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Abstract 

Directed differentiation of human pluripotent stem cells (hPSCs) has the potential 

to produce human cell types that can be used for disease modeling and cell 

transplantation. Two key challenges in the differentiation from hPSCs to β cells are the 

specification from pancreatic progenitors to insulin-expressing (INS+) cells and the 

maturation of INS+ cells into glucose responsive β cells.  

To address the first, two high-content chemical screens identified PKC inhibitors as 

inducers of INS+ cells from pancreatic progenitors. PKC inhibition generated up to ten-

fold more INS+ cells while PKC agonists blocked differentiation into INS+ cells. 

Transplantation of PKCβ inhibitor-treated pancreatic progenitors, containing higher 

proportions of endocrine progenitors and endocrine cells, resulted in mature β cells 

showing higher levels of glucose-stimulated human c-peptide production in vivo. This 

indicates that in vitro derived INS+ cells might be competent to mature into functional β 

cells.  
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To address the second challenge, we first studied mouse and human β cell 

maturation in vivo. Postnatal mouse β cell maturation was marked by an increase in the 

glucose threshold for insulin secretion and by expression of the gene urocortin 3. To study 

human β cell maturation, a Method for Analyzing RNA following Intracellular Sorting 

(MARIS) was developed and used for transcriptional profiling of sorted human fetal and 

adult β cells. Surprisingly, transcriptional differences between human fetal and adult β cells 

did not resemble differences between mouse fetal and adult β cells, calling into question 

inter-species homology at the late stages of development. 

A direct comparison between hPSC-derived INS+ cells, and β cells produced during 

human development is essential to validate directed differentiation and provide a roadmap 

for maturation of hPSC-derived INS+ cells. Genome-wide transcriptional analysis of sorted 

INS+ cells derived from three hPSC-lines suggest that different lines produce highly similar 

INS+ cells, confirming robustness of directed differentiation protocols. Furthermore, non-

functional hPSC-derived INS+ cells resemble human fetal β cells, which are distinct from 

adult β cells. We therefore suggest that in vitro directed differentiation mimics normal 

human development and reveal differences in gene expression that may account for the 

functional differences between hPSC-derived INS+ cells and true β cells.  
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Chapter 1  

Introduction 

Regenerative medicine holds the promise of replacing, repairing or regenerating 

human cells, tissues and organs to restore normal function. Many diseases, including 

diabetes and neurodegeneration, result from loss or malfunction of  specific cell types in 

the human body. Through cell replacement therapy, regenerative medicine could provide a 

cure for these and other conditions. However, cell replacement therapies are limited by a 

shortage of cell sources, usually cadaveric donors. Stem cell biology has the potential to 

create a renewable and accessible source of cells for cell replacement transplantation 

therapy. 
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1.1.  Pluripotent Stem Cells 

Stem cells are defined by the ability to self-renew and differentiate into other cells. 

Self-renewal is the ability to divide and generate at least one daughter cell equivalent to the 

mother stem cell. Differentiation is the ability to generate other cell types. Pluripotent stem 

cells can differentiate any cell type in the organism. Three types of pluripotent cells have 

been identified: 1) embryonic germ (EG) cells, derived from primordial germ cells1-3; 2) 

embryonic carcinoma (EC) cells, derived from germ cell tumors4-6 and 3) embryonic stem 

(ES) cells, derived from the inner cell mass (ICM) of the blastocyst. Of the three, 

embryonic stem cells are the most common pluripotent cell type used in research because 

they are generally chromosomally normal (unlike EC cells) and can be self-renewed and 

expanded in vitro (unlike EG cells). 

 

1.1.1. Embryonic Stem Cells 

The blastocyst represents an early pre-implantation stage of development still 

containing pluripotent cells. Isolation and in vitro culture of the inner cell mass of the 

mouse blastocyst created embryonic stem cells capable of extensive, perhaps unlimited, self-

renewal and differentiation into any cell type in the mouse embryo 7,8. Isolation of stable 

human embryonic stem cells (hESCs) from donated, otherwise discarded, human 

blastocysts therefore created a potentially unlimited source of any human cell type9-12.  
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1.1.2. Induced pluripotent stem cells 

The ability to convert a mature, adult cell into a pluripotent cell received the 2012 

Medicine and Physiology Nobel Prize. It was first achieved in Xenopus laevis by somatic cell 

nuclear transfer (SCNT), a method in which a nucleus of one cell is reprogrammed into a 

pluripotent cell by injection into the enucleated egg 13. In mammals, SCNT 14,15; altered 

nuclear transfer16; the addition of a somatic cell nucleus to an oocyte17; and fusion of 

somatic cells with ES cells 18 were all successful at generating embryonic stem cells. 

Recently, a breakthrough technology, co-awarded with the 2012 Medicine and Physiology 

Nobel Prize, described the creation of induced pluripotent stem cells (iPSCs) from the skin 

of adult mice or humans by viral introduction of defined genetic factors19-22. With iPSC 

technology, patient’s skin cells can be used to generate genetically identical pluripotent 

stem cells that can be differentiated into cells for autologous cell replacement therapy. 

Additionally, iPSCs derived from patients carrying genetic diseases can been used to study 

and model disease in otherwise inaccessible cell types 23.  

 

1.1.3. Differentiation of pluripotent stem cells 

Mouse embryonic and induced pluripotent stem cells, together referred to as 

pluripotent stem cells, can generate a live mouse when injected into tetraploid blastocysts 

(tetraploid complementation) 24. For obvious ethical reasons, the differentiation potential 

of human pluripotent stem cells (hPSCs) cannot be tested using blastocyst 
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complementation. Instead, hPSCs are injected into adult immunodeficient mice to form 

teratomas containing derivatives of all three germ layers25. In vitro, cultured hPSCs can 

spontaneously differentiate into cells of all three germ layers 12.  

Lineage-specific hPSC differentiation attempts to recapitulate normal human 

development in vitro. To this end, directed differentiation protocols rely on the exogenous 

addition of growth factors or small molecules that mimic key developmental transitions. 

For instance, activin A (TGFβ family ligand) and BMP4 have been found to induce 

formation of mesoderm from pluripotent stem cells26. 

Recently, forced expression of defined transcription factors using viral vectors, 

transposable genetic elements or modified RNAs successfully differentiated hPSCs towards 

specific lineages 27-29. 

 

1.2.  Diabetes mellitus and pancreatic β cells 

1.2.1. Glucose homeostasis and pancreatic β cells 

Glucose homeostasis is critical for normal body function. Following a meal, food is 

processed and complex sugars metabolized into glucose, which is absorbed by the intestine. 

Glucose is distributed to and used by most cells in the body as a critical source of energy. 

Importantly, when abundant, glucose is taken up from the blood by liver and muscle for 

storage in the form of glycogen. Between meals, when serum glucose levels are low, 

glycogen can be converted into glucose and secreted back into the blood. Two cell types 
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residing in pancreatic islets of Langerhans, pancreatic βcells and αcells specialize in 

monitoring blood glucose levels. Specifically, increased glucose levels trigger secretion of 

the hormone insulin by pancreatic β cells. Insulin signals to the liver and muscles to take 

up glucose from the blood. Conversely, decreased glucose levels trigger secretion of 

glucagon by pancreatic α cells. Glucagon signals to the liver and muscle not to take up but 

rather generate more glucose from stored glycogen.  

 

1.2.2. Diabetes mellitus 

Diabetes mellitus is a condition characterized by hyperglycemia, which is in turn 

caused by either insufficient production or resistance to insulin. Type I diabetes (T1DM) is 

an early onset autoimmune disease affecting 0.4% of the population30. It results from the 

autoimmune destruction of pancreatic β cells, which are responsible for glucose-dependent 

insulin secretion 31. Type II diabetes is characterized by insulin resistance and insufficient 

insulin production from the pancreatic βcells. It affects a very large and growing 

population worldwide 30. In later stages of disease progression, type II diabetics cannot 

control blood glucose levels and depend on insulin injections. Patients with diabetes 

experience glucose deregulation and are at risk for complications such as infections, 

retinopathy, nephropathy, peripheral neuropathy, and macrovascular disease 32. 

Constant glucose monitoring and insulin replacement therapy can successfully treat 

most forms of diabetes, however, long-term complications are still common. Moreover, a 
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subset of patients, despite careful medical treatment, suffer from potentially life-threatening 

episodes of hypoglycemia and/or ketoacidosis 33. 

 

1.2.3. Cell replacement therapy for diabetes 

Increasing functional β cell mass is a commonly accepted strategy for curing 

diabetes. The Edmonton Protocol described the first effective cell replacement therapy for 

T1DM 34. Cadaveric donor islets were isolated and infused into the liver of diabetic 

patients via the portal vein, coupled with immunosuppression. Several patients achieved 

normal glucose tolerance 35. Recent data suggest that independence from exogenous 

insulin injection can be achieved for more than five years in half of islet recipients 36. The 

remaining patients, although not free from insulin replacement therapy, are protected 

against severe hypoglycemic episodes and diabetes-related complications 36. The Edmonton 

protocol presents great potential as a treatment and cure for diabetes. 

The potential of cell based therapy is greatly limited by the scarce supply of organs 

from cadaveric donors 37. For islet and β cell transplantation to become a widespread cure 

for T1DM, novel sources of pancreatic β cell must be considered. Additionally, as islets are 

currently derived from cadavers, host-graft immune rejection is a significant limitation to 

transplantation therapy 34. hPSCs differentiated to pancreatic β cells could provide a 

renewable source of β cell for transplantation therapy. Moreover, patient-specific iPSCs 

could generate autologous functional islets for disease modeling or rejection-free 

transplantation. 
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1.3.  Directed differentiation of hPSCs toward pancreatic β cells 

Initial studies aimed at producing β cells from hESCs relied on spontaneous 

embryoid body (EB) differentiation and generated very small numbers of insulin-expressing 

cells38. Subsequent studies attempted to increase the efficiency of insulin-expressing cells 

using a single step induction process from embryonic stem cells. One method reported the 

generation of 10-30% insulin-positive cells using a modified neuro-ectoderm induction 

protocol39. However, careful investigation demonstrated that insulin staining resulted from 

insulin uptake from the media by apoptotic cells and not insulin production40. Failure of 

these methods to efficiently produce insulin-expressing cells fueled the creation of directed 

differentiation protocols that recapitulated normal, stepwise development. To generate 

human β cells from hESCs, we therefore must understand the molecular mechanisms that 

guide normal pancreatic development (Figure 1-1). 

 

1.3.1. Murine Pancreatic development informs directed differentiation 

The first stage of β cell development is the TGFβ mediated specification of the 

definitive endoderm during gastrulation 41. Definitive endoderm is marked by co-

expression of SOX17 and FOXA2 transcription factors. In mice, the pancreas is 

subsequently specified around E8.5 in a region of the foregut endoderm. This region is 

marked by expression of the pancreatic and duodenal homeobox 1 (PDX1) and pancreas 
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specific transcription factor 1a (PTF1a), and is referred to as the pancreatic bud 42,43. 

Genetic lineage tracing demonstrated that Pdx1+ cells give rise to all cell lineages of the 

pancreas43,44. The pancreatic bud subsequently thickens and evaginates into the 

surrounding mesenchyme (E9-11.5) 45. The first endocrine progenitors marked by 

neurogenin 3 (NGN3), a bHLH transcription factor, are detectable in the pancreatic 

epithelium at E9. Their number reaches a maximum around E15.5 and declines towards 

birth 46,47. Neurogenin 3-expressing (NGN3+) cells differentiate into five different types of 

endocrine cells: α cells secreting glucagon (GCG), β cells secreting insulin (INS), δ cells 

producing somatostatin (SST), PP cells secreting pancreatic polypeptide (PP) and ε cells 

producing ghrelin (GHRL)43. Endocrine cells migrate into the mesenchyme and aggregate 

into islets of Langerhans. NGN3 is required for the formation of all pancreatic endocrine 

cells46,48. 

Several signaling pathways are critical for pancreatic development: a) TGFβ 

signaling (activin and nodal family) is required for early endoderm formation 49, b) retinoic 

acid (RA) is a mediator of anteroposterior patterning and required for specification of the 

dorsal pancreas 50, c) manipulation of Fgf4 levels influences the size of the pre-pancreatic 

domain 51, d) Notch signaling is believed to delay the differentiation into the endocrine 

lineage until E13.5 when the Ngn3+ endocrine progenitors preferentially differentiate into 

β cells (secondary transition) 52 and e) mesenchymal secretion of Fgf10 promotes the 

proliferation of Pdx1 progenitors, induces exocrine differentiation, and maintains Notch 

signaling.  
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In contrast to early pancreatic development, little is understood about the signals 

that induce Ngn3+ progenitors and specify them into five different endocrine lineages53-55. 

Even less understood is the process by which embryonic insulin-producing cells mature 

into functional β cells. Understanding the mechanisms responsible for the generation and 

maturation of β cells is critical for the successful differentiation of hPSCs towards human β 

cells. 

 

Figure 1-1. Pancreatic development and directed differentiation 

TOP: Schematic representation of mouse development with key genes marking different 
stages. BOTTOM: Schematic representation of hPSC- directed differentiation. Each ball 
indicates one differentiation stage approximately matched to mouse development. 
Embryonic stem cells (ES), definitive endoderm (DE), pancreatic progenitors (PP), 
endocrine progenitors (EP), endocrine cells (EN) and β cells (β). Key marker genes are 
indicated above each stage. 

Images adopted from56-58 

 

1.3.2. hPSC-derived insulin-producing cells  
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The first development of a step-wise directed differentiation protocol to generate 

immature insulin-expressing cells from hPSCs generated tremendous hope for the 

generation of functional human β cells 59. Since, many groups have used modifications to 

this original protocol to generate similar insulin-producing cells 59-71. Although the hPSC-

derived insulin-expressing cells (hPSC-INS+) expressed insulin and several other β cell 

markers, they also frequently expressed multiple hormones (poly-hormonal), lacked the 

expression of certain mature β cell markers (NKX6-1, MAFA) and did not show glucose 

stimulated insulin secretion (GSIS). It has been therefore hypothesized that the hPSC-INS+ 

cells resemble immature human β cells 59. It is unclear whether hPSC-INS+ cells can further 

differentiate into mature β cells and functionally maintain glucose homeostasis. A recent 

study produced hPSC-INS+ cells that resembled mono-hormonal, glucose responsive 

human β cells following long-term passaging and subsequent differentiation of definitive 

endoderm cells 72. It is unclear whether the produced β-like cells have the ability to rescue 

diabetes following transplantation.  

 

1.3.3. hESC-derived pancreatic progenitors rescue diabetes in mice 

A landmark study by Novocell (now Viacyte) showed rescue of chemically induced 

diabetes in mice transplanted with hESC-derived pancreatic progenitors. Kroon et al. 

transplanted a mixed population of pancreatic progenitors under the kidney capsule or the 

fat pad of immunodeficient (SCID)-beige (Bg) mice 61. 110 days following transplant the 

grafts contained human β–like cells that were mono-hormonal and expressed several 
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mature β cell markers. The animals were treated with streptozotocin (STZ) to ablate their 

endogenous β cells. Animals engrafted with hESC-derived pancreatic progenitors 

maintained normal serum glucose levels and contained high concentrations of human c-

peptide (a byproduct of human insulin processing) in the serum. The study was the first 

pre-clinical proof-of-concept disease rescue suggesting that hESC-derived pancreatic 

progenitors can differentiate into functional β cells following in vivo transplantation. A 

different group using a modified directed differentiation protocol and a different hESC-

line confirmed these findings 63. Together, this data implies that hESC-derived pancreatic 

progenitors can differentiate into functional β cells and, importantly, that transplantation 

of hESC-derived pancreatic progenitors may be a feasible diabetes therapy. 

 

1.4.  Key challenges of directed differentiation 

As we discussed, transplantation of human islets from cadaveric donors into T1DM 

patients can achieve insulin independence shortly after transplantation73,74. In one 

remarkable case a diabetic patient achieved normoglycemia one day following islet 

transplantation75. Hence, the goal of hPSC directed differentiation is to generate human β 

cells, or β-like cells, that can approach the therapeutic efficacy of human islets. Several 

unanswered questions and challenges remain. 1) Can the immature and non-functional 

hPSC-INS+ cells further differentiate into mature β cells following transplantation? 2) How 

can we generate more hESC-INS+ cells? Higher efficiencies will be necessary to achieve 

better efficacy following transplantation into patients. 3) How can we generate mature and 
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functional hPSC-INS+ cells in vitro? 4) How similar are the in vitro hESC-INS+ cells to 

human fetal or adult β cells? These challenges are described in detail below (Figure 1-2). 

 

 

 

Figure 1-2. Challenges in directed differentiation to functional β cells 

Schematic of hPSC directed differentiation towards pancreatic β cells. Each colored ball 
represents a distinct differentiation stage. Numbers 1-4 indicate specific challenges which 
are addressed in this dissertation. 1) Can the immature hPSC-INS+ cells further 
differentiate into mature β cells following transplantation? 2) How to generate more hESC-
INS+ cells? 3) How to generate mature and functional hPSC-INS+ cells in vitro? 4) How 
similar are the in vitro hESC-INS+ cells to human fetal or adult β cells? 

Fetal image adopted from76 
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1.4.1. Competence of in vitro hPSC-INS+ cells to generate functional β cells 

Lineage tracing experiments in mice suggest that Neurogenin3-expressing endocrine 

progenitors present during E8.5 and E12.5 give rise to adult β cells 43. Additionally, lineage 

tracing suggests that insulin-expressing cells and not glucagon-expressing cells give rise to 

adult β cells 77. Taken together, these findings indicate that early embryonic insulin-

expressing cells differentiate into mature adult β cells. 

Mouse and human adult islets contain endocrine cells expressing only one 

hormone. Early stages of mouse pancreatic development indicate the presence of a small 

number of poly-hormonal cells which do not appear to differentiate into single-hormonal 

adult endocrine cells77. Human fetal pancreas, unlike mouse embryonic pancreas contains 

a large number of poly-hormonal cells, up to 30% of all endocrine cells during gestational 

week 9-16 78. Whether human fetal poly-hormonal cells contribute directly to adult lineages 

and whether fetal insulin-expressing cells differentiate into adult β cells remains unknown. 

Insulin-expressing cells derived from hPSCs contain both single-hormonal and poly-

hormonal cells. Recently, transplantation of purified hESC-INS+ cells using a genetically 

modified insulin:GFP hESC-reporter line gave rise to grafts containing only α cells and not 

β cells 64. Two additional studies have transplanted enriched hESC-derived endocrine cells 

and reported the formation of α cell enriched grafts 62,79. Together, these observations lead 

to a conclusion that hESC-INS+ cells are human α cell precursors. Consistent with mouse 

pancreatic development these cells may represent the first wave of endocrine induction, 

whose developmental competence is restricted to α cells80.  
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 These experiments suggest that in vitro generation of endocrine cells is not 

beneficial for the ultimate goal of creating functional human β cells capable of rescuing 

diabetes. Instead, it has been proposed that only the undifferentiated pancreatic 

progenitors are competent to differentiate into mature β cells.  

Formally, we cannot exclude the possibility that purified endocrine and INS+ cells 

require the presence of surrounding cell types to differentiate into β cells following in vivo 

transplantation. This hypothesis is supported by evidence from two studies showing that 

the presence of hESC-derived endocrine cells at the time of transplantation significantly 

increases circulating human c-peptide levels 11, 12 and 16 weeks following transplant 62,63. 

Graft analysis at week 17 suggests that the large majority of insulin-expressing cells is single-

hormonal and expressing all the molecular markers of mature β cells63. It can be therefore 

concluded that hESC-derived endocrine cells present at transplantation contribute 

beneficially to the formation of mature β cells following transplantation. Lineage tracing 

experiments of insulin-expressing cell or endocrine cells transplanted together with 

pancreatic progenitors are required to determine whether these can directly contribute to 

mature β cells. Alternatively, the presence of endocrine cells may facilitate the 

differentiation of pancreatic progenitors into β cells. 

Independent of the mechanism, generating hESC-derived endocrine cells with 

higher efficiency appears to be beneficial for in vivo β cell maturation.  

 

1.4.2. Efficiency of production of hPSC-INS+ cells 
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Directed differentiation protocols generate insulin+ cells in a stepwise manner. The 

efficiency of differentiation at each step/stage is measured by the percentage of cells at that 

stage expressing defined molecular markers. Developmental signals during early stages of 

pancreatic endoderm development have been well described in model organisms. Directed 

differentiation protocols apply these signals in a step-wise manner to achieve high 

efficiencies of differentiation. For example, pancreatic progenitors, marked by expression 

of PDX1 can be generated with efficiencies >90% 63. Subsequent differentiation into 

endocrine progenitors and endocrine cells has not been extensively studied. It is therefore 

not surprising that the efficiency of generating insulin-expressing cells from pancreatic 

progenitors is relatively low, with the best differentiations approaching 25-30% of insulin+ 

cells 60,68,71. Importantly, these higher efficiencies achieved by protocol optimization using a 

particular hPSC-line often cannot be replicated using a different hPSC-line60. Most hESC-

lines routinely produce less than 1-10% of insulin-expressing cells.  

High content chemical screening has been successful at identifying novel molecules 

and pathways that enhance the efficiency of directed differentiation protocols 65,66. In the 

absence of information from model organisms, unbiased screening approaches are best 

suited to identify novel pathways implicated in pancreatic endocrine induction. 

 

1.4.3. Maturation of hPSC-INS+ cells into functional β cells 

The goal of directed differentiation of hPSCs towards β cells is to create functional, 

mature β cells. However, functionality and therefore maturation may be defined in many 
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different ways. A major goal of developing new sources of human β cells is cell replacement 

therapy. We therefore propose the following operational definition for mature β cells: 

mature β cells can autonomously maintain normal serum glucose levels in an organism 

with a similar efficacy to adult β cells. In a standard assay, transplantation of 3,000 to 5,000 

human islet equivalents (IEQ) containing approximately 0.5-1 million human β cells 

normalizes serum glucose levels in diabetic mice shortly following transplantation61,63. 

hESC-INS+ cells, on the other hand, lack expression of several mature β cell markers, do 

not exhibit glucose stimulated insulin secretion and cannot maintain normal glucose levels 

immediately following transplantation into diabetic mice.  

Instead, hPSC-derived pancreatic progenitors, endocrine progenitors and endocrine 

cells transplanted under the kidney capsule of diabetic mice differentiate into mature β 

cells and maintain normoglycemia after approximately 3-4 months 63. Following in vivo 

maturation, INS+ cells express markers of adult human β cells and secrete high levels of 

insulin in response to glucose. As previously discussed, it is unclear whether hESC-INS+ 

cells present at the time of transplant differentiate into functional β cells in vivo or whether 

all the functional β cells arise from undifferentiated pancreatic progenitors. The same 

uncertainty applies to the lineage relationship between human fetal and adult β cells. 

hPSC directed differentiation has greatly benefited from studies of pancreatic 

development in model organisms. In mouse, early embryonic β cells differentiate into adult 

β cells43,55. However, little is known about the molecular and functional changes during 

mouse β cell maturation. Certain molecular markers, such as MAFB, MAFA and PAX4 
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have been implicated at different stages during maturation 81,82. Analysis of insulin-

expressing cells at different stages of mouse development could better our understanding of 

mouse β cell maturation.  

However, it still remains uncertain whether human and mouse β cell maturation 

share molecular and functional similarities. Using current methods it is not possible to 

purify human fetal or adult β cells for comprehensive expression profiling. Moreover, it 

remains unclear whether understanding human and mouse in vivo development will 

inform the process of β cell maturation from hESC culture. Although hESC-derived 

progenitors have the developmental potential to create mature β cells, the process of 

maturation may be distinct from normal mouse or human development. In the absence of 

tools to purify hESC-INS+ cells, it is not possible to molecularly compare them to 

developing mouse or human β cells. This issue is further discussed below in the context of 

a question: Does directed differentiation recapitulate human development? 

To achieve the goal of generating mature β cells from hPSCs, multiple parallel 

approaches may be required: 1) The study of mouse β cell maturation; 2) molecular and 

functional characterization of human fetal and adult β cells; 3) characterization of hPSC-

INS+ cells and 4) characterization of changes during in vivo maturation of hPSC-derived 

pancreatic progenitors transplanted into immuno-compromised mice. 
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1.4.4. Comparison between directed differentiation and human development 

A defining feature of embryonic stem cells is their ability to differentiate into all 

cell types of the organism. As a proof of concept mouse ES cells and iPS cells can generate 

an entire organisms when injected into tetraploid blastocysts24. hESCs for ethical reasons 

cannot be subjected to the same test. Instead, hESCs generate teratomas and can be 

differentiated in vitro into cell types of all three germ layers 12. However, in vitro 

differentiation of hESCs has met several challenges questioning the statement that in vitro 

differentiation recapitulates in vivo development. 

The first challenge concerns variation between hPSCs. Despite the common 

understanding that human development proceeds consistently in all individuals, there are 

remarkable variations between hESC-lines regarding their propensity to differentiate into 

different tissues83. These variations may be explained by random epigenetic differences 

resulting in differential gene expression, differences in the rate of replication and DNA 

methylation patterns60,83. Additionally, long-term in vitro culture may result in the 

accumulation of genetic mutations, translocations and chromosomal abnormalities, which 

may affect the propensity of differentiation 84. As a result of these differences, researchers 

frequently develop and optimize directed differentiation protocols using only one hESC-

line.  

hiPSCs add an additional layer of variation. They retain epigenetic memory of their 

previous mature cells state, undergo slow erosion of X-chromosome inactivation and often 

contain partially silenced genetic viral integrations 85-89.  
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A fundamental question, underpinning all directed differentiation efforts remains 

unanswered: Despite aforementioned differences, can different hESC-lines and hiPSC-lines 

produce the same cells types? For example, how similar are hPSC-INS+ cells from different 

hESC-lines and hiPSC-lines. Large differences between cells of the same cell type derived 

using different hPSC-lines would question the reproducibility, utility and biological 

relevance of in vitro directed differentiation. 

A second issue concerns the realization that hPSC directed differentiation has not 

produced functional adult-like β cells in vitro. Instead, hPSC-INS+ cells appear to share 

characteristics, such as poly-hormone expression, with fetal β cells59. However, the inability 

to sort and transcriptionally analyze hPSC-INS+ cells and human fetal and adult β cells 

limits the comparison between these cell types to a few markers. It is therefore unknown 

whether hPSC-INS+ cells resemble human fetal β cells or are instead a culture artifact 

dissimilar to any cell during human development. 

Beyond pancreatic β cells, it is critical for the field of hESC directed differentiation 

to evaluate whether in vitro hPSC differentiation has the potential to recapitulate in vivo 

development. In the absence of cell surface markers and genetic reporter lines to isolate 

specific cell types, it has not been possible to evaluate the degree to which these in vitro 

derived cells resemble their in vivo counterparts.  
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1.5.  Topics addressed in this dissertation 

First, using a high-content chemical screen our work discovers small molecules 

modulating novel pathways involved in pancreatic endocrine induction and proposes a 

dynamic role for PKC signaling in pancreatic development. We improve the differentiation 

efficiency of hPSC-INS+ cells and improve human c-peptide secretion following in vivo 

differentiation into mature β cells. Additionally this work directly challenges the common 

view that hESC-INS+ cells cannot differentiate in vivo into mature β cells. 

Second, we present a study of early postnatal mouse β cell maturation that 

identifies UCN3 as a marker of mouse and human mature β cells. UCN3 is a potential 

marker for maturation of hESC-INS+ cells as it is expressed in in vivo matured hESC-

derived β cells but not in in vitro derived hESC-INS+ cells. 

Third, we develop a method to transcriptionally analyze cells following fixation, 

intracellular immunofluorescent staining and FACS. Using this method, we determine a 

high degree of similarity in global gene expression of sorted INS+ cells from two different 

hESC-lines and one hiPSC-line. This suggests that despite differences between hPSC-lines, 

in vitro differentiation reliably generates the same cell types. Next, we obtain the first gene 

expression profile of sorted human fetal and adult β cells. Comparison of human and 

mouse maturation suggests significant differences between species and points to challenges 

involved in studying human development and disease through animal models. Finally, 

transcriptome analysis identifies that hPSC-INS+ closely resemble human fetal not adult β 
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cells suggesting broad similarities between directed differentiation and human 

development.  

Work is currently underway using gene expression patterns identified in this study 

to inform the hPSC differentiation into mature human β cells.  
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2.1.  Abstract 

Directed differentiation of human embryonic stem cells (hESCs) has the potential 

to produce human cell types that can be used for disease modeling and cell 

transplantation. A key step in the differentiation from hESCs to glucose-responding β cells 

is the specification from pancreatic progenitors to endocrine cells. Two independent high-

content chemical screens identified PKC inhibitors as inducers of endocrine cells from 

pancreatic progenitors. PKC inhibition at the stage of endocrine differentiation generated 

up to ten-fold more insulin expressing endocrine cells. Conversely PKC agonists blocked 

differentiation to pancreatic endocrine cells. PKC agonists were previously shown to 

increase differentiation into pancreatic progenitors, a developmental step immediately 

preceding endocrine differentiation. Together these results suggest a dynamic role of PKC 

at different stages during pancreatic in vitro differentiation. Transplantation of PKCβ 

inhibitor-treated pancreatic progenitors, containing higher proportions of endocrine 

progenitors and endocrine cells, results in mature β cells that show glucose-stimulated 

human c-peptide production in vivo.  
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2.2.  Introduction 

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) 

represent a potentially unlimited starting material for the generation of functional 

pancreatic β cells. Essential in this pursuit is an efficient method for the differentiation of 

hESCs/iPSCs down the pancreatic lineage to produce endocrine cells. By mimicking 

known signals used during embryonic pancreatic development in vivo, efficient stepwise 

protocols have been developed to differentiate hESCs first into definitive endoderm and 

then into pancreatic progenitors (Figure 2-1a)1-11. However, the signals needed to produce 

endocrine progenitors from pancreatic progenitors, as well as insulin-expressing β cells 

from the endocrine progenitors, remain poorly defined.  

Lineage tracing studies in mice have shown that production of hormone-expressing 

endocrine cells from pancreatic progenitors (marked by expression of Pancreatic and 

Duodenal Homeobox 1, PDX1) requires an intermediate stage, termed endocrine 

progenitor, in which cells express the key transcription factor Neurogenin 3 (NGN3)12. 

Following transient NGN3 expression, committed pancreatic endocrine progenitors give 

rise to pancreatic endocrine cells. Five types of pancreatic endocrine cells exist: α cells 

secrete the hormone glucagon, β cells secrete insulin, δ cells produce somatostatin, PP cells 

secrete pancreatic polypeptide and ε cells produce ghrelin. Although in adult pancreata the 

expression of each hormone is restricted to only one endocrine cell type, polyhormone 

expressing cells are frequently present during human fetal development13,14. hESC directed 

differentiation protocols produce both monohormonal and polyhormonal cells. 
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Several reports have shown that in vitro hESC-derived INS+ cells do not exhibit 

functional glucose stimulated insulin secretion and lack expression of several mature β cell 

markers. In other words, these INS+ cells are not functionally mature β cells.  Moreover, 

transplantation of purified or enriched hESC-derived INS+ cells generates primarily 

functional α cells, not β cells11,15. As a result of these observations, it has been proposed 

that generating immature hESC-derived INS+ cells will not be beneficial for the ultimate 

goal of creating functional human β cells. However, the interpretation of purified 

endocrine or INS+ cell transplantation experiments is confounded by the fact that in vitro 

derived INS+ cells may require other surrounding cell types to successfully mature in vivo. It 

is therefore conceivable that hESC-derived INS+ cells mature in vivo following 

transplantation and contribute beneficially to human c-peptide secretion in the mature 

graft. In the absence of genetic reporters it is however not possible to formally test this 

hypothesis. Therefore we hypothesized that increasing the percentage of hESC-derived 

endocrine progenitors and endocrine cells before transplantation will have a beneficial, not 

detrimental, effect on in vivo maturation to functional β cells.  

Several recent studies demonstrate that blocking TGFβ signaling and BMP 

signaling improves the differentiation of pancreatic progenitors into endocrine cells 1,16,17. 

However, the overall efficiency of creating insulin-producing cells remains very low. 

Moreover, protocols and hESC-lines vary dramatically in efficiencies with which INS+ cells 

are produced. Thus, additional work needs to be done to dissect the signaling pathways 
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controlling the differentiation of pancreatic progenitors to endocrine cells.  Based on our 

previous success using chemical screening to identify small molecules that direct hESC 

differentiation toward definitive endoderm18 and pancreatic progenitors19, we utilized the 

same approach to identify small molecules that could facilitate differentiation of pancreatic 

progenitors towards endocrine cells.  

We designed two complementary screens to identify compounds that could 

promote endocrine differentiation.  In the first instance, we screened for compounds that 

could increase the percentage and the total number of NGN3+ endocrine progenitors 

produced from PDX1+ hESC-derived pancreatic progenitors (Figure 2-1b).  Since NGN3 

expression is transient during embryonic development, it was not clear that a screen set up 

to detect this necessary intermediate and transient stage (NGN3 expression) could be 

successful.  Therefore we concurrently performed a screen for compounds that could 

promote the appearance of insulin-expressing (INS+) endocrine cells from PDX1+ 

progenitors after prolonged culture.  These two independent screens differed in the choice 

of hESC lines, directed differentiation protocols, chemical libraries and primary screening 

assays. In outcome it was gratifying that both screens identified PKC antagonists as 

inducers of the endocrine pancreatic lineage. Together with our previous work implicating 

PKC agonists in the induction of pancreatic progenitors, we suggest a dynamic role for 

PKC during pancreatic development and propose improvements to current directed 

differentiation protocols that result in the production of up to ten-fold more endocrine 
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cells, and significantly higher levels of human c-peptide production, following in vivo 

maturation. 

 

 

 

 

 

 

 

Figure 2-1. High-content screens to increase the number of NGN3-expressing and insulin-
expressing cells.  

(a) Stepwise differentiation from hESCs to pancreatic endocrine cells. DE, definitive 
endoderm; PP, pancreatic progenitor; EP, endocrine progenitor; EN, endocrine cells. 
Scheme of high-content screen beginning with a population of cells that have differentiated 
into pancreatic progenitors. (b,f) Scheme of high-content screen, which begins with a 
population of cells that have differentiated into pancreatic progenitors (c,g) Chemical 
structures of PKCβi hit and Bisindolylmaleimide I compound. (d,h) Efficacy curve of the 
hit compounds. Bisindolylmaleimide I treatment at 6.75 µM and 27µM caused 
considerable auto-fluorescence and toxicity. Those data points were omitted from the 
graph. (e) PKCβi effect on HUES 8-pancreaticprogenitor population. After 14 d of 
differentiation, the HUES 8-pancreatic progenitor populations were treated with 10 µM 
PKCβi for four days and then stained with NGN 3 antibody (green). NGN3, neurogenin 3. 
Scale bar is 100 µm. (i) BisI effect on H1-pancreatic progenitor population. Representative 
images after 6 days of chemical treatment, insulin staining. Percentage of insulin-positive 
cells with s.d. (j) Effect of PKCβi on H1-derived pancreatic progenitor populations. After 14 
d of differentiation, the H1-derived pancreatic progenitor populations were treated with 10 
µM PKCβi for 6 days and then stained with NGN3 antibody. The percentage of NGN3+

 

cells was analyzed with the Cellomics high content screening system . (k) HUES8 pancreatic 
progenitors were treated with DMSO or BisI for 6 days in the presence of Noggin and Alk5 
inhibitors. Insulin cell number with was counted over the same area in different wells. 
Error bars indicate s.d. n=4.  
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Figure 2-1 Continued 
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2.3.  Results 

2.3.1. Screen to induce NGN3+ cells 

For the first screen, to detect compounds that promote appearance of NGN3+ 

endocrine progenitors, we differentiated HUES8 hESCs using a modified version of 

previously published protocols19 (see Methods, Protocol 1) to produce a population 

containing 71.2±6.5% PDX1+ pancreatic progenitors. Compounds from a library 

containing 2000 chemicals, including signaling pathway regulators, kinase inhibitors, 

natural products, and FDA approved drugs (detailed library information is described in the 

Methods) were individually tested at 10 µM and 1 µM final concentrations, corresponding 

to 0.1% and 0.01% DMSO respectively. After six days culture, cells were stained with an 

antibody against NGN3 and analyzed with a Cellomics imaging reader. In DMSO control 

conditions, 6.8±1.1% cells stained positively for NGN3. Two primary hits increased the 

number of NGN3 expressing cells more than three-fold (Figure 2-2). Among these, PKCβ 

inhibitor (PKCβi) was selected for follow up studies due to the high efficacy and low 

toxicity (Figure 2-1c). PKCβi treatment increased the total number of NGN3+ cells in a 

dose dependent manner (EC50= 7.8 µM, Figure 2-1d), increasing the percentage of NGN3+ 

cells to a maximum of 40.3±7.9%, nearly 7-fold higher than DMSO-treated controls 
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(Figure 2-1e). Quantitative RT-PCR analysis confirmed that the PKCβi-treated cells showed 

higher expression of NGN3 mRNA compared to DMSO controls (Figure 2-3). 

 

 

 

 

 

 

Figure 2-2. Screen1: Data analysis of the primary screen. 

(a) Data of primary screen. Each line represents one compound at one concentration. 2,000 
compounds were tested at two concentrations: 10 µM and 1 µM. The x-axis is the 2,000 
compounds with two concentrations of each. The y-axis is the number of cells positively 
stained by the NGN3 antibody. Primary hits (above the red line) were designated as 
compounds that induced NGN3 in more than 6300 NGN3+ cells/well, which is 3 times 
higher than the average. Subsequent tests confirmed six compounds that increase both the 
number and percentage of NGN3+ cells. The compounds were labeled with different colors. 
The other dots above the red line are the compounds that only increase the percentage not 
the number of NGN3+ cells because of compound toxicity. (b) Chemical Structures of other 
hit compounds. 
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Figure 2-3. qRT-PCR analysis of the expression of NGN3 in the chemically- treated 
populations. 

mRNA of HUES 8-derived pancreatic progenitor cells treated with DMSO was used as a 
control to normalize data. 

 

2.3.2. Screen to induce INS+ cells 

In parallel, we carried out a second screen to increase the total number of insulin-

expressing cells produced from pancreatic progenitors (Figure 2-1f). In order to discover 

novel pathways to increase the total number of insulin producing cells, both control and 

experimental conditions were treated with compounds that had been previously shown to 

facilitate the induction of the endocrine lineage, namely Noggin (a BMP inhibitor) and 

Alk5 inhibitor (a TGFβ inhibitor)1,17.  The hESC line H1 was differentiated (see Methods 

Protocol 2) to stage 3 day 4 (S3D4) to produce a population containing approximately 80% 

PDX1+ pancreatic progenitors, at which time a collection of 418 kinase inhibitors, 

signaling pathway regulators, and natural products were individually tested at 10 µM final 

concentrations, corresponding to 0.1% DMSO. After 6 days of compound treatment, cells 
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were fixed, stained using an insulin antibody, and analyzed with an imaging reader. This 

screen identified 6 compounds that increase the number of insulin expressing cells >3-fold 

over the DMSO controls (Figure 2-4).  Notably, in light of the results of our first screen, 4 

of the 6 hit compounds were classified as PKC inhibitors.   

 

Figure 2-4. Screen 2: Data analysis of the primary screen. 

(a) Data of primary screen. Each line represents one compound at 10 µM. 418 compounds 
and 366 DMSO controls were tested. The y-axis is the number of cells per surface area 
positively stained by the INS antibody. Primary hits (above the red line, numbered) were 
designated as compounds that induced INS in more than 148 INS+ cells/defined area, 
which is 3 times higher than the average. (b) Chemical structures of hit compounds 
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Since 3 hit compounds were in the bisindolylmaleimide family, we selected 

Bisindolylmaleimide I (BisI) for subsequent studies (Figure 2-1g)  BisI increased the total 

number of insulin-expressing cells in a dose dependent manner although significant auto-

fluorescence and toxicity hampered dose-curve measurements at 6.75 µM and 27 µM. 

(Figure 2-1h). A lower dose of 1 µM BisI induced up to 2.7±0.8% insulin-expressing cells, 

compared with 0.9±0.1% for DMSO-treated controls (Figure 2-1i).  Consistent with this 

finding, in a separate experiment, BisI treatment moderately increased mRNA expression 

of multiple hormones expressed downstream of NGN3, including insulin (2.6±0.5-fold), 

glucagon (2.2±0.4-fold), and somatostatin (1.25±0.1 fold) after a three day treatment 

(Figure 2-5).   

 

 

Figure 2-5. BisI induces expression of multiple endocrine markers 

H1-derived pancreatic progenitors were treated for 3 days with DMSO or 3 µM BisI. qRT-
PCR for INS, GCG and SST performed and shown as fold change over DMSO control. 
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2.3.3. Robust endocrine induction using independent hESC lines 

To confirm that the effects of individual PKC inhibitors were not cell line specific, 

we tested them on the differentiation of both HUES8 and H1 cell lines. H1 pancreatic 

progenitors treated with PKCβi had a higher percentage of NGN3-expressing cells (34±8%) 

than DMSO treated controls (5.7±1%) (Figure 2-1j). Similarly, BisI increased the numbers 

of insulin-expressing cells in HUES8 up to 7.5-fold in the presence of Noggin and Alk5 

inhibitor (Figure 2-1k).  Thus, our parallel screening approaches identified a broad utility 

for PKC inhibition in the induction of the endocrine pancreatic lineage from hESC-

derived pancreatic progenitors. 

 

2.3.4. Characterization of BisI induced insulin-expressing cells 

Previous work showed that insulin-producing cells generated by in vitro 

differentiation of hESCs are not fully functional β cells 1,3,19. We therefore sought to 

determine whether insulin-expressing cells produced through the inhibition of PKC more 

closely resembled adult β cells.  We observed that insulin-expressing cells differentiated in 

the presence of BisI displayed many features common to other insulin-expressing cells 

produced using in vitro differentiation1,3,4,15,17,20,21, in that they are often polyhormonal, and 

lack expression of mature β cell markers Nkx6-1 and Ucn3 (Figure 2-6a). We therefore 

conclude that the insulin-expressing cells produced in vitro following PKC inhibition 
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resemble those which have been previously reported and are not true β cells. Consistent 

with literature, hESC-derived INS+ do not exhibit functional glucose-stimulated insulin 

secretion (data not shown). 

2.3.5. In vitro potential of PKCβi induced NGN3+ cells 

We next investigated the developmental potential of cell populations enriched for 

NGN3+ cells that were induced by PKCβ inhibition. Endocrine progenitors generated after 

a 6-day treatment with PKCβi were further differentiated in vitro for an additional 6 days in 

spontaneous differentiation medium (DMEM+B27 medium without additional chemical 

or growth factors). More c-peptide (a byproduct of insulin biosynthesis) -expressing cells 

were detected in the derivatives of PKCβi treated cells (12.5±5.8%) than the derivatives of 

control cells (DMSO-treated, 1.2±1.2%; Figure 2-6b).   

 

Figure 2-6. Characterization of cells derived by PKC inhibitor treatment 

(a) H1 hESC-derived pancreatic progenitors were treated for 3 days with 3μM BisI. Cells 
were stained with insulin, c-peptide, glucagon, UCN3, PDX1 and NKX6-1 antibodies. All 
insulin-expressing cells express c-peptide. Few insulin-expressing cells express NKX6-1 or 
UCN3, markers of mature human β cells. Many insulin-expressing cells co-express another 
endocrine marker – glucagon. Scale bars are 100 μm. (b) The PKCβi-treated populations 
can further differentiate into endocrine cells in vitro and in vivo. Scheme beginning with 
cells that have been treated with hit chemicals, a population containing many NGN3-
expressing cells. The HUES 8-derived pancreatic progenitor cells treated with DMSO were 
used as negative controls. Starting populations were cultured in DMEM+B27 medium for 
6 days and stained with c-peptide antibody. C-PEP: c-peptide. The PKCβi -treated 
population differentiates into glucose-responding cells after transplantation under the 
kidney capsule of SCID-Beige mice. The PKCβi -treated populations were collected and 
implanted into the left kidney of SCID-Beige mice. The DMSO-treated population was 
used as a negative control. 12 weeks later, the mouse sera collected at fasting condition and 
at 30 mins after glucose stimulation were analyzed using ELISA to measure human c-
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peptide expression. Error bars indicate s.d. Scale bars are 100 μm.  

Figure 2-6 Continued 

 

 

2.3.6. In vivo maturation of PKCβi treated pancreatic progenitors 

Next, the developmental competence of pancreatic progenitors was assessed using 

an in vivo transplantation assay18,19. Control or PKCβi-treated cells were transplanted under 
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the kidney capsule of SCID-beige mice.  Following a 12-week incubation period, the cells 

were assayed for insulin secretion by a glucose-stimulated c-peptide assay. Human c-peptide 

levels in the serum were significantly higher (8.71-fold, p<0.01, N=3) upon glucose 

injection than during fasting, indicating that PKCβi treated endocrine progenitor stage 

cells are capable of giving rise to mature β-like cells in vivo (Figure 2-6b). Moreover, glucose 

stimulated human c-peptide levels were significantly higher (6.82-fold, p<0.01, N=3) in 

animals implanted with PKCβi-treated than DMSO-treated pancreatic progenitors. The 

average human c-peptide levels in animals transplanted with PKCβi-treated cells 30 

minutes after glucose injection were 1892±392 pM (N=3, S.D.) 

 

2.3.7. PKC agonists block endocrine induction 

Since PKC antagonists induce endocrine progenitors, the converse treatment, 

namely PKC activation, should block endocrine induction. Indeed, PKC activation with 

phorbol 12,13-dibutyrate (PdBu) caused a dramatic (3.7-fold) decline in endocrine 

differentiation as measured by the number of insulin+ cells after a three-day treatment of 

H1-derived pancreatic progenitors (see Methods Protocol 2) (Figure 2-7a). To confirm this 

result a different PKC agonist, (2S,5S)-(E,E)-8-(5-(4-(trifluoromethyl)phenyl)-2,4-

pentadienoylamino)benzolactam (TPB) was shown by qRT-PCR to decrease the expression 

of endocrine hormones insulin and glucagon. The effect of TPB was reversed in the 

presence of BisI indicating that both TPB and BisI act specifically through PKC activation 

or inhibition (Figure 2-7b). Recently Rezania et al. using a different directed differentiation 
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protocol showed that strong PKC activation decreased NGN3 and NEUROD1 expression, 

consistent with these findings10. Several groups have reported that TGFβ inhibition is 

sufficient to increase the numbers of pancreatic endocrine cells1,16,17. We observed that 

PKC agonists were sufficient to block endocrine induction in the presence of TGFβ 

inhibitors, suggesting that PKC inactivation is required for endocrine induction by TGFβ 

inhibition (Figure 2-7c). 

 

 

 

 

 

 

 

Figure 2-7. PKC agonists block the formation of insulin-expressing cells. 

(a) hESC-derived pancreatic progenitors cells were treated with DMSO, 1 µM 
Bisindolylmaleimide I and 1 µM PDBu for 6 days. Wells were stained for insulin and cell 
number counted in representative portions of the well by the Cellomics high content 
screening system. Error bars represent s.d. Two-tailed T-test p<0.05 (b) Fold change of 
insulin (INS) and glucagon (GCG) transcripts by qRT-PCR of cells after 3 day treatment 
with 3 µM BisI, 5 µM TPB (PKC agonist) and BisI+ TPB. Endocrine induction is blocked 
by PKC agonist TPB and reversed by BisI. Data displayed as log2 of the fold change over 
DMSO. P<0.001. The decrease in INS and GCG expression due to TPB treatment is 
reversed by BisI. (c) Fold change of insulin (INS) and glucagon (GCG) transcripts by qRT-
PCR of cells after 3 day treatment with TPB, Alk5 inhibitor or a combination of both. 
PKC agonist TPB is sufficient to block the effect of Alk5 inhibitors on endocrine 
induction. Data displayed as log2 of the fold change over DMSO. P<0.001. (d) Summary of 
the model where PKC agonists induce the differentiation towards pancreatic progenitors 
while PKC antagonists induce the differentiation towards endocrine cells. 
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Figure 2-7. Continued 

 

 

2.4.  Discussion 

Current directed hESC differentiation protocols generate pancreatic progenitors, 

marked by expression of PDX1, with very high efficiency (70-99%). However, only a 

fraction of the pancreatic progenitors differentiate in vitro into endocrine cells. Recently, 

BMP and TGFβ pathway inhibitors were shown to significantly increase the differentiation 

of pancreatic progenitors into endocrine cells1,16,17. Using these inhibitors, up to 25% of 

insulin-expressing endocrine cells could be generated from pancreatic progenitors. 
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However, the efficiency of generating endocrine cells varied dramatically depending on the 

choice of cell line and directed differentiation protocol1,22.  

We hypothesized that additional pathways could play a role in the differentiation of 

pancreatic progenitors into endocrine cells. To uncover these pathways we carried out two 

chemical screens using different hESC-lines and directed differentiation protocols. To 

cover a broad chemical space, different small molecule libraries were used for each screen. 

Both screens identified PKC antagonists as inducers of endocrine differentiation. The first 

screen identified a specific PKCβ inhibitor that induced in a dose-dependent manner 

NGN3+ endocrine progenitors and subsequently INS+ cells. The second screen identified 6 

hit compounds that increased the number of INS+ cells over 3 fold. Strikingly, 4 of the 6 

compounds were PKC inhibitors. Since 3 PKC inhibitors were in the bisindolylmaleimide 

family, Bisindolylmaleimide I (BisI) was chose for subsequent studies. Significant variation 

in the differentiation of different hES-lines has been observed, with protocols frequently 

optimized for the differentiation of one specific cell line. We therefore tested and 

confirmed that PKCβi and BisI had a reproducible effect on two different hESC lines. 

To better understand the effect of BisI on pancreatic progenitors, we characterized 

the INS+ cells produced after BisI treatment. Treated INS+ cells lacked expression of mature 

β cells markers NKX6-1 and UCN3 and lacked mature function assessed by glucose 

stimulated insulin secretion (data not shown) suggesting that BisI increases the number of 

INS+ cells and does not affect their immature phenotype. PKCβi treatment increases the 

numbers of NGN3+ endocrine progenitors and subsequently INS+ cells suggesting 
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endocrine induction instead of replication as the mechanism behind the increase in INS+ 

cells from pancreatic progenitors. 

Since the loss of function for PKC using two distinct inhibitors lead to the in vitro 

increase in INS+ cells, we decided to test whether the converse, PKC activation, blocks 

endocrine induction. Indeed, evaluated by qRT-PCR and INS+ cell numbers, two distinct 

PKC agonists blocked endocrine induction. As expected based on their molecular targets, 

the combined application of the PKC inhibitor BisI and PKC agonist TPB increased 

endocrine markers suggesting that modulation of PKC activity is specifically responsible for 

both the induction and inhibition of differentiation into endocrine cells. Surprisingly, the 

effect of TGFβ receptor (Alk5) inhibitor, a broadly used inducer of the endocrine lineage, 

was abolished and reversed by the PKC agonist TPB suggesting that PKC inhibition may be 

necessary for endocrine induction by TGFβ inhibitors. 

Transplantation of pancreatic progenitors under the kidney capsule of immune 

compromised mice is a well-established assay for spontaneous in vivo differentiation and 

maturation of pancreatic progenitors. PKCβi-treated pancreatic progenitors transplanted 

into SCID-Bg mice secreted significantly higher levels of c-peptide 30 minutes after glucose 

injection as compared to fasting. This confirms successful in vivo maturation. Moreover, 

transplanted PKCβi-treated pancreatic progenitors had significantly higher c-peptide levels 

than transplanted DMSO-treated progenitors. This is likely due to a higher proportion of 

NGN3+ progenitors and INS+ cells at the time of transplant. This explanation is consisted 

with the observation that ALK5i-treated pancreatic progenitors give rise to higher human c-
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peptide serum levels 8, 12 and 16 weeks post-transplant 10. It is also possible, although less 

likely, that PKCβi treatment additionally affects the speed of maturation or the survival of 

the transplanted pancreatic progenitors. 12 weeks post-transplant of PKCβi-treated 

pancreatic progenitors, glucose stimulated human c-peptide levels were 1892±392 pM, 

significantly higher than our previously reported transplants using the same transplantation 

protocol and HUES8 cell line (human c-peptide levels <250pM) 19. Streptozotocin (STZ) 

treatment is a common methods to ablate mouse β cells and induce diabetes.  Three 

studies have to date shown rescue of STZ-treated mice with hESC-derived pancreatic 

progenitor grafts4,10,23. Compared to these studies, we report similarly high levels of human 

c-peptide 12wk post-transplant of PKCβi-treated and not DMSO-treated pancreatic 

progenitors.  

Our work suggests that PKC inhibitors increase the numbers of committed 

endocrine progenitors and immature INS+ cells before transplantation and result in 

increased amounts of c-peptide secretion from grafts following in vivo maturation. These 

findings would suggests that generating more INS+ cells in vitro is a beneficial approach to 

generate functional β cells grafts and achieve high levels of human c-peptide production. 

Lineage tracing experiments are required to determine whether the in vivo matured β cells 

arise directly from the NGN3+ or INS+ cells present at the time of transplantation. 

In sum, these experiments show the application of high-content chemical screening 

for investigating pathways capable of directing the differentiation of hESCs toward the 

pancreatic lineage.  We performed two high-content chemical screens and both identified 
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PKC antagonists that enhanced differentiation of hESC-derived pancreatic progenitors 

toward the endocrine lineage. Conversely, PKC agonists blocked differentiation towards 

insulin-producing cells even in the presence of TGFβ inhibitors. Previously we reported 

that (-)-Indolactam V, a PKC activator, promotes the generation of pancreatic progenitors19. 

Together with our current findings, we suggest that PKC plays a dynamic role in human 

pancreatic development: PKC signaling promotes the generation of pancreatic progenitors, 

while PKC inhibition in necessary for the subsequent differentiation towards pancreatic 

endocrine cells (Figure 2-7d). 

Unbiased chemical screens are a useful approach to identify pathways and reagents 

to control and improve hESC differentiation. Treatment with a specific PKCβ inhibitor 

increased the numbers of endocrine progenitors and upon transplantation generated grafts 

that produce high levels of human c-peptide, typically sufficient to maintain 

normoglycemia and rescue STZ induced diabetes. We anticipate the chemicals identified 

from these screens will help to establish a more efficient strategy to differentiate 

hESCs/iPSCs into functional β cells. Remaining challenges include finding small 

molecules that can further improve the generation of insulin-expressing cells, and 

importantly, generate functionally mature β cells in vitro.  
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2.5.  Materials and Methods 

2.5.1. hESC culture and differentiation. Protocol 1. 

HUES 8 and H1 cells are cultured on irradiated MEF feeder cells in KnockOut 

DMEM (Invitrogen) supplemented with 10% (v/v) KnockOut serum replacement 

(Invitrogen), 0.5% (v/v) human plasma fraction (Talecris Biotech), 2 mM L-glutamine 

(Invitrogen), 1.1 mM 2-mercaptoethanol (Invitrogen), 1 mM nonessential amino acids 

(Invitrogen), 1×penicillin/streptomycin (PS, Invitrogen) and 10 ng/ml bovine FGF 

(Invitrogen). Cells are passaged at the ratio of 1:6 every 5 d by using 0.05% trypsin 

(Invitrogen). To generate the HUES-pancreatic progenitor population, HUES cells were 

cultured on MEF feeder cells until they are 80–90% confluent, then treated with 25 ng/ml 

Wnt3a (R&D systems) + 100 ng/ml activin A (R&D systems) in RPMI (Invitrogen) 

supplemented with 1×L-glutamine and 1×PS for 1 d, and then 100 ng/ml activin A in 

RPMI supplemented with 1×L-glutamine, 1×PS and 0.2% (v/v) fetal bovine serum (FBS, 

Invitrogen) (Figure 2-8a). The medium was changed 2 d later to 50 ng/ml/ FGF7 (R&D 

systems) in RPMI supplemented with 1×L-glutamine, 1×PS and 2% (v/v) FBS, and 

maintained for an additional 2 d. Cells were then transferred to 100 ng/ml Noggin (R&D 

systems) + 0.25 µM SANT-1 (Sigma) + 2 µM retinoic acid (Sigma) in DMEM supplemented 

with 1×L-glutamine, 1×PS and 1×B27 (Invitrogen) and cultured for an 4 d, followed by 

treatment with 100 ng/ml Noggin (R&D systems) + 1 µM ALK5 inhibitor (Enzo) + 100 

nM PDBu (Sigma) in DMEM supplemented with 1×L-glutamine, 1×PS and 1×B27 

(Invitrogen) and cultured for an additional 4 d. All HUES-pancreatic progenitor cells were 
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derived using the same protocol as described above. The percentage and number of PDX1+ 

cells and NGN3+cells were analyzed with the Cellomics high content screening system 

(Thermo Scientific). PKCβi was purchased from Calbiochem. 

 

 

Figure 2-8. Schematic of directed differentiation protocols 

Stepwise differentiation from hESCs to pancreatic endocrine cells. DE, definitive 
endoderm; PP, pancreatic progenitor; EP, endocrine progenitor; EN, endocrine cells. Table 
contains reagents used during each stage of directed differentiation. 
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2.5.2. High-content screen 1 

The quality of all compounds was assured by the vender as greater than 90% pure. 

The library includes compounds from Sigma LOPAC 

(http://www.sigmaaldrich.com/chemistry/drug-discovery/validation-libraries/ 

lopac1280-navigator.html/), and activators and inhibitors of signaling pathways. 

Data were normalized as fold change compared with DMSO control. Hit compounds were 

defined as those higher than threefold compared to the DMSO control. Individual samples 

of hit compounds were picked from the original library and confirmed with the same 

method as in the primary screen for three times. Three compounds were confirmed for 

further assay. 

 

2.5.3. Screen 1: Generation of efficacy curve. 

The HUES 8- pancreatic progenitor population was generated and plated onto 96-

well plates with the same method as the high-content screen. After overnight incubation, 

the hit compounds were added at final concentrations of 30 µM, 10 µM, 3.3 µM, 1.1 µM, 

370 nM, 123 nM, 41 nM, and 14 nM. Six days later, the cells were stained with NGN3 

antibody and the plates were analyzed with the Cellomics high content screening system 

(Thermo Scientific). 
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2.5.4. Screen1: Immunostaining.  

Cells were fixed with 10% (v/v) formalin solution (Sigma) for 20 min at room 

temperature (22–24 °C). Immunostaining was carried out with standard protocols. The 

following primary antibodies were used: goat anti-PDX1 (1:500, R&D system, AF2419); 

guinea pig anti-insulin (1:1,000, Dako, A0564); rabbit anti-glucagon (1:200, Cell Signaling, 

2760); rabbit anti-c-peptide (1:500, Linco, 4020-01); and sheep anti-NGN3 (1:100, RnD 

systems, AF3444). Alexa-488–, Alexa-555– and Alexa-647–conjugated donkey antibodies 

against mouse, rabbit, guinea pig, goat, and sheep (Invitrogen), were used at 1:500 dilution. 

 

2.5.5. hESC culture and differentiation. Protocol 2. 

Human ESCs were routinely cultured on hESC-certified matrigel (BD Biosciences) 

in mouse embryonic fibroblast conditioned hES media (MEF-CM). MEF-CM media was 

produced by conditioning hESC media for 24 days on a confluent layer of mouse 

embryonic fibroblasts and subsequently adding 20ng/ml bFGF (Invitrogen). hES media 

was composed of DMEM/F12 (GIBCO) media supplemented with 20% KnockOut Serum 

Replacement (GIBCO), 2 mM L-glutamine (L-Glu, GIBCO), 1.1 mM 2-mercaptoethanol 

(GIBCO), 1 mM nonessential amino acids (GIBCO), 1x penicillin/strepto- 

mycin(P/S,GIBCO).Cells were passaged at the ratio of 1:6–1:20 every 4-7 days using 

TrypLE Express (Invitrogen).  
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To initiate differentiation the cells were dissociated using TrypLE Express to single 

cells and seeded at 150,000 cell/cm2 onto 1:30 dilution of growth factor reduced matrigel 

(BD Biosciences) in DMEM/F12 in MEF-CM media with 10uM Y27632 (StemGent). Two 

days following seeding the differentiation was started. 

Cells were exposed to RPMI 1640 (Invitrogen) supplemented with 2% reagent 

grade BSA (Proliant) and 20ng/ml human Wnt3a (R&D Systems) + 100ng/ml rhActivinA 

(R&D Systems) + 8ng/ml bFGF(Invitrogen) for the first day (stage 1.1) (Figure 2-8b). 

During day 2 and 3 the day1 media was used with the exception of Wnt3a (stage1.2) . 

During days 4-5 cells were treated with RPMI + 2% BSA + 50ng/ml FGF7 (Peprotech) 

(stage 2). For days 6-9 cells were treated with DMEM-HG (Invitrogen) + 0.1% Albumax 

BSA (Invitrogen) + 1:200 ITS-X (Invitrogen) + 50ng/ml FGF7 (Peprotech) + 2μM RA 

(Sigma) + 0.25μM SANT-1 (Sigma) + 20ng/ml rhActivinA (R&D Systems) + 100ng/ml 

rhNoggin (R&D Systems) (stage 3). During days 10-12 cells were treated with DMEM-HG 

(Invitrogen) + 0.1% Albumax BSA (Invitrogen) + 1:200 ITS-X (Invitrogen) + 100ng/ml 

rhNoggin (R&D Systems) + 0.25μM SANT-1 (Sigma) + 100nM PDBu (EMD Biosciences) 

(stage 4). During days 13-15 cells were treated with DMEM-HG (Invitrogen) + 0.1% 

Albumax BSA (Invitrogen) + 1:200 ITS-X (Invitrogen) + 100ng/ml rhNoggin (R&D 

Systems) + 1μM Alk5 inhibitor (Axxora) (stage 5). PKC inhibitor Bisindolylmaleimide I 

(VWR) was added during stage 5. 
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2.5.6. High-content screen 2 

The compound libraries used for this study: 400 compounds, including bioactive 

molecules, natural products, and 400 compounds that are known modulators of 

development or signaling pathways. For the chemical screen the day 8 cells were dispersed 

into single cells, using TrypLE, and replated at 150,000 cells/well of a 96 well plate in the 

presence of stage 3 media and 10μM Y27632. Compounds were added to the wells on day 

10 in stage 4 media, then again on days 12 and 14 in stage 5 media. Media was changed 

every other day suing the treatment. Cells were fixed using 4% paraformaldehyde (PFA, 

Sigma) on day 15 and stained using mouse anti-glucagon and rabbit anti-c-peptide 

antibodies. 

 

2.5.7. Screen 2: Immunostaining.  

Following 4% PFA fixation, cells were 3x5 min washed in PBS and blocked with 

10% donkey serum (Jackson Immunoresearch) in PBS/0.3% Triton X. 

Primary antibodies were incubated overnight at 4C. Secondary antibodies were 

incubated for 1 hr at room temperature. The following primary antibodies and dilutions 

were used: rabbit anti-c-peptide (1:1000, BCBC), rat anti-c-peptide (1:500, DSHB, GN-

ID4), guinea pig anti-insulin (1:1000, DAKO, A0564), guinea pig anti-glucagon (1:500, 

DAKO), mouse anti-glucagon (1:500, Sigma Aldrich, G2654), goat anti-PDX1 (R&D 
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Systems AF2419), mouse anti-NKX6.1 (DSHB, F55A12), rabbit anti-UCN3 (1:500, 

Phoenix Pharmaceuticals, H-019-28). 

 

2.5.8. Kidney capsule implantation and tissue preparation.  

All animal experiments were performed following an approved protocol of Harvard 

University under assurance # A3593-1 (protocol 93-15). The cells were washed with DPBS 

3 times and collected for transplantation. The cells were then lifted with a cell scraper, 

collected by centrifugation and resuspended in 50 µl PBS. About 40 µl (3-4×106 cells) of 

cell clumps were implanted into the left kidney of avertin-anesthetized SCID-Beige mice. 

12 weeks later, the mouse sera were collected after overnight fasting condition or 30 mins 

after 3g/kg D-Glucose treatment by IP injection. The c-peptide levels in mouse sera were 

measured using the human c-peptide ELISA kit (Alpco Diagnostics or Millipore). 
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Chapter 3  

Functional β cells maturation is marked by an 

increase in the glucose threshold for insulin 

secretion and by expression of urocortin3 
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3.1.  Abstract 

Insulin expressing cells that have been differentiated from human pluripotent stem 

cells in vitro lack the glucose responsiveness characteristic of mature β cells. β cell 

maturation in mice was studied to find genetic markers that enable screens for factors that 

induce bona fide β cells in vitro. We find that functional β cell maturation is marked by an 

increase in the glucose threshold for insulin secretion and by expression of the gene 

urocortin 3.  
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3.2.  Body 

The directed differentiation of human pluripotent stem cells (HPSCs) has the 

potential to produce β cells for transplantation into diabetics. However, the available 

protocols for in vitro differentiation produce only “β-like” cells. These “β-like” cells do not 

perform the accurate glucose-stimulated-insulin-secretion (GSIS) found in mature β cells 

unless they are transplanted into mice and allowed to further differentiate for many weeks1. 

During normal development, insulin-expressing β cells appear around embryonic day 13.5 

in mice or week 8-9 post-conception in humans2,3, but regulated GSIS has been observed 

only days after birth. The signals and mechanisms governing β cell maturation, either 

during postnatal development or after transplantation, are unknown.  

 

We aim to define functional β cell maturation based on GSIS parameters, and to 

identify markers of functionally mature β cells that could be used to make functional 

HPSC-derived β cells in culture.  

  

Traditionally, GSIS is measured by the fold change in insulin secretion between 

low (2.8-5mM) and high (>10mM) glucose concentrations4. In this assay, neonatal β cells 

display a high basal insulin secretion at low glucose concentrations, and stimulation with a 

high concentration of glucose results in a small fold increase in insulin secretion. These 

data could be explained if neonatal β cells have uncontrolled insulin "leakiness" at low 
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glucose concentrations, or alternatively, if they have a lower glucose concentration 

threshold at which they secrete insulin. To distinguish between these two hypotheses, we 

performed dynamic GSIS on neonatal (P1) and older (P15) mouse islets using a very low 

baseline glucose level of 0.5mM. The data show that neonatal P1 islets execute a full GSIS 

response (both first and second phases of insulin secretion) at low (2.8mM) glucose 

concentrations, whereas P15 islets show no response (no insulin secretion) at this 

concentration (Figure 3-1a). These results show that immature β cells are not "leaky", but 

rather have a reduced threshold for GSIS, secreting insulin in response to a lower glucose 

concentration than mature β cells. 

 

To determine when β cells acquire a mature GSIS capacity, we tested mouse islets 

isolated from P1 to adult for their response to low (2.8mM) and high (16.7mM) glucose 

concentrations. Islets from neonatal mice, ages P1 and P2, secreted 2.6±0.5-fold more 

insulin in high glucose than in low glucose, whereas islets from P9 to adult secreted, on 

average, 60.9±10.7-fold more insulin in high glucose than in low glucose (Figure 3-1b). 

Thus the dramatic change in GSIS response between low and high glucose that 

characterizes β cell maturation occurs between P2 and P9. Islets of mice younger than P2 

display an “immature” response, whereas islets from mice older than P9 respond as 

"mature" β cells. Between P3 to P8, a mixed (intermediate) GSIS phenotype was observed.  
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Figure 3-1. β  cell maturation is defined by a decrease in GSIS sensitivity to low glucose 
levels and by the expression of Ucn3  

(a) Three independent sets of 50 islets each, from P1 or P15 mice, were sequentially 
perfused with basal (0.5mM, gray), low (2.8mM, blue) or high (16.7mM, red) glucose in a 
dynamic GSIS assay. Arrows indicate the time points at which solutions were changed. P1 
islets display complete first and second phases of GSIS in response to low glucose, whereas 
P15 islets do not secrete insulin at this glucose concentration. (b) Triplicates of 10 islets 
from P1 to adult were assayed for GSIS using low glucose (2.8mM) and high glucose 
(16.7mM). Two age groups can be distinguished according to their stimulation index (fold 
change in GSIS). ***, P<5x10-5. (c) Three independent sets of ten islets each from P1, P9 or 
P21 were assayed for GSIS using low glucose (2.8mM, blue), high glucose (16.7mM, red), 
20mM arginine (gray) or 30mM KCl (green). The difference in the amount of insulin 
secreted between mature and immature islets is specific to glucose. *, P<0.05; **, P<0.001; 
NS, not significant). (d) Blood glucose and (e) insulin levels in immature (P1, blue) and 
mature (P14, red) mouse pups. Insulin levels in the immature pups are higher than in the 
mature ones, although their blood glucose levels are lower. (f) Electron micrograph of 
insulin vesicles in β cells at various ages. Scale bars = 2µm. (g) Quantification of the 
number of insulin vesicles vs. β cell area of the data shown in F. (h) A scheme representing 
the microarray approach. Genes differentially expressed in both mature age groups 
compared to both immature age groups (I and II) are chosen as candidate markers. (i) 
Representative scattered plot from the microarray. Note high similarity (R2) in gene 
expression between the mature (P10) and immature (P1) samples. (j) The expression levels 
of most β cell markers are unchanged during GSIS maturation. Scatter plots of global gene 
expression from microarrays on FACS-sorted immature (P1) and mature (P10) β cells. Red 
lines mark a 2-fold difference in expression and, with the exception of MafB, gene 
expression is not significantly different between these stages. (k) The expression of Ucn3 
mRNA at various ages as detected in the microarray. (l) Immunostaining of Ucn3 (green) 
and insulin (red) on pancreata from E18.5 and adult mice. Nuclei are stained with DAPI 
(blue). Scale bars = 50µm (m) Ucn3 is undetectable in E18.5 embryo. Ucn3 is detected at 
high levels and co-localizes with adult β cells.  
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Figure 3-1 Continued 

 

 

 

The differences in insulin secretion between mature and immature β cells is 

specific for glucose. The amount of insulin secreted by P1 and P9 islets in response to 

30mM KCl was 11.9±3.5ng and 10.3±1.1ng, respectively. The amount of insulin secreted 

from P1 and P21 islets in response to 20mM arginine was 9.17±1.4ng and 5.66±0.9ng, 

respectively. These differences are not statistically significant (Figure 3-1c). In contrast, 
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To find molecular markers whose expression pattern correlates 
with beta-cell maturation, we sorted beta cells expressing Pdx1-EGFP  
from P1 or P10 animals by fluorescence-activated cell sorting 
(FACS) and compared their global gene expression patterns using 
 transcriptional arrays. The Pdx1-EGFP strain was used instead of the 
insulin-EGFP strain as the latter animals were slightly diabetic. We 
also analyzed beta cells from E18.5 embryos and adult mice (Fig. 1h)  

to further reduce the number of genes whose transcriptional differ-
ences are not related to GSIS maturation. Notably, the gene expression 
profiles of functionally mature and immature beta cells tested this way 
are very similar (Fig. 1i).

Various molecular mechanisms have been proposed to explain 
the ineffective GSIS observed in fetal and neonatal beta cells  
compared with adult beta cells. These include insensitivity of the  
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Figure 1 Beta-cell maturation is defined by a decrease in GSIS sensitivity to low glucose levels and by the expression of Ucn3. (a) Three independent sets of 
50 islets each, from P1 or P15 mice, were sequentially perfused with basal (0.5 mM, gray), low (2.8 mM, blue) or high (16.7 mM, red) glucose in a dynamic 
GSIS assay. Arrows indicate the time points at which solutions were changed. P1 islets display complete first and second phases of GSIS in response to low 
glucose, whereas P15 islets do not secrete insulin at this glucose concentration. (b) Triplicates of ten islets from P1 to adult were assayed for GSIS using  
low glucose (2.8 mM) and high glucose (16.7 mM). Two age groups can be distinguished according to their stimulation index (fold change in GSIS).  
***, P < 5 × 105. (c) Three independent sets of ten islets each from P1, P9 or P21 were assayed for GSIS using low glucose (2.8 mM, blue), high glucose 
(16.7 mM, red), 20 mM arginine (gray) or 30 mM KCl (green). The difference in the amount of insulin secreted between mature and immature islets is specific 
to glucose. *, P < 0.05; **, P < 0.001; NS, not significant). (d,e) Blood glucose (d) and insulin levels (e) in immature (P1, blue) and mature (P14, red) mouse 
pups. Insulin levels in the immature pups are higher than in the mature ones, although their blood glucose levels are lower. (f) Electron micrograph of insulin 
vesicles in beta cells at various ages. Scale bars, 2 m. (g) Quantification of the number of insulin vesicles versus beta-cell area of the data shown in f.  
(h) A scheme representing the microarray approach. Genes differentially expressed in both mature age groups compared to both immature age groups (i and ii) 
are chosen as candidate markers. (i) Representative scattered plot from the microarray. Note high similarity (R2) in gene expression between the mature (P10) 
and immature (P1) samples. (j) The expression levels of most beta-cell markers are unchanged during GSIS maturation. Scatter plots of global gene expression 
from microarrays on FACS-sorted immature (P1) and mature (P10) beta cells. Red lines mark a twofold difference in expression and, with the exception of 
MafB, gene expression is not significantly different between these stages. (k) The expression of Ucn3 mRNA at various ages as detected in the microarray. 
(l,m) Immunostaining of Ucn3 (green) and insulin (red) on pancreata from E18.5 (l) and adult (m) mice. Nuclei are stained with DAPI (blue). Scale bars,  
50 m. Error bars, s.e.m. Ucn3 is undetectable in E18.5 embryo. Ucn3 is detected at high levels and co-localizes with adult beta cells.
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islets from P1 mice secreted only 6.2±0.6ng insulin, during 75min in 0.5ml high (17.7mM) 

glucose, while the same number of islets from P9 or P21 secreted 23.7±5.7ng and 

19.7±3.2ng insulin, respectively (P<0.001). At low glucose levels, the opposite trend was 

observed: P1 islets secrete 1.8±0.5ng insulin at 2.8mM glucose, whereas P9 and P21 islets 

secrete only 0.4±0.3ng and 0.3±0.1ng insulin, respectively (P<0.05) (Figure 3-1c).  

 

We examined the physiological consequences in vivo of the differences observed in 

vitro between mature and immature β cells' response to glucose. In agreement with previous 

reports4, P1 pups had significantly lower blood glucose levels than P14 pups. The average 

blood glucose concentration at P1 is 3mM whereas blood glucose at P14 averages 6.2mM 

(P<2.5x10-24) (Figure 3-1d). Notably, the average blood glucose level in P1 pups is higher 

than the glucose concentration that causes insulin secretion in vitro in P1 islets. If the in 

vitro observation that immature β cells secrete insulin at low glucose levels (Figure 3-1a) 

holds true in vivo, one should see higher insulin in the blood of neonates. Consistent with 

this prediction, the P1 pups had nearly two-fold higher levels of insulin in their blood than 

P14 animals (Figure 3-1e), although we note that there is a high variability of blood insulin 

in non-fasted animals. We also examined insulin granules in β cells at each stage using 

electron microscopy (Figure 3-1f-g). P1 β cells contained approximately 2-fold fewer insulin 

granules compared to P10 β cells, suggesting a mechanistic difference in insulin secretion. 
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To find molecular markers whose expression pattern correlates with β cell 

maturation, β cells expressing Pdx1-EGFP from P1 or P10 animals were sorted by FACS 

and their global gene expression patterns were compared using transcriptional arrays. The 

Pdx1-EGFP strain was used instead of the insulin-EGFP strain due to the slightly diabetic 

phenotype observed in the latter animals. We also analyzed β cells from E18.5 embryos 

and adult mice (Figure 3-1h) to further reduce the number of genes whose transcriptional 

differences are not related to GSIS maturation. Remarkably, the gene expression profiles of 

functionally mature and immature β cells tested this way is very similar (Figure 3-1i).  

 

Various molecular mechanisms have been proposed to explain the ineffective GSIS 

observed in fetal and neonatal β cells as compared to adult β cells. These include 

insensitivity of the ATP-regulated K+ channel5,6, reduced expression of glucose 

transporters6, low activity of glucokinase7 or low levels of the β cell selective gap junction 

protein Connexin368. Recently, genetic ablation of the transcription factors NeuroD1 in 

adult mouse β cells9 or the combined deletion of Foxa1 and Foxa210 resulted in β cells with 

an immature-like GSIS phenotype. We thus first assessed known β cell genes whose 

expression levels could explain the functional difference between mature and immature β 

cells. We examined expression levels of β cell transcription factors (Pdx1, Nkx2.2, Nkx6.1, 

NeuroD1, Foxa1, Foxa2, MafA, MafB and Hnf4a), key proteins involved in glucose sensing 

and insulin secretion (Glucokinase, Glut2, Cav6.1, Kir6.1, Sur1, Pcsk1 and Pcsk2), the β 

cell-selective gap junction gene Connexin36 and the genes for Insulin1 and Insulin2. We 
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also looked at tissue specific glucose transporters (Glut 1, 3 and 4) and hexokinases 

(Hexokinase 1, 2 and 3) (Figure 3-1j). The RNA expression levels of most of these genes 

does not change significantly between immature and mature cells (or change expression by 

less than two-fold making them unsuitable for on/off detection of mature β cells). One 

exception is the transcription factor MafB which is expressed at 2.5-fold higher levels in 

immature β cells, consistent with previous reports11. 

 

We next examined all genes for which expression changes by more than two-fold 

between immature and mature cells. We excluded genes for which a significant change in 

expression also occurred between E18.5 and P1 or P10 and adult, thereby focusing on 

genes that change expression specifically within the time window of β cell maturation 

(groups I and II in Figure 3-1h). We found 71 genes (81 probes) that were up-regulated and 

66 genes (72 probes) that were down-regulated during β cell maturation. Of the former 

group, 36 genes were acinar-related genes which is best explained by the rapid expansion of 

exocrine tissue at this stage, thereby increasing the probability of a small acinar cell 

contamination during FACS sorting and resulting in the misleading indication that acinar 

genes are up-regulated. We chose 16 genes (Table 3-1) for which β cell expression had 

previously been reported and analyzed their protein expression levels using western 

blotting and immunohistochemistry. From all these analyses, one strong candidate 

emerged: the gene Urocortin 3 (Ucn3).  
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Table 3-1. List of genes differentially expressed between immature (E18.5 and P1) and 
mature (P10 and adult) β  cells.  

Gene	
  symbol	
   E18.5	
   P1	
   P10	
   Adult	
   Fold	
  Change	
  
Klk6	
   57	
   74	
   564	
   829	
   12.3	
  
Angptl7	
   68	
   105	
   383	
   1043	
   8.8	
  
Ucn3	
   127	
   154	
   923	
   1234	
   7.2	
  
Syt4	
   80	
   62	
   252	
   734	
   6.9	
  
Rgs9	
   133	
   107	
   361	
   456	
   3.1	
  
Dlk1	
   2028	
   2051	
   126	
   39	
   -­‐23.3	
  
Npy	
   3464	
   2001	
   235	
   77	
   -­‐17.8	
  
Ghrl	
   1199	
   643	
   77	
   40	
   -­‐17.1	
  
Nnat	
   1677	
   1286	
   257	
   69	
   -­‐8.8	
  
Slc38a5	
   7037	
   5761	
   1181	
   421	
   -­‐8.0	
  
Lgi2	
   823	
   833	
   131	
   166	
   -­‐5.8	
  
Nxf	
   525	
   510	
   89	
   94	
   -­‐5.7	
  
Egr4	
   514	
   434	
   130	
   46	
   -­‐5.3	
  
Cryba2	
   4385	
   4145	
   1153	
   624	
   -­‐4.8	
  
Arc	
   321	
   288	
   90	
   46	
   -­‐4.6	
  
Atf3	
   198	
   115	
   47	
   43	
   -­‐4.4	
  

 

Numbers represent normalized expression levels in the microarray.	
  

 

 

The levels of Ucn3 mRNA increase more than 7-fold between immature and 

mature β cells, and nearly 10-fold between E18.5 and adult (Figure 3-1k and Table 3-1). 

Immunofluorescence staining showed that Ucn3 is highly expressed in all adult β cells, but 

is undetectable in islets from E18.5 embryos (Figure 3-1l-m). As with insulin, the signal 

intensity of Ucn3 protein varies from cell to cell in the adult islet. This variation does not 

correlate with the variation in insulin intensity as cells that show high staining intensity for 

insulin show both high and low staining intensities for Ucn3, and vice versa. No co-
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localization of Ucn3 with glucagon, somatostatin or pancreatic polypeptide was observed 

(Figure 3-2).  

 

 

Figure 3-2. Ucn3 expression in mouse islets is restricted to β  cells. 

(A-C) Confocal images showing immunostaining of Ucn3 (green) and glucagon (red) on 
adult mouse pancreatic sections. (D-F) Ucn3 (green) and somatostatin (red) (G-I) Ucn3 
(green) and pancreatic polypeptide (PPY, red). Nuclei are stained with DAPI (blue). Scale 
bars = 50µm. No co-localization of Ucn3 is seen with any of the islet hormones (other than 
insulin – see Fig 2 and 3). 
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Ucn3 is a secreted protein expressed in regions of the brain and in the pancreas, 

and was reported to be exclusively expressed by β cells but not other endocrine cells in the 

islet12. Li et al.12,13 found that secretion of Ucn3 from β cells is induced by high glucose in 

adult mice, and that the gene has a positive effect on GSIS at high glucose concentrations. 

We tried to mature fetal β cells in vitro by culturing them in the presence of recombinant 

Ucn3 protein for several days, but did not observe any effect of the recombinant protein 

on the GSIS profile of the cells, suggesting that Ucn3 by itself can not induce β cell 

maturation (data not shown). It remains to be determined whether Ucn3 knockout mice 

have β cell maturation defects.  

 

We next examined the patterns of Ucn3 expression at additional time points 

during the period of β cell maturation. Ucn3 protein was not detected in any islets of P1 

pups (Figure 3-3a and d). At P6, Ucn3 expression is found primarily in large islets, not in 

small β cell aggregates (Figure 3-3b and e). By P22, Ucn3 protein is strongly detected in all 

β cells (Figure 3-3c and f). Intra-cellular FACS analysis with antibodies against Ucn3 and 

insulin was performed to quantify the percentage and levels of Ucn3 expression in β cells. 

At E18.5, 90.2±1.7% of β cells express insulin alone while 9.8±1.7% also stain weakly for 

Ucn3 (Figure 3-3g). The low expression level of Ucn3 in the small population detected by 

FACS at this age is probably too low to be detected by conventional immunofluorescence 

on tissue sections. At P6, 55.1±1.6% of β cells are either negative for Ucn3 or express low 
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levels of the protein, while 44.9±1.6% of β cells express high levels of both Ucn3 and 

insulin (Figure 3-3h). By P13, just at the end of the maturation window, 93.5±1.5% of the 

β cells express high levels of Ucn3 and only 6.5±1.5% express insulin alone (Figure 3-3i). 

The increase in Ucn3 in β cells during maturation is gradual, as can be seen by the shift in 

the mean Ucn3 signal intensity (Figure 3-4a). The signal intensity of insulin is unchanged, 

indicating that expression of insulin protein remains constant throughout this time period 

(Figure 3-4b). This mixed pattern of Ucn3 expression may explain why a "marginally 

mature" phenotype was observed between P2 and P9.  

 

 

Figure 3-3. Ucn3 expression gradually increases during the course of mouse β  cell 
maturation in vivo  and is expressed in hESC-derived β -like cells after differentiation and 
maturation in vivo , but not after differentiation in vitro.  

(a-c) Immunostaining of Ucn3 (green) and insulin (red) on pancreata from P1, P6 and P22 
mice. (d-f) Enlargement insets shown in A-C, respectively. Nuclei are stained with DAPI 
(blue). Scale bars = 50µm. (a, d) Ucn3 in not detected at P1 even in large islets. (b, e) At P6, 
some large islets express Ucn3, but small aggregates do not express the peptide (arrows). (d, f) 
At P22, Ucn3 is highly expressed in all islets. (g-i) Intra-cellular FACS analysis of insulin and 
Ucn3 at E18.5, P6 and P13. Numbers in upper quadrants represent the percentage of insulin 
only (left) or insulin and Ucn3 co-expressing cells (right) of all insulin-expressing cells (two 
upper quadrants), calculated as average±sem of three independent biological repeats (three 
separate litters) for each age group. (j) An outline of the experimental approach on hESCs 
differentiation. hESCs (ES, red) marked by Oct4 were differentiated in vitro into definitive 
endoderm (DE, yellow) marked by Sox17 and subsequently to pancreatic progenitors (PP, 
green), marked by the expression of Pdx1 and NKX6.1. The cells were transplanted into 
SCID-beige mice to complete maturation in vivo. (k, l) Immunostaining for Ucn3 (green) and 
insulin (red) on the in vitro differentiated cells shown at two magnifications (k, low 
magnification; L, high magnification). In vivo differentiated (transplanted) cells are shown in 
(k). Nuclei are stained with DAPI (blue). Scale bars = 50µm. Ucn3 is expressed in the in vivo 
matured cells, but not in in vitro differentiated insulin-positive β-like cells.  
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Figure 3-3 Continued 
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ATP-regulated K+ channel5,6, reduced expression of glucose transport-
ers6, low activity of glucokinase7 or low levels of the beta cell–selective 
gap junction protein Connexin36 (ref. 8). Recently, genetic ablation 
of the transcription factors NeuroD1 in adult mouse beta cells9 or the 
combined deletion of Foxa1 and Foxa2 (ref. 10) resulted in beta cells 
with an immature-like GSIS phenotype. We thus first assessed known 
beta-cell genes whose expression levels could explain the functional 
difference between mature and immature beta cells. We examined 
expression levels of beta-cell transcription factors (Pdx1, Nkx2.2, 
Nkx6.1, NeuroD1, Foxa1, Foxa2, MafA, MafB and Hnf4a), key proteins 
involved in glucose sensing and insulin secretion (Glucokinase, Glut2, 
Cav6.1, Kir6.1, Sur1, Pcsk1 and Pcsk2), the beta cell–selective gap 
junction Connexin36, and Insulin1 and Insulin2. We also looked at 
tissue-specific glucose transporters (Glut 1, 3 and 4) and hexokinases 
(Hexokinase 1, 2 and 3) (Fig. 1j). The RNA expression levels of most 
of these genes did not change significantly between immature and 
mature cells (or change expression by less than twofold, making them 
unsuitable for on/off detection of mature beta cells). One exception 
is the transcription factor MafB, which is expressed at 2.5-fold higher 
levels in immature beta cells, consistent with previous reports11.

We next examined all genes for which expression changes by more 
than twofold between immature and mature cells. We excluded genes 
for which a significant change in expression also occurred between 
the younger mice, E18.5 and P1, and the older mice, P10 and adult, 
thereby focusing on genes that change expression specifically within 

the time window of beta-cell maturation (groups i and ii in Fig. 1h). 
We found 71 genes (81 probes) that were upregulated and 66 genes 
(72 probes) that were downregulated during beta-cell maturation 
(Supplementary Table 1). Of the former group, 36 genes were acinar-
related genes (Supplementary Table 1), which is best explained by the 
rapid expansion of exocrine tissue at this stage, thereby increasing the 
probability of a small acinar cell contamination during FACS sort-
ing and resulting in the misleading indication that acinar genes are 
upregulated. We chose 16 genes (Supplementary Table 1) for which 
beta-cell expression had previously been reported and analyzed their 
protein expression levels using western blot analysis and immuno-
histochemistry. From all these analyses, one strong candidate emerged: 
the gene Urocortin 3 (Ucn3).

The levels of Ucn3 mRNA increased more than sevenfold between 
immature and mature beta cells, and nearly tenfold between E18.5 
and adult (Fig. 1k and Supplementary Table 1). Immunofluorescence 
staining showed that Ucn3 was highly expressed in all adult beta cells, 
but was undetectable in islets from E18.5 embryos (Fig. 1l,m). As with 
insulin, the signal intensity of Ucn3 protein varies from cell to cell in 
the adult islet. This variation does not correlate with the variation in 
insulin intensity as cells that show high staining intensity for insulin 
show both high and low staining intensities for Ucn3, and vice versa. 
No co-localization of Ucn3 with glucagon, somatostatin or pancreatic 
polypeptide (PPY) was observed, indicating beta cell–specific expres-
sion of the gene (Supplementary Fig. 1).
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Figure 2 Ucn3 expression gradually increases during the course of mouse  
beta-cell maturation in vivo and is expressed in hESC-derived beta-like  
cells after differentiation and maturation in vivo, but not after differen-
tiation in vitro. (a–c) Immunostaining of Ucn3 (green) and insulin (red) on 
pancreata from P1, P6 and P22 mice. (d–f) Enlargement insets shown in 
a–c, respectively. Nuclei are stained with DAPI (blue). Scale bars, 50 m.  
Ucn3 in not detected at P1 even in large islets (a,d). At P6, some large 
islets express Ucn3, but small aggregates do not express the peptide 
(arrows) (b,e). At P22, Ucn3 is highly expressed in all islets (d,f).  
(g–i) Intracellular FACS analysis of insulin and Ucn3 at E18.5, P6 and P13. 
Numbers in upper quadrants represent the percentage of insulin only (left) 
or insulin and Ucn3 co-expressing cells (right) of all insulin-expressing cells 
(two upper quadrants), calculated as average  s.e.m. of three independent 
biological repeats (three separate litters) for each age group. (j) Experimental 
approach on hESCs differentiation. hESCs (ES, red) marked by Oct4 were 
differentiated in vitro into definitive endoderm (DE, yellow) marked by 
Sox17 and subsequently to pancreatic progenitors (PP, green), marked 
by the expression of Pdx1 and Nkx6.1. The cells were transplanted into 
SCID-beige mice to complete maturation in vivo. (k,l) Immunostaining for 
Ucn3 (green) and insulin (red) on the in vitro differentiated cells shown 
at two magnifications (k, low magnification; l, high magnification). In vivo 
differentiated (transplanted) cells are shown in (m). Nuclei are stained with 
DAPI (blue). Scale bars, 50 m. Ucn3 is expressed in the in vivo matured 
cells, but not in in vitro differentiated, insulin-positive beta-like cells.
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gap junction protein Connexin36 (ref. 8). Recently, genetic ablation 
of the transcription factors NeuroD1 in adult mouse beta cells9 or the 
combined deletion of Foxa1 and Foxa2 (ref. 10) resulted in beta cells 
with an immature-like GSIS phenotype. We thus first assessed known 
beta-cell genes whose expression levels could explain the functional 
difference between mature and immature beta cells. We examined 
expression levels of beta-cell transcription factors (Pdx1, Nkx2.2, 
Nkx6.1, NeuroD1, Foxa1, Foxa2, MafA, MafB and Hnf4a), key proteins 
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Cav6.1, Kir6.1, Sur1, Pcsk1 and Pcsk2), the beta cell–selective gap 
junction Connexin36, and Insulin1 and Insulin2. We also looked at 
tissue-specific glucose transporters (Glut 1, 3 and 4) and hexokinases 
(Hexokinase 1, 2 and 3) (Fig. 1j). The RNA expression levels of most 
of these genes did not change significantly between immature and 
mature cells (or change expression by less than twofold, making them 
unsuitable for on/off detection of mature beta cells). One exception 
is the transcription factor MafB, which is expressed at 2.5-fold higher 
levels in immature beta cells, consistent with previous reports11.

We next examined all genes for which expression changes by more 
than twofold between immature and mature cells. We excluded genes 
for which a significant change in expression also occurred between 
the younger mice, E18.5 and P1, and the older mice, P10 and adult, 
thereby focusing on genes that change expression specifically within 

the time window of beta-cell maturation (groups i and ii in Fig. 1h). 
We found 71 genes (81 probes) that were upregulated and 66 genes 
(72 probes) that were downregulated during beta-cell maturation 
(Supplementary Table 1). Of the former group, 36 genes were acinar-
related genes (Supplementary Table 1), which is best explained by the 
rapid expansion of exocrine tissue at this stage, thereby increasing the 
probability of a small acinar cell contamination during FACS sort-
ing and resulting in the misleading indication that acinar genes are 
upregulated. We chose 16 genes (Supplementary Table 1) for which 
beta-cell expression had previously been reported and analyzed their 
protein expression levels using western blot analysis and immuno-
histochemistry. From all these analyses, one strong candidate emerged: 
the gene Urocortin 3 (Ucn3).

The levels of Ucn3 mRNA increased more than sevenfold between 
immature and mature beta cells, and nearly tenfold between E18.5 
and adult (Fig. 1k and Supplementary Table 1). Immunofluorescence 
staining showed that Ucn3 was highly expressed in all adult beta cells, 
but was undetectable in islets from E18.5 embryos (Fig. 1l,m). As with 
insulin, the signal intensity of Ucn3 protein varies from cell to cell in 
the adult islet. This variation does not correlate with the variation in 
insulin intensity as cells that show high staining intensity for insulin 
show both high and low staining intensities for Ucn3, and vice versa. 
No co-localization of Ucn3 with glucagon, somatostatin or pancreatic 
polypeptide (PPY) was observed, indicating beta cell–specific expres-
sion of the gene (Supplementary Fig. 1).
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Figure 2 Ucn3 expression gradually increases during the course of mouse  
beta-cell maturation in vivo and is expressed in hESC-derived beta-like  
cells after differentiation and maturation in vivo, but not after differen-
tiation in vitro. (a–c) Immunostaining of Ucn3 (green) and insulin (red) on 
pancreata from P1, P6 and P22 mice. (d–f) Enlargement insets shown in 
a–c, respectively. Nuclei are stained with DAPI (blue). Scale bars, 50 m.  
Ucn3 in not detected at P1 even in large islets (a,d). At P6, some large 
islets express Ucn3, but small aggregates do not express the peptide 
(arrows) (b,e). At P22, Ucn3 is highly expressed in all islets (d,f).  
(g–i) Intracellular FACS analysis of insulin and Ucn3 at E18.5, P6 and P13. 
Numbers in upper quadrants represent the percentage of insulin only (left) 
or insulin and Ucn3 co-expressing cells (right) of all insulin-expressing cells 
(two upper quadrants), calculated as average  s.e.m. of three independent 
biological repeats (three separate litters) for each age group. (j) Experimental 
approach on hESCs differentiation. hESCs (ES, red) marked by Oct4 were 
differentiated in vitro into definitive endoderm (DE, yellow) marked by 
Sox17 and subsequently to pancreatic progenitors (PP, green), marked 
by the expression of Pdx1 and Nkx6.1. The cells were transplanted into 
SCID-beige mice to complete maturation in vivo. (k,l) Immunostaining for 
Ucn3 (green) and insulin (red) on the in vitro differentiated cells shown 
at two magnifications (k, low magnification; l, high magnification). In vivo 
differentiated (transplanted) cells are shown in (m). Nuclei are stained with 
DAPI (blue). Scale bars, 50 m. Ucn3 is expressed in the in vivo matured 
cells, but not in in vitro differentiated, insulin-positive beta-like cells.
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Figure 3-4. Ucn3 expression levels increase gradually in all β  cells during maturation, 
whereas insulin content stays constant. 

Intra-cellular FACS analysis of insulin and Ucn3 in E18.5 (blue), P6 (green) and P13 (red). 
Histograms present the signal intensity of Ucn3 (A) and insulin (B) plotted against the 
percentage of all insulin expressing cells. Numbers in brackets show mean intensity ± sem 
of three independent biological repeats (three separate litters) for each age group.  

 

 

Finally, we wished to determine if Ucn3 could serve as a marker for functionally 

mature β cells derived from human pluripotent stem cells (HPSCs). Immunoassaying with 

antibodies against Ucn3 on pancreatic sections obtained from an adult human donor 

revealed that the gene is expressed by all insulin-positive β cells, and is excluded from 

glucagon-expressing α cells. A small fraction of somatostatin- and PPT-expressing cells also 

express Ucn3 (Figure 3-5).  
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Figure 3-5. Ucn3 expression in human pancreas 

(A-C) Confocal images showing immunostaining of Ucn3 (green) and insulin (red) on 
pancreatic sections from an adult human. (D-F) Ucn3 (green) and glucagon (red). (G-I) 
Ucn3 (green) and somatostatin (red) (J-L) Ucn3 (green) and pancreatic polypeptide (PPY, 
red). Nuclei are stained with DAPI (blue). Scale bars = 50µm. 
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To see whether Ucn3 is induced during the maturation of human ESC-derived β 

cells following transplantation, human embryonic stem cells were differentiated using a 4-

step protocol to Pdx1 and NKX6.1-positive pancreatic progenitors14. These cells were then 

differentiated in vitro for 3 more days to become insulin-positive β-like cells (see Figure 3-3j 

and material and methods for details). Separately, stage 4 clusters of Pdx+ Nkx6.1+ 

pancreatic progenitors, containing a few insulin-positive β-like cells, were transplanted to 

the kidney capsule of SCID-beige mice where they differentiate further and mature in vivo 

(Figure 3-3j). A glucose tolerance test, performed on transplanted animals, showed fasting 

human C-peptide levels above background 12 weeks after transplantation (Figure 3-6). 

Despite high variation in fasting human C-peptide between the transplanted mice, all but 

one animal (6/7) showed an increase in blood human C-peptide between 1.7-fold to 7.6-

fold (average 2.8±0.9-fold), demonstrating that the transplanted human embryonic stem 

cell- (hESC)-derived cells matured to glucose-responsive β cells. Immunostaining showed 

that while the in vitro differentiated β-like cells express insulin, they are negative for Ucn3 

staining (Figure 3-3k-l). Conversely, the in vivo matured cells stained positive for both 

insulin and Ucn3 proteins (Figure 3-3m). This expression of human Ucn3 in the 

transplant is exclusive to the β cells; the Ucn3 protein is not detected in any glucagon-, 

somatostatin- or PPY-expressing cells (Figure 3-7).  
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Figure 3-6. hESC-derived β  cells secrete human C-peptide in response to glucose 
challenge 

Mice transplanted with 5 million hESC-derived pancreatic progenitors were fasted 12 
weeks after transplantation over night and injected with 2mg/kg glucose. The levels of 
human C-peptide before (fasting, blue) and one hour after glucose administration (glucose, 
red) are shown. Despite variable basal levels of human C-peptide, all animals except mouse 
#4, showed glucose-stimulated secretion of human C-peptide. 

 

 

In summary, we propose an operational definition for mature β cells based on 

changing glucose thresholds for GSIS response during development. We also identify a 

molecular marker, Ucn3, that distinguishes mature from immature β cells. Notably, we 

find that Ucn3 is induced in hESC-derived β cells following maturation in vivo. High-

throughput screening can now utilize the difference in GSIS and the expression of Ucn3 as 

benchmarks in studies aimed at finding conditions to induce functional β cell maturation 

in vitro. 
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Figure 3-7. Ucn3 expression in hESC-derived β  cells after maturation in vivo  

(A-C) Confocal images showing immunostaining of Ucn3 (green) and insulin (red) on 
hESC-derived graft 8 months post transplantation. (D-F) Ucn3 (green) and glucagon (red). 
(G-I) Ucn3 (green) and somatostatin (red) (J-L) Ucn3 (green) and pancreatic polypeptide 
(PPY, red). Nuclei are stained with DAPI (blue). Scale bars = 50µm. 
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3.3.  Materials and methods 

3.3.1. Animal experiments and islet isolation 

All animal experiments were performed in compliance with the Harvard University 

International Animal Care and Use Committee (IACUC) guidelines. Mouse strains used 

in this study were ICR, Swiss-Webster wild type and Pdx1–GFP transgenic and SCID- beige 

mice. Blood glucose levels were measured using OneTouch Ultra2 glucometer (LifeScan). 

Blood insulin levels were measured with an Ultrasensitive Insulin ELISA kit (Alpco). For 

glucose tolerance test, animals were fasted over-night and blood was taken form tail tips 

before, and 1 hour after, injection of 2gr/kg body weight glucose. Human C- peptide levels 

were measured using Human C-peptide ELISA kit (Alpco). For islet isolation, adult 

pancreata were perfused through the common bile duct with 0.8mM Collagenase P 

(Roche) and fetal and neonatal pancreata were dissected wholly without perfusion. 

Pancreata were digested with 0.8mM Collagenase P (Roche) and purified by centrifugation 

in Histopaque gradient (Sigma). 

3.3.2. Glucose stimulated insulin secretion (GSIS) assays 

Isolated islets were recovered over night in islet media (DMEM containing 1gr/L 

glucose, 10% v/v FBS, 0.1% v/v Penicillin/Streptomycin). Islets were picked manually 

under a fluorescent dissecting microscope according to their GFP fluorescence. Care was 

taken to pick islets of approximately the same size from all ages. For dynamic GSIS, 

approximately 50 islets were hand picked and assayed on a fully automated Perifusion 
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System (BioRep). Chambers were sequentially perfused with 0.5mM, 2.8mM or 16.7mM 

glucose in KRB buffer (128mM NaCl, 5mM KCl, 2.7mM CaCl2, 1.2mM MgCl2, 1mM 

Na2HPO4, 1.2mM KH2PO4, 5mM NaHCO3 10 HEPES, 0.1% BSA) at a flow rate of 

0.1ml/min. Fractions were collected and kept at -80°C until analysis. For static GSIS 

assays, approximately 10 islets were hand picked, incubated for 2 hours in KRB buffer at 

37°C, 5%CO2, and then incubated for 75min with 2.8mM or 16.7mM glucose in the 

same conditions. Insulin concentrations in the supernatant were determined using 

Ultrasensitive Insulin ELISA kit (Alpco). Analysis of the results was done using Matlab 

software. 

3.3.3. Electron microscopy 

Samples were fixed with 4% paraformaldehyde and 0.1% glutaraldehyde for 2 h at 

room temperature and further refixed with a mixture of 1% osmiumtetroxide (OsO4) plus 

1.5% potassium ferrocyanide (KFeCN6) for 2 h, washed in water and stained in 1% 

aqueous uranyl acetate for 1 h followed by dehydration in grades of alcohol (50%, 70%, 

95%, 2 × 100%) and propyleneoxide (1 h). Samples were then infiltrated in 

propyleneoxide:Epon 1:1 overnight and embedded in TAAB Epon (Marivac Canada Inc.). 

Ultrathin sections (about 60–80 nm) were cut on a Reichert Ultracut-S microtome, 

picked up on to copper grids, stained with 0.2% lead citrate and examined in a 

Tecnai G2 Spirit BioTWIN transmission electron microscope. Images were taken with an 

AMT CCD camera. The number of insulin vesicles and cell area were determined using 

ImageJ software. 
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3.3.4. Microarray analysis 

Islets were isolated as above from heterozygous Pdx1–GFP (crossed with ICR) 

animals and further dissociated into single cells with 0. 25% Trypsin-EDTA (Invitrogen). 

GFP+ cells were isolated using FACSaria (BD Bioscience). Total RNA was extracted with 

RNeasy RNA extraction kit (Qiagen). Biotinylated cRNA was prepared from ≥ 100 ng of 

isolated RNA using Illumina TotalPrep RNA Amplification Kit (Ambion) and hybridized 

to the Illumina mouse genome Bead Chips (MouseRef8). All samples were prepared as 

four biological replicates. Data were acquired with Illumina Beadstation 500 and were 

evaluated using BeadStudio Data Analysis Software (Illumina). 

3.3.5. Immunohistochemistry and FACS analyses 

For immunohistochemistry, pancreata were fixed by immersion in 4% 

paraformaldehyde overnight at 4 °C. Samples were washed with PBS, incubated in 30% 

sucrose solution overnight and embedded with optimal cutting temperature compound 

(Tissue-Tek). 10µm sections were blocked with 10% donkey serum (Jackson 

Immunoresearch) in PBS/0.1% Triton X and incubated with primary antibodies overnight 

at 4°C. Secondary antibodies were incubated for 1 hr at room temperature. The following 

primary antibodies and dilutions were used: rabbit anti-mouse or anti-human Ucn3 (1:600-

1:800, both from Phoenix Pharmaceuticals), rabbit anti-human Ucn3 (1:600, a gift from 

Dr. Wylie Vale, Salk Institute), Guinea Pig anti-insulin (1:800, DAKO), Guinea Pig anti- 

glucagon (1:200, Linco), Goat anti-Somatostatin (1:200, Santa Cruz) and Goat anti-PPY 
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(1:200, Novus). Secondary antibodies were: Alexa Fluor 488 donkey anti-rabbit (1:400, 

Invitrogen), Alexa Fluor 647 donkey anti- goat (1:400, Invitrogen) and DyLight 649 donkey 

anti-guinea pig (1:400, Jackson Immunoresearch). Nuclei were visualized with DAPI. It is 

important to note that, in our hands, anti-human immunostaining was successful only on 

human tissues fixed over-night with 4% paraformaldehyde directly after surgery. Efforts to 

use the abovementioned anti-human Ucn3 antibodies on flash- frozen-unfixed 

cryosections, acetone-fixed cryosections or formalin-fixed-paraffin- embedded samples 

resulted in either close-to-background or non-specific staining. Images were taken using an 

Olympus IX51 Microscope or Zeiss LSC 700 confocal microscope. For intra-cellular FACS 

analysis, islets were isolated as above and further dissociated into single cells with 0. 25% 

Trypsin-EDTA (Invitrogen). The cells were then fixed with Cytofix/Cytoprem solution (BD 

Biosciences) at 4°C for 30min, washed once with Perm Wash Buffer (BD Biosciences), and 

stained with Guinea Pig anti-insulin (1:800, DAKO) and rabbit anti-Ucn3 (1:600, Phoenix 

Pharmaceuticals) for 1 hour at room temperature. The cell were then washed once with 

Perm Wash Buffer (BD Biosciences), incubated with TexasRed donkey anti-guinea pig 

(1:400, Jackson Immunoresearch) and Alexa Fluor 488 donkey anti-rabbit (1:400, 

Invitrogen) for 45 min at room temperature, washed with PBS, filtered through a nylon 

mash, and analyzed LSR-II FACS machine (BD Biosciences). Analysis of the results was 

done using FlowJo software. 

3.3.6. hESC Culture and Differentiation 
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Human ESCs (WA1) were cultured on Matrigel (BD Biosciences) in mouse 

embryonic fibroblast conditioned media (MEF-CM). MEF-CM media was produced by 

conditioning media for 24 days on a confluent layer of mouse embryonic fibroblasts and 

subsequently adding 20 ng/ml bFGF (Invitrogen). The media was composed of 

DMEM/F12 (GIBCO) media supplemented with 20% KnockOut Serum Replacement 

(GIBCO), 2mM L- glutamine (L-Glu, GIBCO), 1.1mM 2-mercaptoethanol (GIBCO), 1mM 

nonessential amino acids (GIBCO), 1x penicillin/streptomycin (GIBCO). Cells were 

passaged at the ratio of 1:6–1:20 every 4-7 days using TrypLE Express (Invitrogen). To 

initiate differentiation, the cells were cultured as previously described1 onto 1:30 dilution 

of growth factor reduced matrigel (BD Biosciences) in MEF-CM. Two to three days 

following seeding the differentiation was initiated as follows: cells were exposed to RPMI 

1640 (Invitrogen) supplemented with 0.2% fetal bovine serum (FBS) (Hyclone, Utah), 100 

ng/mL activin-A (AA; Pepro-tech; Rocky Hill, NJ), and 20 ng/mL of Wnt3A (R&D 

Systems) for day one only. For days 2-3, cells were cultured in RPMI with 0.5% FBS and 

100 ng/mL AA (stage 1). During days 4-5 cells were treated with DMEM-F12 medium 

containing 2% FBS and 50ng/ml FGF7 (Peprotech) (stage 2). For days 6-9 cells were 

treated with DMEM-HG (Invitrogen), 1% (v/v) B27 (Invitrogen), 2uM RA (Sigma), 

0.25uM SANT-1 (Sigma), and 100ng/ml rhNoggin (R&D Systems) (stage 3). During days 

10-13 cells were treated with DMEM-HG (Invitrogen) + 1% (v/v) B27 (Invitrogen), 

100ng/ml rhNoggin (R&D Systems), 50nM TPB (PKC activator, EMD Biosciences), and 1 

µM ALK5 inhibitor II (Axxora, San Diego, CA) (stage 4). On day 14, cells were treated 
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with 5 mg/mL Dispase for 5 min, followed by gentle pipetting to mix and break the cell 

clumps into small clusters (< 100 micron). The cell clusters were cultured for one day in a 

125 ml Spinner Flask (Corning) at 80-100 rpm overnight with DMEM-HG supplemented 

with 1 µM ALK5 inhibitor II, 100 ng/mL of Noggin and 1% B27. 

For transplantation into mice, 10 million cells in clusters were transplanted under 

the kidney capsule of SCID-Bg mice (Jackson Laboratory). 8 months following transplant 

the graft was surgically extracted from under the mouse kidney capsule, fixed in 4% 

paraformaldehyde (PFA, Sigma), equilibrated in 30% sucrose, embedded in O.C.T., 

cryopreserved and sectioned. 
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Chapter 4  

Differentiated human embryonic stem cells 

resemble fetal, not adult β cells 
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4.1.  Abstract 

Human pluripotent stem cells (hPSCs) have the potential to generate unlimited 

amounts of any human cell type. Direct comparisons between differentiated cell types 

produced in vitro, and their counterparts produced during human development in vivo, is 

an essential step towards validating hPSC-derived cells. In order to compare insulin-

expressing (INS+) cells produced during human development and by directed 

differentiation of hPSCs, we developed a Method for Analyzing RNA following 

Intracellular Sorting (MARIS). Genome-wide transcriptional analysis of sorted INS+ cells 

derived from three independent hPSC-lines suggest that despite variation in efficiency, 

different lines produce highly similar INS+ cells. Furthermore, in vitro derived INS+ cells 

resemble human fetal β cells, which are distinct from adult β cells. This study presents the 

first purification and genome-wide profiling of a human fetal and adult cell type for which 

robust cell surface markers do not exist, and a direct comparison of normal human cells 

with cells produced from hPSCs in culture.  Our data reveal differences in gene expression 

that may account for the functional differences between hPSC-derived INS+ cells and true 

β cells. MARIS may be applicable for transcriptional profiling of any cell type that can be 

sorted based on intracellular immunofluorescent antigen staining. 
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4.2.  Introduction 

Human pluripotent stem cells (hPSCs), including human embryonic stem cells 

(hESCs) and human induced pluripotent stem cells (hiPSCs), are characterized by their 

capacity for unlimited self-renewal and their ability to differentiate into any human cell 

type 1-4. Stepwise differentiation protocols, designed to mimic sequential developmental 

signals, attempt to generate specific cell types from hPSC-lines for use in transplantation 

therapy and disease modeling 5-7. 

Significant variation in differentiation efficiency has been observed between 

different hPSC-lines, with some lines more readily differentiating into a particular cell type 

than others 8-11. This may be attributable in part to variations in gene expression and DNA 

methylation patterns that impact the efficiency of differentiation12.  Long-term in vitro 

culture may result in the accumulation of genetic mutations, translocations and 

chromosomal abnormalities, which may also affect the differentiation propensity 13. 

Additionally, hiPSCs retain epigenetic memory of their previous mature cells state, 

undergo slow erosion of X-chromosome inactivation and often contain partially silenced 

viral integrations as byproducts of the reprogramming process 14-18. Due to these differences 

in differentiation propensity, directed differentiation protocols often require laborious 

optimization for specific hPSC-lines 19.  

Large variation during directed differentiation poses the question of the degree to 

which cells of a desired type produced using different protocols and different cell lines 

resemble each other at the transcriptome level. Significant variation in gene expression 
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between supposedly identical cell-types generated from different hPSC-lines would bring 

into question the robustness of directed differentiation and its applications in disease 

modeling and cell therapy. To date, however, experiments addressing this question have 

been nearly impossible due to the scarcity of reporter cell lines that facilitate the 

purification and analysis of desired cell populations. 

In addition to questions regarding the similarity of differentiation products 

produced from different cell lines, the extent to which any differentiated cell produced in 

vitro resembles its counterpart produced during normal human development remains 

unknown.  Directed differentiation protocols are often generated using mouse embryonic 

development as a guide, due to the relative paucity of information about human 

development 20. However, it is well established that significant differences in transcriptional 

regulation exist between these two species 21,22. Understanding of transcriptional changes 

during human development would greatly benefit directed differentiation efforts to 

produce mature human cells in vitro.  However, in the absence of established cell surface 

markers, it near impossible to isolate and purify most human fetal and adult cell types  

Efforts to produce functional pancreatic β cells from hPSCs for use in disease 

modeling and cell transplantation therapy have been significantly hampered by variability 

between cell lines and an incomplete knowledge of the relevant human developmental 

biology. Current directed differentiation protocols generate INS+ cells (hPSC-INS+) that 

lack expression of several key β cell genes and fail to secrete insulin in response to glucose 

20,23-33. It is currently unknown whether these cells are a culture artifact or an in vitro 
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equivalent of human fetal β cells. In the absence of tools to sort and analyze INS+ cells 

from directed differentiation cultures and human pancreata at various developmental time-

points, these two hypotheses cannot be resolved. 

To address the robustness of hPSC-differentiation and its relation to human 

development, we sought to develop the tools to isolate high-quality RNA from purified 

INS+ cells, derived from different genetically unmodified hPSC-lines as well as from human 

fetal and adult pancreata. Previously, RNA of sufficient quality for FISH, nuclease 

protection assays and microarray analysis has been obtained following fixation, intracellular 

immunofluorescent staining, and FACS 34-36. However, it was unclear whether these 

relatively harsh manipulations would produce biased results due to crosslinking and partial 

degradation of RNA. A method to sort cells based on intracellular immunofluorescence 

and preserve the RNA for whole transcriptome analysis would be of considerable benefit to 

many biological disciplines. 

Here we present a Method for Analyzing RNA following Intracellular Sorting 

(MARIS). MARIS can obtain RNA of sufficient quality for transcriptome profiling 

methods such as microarray analysis and RNA-Seq following cellular fixation, intracellular 

immunofluorescent staining and FACS. Using MARIS, we analyzed the global gene 

expression profile of sorted INS+ cells from three different hPSC-lines to determine the 

degree of similarity between INS+ cells derived from different hESC and hiPSC-lines. We 

also compared hPSC-INS+ cells to human adult and fetal β cells to determine the degree to 

which directed differentiation generates cell types present during normal human 
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development.  We anticipate MARIS will be of particular utility to the stem cell field for 

the purification and analysis of hPSC-derived cell populations and their in vivo 

counterparts. Broadly, MARIS can be used for the purification and transcriptional 

characterization of any cell type based on immunofluorescent detection of a marker gene in 

the absence of reporter lines and/or sortable cell surface markers.  

 

4.3.  Results 

4.3.1. RNA isolation from fixed, stained and sorted cells 

We developed a protocol for the extraction of high quality RNA from cells sorted 

based on intracellular immunofluorescence (Figure 4-1a, Materials and Methods). Several 

assays were used to compare the quality of the RNA isolated using our protocol and RNA 

isolated from live (fresh, unfixed) cells. hESCs differentiated to the final stage of our 

pancreatic differentiation protocol (modified from 23) were used as starting material (Stage 

6,Figure 4-2). RNA was extracted from both live cells and cells following fixation, 

permeabilization, primary/secondary antibody staining and FACS (processed cells). RNA 

isolated from these two populations achieved RIN scores of 8.1 (live) and 8.0 (processed, 

Figure 4-1b). The RNA quality was highly reproducible across independent preparations 

and different cell types with average RIN score 8.2±0.8 (Figure 4-3).  
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Figure 4-1. High quality RNA isolation and profiling from fixed and stained cells 

(a) Outline of the developed protocol. In vivo or in vitro-derived cells are dispersed, fixed in 
4% PFA, permeabilized, stained using standard immunofluorescent antibodies and FACS 
sorted. Total RNA is isolated using a modified RNA extraction protocol (see methods) and 
can be analyzed by qRT-PCR, microarrays or RNA-Seq. (b,c,d,e) RNA was isolated and 
analyzed from hESC-derived Stage 6 cells before fixation (live) or following fixation, 
staining and sorting (processed). (b) Bioanalyzer gel plot suggests no degradation of total 
RNA; RIN value 8.1 for live, 8.0 for processed sample. (c) qRT-PCR on live and processed 
Stage 6 cells for pancreatic and housekeeping genes. (d) Logarithmic scatter plot of 
Illumina microarray data between live and processed samples, r2=0.97 for all detected 
probes (detection p<0.05). Red lines represent 2-fold change. (e) Samples prepared and 
paired-end sequenced using TruSeq chemistry on a HiSeq 2000 (Illumina). Shown are 100 
million reads, logarithmic plot. r2=0.95. 
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Figure 4-2. Directed differentiation protocol 

Stepwise differentiation from hESCs to pancreatic endocrine cells. DE, definitive 
endoderm; PP, pancreatic progenitor; EP, endocrine progenitor; EN, endocrine cells. Table 
contains reagents used during each stage of directed differentiation.  

 

 

Figure 4-3. RIN scores from multiple experiments 

RNA quality from 18 experiments following fixation, staining and FACS. Error bars 
represent standard deviation. 
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Having confirmed the integrity of RNA isolated using MARIS, we next assessed 

whether the protocol changed the representation of individual transcripts. We first 

performed qRT-PCR analysis of RNA extracted from live and processed Stage 6 cells for 

several housekeeping genes, as well as genes specific to the pancreatic lineage (Figure 4-1c). 

There was no systemic difference in cycle threshold values between live and processed cells. 

Some genes showed slightly lower cycle thresholds while others slightly higher as a result of 

processing. The largest detected cycle threshold difference was 0.45 cycles corresponding to 

a 37% change in gene expression.  

To evaluate the impact of MARIS on transcript levels at the whole-genome level, 

RNA from live and processed cells was analyzed using the Illumina microarray platform. 

Across all detected genes, expression between live and processed samples was nearly 

identical (r2=0.97) (Figure 4-1d). Finally, analysis by RNA-Seq showed very similar gene 

expression between live and processed cells (r2=0.95, Figure 4-1e).  These results confirm 

our RT-PCR findings and demonstrate that MARIS does not alter the relative abundance 

of transcripts across the genome.  

Because RNA-Seq allows for the examination of RNA representation across whole 

transcripts, analysis of RNA-Seq results can be used to determine whether the starting 

RNA had undergone significant degradation prior to analysis.  Specifically, degradation of 

RNA samples results in increased detection of transcripts at the 3’ end relative to the 5’ 

end (3’-bias)37. To determine whether MARIS resulted in 3’-bias, we plotted the relative 

distribution of detected transcripts among all annotated genes, grouped by transcript 
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length (Figure 4-4). In transcripts longer than 2.5knt (% of genome annotations), the 

processed sample 3’ bias was greater than the live sample by roughly 2% (AUC 

differential). Together, these analyses confirm that MARIS produces high-quality RNA and 

has little effect on the representation of transcripts as analyzed at the level of the individual 

gene, or through two methods of genome-wide analysis, making it amenable for accurate 

gene expression profiling of purified cell populations. 

 

Figure 4-4. Relative RNA-Seq coverage of all annotated transcripts shows 3’ bias in 
longer length genes  

Per-bp RNA-Seq read coverage was normalized by total mean log counts and summed over 
all exonic Ensembl regions. Transcripts were separated according to exonic length and a 
historgram of average per-transcript coverage is plotted, adjusted for length.  

 

4.3.2. Global transcriptional profile of INS+ cells from several hESC and iPSC lines  

Having established MARIS as a robust and reliable way to prepare RNA from fixed, 

stained cells, we next used it to determine the degree to which hPSC-derived INS+ cells 
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produced from different cell lines resemble each other at the transcriptome level. We 

differentiated hESC lines H1 and HUES 8, and hiPSC line iPS-17b to Stage 6, at which 

point a small percentage of cells expressed insulin and other pancreatic hormones (Figure 

4-2a) 2,38. Stage 6 cells were stained for insulin, glucagon, and somatostatin, and all insulin-

positive cells (even those co-expressing other hormones) were sorted for RNA isolation and 

analysis (Figure 4-5a). INS+ cells comprised approximately 1% of all Stage 6 cells. A large 

proportion of INS+ cells also co-expressed the pancreatic hormones glucagon and 

somatostatin, consistent with previous reports 20,23. qRT-PCR for insulin, glucagon and 

somatostatin indicated significant enrichment of all three endocrine hormones in the 

sorted populations, confirming successful purification of INS+ cells (Figure 4-5b).  

Next, we analyzed RNA isolated from the hPSC-INS+ cell populations using the 

Illumina microarray platform. RNA isolated from live undifferentiated pluripotent cells 

from each line was included as a control. Hierarchical clustering across all genes identified 

three distinct, statistically confirmed groups of samples (Figure 4-5c). All INS+ cells 

clustered together, suggesting that there were fewer differences between INS+ cells derived 

from different cell lines than differences between unsorted Stage 6 cells and sorted INS+ 

cells within each cell line. Moreover, expression profiles between INS+ cells derived from 

different hPSC lines were as highly correlated as those between hPSC-lines at the 

pluripotent stage (Figure 4-5d). Together this data suggest that INS+ cells derived from 

different hPSC-lines are highly similar. 
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Figure 4-5. RNA profiling of sorted hESC-derived insulin expressing cells 

(a) FACS plot of Stage 6 H1-derived cells sorted for insulin-APC. (b) qRT-PCR of unsorted 
and insulin-sorted Stage 6 hESC-derived cells for pancreatic hormone genes INS (insulin), 
GCG (glucagon), SST (somatostatin) suggests significant enrichment of mRNA specific for 
pancreatic hormones in the insulin-APC sorted population (* p<0.05, ** p<0.01). (c) Three 
human pluripotent stem cell lines, HUES8, H1 and iPS-17b were differentiated to stage 6 
and sorted for INS+ cells. RNA was isolated from undifferentiated cells, stage 6 cells and 
sorted INS+ cells for all three cell-lines. Global gene expression for each sample was 
analyzed using the Illumina microarray platform. Numbers indicate biological replicates. 
Hierarchical clustering identified three major groups of samples. Lengths in the 
dendrogram represent correlation value. Approximately Unbiased (AU) p-values are 
displayed. INS+ cells from different cell lines form a statistically significant cluster. (d) R2 
values based on microarray data across all genes is shown. The average r2 value between 
stage 0 cells, 0.947, is similar to the average r2 value between sorted insulin+ cells, 0.94. 
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To further analyze hPSC-INS+ cells we focused on 152 genes known for their role 

in pancreatic development, endocrine hormone secretion and glucose metabolism 20,28,39 

(Table 4-1). Hierarchical clustering and correlation values based on these 152 genes 

confirmed a high degree of similarity between hESC-derived and hiPSC-derived INS+ cells 

(Figure 4-6). 

 

 

Table 4-1. Gene list, 152 pancreatic lineage gene 

 

152 pancreatic lineage genes were selected based on published literature for their relevance 
in pancreatic development or β cell function. 
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 Figure 4-6. Correlation and clustering of cells derived by directed differentiation 

R2 values and hierarchical clustering based on microarray data across 152 pancreatic 
lineage genes is shown. Lengths in the dendrogram represent correlation value. 
Approximately Unbiased (AU) p-values are displayed. INS+ cells from different cell lines 
form a statistically significant cluster. 
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4.3.3. Robust molecular signature of sorted hPSC-derived INS+ cells 

 

Recently Micallef et al. reported the generation of an insulin-GFP knock-in hESC-

reporter line allowing for the profiling of sorted INS+ cells 29. Using the insulin-GFP 

reporter line, Basford et al. performed microarray analysis of sorted INS+ cells using a 

different directed differentiation protocol and hESC-line than presented here 28. We 

wondered whether our analysis of fixed and sorted INS+ cells would generate a similar gene 

expression signature. Basford et al. analyzed 28 genes that were differentially expressed 

between insulin-positive and insulin-negative cells. In our analysis, 27 of the 28 identified 

genes had the same pattern of enrichment in each of the three hPSC-lines (Figure 4-7)28. 

This data further strengthens our conclusion that INS+ cells derived from different hPSC-

lines, using different protocols, display highly similar molecular signatures. 
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Figure 4-7. Comparable gene expression 

Basford et al. identified 28 genes that were differentially expressed between hESC-derived 
INS+ cells and ins- cells. Here shown is fold change in gene expression between hPSC-INS+ 
and unsorted stage 6 cells for all 28 genes. 27 of the 28 genes had the same pattern of gene 
expression. GHRL (starred) was down-regulated in Basford et al. while up-regulated in all 
cells lines in our study. 

 

4.3.4. Human β cell maturation differs from mouse β cell maturation 

Study of human fetal development has been hampered by the absence of reporters 

and cell surface markers to permit sorting of specific cell types, as well as the scarcity of 

material for study.  Researchers have thus relied on studies in model organisms, mainly the 

mouse, as the basis for understanding human development and optimizing directed 

differentiation. Recently, our laboratory identified gene expression signatures that 



101 

distinguish fetal β cells from adult β cells in the mouse 40. In order to determine the extent 

to which these gene expression signatures might be conserved between mouse and human, 

we performed the first purification and transcriptome-wide molecular characterization of 

human fetal and adult β cells during human β cell maturation.  

Human pancreata of 15-16 weeks gestational age were used, since β cells at this 

stage were previously found to be immature and glucose non-responsive 41,42. Adult human 

cadaveric islets and fetal pancreata were dispersed, stained for insulin and FACS sorted. 

RNA was isolated and analyzed by Illumina microarrays (Figure 4-8a).  

We first compared the list of genes that were expressed in adult mouse and human 

β cells (Illumina gene detection p<0.05). Analysis was limited to genes with known 

homology between the two species using the NCBI Homologene tool43. 5521 genes were 

expressed in β cells from both species while 4533 and 1602 genes were uniquely expressed 

in respectively human and mouse β cells (Figure 4-8b). We next focused the comparison on 

the previously described set of 152 pancreatic lineage genes. Among them, 62 genes were 

detected in β cells from both mouse and human, 40 genes from neither, 30 were detected 

only in human β cells and 16 only in mouse β cells (Figure 4-8c). Our whole-genome 

expression analysis indicates that although human and mouse β cells express many genes in 

common, there are also significant differences between them. Understanding of those 

differences may be critical for the translation of the research on model organisms into 

human therapy. 
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Figure 4-8. Comparison of human and mouse β cells 

(a) FACS plots of human adult islets and human fetal pancreata sorted for INS+ cells 
(APC+). (b) Detected homologous genes (p<0.05) in human β cells (n=3) and mouse β cells 
(n=3). 5521 genes are present in both species. 4533 and 1602 genes are unique to human β 
cells and mouse β cells respectively. (c) The list of 152 genes is colored for genes expressed 
in both mouse and human β cells (black); genes not expressed in either mouse or human β 
cells (gray); genes expressed only in human β cells (magenta);  genes expressed only in 
mouse β cells (orange). (d) 334 genes are differentially expressed (fold change >3, p<0.05) 
between human fetal (n=2) and adult β cells (n=3). 169 genes are differentially expressed 
(fold change >3, p<0.05) between mouse E18.5 (n=3) and mouse adult β cells (n=3) based 
on data from40. 11 genes were identified as differentially expressed during both mouse and 
human β cell maturation. A list of 11 common maturation genes ordered by fold change in 
gene expression between human adult and fetal β cells. (e) Relative expression of UCN3 in 
mouse and human fetal and adult β cells. Expression normalized to fetal levels in each 
species. 
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Figure 4-8 Continued 

 

 

Analysis of human β cells from fetal and adult samples revealed that the functional 

changes that occur  between gestational week 16 and adulthood are characterized by 

changes in the expression of 334 genes (p<0.05, fold change >3). Surprisingly, only 11 of 
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the 334 differentially expressed genes were also differentially expressed between mouse 

E18.5 and adult β cells, indicating a significant divergence between human and mouse β 

cell maturation between these developmental time points (Figure 4-8d). Ucn3, which we 

identified previously as a marker of mouse β cell maturation40 was expressed 1.82-fold 

higher in sorted human adult β cells over fetal β cells, indicating that while this gene is up-

regulated during human β cell maturation, the magnitude of the change is less than what is 

observed in mouse (Figure 4-8e).  

Together, this data provides the first transcriptome-wide molecular characterization 

of human β cells and gene expression changes during human maturation. Since the 

observed differences between mouse and human maturation may reflect a disparity 

between analyzed stages, analysis of β cells at multiple time-points during human and 

mouse development is necessary to further elucidate potential inter-species differences.  

 

4.3.5. hPSC-derived INS+ cells resemble human fetal β cells 

Directed differentiation from hPSCs attempts to recreate human development in 

vitro. The extent to which this has been achieved remains unknown, because direct 

comparisons with human fetal cells have been either difficult or impossible. We first 

functionally tested dispersed hPSC-INS+ cells, fetal and adult β cells for glucose stimulated 

insulin secretion (GSIS). In contrast to adult β cells, hPSC-INS+ cells and human fetal β 

cells have elevated basal glucose secretion, and do not display a robust GSIS response 

(Figure 4-9a).  
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Figure 4-9. hESC-derived insulin expressing cells resemble human fetal β cells 

(a) Glucose stimulated insulin secretion of dispersed cells. In contrast to adult β cells, fetal 
β cells and hESC-INS+ cells both appear functionally immature as indicated by increased 
basal glucose secretion and lack of glucose stimulation. (b) Hierarchical clustering based on 
global gene expression across all 47325 microarray probes indicated that hESC-INS+ cells 
cluster closely with human fetal and not adult β cells. Numbers in parentheses indicate 
biological replicates. Lengths in the dendrogram represent correlation distances. (c) R2 
values based on microarray data across all genes are shown. Each row and column 
represents one sample. R2 values between biological replicates of adult β cell samples 
(Adult_ins) are on average 0.89±0.04. R2 values between sorted hPSC-derived insulin+ stage 
6 cells and sorted fetal β cells are 0.87±0.03. The biological variation between adult β cells 
is not statistically smaller then the variation between fetal β cells and hPSC-derived insulin+ 
stage 6 cells (p=0.34). This indicates that a high degree of similarity between hPSC-derived 
insulin+ cells and human fetal β cells. (d) Numbers of genes differentially expressed 
(p<0.05, fold change >3) between groups of samples. (e) Venn diagram of differentially 
expressed genes (p<0.05, fold change >3).  Numbers that belong only to one group 
represent genes that are differentially higher expressed in that sample group over each of 
the other two groups. Numbers in the overlap between two groups represent genes that are 
differentially higher expressed in those two groups over the third.  
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Figure 4-9 Continued 

 

 

To molecularly compare hPSC-INS+ cells with human fetal and adult β cells, we 

performed whole genome expression analysis. Unsorted Stage 6 cells and undifferentiated 
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pluripotent stem cells were included as control groups. Hierarchical clustering across all 

genes identified four distinct groups of samples (Figure 4-9b). hPSC-derived INS+ cells 

clustered more closely with human β cells than with hPSCs. Importantly, fetal β cells 

clustered together with hPSC-derived INS+ cells and not human adult β cells. The 

correlation between three biological replicates of adult β cells (r2 = 0.89±0.04) was not 

significantly different from the correlation between fetal β cells and hPSC-INS+ cells 

(r2=0.87±0.03) (two-tailed test, p=0.34), indicating a high degree of similarity between the 

latter two cell types (Figure 4-9c).  Hierarchical clustering and correlation values based on 

152 endocrine lineage genes confirmed this result (Figure 4-10). 

Differential gene expression confirmed a much higher similarity of hPSC-INS+ to 

human β cells than to hPSCs (Figure 4-9d). Additionally, fewer genes were differentially 

expressed between hPSC-INS+ and fetal β cells (332) than between hESC-INS+ cells and 

adult β cells (796). Together this data shows that INS+ cells derived from different hPSC-

lines are similar to fetal β cells and not adult β cells. 

 

 

 

Figure 4-10. Correlation and clustering of hPSC-INS+ cells, fetal and adult β cells 

R2 values and hierarchical clustering based on microarray data across 152 pancreatic 
lineage genes is shown. Lengths in the dendrogram represent correlation value. 
Approximately Unbiased (AU) p-values are displayed. INS+ cells from different cell lines 
form a statistically significant cluster. R2 values and hierarchical clustering based on 
microarray data across 152 pancreatic lineage genes is shown. 
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Figure 4-10 Continued 

 

 

 



109 

4.3.6. Human fetal β cells as an intermediate phenotype between hES-derived INS+ 

cells and human adult β cells 

 To uncover cell-type specific differences in gene expression, we identified 

genes that had differentially higher or lower expression (>3 fold, p<0.05) in one cell type 

compared to the other two (Figure 4-9e). We observe a large number of uniquely 

overexpressed genes in hPSC-INS+ cells (117) and adult β cells (103). The gene expression 

of fetal β cells largely overlapped with either hPSC-INS+ cells or adult β cells. Only 47 genes 

had differentially high expression and 20 genes differentially low expression in fetal β cells 

over hPSC-INS+ cells and adult β cells. We therefore propose that week 16 human fetal β 

cells may represent an intermediate phenotype between hPSC-INS+ cells and adult β cells.  

Thus, our study raises the possibility that hPSC-INS+ cells may more closely resemble cells 

at an earlier stage of human fetal development. Future analysis of human fetal β cells from 

younger gestational ages will be needed to resolve this possibility.  Our study does not 

address whether hPSC-INS+ cells are true progenitors of human fetal or adult β cells, or 

that they can give rise to these cell types upon further differentiation. The advent of more 

robust lineage tracing tools for use in hPSCs would facilitate the direct testing of this 

hypothesis. 
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4.3.7. Transcriptional differences between hES-derived INS+ cells and human adult β 

cells 

The goal of hPSC directed differentiation is to generate functional human β cells 

from hPSCs. We therefore compared gene expression by microarray and RNA-Seq between 

hESC-INS+ cells and adult human β cells. We first focused our analysis on 152 pancreatic 

lineage genes. 28 of the 152 genes were significantly differentially expressed between adult 

β cells and hESC-INS+ cells based on microarray analysis (>3 fold, p<0.05). RNA-Seq 

analysis of two samples of human adult INS+ cells and two samples of HUES8-INS+cells 

confirmed 27/28 genes as differentially expressed >3-fold (Figure 4-11a).  Among these, we 

focused on transcription factors known to be crucial for β cell identity and function.  

Using immunofluorescent staining, we confirmed the lack of expression of NKX6-1 and 

relatively heterogeneous expression of PDX1 and MAFA in hESC-INS+ cells (Figure 4-11b). 

PDX1, MAFA and NKX6-1 are robustly expressed in normal human β cells and in vivo 

matured hPSC-derived INS+ cells 44. 
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Figure 4-11. Differentially expressed genes between adult β cells and hPSC-INS+ cells 

(a) 28 genes from the list of 152 pancreatic lineage genes were differentially expressed 
between adult β cells and hPSC-derived INS+ cells (microarray data, fold change >3) (dark 
gray bars). 27 of the 28 genes were confirmed by RNA-Seq between HUES8-INS+ cells and 
adult β cells (fold change > 3) (light gray bars). Genes are ranked by fold change of 
expression in adult β cells over expression in hPSC-INS+ cells.  Genes marked by asterix are 
also differentially expressed between fetal β cells and adult β cells (b) Immunofluorescence. 
hPSC-INS+ cells with PDX1, NKX6-1 and MAFA. 

 

 

To understand the functional significance of incorrect expression of these 28 genes, 

we surveyed the β cell literature for known overexpression or knockdown phenotypes. A 

striking number of differentially expressed transcription factors had known roles in 

endocrine subtype specification. PDX1, NKX6-1 and MNX1 are necessary for the 
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determination of β cell fate and have over 3-fold lower expression in hPSC-INS+ than 

human adult β cells45-47. Conversely FOXA1, ARX and IRX2, determinants of α cell fate, 

were miss-expressed 4-40-fold higher in hPSC-INS+ cells than adult β cells (Figure 4-11a) 48-

50.  

Additionally, several identified genes had known effects on β cell physiology and 

glucose stimulated insulin secretion (GSIS). The overexpression of MAFA is sufficient to 

induce mature GSIS in immature P2 rat β cells51. MAFA had the largest differential gene 

expression by RNA-Seq among transcription factors (587-fold lower in hPSC-INS+ cells 

than adult β cells). Conversely, prolonged expression of PAX4 in mouse adult β cells was 

shown to blunt GSIS 52. PAX4 had 14.7-fold higher expression in hPSC-INS+ cells than 

adult β cells. Several other notable genes may be responsible for the lack of functional 

GSIS in hPSC-INS+ cells: presence of ghrelin (GHRL) suppresses GSIS 53; CHRB knockout 

animals have reduced GSIS and elevated basal insulin secretion52; PROX1 is associated 

with insulin secretion abnormalities 54; lack of tandem pore domain potassium channels 

KCNK1 and KCNK3 may elevate resting membrane potential cause hyperactivity and 

higher basal insulin secretion.  

 

Since both hPSC-INS+ and fetal β cells lack mature GSIS, we wondered whether 

the differentially expressed genes associated with β cell function were also miss-expressed in 

human fetal β cells. Indeed, MAFA, PAX4, GHRL, PROX1, CHRB, KCNK1 and KCNK3 

were also differentially expressed (p<0.05) between fetal β cells and adult β cells (Figure 
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4-11a). The modulation of these genes along with others with the same pattern of 

expression may be critical for the acquisition of mature glucose response. 

Interestingly, transcription factors with known roles in endocrine subtype 

specification, namely PDX1, NKX6-1, MNX1, FOXA1, ARX and IRX2, were miss-

expressed in hPSC-INS+ cells but not fetal β cells. Together, the analysis of gene expression 

patterns suggests two possibly distinct challenges to produce functional human β cells from 

hPSC-INS+ cells: 1) β cell lineage commitment and 2) functional maturation. Our 

observations support the hypothesis that hPSC-INS+ cells resemble earlier stage human 

fetal cells potentially not committed to the β cell lineage.  

Finally, we expanded our analysis to the whole genome. Of the 796 genes that were 

differentially expressed (p<0.05, >3 fold) between hPSC-INS+ cells and human β cells, 639 

were confirmed by RNA-Seq (>3 fold). We present a list of all differentially expressed 

transcription factors as they are of particular interest for their role in modulating cell fates 

(Figure 4-12). Genes identified here can be used as markers for differentiation into human 

β cells or may be manipulated to direct the conversion of hPSC-INS+ cells into human 

functional β cells.  
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Figure 4-12. Differential expression of transcription factors between human β cells and 
hPSC-derived insulin expressing cells 

A list of 47 transcription factors that were differentially expressed based on microarray data 
between human adult β cells and hPSC-derived INS+ cells (fold change >3, p<0.05) and 
confirmed by RNA-Seq between HUES8-INS+ cells and adult β cells (fold change > 3).  
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4.4.  Discussion 

This study presents a method for transcriptional profiling of cells following 

fixation, immunoflorescent staining and FACS. The developed method (MARIS) produces 

high quality RNA that can be used for qRT-PCR, microarray and RNA-Seq analysis 

without detectable loss of fidelity. MARIS permits, for the first time, comparison of 

genetically unmodified cells produced by differentiating hPSCs in vitro, and the direct 

comparison of these cells to corresponding cell types isolated from human fetal and adult 

tissues. We have successfully used this approach to analyze the transcriptome of hPSC-

derived pancreatic cells produced in vitro, and compare the observed gene expression 

patterns with those of human fetal and adult β cells.  

We first determined the degree of similarity between INS+ cells derived from 

multiple hPSC-lines. It has been long known that different hPSC-lines vary in their 

propensity to differentiate into a desired cell type, but the degree to which the generated 

cells vary across different cell lines remained unexplored. Significant gene expression 

differences between different hPSC-lines would question the robustness of the results thus 

far generated from hPSCs. Here we present the analysis of INS+ cells from two hESC-lines 

and one hiPSC-line. Our data suggests a high degree of similarity between INS+ cells 

derived from all three cell-lines. The degree of correlation between INS+ cells derived after 

more then 20 days of directed differentiation resembled the degree of correlation between 

different pluripotent stem cells. Furthermore, correlation between INS+ cells was similar to 

the degree of correlation between two human β cell samples obtained from two different 
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donors. The degree of similarity we observe between pancreatic cells derived from different 

hPSC lines presents an important proof-of-principle observation for hPSC directed 

differentiation. MARIS opens the door for similar comparisons of other cell types. 

 The methodology that we have developed allows, for the first time, direct analysis 

of purified human fetal and adult cell types that cannot be sorted by cell surface markers, 

and comparison of these cells with cells from mice or other model organisms.  In the 

absence of tools to study human development, model organisms have informed our 

understanding of human development and biology, although the degree to which human 

development resembles the development of other organisms has generally not been 

rigorously investigated. Using MARIS we have been able to compare human fetal and adult 

β cells, and identify genes that are differentially expressed during human β cell maturation. 

We discovered similarities and large differences in gene expression between mouse and 

human β cells. Moreover, that gene expression changes during human β cell maturation 

did not resemble changes in mouse β cell gene expression during the late prenatal and early 

postnatal period. A possible explanation might be that we are comparing two different 

stages of β cell maturation. Alternatively, there may be intrinsic developmental differences 

between mouse and human. Further study of multiple stages during human and mouse 

development using RNA-Seq in addition to microarrays would help elucidate the answer to 

this question.  

It has been widely thought that hPSC-directed differentiation produces cells that 

have a fetal, or immature, phenotypes, rather than adult cells20. These assessments are 
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generally made based on the expression of a handful of fetal-specific genes, or the absence 

of some number of adult markers. Because the number of genes analyzed in these earlier 

studies is quite small, the degree to which cells derived in vitro actually resemble true 

human fetal cells has remained unknown. To answer this question, we carried out a 

genome wide expression comparison of hPSC-INS+ cells from three different pluripotent 

stem cells lines with human fetal and adult β cells. There are many differences in gene 

expression between hPSC-INS+ cells, human fetal β cells and human adult β cells, 

suggesting that no two cell-types are fully equivalent. However, hierarchical clustering based 

on genome-wide gene expression showed close clustering of hPSC-INS+ cells with human 

fetal β cells and not human adult β cells. hPSC-INS+ cells and fetal β cells were no more 

different from each other then the variance between biological replicates of human adult β 

cells. This result was confirmed by correlation analysis based on 152 pancreatic lineage 

genes. We conclude that hPSC-derived INS+ cells highly resemble fetal β cells and not adult 

β cells.  

Through the technology developed here, we have been able to directly assess the 

gene expression differences that remain between the INS+ cells produced in vitro, and bona 

fide adult human β cells.  By focusing on genes known for their role in pancreatic 

development and β cell function, we identified by microarray and RNA-Seq 27 genes that 

are differentially expressed between these two cell types, and may have a functional role in 

converting the cells produced in vitro into the desired fully mature phenotype. Several 

transcription factors involved in endocrine subtype specification were miss-expressed in 
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hPSC-INS+ cells but not fetal β cells. hPSC-INS+ cells and fetal β cells lack mature glucose 

stimulated insulin secretion. Aberrant expression of seven genes in hPSC-INS+ and fetal β 

cells correlated with this phenotype. Four of the seven genes, MAFA, PROX1, PAX4 and 

GHRL had been associated with defects in insulin secretion. Two genes, KCNK1 and 

KCNK3 are potassium channels whose properties suggest a role in maintaining resting 

membrane potential. The last gene G6PC2 is involved in glucose metabolism. 

Our data suggests at least two classes of genes whose regulation may be critical in 

generating functional β cells. The first class of genes regulates the lineage commitment of 

hPSC-INS+ cells towards β cells and away from other pancreatic endocrine cell types. The 

second class of genes, miss-expressed in both human fetal β cells and hPSC-INS+ cells may 

be responsible for functional β cells maturation. 

At the end we expand our analysis across the genome and present a list of 47 

differentially expressed transcription factors that may be of particular interest to the β cell 

community. Overexpression and knockdown studies are needed to determine which of 

these genes are necessary or sufficient to direct the differentiation of hPSC-INS+ cells to 

functional mature β cells. 

In conclusion we developed a Method to Analyze RNA following Intracellular 

Sorting (MARIS) and carried out the first transcriptome wide analysis of sorted human 

fetal and adult β cells. Our analysis of human and mouse β cells and genes marking human 

and mouse β cell maturation indicates significant inter-species differences and points to a 

need to further study human development. Transcriptome analysis of sorted INS+ cells 
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derived from two hESC-lines and one hiPSC-line shows for the first time that different cell 

lines produce highly similar INS+ cells. We demonstrate that non-functional hPSC-derived 

INS+ cells resemble human fetal β cells, not adult β cells. Finally we generate a list of 

candidate genes whose regulation may be critical for the generation of a) lineage committed 

and b) functional β cells from hPSCs. 

  

 

4.5.  Materials and Methods 

4.5.1. Directed Differentiation 

hPSCs were routinely cultured on hESC-certified matrigel (BD Biosciences) in 

mTeSR medium (Stemcell Technologies). Cells were passaged at the ratio of 1:6–1:20 every 

4-7 days using TrypLE Express (Invitrogen). Two different basal medias were used during 

differentiation. Basal media 1 (BM-1) contained MCDB-131 (Invitrogen) supplemented to 

10mM glucose, 1x GlutaMAX (Gibco, Life Technologies), 2.35g/l NaHCO3 and 0.1% 

reagent grade BSA (Proliant). Basal media 2 (BM-2) contained MCDB-131 (Invitrogen) 

supplemented to 8mM glucose, 1x GlutaMAX (Gibco, Life Technologies), 2.93g/l 

NaHCO3, 2% reagent grade BSA (Proliant), 1:200 ITS-X (Invitrogen) and 44mg/l Vitamin 

C.  

To initiate differentiation the cells were dissociated using TrypLE Express to single 

cells and seeded at 150,000 cell/cm2 onto 1:30 dilution of growth factor reduced matrigel 
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(BD Biosciences) in DMEM/F12 in mTeSR media with 10uM Y27632 (StemGent). Two 

days following seeding the differentiation was started. 

Day 1 (stage 1.1) cells were exposed to BM-1 supplemented with and 3uM CHIR-

99021 (Stemgent) + 100ng/ml rhActivinA (R&D Systems). Day 2-3 (stage 1.2): BM-1 + 

100ng/ml rhActivinA (R&D Systems). Day 4-5 (stage 2): BM-1 + 50ng/ml FGF7 

(Peprotech) (stage 2). Day 6-9 (stage 3) BM-2 + 50ng/ml FGF7 (Peprotech) + 2µM RA 

(Sigma) + 0.25µM SANT-1 (Sigma) + 20ng/ml rhActivinA (R&D Systems) + 100ng/ml 

rhNoggin (R&D Systems). Day 10-12 (stage 4) BM-2 + 100ng/ml rhNoggin (R&D Systems) 

+ 0.25µM SANT-1 (Sigma) + 100nM PDBu (EMD Biosciences) (stage 4). Day 13-15 (stage 

5) BM-2 + 100ng/ml rhNoggin (R&D Systems) + 1µM Alk5 inhibitor (Axxora). Day 15 

onwards cells were kept in BM-2 media awaiting analysis. 

 

4.5.2. Staining and FACS 

hPSC-derived cells and human islets were dispersed to a single cell suspension 

using TrypLE Express (Invitrogen). Human fetal pancreata were mechanically dispersed in 

the presence of 1mg/ml Dispase (Roche) and 1mM Collagenase P (Roche). All cells were 

passed through a 40um filter and washed with PBS at least twice. Cells were fixed with 4% 

PFA (Electron Microscopy Sciences) in molecular grade PBS (Ambion) supplemented with 

1:100 RNasin Plus RNase Inhibitor (Promega, N2615) for 30’ at 4°C. All the subsequent 

steps were carried out at 4°C. Cells were pelleted by centrifugation at 3000g for 3’ 4°C and 

washed in Wash Buffer: PBS containing 0.2% BSA (Gemini Bio-Products), 0.1% saponin 
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(Sigma-Aldrich), 1:100 RNasin Plus RNase Inihibitor. Primary antibody staining was 

carried out while 3D rocking for 30’ at 4°C in Staining buffer containing PBS with 1% 

BSA, 0.1% saponin and 1:20 RNasin Plus RNase Inhibitor. Cells were washed twice in 

Wash Buffer followed by secondary antibody staining in Staining buffer. Following 

secondary antibody staining cells were washed twice in Wash buffer and resuspended in 

Sort buffer containing PBS, 0.5% BSA, and 1:20 RNasin Plus RNase Inhibitor. 

Cells were sorted on the FACSAria (BD Biosciences) using FACSDiva software. 

Gates were set with reference to negative controls. The sorting speed was adjusted to 

ensure sorting efficiency above 90%. Cells were collected in tubes that were coated with a 

small amount of Sort buffer. 

 

4.5.3. RNA isolation 

After sorting, cells were pelleted by centrifugation at 3000g for 5’ at 4°C. The 

supernatant was discarded. Total RNA was isolated from the pellet using the RecoverAll 

Total Nucleic Acid Isolation kit (Ambion), starting at the protease digestion stage of 

manufacturer-recommended protocol. The following modification to the isolation 

procedure was made: instead of incubating cells in digestion buffer for 15 minutes at 50°C 

and 15 minutes at 80°C, we carried out the incubation for 3 hours at 50°C. Cell lysates 

were frozen at -20°C overnight before continuing the RNA isolation by the manufacturer’s 

instructions. 
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After isolation, RNA quantity was evaluated using a NanoDrop 2000 (NanoDrop 

Technologies). RNA quality was assessed by microcapillary electrophoresis on the 

Bioanalyzer 2100 (Agilent) using RNA Nano 6000 or RNA Pico 6000 chips, depending on 

the RNA concentration. Agilent 2100 Expert software was used to visualize the 

electropherograms and calculate the RNA Integrity Number (RIN), a standardized 

categorization of total RNA quality on a scale of 1 (worst) to 10 (best)55. 

 

4.5.4. Quantitative RT-PCR 

Complementary DNA (cDNA) was made from 4 ng unamplified total RNA with 

random hexamer priming using the High Capacity cDNA Reverse Transcription with 

RNase Inhibitor kit (Applied Biosystems). One-fourth of the volume of cDNA was used for 

each TaqMan quantitative reverse transcription polymerase chain reaction (qRT-PCR). 

Reactions contained transcript-specific TaqMan probes (Applied Biosystems) and Fast 

Universal PCR Master Mix with no AmpErase UNG (Applied Biosystems). The following 

probes were used: ACTB (Hs99999903_m1), INS (Hs00355773_m1), GCG 

(Hs00174967_m1) and SST (Hs00356144_m1). Reactions were run on an Applied 

Biosystems 7900HT Fast Real-Time PCR System with default settings. Detection 

thresholds were automatically computed by SDS 2.3 software (Applied Biosystems). 

Threshold data were analyzed in DataAssist 3.0 (Applied Biosystems) using the 

Comparative Ct (ΔΔCt) relative quantitation method, using β-actin as the endogenous 

control. 
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4.5.5. Global gene expression analysis - microarray 

Using the Illumina TotalPrep RNA Amplification kit (Ambion), double-stranded 

cDNA was generated following reverse transcription from 100 ng of total RNA. In vitro 

transcription overnight with biotin-labeled nucleotides created amplified mRNA (cRNA), 

which was concentrated by vacuum centrifugation at 30°C. 750 ng cRNA per sample was 

then hybridized to Human HT-12 Expression BeadChips (Illumina) using the Whole- 

Genome Expression Direct Hybridization kit (Illumina). Finally, chips were scanned on the 

Illumina Beadstation 500. The chip annotation manifest was version 4, revision 1. For 

differential expression analysis and the generation of gene lists for functional annotation 

and pathway analysis, microarray data were processed in GenomeStudio (Illumina, 

V2011.1). Raw data were adjusted by background subtraction and rank-invariant 

normalization. Before calculating fold change, an offset of 20 was added to all probe set 

means to eliminate negative signals. The p- values for differences between mean signals 

were calculated in GenomeStudio by t-test and corrected for multiple hypotheses testing by 

the Benjamini-Hochberg method in combination with the Illumina custom false discovery 

rate (FDR) model. 

 

4.5.6. Global gene expression analysis – RNA-Seq 



124 

Isolated RNA was obtained from 2 biological replicates of HUES8-derived INS+ 

cells and human adult β cell, as well as one replicate of live and processed stage 6 cells 

each. Samples were poly-A purified and converted to cDNA libraries using the Illumina 

TruSeq protocol, and prepared into Illumina libraries using the Beckman Coulter 

Genomics SPRI-works system using custom adapters. 6nt 3’ barcodes were added during 

PCR enrichment and the resulting fragments were evaluated using Agilent BioAnalyzer 

2100.   Samples were multiplexed 2-per-lane for sequencing using the Illumina HiSeq 2000 

platform with paired-end read lengths of 80nt, resulting in 68M to 112M paired reads per 

sample, and an average biological fragment length of 168-179nt. Reads were aligned to the 

human genome (GRCh37/hg19) using TopHat (version 2.0.4) 56,57 guided by Ensembl 

gene annotations. RNA-Seq enrichment in annotated Ensembl transcripts was determined 

by Cuffdiff 56,57 (version 2.0.2) which performed a maximum likelihood estimate of 

transcript abundance measured in fragments per kilobase of exon per million fragments 

mapped (FPKM). Statistically significant transcript differential expression was calculated by 

Cuffdiff using the default negative binomial model, along with associated p-values. 

 

4.5.7. RNA-Seq transcript integrity analysis 

To identify any RNA fragment length bias introduced by the MARIS protocol, 

TopHat aligned RNA-Seq read counts from before and after were analyzed at Ensembl 

annotated exon locations (GRCh37/hg19 version 68)58. Per-bp RNA-Seq read coverage was 

normalized by total mean log counts and summed over all exonic regions. Transcripts were 
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binned by exonic length and average per-transcript coverage was adjusted for length (Figure 

4-4).  In transcripts longer than 2.5knt (% of genome annotations), the processed sample 3’ 

bias was greater than the live sample by roughly 2% (AUC differential).  

 

4.5.8. Microarray expression clustering 

Gene level microarray expression values were generated by GenomeStudio, using 

rank invariant normalization with background subtraction, and analyzed using the R 

package pvclust 59.  Per-sample and per-condition (averaging gene levels) hierarchical 

clustering was performed based on Pearson correlation and dendogram visualizations were 

drawn. Pvclust’s multiscale bootstrap resampling was used (with 500k iterations) to 

estimate “approximately unbiased” (AU) p-values indicating the significance of each 

subcluster choice in the hierarchy given the underlying data. 

 

4.5.9. Glucose stimulated insulin secretion 

Approximately 105 dispersed hPSC-derived S6 cells or dispersed fetal cells were 

plated per well of a 96-well plate and allowed to attach overnight. Alternatively, 

approximately 5000 dispersed islet cells we plated amidst 1×105 hESCs (for cell-cell contact 

and attachment). Cells were then washed two times in PBS. Cells were incubated for 1 

hour in Kreb’s buffer with no glucose (128 mM NaCl, 5 mM KCl, 2.7 mM CaCl2, 1.2 mM 

MgCl2, 1 mM Na2HPO4, 1.2 mM KH2PO4, 5 mM NaHCO3, 10 mM HEPES, 0.1% 
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BSA) at 37°C, 5% CO2, and then incubated for 60 min in Kreb’s buffer with either a) 

2mM (low) glucose, b) 20 mM (high) glucose, or c) 2mM glucose with 30 mM KCl. 

Supernatant fractions after each exposure to glucose were collected and stored at -80°C 

until analysis. Insulin concentrations were measured using the Mouse Ultrasensitive 

Insulin ELISA kit (Alpco, 80-INSMSU-E01), which cross-reacts >100% with human 

insulin. Concentrations were calculated from cubic spline interpolation of a standard curve 

and normalized to input cell number. 
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Chapter 5  

Discussion 

The work presented in this dissertation began in August 2008, one decade after the 

derivation of the first human embryonic stem cell line 1 and less than a year after the 

derivation of human induced pluripotent stem cells 2-4. Differentiation of hESCs provided 

the first opportunity to study human development. The unique in vitro setting of 

differentiation enabled the use of genetic modification and high throughput screening 

applications for the dissection cell states and lineage commitment decisions. The ultimate 

goal was the generation of unlimited quantities of any human cell type. Our lab and many 

others, academia and industry alike, set on a goal to create functional human β cells from 

hPSCs in vitro for disease modeling and cell transplantation therapy into diabetic patients. I 

joined Dr. Melton’s lab two years after the publication of the first directed differentiation 
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protocol to produce INS+ cells 5 and only two months following the first rescue of diabetic 

mice using hESC-derived pancreatic progenitors 6. Despite these landmark achievements, 

no one had been able to generate functional human β cells from hPSCs in vitro. 

Early on, technical reproducibility of directed differentiation protocols became one 

of the greatest challenges. Consequently, many research groups including ours invested 

several years optimizing the technical intricacies of directed differentiation. As a result, 

many reports have improved the efficiency of generation of hPSC-INS+ cells 7-12. One group 

independently confirmed rescue of diabetic mice by transplanting hESC-derived pancreatic 

progenitors 11. However, despite many independent attempts no one has still, to our 

knowledge, generated in vitro hPSC-derived functional human β cells capable of 

autonomously regulating serum glucose. 

Several challenges remain on the path to achieve that goal. 1) Are we on the right 

track: It remains unclear whether immature and non-functional hPSC-INS+ cells can 

further differentiate into mature β cells following transplantation. 2) How to make more β 

cells: More efficient generation of human β cells is needed to achieve better efficacy 

following transplantation into patients. 3) The ability of directed differentiation to robustly 

recapitulate human development has been called into question due to large variations in 

directed differentiation across cell lines and the inability to generate functional β cells. 4) 

How to generate functional β cells from hPSCs: A genome-wide comparison between 

hPSC-INS+ and functional β cells may provide a roadmap for the generation of functional 

hPSC-derived β cells in vitro. Work presented in this dissertation aims to address (directly 
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or indirectly) all the above-mentioned questions through a series of studies conducted over 

the past 4 years. Each of the challenges is discussed below. Although we have not been able 

to generate functional human β cells, we present a series of findings that advance our 

understanding of directed differentiation and benefit future efforts to generate functional 

human cell types from human pluripotent stem cells. 

 

5.1.  Competence of in vitro  hPSC-INS+ cells to generate functional β cells 

hPSC-derived pancreatic progenitors differentiate into functional human β cells 16 

weeks after transplantation under the mouse kidney capsule or fat pad 6,11. In vivo 

transplantation and maturation is the only known method to generate functional human β 

cells from hPSCs. In vitro hPSC-INS+ cells on the other hand, appear to be non-functional 

fetal-like polyhormonal cells 5. Transplantation of sorted in vitro hPSC-INS+ or sorted in 

vitro hPSC-derived endocrine cells generates grafts containing only human α cells 10,13. 

Consequently, it is commonly believed that hPSC-INS+ do not have the competence to 

differentiate into functional β cells and that improving the efficiency of hPSC-INS+ cells 

will only contribute to the generation of α cells and be detrimental to the in vivo 

differentiation into functional β cells. 

Our work challenges this view and provides evidence to the contrary. We find that 

PKC inhibitors increase the numbers of endocrine progenitors and hPSC-INS+ cells before 

transplantation and result in increased amounts of c-peptide secretion from grafts 

following in vivo maturation. These findings suggest that improving the efficiency of hPSC-



135 

INS+ cells is beneficial to the in vivo differentiation into functional β cells. This 

interpretation is supported by data published in two independent studies. In the first, 

Rezania et al. transplant pancreatic progenitors treated with Alk5 inhibitor and untreated 

controls. Progenitors treated with Alk5 inhibitor contained 4-fold more endocrine cells 

(>40% of the transplanted cells) than the control, untreated cells. Grafts derived from Alk5 

treated progenitors released over 5 fold higher levels of c-peptide than grafts derived from 

control, untreated cells 12 and 16 weeks following transplantation 11.  A second study 

transplanted CD142 enriched pancreatic progenitors and non-enriched controls 

containing higher proportions of endocrine cells and endocrine progenitors. 10 weeks 

following transplantation, the endocrine-depleted transplants contained 3-fold lower levels 

of circulating human c-peptide 13. Together, multiple studies suggest a positive correlation 

between the amount of endocrine cells present at transplant and levels of human c-peptide 

10-16 weeks following transplantation. Since INS+ cells present 12 weeks after transplant 

appear functional and express adult β cell markers, we propose that hPSC-INS+ cells 

differentiate into functional β cells when transplanted together with pancreatic progenitors 

and without dissociation. 

Several alternative explanations include: 1) that hPSC-INS+ cells facilitate the 

differentiation of pancreatic progenitors into functional β cells; 2) that hPSC-INS+ cells 

facilitate the survival or vascularization of the graft following transplantation; 3) that higher 

proportion of hPSC-INS+ cells prevents the differentiation of transplanted cells into non-

endocrine lineages; 4) that chemical treatment with Alk5 inhibitor, PKC inhibitor or the 
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process of sorting cells effect the outcome of the graft independent of the presence of 

immature hPSC-INS+ cells.  

Lineage tracing experiments are required to determine whether the in vivo matured 

β cells arise directly from the NGN3+ or INS+ cells present at the time of transplantation. 

 

5.2.  Generation of more endocrine cells 

Directed differentiation protocols are customized to a particular hPSC-line to 

generate the highest efficiencies of differentiation. Several recently published protocols 

generate INS+ cells with efficiencies over 10% and as high as 25% 7,9,10. However, these 

protocols cannot achieve similar efficiencies using different hPSC-lines. We have therefore 

hypothesized that additional pathways may be involved in the differentiation of pancreatic 

progenitors to pancreatic endocrine cells. Two independent high content chemical screens 

uncovered PKC inhibitors as inducers of the endocrine lineage in two hESC-lines. The 

number of endocrine cells increased up to 3 fold. Conversely, we found that PKC agonists 

block the formation of endocrine cells.  

Previously our lab identified PKC agonists as inducers of pancreatic progenitors 12. 

Together we suggest a dynamic role of the PKC pathway in pancreatic differentiation.  The 

role of PKC signaling in pancreatic development remains unknown.  

In the context of other published work, our study suggests a complex interplay 

between pathways involved in the process of differentiating pancreatic progenitors to 

endocrine cells. To date, TGFβ inhibition, BMP inhibition, Notch inhibition and now 
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PKC inhibition have been shown to increase the differentiation toward pancreatic 

endocrine cells 6,14-16. However, it is hard to imagine mechanisms by which an embryo 

would provide several specific inhibitory signals to induce the formation of endocrine cells. 

Our discovery of the dynamic role for PKC and the observation that PKC agonists block 

endocrine induction even in the presence of TGFβ inhibitors, which were previously 

described as sufficient to induce the endocrine lineage, lead us to consider an alternative 

hypothesis. Pancreatic progenitors could be maintained and self-renewed in the developing 

pancreatic epithelium by several growth factor signals, some resulting in PKC activation.  

The absence of these signals may lead to cell cycle arrest and provide permissive conditions 

for spontaneous differentiation towards endocrine cells. Modulating cell cycle and blocking 

multiple growth factors signaling pathways may therefore result is more efficient 

differentiation towards pancreatic endocrine cells. 

Interestingly, TGFβ inhibitors and PKC inhibitors added to pancreatic progenitors 

promote the formation of dense ridge-like and island-like cell structures.  These denser cell 

structures appear to be the source of new endocrine progenitors, indicating a potential 

requirement for epithelial arrangements of pancreatic progenitors in endocrine induction.  

Indeed, during mouse development NGN3+ cells emerge from epithelial cords, and migrate 

into the surrounding mesenchyme.  Directed differentiation efforts could further explore 

the requirements of epithelium formation prior to endocrine induction to improve the 

efficiency of generation of endocrine cells. 
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The specification of different endocrine cell subtypes remains a mystery.  Recent 

work suggests that a single mouse NGN3+ endocrine progenitor can only give rise to one 

type of endocrine cell 17. Pathways that control endocrine subtype specification remain 

unknown. Our high-content chemical screen used both insulin and glucagon 

immunofluorescence as a primary assay to additionally uncover pathways which modulate 

endocrine subtype specification. While PKC antagonists increased the numbers of both 

insulin and glucagon-expressing cells, PKA activator forskolin increased the numbers of 

insulin+ relative to glucagon+ cells (data not shown). Since current directed differentiation 

protocols generate several fold more endocrine cells than insulin+ cells, understanding 

endocrine subtype specification could greatly improve the efficiency of generation of 

insulin-expressing cells. 

In addition to providing a permissive or inductive environment for pancreatic 

endocrine differentiation, it is important to consider that not all PDX1+ pancreatic 

progenitors may be competent to generate endocrine cells. Despite the generation of >90% 

PDX1+ pancreatic progenitors, only a fraction become endocrine or INS+ cells.  Indeed, 

data not presented here suggests that viral overexpression of NGN3 in hESC-derived 

PDX1+ pancreatic progenitors is not sufficient to commit all NGN3-expressing pancreatic 

progenitors to endocrine cells. Multiple genetic markers may be required to identify 

pancreatic progenitors competent to differentiate into INS+ cells. 

Since sorted hPSC-INS+ cells differentiate into glucagon+ cells in vivo, one may 

conclude that generating INS+ cells in vitro is detrimental for the in vivo differentiation into 
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functional β cells 10. Our work identified that PKC inhibitors increase the number of 

endocrine cells in vitro and following in vivo maturation generate significantly higher levels 

of human c-peptide, possibly sufficient to rescue diabetic mice. We suggest that in vitro 

endocrine induction has a positive effect on the development on functional β cells and 

therefore anticipate further studies aimed at producing in vitro hPSC-INS+ cells with higher 

efficiencies.  

 

5.3.  Is directed differentiation robust and does it generate cell types 

present during human development? 

Reproducibility of results across hPSC-lines is of critical importance for hPSC 

research. Recently, much attention had been given to the description and explanation of 

differences between various hESC and hiPSC-lines 18. These differences result in large 

variations in propensity of differentiation between lines. Beyond the practical implications, 

the observations raise great concerns about the reproducibility of findings across hPSC-

lines. Specifically, the degree to which cells of the same cell type produced from different 

hESC and hiPSC-lines resemble each other, has not been known. To address this question 

we developed a Method for Analyzing RNA following Intracellular Sorting (MARIS). Using 

MARIS, we show a very high similarity (R2 = 0.95) in global gene expression profile of 

sorted INS+ cells from two hESC-lines and one hiPSC-line. This result provides the first 

confirmation of the robustness of directed differentiation protocols across multiple cells 

lines. 
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The goal of directed differentiation is to recapitulate human development in vitro. 

To date, however, experiments addressing the degree to which this has been achieved have 

been nearly impossible due to the scarcity of reporter cell lines and sorting methods that 

facilitate the purification and analysis of desired cell populations. Using MARIS, we 

compared hPSC-INS+ cells to human adult and fetal β cells and determined a high degree 

of similarity between cells derived from directed differentiation and cells present during 

normal human development. To the degree analyzed here, our data indicate that hPSC-

INS+ cells resemble human fetal β cells and not human adult β cells. 

These observations provide experimental support for the notion of epigenetically 

favorable cell-states during development and differentiation 19,20. Despite the differences 

and stochastic variation in the differentiation of various pluripotent stem cells, 

differentiated cells appear to fall into stable states similar to those present during 

development.  

 

5.4.  Generation of functional β cells from hPSCs in vitro  

Generating functional hPSC-derived β cells in vitro would constitute a major 

breakthrough in stem cells biology and diabetes treatment. There are two possible models 

for the generation of mature β cells. In the first, immature hPSC-INS+ cells can 

differentiate into mature β cells. In the second, hPSC-derived pancreatic progenitors 

require further differentiation into progenitors competent to give rise to mature β cells. 

Irrespective of the differentiation model, understanding the differences between immature 
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and mature β cells can elucidate the biological pathways and key genetic factors which 

underlie the process of maturation. In order to understand maturation, we carried out 

three studies: 1) The comparison of mouse fetal and early postnatal (E18.5/P1) β cells with 

pre-weaning and adult (P10, P21) β cells; 2) The comparison of immature human week 16 

fetal β cells to human adult β cells and 3) the comparison of hPSC-INS+ cells to adult 

human β cells. 

 

5.4.1. Mouse maturation 

The term maturation is applied to developmental processes involved in the 

generation of adult β cells. Consequently and confusingly, many studies have been 

published on mouse β cell maturation. In general they describe chronological changes to 

insulin-expressing cells at different time points between their first appearance at E9.5 and 

adult stages. Together, these changes can collectively be called maturation. However, it is 

important to recognize that maturation, much like earlier development, involves multiple 

distinct stages. 

The formation of insulin-expressing cells, like all pancreatic endocrine cells, 

requires the expressing of NGN3 and its downstream effectors 21,22. The first insulin-

expressing cells appear in the pancreatic epithelium at E9.5. At this stage most insulin-

expressing cells are polyhormonal, also expressing glucagon 23. Lineage tracing suggests 

these polyhormonal cell may not differentiate into adult endocrine cells 24. At E13.5, 

following the fusion of the ventral and dorsal pancreatic bud, a large wave of single 
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hormonal insulin-expressing cells appears. This is referred to as the secondary transition. A 

subset of INS+ cells begin to express MafA, a transcription factor necessary for normal β 

cell function. 25,26. The remainder of embryonic development is characterized by 

vascularization, β cell replication and aggregation of endocrine cells into islet-like structures 

27. Shortly after birth, pups are required to autonomously regulate blood glucose levels for 

the first time. This period is characterized by a decrease in MafB and Pax4 expression 25,28, 

increase in sympathetic innervation and islet capsule formation 29. 

Our work functionally defined the differences between early postnatal (P1) and 

mid/late postnatal (P9/P21) β cells. This stage of maturation is characterized by an increase 

in glucose threshold for insulin secretion and an increase in the amount of insulin secreted 

in response to high glucose. UCN3 was discovered as a molecular marker distinguishing β 

cells at E18.5 and P1 with mid weaning and adult β cells. 

 

5.4.2. Human maturation 

The degree to which human β cell maturation resembles mouse β cell maturation 

remains unknown. Human fetal β cells between weeks 9-16 of gestation appear functionally 

immature 30,31. Over 30% of human fetal insulin-expressing cells between weeks 9-16 also 

express glucagon and lack expression of MAFA, PDX1 and NKX6-1 suggesting a pre-

secondary transition stage 32. However, cells are organized into islet like structures 

suggesting of later stages of development. Adult human β cells also differ from adult mouse 
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β cells. They express MAFB and compared to mice secrete higher levels of insulin in 

baseline glucose and lower levels on insulin upon glucose stimulation 33. 

To further understand differences between mouse and human fetal and adult β 

cells, we used MARIS.  Our data comparing global gene expression changes during mouse 

and human development suggests a large difference between the two species. There were 

approximately as many genes that are expressed in both mouse and human β cells, as they 

are genes that are expressed in only one species and not the other. Further, gene expression 

changes between E18.5 and adult mouse β cells do not resemble the gene expression 

changes between fetal week 16 and adult human β cells.  A possible explanation might be 

that we are comparing two different stages of β cell maturation. Alternatively, we may have 

uncovered intrinsic developmental differences between mice and humans. Understanding 

the differences between mouse and human biology is critical to translational medical 

research. Study of additional stages during human and mouse development using MARIS 

is necessary to elucidate the answer to this important question. 

 

5.4.3. Differences between hPSC-INS+ cells and adult β cells 

Using MARIS we have sorted and transcriptionally profiled hPSC-INS+ cells from 

multiple cell lines. Microarray analysis, confirmed by RNA-Seq revealed genes differentially 

expressed between hPSC-INS+ cells and adult β cells. Gene expression patterns indicate 

that week 16 human fetal β cells may present an intermediate step between hPSC-INS+ 

cells and adult β cells.  
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Overexpression and knockdown studies of differentially expressed transcription 

factors may indicate which transcription factors are necessary or sufficient to generate 

hPSC-INS+ cells more closely resembling functional β cells.  

 

5.4.4. In vivo matured hPSC-derived functional β cells 

Transplantation of hPSC-derived pancreatic progenitors into immunodeficient 

mice generates functional β cells 6,11. The in vivo graft may presents a permissive 

environment or provide instructive signals for the generation of functional β cells. 

Immunofluorescent staining of grafts isolated at different stages following transplantation 

suggests that most markers of mature β cells are absent 1 month after transplantation and 

only appear 3 months following transplantation. These include the prevalence of single 

hormonal INS+ cells and their co-expression with PDX1, NKX6-1, MAFA and PC1/3. 6 

months following transplantation, the graft secretes sufficient levels of insulin to 

autonomously maintain normal blood glucose levels in diabetic mice.  

It is however unclear whether the functional hPSC-derived INS+ cells resemble 

adult human β cells, or perhaps a later stage of human fetal or early postnatal development. 

MARIS can be used to address this question. Additionally, it would be informative to 

monitor transcriptional changes in INS+ cells at different stages during in vivo maturation. 

Together with transcriptional profiles of human fetal and adult β cells the combined 

dataset may generate a complete roadmap for the in vitro maturation of hPSC-derived INS+ 

cells. 
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5.5.  Applications of MARIS 

Most cell types cannot be isolated due to the absence of specific cell surface markers 

and dyes. Instead they can be identified and isolated based on the expression of 

intracellular markers. Intracellular staining requires permeabilization, chemical fixation 

and use of reagents that degrade RNA, hindering downstream analysis.  MARIS was 

developed to combine intracellular immunofluorescent staining and FACS with the 

isolation of almost intact RNA. 

Although in essence MARIS is a very simple method, it has the potential to 

revolutionize our understanding of biology by allowing us to probe gene expression in 

defined previously inaccessible cell types. We anticipate MARIS eventually becoming a 

common lab technique for any molecular biology lab. 

Presented are a few potential applications. In the context of human biology, 

MARIS may allow us to expand the ENCODE project to provide detailed reference 

transcriptional data of all human cells types. In the context of disease, MARIS may be used 

to isolate and analyze specific cell types affected by disease or protected from disease 

(pancreatic β cells surviving the autoimmune attack). MARIS may provide a new 

understanding for the evolution of cell types by associating genomic differences with 

transcriptional differences in specific cell types across species. Single cell transcriptome 

analysis is uncovering previously unappreciated heterogeneity between cells. Optimizations 

of MARIS to single cell analysis would provide the ultimate tool to probe gene expression 
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of any defined single cell. The list of potential applications is vast. We therefore speculate 

that MARIS may become a routine research technique across biological disciplines. 

 

5.6.  Future directions 

5.6.1. Cell transplantation therapy 

The main goal of directing the differentiation of hPSCs to β cells is to provide a 

new source of β cells for transplantation therapy. We anticipate two major areas of active 

research in the years to come: 1) Generation of β-like cells capable of regulating blood 

glucose immediately following transplantation and 2) Long-term protection of the graft 

from immune attack and protection of the host from rare and unexpected complications 

with the graft (e.g. tumor formation).  

Currently, functional β cells can be generated 3 months following transplantation 

into immuno-compromised mice. As researchers attempt to produce functional, adult-like 

β cells or islets in vitro, it will be critical to test their ability to maintain blood glucose levels 

following transplantation. We therefore anticipate that time-to-insulin-independence 

following transplantation will be become a critical measure of success. The gold standard, 

human adult islets are capable of normalizing blood glucose levels within days following 

transplantation into diabetic mice. Creating functional, adult-like β cells in vitro may 

require further understanding of β cell metabolism, electrophysiology and the role of islet 

structure. The task is rendered more difficult by the absence of cell culture conditions for 
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the maintenance of functional β cells in vitro. Researchers may therefore increasingly rely 

on transplantation as a functional readout for generating β cells. Additionally, the quantity 

of insulin secretion will be critical to success, as the transplanted β cells need to secrete 

sufficient insulin to maintain normoglycemia. 

Many challenges still remain concerning the immune rejection of adult islets 

following the Edmonton protocol 34. Similar challenges are likely to affect the 

transplantation of hPSC-derived cells. Additionally, there is considerable risk to tumor 

formation following transplantation of hPSC-derived cells. To address safety concerns, cells 

may be encapsulated in a nutrient permeable device, which would prevent the migration of 

engrafted cells outside of the capsule. However, such encapsulation may hinder 

vascularization and cell survival following transplantation. Moving from bench to bedside 

will require addressing these and several other challenges, including ethical conversations 

surrounding the use of human embryonic stem cells. 

Despite the challenges, there is a great and growing need to generate a sustainable 

source of human β cells for cell transplantation therapy. This challenge can only be solved 

through highly interdisciplinary collaborative projects across academia and the commercial 

sector. During my dissertation work, I was very privileged to be a part of one such highly 

collaborative and goal driven effort to create functional human β cells from hPSCs. 
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5.6.2. Disease modeling 

Isolation of patient specific hiPSC lines allows for generation of type I diabetic, 

type II diabetic or mature onset diabetes of the young (MODY) β cells. Disease related 

phenotypes may be studied in vitro or inside a humanized mouse where multiple cell types 

from the same patient can be introduced and allowed to interact in the same host. 

Additionally, in vitro differentiation of hPSCs is amenable to high throughput screening 

and powerful genetic engineering tools. Gene editing approaches and hiPSCs allow us to 

test the role of specific disease loci found in genome-wide association studies (GWAS). 

Transplantation of patient-specific hiPSC-derived β cells along with other relevant hiPSC-

derived tissues (thymus and bone marrow) into immuno-compromised mice may generate 

“humanized mice” and allow the study of complex human disease such as type I diabetes 35. 

Together, these approaches may elucidate the cellular mechanisms behind different forms 

of diabetes and help identify ways to prevent or reverse the course of disease. 

 

5.6.3. Study human development 

Our work and work of others show significant differences between genes expressed 

in mouse and human β cells. In order to understand human development and disease, we 

therefore cannot solely rely on model organisms and must expand the study of human 

cells. MARIS allows us to analyze gene expression patterns of previously inaccessible cells in 

developing fetuses and adults.  
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hPSCs have opened a window into the study of human development. Genetic 

reporter lines allow the isolation, transplantation and lineage tracing experiments 

addressing, among other questions, the developmental competence of human progenitors. 

Gene knockout studies may uncover novel genes implicated in human development and 

physiology. Grafts containing hPSC-derived cells can be used as an in vivo model for the 

study of human physiology, homeostasis, drug response, replication, regeneration, organ 

formation, disease progression etc.  

Experiences with hPSC directed differentiation lead some researchers to question 

whether the in vitro system is sufficiently robust and whether its recapitulates human 

development. Our work provides evidence to suggest that hPSC-directed differentiation is 

both robust and representative of human development. We anticipate pluripotent stem cell 

differentiation becoming a powerful tool in the study of human biology in the years to 

come. 

 

5.7.  Conclusion 

In closing, this dissertation addressed several key challenges concerning the 

generation of functional β cells from hPSCs. First, using high-content chemical screening 

we uncovered a dynamic role of PKC during pancreatic differentiation. PKC inhibitors 

increased the number of INS+ cells in vitro by up to 10-fold and generated 8-fold higher 

levels of serum c-peptide 12 weeks following transplantation. Next, we defined the process 

of early postnatal mouse β cell maturation and discovered UCN3 as a molecular marker of 
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mouse maturation. We developed a Method to Analyze RNA following Intracellular 

Sorting (MARIS) and carried out the first transcriptome wide analysis of sorted human 

fetal and adult β cells. The small overlap in genes marking mouse and human β cell 

maturation indicates significant inter-species differences and the need to further study 

human development. Genome-wide transcriptional analysis of sorted INS+ cells derived 

from two hESC-lines and one hiPSC-line shows for the first time that different cell lines 

produce highly similar INS+ cells. Further, we demonstrate that non-functional hPSC-

derived INS+ cells resemble human fetal β cells, which are distinct from adult β cells. Our 

gene expression analysis of in vitro derived INS+ cells, human fetal and adult β cells may 

provide a roadmap for the conversion of hPSC-derived INS+ cells into functional β cells.  
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