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Abstract

Background: MicroRNAs (miRNAs) are nucleic acid regulators of many human mRNAs, and are associated with
many tumorigenic processes. miRNA expression levels have been used in profiling studies, but some evidence
suggests that expression levels do not fully capture miRNA regulatory activity. In this study we integrate multiple
gene expression datasets to determine miRNA activity patterns associated with cancer phenotypes and oncogenic
pathways in mesenchymal tumors – a very heterogeneous class of malignancies.

Results: Using a computational method, we identified differentially activated miRNAs between 77 normal tissue
specimens and 135 sarcomas and we validated many of these findings with microarray interrogation of an
independent, paraffin-based cohort of 18 tumors. We also showed that miRNA activity is imperfectly correlated with
miRNA expression levels. Using next-generation miRNA sequencing we identified potential base sequence
alterations which may explain differential activity. We then analyzed miRNA activity changes related to the
RAS-pathway and found 21 miRNAs that switch from silenced to activated status in parallel with RAS activation.
Importantly, nearly half of these 21 miRNAs were predicted to regulate integral parts of the miRNA processing
machinery, and our gene expression analysis revealed significant reductions of these transcripts in RAS-active
tumors. These results suggest an association between RAS signaling and miRNA processing in which miRNAs may
attenuate their own biogenesis.

Conclusions: Our study represents the first gene expression-based investigation of miRNA regulatory activity in
human sarcomas, and our findings indicate that miRNA activity patterns derived from integrated transcriptomic
data are reproducible and biologically informative in cancer. We identified an association between RAS signaling
and miRNA processing, and demonstrated sequence alterations as plausible causes for differential miRNA activity.
Finally, our study highlights the value of systems level integrative miRNA/mRNA assessment with high-throughput
genomic data, and the applicability of paraffin-tissue-derived RNA for validation of novel findings.
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Background
Early research on microRNAs (miRNAs) has demon-
strated their critical function in a variety of neoplastic
processes and has further highlighted the molecular
complexity of cancer [1-5]. One of the most complex
and heterogeneous cancer types is the group of malig-
nant mesenchymal tumors (also known as sarcomas).
There are few reliable biomarkers for sarcoma classifica-
tion and the molecular underpinning of their heteroge-
neous behavior remains poorly understood [6,7]. Early
work has shown that miRNA expression levels can be
used to distinguish between sarcoma subtypes [8]. How-
ever, expression levels do not necessarily signify activity
in terms of effects on their target mRNAs; there is evi-
dence that miRNA activity can be increased irrespec-
tively of miRNA expression levels [9,10]. Given the
increasing amount of gene expression data now available
in the public domain, the concept of inferring miRNA
activity using gene expression profiles as a surrogate has
been proposed [9,11]. This method combines miRNA
target predictions based on sequence complementarity
with concerted changes in the expression levels of cor-
responding target mRNAs [11]. Thus, the output is an
inferred level of miRNA regulatory activity. In this
study we sought to identify miRNA activity patterns in
sarcomas by integrating gene expression data from
multiple sources and using a recently developed com-
putational algorithm [11]. On this basis, miRNAs were
defined as either activated or silenced in tumors (not
necessarily equivalent to over or under-expressed). We
then validated potentially altered miRNAs by profiling
an independent paraffin-derived sarcoma cohort and
investigating their possible connection with oncogenic
pathway activity. We also performed RNA-sequencing to
identify possible miRNA sequence alterations and we
propose a link between the RAS pathway and mature
miRNA biogenesis.

Methods
Gene expression datasets
We used four public datasets, (oligonucleotide Affymetrix
U133A), from Japan [12], Memorial Sloan Kettering Can-
cer Center (MSKCC) [13], UK [14] and Genomics Insti-
tute of the Novartis Research Foundation (GINRF) [15].
Raw data were retrieved for a total of 77 normal tissue
samples, including epithelial/adenoid (44), hematopoietic
(1), neuroendocrine (6), gonadal (4), neural (9) and mes-
enchymal tissues (13), and 135 sarcoma samples (in-
cluding 28 non-myxoid liposarcomas comprised of 6
well-differentiated, 3 pleomorphic, and 19 dedifferen-
tiated, 30 round cell/myxoid liposarcomas, 16 fibrosar-
comas, 30 synovial sarcomas, 20 leiomyosarcomas, and
11 osteosarcomas – available in only one dataset). The
data were processed using the Robust Multi-Array
Average (RMA) algorithm. Non-biological experimental
variation (batch effect) between the datasets was cor-
rected using a previously described algorithm [16]. The
compendium of these public datasets was used as a dis-
covery set to identify candidate miRNAs with deregulated
activity.
For comparison purposes we processed raw data in a

similar manner from non-sarcoma datasets. Specifically,
we used three publicly available ovarian cancer (Duke
[17], Michigan [18], UPenn [19]) and three head and
neck cancer datasets (UPenn [20], University of Medi-
cine and Dentistry of New Jersey [21], UWisconsin [22]),
all oligonoucleotide Affymetrix U133A or U133 2.0 plus.

Paraffin-based validation cohort
We used 18 formalin-fixed paraffin-embedded (FFPE)
sarcoma samples from the pathology archive of Beth Is-
rael Deaconess Medical Center (BIDMC) and Boston
Children's Hospital (BCH). This work was done in ac-
cordance with a protocol for archival tissue collection
and use which was approved by the Institutional Review
Board (IRB) at both institutions. The requirement for a
patient consent form was waived by the IRB at BIDMC.
This cohort included 4 liposarcomas (all well-
differentiated, non-myxoid), 3 leiomyosarcomas, 2 syn-
ovial sarcomas, and 9 osteosarcomas.

FFPE RNA isolation, whole genome and miRNA profiling
FFPE samples were cut into 1–3 mm cores. Total RNA
was isolated using the Qiagen RNeasy FFPE protocol.
Whole genome c-DNA-mediated annealing, selection,
extension, and ligation (DASL) arrays, (Illumina, CA)
containing probes for 24,000 annotated genes, were used
for profiling. The DASL assay is a bead-based method
for expression profiling of degraded RNA, such as that
extracted from FFPE samples [23-27]. Similarly, miRNA
expression profiling was performed using miRNA DASL
assays, containing probes for 1146 miRNAs [28,29]. Raw
miRNA and mRNA DASL data have been deposited in
NCBI’s Gene Expression Omnibus (GSE35851, and
GSE35852) [30].
The expression profiling experiments were performed

at the Molecular Genetics Core at BCH. Normalization
was performed following manufacturer instructions
(Genome StudioTM, Gene Expression Module v1.0 User
Guide, Illumina). Background subtracted sample inten-
sities were scaled by a factor equal to the ratio of average
intensity of a virtual reference sample to the average in-
tensity of a given sample.

Small RNA sequencing
Total RNA samples were prepared for smRNA sequen-
cing using Illumina’s Small RNA v1.5 Sample Prepar-
ation Guide. Total RNA input ranged from 5-10 μg and
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first underwent 3′ and 5′ adaptor ligation followed by
reverse transcription and 12 cycles of amplification on a
Bio-Rad iCycler. cDNA constructs were then purified
using a 6% Novex TBE PAGE gel on Invitrogen’s XCell
SureLock Novex Mini-Cell System. Band sizes ranging
from 80-100 bp were cut from the gel and purified.
cDNA constructs were eluted from the gel and purified
by ethanol precipitation according to Illumina’s protocol.
Libraries were analyzed on Agilent’s 2100 Bioanalyzer
with a High Sensitivity DNA Chip specific for next gen-
eration sequencing. Final libraries were immobilized
onto a single read Illumina flowcell at a concentration of
12pM and underwent cluster amplification on Illumina’s
Cluster Station using their DGE Small RNA Cluster
Generation Kit. The amplified flowcell was then
sequenced on Illumina’s GAIIx with 36 cycles of
sequencing.
miRNA read mapping and quantification
The leading 21 bases were trimmed from the 36-bp
reads based on the quality score and the length of ma-
ture miRNAs. The trimmed reads were mapped to
miRNA precursor sequences in miRBase 16.0 [31] to
achieve more sensitive expression profiles using the soft-
ware miRExpress [32]. One base difference between the
reads and the miRNA precursor sequences was allowed,
which covered exact match, one gap, one base insertion,
and one base difference. The number of reads mapped
to a miRNA sequence was taken to represent the expres-
sion level of that miRNA.
miRNA activity algorithm
To assess miRNA activity patterns we used a recently
described algorithm [11] designed to take a set of gene
expression changes as a surrogate to determine relative
miRNA activity across two conditions. The algorithm is
based on the premise that expression changes of the tar-
get genes (miRanda target prediction algorithm) of a cer-
tain miRNA between two conditions reflect its activity.
In brief, the expression changes are ranked in a de-
creasing order (expression change vector). Next, the ex-
pression change vector is screened for the distribution
of genes with high binding affinity for a certain miRNA.
Under the null hypothesis of no miRNA activity
change, genes with high and low binding affinities will
position randomly in the expression change vector.
Thus, miRNA activity (or silencing) inference can be
made if the distribution of gene targets for a specific
miRNA is skewed on the expression vector. A positive
activity score (AS) indicates the miRNA has inferred ac-
tivation, while a negative activity score indicates miRNA
silencing.
Estimation of false discovery rate
An estimated false discovery rate (FDR) was based on
permutations of the gene expression data as previously
described [11]. In brief, for each miRNA (x) activity
scores are calculated for the original data (AS(x)), and
also for each of 1000 random permutations (k) of the
gene labels in the mRNA expression data (NS(x, k)). NS
(x, k) for all x and k is then used as the null distribution
for FDR calculation for a given AS(x) =AS*. If AS* ≥ 0,
the FDR estimate for miRNA x* is then defined as the
ratio of the percentage of all (x, k) where NS(x, k) ≥ 0,
and NS(x, k) ≥AS*, divided by the percentage of miR-
NAs with AS(x) ≥ 0, where AS(x)≥AS*, and similarly if
AS*< 0 [11].
Functional representational analysis
To explore biological themes in the miRNA activity pat-
terns we used functional representational analysis, as
previously described [33]. For each biologic theme, an
EASE (Expression Analysis Systematic Explorer) score is
calculated based on the over-representation, or lack
thereof, of genes belonging to that theme in the gene
pattern discriminating two conditions. The EASE score
is an adjusted Fisher’s test, further modified by the FDR
method.
Hierarchical clustering
Clustering was performed using the average linkage
method implemented in the NCI BRB Array Tools soft-
ware [34,35].
Predictions of RAS activation
We retrieved gene expression “read outs” of RAS activa-
tion previously validated by controlled RAS activation
in vitro. These “read outs” were used to train Bayesian
probit regression models of pathway activity [36]. We
applied these models to assign a probability of pathway
activation in individual sarcoma samples in our study.
Non-biological experimental variation between datasets
was corrected using the batch effect adjustment algo-
rithm as above. In order to afford high confidence for
activity calls a probability of 0.8 was the minimum for
predicted pathway activation.
Assessment of RAS-associated miRNA targets
The predicted mRNA targets of “RAS-switching” miR-
NAs were identified using the TargetScan and miRanda
algorithms (both available online) [37,38]. Relevant tran-
script levels between RAS-active and RAS-inactive
tumors were compared using a 1-tailed t-test assuming
heteroskedasticity.
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Results
miRNA activity in the different sarcoma histologies
The workflow of our study is described in Figure 1. We
integrated sarcoma and normal tissue samples from the
four public datasets and we adjusted for non-biological
experimental variation. This adjustment is important
when attempting integrated analysis of multiple micro-
array datasets to eliminate results reflecting non-biological
technical variation between datasets. We performed the
analysis separately for each histology (leiomyosarcoma -
LEIO, myxoid liposarcoma - LIPO myxoid, non-myxoid
liposarcoma - LIPO non-myxoid, synovial sarcoma -
SYN, fibrosarcoma - FIBRO) compared to the normal
tissue arrays as the comparator phenotype. We observed
a set of activated or silenced miRNAs in all sarcoma
histological subtypes compared to normal tissue samples
(Table 1, Additional file 1: Table S1 p = 0.005 and FDR=
0.01). Most of these miRNAs were commonly identified
as differentially activated in all sarcoma subtypes com-
pared to normal tissue samples (all Fisher’s exact test
p< 2e-16), suggesting that they may reflect generic
changes related to cancer transformation. There was also
a subset of non-overlapping miRNAs (Table 2) which
may be more specific to the different sarcoma differenti-
ation lines. We reasoned that we might gain further
insight into the specific sarcoma miRNA activity
Figure 1 Study flow. A) miRNA activity pattern assessment in four public
of miRNA activity with miRNA levels. D) miRNA-sequencing. E) Relationship
patterns by limiting the comparator phenotype to the
normal mesenchymal tissue and the results of this ana-
lysis are shown in Table 1 and Additional file 1: Table S1.
Using this procedure, we also identified 18 miRNAs with
a unique sarcoma subtype-specific activity pattern with
respect to normal mesenchymal tissue (Table 2). Several
of these miRNAs were also identified as differentially
activated with respect to the initial normal tissue com-
parator and are denoted in Table 2. We also explored
miRNA activity in osteosarcoma (OSTEO) samples.
Comparing the deregulated miRNAs from this analysis
with the respective miRNAs from the soft-tissue sarcoma
analysis we identified 12 miRNAs with unique activity
in osteosarcoma (Table 2, Additional file 1: Table S2,
Table S3).

Validation of miRNA activity patterns in a paraffin tissue
cohort
To validate the results obtained from the integrated gene
expression dataset we used an FFPE sarcoma tissue co-
hort previously profiled by our group using DASL [39].
We analyzed miRNA activity for LEIOs and LIPOs,
which were the most abundant subtypes represented in
that dataset (3 LIPOs, 3 LEIOs). Despite the relatively
small number of FFPE samples, a large fraction of the
candidate miRNAs was again found to be deregulated
datasets. B) Validation in a paraffin-based tissue cohort. C) Correlation
with RAS pathway status.



Table 1 miRNA activity patterns in sarcoma subtypes

VS ALL NORMAL TISSUE VS MESENCHYMAL NORMAL TISSUE

HISTOLOGICAL SUBTYPE Activated miRNAs Silenced miRNAs Activated miRNAs Silenced miRNAs

LEIO 67 27 71 41

myxoid LIPO 65 27 59 46

Non-myxoid LIPO 69 25 60 54

FIBRO 69 33 66 53

SYN 62 28 53 63

COMMON in all histologies 59 17 52 35

Shared miRNA activity profiles among the different histological subtypes compared to all normal tissue and to mesenchymal normal tissue (p = 0.005 and
FDR = 0.01).
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with respect to all normal tissue specimens exactly as
predicted by the discovery set (Figure 2, p = 0.005 and
FDR= 0.05, all Fisher’s exact test p< 4e-8). When we
used only the mesenchymal tissue subset as the com-
parator in the validation cohort, the overlap was also
very high (all Fisher’s exact test p< 0.0016). For the leio-
myosarcomas in the validation set, 25 miRNAs were
found to be activated and 12 were silenced. All except
Table 2 Histology-specific miRNA deregulation patterns

LEIO LIPOm FIBRO

hsa-miR-128b

hsa-miR-100

hsa-miR-99a hsa-miR-17-3p¹ hsa-miR-1

hsa-miR-212 hsa-miR-1

hsa-miR-199b

hsa-miR-98¹

hsa-miR-30

hsa-miR-374 hsa-miR-302a* hsa-miR-1

hsa-miR-361 hsa-miR-130 hsa-miR-

hsa-miR-

OSTEOSARCOMA SPECIFIC miRNAs

hsa-miR-122a hsa-miR-7 g

hsa-miR-18 hsa-miR-147

hsa-miR-34c hsa-miR-210 Activated m

hsa-miR-375 hsa-miR-187

hsa-miR-204 hsa-miR-134

hsa-miR-138 hsa-miR-211

Boldface denotes activated or silenced miRNAs compared to mesenchymal normal
compared to both mesenchymal normal tissue and all normal tissue. A superscript
one of these miRNAs was respectively identified as acti-
vated or silenced in the discovery set (25/25, 11/12). For
the liposarcomas, 5 miRNAs were found to be activated
and 23 were silenced. All 5 of the activated miRNAs
were also activated in the discovery set, and 21 of the
silenced miRNAs were also silenced in the discovery set.
Thus, the reproducibility was unlikely to be limited by
type of normal tissue comparator.
SYN

07¹ - Activated

28a miRNAs

hsa-miR-217¹

hsa-miR-181a

hsa-miR-330

a-3p hsa-miR-29c

54* hsa-miR-221 Silenced miRNAs

21¹ hsa-miR-217¹

208 hsa-miR-424

hsa-miR-25

hsa-miR-126*

hsa-miR-31

hsa-miR-302a

hsa-miR-26a¹

IRNAs

tissue only. Boldface italicized text denotes activated or silenced miRNAs
1 denotes miRNAs which are also differentially activated in epithelial cancers.



Figure 2 Validation of miRNA activity patterns in a paraffin-based tissue cohort. Activity patterns of many dysregulated candidate miRNAs
were reproducible in the validation set (LEIO and LIPO samples, p = 0.005, FDR= 0.05).
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Differentially active miRNAs may harbor a
sequence alteration
To investigate possible etiologies for differential activity,
we performed miRNA-sequencing on one leiomyosar-
coma, and one non-myxoid liposarcoma from the valid-
ation set with the hypothesis that miRNA sequence
alterations may account – at least in part – for activity
changes. The samples were each run in technical dupli-
cate on the Illumina GAIIx platform. By comparing
exact sequence mapping to reference miRNAs with se-
quence mapping allowing for a single base difference be-
tween reads and the reference, we identified several
differentially activated miRNAs with potential single
base alterations in both technical replicates for both
samples (Tables 3 and 4). As an example, sequencing
reads for the differentially activated miRNA, miR-422a
are shown in Table 3 with a complete list of miRNAs in
Table 3 Example of a potential miRNA sequence alteration

hsa-miR-422a ACUGGACUUAGGGUCAGAAGGC

Sample Sequencing Reads

LEIO_1 ACUGGACUU - GGGUCAGAAGGC

LEIO_2 ACUGGACUU - GGGUCAGAAGGC

LIPO_1 ACUGGACUU - GGGUCAGAAGGC

LIPO_2 ACUGGACUU - GGGUCAGAAGGC

The reference mature sequence of miR-422a is shown along with RNA-sequencing
(LIPO). The column denoted by "≤ 1 bases different" reports the number of sequen
reference. The column denoted by "0 bases different" reports sequencing reads wh
Table 4. We observed that in addition to reads mapping
directly to reference miRNA sequences, there were also
a substantial number of reads (distinct from the refer-
ence by one base) which mapped to no region of the
human genome, suggesting either post-transcriptional
modification, or copy number changes combined with
mutation. While a potential limitation of our results
would be if there is an unknown sequence-specific bias
in our platform or if we are detecting novel miRNAs, we
are fairly confident that miRNA alterations exist in these
tissue samples. Because the sequencing read length (36
bases) is longer than the length of the mature form of
miRNAs, and because two independent samples which
underwent independent sequencing library preparation
were run in duplicate on four flow cell lanes, there is lit-
tle chance that experimental variability could account
for all of the possible alterations described. This is
Counts (≤1 Bases Different) Counts (0 Bases Different)

10 0

15 0

25 0

15 0

reads for each duplicate of one leiomyosarcoma (LEIO) and one liposarcoma
cing reads when allowing for a single base difference in mapping to the
en allowing for no differences in mapping to the reference.



Table 4 Differentially activated miRNAs with possible sequence alterations

VS ALL NORMAL TISSUE SAMPLES VS MESENCHYMAL NORMAL TISSUE SAMPLES

Activated miRNAs Silenced miRNAs Activated miRNAs Silenced miRNAs

hsa-let-7e hsa-miR-186 hsa-miR-328 hsa-miR-19a

hsa-miR-24 hsa-miR-19b hsa-miR-324-5p hsa-miR-19b

hsa-miR-185 hsa-miR-101 hsa-miR-24 hsa-miR-186

hsa-let-7c hsa-miR-203 hsa-miR-378 hsa-miR-32

hsa-let-7i hsa-miR-200b hsa-let-7b hsa-miR-203

hsa-miR-22 hsa-miR-32 hsa-miR-125b hsa-miR-26b

hsa-miR-125b hsa-miR-19a hsa-let-7c hsa-miR-200b

hsa-miR-378 hsa-miR-26b hsa-miR-340 hsa-miR-101

hsa-let-7d hsa-miR-214

hsa-miR-197 hsa-let-7e

hsa-miR-214 hsa-miR-34a

hsa-miR-340 hsa-let-7d

hsa-miR-34a hsa-let-7i

hsa-let-7b hsa-miR-422a

hsa-miR-145 hsa-let-7a

hsa-miR-324-5p hsa-miR-197

hsa-miR-328 hsa-miR-425

hsa-miR-210 hsa-miR-185

hsa-miR-425 hsa-miR-210

hsa-miR-422a hsa-miR-145

hsa-let-7a hsa-miR-22

A subset of differentially activated miRNAs with respect to all normal tissues (left columns) or mesenchymal normal tissues (right columns), that harbor possible
sequence alterations.
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further supported by base call quality scores from the
FastQC report which imply an estimated base call accur-
acy of 99.9% (mean score 30).
Imperfect correlation between miRNA activity and miRNA
expression levels
Based on recent observations, the intuitive question –
which is also highlighted by the finding of potential
miRNA sequence alterations above – of whether miRNA
expression levels correlate well with miRNA activity in
human tissue has been raised, and we have explored this
for the first time in sarcoma [40]. Because the public sar-
coma datasets used lacked miRNA expression data and
our previously profiled paraffin dataset lacked normal
tissue samples, we could not directly compare miRNA
activity changes and expression levels in either the pub-
lic frozen tissue-based or the paraffin-based datasets,
therefore, we used an indirect approach. We performed
supervised hierarchical clustering using the expression
levels of the sarcoma subtype-specific miRNAs, (chosen
based on activity in the discovery set) and observed
whether the FFPE sarcoma samples would separate
based on histology. Our analysis demonstrates that they
did not (Figure 3). Given the possibility of confounding
by inclusion of osteosarcomas, we attempted to cluster
the samples excluding the osteosarcomas and again we
did not observe a reasonable separation. Finally we lim-
ited our analysis to the top 50% most variant miRNAs (in
terms of expression) and observed an improvement on
the separation of the soft-tissue sarcoma samples. These
results suggest that miRNA activity is not perfectly corre-
lated with miRNA expression levels although the correl-
ation might be stronger with larger expression changes.
Sarcomas demonstrate partially different miRNA activity
patterns compared to epithelial cancers
To investigate the degree to which miRNA activity patterns
that we discovered are unique to sarcoma, we compared
samples from three ovarian and three head and neck can-
cer datasets with the same normal tissue samples (from
GINRF) that we had previously used for the sarcoma ana-
lysis, and identified differentially activated miRNAs. This
analysis revealed that the majority of the histology specific
miRNAs described above were unique to sarcoma and
were not shared with the epithelial tumors (23/28 miRNAs
were unique to sarcoma; Table 2).
However, we also found that the miRNAs which were

commonly activated in sarcomas with respect to both all
normal tissue and mesenchymal normal tissue highly
overlapped (50 out of 53 miRNAs; Fisher’s exact test



Figure 3 Imperfect correlation between miRNA activity and miRNA expression levels. Hierarchical clustering based on histology-specific
miRNAs: A) Using all samples (soft-tissue sarcomas and osteosarcomas), B) using only soft-tissue sarcomas, C) using soft-tissue sarcomas while
limiting the analysis to the most variant miRNAs.

Fountzilas et al. BMC Genomics 2012, 13:332 Page 8 of 12
http://www.biomedcentral.com/1471-2164/13/332
p< 2e-45) with the miRNAs which were commonly acti-
vated in both the HNC and Ovarian cancer tissue sam-
ples. Interestingly, the same was not true of commonly
silenced miRNAs in the sarcoma subtypes. Of the 17
miRNAs commonly silenced in sarcomas with respect to
both all normal and mesenchymal tissue, only 1 was also
commonly silenced in both the HNC and Ovarian sam-
ples (Additional file 1: Table S4). Therefore, it appears
that many activated miRNAs are common to epithelial
cancers, and may represent a more general cancer
phenomenon. There are, however, several silenced miR-
NAs which are common to all sarcoma histological sub-
types which appear to be silenced only in sarcomas.

RAS pathway status is associated with miRNA activity and
mature miRNA biogenesis
In order to further explore possible biological connec-
tions with important cancer pathways, we hypothesized
that sarcoma phenotypes characterized by distinct acti-
vation of a known oncogenic pathway may demonstrate
different miRNA activity patterns. In order to test this,
we compared miRNA activity patterns between the sar-
coma samples that demonstrated RAS pathway
activation to those that did not. The pathway activation
predictions were made based on published gene expres-
sion signatures of oncogenic pathway activation [36].
There was some variation in the prevalence of RAS ac-
tivity across histological subtypes. The fractions of “RAS
active” samples were 19/28, 6/30, 9/16, 3/30, and 8/20
for non-myxoid liposarcoma, myxoid liposarcoma, fibro-
sarcoma, synovial sarcoma, and leiomyosarcoma respect-
ively. Indeed, we found that both in aggregate (all
subtypes taken together) and in a subtype-specific man-
ner, samples separated by RAS activity status demon-
strated different activity profiles. Specifically, we
identified 42 miRNAs activated in the aggregate “RAS
active” group and 30 miRNAs silenced in aggregate
“RAS non-active” group (Additional file 1: Table S5,
Table S6; p = 0.005 and FDR= 0.01). Among these miR-
NAs, 21 were present in both lists (Fisher’s exact test
p< 6e-11), suggesting that these miRNAs may reverse
their activity upon transition to RAS-active tumor status
(“RAS-switching” miRNAs). Furthermore, it has been
shown that miR-7 – one member of this list – is tran-
scribed as a result of RAS signaling [41]. When we
examine RAS-associated miRNA activity changes by
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specific subtype, the results for non-myxoid liposarco-
mas and synovial sarcomas are largely overlapping with
the aggregated analysis, however, it does not appear that
there are significant RAS-switching miRNAs in the other
histological subtypes (Additional file 1: Table S7).
Interestingly, many of the RAS-switching miRNAs

from the aggregate, non-myxoid liposarcoma, and syn-
ovial sarcoma analyses have predicted mRNA targets
which translate to proteins in the miRNA processing
machinery. Using both TargetScan and miRanda, we
found that six of the twenty-one miRNAs from the ag-
gregate analysis are predicted to target AGO2, four are
predicted to target DROSHA, four target DICER1, three
target TRBP, and one targets DGCR8. In all, nine of the
twenty-one identified RAS-switching miRNAs target one
or more of the established miRNA processing genes.
Furthermore, miR-144, identified as switching specific-
ally in non-myxoid liposarcoma, and synovial sarcoma,
is predicted to target DICER1. A summary of these find-
ings is presented in Table 5. To evidence that these miR-
NAs actually target the processing machinery genes, we
examined the transcript levels of these genes (deter-
mined by microarray) in RAS-active tumors relative to
RAS-inactive tumors, with the hypothesis that they
would be down-regulated. Indeed, we observed statisti-
cally significant down-regulation of TARBP2, DICER1,
DROSHA, and DGCR8 in RAS-active tumors (1-tailed
t-tests: p = 0.00056, 0.0019, 1.24e-5, and 0.00020 respect-
ively). This indicates that RAS status may be related to a
miRNA-based regulation of global miRNA processing.

Biological themes represented in distinct miRNA
activity patterns
To identify other possible biological mechanisms that
may be perturbed by miRNA activity changes we used
predicted gene targets for each histology-specific miRNA
to discover biological themes overrepresented in these
target gene sets. We identified a number of biological
themes that seem to be shared by the majority of the
Table 5 Summary of predicted RAS-related miRNA targets

miRNA RAS+ Tumors RAS- Tumors

hsa-miR-200b On Off

hsa-miR-27b On Off

hsa-miR-424 On Off

hsa-miR-99a On Off

hsa-miR-200c On Off

hsa-miR-31 On Off

hsa-miR-15a On Off

hsa-miR-16 On Off

hsa-miR-27a On Off

Predicted mRNA targets of "RAS-switching" miRNAs related to miRNA processing ar
indicate whether RAS-switching miRNAs are activated (On) or inactivated (Off) relat
sarcoma subtypes. However, there were some unique
themes in each histological subtype, for instance the
extracellular matrix and inflammatory response path-
ways in synovial sarcoma. The full list of biological
themes is presented in Additional file 1: Table S8 (EASE
Score = 0.05, global FDR= 0).

Discussion
miRNAs have been shown to play a critical role in many
biological processes, including cell proliferation, cell
cycle, differentiation and apoptosis [1-5]. Their primary
function was initially thought to be the direct inhibition
of translation, but they are now recognized to target
mRNAs for degradation [42]. It has been suggested that
the effect of a miRNA on its target mRNA depends on
the strength of their binding and the degree of sequence
complementarity. Under this paradigm, perfect pairing
leads to mRNA degradation, while imperfect pairing
results in translation inhibition [43]. Until recently, most
miRNA studies have focused on expression levels, but
clinical data on miRNA activity are lacking and it is un-
clear if miRNA expression levels are a good surrogate
for activity.
Sarcomas – a uniquely complex group of mesenchy-

mal tumors – are perfect candidates for exploring the
regulatory role of miRNAs with the aims of better
understanding their biology, and developing clinical bio-
markers and therapeutic targets. To our knowledge, there
is limited information on the role of miRNAs in sarcoma.
Subramanian et al. used miRNA expression levels to
characterize various sarcoma subtypes with distinct
miRNA profiles, thereby supporting the possible import-
ance of miRNAs in the biology of these tumors [8].
Our goal was to determine miRNA activity in some of

the most common sarcoma subtypes with a recently
developed algorithm which uses sarcoma gene expres-
sion data as a surrogate. We identified several miRNAs
that appear specifically deregulated in each sarcoma sub-
type, using normal tissue as a comparator. Despite the
Target Scan Predictions miRanda Predictions

DROSHA

EIF2C2, DROSHA EIF2C2, DROSHA

DICER1, TARBP2 EIF2C2, TARBP2

EIF2C2 EIF2C2

DROSHA

DICER1, DGCR8 DICER1, DGCR8

DICER1, TARBP2 EIF2C2, DICER1, TARBP2

DICER1, TARBP2 EIF2C2, DICER1, TARBP2

EIF2C2, DROSHA EIF2C2, DROSHA

e summarized. The columns denoted "RAS + Tumors" and "RAS- Tumors"
ive to normal tissue for RAS-active and RAS-inactive tumors respectively.



Fountzilas et al. BMC Genomics 2012, 13:332 Page 10 of 12
http://www.biomedcentral.com/1471-2164/13/332
technical challenges associated with confirming in silico
findings, we validated the deregulated activity of many
of these candidate miRNAs using a paraffin-based co-
hort. The majority of these miRNAs were shared in all
histological subtypes, suggesting that they are perhaps
related to a general neoplastic transformation. Another
subset, however, appeared to be unique to each sarcoma
subtype. In order to further corroborate the miRNA speci-
ficity for each sarcoma subtype, we performed miRNA ac-
tivity analysis using ovarian and head and neck cancer
datasets and the same normal tissue cohort as a compara-
tor. This analysis demonstrated that the majority of the
sarcoma subtype-specific miRNAs were also truly unique
to sarcoma subtypes. At the same time, our findings sup-
port the notion that certain common miRNA activity
changes in sarcomas may be related to a general cancer
phenotype as nearly all of these miRNAs were also acti-
vated in both the ovarian and head and neck tumors.
We were then interested in uncovering potential eti-

ologies for differential activity, one example being mature
miRNA sequence alterations. Using RNA-sequencing on
two of the FFPE specimens from our validation cohort
we found that several miRNAs which we identified as
differentially activated in all sarcomas relative to normal
tissue harbor possible sequence alterations. Whether
this is indicative of mutation or post-transcriptional
processing is unclear because we did not perform gen-
omic DNA sequencing, but nevertheless, an impact
on miRNA activity could be explained by either
phenomenon. We reason that a miRNA base deletion
could conceivably lead to either increased or decreased
activity because target complementarity may be either
increased or decreased as a result. Another explanation
for differential activity could be the presence of a
chromosomal translocation. We identified the chromo-
somal locations of miRNAs identified as sarcoma
subtype-specific in our study, and we found that miR-
221, which was uniquely silenced in synovial sarcoma in
our analysis, is located at Xp11.3, very near the com-
mon synovial chromosomal translocation t(X;18)(p11.2,
q11.2) [44]. Rigorously investigating all possible reasons
for differential activity is beyond the scope of this study,
but our findings regarding potential miRNA sequence
alterations suggest that mutation, post-transcriptional
modification, and/or chromosomal aberrations may play
a prominent role.
To explore how differential miRNA activity may mani-

fest characteristic phenotypic states in cancer, we evalu-
ated the relationship between miRNA activation and
RAS signaling. We categorized sarcoma samples as
RAS-active versus RAS-inactive using previously vali-
dated expression “read outs” of RAS activity [36]. The
data demonstrated that, in aggregate, sarcomas with ac-
tive RAS were characterized by different miRNA activity
profiles compared to sarcomas without active RAS and,
interestingly, a subset of miRNAs appeared to “switch”
activity between the two pathway “classes.” We also
examined the distributions of RAS status with respect to
histological subtype and found considerable variability in
the rates of RAS activation. This suggests that RAS
pathway activity may be sarcoma-subtype-specific per se.
Performing the activity analysis separately on each
of the histological subtypes revealed that significant
“RAS-switching” miRNAs were present in only the non-
myxoid liposarcomas and the synovial sarcomas. Inter-
estingly, one of these miRNAs, miR-7, has been shown
to promote tumorigenesis via regulation by a mechanism
in which RAS signaling increases miR-7 transcription
[41]. We propose that the increased expression of miR-7
in some RAS-active sarcomas also leads to increased
miRNA activity as determined by our computational ap-
proach. A very interesting finding is that many of the
identified RAS-switching miRNAs have predicted
mRNA targets which encode proteins in the endogenous
miRNA processing machinery. In all, nearly half of these
miRNAs target one or more of the processing protein
transcripts, and we confirmed significantly decreased ex-
pression of these mRNAs in RAS-active tumors. We
therefore hypothesize that miRNA repression of proces-
sing proteins contributes to the observed down-
regulation of some miRNAs in human tumors. This
seems plausible as a similar phenomenon of Dicer regu-
lation has been described [45]. These observations re-
quire further work to examine whether the miRNA
activity changes are contributory or causal in the RAS ac-
tivation process, and to examine the link between
miRNA processing machinery, RAS, and miRNA activity.
In addition to exploring miRNA activity, our study

addresses the question of whether miRNA expression
levels are reasonable surrogates for activity in sarcomas.
Our data suggest that there is an imperfect relationship
between activity and expression levels, and that it may
be stronger for highly variant (in terms of expression
level) miRNAs. It has been suggested that dramatic
changes in miRNA levels may predictably result in activ-
ity changes, but activity can change even with small
changes in expression level for various other reasons
[46,47]. For instance, functional alterations of proteins
that have a role in the RNA-induced silencing complex
(RISC), such as Argonaute, can cause activity changes
without affecting miRNA levels [46]. miRNA mutations
can also cause altered miRNA activity while leaving the
miRNA expression levels measured by microarray intact.
Finally, it has been shown that certain transcripts may
act as miRNA “sponges,” whereby miRNA regulatory
effects may be modulated without changing their expres-
sion levels [47]. Supporting these notions is a compari-
son of our findings and those of Subramanian et al.
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based on expression levels [8]. We found only two syn-
ovial sarcoma-specific miRNAs, miR-126 and miR-129,
that have both lower expression levels and decreased ac-
tivity in both studies. While this question merits further
study, these observations support the notion that expres-
sion levels and target mRNA levels capture different
aspects of miRNA regulatory activity in sarcomas.
Conclusions
In conclusion, we present the first human specimen-
based study using gene expression as a surrogate for
miRNA activity patterns in sarcomas, while validating
many of these miRNAs using a paraffin-embedded tissue
cohort. Our analysis uncovers possible miRNA sequence
alterations as a potential reason for differential activity,
and we identify an association between RAS signaling
and miRNA processing in which miRNAs may attenuate
their own biogenesis. We show how relationships be-
tween miRNA activity and critical pathways can be
assessed by high throughput genome-wide analysis. The
logical next step would be a “Systems” level integration
of miRNA, mRNA, and proteomic data, which would
allow more comprehensive and definitive explorations of
the role of miRNAs in mesenchymal tumors, and other
malignancies.
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