder. Right: the 
patient had been examined under routine conditions, i.e., in comparatively cold conditions. 
The characteristic symmetrical pattern of uptake into the supraclavicular, neck, paravertebral 
areas, etc., i.e., into brown adipose tissue, is now visible. (B) Sites of FDG uptake 
corresponding to brown adipose tissue in adult humans. The black areas are those that are 
most frequently described; the gray areas are not always found, even in humans positive in 
the black areas. Reprinted from Am J Physiol Endocrinol Metab, 293:444-452,2007. 
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Table 1 – Comparison of white and brown adipose tissue  

Characteristic White adipose tissue Brown adipose tissue 

Color Cream or ivory Brown 

Adipocyte size (diameter) 50 – 100 µm 30-50 µm 

Fat Storage Unilocular lipid droplet Multilocular lipid droplet 

Mitochondria Few Numerous 

Nucleus Peripheral Central 

Unique marker Leptin UCP1 

Primary function Energy storage + endocrine  
 

Energy expenditure by non-
shivering thermogenesis 

 

Prevalence in humans Present in all adults Abundant in infant, present 
in some adults 

Development Throughout life Perinatal 
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Figure 1.7. Innervation of brown adipose tissue. (A) Shown here are the nerves (5 total) 
from the right intercostal region reaching the ventral portion of adult rat interscapular BAT. 
The BAT has been pinched and folded back to reveal the nerves. (B) TEM of interscapular BAT 
showing cross section of a nerve ending (dotted red line) in between three brown 
aidpocytes. LD – lipid droplets; scale bar represents 500 nm. (A) was reprinted with 
permission from The Adipose Organ, plate 13, Editrice Kurtis Ltd., 1999 
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Figure 1.8. Mitochondria in brown and white adipocytes (A) TEM demonstrating the 
mitochondrial content of white (left) and brown adipocyte (right). Whereas a white 
adipocyte has a few mitochondria, the cytoplasm of a brown adipocyte is densely packed 
with mitochondria, which are critical for their function. White adipocyte mitochondria are 
elongated with a few, often incomplete cristae. Brown adipocyte mitochondria are larger, 
uniform and packed with numerous cristae (red arrows) (B) High magnification SEM of a 
typical brown adipocyte mitochondria demonstrating the transverse cristae. Scale bars are 
indicated. (A) adapted from Gestal et al. 2007, (B) adapted from The Adipose Organ, plate 5, 
Editrice Kurtis Ltd., 1999 
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DIT was first proposed more than thirty years ago based on experiments in which 

rats fed a “cafeteria diet” (composed of foods high in fats and sugars) gained less weight 

than expected from caloric intake and showed increased BAT activity (Rothwell & Stock 

1979). With subsequent generation of transgenic mouse models, two lines of evidence 

pointed to a role for brown adipose-mediated DIT as a metabolic mechanism resulting in 

protection from obesity. One series of studies demonstrated that genetically obese animals 

had inefficient NST and atrophied BAT, implying that metabolic efficiency was increased as a 

result of inadequate BAT function. The other line of evidence made use of transgenic mouse 

models of key NST regulators demonstrating that the animals that were sensitive to cold 

were also quick to develop DIO, whereas those that exhibited increased thermogenesis 

were resistant to DIO (for a review see Lin & Li 2004).  Notably, ablation of BAT (using a 

diphtheria toxin transgene targeted specifically to BAT) exhibited cold sensitivity and 

became obese (Lowell et al. 1993) Taken together, these results indicated the dual function 

of NST in temperature regulation and in the maintenance of body weight. 

In adult humans, the contribution of BAT to metabolism is controversial, but it has 

been estimated that 50 g of maximally active BAT could account for up to 20% of the body’s 

daily caloric expenditure (Rothwell & Stock 1983).  Whether BAT is utilized for DIT in 

humans following “cafeteria diet” has not been investigated, in part due to the lack of 

appropriate non-invasive techniques to measure BAT activity under non-fasting conditions. 

However, a retrospective study that analyzed 18F-FDG PET–CT images of 1972 adult patients 

found BAT activity to be inversely correlated with body mass index, age and blood glucose 

level, suggesting that reduced BAT activity likely contributes to a subset of age-related 
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obesity (Cypess et al. 2009).  In addition to its capacity for NST, it was recently shown that 

activation of BAT via short-term cold exposure led to efficient channeling of FA into BAT 

through a metabolic program that increases uptake of TG-rich lipoproteins.  As a result, lipid 

clearance from plasma became more efficient, implying that BAT might be an important 

regulator of blood lipid levels (Bartelt et al. 2011). 

BAT structure is ideally adapted to its major function, NST, at both the tissue and 

cellular levels. At the tissue level, innervations by sympathetic nerve endings allows 

catecholamines released during SNS stimulation, by cold or food intake, to bind to β3 

adrenergic receptors on the adipocytes and activate thermogenesis.  During this process a 

dense capillary network enables rapid exchange of oxygen and carbon dioxide as well as 

efficient dissipation of the generated heat and its distribution throughout the body. 

Moreover, cold acclimation results in increased vascularity in BAT through angiogenic 

remodeling, increased blood flow and vaso-dilatation (Korac et al. 2008). For instance, cold 

induced a 12-fold increase in glucose uptake by BAT and was  accompanied by doubling of 

perfusion (Orava et al. 2011).  At the cellular level, the enormous capacity for 

thermogenesis derives from the large number of mitochondria in each adipocyte, each of 

which generates heat by the activity of the UCP1 protein, a key component of 

thermogenesis. Thus, the number and volume of mitochondria, and the number of cristae 

increase with thermogenic activity in mature brown adipocytes and are also indicative of 

the cell’s thermogenic activity.   

 



24 
 

Regulation of thermogenic activity in BAT 

The process of thermogenesis takes place in the mitochondria.  PGC1α is a master 

regulator of mitochondrial biogenesis and oxidative metabolism in most cell types, including 

brown fat and skeletal muscle. Genetic ablation of PGC1α results in reduced capacity for 

cold-induced thermogenesis in vivo while ectopic expression of PGC1α in WAT induced 

expression of multiple target mitochondrial and thermogenic genes including UCP1. PGC1α 

thus is a crucial regulator of adaptive thermogenesis (Puigserver et al. 1998; Puigserver 

2003). 

In most eukaryotic cells, the mitochondria are the sites of aerobic respiration i.e., 

the Krebs cycle and the electron transport chain.  Through the electron transport chain,  

which takes place in the inner mitochondrial membrane, a series of transmembrane enzyme 

complexes generate an electrochemical gradient by extrusion of protons (H+ ions) into the 

intermembrane space, and the gradient is converted to chemical energy in the form of ATP, 

by the membrane bound ATP-synthase. However, brown adipocytes express UCP1, a unique 

proton transporter localized to the inner mitochondrial membrane. When activated, UCP1 

pumps protons from the intermembrane space into the mitochondrial matrix, bypassing the 

ATP-synthase and effectively uncoupling the electron transport chain, thereby allowing the 

electrochemical energy to dissipate as heat (Farmer 2008). UCP1 is activated by free FA and 

is inhibited by purine nucleotides.  

Stimulation of the SNS leads to release of NE by nerve endings in BAT. NE then binds 

to the β3 adrenoreceptors on the plasma membrane of brown adipocytes and activates 

adenylyl cyclase, accelerating the conversion of ATP to the second messenger cAMP. cAMP 
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activates protein kinase A, which in turn, phosphorylates and activates hormone sensitive 

lipase as well as the transcription factor cAMP response element-binding protein (CREB).  

Phosphorylated hormone sensitive lipase translocates to lipid droplets, where it hydrolyzes 

the stored triglyceride into FA and glycerol. The release of FA has two purposes: fuel for 

thermogenesis and as activators of UCP1. In parallel, CREB leads to the activation of PGC1α, 

which increases UCP1 transcription.   

BAT and the pandemic of obesity 

Approximately 33% of the global population is obese and another 33% is 

overweight. Obesity results from caloric intake that exceeds energy expenditure over a 

prolonged period of time. Most of the excess calories are stored in WAT. Thus, approaches 

that decrease metabolic efficiency, such as aerobic exercise, are beneficial in avoiding 

weight gain. Accordingly, DIT in BAT can counteract the obese phenotype (Seale & Lazar 

2009) (Figure 1.9).  It is important to note that because basal metabolism in BAT, which 

does not require adrenergic stimulation, is not thermogenic, any pharmaceutical approach 

to increase the total amount of BAT must also include a method to ensure that the tissue is 

adequately stimulated, such as by providing adrenergic stimulation. The discovery of 

adipose-specific β3-adrenoceptors in both mice and humans raised hope that β3-selective 

agonists could stimulate energy expenditure without producing adverse side effects. Such 

compounds were effective for the treatment of obesity in rodents but performed poorly in 

limited clinical trials and suffered from lack of selectivity, low efficacy and poor 

bioavailability (Lin & Li 2004). On other fronts, polymorphisms in the UCP1 gene with 
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linkage to obesity are being investigated. In addition, a recent study reports the existence of  

a muscle-derived hormone, irisin, which is induced by exercise and causes ‘browning’ of 

WAT and thermogenesis, without cold or high fat died (HFD) in both mice and humans. 

Induction of such an agent could be a therapeutic approach to increase BAT thermogenesis  

A greater understanding of the molecular regulators of BAT activity and the basis for 

its presence in some humans but not in others is required to manipulate the huge 

thermogenic capacity of this tissue. Important questions that remain include the following:   

Are there genes in addition to UCP1 that perform the uncoupling function? How can the 

thermogenic capacity of BAT be fully utilized? What is the function of the vasculature 

besides gas/nutrient exchange and heat dissipation? Would increasing vascular remodeling 

enhance efficiency of NST in BAT? 

  



Figure 1.9. Role of WAT and BAT in energy homeostasis. Weight gain and 
obesity are caused by chronic periods of positive energy balance. Energy intake 
comes from food consumption, whereas is “burnt” through exercise and basic 
metabolic processes. Studies suggest that BAT activity could impact daily 
energy expenditure and can thus counteract weight gain if brown adipocytes 
can be activated by food intake-stimulated release of norepinephrine and “use 
up”  energy to generate heat. Individual variability in the amount or function of 
this tissue may impact body weight. In addition, therapeutic 
expansion/activation of this tissue may prove to be an effective therapy for 
obesity. Reprinted with permission from Diabetes, 58:1482-1484,2009. 
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Angiogenesis 

Angiogenesis is defined as the formation of blood vessels from pre-existing vessels 

and is responsible for the formation of a majority of capillaries both in the embryo and in 

the adult. During development, angiogenesis commences before the 20 somite stage (E9.5 

in mouse) and mediates the dramatic expansion of the vascular plexus, initially formed by 

vasculogenesis, the de novo differentiation of endothelial cells. Most organs acquire their 

vasculature through a combination of angiogenesis and vasculogenesis. A majority of 

embryonic blood vessels as well as the vascularization of organs derived from the 

ectoderm-mesoderm, such as the brain and the kidney, take place via angiogenesis. 

Angiogenesis is responsible for vessel growth in the adult under normal physiological 

conditions such as in wound healing, phases of the female reproductive cycle and 

pregnancy, in skeletal muscle following bouts of exercise, in WAT during adipose tissue 

expansion, in BAT during adaptive thermogenesis, as well as in pathological conditions such 

as tumor growth and metastasis and ocular neovascularization. 

Much of the research on the mechanisms of angiogenesis was spurred by Judah 

Folkman’s observations in the early 1970’s that a tumor did not grow beyond a critical mass 

(of 2-3 mm3) without vascularization and the proposal that blocking tumor angiogenesis 

might be a valid approach to controlling tumor growth (Folkman et al. 1971; Folkman 1971). 

Fibroblast growth factors (FGF)-1 and 2 and vascular permeability factor/vascular 

endothelial growth factor (VPF/VEGF)-A were the first tumor derived angiogenic factors 

purified. Subsequently, many pro- and anti-angiogenic factors have been identified 
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including additional members of the VEGF family of growth factors, the fibroblast growth 

factors, semaphorins, the Notch signaling pathway, platelet derived growth factors and the 

angiopoietins. Ultimately, the balance between pro and anti-angiogenic factors in the tissue 

determines the growth or quiescence of the vasculature. 

Angiogenesis occurs primarily through a process of sprouting from pre-existing 

vessels, usually venules. Vascular sprouts are led by specialized endothelial “tip cells” that 

respond to angiogenic stimuli and are connected to endothelial stalk cells that function in 

tube formation. The progression of angiogenesis is initiated by local destruction of the 

basement membrane and the dissociation of pericytes from the capillary, followed by 

migration of tip cells toward an angiogenic stimulus. Proliferation and alignment of 

endothelial cells follows and an endothelial cell tube forms, establishing a lumen. Pericyte 

and/or smooth muscle cell association and basement membrane deposition mediate vessel 

stabilization (for a review, see Patel-Hett & D’Amore 2011). 

Adipose Tissue Angiogenesis  

It has been long known that adipose tissue is extensively vascularized. In fact, as 

early as in 1945, a study comparing the vascularity (defined as the ratio of total surface of 

capillaries to the total volume of tissue supplied) of rat adipose tissue and skeletal muscle 

demonstrated that WAT exhibited a greater degree of vascularity than muscle (Gersh & Still 

1945). BAT is even more richly vascularized that WAT. For optimal thermogenic activity, BAT 

requires a dense microvasculature to ensure a sufficient rate of perfusion, rapid exchange 

of oxygen and substrates and efficient distribution of the heat generated.  
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Link between angiogenesis and adipose function 

The close spatial and temporal association between adipogenesis and 

vascularization requires an intimate cross talk between adipocytes, preadipocytes and 

endothelial cells. The macro- and micro-vasculature functions as  gatekeeper for access of 

blood borne constituents such as gas, nutrients, hormones and growth factors to adipocytes 

(Sun et al. 2011; Hausman & Richardson 2004).  The vasculature is critical for effective 

removal of FA released by adipocytes during fasting when the body shifts from using 

glucose to stored lipids as the primary energy source. Adipose tissue exhibits potent 

angiogenic capacity;  adipose tissue implanted into the avascular rabbit cornea induced 

robust neovascularization, whereas  implants of skeletal muscle and liver did not (Silverman 

et al. 1988).  Moreover, tube-like capillaries sprout from explants of adipose tissue from 

human and mouse embedded in Matrigel (Gealekman et al. 2008). Conditioned media from 

differentiated 3T3 adipocytes induced angiogenesis in the chick chorioallantoic membrane 

angiogenesis assay (Castellot et al. 1982). In fact, long before its angiogenic properties were 

elucidated, adipose tissue was used by surgeons for wound healing and revascularization of 

the intestines, the myocardium (McAllister et al. 1951; Vineberg et al. 1965) and the 

bronchus in human lung transplantation (Silverman et al. 1988). Vascular expansion takes 

place in BAT during cold acclimation or DIT and  angiogenesis is necessary to support the 

thermogenic activity during this phase. The vasculature of BAT differs from WAT in its 

response to NE, resulting in a doubling of blood flow in BAT (Orava et al. 2011).  

WAT displays potent angiogenic activity in vivo and ex vivo,  yet several studies have 

reported a decrease in blood flow and vascular density with obesity, resulting in local 
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hypoxia (for review, see Goossens 2008). Although HIF1α induction has been documented 

in WAT of obese patients (Cancello et al. 2005), it appears that hypoxic WAT is incapable of 

inducing angiogenesis to levels sufficient to compensate for the reduced blood flow 

observed during the WAT expansion associated with obesity.   

Heterogeneity of the adipose vasculature 

There is significant heterogeneity among the vasculatures of distinct adipose depots 

in terms of vessel morphology, capillary density and angiogenic potential.  Capillary density 

varies among  different parts of a depot as well as across different adipose depots (Gersh & 

Still 1945; Hausman & Richardson 2004). The pattern of vascularization of a depot is 

established very early during fat development and is predictive of the ultimate degree of 

vascularity in that depot (Crandall et al. 1997). Endothelial cells isolated from different 

adipose depots also differ in their proliferative capacity (Lau et al. 1996; Lau et al. 1990). 

The angiogenic activity of adipose varies by depot and possibly by species as well. For 

instance, there are reports of omental and SC fat implants inducing similar degrees of 

neovascularization (Silverman et al. 1988) whereas in another study a choloroform-

methanol extract of omental, but not SC, depot induced neovascularization in  the rabbit 

corneal pocket angiogenesis assay (Goldsmith et al. 1984). Humans SC fat had a greater 

angiogenic capacity compared to visceral fat in matrigel-embedded adipose tissue explants. 

In addition, the capillary density and angiogenic activity of SC, but not visceral, fat 

decreased with morbid obesity and was negatively correlated with insulin sensitivity 

(Gealekman et al. 2011). 
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Adipose lineage 

 While it is clear that adipose tissue expansion relies on blood vessel formation, the 

origin of these new vascular cells is unclear. In addition to adipocytes and vascular 

endothelial cells, adipose tissue contains other cell types such as adipose stromal cells and 

mesenchymal stem cells. The contribution of adipocyte stromal cells and mesenchymal 

stem cells to neovascularization is currently being investigated and some reports suggest 

that endothelial cells of the adipose may be derived from subpopulations of cells with 

distinct origins depending on the depot, contributing to their heterogeneity, differential 

gene expression profiles and different responses to treatment. Additionally, a recent study 

suggests an endothelial origin for murine and human adipocytes. In this study capillary 

sprouts from adipose tissue explants were shown to express preadipocyte markers and 

upon PPARγ activation lost their endothelial characteristics and displayed adipocyte 

features (Khanh-Van Tran et al. 2012).  

Angiogenic factors and cross talk between the adipose and vascular cells  

At least three cell types in adipose tissue produce angiogenic factors – adipocytes, 

adipose stromal cells and inflammatory cells. Together, these cells secrete a repertoire of 

pro- and anti-angiogenic factors, including VEGF-A, FGF-2, leptin, hepatocyte growth factor, 

insulin like growth factor, TNFα, transforming growth factor β (TGFβ), placental growth 

factor (PlGF), plasminogen activator inhibitor-1 (PAI-1), VEGF-C, visfatin, resistin, tissue 

factor, neuropeptide Y, heparin-binding epidermal growth factor, matrix metalloproteases 2 

and 9, and granulocyte macrophage colony stimulating factor. While most of these 



33 
 

molecules have been shown to increase angiogenesis, some such as TGF-β and plasminogen 

activator inhibitor (PAI)-1, can have a pro- or an anti- angiogenic effect depending on their 

concentration and the tissue context. Additionally, inflammatory cells recruited to growing 

adipose tissue also secrete high levels of a number of factors such as TNF-α, VEGF, 

interleukins 1, 6 and 8. Adipose tissue also produces anti-angiogenic factors such as 

endostatin, thrombospondin-1 and soluble VEGFR2 and these are detected at high levels in 

overweight and obese patients (for a review, see Yihai Cao 2007).  

VEGF, a potent angiogenic factor, is expressed at high levels by both BAT and WAT 

and accounts for most of the angiogenic activity in adipose tissue (Zhang et al. 1997; 

Fukumura et al. 2003).  The role of VEGF in adipose tissue angiogenesis is covered in greater 

depth later in this chapter. 

The adipokine visfatin is elevated in the serum of obese subjects and patients with 

type 2 diabetes. Visfatin induces endothelial cell proliferation and angiogenesis by 

increasing the expression of VEGF and VEGFR2 as well as MMP -2 and -9 via the PI3K/Akt 

and MAPK1/2 pathways (Adya et al. 2008). In addition, visfatin has a cardioprotective effect 

during myocardial infarction and plays a protective role in non-alcoholic fatty liver disease 

(Rosen & Spiegelman 2006). 

The hormone leptin produced by adipocytes regulates food intake and energy 

homeostasis and it dysfunction leads to severe obesity, diabetes and infertility. Leptin also 

stimulates angiogenesis by binding to the leptin receptor in endothelial cells and induces 

tube formation in vitro and corneal neovascularization. In addition to its direct angiogenic 

activity, leptin stimulates angiogenesis synergistically with both FGF-2 and VEGF, and 
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endothelial fenestrations and vascular permeability with VEGF, although the exact 

mechanism of this synergistic interaction is not known  (Cao et al. 2001).   

PAI-1 has been shown to regulate endothelial cell migration in vitro. During 

embryonic adipose development, PAI-1 is secreted along with αvβ3 integrin by human 

preadipocytes and endothelial cells thus providing a mechanism for the formation of the 

organs as preadipocytes can migrate with the endothelial cells during angiogenesis (Crandall 

et al. 2000).  PAI-1 can both positively and negatively regulate angiogenesis depending on 

dosage (Devy et al. 2002).  

There are several additional examples of paracrine communication between 

endothelial cells and adipocytes. Media conditioned by endothelial cells promotes 

preadipocyte proliferation and extracellular matrix components secreted by endothelial 

cells stimulate preadipocyte differentiation in vitro. VEGF-B, which is highly expressed by 

BAT and skeletal muscle, signals through VEGFR1 and Nrp1 on the endothelium to regulate 

transcription of vascular FA transport proteins, which control FA uptake by the endothelium 

and thus its availability to the vascularized BAT or muscle (Hagberg et al. 2010). PPARγ 

agonist rosiglitazone increases formation of angiogenic sprouts from adipose tissue explants 

but not from aortic explants, and this is mediated via upregulation of angiopoietin-like 

factor 4  and VEGF in adipocytes (Gealekman et al. 2008). Similarly, results of a randomized 

clinical trial reported that adipose tissue from patient biopsies cultured on Matrigel had 

increased capillary density and enhanced angiogenic sprout formation following treatment 

with rosiglitazone (Gealekman et al. 2012) .  



35 
 

Tweaking the vasculature  

In light of the demonstrated angiogenic capacity of adipose tissue, the close 

spatiotemporal coordination of adipogenesis and angiogenesis, and the multiple examples 

of paracrine interactions between adipocytes and endothelial cells, it is not surprising that a 

majority of obesity-associated disorders are coupled with vascular dysfunction. Pathological 

obesity is generally associated with a failure of vascular remodeling to keep pace with the 

expanding adipose tissue (Sun et al. 2011). This raises the prospect of regulating the 

expansion of adipose tissue by manipulating its vasculature as a novel therapeutic approach 

to obesity and associated metabolic comorbidities, especially type II diabetes.  Numerous 

studies have investigated this possibility including:  (i) application of broad spectrum anti-

angiogenic peptides, such as endostatin  and angiostatin (O’Reilly et al. 1994; O’Reilly et al. 

1997);  (ii) use of the small molecule TNP-470, which inhibits endothelial cell proliferation in 

vitro  and angiogenesis in vivo (Morita et al. 1994; Wang et al. 2000); (iii) targeted induction 

of apoptosis in the vasculature of white adipose tissue using a pro-apoptotic homing 

peptide;  and, (4) administration of anti-VEGF or anti-VEGF receptor antibodies to murine 

models of HFD-induced and genetic obesity using the LepR deficient ob/ob mice (Tam et al. 

2009; Sun et al. 2012; Elias et al. 2012;  Lu et al. 2012).  In each case, administration of these 

anti-angiogenic agents resulted in a dose dependent and reversible reduction in weight and 

adipose tissue without significantly affecting food intake (Rupnick et al. 2002). Interestingly, 

administration of TNP-470 also demonstrated additional signs of improved metabolic health 

such as reduced serum low density lipoprotein levels and increased insulin sensitivity, signs 

of a treatment that would be important in preventing the development of type II diabetes in 
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obese subjects (Bråkenhielm et al. 2004). Induction of apoptosis in the vasculature of WAT 

in obese mice by targeting prohibitin, a specific marker of the adipose vasculature, resulted 

in ablation of the adipose and reduced body weight along with normalization of metabolism 

through increased insulin sensitivity and glucose tolerance (Kolonin et al. 2004). As 

prohibitin is also found in human WAT vasculature, this opens up the possibility of 

prohibitin as a therapeutic target that might lead to the destruction of WAT leaving the BAT 

and other organs unaffected.  

Studies of anti-VEGF treatment in ob/ob mice, which are obese and have preexisting 

adipose tissue dysfunction, demonstrated that VEGF blockade led to improved metabolism 

through reduced weight gain, reduced adipocyte size, increased insulin sensitivity and 

decreased inflammatory factors. But anti-VEGF treatment during the early stages of HFD-

induced adipose tissue expansion resulted in poor metabolic health, no weight change and 

reduced glucose tolerance (Sun et al. 2012; Tam et al. 2009). On the other hand, VEGF 

overexpression during early stages of HFD improved metabolic health by increasing insulin 

sensitivity, energy expenditure and lipid clearance while reducing hepatic steatosis (Elias et 

al. 2012). VEGF overexpression also resulted in “browning” of WAT and increased 

thermogenesis, which likely contributed to the increased energy expenditure observed in 

these mice. Notably, these studies demonstrate that the consequences of modulating 

angiogenesis on obesity and metabolic health are context-dependent: pro-angiogenic 

activity during early stages of adipose tissue expansion is beneficial, associated with 

protective effects on metabolism, whereas in the context of preexisting adipose tissue 

dysfunction anti-angiogenesic therapy was required to improve metabolic conditions.  
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Vascular Endothelial Growth Factor  

VEGF-A (hereafter referred to as VEGF) was first purified in 1983 from the ascites 

fluid of guinea pig tumor on the basis of its potent ability to increase vascular permeability 

and known as vascular permeability factor (Senger et al. 1983) and soon after, from the 

conditioned media of folliculostellate cells as an endothelial cell specific mitogen (Ferrara & 

Henzel 1989). VEGF was subsequently determined to be a key regulator of angiogenesis.  

Family   

The VEGF family, of which VEGF-A is the founding member, is comprised of a 

number of secreted cysteine-knot glycoproteins including VEGF-A, VEGF-B, VEGF-C, VEGF-D, 

VEGF-E and PlGF. VEGF-B has been shown to play a central role in cardiac angiogenesis and 

was recently demonstrated to control endothelial FA uptake (Hagberg et al. 2010). VEGF-C 

and VEGF-D promote lymphatic vessel development whereas PlGF has been studied 

primarily in pathological conditions where it is thought to stimulate angiogenesis in 

coordination with VEGF-A. The VEGF family also consists of lesser known members such as 

VEGF-E, which was identified in certain viruses, the snake-venom derived VEGF-F and 

endocrine gland (EG)-VEGF, which acts only on endocrine gland endothelial cells. The VEGF 

family members are biologically active as homodimers although naturally occurring 

heterodimers of VEGF-A and PlGF have been reported. 
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Structure 

Alternative splicing of the human VEGF gene produces eight isoforms, with the most 

abundant and well-studied isoforms being VEGF 121, 165 and 189 (120, 164 and 188 in 

mouse and rat). The isoforms differ in their ability to bind heparan sulfate and neuropilin-1 

(for a review see Patel-Hett & D’Amore, 2011). Charged domains in VEGF164 and VEGF188 

mediate their binding to heparan sulfate proteoglycans on the cell surface and in the 

extracellular matrix, where they may be sequestered and function locally. VEGF120 lacks 

these charged domains, so is freely diffusible and able to function at sites distant from the 

secreting cell.  The distribution of VEGF isoforms varies among tissues, suggesting that 

different isoforms may play distinct roles in vascular development and in the adult (Ng et al. 

2001) (Figure 1.10). This notion was substantiated by the distinct phenotypes of mice that 

were engineered to express single isoforms of VEGF (Carmeliet et al. 1999; Stalmans et al. 

2002). 

VEGF receptors 

VEGF binds to the tyrosine kinase receptors VEGFR1 (also called Flt-1) and VEGFR2 

(also known as Flk-1 or KDR in humans). VEGFR1 and VEGFR2 are 44% homologous at the 

amino acid level and each contains three functional domains – seven IgG like repeats in the 

extracellular domain, a single trans-membrane region and a cytoplasmic tyrosine kinase 

domain. Following VEGF binding, mediated by the second and third IgG repeats, the   
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Figure 1.10. VEGF isoforms and their localization. (A) VEGF isoforms with their exons along 
with important properties of each exon. Binding to VEGFR2 and VEGFR1 is mediated by 
exons 1 through 5, Nrp1 binding by exon 7 and heparan sulfate binding by exons 6 and 7. As 
VEFG120 lacks both the above exons, it does not bind to heparan sulfate, while VEGF188, 
possessing both exons 6 and 7, tightly binds heparan sulfate, and VEFG164 binds heparan 
sulfate but to a lesser extent compared to VEGF188. (B)  Differences in diffusibility of VEGF 
isoforms due to their differential ability to bind heparan sulfate proteoglycans. As VEGF120 
does not bind heparan sulfate, it is readily diffusible and can function at a site distant from 
its site of production. VEGF188 strongly binds heparan sulfate, which is present in the cell 
membrane and extracellular matrix, and is thus contained within the juxtracrine vicinity of 
the secreting cell. VEGF164 binds heparan sulfate as well, but not as strongly as VEGF188 
and thus can function locally as well as at a distance, and is the most abundant isoform. 
Image courtesy of P. D’Amore, unpublished. 
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receptors homo- or heterodimerize, which leads to activation of their kinase activity, 

autophosphorylation of multiple tyrosine residues and initiation of downstream signaling. 

While both receptors have high affinity for VEGF, VEGFR2 has ten-fold stronger tyrosine 

kinase activity compared to VEGFR1.   

VEGFR2, thus, is the primary signaling receptor for VEGF, initiating several signaling 

cascades including phosphatidyl inositol 3-kinase, mitogen activated protein kinase, protein 

kinase C, AKT and phospholipase C pathways, leading to increases in endothelial 

proliferation, migration, MMP expression, survival and cell permeability. The critical role of 

this receptor is reflected in the fact that homozygous knockout of VEGFR2 leads to 

embryonic lethality at E8.5–9.5 due to defects in the development of hematopoietic and 

endothelial cells and the absence of yolk sac vasculature (Shalaby et al. 1995). Initially 

thought to be specific for endothelial cells, subsequent studies have reported expression of 

VEGFR2 in multiple non-endothelial cell types such as myocytes and kidney podocytes 

(Bryan et al. 2008; Guan et al. 2006). 

With its high affinity for VEGF but weak tyrosine kinase activity, it is believed that 

VEFGR-1 functions as a “decoy” receptor, sequestering VEGF, thereby modulating signaling 

through VEGFR2 (Clauss 1998). In support of this, mice deficient for VEGFR-1 are embryonic 

lethal around E8.5 due to overgrowth of endothelial cells and impaired blood vessel 

formation (for a review see Nieves et al. 2009). In addition to the full-length membrane-

bound form, VEGFR1 also exists as an alternatively spliced, soluble form (sVEFGR1 or sFlt1).  

sFlt1 binds VEGF with higher affinity than VEGFR2 and is implicated as a negative regulator 

of angiogenesis. The complexity of VEGFR-1 biology is underscored by the fact that even 
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though it is not thought to signal in endothelium, it has been shown to function in several 

non-endothelial cell types, including breast cancer cells and macrophages and monocytes. 

VEGF receptors also reportedly heterodimerize with neuropilin-1 and 2. While neuropilins 

enhance VEGFR-2 mediated signaling, it is unclear whether they are capable of independent 

signaling.  

Expression  

Using a mouse in which LacZ had been knocked into the VEGF locus, VEGF 

expression was shown to commence before gastrulation  and was detectable at all stages of 

vascular development in the embryo (Miquerol et al. 1999). The cellular distribution and the 

extent of VEGF expression indicate its pleiotropic role in development. High levels of 

expression appeared to be associated with vasculogenesis and permeability, whereas lower 

levels were associated with angiogenesis and cell migration. In addition, VEGF was 

demonstrated to be expressed in a subtype of endothelial cells present in the endocardium 

(Miquerol et al. 1999).  In the brain and the kidney, organs which are vascularized by 

angiogenesis, VEGF expression was detected by in situ hybridization around E16-17. 

Moreover, a tight spatial coordination was observed between the expression patterns of 

VEGF and VEGFR-2 and while VEGF was expressed by a wide variety of embryonic cells, 

VEFGR-2 expression was confined to the endothelium.  In the adult, VEGF is expressed in a 

cell-specific manner in nearly all vascularized adult tissues including select endothelium, and 

VEGFR2 is constitutively phosphorylated across several tissues in vivo. The pattern of VEGF 
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expression is unique in each organ; in white and brown adipose tissue VEGF is produced by 

adipocytes, adipose stromal cells and inflammatory cells.  

Function in endothelial cells 

 Tumor cells as well as epithelial and mesenchymal cells during development and in 

the adult secrete VEGF and it expression is further induced by hypoxia and other stimuli. 

Upon binding to VEGF receptors on the nearby endothelium, VEGF initiates angiogenesis 

and stimulates recruitment of newly formed blood vessels to the source tissue. VEGF 

promotes angiogenesis by inducing endothelial cell proliferation, migration, survival, 

extracellular matrix degradation, formation of fenestration and cell permeability. This 

process occurs extensively during embryonic angiogenesis and during physiological and 

pathological angiogenesis in the adult.  During development, VEGF is essential for both 

vasculogenesis and angiogenesis. Vascular development is dependent on tight regulation of 

VEGF as deletion of a single VEGF allele in mice results in early embryonic lethality (by E9.5) 

due to severe vascular defects (Carmeliet et al. 1996; Ferrara et al. 1996), whereas slight 

overexpression of VEGF similarly results in embryonic lethality around E12.5 (Miquerol et al. 

2000). 

Early studies of VEGF neutralization in mouse tumor models (Kuo et al. 2001) 

revealed no obvious side effects, suggesting that VEGF is not required in the adult and 

making it an attractive target for the treatment of a variety of diseases. As a result, many  

agents have been designed to target either VEGF or its receptors. Though beneficial effects 

have been observed, particularly for use in the treatment of ocular angiogenesis, the 
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development of significant side effects suggest that VEGF is important in the maintenance 

of adult vasculature and non-vascular tissues. Indeed, several studies have demonstrated 

that one important role of VEGF in the adult is in the induction and maintenance of 

fenestrated capillaries, as blockage of VEGF signaling resulted in capillary regression in 

several organs including choroid plexus, thyroid, pancreatic islets and epididymal fat 

(Kamba et al. 2006), and loss of alveolar, tracheal, and peritubular capillary endothelium.  

Function in non-endothelial cell types  

Although VEGF was initially thought to target only endothelial cells, numerous 

studies have identified roles for VEGF on a wide range of non-endothelial cell types. VEGF is 

essential for the maintenance of choroid plexus structure and integrity, including 

ependymal cell function (Maharaj et al. 2008).  VEGF also  promotes Müller cell survival 

through autocrine signaling, has a paracrine neuroprotective effect on photoreceptors 

(Saint-Geniez et al. 2008),  functions in an autocrine loop to promote the survival of kidney 

podocytes (Guan et al. 2006), as well as the maintenance of the retinal pigmented 

epithelium (Ford et al., 2011)  skeletal muscle (Bryan et al. 2008), bone differentiation 

(Mayer et al, 2005)  and in the structural and functional maintenance of arterial neuro-

effector junctions.  

VEGF in white and brown adipose 

While adipocytes secrete a number of angiogenic factors, it has been demonstrated  

that VEGF mediates most of the angiogenesis in adipose tissue in both white and brown 

adipose tissue (Zhang et al. 1997; Fukumura et al. 2003). Conditioned media from 
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endothelial cells grown in the presence of VEGF promoted adipocyte differentiation in vitro 

more robustly compared to conditioned media without VEGF or with both VEGF and VEGF-

neutralizing antibodies. This indicates that  VEGF secreted by adipocytes functions in a 

paracrine manner by signaling through VEGFR2 on endothelial cells, which in turn secrete 

adipokines that promote adipogenesis in vivo and in vitro and its blockage prevented both 

adipose tissue neovascularization and adipogenesis (Fukumura et al. 2003)  VEGF is also 

required for angiogenic plasticity of expanding WAT in murine models of HFD-induced 

obesity. From recent studies (described earlier in this chapter) it appears that the effect of 

VEGF in adipose tissue expansion and overall metabolic health may be context dependent: 

in the early stages of HFD increased VEGF expression facilitates healthy adipose tissue 

expansion and confers protection from metabolic insults, whereas in the context of pre-

existing adipose tissue dysfunction blockage of VEGF signaling leads to improved insulin 

sensitivity and metabolic health (Sun et al., 2012).  

Multiple reports have demonstrated that brown adipocytes express VEGF in vivo and 

in vitro and VEGF expression is lower in the BAT of genetically obese rats (Tonello et al. 

1999; Asano et al. 1997).  VEGF  expression increases in primary rat preadipocytes 

differentiated to brown adipocytes, whereas there was a slight decrease in the expression 

of VEGF-B and C (Asano et al. 2001).  VEGF expression in BAT increases upon adrenergic 

stimulation resulting from cold exposure or injection of β-adrenergic receptor agonists. 

This VEGF expression is independent of the hypoxia that results from intense oxygen 

consumption during thermogenesis mediated by UCP1 as UCP1-null animals also displayed 

increased VEGF expression and angiogenesis following cold exposure. VEGF transcription in 
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brown adipocytes induced by NE is mediated by NE is mediated by cAMP and protein kinase 

A (PKA) (Fredriksson et al. 2000; Fredriksson et al. 2005; Xue et al. 2009). Further, a recent 

study has shown that exercise induced  transcription of VEGF in skeletal muscle is mediated 

by PGC1α and is independent of HIF1α (Arany et al. 2008).  Thus, it is possible that PGC1α 

also regulates hypoxia -independent VEGF expression in BAT. 

Interest in its potential for weight control has led to significant work on the effect of 

VEGF neutralization in WAT, but very little is known on the role of VEGF in brown adipose.  

While there are several reports of VEGF expression in BAT and its role in promoting 

angiogenesis during cold acclimation, detailed analysis of the dynamics of this expression 

are not known. There are also no reports of expression of VEGF receptors in brown 

adipocytes, which forestalls investigation on the role of VEGF, if any, on brown adipocytes 

themselves, in addition to its role on the BAT endothelium. Adipose tissue is very plastic 

throughout adult life, yet adipose-derived tumors are rare, suggesting that both adipose 

tissue and its microvasculature are tightly regulated. Thus my aim was to study the 

dynamics of VEGF as well as VEGF receptor expression in white and brown adipocytes, 

hypothesizing that both are tightly coordinated during adipogenesis. I also hypothesized 

that VEGF must play a functional role in either white or brown adipocytes, depending on 

the  VEGF receptor expression and activation in these cells, in addition to supporting 

adipose angiogenesis.  
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Introduction 

While there are multiple reports of VEGF production in white and brown adipocytes, 

detailed analysis of the dynamics of this expression during phases of adipocyte 

differentiation is lacking.  VEGF expression has been shown to increase with differentiation 

of multiple cell types such as kidney podocytes, osteoblast differentiation and myocyte 

differentiation (Bryan et al. 2008; Guan et al. 2006; Mayer et al. 2005). In light of the fact 

that adipose tissue is a very plastic organ that undergoes adaptive tissue growth, like 

skeletal muscle, I hypothesized that VEGF expression increases during brown and white 

adipocyte differentiation. I also hypothesized that VEGF receptor expression on brown 

and/or white adipocytes would be indicative of a direct functional role of VEGF signaling in 

these cells. Therefore, in this chapter I have explored the expression of VEGF and VEGF 

receptors in white and brown adipocytes.  

Results 

VEGF and its receptors are expressed in BAT and all major WAT depots  

The expression of VEGF and its receptors in brown adipose tissue (BAT) and white 

adipose tissue (WAT) were analyzed by RT-PCR in interscapular BAT as well as subcutaneous 

(SC) WAT from the inguinal region and visceral WAT from mesenteric, perigonadal (PG)   

and retroperitoneal depots of adult male mice (Figure 2.1). VEGF mRNA was detected in all 

BAT and WAT depots, with the highest expression in BAT, followed by SC and PG depots; all 
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expressed each of the three major VEGF isoforms. Mesenteric and retroperitoneal depots 

expressed lower levels of VEGF, mostly as the 164 isoform.  VEGFR2 was expressed robustly 

in BAT, followed by PG and SC. Low expression was detected in the mesenteric depot 

whereas there was no detectable VEGFR2 in the retroperitoneal depot. VEGFR1 expression 

was similar to that of VEGFR2.  

VEGF expression increases during 3T3L1 differentiation  

To investigate the temporal relationship between VEGF expression and white 

adipocyte differentiation I examined the expression of VEGF in the 3T3L1 system,  an 

established and well characterized model of in vitro white adipocyte differentiation (Green 

& Kehinde 1975). 3T3L1 preadipocytes were grown to confluence in Dulbecco’s modified 

Eagle’s medium (DMEM). Forty-eight hours after the cells reached confluence, adipocyte 

differentiation as induced by replacing the growth medium with DMEM containing insulin, 

dexamethasone, IBMX and fetal bovine serum (FBS) (Figure 2.2). Distinct morphological 

changes were observed as the 3T3L1 cells underwent differentiation; the cells changed in 

shape from a fibroblast-like appearance to spherical, lipid-containing cells.  Intracellular lipid 

droplets were visible by light microscopy by the fifth or sixth day of differentiation, and 

increased in number and size. By day twelve of differentiation, more than 95% of cells had 

one or more large droplets (Figure 2.3A). The droplets were confirmed histochemically as 

lipid containing by staining with Oil Red O, which stains triglycerides and lipids (Figure 2.3B, 

left), and by the immunofluorescence (IF) with antibody to perilipin, an adipocyte marker 

that  coats and protect lipid droplets from hydrolysis (Figure 2.3B, right).  



Figure 2.1. VEGF and VEGF receptor levels in adipose depots.  mRNA 
expression of VEGF and receptors, VEGFR2 and VEGFR1, in BAT and 
subcutaneous, mesenteric, epididymal and retroperitoneal WAT depots of 
adult male mouse were measured by RT-PCR.  
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Figure 2.2. Schematic representation of 3T3L1 and brown preadipocyte 
differentiation. Undifferentiated preadipocytes were cultured for 48 hours 
beyond confluence in the growth media. On day 0, the media was replaced 
with adipose differentiation media, comprised of growth media supplemented 
with insulin, dexamethasone and isobutylmethylxanthine. After 48 hours, the 
differentiation media was replaced with differentiation maintenance media 
containing insulin. Cells were maintained in the maintenance media until fully 
differentiated judged by their morphology and accumulating lipid droplets 
(10-12 days for white adipocytes and 7-9 for brown adipocytes), replacing 
media every other day. 
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RNA was isolated from the cells at different time points during differentiation and 

analyzed by qRT-PCR for markers of adipocyte differentiation. Expression levels of the 

transcription factor PPAR, which is essential for adipocyte differentiation, increased nearly 

eight-fold by day four compared to the beginning of differentiation (day zero) and rose 

steadily to a 15-fold increase by day twelve (Figure 2.4A, left). The expression of aP2, an 

adipocyte-specific fatty acid binding protein and well-characterized marker of adipocyte 

differentiation, increased 20-fold from day zero levels by day four and remained elevated 

through the 12 days examined (Figure. 2.4A, right). Analysis of VEGF mRNA levels in the 

differentiating 3T3L1 cells showed a five to seven - fold increase between days eight and 12 

relative to levels at day zero (Figure 2.4B).  Absolute quantification of VEGF isoforms using 

isoform-specific primers indicated that the level of each isoform increased with 

differentiation, with VEGF 164 the most abundant isoform at 50% of the total VEGF, VEGF 

188 about 35% and VEGF 120 accounting for 15% of the total VEGF in mature differentiated 

3T3L1 adipocytes (Figure 2.4C). This result demonstrates that VEGF expression increases 

concomitantly with adipose differentiation and is consistent with the notion that VEGF 

expression is coordinately regulated as part of the process of white adipocyte 

differentiation.   

There was greater than 10-fold decrease in VEGFR2 levels by day four of 

differentiation and the levels remained low throughout differentiation (Figure 2.5A, left).  

There was no significant change in VEGFR1 expression during differentiation (Figure 2.5A, 

right). This was in contrast to mature primary adipocytes isolated from both inguinal and 
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epididymal fat pads of adult mice, and demonstrated to be mature adipocytes by 

expression of aP2, which showed robust expression of both VEFGR2 and VEGFR1 (Figure 

2.5B).  In an attempt to reconcile the difference, I examined isolated primary adipocytes for 

potential contamination by endothelial cells, which express VEGFR2 and should have 

separated with the stromal-vascular fraction during the isolation process.   

Immunofluorescence localization of the adipocyte marker perilipin and the endothelial cell 

marker endomucin (Kuhn et al. 2002), revealed unilocular white adipocytes with strong 

perilipin localization as single cells or in clumps of two-three cells. However, in a fraction of 

these clumps, several endomucin-positive endothelial cells were also observed (Figure 

2.5C). Analysis of VEGFR2-LacZ mouse did not reveal VEGFR2 expression in white 

adipocytes, whereas endothelial VEGFR2 expression was observed in lungs. IHC localization 

of VEGFR2 did not detect any VEGFR2 on either SC or PG WAT depots (data not shown). 

These data indicated that VEGFR2, the primary VEGF signaling receptor, was not present in 

detectable levels in white adipocytes.  

VEGF expression increases during brown adipocyte differentiation 

To study VEGF expression during brown adipocyte differentiation I utilized an 

immortalized murine brown preadipocyte cell line, derived from neonatal brown adipocyte 

precursors, that has been shown to differentiate into brown adipocytes in vitro (Fasshauer 

et al, 2000).  Brown preadipocytes were grown to confluence in DMEM and induced to 

differentiate as described for the 3T3L1 cells above (Figure 2.2).  Intracellular lipid droplets  
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Figure 2.3. Morphological and functional changes during 3T3L1 differentiation. 
(A) Change in cell morphology from a fibroblast like appearance to cuboidal shape 
with accumulation of lipid during differentiation (B) Uptake of Oil Red O by 
triglycerides (bottom panel, left) and expression of perilipin (bottom panel, right) 
in differentiated adipocytes.  Nuclei visualized by DAPI. Scale bar represents 50 
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Figure 2.5. VEGFR2 expression in white adipocytes in vivo and in vitro (A) VEGFR2 expression 
decreases during 3T3L1 differentiation while VEGFR1 expression is not significantly changed, 
quantified using qPCR (B) VEGF receptor expression in white adipocytes isolated from 
subcutaneous and perigonadal WAT of two groups of wild type male mice (C) IF was performed 
on isolated adipocytes with the adipocyte marker, perilipin, and endothelial marker, endomucin, 
to determine whether there was contamination by stromal-vascular fraction. Representative 
images indicate that adipocytes isolated had some contamination with vascular endothelial cells. 
Nuclei visualized by DAPI . p***<0.001. 
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were visible as early as day three of differentiation and by day six, more than 95% of cells 

had multiple lipid droplets, morphologically resembling their in vivo counterparts (Figure 

2.6A). The differentiation of brown adipocytes is accompanied by increased mitochondrial 

biogenesis. Accordingly, mitochondria in differentiated brown adipocytes were visualized 

using CMTM Rosamine MitoTracker, a mitochondria-specific vital dye, and lipid droplets 

were visualized by IF staining for perilipin (Figure 2.6B). RNA isolated from the cells at 

different time points during differentiation was analyzed by qRT-PCR for markers of 

adipocyte differentiation. Levels of PGC1, a key regulator of brown adipocyte 

differentiation and of mitochondrial biogenesis, increased as early as day three of 

differentiation and the elevated levels were maintained throughout differentiation (Figure 

2.7A, left). The expression of UCP1,  a protein essential for brown adipocyte thermogenesis, 

was increased 50-fold by day six and 170-fold by day eight (Figure 2.7A, center).  The 

expression of β3 adrenoreceptor, which is more abundant in brown adipocytes compared 

to the β1 and β2 isoforms and is important for activation of BAT by the sympathetic nervous 

system, was increased  30-fold by day three and 100-fold by day eight (Figure 2.7A, right). 

Analysis of VEGF mRNA expression by qPCR at various time points during differentiation 

demonstrated that brown preadipocytes expressed VEGF and that VEGF levels were 

increased by 2.5- to 3-fold over the course of differentiation (Figure 2.7B). Of the three 

VEGF isoforms, VEGF164 was the most abundant isoform whereas low levels of VEGF188 

and 120 were also detected. VEGF164 constituted 90% of total VEGF at day zero and rose to 

98% of total VEGF by day eight. While levels of VEGF120 also increased during the course of 
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differentiation, it decreased from approximately 10% of the total at day zero to about 1% at 

day eight. VEGFR2 was expressed by both brown preadipocytes as well as differentiated 

brown adipocytes, with the level of expression being slightly lower in the more 

differentiated cells. VEGFR1 was also expressed in brown preadipocytes and differentiated 

brown adipocytes. Additionally, Nrp1 was expressed by both undifferentiated cells and 

differentiated brown adipocytes (Figure 2.7D).  As was observed for white adipocytes, these 

data suggest that VEGF expression may be coordinately regulated with the process of 

brown adipocyte differentiation. Moreover, the expression of VEGF receptors in both 

preadipocytes and differentiated brown adipocytes raises the possibility of an autocrine 

role for VEGF in these cell types.  

VEGF expression increases in brown adipocytes following adrenergic 

stimulation  

To test whether VEGF expression in BAT increases as a result of acute adrenergic 

stimulation adult mice were injected with the adrenergic receptor agonist CL 316243 (CL), 

which is specific for the β3 receptor isoform. BAT RNA was isolated from the mice at 2, 6 

and 24 hours post injection.  I first analyzed by qRT-PCR for known effectors of adrenergic 

stimulation in BAT.  UCP1 mRNA levels doubled rapidly compared to control within two 

hours of injection and remained elevated at twenty four hours.  PGC1α mRNA expression 

increased rapidly following CL injection, rising to 18-fold over control mice 2 hours after 

injection, and returned to baseline  levels by twenty four hours post-injection (Figure 2.8A, 

left). The upregulation of VEGF expression by adrenergic stimulation followed a similar 
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pattern to that of PGC1α, peaking at 1.7-fold over control at 2 hours and showed a slight 

but consistent decrease by 24 hours post injection (Figure 2.8B). VEGF 164 and 188 were 

the most abundant isoforms, constituting 60% and 40% of total VEGF mRNA, respectively, 

while little or no VEGF 120 was detected. Following CL injection, proportion of VEGF 164 

increased slightly from 60% to 75% of total VEGF whereas the level of VEGF 188 isoform 

decreased accordingly (Figure 2.8C). 

To investigate whether the increase in VEGF expression measured in BAT following 

adrenergic stimulation was a direct effect on the brown adipocytes, brown adipocytes 

differentiated in vitro were treated with norepinephrine (NE) for 1 hour.  As expected, the 

levels of PGC1α and UCP1 mRNA increased eight- and fourteen-fold, respectively, compared 

to untreated control cells (Figure 2.9A). Similar to the observations in vivo, there was a 

nearly 3-fold increase in the expression of VEGF mRNA within 1 hour of treatment 

compared to untreated cells (Figure 2.9B). These results indicate that quiescent 

(unstimulated) BAT expresses VEGF, which is elevated following adrenergic stimulation. The 

in vitro data shows that the increased VEGF expression in BAT following adrenergic 

stimulation is derived, at least in part, from brown adipocytes indicating that elevated VEGF 

expression was a direct effect of NE/β adrenergic agonists on brown adipocytes.  
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Figure 2.6. Morphological and functional changes during brown adipocyte 
differentiation (A) Change in cell morphology from a fibroblast to a 
multilocular appearance during differentiation (B) Lipid droplets are identified 
using perilipin (left), mitochondria is visualized using CMTM Rosamine 
MitoTracker on live cells, depicting large amount of mitochondria (middle), 
merge (right). Nuclei visualized by DAPI . Scale bar represents 50 µm. 
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Figure 2.7. Increase in VEGF expression during brown adipocyte differentiation. (A) 
Expression of adipocyte markers PGC1α(left), UCP1(center) and β3 adrenergic receptors 
(right), quantified using qPCR. (B) Increase in VEGF expression during brown adipocyte 
differentiation in parallel to brown adipocyte markers shown in (A). (C) Absolute 
quantification of VEGF isoforms during differentiation using isoform specific primers and 
qPCR. (D) VEGF receptor expression during brown adipocyte determined by RT-PCR indicate 
strong VEGFR2 expression in both preadipocytes and differentiated  adipocytes. p*<0.05, 
p**<0.01, p***<0.001. 
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Figure 2.9. VEGF expression increases in cultured brown adipocytes following treatment 
with norepinephrine. Brown adipocytes on day eight of differentiation were serum starved 
for three hours and treated with 10 µM norepinephrine for 1 hour. (A) Robust increase in 
PGC1α (left) and UCP1 (right) expression indicate activation of brown adipocytes. (B) VEGF 
expression, determined by qPCR, is elevated during adrenergic stimulation and parallels 
PGC1α expression (C) Quantification of the percentage of VEGF isoforms contributing to 
total VEGF in unstimulated and stimulated brown adipocytes using absolute quantification 
with isoform specific primers. p*<0.05, p***<0.001. 
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Discussion 

VEGF expression was detected in BAT and in all major WAT depots. The level of 

VEGF expression in BAT was higher than in any of the WAT depots, consistent with the 

densely vascularized nature of the tissue. Earlier reports of VEGF expression in BAT show a 

level of expression that was comparable to other highly vascularized tissue such as kidney, 

lungs and the heart (Asano et al. 1997; Tonello et al. 1999). In agreement with a prior report 

(Zhang et al. 1997),  levels of VEGF among WAT depots, were higher in SC than PG.  

Numerous studies have reported that VEGF secretion by adipose tissue increases with the 

amount of adipose tissue and that plasma VEGF levels are positively correlated with body 

weight in both humans and mice (Gómez-Ambrosi et al. 2010; Miyazawa-Hoshimoto et al. 

2005). One series of studies reported that VEGF secretion by primary adipocytes was only 

one-tenth that from adipose tissue explants maintained in media for 48 hours (Fain & 

Madan 2005; Fain et al. 2004).  Though these observations may suggest that adipocyte-

derived VEGF accounts about 10% of total adipose tissue VEGF in humans, these studies are 

also complicated by the fact that establishing cells in culture leads to significant changes in 

gene expression, which may impact these results. Further, the explants may be hypoxic 

which would result in a higher production of VEGF compared to the adipocytes in culture.  

My results indicated that VEGF mRNA expression increases during 3T3L1 

differentiation, a finding that is in agreement with earlier observations made in another 

adipogenic cell line, 3T3-F442A. In 3T3-F442A cells induced to differentiate into adipocytes 

increased VEGF was detected as early as day four of differentiation (Claffey et al. 1992), 
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whereas using 3T3L1 cells as a model, we observed increased VEGF expression around day 

eight of differentiation; results that are in concurrence with an earlier study that used these 

cells (Miyazawa-Hoshimoto et al. 2005). This difference in time course of expression could 

be attributed to the cell lines or to the sensitivity of techniques used to quantify VEGF.  Our 

laboratory and others have demonstrated that VEGF expression increases in concert with 

differentiation in several systems including differentiating skeletal muscle (using C2C12 

cells) (Bryan et al. 2008; Claffey et al. 1992), podocytes (Guan et al. 2006), osteoblasts ( Liu 

et al. 2012; Mayer et al. 2005) and retinal pigmented epithelium (Ford et al. 2011), 

suggesting that VEGF expression is under the control of the same factors that regulate 

differentiation and therefore a part of the differentiation process itself.  

I also demonstrate that all isoforms of VEGF are expressed during white adipocyte 

differentiation with VEGF164 and VEGF188, the heparan sulfate binding isoforms, 

comprising 90% of the total VEGF. Although the precise distribution of VEGF isoforms in 

white adipose had not been previously determined, one study did report that the mitogenic 

activity of adipocyte conditioned media on endothelial cells was maximal in the heparin 

sulfate binding fraction, supporting my observations that the heparan sulfate binding VEGF 

isoforms make up the majority of adipocyte VEGF (Zhang et al. 1997). 

I did not detect VEGFR2 in white adipocytes in vivo or in vitro, an observation that  is 

in agreement with previous findings using 3T3F442A preadipocytes which reported the 

absence of a direct effect of VEGF on adipocytes (Fukumura et al. 2003). On the other hand,  

VEGF secreted by adipocytes has been shown to be functionally active on endothelial cells; 

conditioned media from primary white adipocytes and differentiated 3T3L1 adipocytes 
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induced human umbilical vein endothelial cells proliferation (Zhang et al. 1997) and tube 

formation (Miyazawa-Hoshimoto et al. 2005) in vitro, which was blocked by anti-VEGF 

antibody. Additionally, in a model of SC fat pad created by transplantation of 3T3F442A cells 

into SCID mice, inhibition of VEGFR2 was shown to block not only angiogenesis and vessel 

remodeling in the implanted fat pad but also differentiation of the 3T3F442A cells into 

adipocytes. Whereas the addition of VEGF to preadipocytes in culture did not have any 

effect on their proliferation, survival or differentiation, conditioned media from endothelial 

cells cultured in the presence of VEGF increased preadipocyte proliferation and 

differentiation, effects that were largely abrogated by anti-VEGFR2 (Fukumura et al. 2003). 

Adipocyte-derived VEGF, therefore, plays a paracrine role to support both angiogenesis and 

adipogenesis.  Serum VEGF levels are also elevated with increasing adiposity. Obese 

subjects have higher serum VEGF levels, which is lowered after bariatric surgery (García de 

la Torre et al. 2008). Thus it is possible that VEGF may play an endocrine role in vessel 

maintenance, and it remains to be determined whether the alteration of VEGF levels with 

obesity and related comorbidities like type 2 diabetes exacerbate angiogenesis in distant 

sites such as observed in proliferative diabetic retinopathy (Petrovic et al. 2008).  

VEGF expression was also increased in concert with brown adipocyte differentiation.  

While it has been reported that VEGF is expressed in whole BAT tissue (Asano et al. 1997) as 

well as in brown preadipocytes and adipocytes (Tonello et al. 1999; Asano et al. 2001), there 

had been no quantitative measure of the change in VEGF or VEGF receptor expression 

during the course of brown adipose differentiation. My observation that VEGF levels 

increased in parallel with key modulators of brown adipocyte function such as PGC1α, UCP1 
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and β3 adrenoreceptors suggest that VEGF expression may be coordinately regulated as 

part of the process of differentiation.  Elevated VEGF expression was similarly observed 

during myocyte and podocyte differentiation and was shown to be blocked when the 

process of skeletal muscle differentiation was prevented by use of a dominant negative 

MyoD (Bryan et al. 2008).  

As VEGF has three major isoforms and we and others have demonstrated that the 

isoforms have differential expression in various tissues, I wanted to study the expression of 

VEGF isoforms during brown adipocyte differentiation. Preadipocytes expressed low levels 

of VEGF120, which further decreased to less than 1% in fully differentiated brown 

adipocytes. This observation is in agreement with my data on VEGF expression in adult BAT, 

where very low levels of VEGF120 were detected. As the VEGF isoforms differ in the 

presence or absence of charged domains that can mediate binding to heparan sulfate 

proteoglycans on the cell surface and extracellular matrix, they vary in their ability to 

diffuse. The relatively low levels of VEGF120 in BAT detected by us and others (Asano et al. 

1997) suggest a dispensable role for the 120 isoform or functional redundancy with the 

other heparan sulfate binding isoforms.   However, there was virtually no detectable VEGF 

188 in cultured adipocytes, an observation that has been previously reported (Tonello et al. 

1999) and appears to be a limitation of the in vitro culture system, which otherwise 

represents a good model of brown adipocyte differentiation as indicated by the robust 

expression of UCP1 and other brown adipocyte markers.   

My results demonstrate the expression of the two major VEGF receptors, VEGFR2 

and VEGFR1, as well as the co-receptor Nrp1, in preadipocytes as well as adipocytes. One of 
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the notable differences between white and brown adipocyte differentiation is in the level of 

VEGFR2 expression. VEGFR2 expression decreased significantly during white adipocyte 

differentiation and was not detectable in differentiated adipocytes. On the other hand, 

VEGFR2 was expressed at significant levels in both brown preadipocytes and in 

differentiated adipocytes. As VEGFR2 is the primary receptor for VEGF signaling, this 

observation is very interesting and suggests that VEGF may have a direct effect on brown 

adipocytes, which express VEGFR2, but not in white adipocytes.  

Cold exposure stimulates release of NE by the sympathetic nervous system; its 

binding to adrenergic receptors in brown adipocytes results in adrenergic stimulation of 

BAT. In addition to exposure to cold temperatures, this phenomenon can be experimentally 

simulated by administration of NE or β3 adrenergic receptor agonists such as CL 316,243 in 

vivo or in vitro.  As noted earlier, adrenergic stimulation is followed by cAMP mediated 

activation of PKA and an increase in PGC1α levels, which leads to mitochondrial biogenesis 

and increased expression of UCP1. As expected, treatment of cultured brown adipocytes 

with NE led to a robust increase in PGC1α and UCP1 and injection of mice with CL 316,243 

produced a significant increase in PGC1α mRNA and a two-fold increase in UCP1 mRNA. The 

increase in UCP1 activity following adrenergic stimulation is regulated at both 

transcriptional as well as posttranslational levels; in the latter case fatty acids activate UCP1 

by binding to its C terminal. Thus, the observed increase in UCP1 mRNA expression 

represents only a portion of the total increase in UCP1 activity.  Cold exposure also results in 

BAT hyperplasia, an example of adaptive tissue growth, and is characterized by increased 

proliferation of brown adipocyte precursors and endothelial cells. Similar adaptive 
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responses are seen in muscle following endurance training and bouts of exercise where 

VEGF expression has been shown to increase.  

VEGF expression similarly increases during adrenergic stimulation of BAT in vivo and 

in vitro. My findings agree with earlier reports of 2 to 3-fold increase in VEGF expression 

within a few hours of cold exposure or injection with β agonists (Asano et al. 2001; 

Fredriksson et al. 2005; Tonello et al. 1999). Absolute quantification of VEGF isoforms after 

CL injection in vivo revealed that VEGF isoforms 164 and 188 comprised 99.8% of total VEGF 

(Asano et al. 1997). An earlier report examining adrenergic stimulation in rats reported that 

VEGF120 levels increased from 11% to 30%. While the difference in levels of VEGF120 

measured between my work and the earlier report are most likely attributed to sensitivity 

of measurement techniques (I used quantitative PCR and the prior report employed semi-

quantitative PCR), both agree that the heparan sulfate binding isoform VEGF164 

predominates.   This is consistent with the fact that the increased VEGF during adrenergic 

stimulation would function both at a distance, on endothelial cells to promote angiogenesis, 

as well as locally, on adipocytes.  

My investigation of the expression of VEGF and its receptors in white and brown 

adipose tissue demonstrate VEGF expression by white and brown adipocytes. VEGF 

expression increased during differentiation of white and brown adipocytes. My novel 

finding that VEGF receptors, VEGFR2, VEGFR1, as well as co-receptor Nrp1, are expressed in 

brown preadipocytes and adipocytes, raises the interesting possibility of an autocrine role 

of VEGF signaling in brown adipocytes and preadipocytes. 
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Introduction 

While it has been demonstrated that VEGF is expressed in BAT, preadipocytes and 

adipocytes, the sole function of VEGF was assumed to be as an angiogenic factor and 

potential actions outside of this have not been explored. Co-expression of VEGF and 

VEGFR2 has been observed in several cell types including podocytes (Guan et al. 2006), 

skeletal  muscle (Bryan et al. 2008) and the retinal pigmented epithelium (Ford et al. 2011); 

in each of these cells VEGF signaling was also demonstrated to play a role. My observation 

that VEGF and VEGFR2 are present in brown adipocytes therefore, led me to hypothesize 

that VEGF signaling may play a functional role in brown adipocytes in addition to supporting 

angiogenic remodeling. In this chapter I have explored the role of VEGF signaling in brown 

preadipocytes and adipocytes in vitro and in vivo.  I investigated if VEGF is important for 

brown preadipocyte survival and proliferation using in vitro assays and brown adipocyte 

survival and function in vitro and in vivo.  

Results 

VEGF is a mitogen for brown preadipocytes and acts asa survival factor 

through the PI3K-Akt pathway 

The expression of VEGF, VEGFR2 and co-receptor Nrp1 in brown preadipocytes 

suggests that VEGF may function in an autocrine manner in these cells. To investigate a role 

for VEGF-VEGFR2 signaling in brown preadipocytes, VEGFR2 activation was assessed by 
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examining the phosphorylation of known tyrosine residues in unstimulated brown 

preadipocytes in regular culture conditions. Western blot analysis of lysates of 

preadipocytes revealed phosphorylation of VEGFR2 at tyrosine 951, indicating VEGF 

signaling through VEGFR2 (Figure 3.1).  

Brown preadipocytes have been shown to be sensitive to serum starvation (growth 

factor withdrawal). To determine if VEGF signaling was playing a role in brown preadipocyte 

survival, cells were maintained in regular media but without serum, in the presence or 

absence of VEGF or the VEGFR2 neutralizing antibody DC101.  After 12 hours of serum 

starvation, about a third of the cells were seen to be detached by light microscopy; this 

increased to greater than 80% by 24 hours.  The levels of apoptosis marker protein from 

whole cell lysates of the above samples were analyzed by western Blotting.  Cleavage of the 

inactive proenzyme caspase 3 to its smaller (17-19 kD and 12 kD), proteolytically active 

forms is considered a marker of apoptosis, as the cleaved fragments are critical executioner 

of apoptosis(Fernandes-Alnemri et al. 1994; Nicholson et al. 1995).  As expected, nutrient-

deprivation resulted in robust activation of caspase 3, demonstrated by the presence of the 

cleaved 17-19kD fragments.  Culture of the cells with nutrient deprivation but in the 

presence of VEGF resulted in 70% reduction in caspase 3 cleavage and activation, indicative 

of reduced apoptosis. The addition of DC101 along with VEGF, thereby blocking VEGF 

signaling, resulted in 80% increase in caspase 3 cleavage levels and apoptosis compared to 

cells in VEGF alone. Additionally, the pattern of VEGFR2 phosphorylation was inversely 

correlated with caspase 3 activation, providing further evidence that VEGFR2 signaling was 

necessary for the observed protective effect.  
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  The phosphatidylinositol 3-kinase (PI3K) -Akt pathway has been demonstrated to 

confer protection from apoptosis in multiple cells and is also reported to be downstream of 

the VEGF–VEGFR2 signaling cascade.  To examine the signaling pathways involved in VEGF-

conferred protection of brown preadipocytes from apoptosis, I examined Akt activation in 

the above samples.  As expected, Akt was phosphorylated in control cells that were grown 

in normal growth media and did not show any apoptosis.  In contrast, nutrient deprivation 

resulted in a nearly complete loss of Akt phosphorylation along with loss of VEGFR2 

phosphorylation, indicating that Akt signaling was downstream of VEGF-VEGFR2 signaling in 

brown preadipocytes.  The presence of VEGF resulted in robust Akt phosphorylation 

compared to levels in control samples, and the addition of DC101 reduced this 

phosphorylation by 80% (Figure 3.1).   

To determine the role of VEGF signaling in preadipocytes, we assessed the effect of 

VEGF on preadipocyte proliferation.  Preadipocytes were cultured in low serum in the 

presence or absence of 10ng/ml VEGF and counted daily.  The growth of brown 

preadipocytes with VEGF led to a stimulation of cell proliferation when compared to 

untreated cells, with an increase in cell number of 70% at 48 hours (Figure 3.2).  

Blockage of VEGF signaling sensitizes brown adipocytes to apoptosis  

The association between VEGF expression and adipocyte differentiation as well as 

the expression of VEGF receptors in differentiated brown adipocytes demonstrated earlier, 

suggest that VEGF may play a role in mature brown adipocytes. In light of my observation 
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that VEGF acted as a survival factor for brown preadipocytes, I hypothesized that VEGF 

might serve a similar function for brown adipocytes.  

While nutrient deprivation does not lead  to death of  mature brown adipocytes, TNFα in 

combination with low (10 µg/ml) dose of cycloheximide (CHX) has been shown to induce 

apoptosis in brown adipocytes, with a maximal effect between 4 to 6 hours, without 

cytotoxicity due to CHX alone (Boucher et al. 2010; Miranda et al. 2010; Nisoli et al. 1997). 

To study the effect of VEGF signaling on brown adipocyte survival, brown adipocytes 

differentiated in vitro were treated with 10 nM TNFα and 10 µg/ml CHX for 6 hours in the 

presence or absence of VEGFR2 neutralizing antibody, DC101.  Quantification of cells 

revealed that whereas TNFα/CHX alone resulted in a 7% reduction in the number of cells 

compared to untreated brown adipocytes, treatment with DC101 in addition to TNFα/CHX 

resulted in a 15% reduction in the number of brown adipocytes compared to those treated 

only with TNFα/CHX (Figure 3.3A).  This level of cell death is significant as adipocytes are 

known to be relatively resistant to apoptosis. For an additional measure of survival, the 

percentage of cells with caspase 3 activation was measured. FACS analysis revealed a 5-fold 

increase in the number of adipocytes with cleaved caspase 3 in TNFα/CHX –treated cells 

grown with DC101 compared to cells grown with TNF/CHX (Figure 3.3B), indicating that 

blockade of VEGF signaling sensitizes brown adipocytes to apoptosis.  

  



Figure 3.1. VEGF activates PI3K/Akt pathway and mediates brown 
preadipocyte survival. Serum-starved brown preadipocytes cultured in 
25ng/ml VEGF for 12h were protected from apoptosis, judged by the reduced 
expression of cleaved (activated) caspase 3, which was lost upon the addition 
of VEGFR2 blocking antibody 15µg/ml DC101. Phosphorylation of VEGFR2 at 
Y951 was detected to check for active VEGF signaling and phosphorylation of 
Akt at S453 was done to check for PI3K/Akt activation.  
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Figure 3.2. VEGF increases brown preadipocyte proliferation. Increase in 
number of brown preadipocytes grown in 1% FBS in the presence of 10 ng/ml 
VEGF compared to 1% FBS alone. p**<0.01, p*<0.05.  
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Figure 3.3. Blockage of VEGF signaling sensitizes brown adipocytes to 
apoptosis. Differentiated brown adipocytes at day 7 were treated with 10nM 
TNFα and 10µg/ml CHX for 6 hours to induce apoptosis, in the presence or 
absence of VEGF-blocking antibody DC101 (15 µg/ml). (A) Cell numbers 
revealed treatment with DC101 in addition to TNFα/CHX led to reduced 
survival and fewer brown adipocytes compared to TNFα/CHX alone; p**<0.01 
(B) Apoptotic adipocytes detected using FACS analysis for cleaved (activated) 
caspase 3 also revealed an increased apoptosis in the presence of DC101; p = 
0.067.  
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VEGF neutralization reduces BAT vascular density  

Given my observation indicating a role of VEGF in brown adipocytes and 

preadipocytes in vitro, I next investigated a possible function for VEGF in the adult BAT.  To 

block VEGF signaling in vivo mice were injected intravenously with an adenovirus expressing 

sFlt1 (Ad-sFlt1) or an empty adenovirus (Ad-null). Previous work from our group has shown 

that this is an effective model for systemic VEGF neutralization, and that a circulating sFlt1 

level of at least 200 ng/ml is required for effective VEGF neutralization and that these levels 

can be maintained for up to 28 days (Maharaj et al. 2008; Ford et al. 2011 and unpublished 

data). Thus, mice were injected with adenovirus via the tail vein, serum was collected five 

days after injection to measure  circulating sFlt1 levels and tissue was harvested from the 

mice seven days post injection (Figure 3.4).  

To examine BAT capillary density of mice with systemic VEGF neutralization, BAT 

sections were probed with antisera against the endothelial-specific glycoprotein, 

endomucin, which is expressed by the endothelium of capillaries and veins but not arteries 

(Kuhn et al. 2002; dela Paz & Patricia a D’Amore 2009). Seven days following injection of the 

adenovirus, there was a marked reduction in microvessel density in the Ad-sFlt1 injected 

mice compared to Ad-null injected mice (Figure 3.5A). Whole tissue lysates from BAT of 

both groups were examined for the levels of endomucin (as a surrogate for vascular 

density) by Western blotting and revealed a 50% decline in endomucin levels in the BAT of 

Ad-sFlt 1 injected mice (Figure 3.5B), indicating that  VEGF neutralization led to a reduction 

in the microvascular density of brown adipose tissue.   



7.5 x 10^10 PFU Ad-sFlt1 
or Ad-null (negative control)  

Day 0 : Adult (8wk) male C57Bl/6J mice injected with sFlt1 or null virus 

Day7: Fat pads were harvested  
from mice with > 200 ηg/ml circulating sFlt1 

 

Protein and 
triglyceride assay 

TEM  immunohistochemistry 

Figure 3.4. Schematic representation of Ad-sFlt1 tail-vein injections for 
systemic VEGF neutralization.  8 week old male C57Bl/6J mice were injected 
with sFlt1 or null adenovirus via the tail vein. Serum levels of sFlt1 were 
measured by ELISA 5 days post injection. Mice expressing at least 200 ng/ml of 
circulating sFlt1 were included in the study.  Circulating sFlt1 levels can be 
maintained up to 28 days post injection. 7 days post injection mice were 
sacrificed and fat pads harvested for protein, histology and ultrastructure 
analysis using TEM. For TEM mice were first perfused with appropriate fixative.  

Day5: Serum collected by submandibular 
bleeding, circulating sFlt1 levels measured by 

ELISA 
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Figure 3.5. VEGF neutralization reduces BAT vascular density.  (A) Capillary 
density of sFlt1 and control BAT sections were examined by IF with endomucin, 
which marks the microvasculature. Nuclei were labeled with DAPI. There were 
fewer capillaries (white arrowheads) in the sFlt1-injected BAT compared to null. 
Scale bar represents 50 µm (B) Total endomucin protein levels in whole tissue 
lysates from BAT detected by Western Blotting (top) and quantification of 
endomucin levels normalized to β tubulin was done as a surrogate for vascular 
density; p*<0.05 

Endomucin = capillary endothelium 
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Figure 3.6. VEGF neutralization is associated with fibrosis of BAT. Collagen 
deposition in BAT of sFlt1 and control mice detected by Masson’s trichrome 
staining. Increased collagen (yellow arrowheads), indicative of fibrosis, was 
observed around veins and arteries as well as between brown adipocytes in the 
sFlt1-expressing mice. Collagen was detected as thin sheets in the control mice 
as well, but not at levels that are outside of normal. Scale bar represents 50 µm. 
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Figure 3.7. VEGF neutralization is associated with inflammation of BAT. IHC 
localization of F4/80 revealed infiltrating macrophages (black arrowheads) in 
the BAT of ad-sFlt1 injected mice but none in ad-null mice. F4/80 positive cells 
were detected attaching to the vessel walls of sFlt1 mice (red arrowheads), 
suggesting local inflammation, while no attachment was detected in null mice.  
Dotted black line – endothelial lining, L – lumen, scale bar represents 50 µm. 
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VEGF neutralization is associated with fibrosis and inflammation of BAT in 

vivo 

Reduced microvessels often result in tissue hypoxia, which can, in turn, lead to 

fibrosis and local inflammation (Halberg et al. 2009). Collagen I, the predominant collagen in 

adipose tissue (Napolitano 1963), was detected by Masson’s trichrome staining (TRI), which 

stains muscle red, nuclei dark purple and collagen bright blue. Collagen appeared as thick 

blue depositions around adipocytes and blood vessels in the sFlt1-expressing mice 

compared to the thin collagen sheets in the wild type mice, which is normal (Figure 3.6).  

IHC localization of F4/80 revealed the presence of a large number of macrophages in 

the BAT of sFlt1-expressing mice, whereas no macrophages were observed in the BAT of 

control mice (Figure 3.7). The features of immune cell infiltration, including adhesion and 

extravasation of the F4/80 positive cells, were observed in the sFlt1-injected BAT and 

suggest that VEGF neutralization resulted in local inflammation in BAT.  

VEGF neutralization leads to brown adipocyte apoptosis in vivo 

Since blockage of VEGF signaling resulted in increased apoptosis in vitro, I wanted to 

investigate the effect of VEGF neutralization on brown adipocyte survival in vivo. Apoptosis 

was first assessed by IHC localization of activated (cleaved) caspase 3 in BAT.  Many cells 

stained positively for cleaved caspase 3 in the BAT of sFlt1-expressing mice compared to 

only a few positive cells in null mice (Figure 3.8). High magnification revealed that these 

cells, occurring in clusters or singly, were adipocytes with activated caspase 3 accumulation 
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in the cytosol surrounding lipid droplets (Figure 3.8, bottom panel); a few endothelial cells 

with activated caspase 3 were also observed.  

To confirm apoptosis by another approach and to quantify apoptotic cells, Terminal 

Transferase dUTP Nick End Labeling (TUNEL) assay was performed (Figure 3.9A). TUNEL 

staining similarly revealed a large number of apoptotic (TUNEL +) cells in the BAT of sFlt1-

expressing mice compared to null.  To distinguish the adipocytes from the vascular cells, 

BAT sections were co-stained with endomucin to identify the endothelium (Figure 3.9B). 

There was a six to seven-fold increase in the number of apoptotic adipocytes in the BAT of 

sFlt1-expressing mice compared to control BAT. The BAT of mice that had been injected 

with Ad-null had ten or fewer apoptotic cells per section (Figure 3.9C). These data indicate 

that VEGF acts as a survival factor for brown adipocytes in vivo. 

Effect of VEGF neutralization on brown adipocyte morphology and 

mitochondrioma in vivo 

Lipid droplets 

Whereas brown adipocytes from the control mice had numerous small lipid droplets 

that is typical of BAT histology, brown adipocyte of sFlt1-expressing mice exhibited much 

larger lipid droplets (Figure 3.10), a phenotype that is indicative of increased lipid content 

and unusual in normal brown adipocytes of lean mice . This morphological difference was 

readily observed during histological analysis by H&E and Masson’s trichrome staining as 

well as during ultrastructural analysis with TEM. This was surprising as the BAT mass was 
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reduced after VEGF neutralization and thus was not a direct outcome of adipocyte 

hypertrophy (data not shown). 

Mitochondria 

As mitochondria are central to the function of brown adipose, I wanted to assess the 

effect of VEGF neutralization on mitochondrial ultrastructure. Ultrastructural analysis of 

BAT taken from control mice seven days post injection revealed that each adipocyte 

contained numerous mitochondria. However, the number of mitochondria was reduced by 

about 30% in brown adipocytes of ad-sFlt1 injected mice compared to control (Figure 

3.11A).  Control mice contained mitochondria that were uniform in shape and size, 

displayed dense, tightly packed cristae that spanned the width of each mitochondrion. In 

contrast, mitochondria in brown adipocytes from sFlt1-expressing mice often lacked cristae 

or had cristae that were incomplete, irregular in arrangement and/or did not span the 

mitochondrion (Figure 3.11B).  Incomplete or absent cristae are associated with 

mitochondrial degeneration and inactivity. The mitochondrial anomalies, along with the 

presence of large lipid droplets in brown adipocytes of sFlt1-expressing mice, suggest that 

VEGF neutralization may lead to reduced brown adipocyte function.  

Electron microscopic examination of the brown adipocytes of sFlt1-expressing mice 

also revealed autophagosome engulfing double-membraned organelles reminiscent of 

mitochondria, structures that were not observed in null mice (Figure 3.12A). The individual 

mitophagic vesicles appeared either electron dense or light, likely reflecting the stage of 

autophagic degradation. The light chain (LC)-3 proteins, LC3-I and II, are widely used as 

markers of autophagy  (Kabeya et al. 2000). During autophagy, LC3-I is converted to LC3-II, 



Figure 3.8. VEGF neutralization leads to brown adipocyte apoptosis in vivo. 
Apoptosis detected by IHC localization of activated (cleaved) caspase 3. Top panel: 
Adipoyctes with activated caspase 3 (black arrowhead) are rare in the BAT of control 
mice; low magnification (left), high magnification (right). Middle and lower panels: 
Apoptotic cells, with cleaved caspase 3 in the cytosol surrounding lipid droplets, 
occur frequently in clumps or singly near vessels in the BAT of sFlt1 expressing mice. 
L-lumen, LD-lipid driplet, scale bar represents 50 µm. 
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Figure 3.8 (continued) 
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Figure 3.9. Quantification of apoptosis in BAT after VEGF neutralization. (A) 
TUNEL staining of BAT sections demonstrating that BAT of mice injected with 
ad-sFlt1 have more TUNEL+ cells (white arrowheads) compared to null. Scale 
bar represents 100µm. (B)TUNEL+ adipocytes (white arrowheads) versus 
endothelial cells (red arrowheads) were identified by co-staining with 
endomucin and only TUNEL+ adipocytes were counted for quantification. (C) 
Quantification of TUNEL+ cells in each section reveals more than a six fold 
increase in apoptosis in sFlt1 BAT. L-lumen, LD-lipid driplet, scale bar represents 
50 µm; p*<0.05 
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Figure 3.10. VEGF neutralization results in alteration in brown adipocyte lipid 
droplets. Brown adipocyte histology analyzed by Masson’s trichrome stain 
demonstrating multiple small lipid droplets in each cell typical of brown 
adipocyte morphology (left), whereas ad-sFlt1 injected mice had significantly 
larger lipid droplets (yellow arrowhead) not usually observed in lean mice. 
Scale bar represents 50 µm 
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which become associated with autophagic vesicles (Tanida et al. 2004) and therefore 

indicates autophagy.  Thus, to further characterize the observed mitochondrial autophagy, I 

assessed LC3B levels in BAT using IHC. A light brown pattern of puncta was distributed 

diffusely throughout the cytosol of individual cells in both null and sFlt1-expressing mice, 

reflecting a basal level of autophagy. However, in the sFlt 1-expressing mice many 

adipocytes exhibited denser dark brown puncta within the cytoplasm, suggestive of a higher 

abundance of autophagosomes (Figure 3.12B). This staining pattern was rarely observed in 

null mice, an observation that is consistent with our TEM analysis that did not reveal 

mitophagy in any BAT from control mice. Increased mitophagy is associated with reduced 

lipolysis in WAT (Singh et al. 2009) and reduced thermogenesis in BAT (Milosevic & 

Ukropina 2008). These observations of altered mitochondrial structure in BAT associated 

with VEGF neutralization supports a role for VEGF in the maintenance of brown adipocyte 

survival/integrity.  

The effects of VEGF on brown adipocytes and preadipocytes observed in vivo and in 

vitro are summarized in Table 2. 

 

  



Figure 3.11. VEGF neutralization results in reduced mitochondria and disrupted 
ultrastructure. (A) Average number of mitochondria per field indicates a significant 
decrease in the total number of mitochondria in ad-sFlt1 injected mice. (B) (Left) 
Electron micrograph of brown adipocyte showing abundant mitochondria, lipid 
droplets (LD) and a nearby vessel (L) in control mice. Mitochondria were typical of 
functional brown adipocytes, numerous and densely packed with complete double 
membrane cristae (white arrowhead). (Right) Fewer mitochondria present in sFlt1 
brown adipocytes; a majority of mitochondria showed obvious signs of degeneration 
such as incomplete cristae, involuting cristae etc (red arrowhead) and several lacked 
cristae entirely (yellow asterisks); high magnification depicted in bottom panel.  L – 
lumen, LD - lipid droplet, scale bar represents 500 nm ; p=0.00007 
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Figure 3.11 (continued) 



Figure 3.12. VEGF neutralization results in brown adipocyte mitophagy. (A) Electron 
micrograph of brown adipocyte from ad-sFlt1 injected mice showing autophagy of 
mitochondria (red arrowhead). Left: Advanced stage of autophagy in which the 
autophagosome has already fused with a lysosome and material has degraded 
resulting in a lower density compared to the surrounding tissue. The double 
membranous structure present in the autophagolysosome is indicative of a 
mitochondria. Right: An early stage of mitophagy in which the intact mitochondria is 
being engulfed by an autophagosome. Note that the engulfed mitochondria appears 
healthy with complete cristae indicating that mitophagy in sFlt1-expressing mice is 
not a clearance pathway for abnormal mitochondria but a separate mechanism for 
reduction in overall mitochondria. Scale bar represents 500nm. (B) IHC localization of 
the autophagic marker LC3B. Puncta indicate autophagosomes with which the LC3B 
form II is associated. There are increased puncta in sFlt1 BAT compared to null mice. 
N – nucleus, LD - lipid droplet, scale bar represents 50 µm. 
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Figure 3.12 (continued) 
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Table 2 – Summary of effects of VEGF on brown adipocytes in vitro and in vivo  

Function In vitro In vivo 

Preadipocyte proliferation VEGF increases Not studied 

Preadipocyte apoptosis VEGF decreases Not studied 

Adipocyte apoptosis DC101 increases apoptosis sFlt1 increases apoptosis 

Adipocyte differentiation No significant effect Not studied 

Lipid droplet morphology Not studied sFlt1 increases lipid droplet size 

Number of mitochondria Not studied sFlt1 decreases 

Mitochondria morphology Not studied Abnormal with sFlt1 

Mitochondria autophagy Not studied sFlt1 increases  

BAT fibrosis - sFlt1 increases 

BAT inflammation - sFlt1 increases 

 

Section in pink indicates features associated with brown to white transdifferentiation. Section in green 

indicates probable effect of hypoxia resulting from capillary dropout.  
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Discussion 

There are now numerous reports that the action of VEGF is not confined to the 

vasculature. A variety of non-endothelial cells express VEGFR2, the primary VEGF signaling 

receptor, and VEGF has been shown to act on these cells to mediate proliferation, 

differentiation and/or survival.  Multiple lines of evidence, such as the presence of both 

VEGF and VEGF receptors in brown adipocytes, the dynamics of VEGF expression during 

brown adipocyte differentiation and cold acclimation of BAT, led me to hypothesize that 

VEGF signaling plays a role in brown adipocytes.  

The increased metabolic capacity of cold acclimated-BAT results not only from 

elevated thermogenic activity in individual adipocytes but also a greater number of 

adipocytes. Hyperphagia or cold adaptation in BAT is accompanied by robust hyperplasia as 

a result of proliferation of both preadipocytes and endothelial cells. In fact, 3H -thymidine 

labeling revealed a 70-fold increase in the number of proliferating cells in rats exposed to 

cold for two days compared to those at normal temperature (Bukowiecki et al. 1982). 

Whereas vascular remodeling takes a few days to a few weeks, we and others have 

observed that VEGF levels increase rapidly after cold exposure or adrenergic stimulation 

and return to initial (pretreated) levels 24 hours after treatment.  This disconnection 

between time frame of increases in VEGF levels and that of vascular remodeling suggests 

that VEGF may regulate proliferation in brown preadipocytes. Furthermore, it was recently 

demonstrated that approximately ten percent of adipocytes are renewed annually 

throughout adult life, irrespective of body mass index (Spalding et al. 2008).  While the 
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latter study was focused on white adipocytes, this observation nevertheless underscores 

the tight regulation of preadipocyte proliferation, differentiation and apoptosis.  

Apoptosis in brown preadipocytes is regulated by insulin through PI3K/Akt signaling 

(Boucher et al. 2010; Miranda et al. 2010). I have demonstrated that VEGF also signals in 

these cells through VEGFR2 and the PI3K/Akt pathway to confer protection from apoptosis. 

While a role for VEGF in brown preadipocyte apoptosis has not been reported until now, it 

is a survival factor for a number of other cell types such as photoreceptors, podocytes and 

the retinal pigmented epithelium (Saint-Geniez et al. 2008; Ford et al. 2011; Guan et al. 

2006). The data here demonstrate that VEGF acts as a mitogen on brown preadipocytes. As 

preadipocytes express VEGF and also VEGFR2, which we have shown is phosphorylated; it is 

likely that VEGF signals through an autocrine loop in these cells.  

The effect of systemic VEGF neutralization on BAT has been investigated during cold 

acclimation (Xue et al. 2009) where it was shown to block angiogenesis. As there have been 

no reports on the effect of VEGF neutralization on unstimulated BAT or brown adipocytes I 

assessed the role of VEGF through systemic VEGF neutralization achieved by adenovirus 

mediated sFlt1 overexpression. VEGF neutralization reduced microvascular density of BAT, 

measured using the endothelial cell marker endomucin, by 50% in seven days of VEGF 

neutralization. A recent study reported that overweight/obese subjects had 44% lower 

capillary density compared to lean individuals (Pasarica et al. 2009). Thus, the level of 

capillary dropout in BAT (or BAT rarefaction) resulting from sFlt1 overexpression in my 

experiments is within the physiologically relevant range observed in obesity.   
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As adipose tissue is the most plastic organ in the adult; both hyperphagia or cold 

acclimation resulting  in hyperplasia of BAT as well as WAT expansion during weight gain are 

accompanied by angiogenesis and remodeling of the adipose tissue vasculature. To adapt to 

the function and characteristics of adipose tissue, therefore, it is imperative that the 

microvasculature of adipose tissue be particularly plastic. In a study reporting the plasticity 

and VEGF dependency of adult vascular beds, thyroid and pancreatic  islet vasculature were 

found to be the most plastic  with about 70% reduced capillary density  after 14 days of 

VEGF neutralization using ad-sFlt1 (Kamba et al. 2006), whereas microvasculature of the 

brain and retina are not affected in that time (Saint-Geniez et al. 2008). In comparison, our 

observation of a 45% reduction in microvascular density (judged by endomucin protein 

levels) after only seven days of VEGF neutralization, therefore, underscores the plasticity of 

adipose tissue vasculature and how it is primed for remodeling during adaptive tissue 

growth. Fenestrated capillaries with high levels of VEGFR2 have been found to be more 

plastic, whereas microvascular beds such as the retina and brain that have been shown to 

be more “stable” are characterized by a high pericyte to endothelial cell ratio. Therefore it 

would be interesting to examine the pericyte distribution and fenestrations in the BAT 

vasculature.  High levels of VEGF expressed by BAT and the significant capillary dropout in 

BAT noted after seven days of VEGF neutralization is also consistent with the concept that 

high local levels of VEGF in a tissue reflect a strong dependence on VEGF compared to the 

vasculature in regions with lower VEGF levels (Saint-Geniez et al. 2008; Kamba et al. 2006).  

As oxygen diffuses from the capillary bed, its partial pressure falls from 

approximately 100 mm Hg as it leaves the vessel to almost zero within as little as 100 µm 
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(Folkman et al. 2000). Reduced capillary density therefore results in local hypoxia. Hypoxia 

has been documented in the adipose tissue of obese humans and mice. Recent studies have 

demonstrated that fibrosis and inflammation are part of the response of adipose tissue to 

hypoxia (Pasarica et al. 2009; Halberg et al. 2009; Sun et al. 2012).  The molecular response 

to hypoxia was modeled in a transgenic mouse that overexpressed HIF1α in adipose at 

levels found in the WAT of genetically obese ob/ob mice (Halberg et al. 2009).  These 

transgenic mice had significantly increased collagen deposition in SC WAT compared to 

control mice.  The levels of other extracellular matrix components such as collagens I, III and 

VI were also increased. Moreover, the adipose of the HIF1α-overexpressing mice was 

significantly more inflamed than that of the controls as evidenced by the presence of 

infiltrating macrophages.  A recent study also reported that partial pressure of oxygen was 

lower in the adipose of overweight/obese humans compared to lean subjects and low 

partial pressure of oxygen was correlated with increased expression of inflammatory 

cytokines such as CD68 and macrophage inflammatory protein 1α  (Pasarica et al. 2009).  

In my experiments, systemic VEGF neutralization was associated with both the 

above hypoxia-mediated pathological outcomes, fibrosis and inflammation.  Ad-sFlt1 

injected mice had increased fibrosis, detected by Masson’s trichrome staining of collagen 

fibers. This observation complements recent reports that adipose-specific overexpression of 

VEGF led to a reduction of fibrosis in adipose tissue of mice fed high fat diets (Sun et al. 

2012 ) and  is consistent with in vitro studies that demonstrated hypoxia induced expression 

of collagen I, fibronectin and TIMP1, in various mesenchymal cell lines.  Similarly, there was 

increased local inflammation, judged by the presence of F4/80 positive cells present in BAT 
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and attaching to the endothelium wall of ad-sFlt1 injected mice. This finding is in agreement 

with an earlier report from our group demonstrating that VEGF (or TGFβ) neutralization 

resulted in a significant increase in the number of leukocytes rolling along the mesenteric 

endothelium.  That study also showed elevated expression of surface adhesion molecules 

that mediated increased leukocyte adhesion, indicating an essential role for VEGF (and 

TGFβ) in maintaining the endothelium in a non-activated state (Walshe et al. 2009). The 

data here complement a recent report which showed that increased adipose expression of 

VEGF lessened inflammation associated with high fat died, measured by reduced expression 

of inflammatory cytokines such as TNFα and IL6 compared to control mice (Sun et al. 2012). 

Whether the inflammatory infiltrate is induced by adipocyte death or in response to 

chemokines secreted by BAT is unclear.   

Local hypoxia is one of the earliest characteristics of adipose tissue expansion and 

leads to a cascade of obesity-associated adipose tissue dysfunctions, such as fibrosis and 

inflammation. Inflammation is a key link between obesity and pathogenesis of type 2 

diabetes. In my experiments VEGF neutralization leads to fibrosis and inflammation in BAT, 

which resemble those observed in dysfunctional adipose tissue associated with obesity. 

These findings raise the possibility that reduced local VEGF expression and inadequate 

vascular remodeling may lie upstream of fibrosis and inflammation in adipose tissue. 

Systemic VEGF neutralization resulted in brown adipocyte apoptosis, indicating that 

VEGF is important for mature brown adipocyte survival in vivo. As brown adipocytes express 

both VEGF as well as its receptors, VEGFR1 and VEGFR2, this finding also suggests an 

autocrine role for VEGF in brown adipocytes in vivo.  This notion is supported by 
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observations in vitro. Cultured brown adipocytes, in which apoptosis was induced by 

treatment with TNFα and CHX, showed a higher level of cell death when VEGF signaling was 

blocked with DC101. This is physiologically relevant because circulating TNFα is significantly 

higher in obese animals, is known to induce apoptosis in brown adipocytes and my data 

suggest that the cytotoxic effects of TNFα may be aggravated in the absence of VEGF. 

Significantly more apoptosis was noted with systemic VEGF neutralization than in brown 

adipocytes treated with DC101 in vitro. These differences may be due to variation in 

duration of VEGF withdrawal, which was a few days in vivo compared to six hours in vitro. 

Additionally, as sFlt1 neutralizes the VEGF ligand, signaling through VEGFR2 and VEGFR1 are 

both blocked. Since both VEGFR2 and VEGFR1 are expressed in brown adipocytes, it is 

possible that there is compensatory VEGF signaling through VEGFR1. However, further 

experiments are needed to test this hypothesis. Further, sFlt1 also binds placental-derived 

growth factor and while there are no reports of placental growth factor expression in brown 

adipocytes, this possibility cannot be completely ruled out.  Yet another explanation is that 

increased apoptosis is a secondary effect of VEGF neutralization on brown adipocytes, in 

response to the capillary regression resulting from VEFG neutralization. However, given my 

results on cultured brown adipocyte it seems unlikely that the increased brown adipocyte 

apoptosis in vivo is entirely a secondary effect, but may explain the difference between the 

degrees of apoptosis observed in vitro compared to in vivo. VEGF has been demonstrated to 

be protective for other highly specialized cell types such as photoreceptors, the retinal 

pigmented epithelium,  Mϋller cells and podocytes .  
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Mitochondria are critical to brown adipocyte function, and a high density of 

mitochondria is a hallmark of functional brown adipocytes. The mitochondrial phenotype 

(or mitochondrioma), which is a measure of both mitochondria number and morphology, is 

a reliable indicator of the state of brown adipocyte activity. In active functional brown 

adipocytes, mitochondria are densely packed in the cytoplasm with transverse cristae 

spanning the entire length of the mitochondria (for a review see Cinti 2007). Active brown 

adipocytes are converted to an inactive state through degeneration of mitochondria, which 

are marked by partial or complete loss of cristae, and decrease in the number of 

mitochondria (Cigolini et al. 1986). Transdifferentiation of brown to white adipocytes is also 

accompanied by changes in the mitochondrioma. Systemic VEGF neutralization resulted in 

significant changes in the brown adipocyte mitochondrioma; there were fewer 

mitochondria in each cell compared to controls as well as histological evidence of massive 

mitochondrial degeneration, in the form of complete or partial loss of cristae and 

mitochondrial autophagy.  

Autophagy, a lysosomal degradative pathway that mediates the removal and 

breakdown of cellular components, is critical to the maintenance of cellular homeostasis 

and for supplying the cell with metabolic substrates in times of nutrient deprivation (Czaja 

2010). There are at least three distinct autophagic pathways: macroautophagy, 

microautophagy and chaperone-mediated autophagy. Macroautophagy is a multistep 

process through which portions of cytoplasm and/or organelles are sequestered in double 

or multi-membrane structures, known as an autophagosomes, and delivered to the 

lysosome for degradation. Fusion of the autophagosome with the lysosome, leads to the 
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formation of an autophagolysosome or autophagic vacuole. Although macroautophagy is 

generally considered a nonselective lysosomal process, there are instances in which 

organelles, such as mitochondria, appear to be preferentially sequestered, a process termed 

mitophagy (for a review see Kundu & Thompson 2005). Autophagy-related 7 (Atg7), which is 

critical for macroautophagy, is an ubiquitin E1-like enzyme that is involved in the formation 

of the autophagosome  (Ichimura et al. 2000; Kabeya et al. 2004; Wu et al. 2006) and in the 

conversion of LC3 form I to the autophagy specific form II (Kabeya et al. 2000).  

The profound changes in mitochondria along with the large lipid droplets seen in 

BAT from mice with systemic VEGF neutralization have at least two probable explanations. 

First, VEGF neutralization may result in transdifferentiation of brown adipocytes to white 

adipocytes, as seen in obesity. Two recent reports have demonstrated the effects of 

increased VEGF expression on WAT in mice engineered to overexpress VEGF specifically in 

adipose. Adipose specific VEGF expression resulted in WAT depots acquiring brown 

adipocyte-like properties, also known as “browning”, including elevated levels of UCP1 and 

PGC1α compared to control mice (Sun et al. 2012).  In addition, VEGF overexpression led to 

increased BAT mass and elevated UCP1 and PGC1α protein levels in BAT. An increase in 

body temperature in these mice compared to control mice was indicative of increased BAT 

activity (Elias et al. 2012). My results are consistent with these observations and suggest 

that the absence of VEGF leads to the opposite i.e. loss of brown adipocyte characteristics.  

Recent work has demonstrated that autophagy may play a role in adipocyte 

differentiation (Singh et al. 2009a).  Mice lacking the key macroautophagy regulator, Atg7, 

exhibited reduced white adipose and increased brown adipose. The reduced WAT depots 
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had morphologic and molecular features of brown adipocytes, including elevated levels of 

UCP1 and PGC1α. These findings indicated that the lack of autophagy favored the 

transdifferentiation of brown adipocytes from white adipocytes. While the mechanism of 

transdifferentiation remains to be determined, it has been hypothesized that autophagy, via 

the removal of the large numbers of mitochondria in brown adipocytes, may drive a critical 

remodeling function that mediates conversion of brown adipocytes to white adipocytes 

(Dong & Czaja 2011). My findings support this hypothesis as significant mitophagy is 

observed in brown adipocytes of ad-sFlt1 injected mice, along with fewer mitochondria and 

large lipid droplets, features atypical of brown adipocytes and suggestive of an early phase 

of brown to white transdifferentiation.  

A second explanation for the changes in mitochondria seen in BAT with VEGF 

neutralization may be that reduction in capillary density presumably results in a nutrient 

poor environment for brown adipocytes which can trigger mitophagy. Mitophagy enables 

energy conservation by reducing overall number of mitochondria, the major fuel consumers 

of the cell, and by recycling their components. Mitochondrial degeneration also reduces the 

number of functional mitochondria and lowers the overall fuel requirements of the cell. 

Without active mitochondria to utilize triglycerides as fuel, they are stored in large lipid 

droplets in the brown adipocyte as it transitions from an active to an inactive state. To test 

this hypothesis, metabolic activity, such as rate of triglyceride oxidation and mitochondrial 

function of brown adipocytes from sFlt1 and control mice must be compared. In addition, to 

determine if VEGF neutralization is associated with transdifferentiation of brown adipocytes 

to white adipocytes or whether the brown adipocytes simply become inactive, levels of 
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leptin, expression of which is much higher in white adipocytes than brown adipocytes, 

should be compared in the BAT of  sFlt1–expressing  and control mice. 

The role of brown adipose-derived VEGF is manifold and complex. VEGF promotes 

survival and proliferation signaling in brown adipocytes and acts on endothelial cells to 

stimulate angiogenesis as well as vascular cell survival. VEGF may have yet unidentified 

roles in brown adipocyte function that are key to normal BAT activity and the blockage of 

VEGF signaling could  contribute to the pathogenesis of metabolic disorders. Given that 

many therapies for diseases employ VEGF neutralization; these agents should be used with 

caution as long term use may lead to unexpected and undesired side effects.  
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ISOFORM-SPECIFIC ROLE OF VEGF IN BAT 

DEVELOPMENT 
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Introduction 

The VEGF gene is alternatively spliced and polycationic regions encoded by exons 6 

and 7 mediate binding to heparan sulfate proteoglycan, which determines their 

extracellular localization. The VEGF120 isoform, which does not include exons 6 and 7, does 

not bind heparan sulfate proteoglycans and is freely diffusible; VEGF188, which contains 

both exons 6 and 7, binds strongly to heparan sulfate and remains largely cell- and matrix-

associated; and, VEGF164, which includes only exon 7, displays intermediate properties. The 

pattern of VEGF isoform expression varies among tissues both during development and in 

the adult (Ng et al., 2001).  Mice expressing single VEGF isoforms, generated by deletion of 

splice sites or by replacement of genomic DNA (Carmeliet et al. 1999; Stalmans et al. 2002), 

demonstrated that the VEGF isoforms played distinct roles during development and in the 

adult both in vascular and non-vascular cells. Thus, I sought to investigate the distribution 

and role of the VEGF isoforms in adipose tissue. 

Results 

VEGF isoform expression in fat depots  

To characterize the profile of VEGF isoform expression in BAT and WAT, qPCR was 

performed using isoform-specific VEGF primers. Absolute quantification of VEGF isoforms in 

white and brown fat depots revealed that together VEGF164 and 188 comprised >99% of 

total VEGF whereas VEGF120 accounted for <0.5% of total VEGF in both BAT and SC. In  
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Figure 4.1. VEGF164 and 188 are the predominant isoforms in adipose 
tissue, which expresses very little VEGF120. The absolute amount of each 
isoform of VEGF was determined by quantitative PCR using isoform specific 
primers and serial dilutions of a known amount of standard. The total VEGF 
mRNA was the sum of the three isoforms. The percentage of each isoform 
was calculated based on the total VEGF thus obtained.  
 

107 



WT 

188 164 120 

VEGF 120/120 

120 

Figure 4.2. VEGF120 isoform specific mouse. This mouse was engineered by 
targeted deletion of exons 6 and 7 of the VEGF gene by homologous 
recombination in all cells, so that transcription of only VEGF120 is possible. 
These mice express the same total amount of VEGF, but only in the 120 isoform 
and present multiple vascular and organ specific abnormalities. (Carmeliet et 
al., 1999) 
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B 

A 

Figure 4.3. Brown adipose tissue in the wild type mouse embryo. BAT 
develops around E15 in the mouse. (A) Embryonic interscapular BAT depots at 
E15.5, visualized by Masson’s trichrome staining, are depicted (top panel). The 
right and left depots are visible (dotted black line) on either side of the 
notochord on the dorsal part of the embryo. Bottom panel: embryonic BAT at 
E16.5, visualized by H&E. The right and left sides are now closer, indicating 
rapid expansion of BAT mass. The appearance at this stage is very similar to 
interscapular BAT of neonatal mice. Scale bar represents 100 µm. (B) Higher 
magnification of interscapular BAT, visualized by H&E, at E15.5. They have 
densely packed cells with cuboidal morphology and tiny lipid droplets 
(arrowheads). Scale bar represents 50 µm. 
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BAT, 45% of the VEGF was VEGF164 and 55% was VEGF188, whereas VEGF in SC was 84% 

VEGF164 and 16% VEGF188 (Figure 4.1).   

Abnormal BAT Morphology in VEGF 120/120 Embryo  

To investigate the role of more locally acting VEGF isoforms, 164 and 188, in adipose 

development, I examined adipose tissue in mice, which were genetically engineered to 

express only the 120 isoform (VEGF120/120), but at a level comparable to total VEGF in wild 

type mice (Figure 4.2). Since VEGF 120/120 mice die during late gestation and WAT forms 

only after birth, my analyses were confined to BAT, which develops in the interscapular 

region around E15.5.  The notochord and dorsal dermal layer separate the left and right 

interscapular BAT depots and there is rapid expansion of BAT mass such that by E16 there is 

significant amount of interscapular BAT (Figure 4.3). As E15.5 was the latest time point at 

which VEGF 120/120 mouse could be obtained, the structure of BAT from VEGF 120/120 

and wild type E15.5 littermates was examined using hematoxylin & eosin and Masson’s 

trichrome staining. There was a significant reduction in the volume of brown adipose tissue 

(dotted white line) in 120/120 embryos compared to their wild type littermates (Figure 

4.4A). Whereas brown adipocytes in wild type mice were arranged in compact clusters, 

brown adipocytes in VEGF 120/120 mice were disorganized and scattered in the 

interscapular region, with large gaps containing some collagen deposition separating much 

smaller clusters of adipocytes (Figure 4.4B). Typical of this stage in development, brown 

adipocytes in wild type mice were cuboidal in shaped and had tiny lipid droplets. In 

contrast, there was no apparent lipid accumulation in the adipocytes of VEGF 120/120 mice  
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Figure 4.4. Reduced BAT and abnormal BAT organization in embryo with only 
VEGF120 (A) Morphology of brown fat in wild type (left) and VEGF 120/120 
(right) embryos at E15.5 revealed by H&E staining shows reduced embryonic 
brown adipocytes in the interscapular depot of 120/120 embryo compared to 
wild type (B) Masson’s Trichrome (higher magnification) reveals disorganized 
tissue structure. Small clusters of embryonic brown adipocytes are surrounded 
by abundant extracellular matrix, with some collagen deposition (arrowhead). 
Scale bar represents 50 µm. 
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Cox IV = mitochondrial marker 

UCP1 = brown adipocyte marker 

Wild type 120/120 

120/120 Wild type 

Figure 4.5. Abnormal brown adipocyte differentiation and mitochondrial 
content of embryonic BAT with only VEGF120 (A) IHC localization of UCP1, a 
brown adipocyte  marker, showing robust expression in wild type but reduced 
and mosaic expression in 120/120 brown adipocytes. Dotted red lines indicate 
clusters of brown adipocyte cells in 120/120, in which most cells have a low 
expression compared to wild type, with a few cells depicting strong expression 
(blue arrowheads). (B) IHC localization of the mitochondrial marker Cox IV 
depicting strong expression in almost all wild type cells and low expression 
(white arrowheads) in most 120/120 cells, with very few depicting strong 
expression (red arrowheads) . Scale bar represents 50 µm. 
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Abnormal mitochondrial protein expression in VEGF 120/120 Embryo  

To gauge the functional integrity of the brown adipose, I examined the distribution 

of UCP1, which is essential for brown adipocyte thermogenesis, and Cox IV protein, a 

member of the electron transport chain and a well established mitochondrial marker. 

Brown adipocytes in wild type embryos stained strongly for both UCP1 and Cox IV whereas 

in VEGF 120/120 embryo there was  a significant decrease in number of cells expressing 

UCP1 (Figure 4.5A). Cox IV expression was also reduced in the VEGF120/120 brown 

adipocytes relative to that of wild type; in the VEGF120/120 mice there was a high level of 

Cox IV expression (Figure 4.5B red arrowheads) in a few cells and low-to-undetectable levels 

in other cells (white arrowheads). The relative absence of mitochondrial markers indicates 

that the putative brown adipocytes were not properly differentiated. There was no 

difference in apoptosis between the VEGF 120/120 and wild type brown adipocytes at E15.5 

(data not shown) nor was there any measurable difference in cell proliferation, which was 

visualized by IHC with Ki67 and phosphorylated histone H3 antibodies (data not shown).  

These observations suggest that the reduction in brown adipocytes at E15.5 is likely due to 

decreased cell survival or proliferation at an earlier point in development, possibly at the 

stage of adipocyte precursors or adipoblast.  

Discussion 

Nearly all of the VEGF in BAT and WAT depots are isoforms that bind heparan sulfate 

proteoglycans (VEGF164 and VEGF188).  The pattern of VEGF isoform distribution varies 
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widely among vascularized tissues.  For example, VEGF188 is the predominant VEGF isoform 

in the lungs whereas the retinal pigmented epithelium (RPE) expresses virtually no VEGF188 

(Saint-geniez et al. 2009). Based on the distribution of VEGF among a variety of tissues our 

laboratory has observed that the pattern of VEGF isoform expression in a tissue appears to 

be ‘consistent’ with the proximity between the VEGF source and its target(s). For instance, 

in the lung VEGF188 is produced by type II pneumocytes, which are separated from their 

target, the alveolar capillaries, by a very thin basement membrane (Galambos et al., 2003) 

and the lungs of mice lacking the heparan sulfate-binding forms of VEGF (i.e. expressing 

only VEGF 120) reveal extensive microvascular and pulmonary defects.  In the eye, on the 

other hand, the RPE produces VEGF120 and VEGF164, but virtually no VEGF188, presumably 

reflecting the fact that VEGF produced by the RPE must diffuse across, Bruch’s membrane, 

an elastic lamina, to reach the choriocapillaris. Accordingly, mice that express only VEGF188 

display age-dependent degenerative changes in the RPE-choroid complex (Saint-Geniez et 

al. 2009). Similarly, in the brain the choroid plexus epithelium produces predominantly 

VEGF120, which supports not only the underlying fenestrated microvasculature but diffuses 

into the cerebrospinal fluid to act on the VEGFR2-expressing ependymal cells of the 

ventricular lining (Maharaj et al. 2008).  Thus, the predominance of VEGF188 and VEGF164 

in BAT suggests that VEGF plays both an autocrine role to support the integrity and survival 

of brown adipocytes and a paracrine function to promote angiogenesis during development 

and then vascular maintenance in the adult.  

VEGF 120/120 mice express VEGF at the same level as total VEGF in wild type mice 

(Carmeliet  et al. 1999) and die in late gestation due to defects in pulmonary and cardiac 
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angiogenesis. Mice expressing only VEGF120 exhibited defective ocular development 

including microphthalmia, abnormal lens differentiation and hyperplastic hyaloid vessels 

(Saint-Geniez et al. 2009). The diminished volume of BAT and the abnormal organization of 

the brown adipocytes that do develop in 120/120 embryos could be due to a direct effect 

on brown adipocytes or be secondary to defective angiogenesis.  Observations that VEGF 

120/120 mice exhibit abnormal vascularization and angiogenesis in multiple organs such as 

lungs, heart and cartilage (Zelzer et al. 2002) favor the latter hypothesis, particularly 

because angiogenesis precedes adipogenesis in the development of adipose depots 

(Hausman & Richardson 2004). On the other hand, the mitochondrial abnormality detected 

in the 120/120 adipocytes, coupled with my observations of mitochondrial degeneration in 

mature brown adipocytes of mice with systemic VEGF neutralization, suggest that there 

may also be a direct effect of VEGF on embryonic brown adipocytes. The resulting 

phenotype may well be an outcome of a possible direct effect of VEGF on adipocytes as well 

as an indirect effect through abnormal angiogenesis and further analyses of BAT 

development at different time points in 120/120 embryos is needed to better analyze the 

phenomenon.  

Based on my observations that VEGF promotes adipocyte survival it was surprising 

that no apoptosis was detected in the 120/120 embryos at the stage examined. However, 

my finding that VEGF is a mitogen for preadipocytes points to the possibility of reduced 

proliferation and/or survival of brown adipocyte precursors which led to a diminished 

population of adipocyte precursors available to differentiate to. A recent report 

investigating forebrain development reported reduced proliferation of neural precursors in 



116 
 

VEGF 120/120 mice and suggested a role for the heparan sulfate binding VEGF isoforms in 

maintenance of the neural precursor population (Darland et al. 2011). In order to test this 

hypothesis, a reliable marker unique to brown adipocyte precursors would be required to 

examine embryos at earlier stages of development. While the existence of such markers is 

not widely reported, there is some evidence to suggest that engrailed1 and c-myc are 

expressed in precursor cells in the interscapular BAT depot.   

My results, along with other reports on phenotypes of mice expressing single VEGF 

isoforms, emphasize the fact that the various VEGF isoforms serve different yet overlapping 

roles. Whereas mice lacking only one allele of VEGF die at E8.5, mice expressing only 

VEGF120 survive until late gestation, indicating that VEGF120 can at least partially 

compensate for the functions of the other isoforms. On the other hand, the specific 

abnormalities exhibited by mice expressing only one VEGF isoform underscore the distinct 

functions of each isoform in individual tissue and cellular contexts.  
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Chapter 5                                 

REGULATION OF VEGF EXPRESSION IN 

BROWN ADIPOCYTES 
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Introduction 

In light of my observations that VEGF expression increases concomitantly with 

adipocyte differentiation and VEGF plays a significant role in brown adipocytes, it appears 

likely that VEGF expression and brown adipocyte differentiation are coordinately controlled 

by the same molecular regulators. The transcription factor PPARγ, the master regulator of 

adipogenesis, and its transcriptional cofactor PGC1α are crucial in brown adipocyte 

differentiation and function. I therefore hypothesized that VEGF expression is regulated by 

PPARγ and PGC1α in brown adipocytes.  

Results 

PPARγ agonists increase VEGF expression in brown adipocytes in vitro 

PPARγ expression during brown adipocyte differentiation was examined by qRT-PCR 

(Figure 5.1). By day three of differentiation PPARγ expression was increased nearly 10-fold 

compared to undifferentiated cells, and remained high during the eight day course of 

differentiation. The increased VEGF expression (Figure 2.7) followed the pattern of PPARγ 

expression.  The levels  of hypoxia inducible factor (HIF)1α, a known regulator of VEGF, were 

observed to decrease over the course of differentiation (Figure 5.1) as did the expression 

estrogen related receptor (ERR)α, another recently described regulator of VEGF in skeletal 

muscle (data not shown). To test my hypothesis, differentiated brown adipocytes were 

treated with the PPARγ agonist troglitazone and RNA was collected from samples at various 
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time points following treatment. Analysis of VEGF mRNA expression revealed a 1.5-fold 

increase in the expression of VEGF within six hours of treatment and a nearly two-fold 

increase after twelve hours of treatment compared to untreated cells; the increase was 

sustained through 24 hours post TZD treatment (Figure 5.2). Expression of aP2, which is a 

known target of PPARγ and was used as a positive control, also increased compared to 

untreated cells, reaching a nearly six-fold increase following 24 hours of TZD treatment.  

VEGF expression in BAT is reduced in the absence of PGC1α  

PGC1α is crucial for BAT thermogenesis and has  been shown to induce VEGF 

expression in skeletal muscle following exercise through the ERRα transcription factor 

(Chinsomboon et al. 2009). Moreover, the pattern of VEGF expression in BAT with CL 

316,243 stimulation temporally mirrored that of PGC1α (Figure 2.8). Thus, to investigate 

whether PGC1α can alter VEGF expression in BAT I examined VEGF mRNA levels in the BAT 

of PGC1α knockout mice. VEGF RNA was significantly reduced in the BAT of adult male 

PGC1α null mouse, with an average VEGF expression of 40% of that in wild type (Figure 5.3). 

Preliminary observations of heterozygous mice showed that VEGF expression was 70% that 

of wild type mice, suggesting a dose dependent regulation of VEGF by PGC1α.  
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Figure 5.1. Transcription factor expression during brown adipocyte 
differentiation. PPARү expression increases during brown adipocyte 
differentiation while HIF1α expression decreases, determined by qPCR. 
p*<0.05, p**<0.01. 
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Figure 5.2. Induction of VEGF in brown adipocytes following treatment of 
PPARү agonist troglitazone. Brown adipocytes on day eight of differentiation 
were treated with 1µM troglitazone (TRO) and expression of VEGF measured at 
various time points using qPCR. VEGF expression is induced within six hours of 
treatment and sustained upto 24 hours. aP2 expression is used as a control for 
PPARү transcription activity as a known transcriptional target of PPARү. 
p*<0.05 
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Figure 5.3. Reduced VEGF expression in BAT of PGC1α knockout mice. VEGF 
expression (right) in the BAT of adult male mice lacking one or both alleles of 
PGC1α examined by qPCR, indicated dose dependant decrease in levels of 
VEGF in the absence of PGC1α (left). p**<0.01, p***<0.001. 
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Discussion 

Diverse VEGF expression is regulated by hormonal and developmental signals. The 

transcription factor HIF1α is a major mediator of hypoxia-induced gene expression changes 

and has been shown to regulate VEGF expression. In fact, hypoxic regulation of VEGF 

expression via HIF1α is the best characterized mechanism of VEGF control, including during 

vascularization of some tissues such as retina (Ferrara et al. 2003). However, this 

mechanism was not likely to play a role in the observed VEGF expression that accompanied 

in vitro brown adipocyte differentiation as the cells in culture are not hypoxic.  Interestingly, 

in spite of the intense focus on the role of HIF1α in the regulation of VEGF,  deletion of the 

hypoxia-response element in the VEGF promoter resulted in a viable mice with only minor 

phenotypes whereas VEGF -/-  and +/-  mice are embryonic lethal.  The dispensable nature 

of HIF1α-mediated VEGF transcription suggests that HIF1 is much less important in the 

regulation of VEGF than previously suspected.  My data suggest PPARγ/PGC1α-mediated 

regulation of VEGF transcription in adipocytes. VEGF expression was increased after 

treatment of differentiated brown adipocytes with TZD and was significantly reduced in the 

BAT of mice lacking PGC1α.  

Several studies have reported the PPARγ-activation mediated regulation of VEGF. In 

vascular smooth muscle cells and murine macrophages both endogenous and synthetic 

PPARγ agonists increase VEGF expression by 1.5- to 2-fold and 2.5- to 3-fold, respectively, 

through transcriptional activation of the VEGF promoter  (Jozkowicz et al. 2000). 

Furthermore, oxidized low density lipoproteins increase VEGF expression through PPARγ 



124 
 

activation in a number of human monocyte/macrophage cell lines and in human coronary 

artery endothelial cells (Inoue et al. 2001). On the other hand, both endogenous and 

synthetic PPARγ agonists have been demonstrated to repress VEGF expression in human 

endometrial cells also through its activity on the VEGF promoter (Peeters et al. 2005). 

Rosiglitazone has been shown to repress VEGF expression by 40 – 55% in tumor cell lines 

derived from lung carcinoma and glioblastoma (Panigrahy et al. 2002). Thus, it appears that 

the effect of PPARγ activation on VEGF expression is dependent on the cell type and tissue 

context.  

Work by our group has previously demonstrated that VEGF expression increases 

during myocyte differentiation in vitro and that this increase is regulated by the 

transcription factor MyoD, a key myogenic differentiation factor, which associates with the 

VEGF promoter (Bryan et al. 2008).  It has also been shown that VEGF expression in skeletal 

muscle induced by intense exercise does not involve the canonical hypoxia response 

pathway and HIF1α. Rather, it is mediated by PGC1α through the transcription factor ERRα 

binding to conserved binding sites in the promoter and first intron of the VEGF gene to 

activate VEGF transcription (Chinsomboon et al. 2009). PGC1α increases during brown 

adipocyte differentiation as well as following adrenergic stimulation, and is a key effector of 

the thermogenic response in brown adipocytes (Puigserver 2003; Kajimura et al. 2010). 

VEGF expression in brown adipocytes has also been demonstrated to be independent of 

hypoxia during cold acclimation, and regulated via a β3 adrenoreceptor/cAMP/PKA pathway 

(Fredriksson et al. 2000; Fredriksson et al. 2005; Xue et al. 2009).   



125 
 

Thus, we hypothesized that PGC1α would also regulate VEGF expression in normal 

brown adipocytes and during cold acclimation. Our preliminary results indicating a dose-

dependent association between VEGF expression and PGC1α levels in vivo are consistent 

with this hypothesis. A recent report showing that PGC1α and -β mediate VEGF expression 

in brown adipocytes during hypoxic conditions provides further evidence in support of PGC1 

mediated regulation of VEGF (Pino et al. 2012). While PGC1α is required for VEGF 

expression in BAT, as a cofactor it requires a transcription partner to alter gene expression. 

Based on my preliminary data, I propose a model in which PGC1α and PPARγ regulate VEGF 

expression in brown adipocytes.  

 Future studies will examine whether the absence of PPARγ activation affects VEGF 

expression in brown adipocytes and if VEGF expression is altered by endogenous PPARγ 

activators. Moreover, it would also be of interest to determine whether VEGF increase 

observed during adrenergic stimulation, while independent of hypoxia and HIF1α, is 

regulated by PPARγ.  Since PPARγ agonists are used in the treatment of type 2 diabetes, 

their effects on the expression of VEGF is clinically relevant.  
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GENERAL DISCUSSION  
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Discussion 

While several studies have reported the production of VEGF in BAT and brown 

adipocytes and have demonstrated the role of VEGF in adipose tissue angiogenesis, the 

function of VEGF on brown adipocytes themselves has not been explored. A few recent 

studies have provided interesting hints, such as the increased BAT function and “browning “ 

of WAT observed in mice expressing adipose specific transgenic VEGF, to suggest that VEGF 

may play a direct role in brown adipocytes ( Sun et al. 2012; Elias et al. 2012).   

My examination of white and brown fat depots revealed high levels of VEGF 

isoforms and their receptors VEGFR1 and VEGFR2 in most depots with BAT having a higher 

expression of both VEGF and receptors when compared to WAT.  In addition, VEGF 

expression was coordinately regulated with brown adipocyte differentiation as evidenced 

by the concomitant increase in the expression of PPARγ, PGC1α, UCP1 and the adrenergic 

receptor type β3 with VEGF.  Differentiated, but not precursor, brown preadipocytes 

expressed PGC1α and UCP1, the hallmark genes of brown adipocytes, and responded to 

norepinephrine stimulation by increased mitochondrial biogenesis and UCP1 expression. 

The expression of VEGFR2 in undifferentiated preadipocytes and differentiated brown 

adipocytes was a surprising and novel finding. VEGFR2 was phosphorylated in unstimulated 

cultured brown preadipocytes and adipocytes indicating active VEGF signaling in these cell 

types. VEGF expression also appeared to be coordinately regulated with WAT 

differentiation where the increase in VEGF during 3T3L1 differentiation was temporally 

correlated with the expression of PPARγ and with the expression of aP2, a known adipocyte 
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marker.  In contrast to differentiated brown adipocytes, VEGFR2 was not expressed in white 

adipocytes, a finding that is consistent with a previous report (Fukumura et al., 2003). 

My finding of VEGFR2 phosphorylation in cultured brown preadipocytes and 

differentiated adipocytes supports the hypothesis of autocrine or juxtacrine VEGF signaling. 

In support of this notion, the addition of VEGF induced preadipocyte proliferation in vitro 

and VEGF was a survival factor for both preadipocytes and mature adipocytes in vitro. These 

results were corroborated in vivo; systemic neutralization of VEGF resulted in apoptosis of 

brown adipocytes as early as seven days post injection and was associated with 

inflammation and fibrosis, presumably the result of the significant cell death and hypoxia.  

Examination of the ultrastructure of BAT from sFlt1-expressing mice revealed 

abnormal mitochondria with partial or complete loss of cristae, a phenotype that is 

commonly associated with reduced mitochondrial activity and degeneration (Cinti 2007; 

Cigolini et al. 1986). Adipocytes in mice with systemic VEGF neutralization also displayed 

macroautophagy of mitochondria (mitophagy), a phenomenon completely absent in control 

BAT, along with an increase in autophagosomes, judged by the presence of LC3B form II 

puncta. The mitochondrial autophagy in brown adipocytes seen with VEGF neutralization 

was intriguing as it has been proposed that mitophagy regulates brown-white 

transdifferentiation of adipocytes and negatively correlates with brown adipocyte fate 

(Singh et al. 2009b). Inhibition of mitophagy by deletion of the critical autophagy regulator 

Atg7 decreased WAT mass, increased “browning” of white adipocytes, including brown 

specific gene expression, reduced lipid storage, and increased BAT mass (Singh et al. 2009b). 

The BAT from mice expressing sFlt1 exhibited large fusing lipid droplets, a characteristic 
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more typical of white adipocytes, and a trend towards higher triglyceride content was also 

observed even though the BAT mass itself was reduced in sFlt1-expressing mice compared 

to controls.  Our findings complement this report as increased mitophagy is associated with 

loss of brown adipocyte characteristics and features indicative of early stage of brown to 

white transdifferentiation. Another likely explanation is that systemic VEGF neutralization 

results in dysfunctional or inactive brown adipocytes in which the mitochondria are not 

employed in fatty acid oxidation, and thus targeted for autophagy to maintain cellular 

homeostasis and conserve cellular resources. Consistent with our observation of decreased 

brown adipose features, it has recently been demonstrated that adipose tissue-specific 

VEGF expression results in “browning” of white adipose tissue, increased BAT mass and 

function, and protection against high fat diet and insulin resistance (Elias et al. 2012; Sun et 

al. 2012).  

The pattern of VEGF isoform expression varies among tissues both during 

development and in the adult (Ng et al., 2001). Examination of VEGF isoform expression in 

BAT revealed that VEGF188 and VEGF164 each comprised approximately 50% of total VEGF 

with VEGF120 accounting for less than 1%. The splice variants of VEGF have different 

binding affinities to heparan sulfate: VEGF120 lacks heparan sulfate binding sites and is 

freely diffusible, whereas VEGF188 binds strongly to heparan sulfate. VEGF188 largely 

remains matrix- and cell- associated and is thought to act locally whereas VEGF164 has 

intermediate properties. Our laboratory has found that the pattern of VEGF isoform 

expression in various tissues reflects the proximity between the VEGF source and its 

target(s). The predominance of heparan sulfate-binding VEGF isoforms in BAT is consistent 
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with my findings that VEGF functions in brown adipocytes in an autocrine or juxtacrine 

manner. To investigate the role of VEGF188 and VEGF164 in development of BAT, I used 

mice that were engineered to express only VEGF120 (Carmeliet et al. 1999). The absence of 

VEGF188 and 164 led to significant morphological abnormalities in the embryonic brown 

adipocytes, including disorganization and a marked reduction in number relative to 

embryonic wild type brown adipocytes. There was no detectable difference in adipocyte 

proliferation or apoptosis at the time point examined.  Based on my in vitro observations 

that VEGF is a mitogen for preadipocytes, I speculate that the BAT anomalies seen in VEGF 

120/120 mice may be the result of decreased survival or proliferation of brown 

preadipocytes.  

UCP1 expression was markedly reduced in the brown adipocytes of VEGF 120/120 

mice, with most cells displaying little or no expression, a phenotype indicative of incomplete 

differentiation. Mitochondrial content was also significantly reduced, indicating impaired 

mitochondrial biogenesis. This finding in VEGF 120/120 mice was consistent with my 

observation that systemic VEGF neutralization resulted in massive mitochondrial 

degeneration and reduced mitochondrial number and may point to a novel role for VEGF in 

the regulation of adipocyte metabolism.  VEGF has been shown to regulate a variety of 

functions in other cell types. For instance, in murine podocytes VEGF is involved in 

homeostasis of slit diaphragm proteins such as podocin and CD2AP that are required for the 

function of the glomerular filtration barrier (Guan et al. 2006). VEGF promotes myotube 

hypertrophy in vitro and neutralization of VEFG leads to myotube hypotrophy (Bryan et al. 

2008) and  increases bone mineralization during osteogenic differentiation (Mayer et al. 
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2005). Culture of RPE cells with VEGF neutralization results in blunted and reduced 

microvilli, structures which facilitate the critical interaction between RPE and photoreceptor 

outer segments (Ford et al. 2011). Alternatively or additionally, the observed mitochondrial 

degeneration may be an indirect effect resulting from an overall nutrient poor environment 

due to capillary dropout after systemic VEGF neutralization.  

We previously demonstrated that the expression of VEGF is coordinately regulated 

as part of the myogenic differentiation program where it serves not only to induce 

angiogenesis but in an autocrine function in differentiating myocytes. MyoD, the 

transcription factor critical for myogenic differentiation regulated VEGF transcription in 

C2C12 myocytes in vitro (Bryan et al. 2008). Here we show that VEGF expression is 

coordinately increased during normal brown adipocyte differentiation and that its 

expression in brown adipocytes is positively regulated by PPARγ agonists in vitro and PGC1α 

in vivo, both critical for brown adipocyte differentiation and function.  Based on my 

preliminary data I propose a model in which PGC1α mediates VEGF expression in brown 

adipocytes with the transcription factor PPARγ in tandem with the process of brown 

adipocyte differentiation and during cold acclimation.  

The formation of a vasculature is essential for proper organ development and 

function and is tightly regulated by various pro- and anti-angiogenic factors. The resulting 

vascular network is specialized with features, such as fenestrations or tight junctions, to 

meet the needs of the organ it supplies. As for virtually all other tissues, adipogenesis and 

angiogenesis are spatially and temporally coupled (Crandall et al. 1997). In the adult, 

adipose tissue is one of the most plastic organs. Cold acclimation is marked by profound 
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hyperplasia in BAT of preadipocytes and endothelial cells (Bukowiecki et al. 1982). The mass 

of WAT varies greatly with body weight and expanding adult WAT is characterized by 

endothelial cell proliferation (Crandall et al. 1997). It is well known that VEGF is critical for 

adipose tissue angiogenesis. Administration of neutralizing antisera against VEGFR2 to 

obese mice led to significantly lower body weights and improved metabolic function (Sun et 

al. 2012). On the other hand, increased expression of VEGF in adipose tissue improved 

insulin sensitivity and metabolic profile during the early stages of high fat diet-induced 

weight gain, as well as inducing browning of WAT depots and increased BAT mass (Sun et al. 

2012; Elias et al. 2012). This underscores the pivotal role of VEGF in adipose angiogenesis. 

Our work has identified an additional function of VEGF in BAT, its direct beneficial effects on 

brown adipocytes to promote their survival, proliferation and maintenance of brown 

adipocyte mitochondrioma. 

Our work and that of others have demonstrated that VEGF acts in an autocrine 

manner on non-endothelial cell types of multiple adult tissues. In addition to those 

described earlier in this chapter, VEGF promotes survival of Muller cells of the adult retina 

(Saint-Geniez et al. 2008), induces neuronal differentiation of astroglial cells of the adult 

brain (Li et al. 2012), functions in the maintenance of the ependymal cells of the of the 

choroid plexus overlying fenestrated vessels (Maharaj et al. 2008), promotes the survival 

and maintenance of RPE (Ford et al. 2011), increases survival and slit diaphragm protein 

homeostasis in podocytes (Guan et al 2006) and promotes osteoblast differentiation over 

adipocyte differentiation in mesenchymal stem cells through an intracrine signaling 
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pathway involving VEGF receptors (Liu et al. 2012). Our findings add to the growing list of 

pleiotropic effects of VEGF.  

Future studies on the role and regulation of VEGF in brown adipose are likely to 

reveal valuable insights on the scope of its role in brown adipocytes. For instance, it would 

be interesting to study the effect of blockage of VEGF signaling in vivo in brown adipocytes 

only, which can be achieved by adipocyte specific VEGFR2 knockout as it would not affect 

the action of adipocyte-secreted VEGF on the neighboring endothelium. The role of VEGF 

on brown adipocytes during BAT acclimation to cold or hyperphagia would also be relevant, 

in particular because activating BAT is a major goal in combating obesity.   

Closing Thoughts 

I have demonstrated that VEGF and its primary receptor VEGFR2 are expressed in 

brown adipocytes. VEGF signaling plays a significant role in brown adipose function and 

maintenance through its effects on both brown preadipocytes and mature brown 

adipocytes. VEGF functions as a mitogen and a survival factor on preadipocytes rescuing 

them from apoptosis induced by growth factor withdrawal. Further, VEGF has anti-

apoptotic effects on mature brown adipocytes in vivo and in vitro and plays a role in 

maintenance of brown adipocyte mitochondrioma in vivo, in addition to its paracrine role to 

promote angiogenesis in BAT. VEGF has an isoform specific role in BAT development and 

brown adipocyte mitochondrial biogenesis.  VEGF is regulated by both the critical adipose 

transcription factor PPARγ and the transcriptional cofactor, PGC1α. Taken together my 
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findings identify novel functions of the endothelial growth factor VEGF in the context of 

brown adipocytes that are significant from a translational standpoint because brown fat 

activation and angiogenic intervention are each promising therapeutic targets for obesity 

and associated metabolic dysfunction.  
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MATERIALS AND METHODS   
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Materials 

Antibodies  

Antibodies used for Western blotting included: anti-phospho-Y951-VEGFR2 (1:300; 

#4991), VEGFR2 (1:1000, #2479), cleaved caspase 3 (1:1000, #9661), whole caspase 3 

(1:1000, #9662), phospho-S473-Akt (1:250, #9271), pan-Akt (1:1000, #9272) purchased 

from Cell Signaling Technologies (Danvers, MA, USA). Antiserum against β-tubulin (1:500, 

ab6046 ) was purchased from Abcam (Cambridge, MA, USA). Anti-endomucin (1:1000, sc-

65495) was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Secondary 

antibodies used included horseradish peroxidase (HRP)-conjugated anti-rabbit 

immunoglobulin G (IgG) from donkey (1:7500; GE Healthcare, Buckinghamshire, UK). 

Antibodies used for immunohistochemistry to UCP1 (1:500; ab10983), cox IV (1:1000; 

ab16056), F4/80 (1:100; ab6640) were purchased from Abcam, LC3B (1:200, # 2775) and 

cleaved caspase 3 (1:100) from Cell Signaling Technology and perilipin (1:200; P1873) from 

Sigma-Aldrich (St. Louis, MO, USA). Secondary antibodies for immunohistochemistry were 

biotinylated anti-rat IgG (1:400) and anti-rabbit IgG (1:500), both raised in goat (Vector 

Laboratories, Burlingame, CA, USA) and for immunofluorescence  were Alexa Fluor-488 

conjugated anti-rat and Dylight 549-conjugated anti-rabbit IgG (1:300, Invitrogen). 

Methods 

Animal models 

 C57Bl/6J wild type and VEGF 120/120 mice were used. For ad-sFlt1 and CL 316,243 

studies, eight-week old male C57Bl/6J mice were purchased from Jackson Laboratories (Bar 



137 
 

Harbor, ME, USA).  VEGF 120/120 mice were generated by targeted deletion of exon 6 and 7 

of the VEGF gene, which encode the 164 and 188 isoforms, as previously described 

(Carmeliet et al., 1999). VEGF 120/120 embryos were generated by breeding C57Bl/6J VEGF 

120/+.  The ages of the embryos were calculated based on plug date, which was defined as 

E0. Timed-pregnant females were euthanized at E15.5. PGC1α -/- mice were generated by 

breeding PGC1α +/- mice on a C57Bl/6J background. All mice were maintained on a regular 

chow diet and kept on a 12-hour light-dark cycle. Adult mice were euthanized by carbon 

dioxide inhalation; embryos older than E13.5 were euthanized by decapitation.  All 

protocols for animal use were reviewed and approved by the Schepens Eye Research 

Institutional Animal Care and Use Committee in accordance with the National Institutes of 

Health guidelines.  

3T3L1 culture and differentiation  

3T3L1 cells were maintained as subconfluent cultures in Dulbecco’s modified Eagle’s 

medium (DMEM containing 4.5g/L of glucose, L-glutamine and sodium pyruvate (Cellgro; 

Manassas, VA, USA) supplemented with 10% FBS (Atlanta Biologicals; Lawrenceville, GA, 

USA), 100U/ml penicillin and 100µg/ml streptomycin (Lonza; Basel, Switzerland) (hereafter 

referred to as growth medium).  To induce differentiation, cells were cultured for 48 hours 

beyond confluence in the growth medium described above. On day 0, the medium was then 

replaced with adipose differentiation medium, which comprised growth media 

supplemented with 10µg/ml insulin, 1µM dexamethasone and 0.5mM 

isobutylmethylxanthine (IBMX), all from Sigma-Aldrich. After 48 hours, the differentiation 
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medium was replaced with adipose maintenance medium, which is growth medium 

supplemented with 5µg/ml insulin. Cells were maintained in the maintenance medium until 

fully differentiated (10-12 days) and medium was replaced every other day (Figure 2.2).  

Brown preadipocyte culture and differentiation  

Brown preadipocytes were generously provided by Dr. C. R. Kahn (Joslin Diabetes 

Center) and were maintained as subconfluent cultures in the growth media described 

above. To induce differentiation, cells were cultured to confluence and allowed to grow in 

the above growth media for an additional forty-eight hours. Growth medium was then 

replaced with fresh brown adipose differentiation medium (day 0) consisting of growth 

media with 20nM insulin, 1µM dexamethasone, 0.5 mM IBMX, 1nM triiodothyronine (T3; 

Sigma) and 0.125mM indomethacin (Sigma). After forty-eight hours, the differentiation 

medium was replaced with adipose maintenance medium made by supplementing DMEM 

growth media with 1nM T3 and 20nM insulin. Cells were maintained in the maintenance 

medium until fully differentiated (usually eight days) and medium was replaced every other 

day (Figure 14).  In the studies using norepinephrine, fully differentiated brown adipocytes ( 

day eight) were incubated in serum-free medium for three hours, followed by treatment 

with 10µM norepinephrine for 1 hour.  For treatment with PPARγ agonists, fully 

differentiated cells (day eight) were treated with 1µM troglitazone (Sigma) in regular 

growth medium for 6, 12, 24 and 48 hours.  

RNA isolation, cDNA synthesis  
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Total RNA was isolated from adipocytes using RNA Aqueous 4PCR Kit (Life 

Technologies, formerly Ambion; Grand Islands, NY, USA), following the manufacturer’s 

instructions. RNA concentration and integrity were determined using the Nanodrop 2000 

(Thermo Fisher Scientific, Waltham, MA, USA). RNA was treated with DNase to remove 

contaminating DNA as follows: 8-10µg of RNA was treated with 50U of DNase (Life 

Technologies) in a total volume of 50µl of 1x DNase Digestion Buffer for 30 min at 37°C. 

DNase Inactivation Agent was added, followed by incubation at room temperature for 2-3 

min and centrifugation at 10,000 x g for 1.5 min. The resulting DNA-free RNA supernatant 

was used subsequently for reverse transcription (RT) and cDNA synthesis.  RT was 

performed on 1µg RNA using SuperScript III (Life Technologies, formerly Invitrogen) as per 

the manufacturer’s instructions. Briefly, RNA was incubated with random hexamers, 

oligo(dT)12 – 18 and deoxyribonucleotide triphosphates (DNTP) in an aqueous base for 5 min 

at 65°C , and 1 min on ice followed by addition of the first-strand buffer and remaining 

reagents. Then final reaction mixture (20µl) contained 1µg RNA, 50ng of random hexamers, 

200ng of oligo(dT)12 – 18 and 10nmoles of deoxyribonucleotide triphosphates (DNTP), 200U 

SuperScript III, 40U RNaseOUT  and 5µM DTT (all from Life Technologies) in 1x first-strand 

buffer. The cDNA synthesis reaction was as follows: 5 min at 25°C, 45 min at 50°C followed 

by enzyme inactivation at 70°C for 15 min. cDNA generated from this reaction was diluted 

1:25 with nuclease-free water.  

Real time PCR  
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For gene expression analysis, 5µl of the cDNA (10ng of equivalent RNA) was 

amplified in each PCR amplification reaction using 500nM forward and reverse primers and 

SYBR Green Master mix (Roche Diagnostics, Indianapolis, IN, USA), according to the 

manufacturer’s instructions. Primer sequences used are listed in Table 3. Reactions were 

performed on the Roche LightCycler® 480 II. PCR cycles consisted of an initial denaturation 

step at 95°C for 10 min, followed by 40 cycles of 95°C for 15 sec, 60°C for 30 sec and 72°C 

for 1 min. Each sample was subjected to melting curve analysis to confirm amplification 

specificity. Samples were run in triplicate and included three water controls for each gene 

analyzed. Samples were normalized to TATA box binding protein (TBP) and expressed as 

relative fold change using the ∆∆Ct method of relative quantification. 

For absolute quantification of VEGF isoforms a standard curve was constructed for 

each of the three isoforms by amplifying serial dilutions (103 - 109ng DNA/reaction) of a 

plasmid coding for a single isoform using primers specific for each isoform. The level of 

individual isoforms in each experimental sample was calculated relative to the standard 

curve. Each sample and dilution was run in triplicate, as described above. Results were 

expressed as the mean + SEM.   

Semi-quantitative PCR analysis 

Total mRNA and cDNA were prepared as described above. One microliter of cDNA 

was used as a template in a 25μl amplification mixture containing 200mM dNTPs, 1U Taq 

DNA polymerase (Roche Diagnostics) and 0.2μM of the primer pairs indicated in Table 4. 
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Samples were amplified for 35 cycles, and amplification products were separated by 

agarose gel electrophoresis, stained with ethidium bromide, and visualized by UV light.   

Administration of β3 agonist CL 316,243  

Adult male C57Bl/6J mice were injected intraperitoneally with ~100 – 120µL CL 

316,243 or saline (control) at a final dose of 1 mg/kg body weight, which is the most 

commonly used dose for CL 316,243-mediated adrenergic stimulation in mice in vivo, from a 

0.25mg/ml stock solution. Five mice were used for each time point. Mice were euthanized 

and tissue was harvested two, six and 24-hours post injection. Tissue for RNA isolation was 

directly placed in TRIzol® (Life Technologies) and stored in -80   C. 

Proliferation assay 

Cells were plated at a density of 10,000 cells per well of a 24-well plate in regular 

growth media and allowed to attach overnight. Growth medium was removed and cells 

were washed once with serum free DMEM and re-fed with DMEM containing 1% FBS with 

or without 10ng/ml VEGF. Cells were counted at 24 hour intervals for five consecutive days 

using a Coulter Counter (Beckman Coulter, Brea, CA, USA).  Each time point was set up in 

triplicate. 
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Table 3 – Primers for qPCR mouse genes 

Target gene Forward Primer Reverse Primer 

aP2 (FABP4) ATGAAATCACCGCAGACGACAGGA TGTGGTCGACTTTCCATCCCACTT 

PGC1α AGCCGTGACCACTGACAACGAG GCTGCATGGTTCTGAGTGCTAAG 

PPARγ GACATCCAAGACAACCTGCTG GCAATCAATAGAAGGAACACG 

VEGF GCACATAGAGAGAATGAGCTTCC CTCCGCTCTGAACAAGGCT 

VEGF  188 GCCAGCACATAGAGAGAATGAGC AACAAGGCTCACAGTGAACGCT 

VEGF 164 GCCAGCACATAGAGAGAATGAGC CAAGGCTCACAGTGATTTTCTGG 

VEGF 120 GCCAGCACATAGAGAGAATGAGC CGGCTTGTCACATTTTTCTGG 

TBP ACCCTTCACCAATGACTCCTATG TGACTGCAGCAAATCGCTTGG 

UCP1 GGCATTCAGAGGCAAATCAGCT CAATGAACACTGCCACACCTC 

 

Table 4 – Primers for RT-PCR for mouse genes 

Target gene Forward Primer Reverse Primer Amplicon Size 

aP2 CTGGAAGACAGCTCCTCCTCGAAG TAATCAACATAACCATATCCAAT 585 

GAPDH GTGGCAAAGTGGAGATTGTTGCC GATGATGACCCGTTTGGCTCC 291 

Nrp1 TCAGGACCATACAGGAGATGG TGACATCCCATTGTGCCAAC 619 

UCP1 TATCATCACCTTCCCGCTG GTCATATGTTACCAGCTCTG 505 

VEGF CCTCCGAAACCATGAACTTTCTGCTC CAGCCTGGCTCACCGCCTTGGCTT 665, 593, 461 

VEGFR1 GAGAGCATCTATAAGGCAGCGGATT CACGTTTACAATGAGAGTGGCAGTG 456 

VEGFR2 TACACAATTCAGAGCGATGTGTGGT CTGGTTCCTCCAATGGGATATCTTC 499 
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Apoptosis assay 

Apoptosis was induced in brown preadipocytes through nutrient deprivation. 

Preadipocytes were plated and grown to confluence in regular growth medium. Cells were 

rinsed twice for five min in serum free DMEM. Cells were then placed in serum free 

medium.  VEGF (25ng/ml) and/or DC101, a neutralizing antisera against mouse VEGFR2 

(15µg/ml) for 12 hours. Cells were rinsed twice in PBS (which was collected), trypsinized, 

pooled with medium and PBS and centrifuged. Whole cell lysates were prepared and 

analyzed for presence of the pro-apoptotic protein marker cleaved caspase 3 and other 

proteins by Western blotting as described. 

 Apoptosis was induced in fully differentiated brown adipocytes by treatment with 

10nM TNFα (Genway Biotech, San Diego, CA, USA) and 10µg/ml CHX for 6 hours in the 

presence or absence of DC101 as above. Cell survival was analyzed after the treatment.  Cell 

number was counted using a Coulter Counter as described above. For detection of cleaved 

caspase positive cells, cells were incubated with Alexa Fluor®488-conjugated cleaved 

caspase 3 antibody (Cell Signaling Technologies, cat # 9669) and FACS analysis was 

conducted using Cytofix/Cytoperm Fixation Permeabilization kit (BD Biosciences, San Jose, 

California, USA; cat # 554714), following the manufacturer’s instructions. Briefly, cells were 

rinsed in PBS, trypsinized and collected as above. The cells were then washed once in 

staining buffer (Opti-MEM (Life Technologies) with 1% BSA)  xed in 4% paraformaldehyde 

(PFA) for 15 min at 4   C, permeabilized in BD Perm/Wash buffer (BD Biosciences, Cat # 

554714) for 15 min , incubated in 50µl of the primary antibody (1:100) for 30 min in the 

dark, washed once in BD Perm/Wash buffer and resuspended in 350µl staining buffer for 
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FACS analysis. The cells were protected from light at all times following antibody incubation. 

Percentage of cleaved caspase 3-positive cells was analyzed using a Fluorescence Activated 

Cell Sorter (FACS) (BD LSR II, BD Biosciences).   

TUNEL assay 

Apoptotic cells in BAT were detected in paraffin sections by the TUNEL assay using 

the In Situ Cell Death Detection TMR Red kit (Roche Diagnostics), following the 

manufacturer’s instructions, with some modifications. Briefly, paraffin sections were 

rehydrated, deparaffinized, boiled in citrate buffer, pH 6.0 for 20 min and permeabilized for 

5 min in cold PBS containing 0.2% Tween-20.  Sections were then incubated at 37 °C 

covered from light in TUNEL reaction mix containing biotinylated nucleotides and terminal 

deoxynucleotidyl transferase (TdT) enzyme for 1 hour, washed three times in PBS and 

mounted. DNase treatment was performed as a positive control, and incubation without 

TdT enzyme was conducted as a negative control. 4’,6’-diamino-2-phenylindole (DAPI) 

labeling was used to identify cell nuclei. When immunofluorescence was combined with 

TUNEL assay to identify cell type, immunostaining was conducted first; the cells were then 

fixed for 10 min in 4% PFA, followed by TUNEL assay as described. For quantification, three 

sections from each BAT sample were scanned entirely and images were taken of all TUNEL 

positive cells with an Axioscope microscope (Carl Zeiss Microscopy LLC, Thornwood, NY, 

USA). The number of TUNEL positive cells was represented as the average number of 

apoptotic cells per section, for five mice expressing sFlt1and three control mice. 
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Adenovirus mediated sFlt1 expression 

Mice were anesthetized using ketamine/xylazine and injected with ~7.5 x 10^10 pfu 

of sFlt virus in 100µl volume via the tail vein. Adenoviruses administered intravenously are 

delivered primarily to the liver, targeting the hepatocytes and non-parenchymal (Kupffer 

and endothelial) cells. Production of the gene of interest is mediated by infection of these 

cells, which secrete the protein into systemic circulation (Reviewed in Sakurai et al., 2008). 

Five days post injection, serum was collected by submandibular bleeding and circulating 

sFlt1 levels were determined by ELISA (R&D Biosystems, Minneapolis, MN,USA; Cat # 

MVR100). Animals with circulating levels of sFlt1 of 200ng/ml or higher were included in the 

study.  Ad-null-infected mice showed no detectable sFlt1. Eight mice were used in each 

group. Mice were euthanized seven days post injection and tissues dissected. Three mice 

from each group were perfused for electron microscopy as described. For the remaining 

animals, total body weight as well as the weights of BAT and major WAT depots were noted. 

For histology, the tissues were placed directly in 4% PFA and fixed for 48 hours.  Tissue for 

protein/triglyceride analyses was flash frozen immediately in liquid nitrogen and stored in -

80   C. 

One possible issue concern regarding the use of adenoviral vectors is the innate 

immune response that can be triggered by systemic administration (reviewed in Sakurai et 

al. 2008). However, we have used this model of adenoviral-mediated expression extensively 

(Maharaj et al. 2008; Ford et al. 2011; Saint-Geniez et al. 2008).  Measurement of circulating 

levels of TNF-α in Ad-null and Ad-sFlt1 animals revealed no increase in TNF-α, whereas 
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positive controls such as culture media from LPS-stimulated macrophages contained more 

than 1500pg/ml of TNF-α (Walshe et al. 2009).  

Western blot analysis 

To prepare whole cell lysates, cells were homogenized in RIPA lysis buffer containing 

0.1% SDS (Sigma-Aldrich) over three freeze-thaw cycles, sonicated for ~ 5 sec, centrifuged at 

12,000xg for 10 min at 4   C and supernatant collected and stored at -80   C. Protein 

concentration was measured using a BCA assay (Bio-Rad Laboratories, Hercules, CA, USA). 

Equivalent amounts of proteins from 30 to 60µg, depending on the sensitivity of the 

antibody to be used, were separated by SDS-PAGE under reducing conditions, and 

transferred to an Immobilon-P membrane (Millipore, Billerica, MA, USA).  The membrane 

was incubated in blocking buffer (5% non-fat milk in PBS with 0.1% Tween) for 30-60 min 

and immunoblotted with the appropriate primary and secondary  antibodies diluted in 0.5 – 

3% non-fat milk in PBS with 0.1% Tween. Membranes were washed in PBS with 0.1% 

Tween. Proteins were visualized with SuperSignal West Pico, Dura or Femto extended 

duration substrates (Pierce Biotechnologies, Rockford, IL, USA). For reprobing, membranes 

were stripped by incubation for 30 min in 6.25 mM Tris-HCl, pH 6.8, 2% SDS and 100 mM β-

mercaptoethanol at 50 °C, blocked and reprobed.  

Immunohistochemistry and immunofluorescence 

Embryos (E15.5) and BAT were fixed overnight in 4% PFA in PBS and embedded in 

paraffin, sectioned (5µM) and stained with hematoxylin & eosin for routine histology and 

Masson’s Trichrome to stain connective tissue.  For immunohistochemistry, sections were 
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deparaffinized, rehydrated, boiled in citrate buffer (pH 6.0) for antigen retrieval, incubated 

with 1% hydrogen peroxide in methanol for 10 min to block endogenous peroxidase 

activity, and permeabilized with PBS containing 0.2% Tween for 5 min.  For 

immunohistochemistry with the an -LC3B an body, sec ons were permeabilized in 100% 

methanol for 20 min at -20  C.  Blocking of non-specific binding was accomplished by 

incubation in buffer made of serum from the host species of the secondary antibody (3%) in 

PBS with 0.2% Tween for 1 hour at room temperature before incubation with appropriate 

primary antibodies in blocking buffer overnight at 4°C in a humidified chamber. After 

washing three times in PBS, sections were incubated with biotinylated anti-rat or anti-rabbit  

antibodies in blocking buffer for 1 hour at room temperature, followed by three additional 

washes.  The primary antibody was visualized using avidin-biotin-horseradish peroxidase 

and DAB substrate (Vector ABC kit; Vector Laboratories); tissues were counterstained with 

hematoxylin for labeling cell nuclei. Isotope-matched IgGs served as negative controls for 

each experiment.  For immunofluorescence on paraffin sections, a procedure similar to that 

for immunohistochemistry was followed except antigen retrieval in citrate buffer was 

followed by incubation of sections in PBS with 0.2% sodium borohydride for 10 min to 

quench autofluorescence and incubation with hydrogen peroxide was not performed.  

For immunofluorescence of differentiated adipocytes, cells were grown on sterilized 

coverslips in 12-well plates until fully differentiated. Cells were fixed in 4% PFA for 10 min, 

washed, incubated in blocking buffer, followed by overnight incubation with appropriate 

primary antibodies. Samples were washed three times in PBS, followed by incubation with 

fluorophore conjugated anti-rat or anti-rabbit secondary antibodies for 1 hour at room 
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temperature, washed in PBS and counterstained with DAPI for identification of cell nuclei. 

Cells on coverslips were mounted on slides using mounting media (1:1 PBS and glycerol).  

To visualize mitochondria in differentiated brown adipocytes, live unfixed cells were 

incubated in 100nM CMTM-Rosamine (MitoTracker Orange, Invitrogen) for 30 min at 37   C, 

fixed in 4% formalin for 15 min, washed three times in PBS. If immunofluorescence was to 

be performed on the same samples, the cells were also permeabilized in ice cold acetone 

for 5 minutes followed by blocking and incubation with primary antibody.  

Electron microscopy 

Seven days following adenovirus injections, mice express ad-sFlt1 and the control 

ad-null mice were deeply anesthetized with ketamine (73 mg/kg) and xylazine (1.8 mg/kg) 

and perfused via the aorta with 10ml sodium cacodylate buffer 0.1 M, pH 7.4, for 2 min 

followed by 10ml fixative of PFA/ glutaraldehyde, 2.5% each in 0.1M sodium cacodylate 

buffer, pH 7.4 (Electron Microscopy Sciences; Hatfield, PA, USA).  Perfusion was 

accomplished with a 21-gauge cannula inserted into the aorta via the left ventricle. Fluid 

drained through the right atrium, and animals’ death from exsanguination was immediate 

upon perfusion. The BAT was dissected and fixed in the same fixative for 72 hours at 4  C.  A 

secondary  xa on was performed overnight at 4  C in 1% osmium tetroxide and 1.5% 

potassium ferrocyanide.  Osmium is the main fixative for lipids, which are not extracted 

during processing, allowing the adipocytes to maintain their morphology. This was followed 

by dehydration and embedding in propyleneoxide resin. Ultrathin sections were treated 

with 1% uranyl acetate followed by 0.2% lead citrate for visualization of cell ultrastructure 
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and examined by transmission electron microscopy using a Tecnai TM G2 Spirit BioTWIN 

transmission electron microscope (Oregon, USA).   

Statistical analysis  

Values are expressed as mean + SEM unless specified. Statistical analysis was 

performed using an unpaired Student t-test for comparison between two groups and one 

way Anova for comparison between multiple groups (***, P < 0.001; **, P <  0.01; *, P < 

0.05; ns, P < 0.05, ns: P>0.05). 
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Appendix 

RhoB Controls Adult Angiogenesis and Lymphangiogenesis through VEZF1 

Damien Gerald1, Irit Adini2, Sharon Shechter1, Carole Perruzzi1, Joseph Varnau1, 

Benjamin Hopkins1, Shiva Kazerounian1, Peter Kurschat2, Stephanie Blachon3, 

Mandrita Datta1, David Sherris4, Michael Klagsbrun2, Heidi Stuhlmann5, Alan C. 

Rigby6, Janice A. Nagy1,# and Laura E. Benjamin1,# 

 

 

 

This represents work done in Mandrita’s former thesis laboratory. She performed 

groundwork of demonstrating that RhoB regulates the transcription of Prox1, master 

regulator of lymphatic differentiation, and that VEZF1 does not mediate Prox1 expression 

directly, through techniques such as cloning of the Prox1 promoter fragments, luciferase 

assay etc.  She also optimized short hairpin RNA mediated silencing of RhoB and VEZF1 in 

primary lymphatic and blood vascular endothelial cells.  
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RhoB, a stress-induced small GTPase, modulates cellular 

responses to growth factors, genotoxic stress and neoplastic 

transformation. Here, we show that RhoB loss converts  

retinopathy-associated, pathological angiogenesis to a more 

physiological phenotype. RhoB loss also reduces 

angiogenesis, while enhancing lymphangiogenesis, during 

skin wound healing in adult mice, which reveals unique and 

opposing roles of RhoB in blood versus lymphatic 

vasculatures. By comparing primary human blood and 

lymphatic endothelial cells, we link these biological 

responses to the differential regulation of sprouting  and  

proliferation  by  RhoB.  Mechanistically  we  demonstrate  that  

nuclear RhoB-GTP  controls  expression  of  different  gene  

sets  in  both  endothelial  lineages through  VEZF1-mediated  

transcription,  thus  establishing  the  first  intra-endothelial  

molecular  mechanism  responsible  for  the  characteristic  

phased  response  of  early angiogenesis and delayed 

lymphangiogenesis following injury. Finally, we identify a  

small molecule inhibitor of VEZF1-DNA interaction that 

recapitulates RhoB loss in ischemic retinopathy, providing 

proof-of-concept for the therapeutic value of targeting  

transcription factors.  
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Large organisms exhibit two different vascular networks essential for life. The circulatory blood vascular  

network, arising during embryonic development by both vasculogenesis and angiogenesis, provides  

oxygen, nutrients, hormones and cells to tissues, and collects carbon dioxide and other metabolic waste  

products1. The blind-ended lymphatic vascular network that subsequently originates from the embryonic  

cardinal vein by budding and differentiation of a subpopulation of blood endothelial cells, regulates tissue  

fluid homeostasis, immune cell trafficking and absorption of dietary fats 2. Similarly in adults, numerous  

studies have shown that angiogenesis precedes lymphangiogenesis in damaged tissues3-9. However, the  

underlying mechanisms that timely coordinate these processes are still elusive. Considering the close  

identity between blood and lymphatic endothelial cells, a central question still unresolved is how blood  

vessels quickly engage in the revascularization of damaged tissues, while the growth of lymphatics is  

delayed in response to the same pathological stimulus? RhoB is an immediate early response gene rapidly  

inducible by many stimuli including genotoxic stress, cytokines and growth factors10-13. In contrast to its  

related members of the Rho/Rac/Cdc42 family of small GTPases, RhoB is primarily localized on  

endosomes and in the nucleus, and has been shown to regulate vesicle and growth factor receptor  

trafficking 14-17. RhoB null mice are viable, indicating that RhoB is dispensable for normal development  

18, however, RhoB deletion in mice can increase tumor formation19. Furthermore, studies in RhoB  

knockout mice indicate that RhoB is a critical modifier of apoptosis triggered by genotoxic stress. In  

transformed fibroblasts, RhoB promotes apoptosis in response to DNA damage18. In contrast, RhoB  

protects transformed keratinocytes from UVB-induced apoptosis, suggesting that RhoB’s functions are  

dependent upon the nature of stress and the cell context13. Our previous studies revealed for the first time  

the contribution of this small GTPase to the blood vasculature in the developing retina, which is  

associated with defective endothelial tip cell sprouting in RhoB null mice20. We found that RhoB is an  

important determinant of Akt stability and trafficking to the nucleus, and that this function plays a stage- 

specific role in the survival of sprouting blood vessel endothelial cells (BVECs) that contribute to new  

blood vessel assembly during post-natal retinal development. Given its critical role in the stress response,  

we hypothesized that RhoB might be relevant in adult pathological scenarios involving endothelial cell  

challenge, such as wound healing, inflammation, or reperfusion injury. Here, we show that RhoB null  



 155 

 

 

 

mice exhibit decreased angiogenesis leading to normalization of pathological angiogenesis associated  

with ischemic retinopathy, but earlier, increased and abnormal lymphangiogenesis following dermal  

injury or inflammation. Using human primary BVECS versus LVECs, we demonstrate that RhoB serves  

opposing roles in regulating proliferation and sprouting capability of these two endothelial populations.  

To further understand these exclusive functions of RhoB, we focused on a recently identified zinc finger  

transcription factor VEZF1, involved in embryonic angiogenesis and lymphangiogenesis21. For the first  

time, we confirmed the interaction of RhoB and VEZF1 in cells. And we explored the function of the  

RhoB-VEZF1 complex in both adult endothelia in vivo. Our transcriptome analysis of BVECS and  

LVECs uncovers relevant and new genes targeted by VEZF1 and co-regulated by RhoB-GTP. Lastly, we  

identified a small molecule specifically selected to interfere with VEZF1 binding to DNA, which  

recapitulates the ability of RhoB loss to normalize the pathological angiogenesis in the ischemic retina.  
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RESULTS  

RhoB loss normalizes blood vasculature in oxygen-induced retinopathy and 

reduces angiogenesis accompanying wound healing  

To analyze the impact of RhoB on postnatal angiogenesis, we first employed the mouse model of  

oxygen-induced retinopathy (OIR)22 to create a pathological angiogenic environment in neo-natal RhoB-/- 

mice.  After 5 days at 70% oxygen (P7-P12), analysis of the retinal vasculature indicates profound vessel  

regression, particularly in the central portion of the retina near the optic disc (OD), and confirms that the  

initial vascular response to high oxygen is not altered in the absence of RhoB (Fig. 1a). Subsequently,  

after 5 days of room air (P12-P17), wt pups mounted a robust pathological neovascularization in the retina  

typified by abnormalities in vascular structure (formation of glomeruloid bodies or “vascular tufts”  

(arrowheads), large avascular areas (star), and endothelial cell invasion through the inner limiting  

membrane (ILM) into the vitreous (arrows). High invasion rate into the wt vitreous was quantified by  

counting EC nuclei anterior to the ILM in H&E histological sections. In contrast, RhoB-/- mice showed a  

dramatic reduction of glomeruloid bodies, and 100-fold reduced intra-vitreous invasion rate. Thus, RhoB  

loss during ischemic retinal neovascularization was accompanied by reduced blood vessel growth and the  

conversion of the resultant neovascular network from a pathological to a more physiological phenotype.  

To evaluate the impact of RhoB deletion in another tissue, we subjected the mouse ear skin to a  

full thickness wound using a 2 mm biopsy punch. New blood vessels were induced in the granulation  

tissue of wt mice by 7 days after wounding (Fig. 1b). In contrast, RhoB-/-  mice exhibited poor  

neovascularization within the granulation tissue with a 2-fold decreased vascular density compared to wt.  

Interestingly in RhoB-/- mice, immunostaining for CD31 revealed not only the presence of positively  

stained blood vessels, but additional structures with a different morphology and weak staining intensity  

(arrowheads). CD31 is a protein also known to be expressed by lymphatic endothelial cells23. To validate  

the lymphatic identity of these additional vascular structures, we used an antibody against podoplanin, a  

protein that is specifically expressed in the lymphatic endothelium (Fig. 1c). Co-localization of CD31 and  

podoplanin confirmed the identity of these structures as lymphatic vessels infiltrating and surrounding the  
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granulation tissue in RhoB-/- mice (arrowheads). Taken together, these results indicate that RhoB plays a 

positive role in the formation of new blood vessels in different vascular beds responding to stress, and 

prompted us to further explore the lymphatic vasculature of RhoB-/- mice.  

 

RhoB   enhances   lymphangionenesis   associated   with   wound   healing   and 

inflammation  

To directly determine the participation of RhoB in the response of the mature lymphatic network to a  

pathological challenge, we assessed the effect of RhoB loss on lymphangiogenesis associated with  

cutaneous wound healing using the mouse ear model. By day 7 post-wounding, in vivo injection of  

high-molecular-weight FITC-dextran tracer directly into the dermal lymphatic vessels in wt mice did not  

reveal any obvious formation of new lymphatics associated with the granulation tissue, in agreement with  

previous studies6,9,24 (Fig. 2a and Movie S1). On the other hand, RhoB-/- mice exhibited a profound  

lymphangiogenic response as judged by the rapid increase in the filling of a distinct lymphatic network  

with the FITC-dextran tracer beginning between 2-10 seconds after tracer injection and progressively  

increasing by 30 seconds (2-fold increase) (Movie S2). These results indicate more numerous lymphatic  

vessels as well as an elevated interconnectivity in the lymphatic vessel network adjacent to the RhoB-/- 

wound. Thereafter, between 30 and 60 seconds, the appearance and accumulation of FITC-dextran in the  

tissue immediately surrounding the filled lymphatics (arrowheads), far from the tracer injection site,  

suggests an abnormal structure of these new lymphatics leading to the enhanced leakage of fluid and  

macromolecules. Confocal analysis following whole mount staining of lymphatics with anti-podoplanin  

on tracer-injected ears confirmed the abnormal structure of the lymphatic vessels in the RhoB-/- 

granulation  tissue,  i.e.,  lymphatic  lumen  enlargement  and  impaired  barrier  integrity  leading  to  

accumulation of FITC-dextran in the surrounding tissue (respectively, arrowhead and star, Fig. 2b).  

To demonstrate that the abnormal lymphatic structure in RhoB-/- stressed skin leads to defective  

draining function, we induced a delayed-type hypersensitivity (DTH) reaction using oxalozone as a  
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sensitizing agent25. The level of edema accompanying chronic inflammation in the ears was assessed by  

measurement of ear thickness (Fig. 2c). The maximum extent of edema, reached by 2 days after  

oxalozone application, was significantly higher in RhoB-/- ears as compared to wt. Thereafter, ear swelling  

declined more slowly and remained significantly higher in RhoB-/- compared to wt mice even after 11  

days, indicating that resolution of fluids that accumulated during the inflammatory phase is impaired in  

the RhoB-/- mice. Visualization of the lymphatic network at 7 days post-challenge by intralymphatic  

injection of high-molecular-weight FITC-dextran tracer revealed a massive lymphangiogenic response in  

RhoB-/- mice characterized by more numerous lymphatic vessels, enhanced lymphatic interconnectivity,  

and dramatic FITC-dextran leakage into the surrounding tissue (Fig. 2d and Movie S4) as compared to wt  

(Movie S3). These data indicate that the absence of RhoB permits the formation of an early, excessive and  

dysfunctional lymphangiogenic response, which disrupts the normal pattern of edema resolution.  

 

 

 

RhoB differentially affects BVEC and LVEC proliferation and sprouting  

To comparatively assess the function of RhoB in blood versus lymphatic endothelia, we used pure  

populations of human primary blood (BVECs) and lymphatic (LVECs) endothelial cells isolated from  

foreskin (Fig. S2). First, we determined the relative amounts of RhoB protein found in BVECs versus  

LVECs during resting conditions (cells at 100% confluence for 48h without media renewal), or during  

proliferative conditions (cells collected 24h and 48h after challenge initiated by trypsinization of  

confluent cultures followed by re-plating at 50% density) (Fig. 3a). RhoB was constitutively expressed in  

both resting and proliferating BVECs. In contrast, RhoB protein was barely detectable in LVECs at rest  

and at 48h after challenge. Interestingly, the level of RhoB protein increased in both BVECs and LVECs  

24h after proliferative challenge, suggesting that RhoB plays a critical role in both BVECs and LVECs in  

their immediate response to stress. To further analyze the function of RhoB in BVECs and LVECs, we  

either silenced or overexpressed RhoB, by siRNA nucleofection or adenovirus infection, respectively, and  

then subjected confluent cultures of the modified cells to proliferative stress (Fig. 3b). Immunostaining of  

pre-confluent cells 24h following proliferative stress, with an antibody against the proliferation marker  
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Ki67, showed that RhoB silencing decreased the percent of proliferating BVECs two-fold, but nearly  

doubled the percent of proliferating of LVECs (Fig. 3c). In direct contrast, RhoB overexpression  

significantly promoted the proliferaton of BVECs, but repressed LVECs proliferation. Using a 3D 

sprouting assay, we also observed a differential response of BVECs and LVECs to alterations in RhoB 

expression (Fig. 3d). Indeed, RhoB silencing reduced the sprouting of BVECs induced by VEGF-A and led 

to increase sprouting of LVECs stimulated by VEGF-C.  In contrast, RhoB overexpression had the reverse 

effect, i.e., higher number of BVECs sprouting in response to VEGF-A, and repressed LVECs sprouting in 

response to VEGF-C. These results demonstrate that RhoB serves cell autonomous, yet opposing, roles in 

two essential features of blood and lymphatic endothelial cell biology, i.e., proliferation and sprouting, thus 

corroborating our in vivo observations.  

 

RhoB   collaborates   with   VEZF1   during   stress-induced   angiogenesis   and 

lymphangiogenesis  

To decipher the molecular mechanisms responsible for the differential effect of RhoB in blood and  

lymphatic vascular beds, we investigated the possibility that RhoB is functionally linked to the zinc finger  

transcription factor VEZF1, previously shown to regulate embryonic angiogenesis and lymphangiogenesis  

and a RhoB-interacting protein in vitro14,21. We crossed mice from the RhoB and VEZF1 knockout strains  

and generated an allelic series of mice, i.e., RhoB+/-, VEZF1+/- and RhoB+/-VEZF1+/-. Using the OIR assay  

as our read-out of pathological angiogenesis, we observed that loss of only one RhoB allele did not alter  

the pathological angiogenic response in the retina of RhoB+/- mice as compared to wt (Fig. 4a compared to  

Fig. 1a). However, VEZF1+/- mice exhibited a reduced pathological angiogenic response (2-fold decrease  

in the number of nuclei interior to inner limiting membrane) (Fig. 4a), which is further reprogrammed to  

more physiological angiogenesis in RhoB+/-VEZF1+/- mice, similarly to RhoB-/- mice (Fig. 4a compared to  

Fig. 1a). In parallel, we assessed the lymphangiogenic response to challenge using the ear wound model.  

By day 7 post-wounding, in dramatic contrast to what we observed in the RhoB-/- mice (Fig. 2a), injection  

of high-molecular-weight FITC-dextran tracer did not reveal new lymphatics in the region immediately  
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surrounding the site of the wound in RhoB+/- mice (Fig. 4b and Movie S5). In contrast, in RhoB+/- 

VEZF1+/- mice, the lymphangiogenic response was comparable to that observed in the RhoB-/- mice (Fig.  

4b and Movie S7 compared to Fig. 2a). Interestingly, VEZF1+/- mice exhibit an intermediate lymphatic  

phenotype with the emergence of several leaky lymphatics around the granulation tissue (arrowhead, Fig.  

4b and Movie S6).  

To address the interaction of RhoB with VEZF1 at the molecular level in BVECs and LVECs, we  

investigated the subcellular localization of these two proteins. Importantly, although RhoB was detected  

predominantly in the cytoplasm of both BECs and LECs, we also observed this small GTPase in the  

nucleus of both cell types, where VEZF1 proteins were exclusively detected (Fig. 4c). Moreover, RhoB  

and VEZF1 could be co-immunoprecipitated indicating the presence of a protein complex containing this  

small GTPase and this zinc-finger transcription factor (Fig. 4d). Taken together, these studies strongly  

argue that RhoB genetically interacts with VEZF1 in the regulation of the altered blood vascular response  

to ischemia as well as in the temporal repression of lymphangiogenesis during wound healing, and  

indicate that RhoB belongs to a nuclear transcriptional complex containing VEZF1.  

 

RhoB and VEZF1 share relevant target genes for BVEC and LVEC proliferation 

and sprouting  

To uncover how the collaboration between RhoB and VEZF1 affects BVEC and LVEC biology, we set  

about to identify the cohort of target genes whose expression is influenced by these two proteins. To  

accomplish this aim, we performed Affymetrix microarray analysis after silencing either RhoB or VEZF1  

in both endothelial cell types (Fig. S3). Interestingly, a significant number of the deregulated probe sets in  

RhoB silenced BVECs matched the deregulated probe sets in VEZF1 silenced BVECs (214 down- 

regulated and 243 up-regulated probe sets). Similarly, 1413 down-regulated probe and 1280 up-regulated  

probe sets in RhoB silenced LVECs compared favorably to the deregulated probe sets in VEZF1-silenced  

LVECs, suggesting that these deregulated probe sets could correspond to the specific genes targeted by  
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VEZF1 and co-regulated by RhoB. Using Gene Ontology (GO) classification to query the function of the  

target genes shared by RhoB and VEZF1, we identified ontology categories important for different  

aspects of endothelial cell biology including their proliferation and sprouting (Table S1). Among the  

subsets of shared target genes (Table S2), we confirmed the role of RhoB and VEZF1 in the regulation of  

expression of a finite number of particularly relevant genes by QRT-PCR (Fig. 5a). For example, the  

VEGF-A receptor, VEGF-R2, and its co-receptor, Neuropilin1 (NRP1), were both down-regulated in  

BVECs after silencing of either RhoB or VEZF1 (2-fold decrease in silenced cells compared to control).  

Although these two genes were also detected in the LVECs microarrays, QRT-PCRs revealed a lower  

basal level of expression and an insignificant decrease after silencing of either RhoB or VEZF1 in these  

cells, suggesting a predominant effect of RhoB-VEZF1 on VEGF-R2 and NRP1 expression in BVECs  

compared to LVECs. By contrast, the metallopeptidase inhibitor, TIMP3, was more highly expressed in  

LVECs, suggesting that down-regulation of this protein, triggered by both RhoB and VEZF1 knockdown,  

has a particularly potent impact in LVECs compared to BVECs. We also validated relevant genes  

deregulated by RhoB-VEZF1 that have previously been shown to be involved in BVEC proliferation and  

sprouting (e.g., PHD2, Endothelin1) or LVEC proliferation and sprouting (e.g., MMP2, CyclinE2).  

Moreover we identified new genes not previously recognized as being involved in lymphatic vessel  

biology (TIMP3, Vasohibin1). Interestingly, these genes exhibit different relative patterns of mRNA  

expression that most likely highlight specific promoter configurations.  

To further identify the direct target genes of VEZF1, and more importantly, those that are also  

co-regulated by RhoB, we analyzed the binding of these two proteins to a number of selected promoters  

by chromatin immunoprecipitation (Fig. 5b). Interestingly we discovered sequences containing potential  

VEZF1 DNA binding sites in the promoter regions of VEGF-R2 and NRP1. These regions exhibit 3-fold  

and 2-fold  enrichment,  respectively,  after  VEZF1  or  RhoB-Flag  chromatin  immunoprecipitation,  

specifically in BVECs. In contrast, the chromatin of the TIMP3 and Vasohibin1 promoter regions, which  

also contains putative VEZF1 DNA binding sites, is enriched 4-fold after VEZF1 or RhoB-Flag  

immunoprecipitation, specifically in LVECs. Analysis of the Endothelin1 promoter, known to be a direct  

target of VEZF1, confirms chromatin enrichment after VEZF1 or RhoB-Flag immunoprecipitation in  
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BVECs. Taken together, these data suggest that RhoB works in conjunction with VEZF1 on specific 

promoters to regulate the expression of essential direct target genes involved in the proliferation and 

sprouting of endothelial cells (BVECS and LVECs). Of critical importance, these sets of direct targets 

appear to be different in BVECs versus LVECs.  

 

 

 

RhoB-GTP specifically controls BVEC and LVEC proliferation  

A crucial feature of any small GTPase is the ability to toggle its intrinsic GTPase activity between “on”  

and “off” states, as determined by the ratio of the GTP-bound to the GDP-bound forms of the enzyme 26.  

To assess the importance of these two states in the regulatory function of RhoB in endothelial cells, we  

prepared adenoviral vectors encoding mutants of RhoB and used them to elicit overexpression of three  

different forms of the RhoB GTPase (wild type (adRhoB); the RhoB dominant negative form  

corresponding  to  the  GDP-bound  state  (adRhoB-DN);  and  the  RhoB  constitutively  active  form  

corresponding to the GTP-bound state (adRhoB-CA). Overexpression of wild type (wt) or mutant RhoB  

was performed in BVECs and LVECs undergoing proliferative challenge and the corresponding GTP  

levels were measured by GTP pulldown assay (Fig. 6a). As expected, neither BVECs nor LVECs infected  

with adRhoB-DN exhibited any detectable amount of GTP-bound RhoB, while both cell types infected  

with adRhoB-CA showed high levels of expression of the GTP-bound form of RhoB. Interestingly,  

following wt RhoB overexpression, a substantial amount of RhoB in the GTP-bound state could be  

detected in both BVECs and LVECs, indicating that both cell types maintain RhoB in a predominantly  

active form under proliferating conditions. To evaluate the possibility that the state of RhoB determines  

its localization within the cell, we analyzed the subcellular pattern of our mutants RhoB (Fig. 6b). Wt  

RhoB and all mutants of RhoB, including the dominant negative RhoB, were detected in the cytoplasm as  

well as in the nucleus of BVECs and LVECs, indicating that both the GTP- and the GDP-bound states of  

RhoB can be found within the nucleus.  
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To determine the biological effect of the GTP-bound versus the GDP-bound form of RhoB on  

endothelial cell proliferation, we measured the proliferative index of BVECs and LVECs overexpressing  

either wt or mutant RhoB (Fig. 6c). As previously observed, wt RhoB promotes and represses the  

proliferation of BVECs versus LVECs, respectively. Interestingly, whereas RhoB-DN did not affect the  

proliferation rate of either type of endothelial cell, RhoB-CA influenced the proliferation of BVECs and  

LVECs similarly to wt RhoB. This lack of effect on proliferation by the RhoB-DN correlates with its  

inability to regulate genes previously identified as RhoB-VEZF1 targets such as VEGF-R2, NRP1 and  

TIMP3 (Fig. 6d). Altogether, these results suggest that both forms of RhoB may exist as part of the  

nuclear RhoB-VEZF1 transcriptional complex. However, only RhoB-GTP has the ability to regulate the  

expression of genes that are specific targets of VEZF1 and modulate the proliferation rate of blood and  

lymphatic vessel endothelial cells.  

 

A  small  molecule  targeting  VEZF1-DNA  interaction  normalizes  angiogenesis 

accompanying OIR.  

Data already presented suggest that RhoB promotes pathological angiogenesis accompanying OIR  

(Fig.1a), in collaboration with VEZF1 (Fig. 4a). Therefore, we hypothesized that by interfering with the  

RhoB-VEZF1 pathway we might restore physiological revascularization in this setting. To target the  

RhoB-VEZF1 complex we focused on the DNA binding domain of VEZF1 that is composed of a zinc  

finger domain designed to recognize a specific DNA promoter sequence27. C2H2 zinc fingers occur in  

tandem arrays with many transcription factors composed of three or more fingers working in concert to  

target the transcription factor to its appropriate promoter28,29. An in silico approach was adopted to  

identify a small molecule that could inhibit the interaction of VEZF1 with DNA (VasculoMedics, private  

communication). This work discovered the small molecule VEZF1-compound 6 (VEC6) that significantly  

repressed  NRP1  promoter-dependent  luciferase  activity  in  the  presence  of  RhoB  and  VEZF1  

overexpression (Fig. 7a). To further validate the efficacy of this compound, the expression pattern of  

several target genes downstream of RhoB and VEZF1 was evaluated in BVECs and LVECs undergoing  
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proliferative stress in the absence or presence of VEC6 (Fig. 7b). VEC6 repressed the expression of  

VEGF-R2, NRP1 and TIMP3 as determined by RTPCR. Interestingly, VEC6 phenocopies the opposing  

effects of RhoB-VEZF1; i.e., this small molecule is able to repress the proliferation of BVECs, and  

promote the proliferation of LVECs (Fig. 7c). Importantly, these data provide additional support that  

VEC6 is working “on target” to effectively modulate the RhoB-VEZF1 complex. To evaluate the efficacy  

of this compound in vivo, RhoB+/- mice were subjected to the OIR assay in the presence of VEC6 or  

DMSO (vehicle), which were administered daily by intraperitoneal injection during the pathological  

phase (P12 to P17) (Fig. 7d). The mice treated with DMSO did not exhibit any modification in the  

pathological angiogenic response as compared to previous studies (Compare Fig. 7d to Fig. 1a and Fig.  

4a). However, VEC6 treatment increased the emergence of blood vessels with a normal morphology  

(arrowheads), and reduced both the avascular areas and pathological glomeruloid bodies (>2-fold  

decrease in the number of nuclei interior to inner limiting membrane). In conclusion, these data indicate that 

VEC6, identified by in silico approach, modulates the activity of the RhoB-VEZF1 complex by 

disrupting the VEZF1-DNA interaction interface, and they validate its efficacy in vivo.  
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DISCUSSION  

Typically, the response of the blood vasculature to inflammation, ischemia, and wounding precedes that  

of the lymphatic network3,4,24. However, the mechanisms governing the coordinated response of these two  

major vascular networks to pathological challenge are still poorly understood. By studying RhoB null  

mice, we observed that loss of RhoB decreased the extent of pathological angiogenesis in the ischemic  

retina. We confirmed this regulatory role of RhoB in the dermal vasculature, i.e., loss of RhoB led to a  

reduction in angiogenesis in response to wounding. In addition, we noted that lymphangiogenesis,  

following both dermal wounding and inflammatory challenge, was enhanced in RhoB null mice. Upon  

further investigation, we learned that, although RhoB is induced in both blood and lymphatic endothelial  

cells subjected to proliferative stress, RhoB promotes proliferation and sprouting in BVECs, but represses  

these functions in LVECs. To our knowledge, this is the first demonstration of a single protein (i.e.,  

RhoB), which serves intra-cellular and opposing regulatory roles in two closely related endothelial cell  

types (Fig. 8a).  

To understand the underlying molecular mechanism(s) responsible for these intriguing and  

differential functions of RhoB, we investigated the interaction of RhoB with the transcription factor  

VEZF1. For the first time, we uncover the importance of a direct interaction between RhoB and VEZF1  

in both blood and lymphatic endothelial cells, and document that it is the GTP-bound form of RhoB that  

exclusively regulates VEZF1-mediated transcription in both endothelial cell types. Notably, there have  

been very few reports that directly involve GTPases in regulating gene transcription. RhoA and Rac1  

have been observed in the nucleus and are reported to directly contribute to transcriptional complexes  

involving the transcription factors Glucocorticoid Receptors and TCF4, respectively30,31. Our results  

provide further evidence for a requirement of an associated GTPase activity to bring about efficient gene  

transcription by certain transcription factors. Recently, it has been shown that the p68RacGAP interacts  

with VEZF1 and facilitates the hydrolysis of the GTP form of Rac1 in endothelial cells32. This finding  

suggests that future studies will be needed to identify the different regulatory partners, e.g., the GAPs and  

GEFs, participating in the RhoB regulation of VEZF1 mediated transcription.  
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Next, we identified direct and indirect downstream target genes that are co-regulated by RhoB  

and VEZF1. Importantly, we determined that the sets of direct target genes of the RhoB-VEZF1 complex  

differ in BVECs versus LVECs. We propose that this differential regulation is responsible, at least in part,  

for the well-documented phenomenon of delayed lymphangiogenesis observed in pathological settings  

reported in vivo 3,4,24. Among the direct target genes that we identified in BVECS, VEGF-R2, NRP1 and  

Endothelin1 are known to support angiogenesis. Downregulation of another gene, i.e., PHD2, is involved  

in normalization of tumor vascular network33. Of the set of target genes that we identified in LVECs,  

MMP2 has already been linked with lymphatic sprouting34, but two other genes, i.e., TIMP3 and  

Vasohibin1, have not previously been implicated in LVEC biology. Thus, our study contributes important  

new information to the growing list of genes specific to the blood versus lymphatic vasculature.  

Finally, using an in silico approach we were able to successfully design a small molecule 

inhibitor, i.e., VEC6, targeting the VEZF1/DNA binding interface, that was able to recapitulate the effects of 

the loss of RhoB in the ischemic retina. This finding suggests that the RhoB-VEZF1 complex 

represents an interesting new target for developing novel therapies against numerous pathologies with a 

vascular component, e.g., diabetic retinopathy. However, VEC6 is also able to induce LVEC proliferation in 

vitro similar to silencing of RhoB, suggesting the possibility of a pro-lymphangiogenic effect in vivo. 

Further work using a second generation of inhibitory molecules more suited for in vivo studies in adult 

mice will be needed to address the question of lymphatic sensitivity and responsiveness. Notably, this 

question emphasizes the broader worth of considering more generally the lymphatic vascular network as a 

potential side target of any pro- or anti-angiogenic therapy.  

Overall our work highlights the importance of the RhoB-VEZF1 pathway in the temporal  

regulation of angiogenesis and lymphangiogenesis during wound healing. Tissue damage (e.g. skin  

wounds)   triggers   a   healing   response   precisely   coordinated   through   different   phases,   i.e.,  

hemostasis/Inflammation, proliferation, and remodeling/repair (Fig. 8b). The early angiogenic response  

participates in the initial inflammatory phase by facilitating recruitment of inflammatory cells into the  

wound bed (Movie S8). Thereafter, the formation of local edema enhances the migration of inflammatory  
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cells, endothelial cells, and myofibroblasts through the loose fibrin-rich provisional matrix of the 

granulation tissue to begin wound repair. Subsequently, the formation of new lymphatics aids in the 

drainage of excess fluid, cells and debris, to allow the remodeling phase to proceed, ultimately resulting in 

wound closure. Thus, RhoB actively participates in ensuring the delay in lymphangiogenesis that 

appears to be crucial to the success of the overall wound-healing program.  

Although we were unable to evaluate the impact of the RhoB-VEZF1 pathway on wound closure  

in the ear model, our parallel study of dorsal skin excisional wound healing revealed that healthy RhoB-/- 

mice did not exhibit any significant difference in the time required for complete wound closure as  

compared  to  wt  mice35.  This  result  correlates  with  previous  work  on  the  effects  of  VEGF-A  

overexpression on wound healing. Indeed, earlier and increased lymphangiogenesis elicited by VEGF-A  

did not affect the time required for wound closure in healthy animals6. In contrast, VEGF-C over- 

expression accelerated wound closure by inducing angiogenesis, lymphangiogenesis and recruitment of  

inflammatory cells in diabetic animals9. We recently observed a similar phenomenon in RhoB-/- diabetic  

mice suggesting that the impact of deregulation of angiogenesis and/or lymphangiogenesis could be  

exacerbated in pathological conditions such as those occurring in diabetic animals. Future studies will  

address the effects of RhoB loss on pathological angiogenesis and lymphangiogenesis associated with  

tumour growth and metastasis.  

In conclusion, we propose that the immediate early response gene RhoB, in its GTP-form, 

interacts with the transcription factor VEZF1, to regulate, at least in part, the distinct blood and lymphatic 

endothelial responses to different pathological stimuli. Additional analysis of this small GTPase will 

further our understanding of its differential angiogenic and lymphangiogenic regulatory mechanisms and 

identify new therapeutic strategies for appropriate intervention.  
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METHODS  

Mice. RhoB-/- mice, a gift from George Prendergast 18, were maintained in both SV129 and FVB  

backgrounds. VEZF1+/- mice, a gift from Heidi Stuhlmann 21 were maintained in the SV129 background.  

In order to study the functional cooperation between RhoB and VEZF1 in vivo, RhoB-/- mice in the SV129  

background were crossed with VEZF1+/- mice in the SV129 background. Resulting double heterozygotes  

were crossed to obtain all required genotypes in one litter (RhoB+/-, VEZF1+/-, RhoB+/-VEZF1+/-). All  

studies were conducted in compliance with the Beth Israel Deaconess Medical Center IACUC guidelines.  

Retinopathy of Prematurity. Mice were exposed to 75% oxygen beginning on postnatal day P7. A  

minimum of 8 groups were used; depending on the litter, each group contained from 5-8 pups. Mice were  

then returned to room air on day P12. Retinas were harvested on day P17, fixed in formalin (10%  

formaldehyde) for 1 hour, and incubated with FITC-Lectin BS-1 (Sigma) in PBS containing 0.2% Triton- 

X100 and 10% Goat serum O/N at 4OC. The retinas were washed (4-5 times for 1 hr) in PBS.  

Approximately 4 incisions at the edges were made to flatten the retinal cup onto a glass slide for  

fluorescent microscopy and digital photography using a Leica MZFIII microscope and a Leica DC200  

digital camera. Pups used for studies involving treatment with VEZF1 inhibitors were injected into I.P.  

with 30mg/kg/day of test compound from P12 to P17 and then retinas were processed and imaged as  

above.  

Ear Acute Injury and Chronic Inflammation. Full-thickness wounds were created in the center of the  

ears of adult (6-8 weeks) mice using a 2 mm biopsy punch. At 7 days post injury ears were examined by  

whole   mount   staining   and/or   by   intravital   microscopy   to   assess   both   angiogenesis   and  

lymphangiogenesis. Chronic inflammation was induced by delayed-type hypersensitivity (DTH) in the ear  

skin of RhoB null and WT mice as described previously in25. Briefly, adult mice (6-8 weeks) were  

sensitized by topical application of a 2% oxazolone (4-ethoxymethylene-2 phenyl-2-oxazoline-5-one;  

Sigma, St Louis, MO) solution in acetone/olive oil (4:1 vol/vol) to the shaved abdomen (50 µl) and to  

each paw (5 µl). Five days later, ears were challenged by topical application of 1% oxalozone solution (20  

µl). Ear swelling was assessed by ear thickness measurement using a Mitutoyo caliper each day for 11  
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days following challenge. Lymphangiogenesis was assessed by intravital microscopy.  

Ear Whole Mount Staining. Whole mounts of ears were prepared for confocal microscopy using the  

protocol of 8. Mouse ears were dissected and placed in 4% PFA. Dorsal and ventral aspects of each ear  

were separated by first cutting along the entire edge of the ear and then peeling the two halves apart. After  

3 hr fixation, tissues were blocked overnight in PBS containing 5% goat serum and 0.3% Triton-X100. 

Tissues were then incubated successively overnight in primary antibodies (CD31 [MEC13.3, 553370, BD 

Pharmigen], and Podoplanin [ab11936, Abcam]) and secondary antibodies (Jackson) each diluted 1/200 in 

blocking solution. Samples were mounted on glass slides and observed with a confocal microscope (Zeiss 

LSM 510 Meta). Confocal 3D projections were processed by Zeiss LSM Image software. Each 3D projection 

image corresponds to a tissue thickness of 100 µm. CD31 signal of 3D projections was quantified by 

using the measure function (% Area) from NIH ImageJ software, after selection of the wound angiogenic 

area (white lines).  

Ear Intravital Microlymphangiography. These experiments were performed as described36. Briefly,  

mice were anesthetized with Avertin and placed in a transparent acrylic resin mold. Ears were mounted  

flat on the resin support and held in place by silicone vacuum grease and viewed in a Leica MZFLIII  

fluorescent microscope. High molecular weight FITC-dextran (2000 kDa lysine-fixable, Invitrogen at 20  

µg/µl in saline) was injected into the lymphatics through a 10 µm pre-pulled borosilicate glass  

micropipette (World Precision Instruments, Sarasota, FL) attached to a 500 µl Hamilton syringe fitted with 

a threaded plunger. Using a micromanipulator (WPI), the micropipette was injected into the dorsal surface of 

the periphery of the ear in order to engage a lymphatic lumen. Additional tracer (5-20 µl) was then slowly 

injected under the control of a threaded plunger. The progress of the fluorescent tracer through the 

lymphatic network was followed in real time by digital image capture (60 frames/minute) using a Leica 

DC350 FX digital camera in conjunction with Image-Pro Plus 6.2 Software. The resultant image stack was 

then combined to produce a movie of tracer transport. Isolated frames, corresponding to specific times 

following tracer injection, were used to quantify the FITC-dextran tracer signal in each image using the 

measure function (% Area) from NIH ImageJ software.  
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Human Dermal Microvascular Endohelial Cell Isolation and Culture. Primary dermal human  

microvascular  endothelial  cells (HMVECs)  from  human  foreskins (from  at  least  four  separated  

individuals) were isolated as previously described by using immunomagnetic beads37. Both BVECs and 

LVECs were isolated with magnetic Dynabeads pre-associated with CD31 (Invitrogen). Subsequently, 

LVECs were separated from BVECs by using goat anti-mouse Dynabeads associated with Podoplanin 

antibody (Angiobio). A total of six different cell isolation lots were used at passage 4-5 for all in vitro 

experiments. Each experiment was performed on at least two different cell isolation lots. HMVECs were 

grown in pre-coated plates with collagen I in MCDB131 medium (CellGro) supplemented with L-Alanyl- 

L-Glutamine (CellGro, 2mM) and MVGS supplement (Cascade Biologics).  

Transfection. siRNA transfection in HMVECs was performed using HMVEC-L Nucleofector kit  

(Lonza). Briefly, cells at 100% confluence were harvested with trypsin-EDTA and washed in PBS. 100 µl  

of nucleofection solution was used for 1x106 cells. Program S-005 was used for transfection. The cells  

were then removed from the cuvette and plated into a pre-coated 6 well cell culture plate. Final siRNA  

concentration was 50 µM in plate. RhoB and VEZF1 were silenced by using pre-designed siRNAs from  

Ambion (RhoB: siRNA ID# 42060, 41981, 41889, and VEZF1: siRNA ID# S15222, S15223, S15224).  

Silencer Select Negative Control #1 siRNA was used as control. Transfection of Hela cells was performed  

using  TransIT-HelaMONSTER  transfection  kit (Mirus).  VEZF1  overexpression  was  obtained  by  

transfection of human VEZF1 expression vector from Origene. Luciferase assays were performed using the 

Dual-Luciferase Reporter Assay System (Promega).  

Adenovirus and Mutagenesis. RhoB-Flag adenoviruses were generated using AdEasy Adenoviral  

system (Promega). Briefly, human RhoB coding sequence was amplified from human primary endothelial  

cell cDNA and inserted in pShuttle-IRES-hrGFP-1. Site-directed mutagenesis of RhoB was induced by  

PCR using Phusion High-Fidelity DNA polymerase (Fynnzymes) and Dpn I digestion. Mutagenic primers  

were used to prepare mutants for Constitutive Active (G14V) and Dominant Negative (T19N) forms of  

RhoB. All wild type and mutant sequences were checked by DNA sequencing. AdEasy recombinants  

were generated by electroporation of BJ5183 cells containing pAdEasy-1 vector, with Pme I linearized  

 

  



 171 

 

 

 

shuttle vector. Adenoviruses were expanded in 293FT cells. All viruses were purified with the two-step  

CsCl centrifugation procedure. Purified adenoviruses were stored in Viral Preservation Media (Tris HCl  

20 mM pH8, MgCl2 2mM, sucrose 5%) at -80°C. Cells were infected at a MOI of 50 pfu/cell.  

Cell Immunostaining. Human dermal endothelial cells were grown in complete medium on coverslips  

pre-coated with collagen. Cells were collected after 24 h in order to assess the proliferation rate with Ki67  

antibody (18-0191Z, ZYMED) or at confluence for Prox-1 (20R-PR039, Fitzgerald) and CD31 (555444,  

BD Pharmingen) immunostaining to confirm BVECs versus LVECs population identity. Cells were fixed  

with 4% paraformaldehyde for 5 min, followed by permeabilization and blocking with PBS containing,  

5% goat serum, 0.1% Triton X-100 for 1h at room temperature. Primary antibodies were diluted 1/200 in  

blocking solution without Triton X-100 and then incubated with cells at 4oC for O/N. Cells were then  

incubated with appropriate secondary antibody (Jackson). Coverslips were washed and mounted in Dako  

Fluorescent Mounting Medium containing DAPI (3µg/ml). Quantification of the proliferation rate with  

Ki67 antibody was determined by the analysis of three independent experiments and the consideration of  

ten random fields for each experiment.  

Sprouting assay. Spheroid production was performed as described in38. Briefly, in 96 well plates, 400  

endothelial cells per well were seeded in 100 µl/well of MVGS media containing 20% Methylcellulose  

(Sigma). After 24h, cell aggregates, named spheroids, were collected and centrifuged. Then, three- 

dimensional cultures of spheroids were prepared by using the overlay method as previously described39.  

In brief, spheroids were resuspended in media containing 2% Growth factor-reduced Matrigel (BD  

Biosciences), and seeded on top of the underlay containing a 50:50 mixture Matrigel and Bovine collagen  

I (PureCol, 3mg/ml, Inamed Biomaterials). Before mixing, collagen I was neutralized as described  

(citation of Seton-Rogers et al, 2005, PNAS, #5, p1257). Stimulatory cytokine, (human VEGF-A (25  

ng/ml) or human VEGF-C (100 ng/ml) (RD Systems), respectively for BVECs and LVECs) was added to  

the Matrigel/collagen I underlay mixture. After 24h of stimulation, phase-contrast pictures were taken  

using a microscope (Nikon eclipse TE300) equipped with a camera (Leica, DFC 350 FX). Fluorescent  

images of GFP positive cells were obtained by confocal microscopy (Zeiss LSM 510 Meta). For  
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quantification, the cumulative sprout length of 15 randomly selected spheroids from three independent 

experiments was reported per data point.  

Cell Extracts and Immunoblot analysis. Cytoplasm extracts were obtained by using a cytoplasmic lysis  

buffer (Triton X-100 0.25%, Tris-HCl 10 mM pH8, EDTA 5mM, EGTA 0.5 mM and proteases inhibitors  

(SIGMA-P8340)). After centrifugation, the nuclei pellet was resuspended in Urea lysis buffer (Urea 8M,  

Tris HCl 50 mM pH8, EDTA 5mM and proteases inhibitors). Total extracts were performed by direct cell  

digestion in Urea lysis buffer. Western blot analysis was performed as in40, using antibodies recognizing  

human  RhoB (CellSignaling-2098),  RhoA (Bethyl-lab-929),  VEZF1 (Abcam-ab50970),  Tubulin  

(Calbiochem-CP06), DNA polymerase β (Abcam-26343), LYVE-1 (UpState-07-538), Prox1 (Fitzgerald20R-

PR039), CD31 (BDPharmingen-555444), Podoplanin (Angiobio-11-003), VEGFR3 (SantaCruz-sc- 

321), and Flag tag (Abcam-ab1162).  

Co-Immunoprecipitation (Co-IP) and Chromatin-Immunoprecipitation (ChIP). Co-IPs and ChIPs  

were performed using 0.5 x 106 cells per IP. Prior to Co-IPs, proteins were cross-linked with 1.5mM EGS  

agent 41. For ChIPs, proteins were first cross-linked with 1.5 mM EGS, and proteins were then cross- 

linked to DNA with 1% Formaldehyde. After cytoplasmic fractionation, nuclei were digested in Complete  

Digestion Buffer from Nuclear complex Co-IP kit (Active motif). DNA was sheared by sonication. IP  

protocol was followed as described by supplier. Each IP was performed using 6 µg of antibodies against  

human VEZF1 (Abcam-ab85414), Flag tag (Sigma-F1804) and human Polymerase II (Covance-MMS- 

126R) and compared to IgG controls. Cross-linked proteins from Co-IPs were separated by treatment with  

1M Hydroxylamine-HCl solution pH 8.5 (1:1 vol/vol), and analyzed by Western blotting. For ChIPs,  

DNA was purified as described in42. DNA enrichment was analyzed by Real Time PCR.  

GTP pulldown assay. RhoB activity was assessed by measuring the amount of GTP-bound form of  

RhoB using the small GTPase activation assay (STA-403) from Cell Biolabs. 5 x 106 cells were used for  

each pulldown reaction performed with Rhoketin RBD Agarose beads, as described by manufacturer. The  

proteins were revealed by immunoblot analysis using antibodies recognizing human RhoB and Flag tag.  

 

 

  



 173 

 

 

 

Analysis of Gene Expression. Total RNAs from two independent cell isolation lots, each from at least  

four separate individuals, were isolated using RNeasy Kit and treated by DNase I during extraction steps  

(Qiagen). cDNAs were prepared from 0.5 µg total RNA using random hexaprimers as templates and  

SuperScript III (Invitrogen). Quantitative real-time RT-PCR was carried out on an AbiPrism 7500 system  

using SYBR Green. The primer sequences are available upon request. For Affymetrix GeneChip probe  

array, 1 µg total RNA of one cell isolation lot from at least four separate individuals was synthetize as  

cRNA, which was hybridized to Affymetrix HT Human U133A GeneChips. Fold change of gene  

expression and Gene Ontology (GO) analysis were established using the dChip software43 . Present probe  

sets with a differential expression ≥ 1.5 fold and p < 0.05 were taken into account.  

Statistical Analysis. Results were presented as mean±SEM. Statistical significance of all data were 

analyzed using the unpaired two-tail Student’s t test in the Microsoft Office Excel 2003 software. p values < 

0.05 were considered to be statistically significant.  
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FIGURE LEGENDS  

Figure 1 RhoB deletion blocks oxygen-induced pathological angiogenesis in the retina and  

decreases vessel density in skin wound-induced granulation tissue. (a) Whole mount staining of  

blood vessels (BS-I lectin) in the retina of wt and RhoB-/- pups subjected to hyperoxia from P7 to  

P12, and then returned back to normoxia from P12 to P17 (OD = Optic Disc). Histological (H&E)  

analysis of wt and RhoB-/-  retinas at P17. Quantification of nuclei number interior to Inner  

Limiting Membrane (ILM) (n = 10 mice per genotype, mean±SEM). (b) Confocal analysis  

following whole mount staining of CD31 expression in the granulation tissue present 7 days  

after ear wounding (with 2 mm biopsy punch) in adult wt and RhoB-/- mice (6-8 weeks old).  

Quantification  of  CD31  positive  staining  in  the  neovasculature  of  the  granulation  tissue  

(delineate with white lines) (n = 6 mice per genotype, mean±SEM). (c) Confocal analysis  

following whole mount staining of CD31 and podoplanin expression in the granulation tissue  

present 7 days after wounding. Arrowheads highlight lymphatic vessels and denote areas of co- 

localization of CD31 and podoplanin in the merged image thus confirming the identity of the  

lymphatic vessels. Scale bars: Whole mount staining = 100 µm, H&E sections = 50 µm (a), 200  

µm (d-c).  
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Figure 2 RhoB loss leads to enhanced and abnormal lymphangiogenesis in response to stress.  

(a) Intravital microlymphangiography by in vivo injection of FITC-Dextran (MW 2000 kDa) into  

lymphatics of ear skin 7 days after ear wounding (2 mm biopsy punch) in adult wt and RhoB-/- 

mice. Dextran positive areas in isolated frames taken from the movies at early (2-10 seconds  

(s), middle (30s) and late (60s) times following tracer injection were quantified in (g) (n = 7 mice  

per genotype, mean±SEM). (b) Confocal analysis following in vivo FITC-dextran injection in  

lymphatics and whole mount staining of podoplanin expression in the granulation tissue present  

7 days after ear wounding in adult wt and RhoB-/- mice. Arrowhead and star respectively 

highlight dextran leakage from an abnormal lymphatic vessel and tracer accumulation in the 

adjacent tissue of RhoB-/- mice in the merged image. (c) Induction of DTH reactions in the ear skin 

of adult wt and RhoB-/- mice using oxalozone. Ear swelling is expressed as the increase (Δ) over the 

original ear thickness in µm. Ear thickness was measured daily for 11 days following challenge 

using a Mitotoyu caliper (n = 12 mice per genotype, mean±SEM). (d) Intravital 

microlymphangiography by in vivo injection of FITC-Dextran (MW 2000 kDa) into lymphatics of ear 

skin 7 days after inflammation induced by oxalozone in adult wt and RhoB-/- mice. FITCdextran 

positive areas in isolated frames taken from movies at early (2-10 seconds (s)), middle (30s) and 

late (60s) times following tracer injection were quantified (n = 6 mice per genotype, mean±SEM). 

Scale bars: 1mm (a-d) and 100 µm (b).  
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Figure 3 Differential regulation of BVECs and LVECs proliferation and sprouting by RhoB. (a)  

Representative Western blot showing the endogenous level of RhoB protein in BVECs and  

LVECs in the resting state (100% confluence for 48 h without media renewal) versus the  

proliferative state (24h and 48h after challenge initiated by cell plating at low, i.e., 50%, density).  

Western blotting for a related GTPase, RhoA, did not indicate any variation in RhoA expression  

levels in BVECs or LVECs under resting or proliferative conditions and thus confirmed the  

specificity of the RhoB antibody and the unique regulation of RhoB in these cells. Tubulin was  

used as loading control. (b) Representative Western blot showing the efficiency of RhoB  

silencing by siRNA nucleofection, and the level of RhoB overexpression following adenovirus  

infection, in BVECs and LVECs 24h after proliferative challenge. The RhoB-Flag protein was  

detected using antibodies directed against the RhoB protein and by antibodies against the Flag  

tag. (c) Proliferation index of BVECs and LVECs after RhoB silencing and RhoB overexpression  

at 24h after proliferative challenge, determined as the ratio of the number of Ki67 positive cells  

to the total number of cells (expressed as %, mean±SEM). (d) Sprouting from BVECs and  

LVECs spheroids in 3D Matrigel-collagen I matrix, induced for 24h by VEGF-A or VEGF-C,  

respectively,   after   RhoB   silencing (phase-contrast   pictures)   or   RhoB   overexpression  

(fluorescent confocal projections). GFP expression, resulting from infection with the RhoB  

adenoviral  vector  containing  an  IRES-GFP,  was  used  as  an  internal  control  for  the  

overexpression  experiments.  Individual  sprouts  in  RhoB-silenced  cells  are  noted  by  red  

(BVECs)  or  green (LVECs)  arrowheads,  and  in  RhoB-overexpressing  cells  by  white  

arrowheads. Quantitative analysis of endothelial cell sprouting was performed by measuring the 

cumulative length of all of the sprouts originating from one spheroid (described in 38), using NIH 

ImageJ software (mean±SEM). Scale bars: 50 µm (d).  
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Figure 4 Functional interaction between RhoB and VEZF1 during oxygen-induced pathological  

angiogenesis and lymphangiogenesis associated with wound healing. (a) Whole mount staining  

of blood vessels (BS-I lectin) in the retina of RhoB+/-, VEZF1+/- and RhoB+/-VEZF1+/- pups (P17)  

subjected to OIR assay (OD = Optic Disc). Histological H&E analysis of RhoB+/-, VEZF1+/- and  

RhoB+/-VEZF1+/- retinas at P17. Quantification of nuclei number interior to Inner Limiting  

Membrane (ILM) (n = 6 per genotype, mean±SEM). (b) Intravital microlymphangiography by in  

vivo injection of FITC-Dextran (MW 2000 kDa) into lymphatics of ear skin 7 days after ear  

wounding (2 mm biopsy punch) in adult RhoB+/-, VEZF1+/- and RhoB+/-VEZF1+/- mice, shown at  

60 seconds post tracer injection. Dextran positive areas in isolated frames taken from the  

movies at early (2-10 seconds (s), middle (30s) and late (60s) times following tracer injection  

were quantified (n = 6 mice per genotype, mean±SEM). (c) Representative Western blot of  

nuclear and cytoplasmic extracts showing the dual localization of RhoB in both nuclei and  

cytoplasm of BVECs and LVECs, whereas another RhoGTPase, RhoA, was detected only in  

the cytoplasm. In contrast, VEZF1 was exclusively detected in nuclei. DNA Polβ and Tubulin  

proteins were used as internal controls for nuclear and cytoplasmic extracts, respectively. (d)  

Representative Western blot following immunoprecipitation of overexpressed Myc-RhoB in Hela  

cells using an antibody against Myc tag. Overexpressed VEZF1 proteins were only co- 

immunoprecipitated in presence of Myc-RhoB. Scale bars: Whole mount staining = 100 µm,  

H&E sections = 50 µm (a), 1mm (b).  
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Figure 5 Target Genes shared by RhoB and VEZF1 in BVECs and LVECs. (a) Relative mRNA  

levels of VEGF-R2, NRP1, PHD2, Endothelin1, TIMP3, MMP2, CyclinE2 Vasohibin1 in BVECs  

and  LVECs  following  silencing  of  either  RhoB  or  VEZF1  as  determined  by  QRT-PCR  

(performed in triplicate on two different cell isolation lots, mean±SEM). (b) In vivo binding of  

VEZF1  and  RhoB-Flag  to  the  promoter  region  of  target  genes,  i.e.,  VEGF-R2,  NRP1,  

Endothelin1, TIMP3, Vashohibin1, MMP2 containing predicted in silico VEZF1 DNA binding  

sites (red triangle in schematic drawing of promoters) assessed by ChIP experiments. The start  

site of transcription is referred as +1. Position of primers used for QPCR experiments is  

represented by blue arrows. The enrichment for each DNA fragment upon immunoprecipitation of 

VEZF1 and RhoB-Flag is illustrated as histograms based on % of input (QPCR performed in 

triplicate on two different cell isolation lots, mean±SEM).  
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Figure 6 BVEC and LVEC proliferation is specifically regulated by GTP-bound state of RhoB.  

(a) Representative Western blot for detection of RhoB protein activation by GTP pulldown assay  

after adenoviral-mediated overexpression of wt RhoB-Flag (adRhoB) and RhoB mutants, i.e.,  

adRhoB-DN for Dominant Negative (GDP-bound state), adRhoB-CA for Constitutive Active  

(GTP-bound state). adGFP was used as the control. Anti-RhoB and anti-Flag antibodies  

successfully detected all RhoB-Flag proteins in input samples. Anti-RhoB antibody exhibits a  

non-specific cross-reactivity with rhotekin proteins used for GTP-bound Rho GTPase trapping  

(star). (b) Proliferation index of BVECs and LVECs after overexpression of wt RhoB-Flag and its  

mutants at 24h after proliferation challenge, determined as the ratio of the number of Ki67  

positive cells to the total number of cells (expressed as %, mean±SEM). adGFP was used as  

the control. (c) Relative levels of VEGF-R2 and NRP1 in BVECs, and TIMP3 in LVECs after  

overexpression of wt RhoB-Flag and its dominant negative mutant adRhoB-DN at 24h after  

proliferation challenge as determined by QRT-PCR (mean±SEM).  
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Figure 7 Normalization of pathological angiogenesis during OIR by small molecules targeting  

VEZF1 binding to DNA. (a) Schematic drawings of the human NRP1 promoter containing  

predicted in silico VEZF1 DNA binding sites (red triangles) depicting VEZF1 (red oval) binding to  

DNA, and RhoB (green circle) binding to VEZF1. The start site of transcription is referred as +1.  

The small molecule NSC 11435 named compound VEC6 docking to this VEZF1 zinc finger  

pocket (indicated by blue crosses) was screened for its ability to interfere with the interaction  

between VEZF1 and its DNA binding site leading to decreased promoter transactivation by the  

RhoB-VEZF1 complex. Activity of the human NRP1 promoter in Hela cells (control) and Hela  

cells overexpressing RhoB and VEZF1 (RhoB/VEZF1) in presence of solvent (DMSO) or VEC6  

(20nM for 24h) (3 independent experiments, each containing duplicates, mean±SEM). (b)  

Relative levels of VEGF-R2, NRP1, TIMP3 in BVECs and LVECs following treatment with  

compound VEC6 (20 nM for 24h) as determined by QRT-PCR (mean±SEM). (c) Proliferation  

index of BVECs and LVECs treated with compound VEC6 at 24h after proliferative challenge,  

determined as the ratio of the number of Ki67 positive cells to the total number of cells  

(expressed as %, mean±SEM). (d) Whole mount staining of blood vessels (BS-I lectin) in the  

retina of RhoB+/- pups subjected to OIR and treated with vehicle (DMSO) or compound VEC6 by  

daily intraperitoneal injection between P12 and P17 (OD = Optic Disc). Histological analysis  

(H&E staining) of RhoB+/- retinas at P17 following treatment with DMSO or VEC6. Quantification  

of the number of nuclei interior to Inner Limiting Membrane (ILM) (8 animals per group,  

mean±SEM). Scale bars: Whole mount staining = 100 µm, H&E sections = 50 µm.  

 

 

 

 

 

 

 

 

 

 

 

 

  



 181 

 

 

 

Figure  8 Model for RhoB-mediated coordination of the angiogenic and lymphangiogenic  

responses to pathological challenge initiated by dermal wounding. (a) After tissue challenge  

initiated by dermal wounding and in response to numerous extracellular signals that remain to  

be explored in vivo, the immediate early response gene RhoB is induced and its protein  

accumulates in both blood and lymphatic vascular endothelial cells. The GTP-bound form of  

RhoB (red star) partially localizes in the nucleus of these cells, where its physical interaction  

with the transcription factor VEZF1 regulates the differential expression of specific direct target  

genes in BVECs and LVECs leading to an increase in BVEC proliferation and sprouting and a  

simultaneous decrease in LVEC proliferation and sprouting. Accordingly, RhoB null mice exhibit  

reduced angiogenesis versus earlier, augmented and abnormal lymphangiogenesis in this and  

other pathological scenarios. (b) We propose that the opposing roles served by RhoB in these  

two endothelial cell types contribute to the coordination of an early angiogenic response versus  

a delayed lymphangiogenic response previously observed in wound healing. In this setting, the  

early  angiogenic  response  participates  in  the  initial  inflammatory  phase  by  facilitating  

recruitment of inflammatory cells into the wound bed (day 5-7). The delayed lymphangiogenesis  

allows these cells time to initiate tissue repair. Thereafter, the new lymphatics support the  

resolution of the local edema (small black arrows) by draining fluid excess, cells and debris (big  

black arrow) (day 9-14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 182 

 
 

 

 

 

ACKNOWLEDGEMENTS  

This work was supported by US Public Health Service NIH grant HL071049 (L.E.B.), Deutsche  

Forschungsgemeinschaft DFG, KU1497/1-1 (P.K.) and Lymphatic Research Foundation Posdoctoral  

Fellowship (D.G.). A.C. Rigby was a consultant for Vasculomedics involved in the identification of  

VEC6.  L.E. Benjamin has moved to a full-time position at ImClone Systems, a wholly owned subsidiary  

of Eli Lilly.  

 

 

1. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932-936 (2005). 

2. Tammela, T. & Alitalo, K. Lymphangiogenesis: Molecular mechanisms and future 

promise. Cell 140, 460-476 (2010). 

3. Clark, E.R. Reaction of experimentally isolated lymphatic capillaries in the tails of 

amphibian larvae. Anat. Rec. 24, 181-191 (1922). 

4. Clark, E.R. & Clark, E.L. Observations on the new growth of lymphatic vessels as seen 

in transparent chambers introduced into the rabbit's ear. Am. J. Anat. 51, 49-87 (1932). 

5. Witmer, A.N., et al. VEGFR-3 in adult angiogenesis. J Pathol 195, 490-497 (2001). 

6. Hong, Y.K., et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation 

via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J 18, 1111-1113 

(2004). 

7. Scavelli, C., et al. Lymphatics at the crossroads of angiogenesis and lymphangiogenesis. 

J Anat 204, 433-449 (2004). 

8. Eichten, A., Shen, H.C. & Coussens, L.M. Three-dimensional visualization of blood and 

lymphatic vasculature in tissue whole mounts using confocal microscopy. Curr Protoc 

Cytom Chapter 12, Unit 12 15 (2005). 

9. Saaristo, A., et al. Vascular endothelial growth factor-C accelerates diabetic wound 

healing. Am J Pathol 169, 1080-1087 (2006). 

10. Jahner, D. & Hunter, T. The ras-related gene rhoB is an immediate-early gene inducible 

by v-Fps, epidermal growth factor, and platelet-derived growth factor in rat fibroblasts. 

Mol Cell Biol 11, 3682-3690 (1991). 

11. Fritz, G., Kaina, B. & Aktories, K. The ras-related small GTP-binding protein RhoB is 

immediate-early inducible by DNA damaging treatments. J Biol Chem 270, 25172-25177 

(1995). 

12. Fritz, G. & Kaina, B. rhoB encoding a UV-inducible Ras-related small GTP-binding 

protein is regulated by GTPases of the Rho family and independent of JNK, ERK, and 

p38 MAP kinase. J Biol Chem 272, 30637-30644 (1997). 

13. Canguilhem, B., et al. RhoB protects human keratinocytes from UVB-induced apoptosis 

through epidermal growth factor receptor signaling. J Biol Chem 280, 43257-43263 

(2005). 
14.  Lebowitz, P.F. & Prendergast, G.C. Functional interaction between RhoB and the  

transcription factor DB1. Cell Adhes Commun 6, 277-287 (1998).  

 



 183 

 
 

 

 

 

15. Gampel, A., Parker, P.J. & Mellor, H. Regulation of epidermal growth factor receptor 
traffic by the small GTPase rhoB. Curr Biol 9, 955-958 (1999).  

16.  Fernandez-Borja, M., Janssen, L., Verwoerd, D., Hordijk, P. & Neefjes, J. RhoB  

regulates endosome transport by promoting actin assembly on endosomal membranes 

through Dia1. J Cell Sci 118, 2661-2670 (2005).  

17.  Huang, M., Duhadaway, J.B., Prendergast, G.C. & Laury-Kleintop, L.D. RhoB regulates  

PDGFR-beta trafficking and signaling in vascular smooth muscle cells. Arterioscler 

Thromb Vasc Biol 27, 2597-2605 (2007).  
18.  Liu, A.X., Rane, N., Liu, J.P. & Prendergast, G.C. RhoB is dispensable for mouse  

development, but it modifies susceptibility to tumor formation as well as cell adhesion  

and growth factor signaling in transformed cells. Mol Cell Biol 21, 6906-6912 (2001).  
19.  Huang, M. & Prendergast, G.C. RhoB in cancer suppression. Histol Histopathol 21, 213- 

218 (2006).  

20.  Adini, I., Rabinovitz, I., Sun, J.F., Prendergast, G.C. & Benjamin, L.E. RhoB controls  

Akt  trafficking  and  stage-specific  survival  of  endothelial  cells  during  vascular 

development. Genes Dev 17, 2721-2732 (2003).  

21. Kuhnert, F., et al. Dosage-dependent requirement for mouse Vezf1 in vascular system 

development. Dev Biol 283, 140-156 (2005). 

22. Smith, L.E., et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 

35, 101-111 (1994). 

23.  Baluk, P. & McDonald, D.M. Markers for microscopic imaging of lymphangiogenesis  
and angiogenesis. Ann N Y Acad Sci 1131, 1-12 (2008).  

24.  Shimamura, K., Nakatani, T., Ueda, A., Sugama, J. & Okuwa, M. Relationship between  

lymphangiogenesis and exudates during the wound-healing process of mouse skin 

fullthickness wound. Wound Repair Regen 17, 598-605 (2009).  

25.  Kunstfeld, R., et al. Induction of cutaneous delayed-type hypersensitivity reactions in  

VEGF-A transgenic mice results in chronic skin inflammation associated with persistent 

lymphatic hyperplasia. Blood 104, 1048-1057 (2004).  
26. Fritz, G. & Kaina, B. Rho GTPases: promising cellular targets for novel anticancer drugs. 

Curr Cancer Drug Targets 6, 1-14 (2006). 
27.  Koyano-Nakagawa, N., Nishida, J., Baldwin, D., Arai, K. & Yokota, T. Molecular  

cloning of a novel human cDNA encoding a zinc finger protein that binds to the 

interleukin-3 promoter. Mol Cell Biol 14, 5099-5107 (1994).  

28.  Blancafort, P. & Beltran, A.S. Rational design, selection and specificity of artificial  

transcription factors (ATFs): the influence of chromatin in target gene regulation. Comb 
Chem High Throughput Screen 11, 146-158 (2008).  

29. Jamieson, A.C., Miller, J.C. & Pabo, C.O. Drug discovery with engineered zinc-finger 

proteins. Nat Rev Drug Discov 2, 361-368 (2003). 
30.  Buongiorno, P., Pethe, V.V., Charames, G.S., Esufali, S. & Bapat, B. Rac1 GTPase and  

the Rac1 exchange factor Tiam1 associate with Wnt-responsive promoters to enhance  
beta-catenin/TCF-dependent transcription in colorectal cancer cells. Mol Cancer 7, 73  
(2008).  

31.  Kino, T., et al. Rho family Guanine nucleotide exchange factor Brx couples extracellular  

signals to the glucocorticoid signaling system. J Biol Chem 281, 9118-9126 (2006).  

 



 184 

 
 

 

 

 

32. Aitsebaomo, J., et al. p68RacGAP is a novel GTPase-activating protein that interacts 

with  vascular  endothelial  zinc  finger-1  and  modulates  endothelial  cell  capillary 

formation. J Biol Chem 279, 17963-17972 (2004).  
33.  Mazzone, M., et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and  

inhibits metastasis via endothelial normalization. Cell 136, 839-851 (2009).  

34.  Bruyere, F., et al. Modeling lymphangiogenesis in a three-dimensional culture system.  
Nat Methods 5, 431-437 (2008).  

35.  Bravo-Nuevo,  A.,  et  al.  RhoB  loss  prevents  streptozotocin-induced  diabetes  and  

ameliorates diabetic complications in mice. Am J Pathol 178, 245-252 (2011).  

36.  Nagy, J.A., et al. Vascular permeability factor/vascular endothelial growth factor induces  

lymphangiogenesis as well as angiogenesis. J Exp Med 196, 1497-1506 (2002).  
37.  Richard, L., Velasco, P. & Detmar, M. A simple immunomagnetic protocol for the  

selective isolation and long-term culture of human dermal microvascular endothelial 

cells. Exp Cell Res 240, 1-6 (1998).  

38. Augustin, H.G., (Ed.). Methods in Endothelial Cell Biology, (Springer Lab Manuals, 

2004). 

39. Debnath, J., Muthuswamy, S.K. & Brugge, J.S. Morphogenesis and oncogenesis of MCF- 

10A mammary epithelial acini grown in three-dimensional basement membrane cultures. 

Methods 30, 256-268 (2003). 

40. Gerald, D., et al. JunD reduces tumor angiogenesis by protecting cells from oxidative 

stress. Cell 118, 781-794 (2004). 
41.  Zeng, P.Y., Vakoc, C.R., Chen, Z.C., Blobel, G.A. & Berger, S.L. In vivo dual cross- 

linking   for   identification   of   indirect   DNA-associated   proteins   by   chromatin 

immunoprecipitation. Biotechniques 41, 694, 696, 698 (2006).  

42.  Rinn, J.L., et al. Functional demarcation of active and silent chromatin domains in human  

HOX loci by noncoding RNAs. Cell 129, 1311-1323 (2007).  
43.  Li, C. & Wong, W.H. Model-based analysis of oligonucleotide arrays: expression index  

computation and outlier detection. Proc Natl Acad Sci U S A 98, 31-36 (2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

a

g

e

 

|

 

1

8

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Mandrita
Typewritten Text
185



 

a

g

e

 

|

 

1

8

5

 

Mandrita
Typewritten Text

Mandrita
Typewritten Text
186



 

a

g

e

 

|

 

1

8

6

 

Mandrita
Typewritten Text
187



 

a

g

e

 

|

 

1

8

7

 

Mandrita
Typewritten Text
188



 

a

g

e

 

|

 

1

8

8

 

Mandrita
Typewritten Text

Mandrita
Typewritten Text
189



 

a

g

e

 

|

 

1

8

9

 

Mandrita
Typewritten Text

Mandrita
Typewritten Text
190



 

a

g

e

 

|

 

1

9

0

 

 

Mandrita
Typewritten Text
191



 

a

g

e

 

|

 

1

9

1

 

 

 

Mandrita
Typewritten Text
192



193 
 

 

 

 

 

 

 

BIBLIOGRAPHY  



194 
 

BIBLIOGRAPHY 

Aherne, W. & Hull, D., 1966. Brown adipose tissue and heat production in the newborn 
infant. The Journal of Pathology and Bacteriology, 91(1), pp.223–34.  

Arany, Z. et al., 2008. HIF-independent regulation of VEGF and angiogenesis by the 
transcriptional coactivator PGC-1alpha. Nature, 451(7181), pp.1008–12.  

Asano, a et al., 1997. Adrenergic activation of vascular endothelial growth factor mRNA 
expression in rat brown adipose tissue: implication in cold-induced angiogenesis. The 
Biochemical Journal, 328 ( Pt 1, pp.179–83). 

Asano, a, Irie, Y. & Saito, M., 2001. Isoform-specific regulation of vascular endothelial 
growth factor (VEGF) family mRNA expression in cultured mouse brown adipocytes. 
Molecular and Cellular Endocrinology, 174(1-2), pp.71–6 

Barnard, T., 1969. The Ultrastructural Differentiation of Brown Adipose Tissue in the Rat. 
Journal of Ultrastructure Research, 29, pp.311- 332. 

Bartelt, A. et al., 2011. Brown adipose tissue activity controls triglyceride clearance. Nature 
Medicine, 17(2), pp.200–5.  

Boucher, J. et al., 2010. A kinase-independent role for unoccupied insulin and IGF-1 
receptors in the control of apoptosis. Science Signaling, 3(151), p.ra87.  

Bryan, B.A. et al., 2008. Coordinated Vascular Endothelial Growth Factor Expression and 
Signaling During Skeletal Myogenic Differentiation. Molecular Biology of the Cell, 19(March), 
pp.994–1006. 

Bråkenhielm, E. et al., 2004. Angiogenesis inhibitor, TNP-470, prevents diet-induced and 
genetic obesity in mice. Circulation Research, 94(12), pp.1579–88.  

Bukowiecki, L. et al., 1982. Brown adipose tissue hyperplasia: a fundamental mechanism of 
adaptation to cold and hyperphagia. The American Journal of Physiology, 242(6), pp.E353–9.  

Cancello, R. et al., 2005. Reduction of macrophage infiltration and chemoattractant gene 
expression changes in white adipose tissue of morbidly obese subjects after surgery-
induced weight loss. Diabetes, 54(8), pp.2277–86.  

Cannon, B. & Nedergaard, J., 2004. Brown Adipose Tissue : Function and Physiological 
Significance. Physiological Reviews, 84(1), pp.277–359.  



195 
 

Cao, R et al., 2001. Leptin induces vascular permeability and synergistically stimulates 
angiogenesis with FGF-2 and VEGF. Proceedings of the National Academy of Sciences of the 
United States of America, 98(11), pp.6390–5.  

Cao, Yihai, 2007. Science in medicine Angiogenesis modulates adipogenesis and obesity. 
Journal of Clinical Investigation, 117(9). 

Carmeliet, P et al., 1996. Abnormal blood vessel development and lethality in embryos 
lacking a single VEGF allele. Nature, 380(6573), pp.435–9.  

Carmeliet, P. Ng, Y-S. Nuyens, D. D’Amore, P. and Shima, D., 1999. Impaired myocardial 
angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth 
factor isoforms VEGF 164 and VEGF 188. Nature Medicine, 5(5), pp.495–502. 

Castellot, J.J., Karnovsky, M.J. & Spiegelman, B M, 1982. Differentiation-dependent 
stimulation of neovascularization and endothelial cell chemotaxis by 3T3 adipocytes. 
Proceedings of the National Academy of Sciences of the United States of America, 79(18), 
pp.5597–5601.  

Chinsomboon, J. et al., 2009. The transcriptional coactivator PGC-1alpha mediates exercise-
induced angiogenesis in skeletal muscle. Proceedings of the National Academy of Sciences of 
the United States of America, 106(50), pp.21401–6.  

Cigolini, M. et al., 1986. Isolation and ultrastructural features of brown adipocytes in 
culture. Journal of Anatomy, 145, pp.207–16.  

Cinti, Saverio, 2007. The Adipose Organ. In J. Fantuzzi & T. Mazzone, eds. Nutrition and 
Health: Adipose Tissue and Adipokines in Health and Disease. Humana Press Inc., Totowa, 
NJ, pp. 3–19. 

Claffey, K.P., Wilkison, W.O. & Spiegelman, B M, 1992. Vascular endothelial growth factor. 
Regulation by cell differentiation and activated second messenger pathways. The Journal of 
Biological Chemistry, 267(23), pp.16317–22.  

Clark, E.R. & Clark, E.L., 1940. Microscopic studies of the new formation of fat in living adult 
rabbits. American Journal of Anatomy, 67, pp.255–285. 

Clauss, M., 1998. Functions of the VEGF receptor-1 (FLT-1) in the vasculature. Trends in 
Cardiovascular Medicine, 8(6), pp.241–5.  

Crandall, D.L. et al., 2000. Autocrine regulation of human preadipocyte migration by 
plasminogen activator inhibitor-1. The Journal of Clinical Endocrinology & Metabolism, 
85(7), pp.2609–2614.  



196 
 

Crandall, D.L., Hausman, G.J. & Kral, J.G., 1997. Review Article A Review of the 
Microcirculation of Adipose Tissue : Anatomic , Metabolic , and Angiogenic Perspectives. 
Microcirculation, 4, pp.211–232. 

Cypess, A.M. et al., 2009. Identification and importance of brown adipose tissue in adult 
humans. The New England Journal of Medicine, 360(15), pp.1509–17. Available  

Cypess, A.M. & Kahn, C.R., 2010. The role and importance of brown adipose tissue in energy 
homeostasis. Current Opinion in Pediatrics, 22(4), pp.478–84.  

Czaja, M.J., 2010. Autophagy in health and disease. 2. Regulation of lipid metabolism and 
storage by autophagy: pathophysiological implications. American Journal of Physiology:Cell 
Physiology, 298(5), pp.C973–8.  

Darland, D.C. et al., 2011. Vascular endothelial growth factor (VEGF) isoform regulation of 
early forebrain development. Developmental Biology, 358(1), pp.9–22.  

Devy, L. et al., 2002. The pro- or antiangiogenic effect of plasminogen activator inhibitor 1 is 
dose dependent. FASEB Journal : official publication of the Federation of American Societies 
for Experimental Biology, 16(2), pp.147–54.  

Dong, H. & Czaja, M.J., 2011. Regulation of lipid droplets by autophagy. Trends in 
Endocrinology and Metabolism: TEM, 22(6), pp.234–40.  

Elias, I. et al., 2012. Adipose Tissue Overexpression of Vascular Endothelial Growth Factor 
Protects Against Diet-Induced Obesity and Insulin Resistance. Diabetes, pp.1–13.  

Enerbäck, S. et al., 1997. Mice lacking mitochondrial uncoupling protein are cold-sensitive 
but not obese. Nature, 387(6628), pp.90–4.  

Fain, J.N. et al., 2004. Comparison of the release of adipokines by adipose tissue, adipose 
tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of 
obese humans. Endocrinology, 145(5), pp.2273–82.  

Fain, J.N. & Madan, A.K., 2005. Insulin enhances vascular endothelial growth factor, 
interleukin-8, and plasminogen activator inhibitor 1 but not interleukin-6 release by human 
adipocytes. Metabolism: Clinical and Experimental, 54(2), pp.220–6.  

Farmer, S.R., 2008. Molecular determinants of brown adipocyte formation and function. 
Genes & Development, 22(10), pp.1269–75.  

Fernandes-Alnemri, T., Litwack, G. & Alnemri, E.S., 1994. CPP32, a novel human apoptotic 
protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian 



197 
 

interleukin-1 beta-converting enzyme. The Journal of Biological Chemistry, 269(49), 
pp.30761–4.  

Ferrara, N et al., 1996. Heterozygous embryonic lethality induced by targeted inactivation of 
the VEGF gene. Nature, 380(6573), pp.439–42.  

Ferrara, N & Henzel, W.J., 1989. Pituitary follicular cells secrete a novel heparin-binding 
growth factor specific for vascular endothelial cells. Biochemical and Biophysical Research 
Communications, 161(2), pp.851–8.  

Ferrara, Napoleone, Gerber, H.-P. & LeCouter, J., 2003. The biology of VEGF and its 
receptors. Nature medicine, 9(6), pp.669–76.  

Folkman, J et al., 1971. Isolation of a tumor factor responsible for angiogenesis. The Journal 
of Experimental Medicine, 133(2), pp.275–88.  

Folkman, J, 1971. Tumor angiogenesis: therapeutic implications. The New England Journal 
of Medicine, 285(21), pp.1182–6.  

Folkman, J, Hahnfeldt, P & Hlatky, L, 2000. Cancer: looking outside the genome. Nature 
reviews. Molecular Cell Biology, 1(1), pp.76–9.  

Ford, K.M. et al., 2011. Expression and role of VEGF in the adult retinal pigment epithelium. 
Investigative Ophthalmology & Visual Science, 52(13), pp.9478–87.  

Fredriksson, J M et al., 2000. Norepinephrine induces vascular endothelial growth factor 
gene expression in brown adipocytes through a beta -adrenoreceptor/cAMP/protein kinase 
A pathway involving Src but independently of Erk1/2. The Journal of Biological Chemistry, 
275(18), pp.13802–11.  

Fredriksson, J Magnus, Nikami, Hideki & Nedergaard, Jan, 2005. Cold-induced expression of 
the VEGF gene in brown adipose tissue is independent of thermogenic oxygen consumption. 
FEBS Letters, 579(25), pp.5680–4.  

Fukumura, D. et al., 2003. Paracrine regulation of angiogenesis and adipocyte 
differentiation during in vivo adipogenesis. Circulation Research, 93(9), pp.e88–97.  

García de la Torre, N. et al., 2008. Effects of weight loss after bariatric surgery for morbid 
obesity on vascular endothelial growth factor-A, adipocytokines, and insulin. The Journal of 
Clinical Endocrinology and Metabolism, 93(11), pp.4276–81.  

Gealekman, O. et al., 2011. Depot-specific differences and insufficient subcutaneous 
adipose tissue angiogenesis in human obesity. Circulation, 123(2), pp.186–94.  



198 
 

Gealekman, O. et al., 2012. Effect of rosiglitazone on capillary density and angiogenesis in 
adipose tissue of normoglycaemic humans in a randomised controlled trial. Diabetologia.  

Gealekman, Olga et al., 2008. Enhanced angiogenesis in obesity and in response to 
PPARgamma activators through adipocyte VEGF and ANGPTL4 production. American Journal 
of Physiology: Endocrinology and Metabolism, 295(5), pp.E1056–64.  

Gersh, I. & Still, M.A., 1945. Blood vessels in fat tissue. Relation to problems of gas 
exchange. The Journal of Experimental Medicine, 81(2), pp.219–232. 

Gesta, S. et al., 2006. Evidence for a role of developmental genes in the origin of obesity and 
body fat distribution. Proceedings of the National Academy of Sciences of the United States 
of America, 103(17), pp.6676–81.  

Gesta, S., Tseng, Y.-H. & Kahn, C.R., 2007. Developmental origin of fat: tracking obesity to its 
source. Cell, 131(2), pp.242–56.  

Ghorbani, M., Claus, T.H. & Himms-Hagen, J., 1997. Hypertrophy of brown adipocytes in 
brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a 
beta3-adrenoceptor agonist. Biochemical Pharmacology, 54(1), pp.121–31.  

Goldsmith, H.S. et al., 1984. Lipid angiogenic factor from omentum. JAMA: The Journal of 
the American Medical Association, 252(15), pp.2034–2036. 

Goossens, G.H., 2008. The role of adipose tissue dysfunction in the pathogenesis of obesity-
related insulin resistance. Physiology & Behavior, 94(2), pp.206–18.  

Green, H. & Kehinde, O., 1975. An established preadipose cell line and its differentiation in 
culture. II. Factors affecting the adipose conversion. Cell, 5(1), pp.19–27.  

Guan, F. et al., 2006. Autocrine VEGF-A system in podocytes regulates podocin and its 
interaction with CD2AP. American Journal of Physiology: Renal Physiology, 291(2), pp.F422–
8.  

Guerra, C. et al., 1998. Emergence of brown adipocytes in white fat in mice is under genetic 
control. Effects on body weight and adiposity. The Journal of Clinical Investigation, 102(2), 
pp.412–20.  

Gómez-Ambrosi, J. et al., 2010. Involvement of serum vascular endothelial growth factor 
family members in the development of obesity in mice and humans. The Journal of 
Nutritional Biochemistry, 21(8), pp.774–80.  



199 
 

Hagberg, C.E. et al., 2010. Vascular endothelial growth factor B controls endothelial fatty 
acid uptake. Nature, 464(7290), pp.917–21.  

Halberg, N., Khan, T., Trujillo, M.E., Wernstedt-Asterholm, I., Attie, A.D., Sherwani, S., Wang, 
Z.V., Landskroner-Eiger, S., Dineen, S., Magalang, U.J., Brekken, R. a, et al., 2009. Hypoxia-
inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. 
Molecular and Cellular Biology, 29(16), pp.4467–83.  

Hausman, G.J. & Richardson, R.L., 2004. Adipose tissue angiogenesis. Journal of Animal 
Science, 82(3), pp.925–934.  

Hausman, G.J. & Thomas, G.B., 1986. Structural and histochemical aspects of perirenal 
adipose tissue in fetal pigs: relationships between stromal-vascular characteristics and fat 
cell concentration and enzyme activity. Journal of Morphology, 190(3), pp.271–283. 

Hirning, U. et al., 1989. In developing brown adipose tissue c-myc protooncogene 
expression is restricted to early differentiation stages. Cell differentiation and Development, 
27(3), pp.243–8.  

Hull, D., 1976. The function of brown adipose tissue in the newborn. Biochemical Society 
Transactions, 4(2), pp.226–8.  

Ichimura, Y. et al., 2000. A ubiquitin-like system mediates protein lipidation. Nature, 
408(6811), pp.488–92.  

Inoue, M. et al., 2001. Oxidized LDL regulates vascular endothelial growth factor expression 
in human macrophages and endothelial cells through activation of peroxisome proliferator-
activated receptor-gamma. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(4), 
pp.560–6.  

Jozkowicz, A. et al., 2000. Ligands of peroxisome proliferator-activated receptor-gamma 
increase the generation of vascular endothelial growth factor in vascular smooth muscle 
cells and in macrophages. Acta Biochimica Polonica, 47(4), pp.1147–57.  

Kabeya, Y et al., 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in 
autophagosome membranes after processing. The EMBO Journal, 19(21), pp.5720–8.  

Kabeya, Yukiko et al., 2004. LC3, GABARAP and GATE16 localize to autophagosomal 
membrane depending on form-II formation. Journal of Cell Science, 117(Pt 13), pp.2805–12.  

Kajimura, S., Seale, P. & Spiegelman, Bruce M, 2010. Transcriptional control of brown fat 
development. Cell Metabolism, 11(4), pp.257–62.  



200 
 

Kamba, T. et al., 2006. VEGF-dependent plasticity of fenestrated capillaries in the normal 
adult microvasculature. American Journal of Physiology: Heart and Circulatory Physiology, 
290(2), pp.H560–76.  

Kolonin, M.G. et al., 2004. Reversal of obesity by targeted ablation of adipose tissue. Nature 
Medicine, 10(6), pp.625–32.  

Korac, a et al., 2008. The role of nitric oxide in remodeling of capillary network in rat 
interscapular brown adipose tissue after long-term cold acclimation. Histology and 
Histopathology, 23(4), pp.441–50.  

Kuhn, A. et al., 2002. Expression of endomucin, a novel endothelial sialomucin, in normal 
and diseased human skin. The Journal of Investigative Dermatology, 119(6), pp.1388–93.  

Kundu, M. & Thompson, C.B., 2005. Macroautophagy versus mitochondrial autophagy: a 
question of fate? Cell Death and Differentiation, 12 Suppl 2, pp.1484–9.  

Kuo, C J et al., 2001. Comparative evaluation of the antitumor activity of antiangiogenic 
proteins delivered by gene transfer. Proceedings of the National Academy of Sciences of the 
United States of America, 98(8), pp.4605–10.  

Lau, D.C. et al., 1990. Influence of paracrine factors on preadipocyte replication and 
differentiation. International Journal of Obesity, 14 Suppl 3, pp.193–201.  

Lau, D.C. et al., 1996. Paracrine interactions in adipose tissue development and growth. 
International Journal of Obesity and Related Metabolic Disorders, 20 Suppl 3, pp.S16–25.  

Li, Pan et al., 2012. VEGF evokes reactive astroglia to convert into neuronal cells by affecting 
the biological function of MeCP2 in adult rat brain after cerebral ischemia. Neurochemistry 
International.  

Lin, S.-C. & Li, Peng, 2004. CIDE-A, a novel link between brown adipose tissue and obesity. 
Trends in Molecular Medicine, 10(9), pp.434–9.  

Liu, Y. et al., 2012. Intracellular VEGF regulates the balance between osteoblast and 
adipocyte differentiation. Journal of Clinical Investigation, pp.1–13. 

Lowell, B. et al., 1993. Development of obesity in transgenic mice after genetic ablation of 
brown adipose tissue. Nature, 366(6457), pp.740–2.  

Lu, X. et al., 2012. Resistance to Obesity by Repression of VEGF Gene Expression through 
Induction of Brown-Like Adipocyte Differentiation. Endocrinology, 153(July), pp.1–10.  



201 
 

Maharaj, A.S.R. et al., 2008. VEGF and TGF-beta are required for the maintenance of the 
choroid plexus and ependyma. The Journal of Experimental Medicine, 205(2), pp.491–501.  

Mayer, H. et al., 2005. Vascular endothelial growth factor (VEGF-A) expression in human 
mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial 
differentiation. Journal of Cellular Biochemistry, 95(4), pp.827–39.  

McAllister, F.F., Leighninger, D. & Beck, C.S., 1951. Revascularization of the heart by vein 
graft from aorta to coronary sinus. Annals of Surgery, 133(2), pp.153–65.  

Milosevic, M. & Ukropina, M., 2008. EMC 2008 14th European Microscopy Congress 1–5 
September 2008, Aachen, Germany A. Aretz, B. Hermanns-Sachweh, & J. Mayer, eds. , 3, 
pp.113–114.  

Miquerol, L. et al., 1999. Multiple developmental roles of VEGF suggested by a LacZ-tagged 
allele. Developmental Biology, 212(2), pp.307–22.  

Miquerol, L., Langille, B.L. & Nagy, A., 2000. Embryonic development is disrupted by modest 
increases in vascular endothelial growth factor gene expression. Development (Cambridge, 
England), 127(18), pp.3941–6.  

Miranda, S. et al., 2010. Beneficial effects of PTP1B deficiency on brown adipocyte 
differentiation and protection against apoptosis induced by pro- and anti-inflammatory 
stimuli. Cellular Signalling, 22(4), pp.645–59.  

Miyazawa-Hoshimoto, S. et al., 2005. Roles of degree of fat deposition and its localization 
on VEGF expression in adipocytes. American Journal of Physiology. Endocrinology and 
Metabolism, 288(6), pp.E1128–36.  

Morita, T., Shinohara, N. & Tokue, A., 1994. Antitumour effect of a synthetic analogue of 
fumagillin on murine renal carcinoma. British Journal of Urology, 74(4), pp.416–21.  

Napolitano, L., 1963. The differentiation of white adipose cells. An electron microscope 
study. The Journal of Cell Biology, 18, pp.663–79.  

Nedergaard, Jan, Bengtsson, T. & Cannon, B., 2007. Unexpected evidence for active brown 
adipose tissue in adult humans. American Journal of Physiology. Endocrinology and 
Metabolism, 293(2), pp.E444–52.  

Ng, Y.S. et al., 2001. Differential expression of VEGF isoforms in mouse during development 
and in the adult. Developmental Dynamics, 220(2), pp.112–21. 



202 
 

Nicholson, D.W. et al., 1995. Identification and inhibition of the ICE/CED-3 protease 
necessary for mammalian apoptosis. Nature, 376(6535), pp.37–43.  

Nisoli, Enzo et al., 1997. Tumor necrosis factor-a induces apoptosis in rat brown adipocytes. 
Cell, pp.771–778. 

Orava, J. et al., 2011. Different metabolic responses of human brown adipose tissue to 
activation by cold and insulin. Cell Metabolism, 14(2), pp.272–9.  

Ouellet, V. et al., 2012. Brown adipose tissue oxidative metabolism contributes to energy 
expenditure during acute cold exposure in humans. Journal of Clinical Investigation, 122(2). 

O’Reilly, M.S. et al., 1994. Angiostatin: a novel angiogenesis inhibitor that mediates the 
suppression of metastases by a Lewis lung carcinoma. Cell, 79(2), pp.315–28.  

O’Reilly, M.S. et al., 1997. Endostatin: an endogenous inhibitor of angiogenesis and tumor 
growth. Cell, 88(2), pp.277–85.  

Panigrahy, D. et al., 2002. PPARγ ligands inhibit primary tumor growth and metastasis by 
inhibiting angiogenesis. Journal of Clinical Investigation, 110(7), pp.923–932. 

Pasarica, M. et al., 2009. Reduced Adipose Tissue Oxygenation in Human Obesity. Diabetes, 
58(3), pp.718–725.  

Patel-Hett, S. & D’Amore, Patricia a, 2011. Signal transduction in vasculogenesis and 
developmental angiogenesis. The International Journal of Developmental Biology, 55(4-5), 
pp.353–63.  

dela Paz, N.G. & D’Amore, Patricia A, 2009. Arterial versus venous endothelial cells. Cell and 
Tissue Research, 335(1), pp.5–16.  

Peeters, L.L.H. et al., 2005. PPAR gamma represses VEGF expression in human endometrial 
cells: implications for uterine angiogenesis. Angiogenesis, 8(4), pp.373–9.  

Petrovic, M.G. et al., 2008. Local and genetic determinants of vascular endothelial growth 
factor expression in advanced proliferative diabetic retinopathy. Molecular Vision, 14, 
pp.1382–7.  

Pino, E. et al., 2012. Roles for peroxisome proliferator-activated receptor γ (PPARγ) and 
PPARγ coactivators 1α and 1β in regulating response of white and brown adipocytes to 
hypoxia. The Journal of Biological Chemistry, 287(22), pp.18351–8.  



203 
 

Puigserver, P. et al., 1998. A cold-inducible coactivator of nuclear receptors linked to 
adaptive thermogenesis. Cell, 92(6), pp.829–39.  

Puigserver, P., 2003. Peroxisome Proliferator-Activated Receptor-gamma Coactivator 1alpha 
(PGC-1alpha): Transcriptional Coactivator and Metabolic Regulator. Endocrine Reviews, 
24(1), pp.78–90.  

Rosen, E.D. & Spiegelman, Bruce M, 2006. Adipocytes as regulators of energy balance and 
glucose homeostasis. Nature, 444(7121), pp.847–53.  

Rothwell, N.J. & Stock, M.J., 1979. A role for brown adipose tissue in diet-induced 
thermogenesis. Nature, 281(5726), pp.31–5.  

Rothwell, N.J. & Stock, M.J., 1983. Luxuskonsumption, diet-induced thermogenesis and 
brown fat: the case in favour. Clinical Science (London, England : 1979), 64(1), pp.19–23.  

Rupnick, M. a et al., 2002. Adipose tissue mass can be regulated through the vasculature. 
Proceedings of the National Academy of Sciences of the United States of America, 99(16), 
pp.10730–5.  

Saint-Geniez, M. et al., 2008. Endogenous VEGF is required for visual function: evidence for 
a survival role on müller cells and photoreceptors. PloS One, 3(11), p.e3554.  

Saint-Geniez, M., Kurihara, T. & D’Amore, Patricia a, 2009. Role of cell and matrix-bound 
VEGF isoforms in lens development. Investigative Ophthalmology & Visual Science, 50(1), 
pp.311–21.  

Saint-geniez, M. et al., 2009. An essential role for RPE-derived soluble VEGF in the 
maintenance of the choriocapillaris. Retina, 106(44). 

Sakurai, H. et al., 2008. Innate immune response induced by gene delivery vectors. 
International Journal of Pharmaceutics, 354(1-2), pp.9–15.  

Seale, P. et al., 2008. PRDM16 controls a brown fat/skeletal muscle switch. Nature, 
454(7207), pp.961–7.  

Seale, P. & Lazar, M. a, 2009. Brown fat in humans: turning up the heat on obesity. 
Diabetes, 58(7), pp.1482–4.  

Senger, D.R. et al., 1983. Tumor Cells Secrete a Vascular Permeability Factor that Promotes 
Accumulation of Ascites Fluid. Science, 219(4587), pp.983–985. 



204 
 

Shalaby, F. et al., 1995. Failure of blood-island formation and vasculogenesis in Flk-1-
deficient mice. Nature, 376(6535), pp.62–6.  

Silverman, K.J., Folkman, J & Barger, A.C., 1988. Angiogenic Activity of Adipose Tissue. 
Biochemical and Biophysical Research Communications, 153(1), pp.347–352. 

Singh, R. et al., 2009. Autophagy regulates adipose mass and differentiation in mice. Journal 
of Clinical Investigation, 119(11), pp.3329–3339. 

Skala, J. & Hahn, P., 1974. Changes In Interscapular Perinatal Adipose Tissue Of The Rat 
During Development Effect And Early Postnatal Temperature And After Cold Acclimation Of 
Hormones. International Journal of Biochemistry, 5, pp.95 – 106. 

Smith, R.E., 1964. Thermoregulatory and adaptive behavior of brown adipose tissue. 
Science, 146, pp.1686–9.  

Smith, R.E. & Horwitz, B.A., 1969. Brown fat and thermogenesis. Physiological Reviews, 
49(2), pp.330–425.  

Spalding, K.L. et al., 2008. Dynamics of fat cell turnover in humans. Nature, 453(7196), 
pp.783–7.  

Stalmans, I. et al., 2002. Arteriolar and venular patterning in retinas of mice selectively 
expressing VEGF isoforms. Journal of Clinical Investigation, 109(3), pp.327–336. 

Sun, K. et al., 2012. Dichotomous effects of VEGF-A on adipose tissue dysfunction. 
Proceedings of the National Academy of Sciences of the United States of America, 109(15), 
pp.5874–5879. 

Sun, K., Kusminski, C.M. & Scherer, P.E., 2011. Adipose tissue remodeling and obesity. 
Journal of Clinical Investigation, 121(6), pp.2094 – 2101. 

Tam, J. et al., 2009. Blockade of VEGFR2 and not VEGFR1 can limit diet-induced fat tissue 
expansion: role of local versus bone marrow-derived endothelial cells. PloS One, 4(3), 
p.e4974.  

Tanida, Isei, Ueno, Takashi & Kominami, Eiki, 2004. Human light chain 3/MAP1LC3B is 
cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to 
autophagosomal membranes. The Journal of Biological Chemistry, 279(46), pp.47704–10.  

Timmons, J.A. et al., 2007. Myogenic gene expression signature establishes that brown and 
white adipocytes originate from distinct cell lineages. Proceedings of the National Academy 
of Sciences of the United States of America, 104(11), pp.4401–6.  



205 
 

Tiraby, C. et al., 2003. Acquirement of brown fat cell features by human white adipocytes. 
The Journal of Biological Chemistry, 278(35), pp.33370–6.  

Tonello, C et al., 1999. Role of sympathetic activity in controlling the expression of vascular 
endothelial growth factor in brown fat cells of lean and genetically obese rats. FEBS Letters, 
442(2-3), pp.167–72.  

Tran, Khanh-Van et al., 2012. The vascular endothelium of the adipose tissue gives rise to 
both white and brown fat cells. Cell Metabolism, 15(2), pp.222–9.  

Trayhurn, P., 2005. Endocrine and signalling role of adipose tissue: new perspectives on fat. 
Acta Physiologica Scandinavica, 184(4), pp.285–93.  

Vidal, H., 2001. Gene expression in visceral and subcutaneous adipose tissues. Annals of 
Medicine, 33(8), pp.547–55.  

Vineberg, A.M. et al., 1965. Myocardial revascularization by omental graft without pedicle: 
experimental background and report on 25 cases followed 6 to 16 months. The Journal of 
Thoracic and Cardiovascular Surgery, 49, pp.103–29.  

Vohl, M.-C. et al., 2004. A survey of genes differentially expressed in subcutaneous and 
visceral adipose tissue in men. Obesity Research, 12(8), pp.1217–22.  

Wacker, A. & Gerhardt, H., 2011. Endothelial development taking shape. Current Opinion in 
Cell Biology, 23(6), pp.676–85.  

Walshe, T.E., Dole, V.S., et al., 2009. Inhibition of VEGF or TGF-{beta} signaling activates 
endothelium and increases leukocyte rolling. Arteriosclerosis, Thrombosis, and Vascular 
Biology, 29(8), pp.1185–92.  

Walshe, T.E., Saint-Geniez, M., et al., 2009. TGF-beta is required for vascular barrier 
function, endothelial survival and homeostasis of the adult microvasculature. PloS One, 4(4), 
p.e5149.  

Wang, J., Lou, P. & Henkin, J., 2000. Selective inhibition of endothelial cell proliferation by 
fumagillin is not due to differential expression of methionine aminopeptidases. Journal of 
Cellular Biochemistry, 77(3), pp.465–73.  

Wu, J. et al., 2006. Molecular cloning and characterization of rat LC3A and LC3B--two novel 
markers of autophagosome. Biochemical and Biophysical Research Communications, 339(1), 
pp.437–42.  



206
 

Xue, Y., Petrovic, N., Cao, Renhai, Larsson, O., Lim, S., Chen, S., Feldmann, H.M., Liang, Z., 
Zhu, Z.Z., et al., 2009. Hypoxia-independent angiogenesis in adipose tissues during cold 
acclimation. Cell Metabolism, 9(1), pp.99–109.  

Yatagai, T. et al., 2003. Hypoadiponectinemia is associated with visceral fat accumulation 
and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism: Clinical 
and Experimental, 52(10), pp.1274–8. 

Ye, J. et al., 2007. Hypoxia is a potential risk factor for chronic inflammation and adiponectin 
reduction in adipose tissue of ob/ob and dietary obese mice. American Journal of 
Physiology. Endocrinology and Metabolism, 293(4), pp.E1118–28.  

Zelzer, E. et al., 2002. Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF 
in skeletogenesis. Development (Cambridge, England), 129(8), pp.1893–904.  

Zhang, Q X et al., 1997. Vascular endothelial growth factor is the major angiogenic factor in 
omentum: mechanism of the omentum-mediated angiogenesis. The Journal of Surgical 
Research, 67(2), pp.147–154.  

Zhou, Z. et al., 2003. Cidea-deficient mice have lean phenotype and are resistant to obesity. 
Nature Genetics, 35(1), pp.49–56.  


