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Here we develop an argument in support of sequencing a garter snake (Thamnophis sirtalis) 
genome, and outline a plan to accomplish this. This snake is a common, widespread, nonve-
nomous North American species that has served as a model for diverse studies in evolutio-
nary biology, physiology, genomics, behavior and coevolution. The anole lizard is currently 
the only genome sequence available for a non-avian reptile. Thus, the garter snake at this 
time would be the first available snake genome sequence and as such would provide much 
needed comparative representation of non-avian reptilian genomes, and would also allow 
critical new insights for vertebrate comparative genomic studies. We outline the major areas 
of discovery that the availability of the garter snake genome would enable, and describe a 
plan for whole-genome sequencing. 

Introduction 
We propose to sequence the 1.91 Gb genome of a 
garter snake (Thamnophis sirtalis, Figure 1), a 
common, widespread, nonvenomous North Amer-
ican snake that has served as a model for diverse 
studies in evolutionary biology, physiology, ge-
nomics, behavior and coevolution. Comparative 
genomic studies in vertebrates are now well un-
derway, and recent months have seen the publica-
tion of high-quality genomes of mammals based 
on de-novo assembly of short-read next-
generation sequencing platforms [1]. As of Febru-
ary 2011, the NCBI database and Ensembl contain 
51 vertebrate chordate genomes. Among amniotes 
(which include mammals, birds and non-avian 
reptiles) only three birds (chicken, turkey, and 
zebra finch) and one non-avian reptile (a lizard, 
Anolis carolinensis) are represented. Thus, there is 
high taxonomic imbalance among the currently 
sequenced amniote genomes, meaning that de-
tailed comparative analyses with reasonably di-

verse taxonomic sampling can only be performed 
within the mammals. Additional non-mammalian 
amniote genomes are still required to fully leve-
rage the comparative potential of the impressive 
set of mammalian genomes sequenced or in 
progress. 
We propose to sequence the garter snake as the 
next non-mammalian genome because of its key 
phylogenetic position and because it has been an 
important research focus for many disciplines, 
including physiology, evolutionary genetics, mor-
phology, ecology, comparative genomics and life 
history evolution. In addition to providing much-
needed additional taxonomic coverage of the tree-
of-life for non-mammalian amniotes and verte-
brates generally, a garter snake genome would 
provide crucial insight into many areas of biology, 
including: 1) the genetic basis of limblessness and 
axial patterning, 2) the genetic basis of highly va-
riable coloration and integumentary patterning, 3) 
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the genetic basis of physiological and metabolic 
adaptation, 4) adaptation to toxin resistance, 5) 
birth-death evolution of large multigene families, 
6) venom gene evolution, 7) genome structure in 
terrestrial ectotherms, 8) genetic basis of axial 
patterning, and 9) genome evolution in Reptilia, 
the sister group of Mammalia. We outline below 
the areas of discovery that would be accelerated 
by a garter snake genome, and include a list of re-
searchers who support this proposal (Appendix) 
to establish the level of general scientific interest 
in the garter snake genome. 

The garter snake as a model system in 
evolutionary biology, ecology and 
physiology 
Garter snakes are the most studied snake model 
system in the areas of ecology, evolution, beha-
vior, and physiology. Not only is the breadth of 
work considerable, but the seminal nature of work 
in behavior genetics, development of personality, 
toxin resistance, pheromonal communication, and 
reproductive physiology places the genus Tham-
nophis among the major vertebrate models for 
organismal biology. Garter snakes have provided 
their most significant contributions as a model to 
investigate biological questions in the context of 
natural populations in the wild. 

 
Figure 1. Picture of a common garter snake, Thamnophis sirtalis 

 
Evolutionary diversification 
Garter snakes have historically been the most im-
portant snake group for examining speciation and 
differentiation of ecologically important pheno-
types. Some of the original work describing the 
concept of ring species and the “artenkreis” prob-
lem of population differentiation emerged from 
work on western Thamnophis species including T. 
sirtalis [2-4]. Since that time, robust phylogenies 
have been developed at the species and population 
level [5-7]. These studies indicate at least occasion-
al hybridization between species [8], suggesting 
incomplete reproductive isolation and the potential 
for introgression leading to local adaptation. 

Population and genetic differentiation in a range of 
behavioral and morphological traits have been 
modeled as evolving through quantitative genetic 
processes. Research on prey preferences, color pat-
tern polymorphism, skeletal morphology, life histo-
ry profiles, and antipredator behaviors of Thamno-
phis all stand as primary empirical examples of se-
lective and genetic processes that lead to popula-
tion level differences in traits [9-14]. Ecological 
studies of diet differences, thermal biology, homing, 
and hibernation physiology and behavior show 
similar patterns of trait differentiation influenced 
by environmental contexts [13,15-18]. 
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Thamnophis populations have been important sub-
jects for field studies of natural selection that reveal 
not only the targets of selection, but complex sur-
faces that are predicted to lead to genetic integra-
tion and changes in genetic variance. Field studies 
of color pattern and escape behavior demonstrated 
epistatic selection on phenotypic traits due to pre-
dation [19,20]. Other studies have quantified selec-
tion on skeletal morphology, locomotor perfor-
mance, and exercise physiology [21,22]. 

Evolutionary developmental biology and 
axial patterning 
Snakes feature several radical departures from the 
ancestral amniote body plan, perhaps most notably 
the absence of limbs and a pre-sacral vertebral col-
umn composed of highly similar vertebrae. Remark-
ably, the absence of forelimbs and the homomorphy 
of vertebrae might be developmentally and geneti-
cally linked. The expression of certain Hox genes 
that typically mark the boundaries of different ver-
tebral regions are expanded in snakes. This expan-
sion might have a dual role in the evolution of the 
snake body plan because it eliminates the expres-
sion boundaries that typically correlate with the site 
of forelimb outgrowth, and it results in similar Hox 
expression patterns in nearly all pre-sacral trunk 
segments [23]. Expansions and shifts in Hox expres-
sion domains are closely associated with shifts in 
vertebral identity [24,25], and the homomorphic 
vertebrae of snakes are likely due, to broadly over-
lapping domains of Hox expression that are typically 
more restricted in vertebrates with regionalized axi-
al skeletons [23]. A whole genome assembly for the 
garter snake would allow unprecedented access to 
both the coding and well-characterized regulatory 
domains of the Hox clusters, thereby enabling both 
comparative genomic and experimental genetic stu-
dies of these important regions. The sheer number 
of vertebrae in snakes represents another classic 
departure from other amniotes, a change that is due 
to an acceleration of the embryonic segmentation 
clock [26]. A complete snake genome would provide 
an opportunity to examine the conserved regulatory 
network that determines the pace of this clock, the-
reby allowing novel insights into a basic feature of 
segmented embryos. 
Gene expression assays and experimental embryol-
ogy have implicated the Sonic Hedgehog (Shh) and 
Fibroblast Growth Factor (Fgf) pathways in the re-
duction of snake hindlimbs [23]. Studies of cetaceans 
show the involvement of these pathways in hin-
dlimb reduction in mammals as well [27]. While it is 

clear that Shh and Fgfs contribute to the develop-
mental basis of limb loss, we still lack information 
about the genetic changes that control this change. 
Limb loss occurs in many vertebrate lineages, and 
strongest genetic evidence for causal mutations 
comes from the stickleback fish [28]. In this case, the 
underlying mutations occur in the hindlimb-specific 
transcription factor Pitx1, not in the Shh or Fgf 
pathways; morphological evidence suggests that 
changes in similar genes might occur in other spe-
cies as well [29]. Thus, the availability of the garter 
snake genome could help identify additional molecu-
lar correlates of limb loss, and test for modifications 
in genes and regulatory elements already known to 
play a role in limb outgrowth and patterning. 

Reproductive physiology, sexual behavior, 
and seasonality 
Garter snakes are famous for their communal hi-
bernacula and the mass mating balls that accompa-
ny spring emergence in northern populations. This 
habit has lead to in-depth studies of the environ-
mental and endocrine controls of reproductive 
physiology and mating behavior. Both sexes have 
disassociated courtship behavior and hormonal 
cycles, with courtship occurring independent of 
seasonal changes in testosterone or estradiol [30-
34]. Instead, rising temperature apparently stimu-
lates sexual activity even in females not in repro-
ductive condition, though this responsiveness is 
counteracted by pinealectomy [35,36]. Mating re-
sults in spikes of estradiol in females, which are 
surprisingly correlated with a decline in sexual re-
ceptivity. The relationships between brain anato-
my, endocrine profiles and reproductive cycles in T. 
sirtalis are better understood than for any other 
reptile except perhaps Anolis lizards [17,31,36-40]. 

Exercise physiology and functional morphology 
Because of their unique morphology, snakes, and 
Thamnophis in particular, have been popular sub-
jects for exploring the functional morphology and 
physiology of locomotion [41,42]. Speed and en-
durance are known to be selected upon in natural 
populations, and complementary studies have 
linked variation in performance with muscle phy-
siology, skeletal morphology, enzyme activities 
and metabolism [9,43-46]. Quantitative genetic 
approaches have demonstrated heritable varia-
tion in many of these traits, as well as important 
covariances among both organismal performance 
variables and underlying mechanisms. 
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Chemical communication and pheromones 
The sensory world of garter snakes is dominated 
by chemical signals. Pheromones are the primary 
means of species and sex recognition [47]. Males 
covered in skin or skin lipids extracted from fe-
males are courted by other males. Attractiveness 
of non-volatile skin lipids is influenced by seaso-
nality and temperature [48]. Some males produce 
female-like attraction pheromones naturally 
[49,50]. These “shemales” are courted by other 
males in large mating balls and apparently gain 
some thermal benefit through the heat produced 
by courting males [51]. 
The neurophysiology of chemosensation in garter 
snakes serves as the major model of chemical sig-
nal transduction in the nasal sensory system 
[52,53]. The vomeronasal morphology and abili-
ties of garter snakes are fully developed at birth, 
and behavioral assays including tongue flick res-
ponses and trailing behaviors have been critical in 
evaluating the results of experimental degradation 
and ablation [52,54]. 

Arms Races and toxin resistance 
The coevolutionary dynamics of arms races be-
tween predators and prey have been revealed 
primarily through investigations of geographic 
variation in tetrodotoxin resistance in Thamnophis 
sirtalis. Thamnophis feeds on amphibians, includ-
ing newts of the genus Taricha, that possess the 
neurotoxin tetrodotoxin (TTX) as a defense. Popu-
lations of T. sirtalis vary in resistance, both orga-
nismal and physiological, in a pattern that sug-
gests the form of arms-race dynamics in natural 
populations [55-57]. In some cases, populations of 
predators have escaped from the arms race by 
evolving extreme levels of resistance to TTX. TTX 
resistance has been linked to specific amino acid 
substitutions in the NaV1.4 gene that encodes vol-
tage gated sodium channels in skeletal muscle 
[58-60]. The availability of the genome of the gar-
ter snake would enable tremendous opportunity 
for genome-scale analyses of coevolutionary inte-
ractions between toxins and toxin-resistant genes 
in Thamnophis. For example, the availability of a 
garter snake genome would facilitate identifica-
tion of genes potentially related to TTX resistance, 
thereby enabling efficient screening of putatively-
relevant toxin-resistance genes from garter snake 
species and populations with differential sensitivi-
ty to TTX. 

Development of behavior and personality 
Garter snakes serve as one of the few non-
mammalian (and only reptilian) model species for 
studies of behavior development. Examining ag-
gressive displays and feeding preferences, re-
searchers have shown consistent individual per-
sonalities, and followed development of those 
personalities over ontogeny [61-64]. Experience 
with predators and prey, threats, and visual and 
chemical stimuli all modify individual behavior. 
Population and species differences in “personali-
ty” have been linked to ecological contexts includ-
ing food availability and risk [65-67]. 

Genome characteristics of snakes 
Snake genomes are often smaller than mammalian 
genomes, ranging from ~1.3 Gbp to 3.8 Gbp, with 
an average of 2.08 Gbp [68]. The most recent esti-
mate for the genome size of the Garter Snake 
(Thamnophis sirtalis) suggests it is in the middle of 
this range at 1.91 gigabases (Gbp) [69], making it 
less than 2/3 the size of the human genome. All 
snakes are thought to have ZW genetic sex deter-
mination, and their sex chromosomes reveal in-
creased differentiation in a phylogenetic gradient 
from the morphologically “primitive” boids to the 
more “advanced” colubrid, elapid and viperid 
snakes [70]. In comparison with other tetrapod 
groups, chromosome number in snakes tends to be 
highly conserved; most species possess ~36 chro-
mosomes, with ~16 macrosomes and ~20 micro-
somes [71]. 
Although our current knowledge of vertebrate ge-
nome structure and diversity is strongly slanted 
towards mammals, new information on reptilian 
genomes is just starting to become available [72-
76]. In contrast to the genomes of mammals and 
birds, most (non-avian) reptile genomes are com-
prised of a particularly diverse repertoire of trans-
posable elements (TEs). Whereas mammal and bird 
genomes often have undergone recent expansion of 
one or a small number of TEs, such as L1 LINES and 
Alu SINES in humans, reptilian genomes examined 
have experienced recent (and presumably ongoing) 
activity and expansion of multiple TE types; this is 
particularly true of the only squamate reptile ge-
nome sequenced to date. Based on preliminary ge-
nomic analyses of the lizard Anolis, trends in the 
squamate lineage include an increase in simple se-
quence repeat (SSR) content, the dominance of CR1 
LINE retroelements, and a high overall diversity of 
retroelements [72,74,75]. 
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Figure 2. Preliminary estimate of the repeat content of the Thamnophis sirtalis genome compared to the Anolis 
lizard genome. Estimates base on RepeatMasker analyses using the RepBase tetrapoda repeat library. Snake da-
ta is based on 454 random survey-sequencing of 49 Mbp for Thamnophis sirtalis; Anolis based on analyses of 
four Anolis Scaffolds totaling 55 Mbp. 

 
Recent data (Castoe and Pollock, unpublished) 
from a small number of snake lineages based on 
low coverage sample sequencing of 454 shotgun 
libraries (30-60 Mbp/species) also provides in-
sight into repeat element dynamics within the 
snake lineage. Here we provide some preliminary 
estimates based on analyses of the Anolis genome 
in comparison to 49 Mbp of randomly sampled 
genomic data (from 454 shotgun sequencing) of 
the T. sirtalis genome. These data suggest that 
both CR1 LINEs, as well as RTE/Bov-B LINEs ap-
pear relatively abundant and active in the garter 
snake genome (Figure 2). Because there are no 
reptile-specific repeat element libraries in Rep-
Base, the RepeatMasker identification of elements 
(based on using the tetrapoda repeat library in 
RepBase) presented here is likely a substantial 
underestimate of repeat content, and is expected 
to identify only repeat elements in reptiles with 
sequence similarity to those in other sequenced 
vertebrate genomes with complete repeat libra-
ries. Although few SINE elements were detected 
based on RepeatMasker analyses (Figure 2), there 

are probably several classes of abundant SINEs in 
the garter snake genome, but they have not been 
identified and are either novel or too divergent to 
be recognized by RepBase libraries. There is also a 
moderate increase in the SSR and low complexity 
content detected in the garter snake genome (Fig-
ure 2), apparently indicating a secondary increase 
in SSR evolution and turnover in snakes; note that 
this change must have occurred subsequent to the 
slowdown in SSR evolution and turnover earlier in 
the reptilian lineage [72]. While not yet completed 
for the garter snake, preliminary de novo sets of 
repeat elements were identified and classified 
from the Burmese Python (Python molurus) and 
the Copperhead (Agkistrodon contortrix) [76]. 
These snake-specific element libraries, together 
with de novo analyses from the Thamnophis sam-
ple sequencing set analyzed here, will provide an 
excellent preliminary database of snake-specific 
repeat element sequences for annotating the gar-
ter snake genome. Notably, this database will be 
ready far in advance of the annotation phase of 
this project. 
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Ongoing studies of garter snake ecological 
& evolutionary genomics 
Studying extreme adaptation and convergent 
evolution in snake proteins 
The evolutionary origin of snakes involved exten-
sive morphological and physiological adaptations 
to a subterranean lifestyle, including limb loss, the 
functional loss of one lung, trunk and organ elon-
gation. They also evolved a suite of radical adapta-
tions to consume extremely large prey relative to 
their body size, including the evolution of diverse 
venom proteins [77,78], and the ability to drasti-
cally remodel their organs and physiology [79,80] 
while enduring metabolic and oxygen consump-
tion rate fluctuations that are among the most ex-
treme known in vertebrates [80]. Previous re-
search has shown that snake aerobic metabolism 
is mechanistically and functionally unique among 
vertebrates due to tremendous bursts of adaptive 
evolution that have radically altered the functions 
of numerous metabolic proteins [81-83]. A com-
plete garter snake genome will allow evaluation of 
hypotheses of accelerated evolution, positive se-
lection, and molecular convergence across the 
breadth of snake proteins. The work of Castoe and 
colleagues [81,82] strongly suggests that other 
snake proteins, in addition to the metabolic genes 
already studied, are likely to show evidence of ex-
treme and rapid evolution. These patterns are also 
likely to provide important insight into major 
adaptations that have accompanied the highly dy-
namic and extreme metabolism and physiology of 
snakes. The identification of other components of 
snake genomes that demonstrate such coordi-
nated adaptive phenomena would provide critical 
insight into the coevolution and function of verte-
brate metabolism, physiology, development, and 
ecology, with the potential for identifying new 
links between molecular evolution and functional 
change in vertebrates. 

Impact of transposable elements on snake genome 
evolution 
Our understanding of the presence and absence of 
different transposable element types across ver-
tebrate lineages remains fragmentary due to the 
limited sampling of vertebrate diversity, although 
many different types of elements, including LINEs 
[84-86], SINEs [75,87], and DNA transposons 
[76,88,89] may owe their origins to horizontal 
transfer. In the snakes, a number of different ele-
ments currently fit this hypothesis. This includes 

SPIN DNA transposons that appear to have recent-
ly invaded a number of vertebrate lineages, in-
cluding Anolis, long after the split between Anolis 
and snakes ~170MYA [76,89]. SPIN element se-
quences have been found in Agkistrodon and 
Thamnophis, but not in Python, suggesting a possi-
ble horizontal transfer into the common ancestral 
lineage of the garter snakes and vipers (Castoe 
and Pollock, unpublished). Additionally, an appar-
ent poxivirus-mediated transfer of a SINE element 
from snakes to rodents (via parasitizing the re-
verse transcriptase of a Bov-B LINE) has been 
shown, demonstrating that viruses may mediate 
such horizontal transfer events [87]. The most in-
teresting case of apparent horizontal transfer of 
transposable elements is the Bov-B LINEs in 
snakes [84-86]. This is because Bov-B LINEs, to-
gether with CR1 LINEs, appear to have played a 
role in the evolution of snake venom and expan-
sion of venom gene families [76]. Greater genomic 
resources for snakes will provide important in-
formation to evaluate and understand the modes, 
frequency, and potential functional consequences 
that horizontal transfer of genetic material has 
played in snake genomes, and in vertebrate ge-
nomes in general. 

Genomic resources for garter snakes 
BAC Library and tissue availability 
A high-quality, high density BAC library has been 
made for the garter snake (Thamnophis sirtalis). 
This library is available for use by the scientific 
community [90] via the Joint Genome Institute. In 
addition to this library, there is excellent access to 
a great deal of additional garter snake tissues 
(from laboratory and natural populations) from 
particular labs that work heavily on the species 
(e.g., Brodie and Bronikowski), and from major 
research collections (e.g., Harvard, UC Berkeley, 
Smithsonian, American Museum). Furthermore, a 
genome sequence of a snake species will greatly 
increase the value of existing genetic resources for 
reptiles in research collections and museums. 

Online and unpublished sequences 
Molecular resources for reptiles are severely limit-
ing, particularly for snakes. Very recently, howev-
er, several cDNA-based and genomic shotgun se-
quencing-based resources for garter snakes, and 
other snake species, have become available or are 
expected to be released in 2011. We outline these 
below. 



Castoe et al. 

http://standardsingenomics.org 263 

The most relevant resource is a public website 
hosted by the Bronikowski laboratory [91]. At its 
core, this site contains a dataset of 1.24 million 
454 FLX and Titanium reads from T. elegans from 
multiple organs and sexes [92]. This is the first 
large-scale, multi-organ transcriptome for an ec-
tothermic reptile, and is the most comprehensive 
set of EST sequences publicly available for an in-
dividual non-avian reptile species. These reads 
have been assembled into 96,379 contigs, and 
25% of these contigs were assigned an ID based 
on homology when compared to NCBI-NR, Homo-
loGene, UniGene (Chicken), and the draft Anolis 
lizard draft genome (AnoCar1.0). This data has 
additionally enabled identification of a substan-
tial amount of allelic diversity, including 133,713 
SNPs and 53,943 INDELS in 28,901 contigs 
(30%). This resource will assist studies on gene 
expression, comparative genomics, and facilitate 
the study of evolutionarily important traits at the 
molecular level, in addition to assisting in assem-
bling gene model predictions for the garter snake 
genome. 
There is also a relatively small amount of 
T.sirtalis genome sequence available (~49 Mbp; 
NCBI Sequence Read Archive accession: 
SRA029935) from 454 shotgun library sequenc-
ing. These, and similar data from ~10 additional 
snake species, will be made available online via 
the snakegenomics.org website [93] and acces-
sioned at NCBI. This data will provide early 
access to a sampling of sequences from snake 
genomes that will enable identification and cha-
racterization of snake repeat elements far in ad-
vance of the garter snake genome, speeding an-
notation and assembly progress of the genome. 
Additional comparative cDNA data (454 and Il-
lumina) for a diversity of other snakes including 
multiple blind snakes, the Burmese python, and 
venomous copperhead will be made available via 
snakegenomics.org [93] and accessioned at NCBI; 
these should further assist annotation of the gar-
ter snake genome, and be useful for comparative 
analyses. 

Method for genome sequencing 
Sequencing 
The whole genome shotgun strategy provides an 
efficient method for producing a draft genome se-
quence, a process whereby each genome is a 
unique case that requires assembly parameter 
optimization to achieve the highest possible conti-
guity with few mis-ordering events. This method 

produces “unfinished” assemblies that require 
post-assembly manipulation, such as merging con-
tigs and breaking erroneous scaffolds. Our strate-
gy with the garter snake genome is to employ Il-
lumina HiSeq sequencing of paired reads with in-
creasing insert size. A similar strategy was recent-
ly used to assemble the human and mouse ge-
nomes [94].We are planning on collecting a total 
of 100 × coverage of the genome overall, including 
40× coverage from short length (200-300 bp) 
shotgun libraries, 40 × coverage from 3kb paired 
reads, 5 × coverage of 8kb paired reads, and <1 × 
of 40kb paired reads. 

Genome assembly 
Perhaps most critical to our success will be in de-
veloping methods for integration of the assembly 
information with all other ancillary data resources 
available and our attention to detail at every step 
in the process. The ALLPATHS-LG will be utilized 
to assemble all read types using an iterative 
process [94]. The ALLPATHS-LG software resides 
on four 300 GB 10,000 RPM SAS hard drives, with 
eight 2.9GHz Quad-Core AMD Opteron Model 
8389 processors, 512KB L1 Cache (32 processor 
cores total) and 512 GB of memory (consisting of 
32 16 GB DDR2-667 ECC DIMM). 
Most short-read assemblers rely on the de Bruijin 
graphical structures, a directed graph that 
represents homogenous overlap between se-
quences (see review [95]). In brief, genome as-
sembly will involve four principal steps that 
progress from forming contigs from raw sequence 
reads, to connecting contigs into scaffolds using 
paired-end sequence of large fragments, to gap 
filling and finally error correction. A base of small-
er contigs will serve as anchor points for an itera-
tive adding of longer range insert sizes serving to 
build scaffold length. Gaps that exist in the scaf-
folds can be filled in most cases by the use of all 
reads. We expect longer read lengths from the 
third generation instrument of Pacific Biosciences 
to be used as needed to improve scaffold size ex-
pansion and filling of gaps within. 
Although we expect a shorter contig size than the 
traditional Sanger based assemblies we believe 
these contig lengths will be sufficient for gene 
predictions and post-assembly alignment based 
analysis. From the recent human whole genome 
study contig (assembled de novo) and scaffold N50 
values of 24kb and 11Mb, respectively, were 
achieved [94]. Moreover, high assembly accuracy 
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was obtained with the number of ambiguous 
bases at 0.08%. Since the garter snake genome is 
considerably smaller than either of these mamma-
lian genomes and contains fewer predicted re-
peats, we expect assembly contiguity to be suffi-
cient for accurate gene predictions. 

Genome assembly annotation 
Despite improvements in assembly algorithms, 
assembling genomes from millions of small se-
quence reads in automatic fashion is susceptible 
to producing errors. We will assess the accuracy of 
the assembled garter snake genome using several 
methods, these include read chaff rate, read depth 
of coverage, average quality values per contig, dis-
cordant read pairs, gene footprint coverage (as 
assessed by cDNA contigs) and comparative 
alignments to the most closely related species. In 
this proposal we also will take advantage of 
mapped cDNA contigs from various garter snake 
tissues (10 tissue types will be selected) to im-
prove assembly contiguity and accuracy, streng-
thening the genic component of this assembly. 
Each of these metrics reveals something unique 
about the assembly and defines overall the 
strengths and weaknesses of an assembly. During 
our manual review of the assembly errors these 
are corrected when possible. 
We will screen the genome assembly for contami-
nation, and then submit the de-contaminated se-
quence to the WGS division of Genbank for an in-
dependent contamination analysis. A Genbank 
analysis typically will reveal small amounts of ad-
ditional contamination due to BLAST parameter 
differences and the use of updated databases that 
are removed followed by resubmission to Gen-
bank. The final assembly will be uploaded to mul-
tiple online databases and genome browsers, in-
cluding Ensembl [96], the University of California 
Santa Cruz [97] and NCBI for public queries. 

Gene annotation 
First-pass gene prediction will use a modified En-
sembl pipeline [98], for evidence-supported gene 
model building and model merging. Uniprot pro-
tein sequences from several species will be used 
sequentially as seeds for coding sequence predic-
tion. In addition, cDNA sequences from the garter 
snake will be aligned and used to find genes and 
add UTR information. The consortium will select 
10 diverse tissues for Illumina RNA sequencing. 

A portion of the Ensembl mandate is to work di-
rectly with genome sequencing projects, and use 
custom-curated data sets (such as EST sequences 
and specific Uniprotdata sets) to enable annota-
tion. Should other groups provide gene sets with 
independent gene prediction algorithms, the En-
sembl group can easily merge these gene predic-
tions into a unique set of predicted genes. We have 
successfully followed this paradigm for the many 
other species. 

Promise of garter snakes for ecological 
and comparative genomics 
Promise as a model system in physiology 
Reptiles possess many adaptations related to mor-
tality selection that suggest their usefulness in 
studies that link morphological and physiological 
evolution. Snakes in particular, have evolved ve-
nom, limblessness, extended metabolic shut-
down– including both hibernation and estivation, 
starvation resistance, heat tolerance and hypoxia 
resistance. Furthermore, although species possess 
species-specific lifespans, little physiological de-
cline occurs with advancing age in snakes until 
near the end of their lifespans. Thus, some snakes 
may indeed exhibit the phenomenon known as 
negligible senescence [99] – the lack of age-
related deterioration. Furthermore, many snake 
species have indeterminate growth and fecundity 
such that costs of reproduction– at least with re-
spect to the lifespan – are not apparent [100]. The 
oldest individuals in natural populations are often 
the most fecund and robust [101]. Therefore, in 
many snakes, strong selection against late-age de-
leterious mutations may exist, thereby leading to 
increased longevity and longer reproductive life 
spans. 
Snakes (and other reptiles) are also a model for 
the trade-off between life span and reproduction 
[102] because they have evolved plastic res-
ponses to external stresses and, putatively, plas-
tic modulation of cell signaling pathways. Ecto-
thermic reptiles have different physiological and 
cellular responses to environmental and meta-
bolic stress, relative to endotherms. This may be 
driven by the reptilian ability to regulate meta-
bolic function by behaviorally modulating their 
body temperature, which results in lower energy 
requirements than birds and mammals that must 
use their metabolism to maintain higher body 
temperatures. Many reptilian adaptations to en-
vironmental stress are known to activate molecu-
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lar pathways linked to mechanistic theories of 
aging – e.g., the free radical theory of aging (and 
its derivations) – which provides a priori predic-
tions of outcomes for stress-response experi-
ments [99]. 
There are only a handful of species for which the 
in-depth understanding of life-history, physiolo-
gy, behavior, and quantitative genetics allows for 
the examination, and elucidation, of molecular 
pathways, and linking of these pathways across 
amniotes by leveraging comparative genomics. 
The garter snake is one such species, and will 
yield insights into the evolution of stress re-
sponse. This is a particularly exciting venture as 
it is recently apparent that the molecular me-
chanisms underlying the complex traits of life 
history, stress response, and metabolism are con-
trolled by evolutionarily conserved, and equally 
complex, molecular networks [103]. 

The importance of the garter snake for 
comparative genomics and annotating the 
human genome 
To understand genome diversity and evolution in 
amniotes, it is currently possible to compare only 
the human and other mammalian genomes with a 
small number of avian genomes, and a single lizard 
genome (Anolis). This narrowly focused compari-
son is largely inadequate for illuminating the evolu-
tionary origins and history of amniote genomes 
because it omits the many lineages of reptiles that 
arose since birds and mammals diverged more 
than 300MYA. It is therefore nearly impossible to 
identify a trait that distinguishes mammals from 
other amniotes, and what is merely a trait specific 
to birds. A well-rounded understanding of verte-
brate genome evolution and diversity, therefore, 
must include comparative data for more lineages 
spanning the diversity of reptiles, and vertebrates 
in general. Thus, in addition to providing a long-

sought window into the genetic underpinnings of 
variation and unique traits in snakes, the garter 
snake genome also will be a critical comparative 
resource for vertebrate genomics in general. 
Snakes represent a major ~170-million-year-old 
lineage on the branch of the vertebrate tree of life 
for which very little genomic information is cur-
rently available. As such, understanding the content 
of snake genomes will contribute broadly to an un-
derstanding of vertebrate genomics. Reptilia is the 
sister group of Mammalia, and the major lineages of 
Reptilia represent the best possible outgroups to 
understand the evolution of mammalian genomes. 
Not only would reptile genomic data contribute 
toward annotating the human genome and better 
understanding the chicken and finch genomes, but 
it would also assist in rooting the many mammalian 
genomes currently being sequenced, fill in a gap on 
the evolutionary tree of vertebrates, aid in identify-
ing conserved regulatory regions and facilitate un-
derstanding mechanisms of gene duplication in the 
evolution of multigene families. 

Conclusion 
A garter snake genome would enable numerous 
avenues of research in basic physiology, ecology, 
evolutionary biology and comparative genomics. It 
would provide important insights into the evolu-
tion of limblessness, antitoxin resistance, ecto-
thermy and extreme physiology and metabolism. 
It would provide a genome for a critically impor-
tant lineage of amniotes and would improve the 
accuracy of reconstruction of the ancestral verte-
brate genome, a major goal that will ultimately 
improve our understanding of the human genome. 
Finally, with its relatively small size and novel 
landscape of transposable elements, a garter 
snake genome would provide new insights into 
the diversity of repeated elements and their roles 
in evolution. 
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