Regulation of metabolism by sirtuins

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th>Citation</th>
<th>Haigis, Marcia. 2012. Regulation of metabolism by sirtuins. BMC Proceedings 6(Suppl 3): 09.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1186/1753-6561-6-S3-09</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:10436270</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Mitochondrial sirtuins are NAD-dependent enzymes that bind and regulate numerous metabolic pathways within the mitochondria. For example, SIRT3 functions as an NAD-dependent deacetylase that binds and activates numerous oxidative pathways. We have discovered that sirtuins regulate metabolic pathways important in tumor cell metabolism. One hallmark feature of tumor cells is a shift from oxidative to glycolytic metabolism, and this reliance on aerobic glycolysis to support cell growth is known as the Warburg effect. We have discovered that SIRT3 has an additional effect on cellular metabolism by repressing cellular glycolysis through the regulation of HIF1α, a transcription factor that increases gene expression of glycolytic targets. SIRT3 null cells exhibit metabolic and genetic features of the Warburg effect and enhanced tumorigenicity in vivo. Likewise, SIRT3 overexpression reduces glycolysis in tumor cells. In sum, a better understanding of sirtuin-mediated regulation may identify novel ways to therapeutically target tumor metabolism.

Published: 1 June 2012

doi:10.1186/1753-6561-6-S3-O9
Cite this article as: Haigis: Regulation of metabolism by sirtuins. BMC Proceedings 2012 6(Suppl 3):O9

Submit your next manuscript to BioMed Central and take full advantage of:
• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA

© 2012 Haigis; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.