Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Published Version
doi://10.1136/ard.2010.141473

Accessed

Citable Link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10483959

Terms of Use
This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

(Article begins on next page)
Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study

ABSTRACT

Objectives The genetic aetiology of osteoarthritis has not yet been elucidated. To enable a well-powered genome-wide association study (GWAS) for osteoarthritis, the authors have formed the arcOGEN Consortium, a UK-wide collaborative effort aiming to scan genome-wide over 7500 osteoarthritis cases in a two-stage genome-wide association scan. Here the authors report the findings of the stage 1 interim analysis.

Methods The authors have performed a genome-wide association scan for knee and hip osteoarthritis in 3177 cases and 4894 population-based controls from the UK. Replication of promising signals was carried out in silico in five further scans (44,449 individuals), and de novo in 14,534 independent samples, all of European descent.

Results None of the association signals the authors identified reach genome-wide levels of statistical significance, therefore stressing the need for corroboration in sample sets of a larger size. Application of analytical approaches to examine the allelic architecture of disease to the stage 1 genome-wide association scan data suggests that osteoarthritis is a highly polygenic disease with multiple risk variants conferring small effects.

Conclusions Identifying loci conferring susceptibility to osteoarthritis will require large-scale sample sizes and well-defined phenotypes to minimise heterogeneity.

Osteoarthritis is the most common form of arthritis affecting 40% of people over the age of 70 years, and is associated with a substantial health economic burden. Osteoarthritis is thought to be caused by a complex interplay between environmental and genetic factors.1 As with many common complex disorders, the genetic architecture of osteoarthritis has not yet been characterised. Over the past decade, candidate gene association studies and genome-wide linkage scans have failed to identify robustly replicating osteoarthritis loci, with the notable exception of rs143383 in the GDF5 gene.2 A genome-wide association study (GWAS) recently reported a single novel locus associated with radiographically defined knee and/or hip osteoarthritis on chromosome 7q22 (rs3815148 in the COG5 gene),3 subsequently corroborated by a genome-wide association scan across four studies including the discovery set.4 Both established that osteoarthritis loci are represented by common variants (>0.2 minor-allele frequency), have small effect sizes (allelic OR ~1.15), and reach genome-wide significance (p<5×10 −8).4,5 These associations have characteristics typical of common complex traits and require large sample sizes for their detection. To enable a well-powered GWAS for osteoarthritis, we formed the arcOGEN Consortium, a UK-wide collaborative effort aiming to scan genome-wide over 7500 osteoarthritis cases in a two-stage genome-wide association scan. Here we report the findings of our GWAS stage 1 analysis and replication studies, and describe the outcomes of statistical analyses designed to model the genetic architecture of osteoarthritis.

METHODS

An expanded description of the methods is provided in supplementary methods (available online only). The stage 1 genome-wide association scan included 3177 knee and/or hip osteoarthritis cases from the UK ascertained based on radiographic evidence of disease (Kellgren–Lawrence grade ≥2)6 or clinical evidence of disease to a level requiring joint replacement. Cases were genotyped using the Illumina Human610 platform (Illumina, San Diego, California, USA). We used 4894 early-access publicly
was no signal exceeding genome-wide significance (p<5×10^{−8}),
polygenic inheritance. We used the arcOGEN stage 1 GWAS to
osteoarthritis was obtained for rs4512391 on chr8 (OR for allele
independent (r^2<0.4) SNP with p<0.0001 to in-silico replication
but typed on a different platform and one non-overlapping set
case genotypes against different control sets (one overlapping
frequencies across 514,898 autosomal single-nucleotide polymor-
SNP passing quality control criteria. We also carried out
specific stratified analyses (for hip and knee osteoarthritis).
We carried out sensitivity analyses by comparing genome-wide
case genotypes against different control sets (one overlapping
otype with p values of less than 10^{−4} (as opposed to 51
expected under the null, binomial p=10^{−6}).
The strongest statistical evidence for association with
osteoarthritis was obtained for rs4512391 on chr8 (OR for allele
C 1.17; 95% CI 1.10 to 1.25; p=1.8×10^{−6}) approximately 66 kb
upstream of the TRIB1 gene. For knee osteoarthritis the most
significant finding was also observed at rs4512391 (OR for allele
C 1.23; 95% CI 1.13 to 1.33; p=1.1×10^{−6}); for hip osteoarthritis,
the strongest signal was rs4977469 (OR for allele A 1.30, 95%
CI 1.17 to 1.45; p=1.2×10^{−6}), within intron 3 of the predicted
PAM544 gene (supplementary figure 1; supplementary figure 4;
supplementary table 2, available online only). Following rep-
study in up to 50,917 independent European-ancestry samples,
the overall statistical evidence for association was
reduced, with the strongest signal for knee and/or hip osteo-
arthritis observed at rs2777831 on chr22 (OR for allele G 1.07,
95% CI 1.04 to 1.11; combined p=2.8×10^{−5}), within intron 32 of
the MICAL3 gene. For knee osteoarthritis the most significant
finding post-replication was observed at rs11280 (OR for allele
C 1.10, 95% CI 1.05 to 1.16; p=3.2×10^{−5}), within C6orf130; for
hip osteoarthritis, the strongest signal was at rs2615977 (OR for
allele A 1.10, 95% CI 1.05 to 1.15; p=1.1×10^{−5}) within intron 31 of
the C6orf130 gene (supplementary figure 1; supplementary
frequencies/rare variant analysis did not identify any additional
osteoarthritis signals (supplementary methods; supplementary
results, available online only).

The arcOGEN stage 1 GWAS is well powered to detect asso-
ciation with common variants of modest effect at the genome-
wide significance level (eg, 90% power to detect an allelic OR of
1.25 at a SNP with frequency 0.5). However, it is poorly pow-
ered to detect effects at the established osteoarthritis variants
(8% and 4% power for CD5f and 7q22, respectively), as the
index SNP (rs143383, risk allele frequency 0.67; rs3815148, risk
allele frequency 0.25) both have small effect sizes (OR ~1.15). Retaining
the arcOGEN case–control ratio of 1.54, 7,774 cases
would be required to achieve 80% power to detect an allelic OR
of 1.15 at a SNP with risk allele frequency 0.67, and 9,084 cases
would be required to achieve the same power to detect the same
effect size at a SNP with risk allele frequency 0.23.

To evaluate the robustness of association signals, we per-
formed sensitivity analyses using different control sets. We first
used ‘supercontrols’ (hip and knee osteoarthritis-free individuals)
and found high correlation between association effect estimates
(r=0.88) and 95% concordance in the direction of effects (sup-
plementary results, available online only). The two established
osteoarthritis loci demonstrated stronger evidence for associa-
tion compared with the main analysis, even though the ‘super-
control’ sample size was smaller. We also used a subset of the
population-based controls, genotyped on a different platform, to
assess robustness to the typing method. We observed 100% con-
cordance in the direction of effect and high correlation between
estimates of the OR (r=0.94) (supplementary results, available
online only). Therefore, the choice of controls may have affected
association strength but not the direction of effect.

The genetic architecture of osteoarthritis is likely to be poly-
genic with multiple variants along the spectrum of allele fre-
frequencies contributing modest and small effects. Our polygene
analyses support a model of osteoarthritis in which there is a
substantial genetic component comprising multiple contributing
variants with small effect sizes (figure 1). SNP with p values
as high as 0.25 appear to contribute to the genetic component of
osteoarthritis (empirical p=3×10^{−5}, based on ∼85 million perfor-
ations), with the bulk of the contribution seen in the 0–0.1 p
value range (empirical p=3.5×10^{−5}, ~101 million permutations).
Evaluation of discreet p value bins corroborates this observation
and supports a role for SNP with p values up to 0.25 (0.10>p>0.15
bin empirical p=0.06; 0.15>p>0.20 bin p=0.0072; 0.20>p>0.25
bin p=0.022), but with the major contribution coming from
SNP with p<0.10 (0>p>0.05 bin p=3×10^{−5}; 0.05>p>0.10
bin p=0.0092). The estimated proportion of variance in disease state
explained by the osteoarthritis score alleles is 3.05% (p=3.3×10^{−4}
based on nine million permutations). This is in keeping with
findings in other complex common diseases.7

DISCUSSION

Our stage 1 arcOGEN genome-wide association scan analysis
results are in agreement with other large-scale genetic studies,3 4

RESULTS

In our stage 1 genome-wide association scan analysis, we observed a slight excess of associations compared with the null
distribution (supplementary figure 2, available online only) and
similar patterns of association for the joint and gender-stratified analyses (supplementary results; supplementary figure 3, available
online only). The genomic control inflation factor λ was 1.077, in keeping with other UK-based GWAS.8 Although there
was no signal exceeding genome-wide significance (p<5×10^{−5}), 89 SNP reached p values of less than 10^{−4} (as opposed to 51
expected under the null, binomial p=10^{−6}).

The strongest statistical evidence for association with osteoarthritis was obtained for rs4512391 on chr8 (OR for allele
C 1.17; 95% CI 1.10 to 1.25; p=1.8×10^{−6}) approximately 66 kb
upstream of the TRIB1 gene. For knee osteoarthritis the most
significant finding was also observed at rs4512391 (OR for allele
C 1.23; 95% CI 1.13 to 1.33; p=1.1×10^{−6}); for hip osteoarthritis,
the strongest signal was rs4977469 (OR for allele A 1.30, 95%
CI 1.17 to 1.45; p=1.2×10^{−6}), within intron 3 of the predicted
PAM544 gene (supplementary figure 1; supplementary figure 4;
supplementary table 2, available online only). Following rep-
lication studies in up to 50,917 independent European-ancestry samples, the overall statistical evidence for association was
reduced, with the strongest signal for knee and/or hip osteo-
arthritis observed at rs2777831 on chr22 (OR for allele G 1.07,
95% CI 1.04 to 1.11; combined p=2.8×10^{−5}), within intron 32 of
the MICAL3 gene. For knee osteoarthritis the most significant
findings post-replication was observed at rs11280 (OR for allele
C 1.10, 95% CI 1.05 to 1.16; p=3.2×10^{−5}), within C6orf130; for
hip osteoarthritis, the strongest signal was at rs2615977 (OR for
allele A 1.10, 95% CI 1.05 to 1.15; p=1.1×10^{−5}) within intron 31 of
the C6orf130 gene (supplementary figure 1; supplementary
frequencies contributing modest and small effects. Our polygene
analyses support a model of osteoarthritis in which there is a
substantial genetic component comprising multiple contributing
variants with small effect sizes (figure 1). SNP with p values
as high as 0.25 appear to contribute to the genetic component of
osteoarthritis (empirical p=3×10^{−5}, based on ∼85 million perfor-
ations), with the bulk of the contribution seen in the 0–0.1 p
value range (empirical p=3.5×10^{−5}, ~101 million permutations).
Evaluation of discreet p value bins corroborates this observation
and supports a role for SNP with p values up to 0.25 (0.10>p>0.15
bin empirical p=0.06; 0.15>p>0.20 bin p=0.0072; 0.20>p>0.25
bin p=0.022), but with the major contribution coming from
SNP with p<0.10 (0>p>0.05 bin p=3×10^{−5}; 0.05>p>0.10
bin p=0.0092). The estimated proportion of variance in disease state
explained by the osteoarthritis score alleles is 3.05% (p=3.3×10^{−4}
based on nine million permutations). This is in keeping with
findings in other complex common diseases.7

DISCUSSION

Our stage 1 arcOGEN genome-wide association scan analysis
results are in agreement with other large-scale genetic studies,3 4
and clearly indicate that common SNP with large effect sizes are not likely to underpin the aetiology of osteoarthritis. The only two established osteoarthritis loci to date have small OR and our polygene analyses on common SNP suggest that the genetic architecture of osteoarthritis is likely to consist of numerous signals of similar magnitude. The significant increase in sample size with stage 2 of the arcOGEN genome-wide association scan (~2.4 times as many cases) will increase the power to detect osteoarthritis associations. In addition, large-scale international meta-analysis efforts are underway and will ensure maximal GWAS sample size. A further important parameter in enhancing power and increasing the chances of success involves the improved definition of phenotype. One of the reasons why replication of findings has been difficult to achieve in osteoarthritis could be the inherent heterogeneity of the different osteoarthritis diagnostic and study inclusion criteria used. The field is currently active in evaluating phenotype definition differences and their effects on study power.

The Wellcome Trust Case Control Consortium first demonstrated the utility of population-based, rather than disease-free, controls in GWAS. Our ‘supercontrol’-based sensitivity analyses suggest that for a highly prevalent and heterogeneous disorder such as osteoarthritis, with multiple smaller effects contributing to overall susceptibility, the brute force approach of maximising sample size to balance misclassification in controls is not as successful as it has been for other common diseases, in which ‘low-hanging fruit’ discoveries (of loci with substantial effects) were robust to subtle allele frequency fluctuations.

Osteoarthritis is a heterogeneous disease characterised by variable clinical features with conceivably different genetic aetologies. Although the allele score was associated with osteoarthritis, the proportion of disease variance explained cannot be highly accurately quantified, primarily because of signal attenuation (risk alleles are unlikely to be at the actual causal locus) and sampling variation. The genetic architecture of osteoarthritis is emerging as complex. Large-scale sample sizes and well-defined phenotypes will be required to gain a better understanding of this genetic component, possibly leading to optimising treatment, developing efficacious disease-modifying interventions, improving prognosis and tailoring intervention to the individual.

Funding This study was financially supported by Arthritis Research UK.

Competing interests None.

Ethics approval This study was conducted with the approval of the Oxfordshire Research Ethics Committee C reference 07/H0606/150.

Provenance and peer review Not commissioned; externally peer reviewed

Author affiliations

1. Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
2. MRC Epidemiology Resource Centre, University of Southampton, Southampton, UK
3. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
5. Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
6. deCODE Genetics, Reykjavik, Iceland
7. NIHR Biomedical Research Unit, University of Oxford, Oxford, UK
8. MRC Epidemiology Resource Centre, University of Southampton, Southampton, UK
9. Academic Rheumatology, University of Nottingham, Nottingham, UK
10. Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne, UK
11. The Newcastle upon Tyne Hospitals NHS Trust Foundation Trust, The Freeman Hospital, Byker, Newcastle upon Tyne, UK
12. Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, UK
13. Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
14. Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, UK
15. Academic Unit of Bone Metabolism, Department of Human Metabolism, University of Sheffield, Sheffield, UK
16. Sheffield NIHR Bone Biomedical Research Unit, Centre for Biomedical Research, Northern General Hospital, Sheffield, UK
17. Wellcome Trust Clinical Research Facility, Southampton General Hospital, Southampton, UK
18. INIBIC-Hospital Universitario A Coruña, Osteoarticular and Aging Research Laboratory, A Coruña, Spain
19. Boston University School of Public Health, Boston, Massachusetts, USA
20. Estonian Genome Center, University of Tartu, Tartu, Estonia
21. Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
22. Estonian Biocenter, Tartu, Estonia
REFERENCES

