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Similar Genetic Mechanisms Underlie the Parallel
Evolution of Floral Phenotypes
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Abstract

The repeated origin of similar phenotypes is invaluable for studying the underlying genetics of adaptive traits; molecular
evidence, however, is lacking for most examples of such similarity. The floral morphology of neotropical Malpighiaceae is
distinctive and highly conserved, especially with regard to symmetry, and is thought to result from specialization on oil-bee
pollinators. We recently demonstrated that CYCLOIDEA2–like genes (CYC2A and CYC2B) are associated with the development
of the stereotypical floral zygomorphy that is critical to this plant–pollinator mutualism. Here, we build on this
developmental framework to characterize floral symmetry in three clades of Malpighiaceae that have independently lost
their oil bee association and experienced parallel shifts in their floral morphology, especially in regard to symmetry. We
show that in each case these species exhibit a loss of CYC2B function, and a strikingly similar shift in the expression of CYC2A
that is coincident with their shift in floral symmetry. These results indicate that similar floral phenotypes in this large
angiosperm clade have evolved via parallel genetic changes from an otherwise highly conserved developmental program.
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Introduction

Numerous comparative developmental genetic studies from

diverse angiosperm lineages have shown that floral zygomorphy,

or bilateral symmetry, has evolved via the repeated recruitment of

CYC2-like genes of the TCP (Teosinte Branched 1, CYCLOIDEA and

PCF) transcription factor family ([1], reviewed in [2,3]). These

studies have revealed frequent gene duplications during the

evolution of CYC2 [4,5,6,7,8,9,10,11,12,13,14] as well as a close

correlation between the persistent expression of CYC2 homologs in

dorsal floral organs, especially the petals. While some of this data is

from correlative patterns of gene expression from non–model

species [8,14,15,16,17,18,19,20,21,22,23], it also includes zygo-

morphic model species with functional data

[24,25,26,27,28,29,30]. Furthermore, once established in zygo-

morphic flowered lineages, modification of this CYC2 program is

associated with evolutionary variation in floral symmetry, includ-

ing reversions to actinomorphy [15,16,17,19,20,21,22,23,31,32].

This is particularly fascinating because floral zygomorphy has

arisen at least 38 times [33,34,35] and is a hallmark feature of the

most diverse angiosperm clades, including Asteraceae (24,000 sp.),

Fabaceae (19,000 sp.), and Lamiales (23,000 sp.) [36,37]. The

evolution of floral zygomorphy is thus an important innovation in

flowering plants and is thought to have arisen principally from

specialization on insect pollinators [38,39].

The tropical plant clade Malpighiaceae exhibits a strong

association between floral zygomorphy and specialist insect

pollinators. The floral morphology of the more than 1,000 New

World species of this clade is very distinctive and highly conserved,

especially with regard to symmetry and pollinator reward

[40,41,42]. The single upright/dorsal banner petal is strongly

differentiated from other petals in the corolla whorl, and helps to

orient and attract a limited suite of oil bee pollinators of the tribes

Centridini, Tetrapedini, and Tapinotaspidini (Fig. 1A)

[41,42,43,44]. The banner petal in these New World species is

therefore a critical component of this plant-pollinator mutualism

[41]. In the mature flower, the very narrowed base of the petals

provides the bees access to oil glands, which are borne in pairs on

the abaxial surface of the sepals. This stereotypical floral

morphology of New World Malpighiaceae, despite tremendous

variation in vegetative and fruit morphology, appears to be due to

their specialization on these oil-bee pollinators [42].

We recently established the likely genetic basis for this novel

form of floral zygomorphy [20]. In this study, we identified two

main lineages of CYC2 in Malpighiaceae, CYC2A and CYC2B,

which are derived from a duplication event coincident with the

origin of the family. These loci are differentially expressed along

the dorsoventral axis such that CYC2A is expressed in the dorsal

banner petal and two adjacent lateral petals while CYC2B is

restricted solely to the banner petal (Fig. 1A). This pattern of CYC2

expression is conserved across three phylogenetically distant New

World species, Janusia guaranitica A. Juss., Byrsonima crassifolia Kunth

[20], and Bunchosia glandulifera (Jacq) H.B.K. (data from the latter

species newly reported here, Fig. S1A), that span the origin of the

family and of this unique stereotyped floral morphology [20,40].

In contrast, the radial flowered, species poor, outgroups of

Malpighiaceae, Centroplacaceae and Elatinaceae, exhibit either

no CYC2 expression or broad radial CYC2 expression at later

stages of floral development, respectively [20]. A similar genetic

and developmental transition, including CYC2 gene duplication

and shift in the pattern of expression, was recently implicated in
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the transition from ancestrally radial flowers to derived bilateral

flowers within the Dipsacales [23].

In contrast to high species diversity in the New World (,1170

species in 59 genera), lineages of Malpighiaceae in the Old World

are relatively species-poor (ca. 140 species in 14 genera) [45]. The

Old World species were derived from seven independent

migrations from the New World [40,46,47]. Importantly, these

migrants have lost their specialist oil-bee pollinators, which do not

occur in the Old World [48,49,50]. These clades also lack most of

the characteristic floral features critical to the pollination

syndrome of most New World Malpighiaceae and exhibit major

architectural rearrangements of their floral morphology, having

evolved either radially symmetrical flowers or shifted to a different

kind of zygomorphy [40] (Fig. S2). Three Old World clades in

particular–Acridocarpus, African Sphedamnocarpus, and Tristellateia

(Fig. 1B, F)–have evolved strikingly similar floral morphologies in

parallel and are highly diverged from their closest New World

relatives. In each case the Old World flowers have maintained

zygomorphic corollas, which they inherited from their New World

ancestors (Fig. S2), but the plane of symmetry is dramatically

reoriented such that they display two dorsal petals rather than a

single conspicuous banner petal. In addition to these parallel

changes in symmetry, each of the three clades has lost the oil

glands entirely or shifted their contents to sugars, and Acridocarpus

and Tristellateia have both evolved large poricidally dehiscent

anthers, suggesting that these species are likely adapted to buzz

pollination (Fig. 1B) [40,45]. These changes in the Old World

reflect shifts to new pollination mechanisms in which pollen or

nectar, not oil, appears to be the principal pollinator reward

[45,51,52].

Because CYC2-like genes likely play an important role in

establishing floral symmetry in Malpighiaceae, we explored the

possibility that similar modifications to this conserved CYC2

symmetry program explain the parallel shifts in floral morphology

that are observed in these three Old World clades. We show that

in each case these species exhibit a loss of CYC2B function, and a

strikingly similar shift in the expression of CYC2A that is coincident

with their shift in floral symmetry. These results indicate that

similar floral phenotypes in the Old World Malpighiaceae have

likely evolved via parallel genetic changes from an otherwise

highly conserved developmental program.

Results and Discussion

Floral development of the New and Old World
Malpighiaceae

In order to understand the developmental basis of zygomorphy

in both the New World and Old World Malpighiaceae, we

analyzed the process by which their distinct floral forms initiate

and mature. Our scanning electron micrographs demonstrate that

the floral symmetry in New World species develops in the same

manner as in most core eudicots [33,53,54]: the floral meristem is

oriented with two dorsal petals (Fig. 1 C and D, Fig. S3 A, B, D to

I). During development, however, this initial axis of symmetry is

reoriented such that one of the two dorsal petals develops as the

banner petal. This banner petal physically transitions to a dorsal

medial position by rotation of the pedicel just before anthesis [50],

thereby giving rise to the New World floral orientation.

Establishing this secondary plane of floral symmetry is a key step

in development of the New World floral zygomorphy because the

placement of the banner petal in the dorsal medial position

appears to be advantageous for orienting the oil bees [42,50].

Thus, the stereotypical floral zygomorphy in New World

Malpighiaceae appears to be characterized by the development

of a novel axis of symmetry that is imposed onto the initial axis.

Our earlier results demonstrated that the differential expression of

CYC2 genes is associated with this secondary plane of floral

symmetry [20].

The three Old World clades that are the focus of our study here

[Acridocarpus, African Sphedamnocarpus, and Tristellateia (Fig. 1B)] are

each closely related to New World species that bear the typical

banner petal floral morphology, but are oriented instead with two

dorsal petals. From a developmental perspective, this pattern is not

due to resupination of the flower [20] but rather to the

maintenance of the incipient axis of symmetry without the

subsequent reorientation that occurs in New World species

(Fig. 1E and Fig. S3C). In this regard, these Old World lineages

exhibit a reversion to the ancestral floral orientation that

characterizes rosids outside the Malpighiaceae [33,53,54].

Independent functional loss of CYC2B in the Old World
As a first step to investigating CYC2A and CYC2B expression in

these Old World lineages, we first identified CYC2-like homologs

from Acridocarpus and Sphedamnocarpus using degenerate primers and

exhaustive PCR clone screening. We did not detect CYC2B in two

species of Acridocarpus, A. natalitius A.Juss. and A. zanzibaricus A.Juss.

(Fig. 2), with confirmation by Southern analyses in A. natalitius

(Fig. S4). This is consistent with our previous study of another Old

World species, Tristellateia australasiae A. Rich., which has similarly

lost CYC2B [20]. In contrast, the two species of Sphedamnocarpus, S.

pruriens Szyszył. and S. transvaalicus Burtt Davy, maintain both

copies of CYC2A and CYC2B (Fig. 2). Locus-specific reverse

transcription (RT)-PCR, however, reveals that the CYC2B copy is

not expressed in S. pruriens at the late stages of floral development

(Fig. S1C). These findings are in sharp contrast to those in New

World Malpighiaceae, which possess and express both CYC2A and

CYC2B [20] (also Fig. S1A). In all three Old World clades that

have been sampled, the banner petal paralog CYC2B has been lost

or is not expressed, demonstrating a striking correspondence

between the loss of CYC2B function and the loss of the New World

dorsal banner petal morphology. One potentially interesting

hypothesis that emerges from these results relates to the divergence

time estimates of these three Old World clades and the observed

pattern of CYC2B loss. Acridocarpus and Tristellateia diverged from

their closest New World relatives during the Eocene (,55 million

years ago [mya]) and Oligocene (,30 mya), respectively [46,47].

In contrast, Sphedamnocarpus diverged from its closest New World

relatives much more recently, during the Miocene (,20 mya)

[46,47]. This raises the possibility that there has not been sufficient

time for CYC2B to have been lost from Sphedamnocarpus, hence its

presence in the genome despite its lack of expression.

Independent shifts of CYC2A expression pattern in the
Old World

To examine how CYC2A expression has been modified in these

Old World clades, we investigated its expression pattern using

quantitative RT–PCR, which revealed that expression in the

dorsal region of the corolla is significantly greater than in the

ventral region for all species (Fig. 3 and statistics Table S1). The

expression in the dorsal region of the calyx is also significantly

greater than in the ventral region for T. australasiae and A. natalitius

(Fig. 3 and statistics Table S1). These observations demonstrate

that the three parallel shifts in floral symmetry in these Old World

Malpighiaceae share very similar changes in the pattern of CYC2A

expression. Interestingly, there are differences in the details in each

of these cases: Tristellateia maintains CYC2A in only the two dorsal

petals while Acridocarpus CYC2A expression is expanded to include

the lateral petals; and Sphedamnocarpus CYC2A is even more broadly

Similar Genetic Changes Explain Parallel Evolution
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expressed, but only very weakly in the ventral petal (Fig. 3 and

summary Fig. 4). In T. australasiae and A. natalitius (Fig. 3 A and B),

the spatial expression of CYC2A is maintained in the dorsal region

during development. In contrast, CYC2A expression in S. pruriens

(Fig. 3C) is significantly decreased in all petals during the latest

developmental stages. These distinctions underscore the fact that

each of these three lineages independently transitioned to their

Old World morphology in response to the loss of their specialist

New World oil bee pollinators. CYC2A is also expressed in the

stamens and carpels, but at relatively low levels of gene activity in

all three species (Fig. 3). Moreover, the configuration of stamens

relative to the petals in these Old World species is identical to their

closest zygomorphic New World relatives. Low levels of CYC2

expression suggests that CYC2 may not play a role in the

development of the androecium and gynoecium in these species of

Malpighiaceae [20] (Fig. 3).

The genetic basis of parallel floral phenotypes in Old
World Malpighiaceae

Taken together, our current and previous [20] findings in the

Malpighiaceae suggest a genetic model for both the evolution of

zygomorphy in the family and its subsequent modification as

lineages dispersed to novel environments involving a new

pollinator selective regime. This model is critical to the ecological

interactions with the oil bee pollinators and, accordingly, is

conserved in diverse lineages that maintain this mutualism. CYC2

expression, particularly the banner petal expression of CYC2B,

correlates with the secondary axis of floral symmetry that reorients

New World flowers to place the single banner petal in the dorsal

medial position. In multiple separate instances, however, members

of the family have migrated to the Old World where they have lost

their oil bee pollinators as well as their critical banner petal

zygomorphy. In the three cases examined here, the shift in

pollinators is always associated with a loss of floral reorientation

and functionality of the CYC2B locus, in addition to a novel axis of

symmetry in CYC2A expression. A similar decay in the zygomor-

phic program in response to a change in pollination syndrome has

been demonstrated for a single clade of Veroniceae [21], but our

sampling provides strong evidence in the context of multiple

parallel events within a narrowly circumscribed plant clade. In

addition, the examples here represent parallel, pollinator-mediat-

ed, modifications of the ancestral program to yield a new pattern

of zygomorphy, rather than a reversion to radial symmetry similar

to what is found in the close relatives of Malpighiaceae. These

contrasting New and Old World patterns reinforce the conclusion

that CYC2 homologs are critical to floral symmetry in this diverse

family. Our current efforts are focused on examining earlier stages

to determine how the dynamics of CYC2 expression correlate with

the developmental shift in the plane of floral symmetry we have

characterized in New World Malpighiaceae. Finally, these findings

reinforce the observations that the CYC2 module is consistently

recruited for the evolution of zygomorphy in angiosperms [2,3],

Figure 1. Floral morphology, development, and CYC2 expression of Malpighiaceae. (A), Banisteriopsis argyrophylla illustrating the
stereotypical New World floral morphology and pattern of CYC2 expression in New World Malpighiaceae (expression shown in grey). (B), Acridocarpus
zanzibaricus, Sphedamnocarpus angolensis, and Tristellateia australasiae (from left to right) represent three Old World floral phenotypes that have
evolved in parallel from a similar New World-type ancestor. (C–E), Scanning electron micrographs showing the typical orientation of the two dorsal
petals at the earliest stage of floral development in the New World Malpighiaceae species Bunchosia glandulifera (C) and Heteropterys sp. (D), and in
the Old World species, Tristellateia australasiae (E). (F), Phylogeny depicting relationships of the three focal Old World clades: Acridocarpus, African
Sphedamnocarpus, and Tristellateia. Grey lines highlight the radially symmetrical sister groups of Malpighiaceae, Centroplacaceae, and Elatinaceae
[20]; black lines highlight Malpighiaceae species with the stereotypical New World floral morphology; red highlights the three Old World clades with
parallel floral morphologies that have departed from the New World morphology. For reference, the banner petal of the New World Malpighiaceae is
highlighted in yellow (C and D). Dotted lines = initial axis of floral symmetry; solid lines = final axis of floral symmetry; arrows indicate the shift in the
axis of symmetry that takes place just before anthesis in New World Malpighiaceae [50]. Scale bars equal 100 mm.
doi:10.1371/journal.pone.0036033.g001

Similar Genetic Changes Explain Parallel Evolution

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e36033



and newly demonstrates that once this developmental module is

established within a large clade it can be modified by strikingly

similar parallel genetic changes.

Materials and Methods

Specimen collections
Specimens of Acridocarpus natalitius are from the National

Botanical Garden, Lowveld, South Africa; A. zanzibaricus from

Dar es Salaam, Tanzania; Sphedamnocarpus pruriens from Pretoria,

South Africa; Bunchosia glandulifera, Byrsonima lucida DC., and

Heteropterys sp. from the Kampong Tropical Botanical Garden, the

Montgomery Botanical Center in Florida, and the University of

California at Davis, USA; and Tristellateia australasiae and Galphimia

gracilis Bartl. are from cultivated plants at Harvard University in

Massachusetts, USA (see Table S2).

Ethics statement
Collections from Tanzania and South Africa were sent as part

of a collaboration with Frank M. Mbago (Curator, Herbarium

DSM, Botany Department, University of Dar es Salaam) and

Robert H. Archer (Researcher, National Herbarium PRE, South

African National Biodiversity Institute), respectively, who held the

necessary permission to collect in their respective countries.

Isolation of CYC2A and CYC2B
To isolate CYC2-like genes from our target species we used

degenerate primers designed for Malpighiaceae and their closest

relatives (Table S3). These included 11 degenerate forward

primers and seven degenerate reverse primers. We exhaustively

screened our target species using 77 primer pair combinations to

identify the best primer pair for screening CYC2 gene copies. The

optimal CYC2 primer pair (Forward: 59-GCIMGIAARTTYTTY-

GAYYTKCAA; Reverse: 59-GCYCKYGCYCTIGCYYTHK-

CYCTWGA) was chosen based on its ability to amplify many

major clades of Malpighiales, including especially the sister

families of Malpighiaceae. CYC2-like amplicons spanning the

TCP and R domains were obtained following our previous

methods [20]. More than 200 clones were screened for this effort.

Sequence alignments and phylogenetic analyses
The newly acquired sequences of CYC2-like genes from

Acridocarpus natalitius, A. zanzibaricus, Sphedamnocarpus pruriens, and

S. transvaalicus were aligned with a previously available matrix

including several ingroup accessions of Malpighiaceae, and the

outgroup families, Elatinaceae, Centroplacaceae, and Oxalida-

ceae, by eye with reference to the translated amino acid sequences

using MacClade 4.06 [55]. We applied the WAG+G model of

amino acid evolution to the aligned CYC2 data set as determined

by the AIC criterion in ProtTEST [56]. One thousand maximum

likelihood bootstrap replicates were conducted using RAxML-VI-

HPC [57]. Bayesian analyses were implemented in MrBayes ver.

3.1.2 [58] under the same optimal model using default priors for

the rate matrix, branch lengths, and gamma shape parameter. A

Dirichlet distribution was used for the base frequency parameters

and an uninformative prior was used for the starting tree topology.

Four chains were initiated with a random starting tree and run for

two million generations sampled every 1,000 generations.

Stationarity was determined using Tracer v1.4.1. (http://tree.

bio.ed.ac.uk/software/tracer/). We sampled from the posterior

distribution to calculate clade posterior probabilities following a

burn-in of 1,000 trees. All DNA sequences of the newly acquired

CYC2-like genes have been deposited in GenBank, under accession

numbers JQ723742 through JQ723749.

Figure 2. Phylogeny of CYC2-like genes for Malpighiaceae.
Bayesian majority rule consensus topology shown; clades with .50%
maximum likelihood (ML) bootstrap support and .60% Bayesian
posterior probabilities depicted above lines, respectively. ML bootstrap
support ,50% indicated with a hyphen. Inferred gene tree is reflective
of accepted species tree relationships [40]. Accessions highlighted in
red include the three Old World clades examined here that exhibit
parallel floral phenotypes–Acridocarpus, African Sphedamnocarpus, and
Tristellateia. Accessions labeled with dotted lines signify inferred gene
losses in Acridocarpus natalitius, A. zanzibaricus, Tristellateia australasiae,
and T. africana. See Supplementary Table S2 for species identities and
voucher information. C, Centroplacaceae; E, Elatinaceae; M, Malpighia-
ceae; O, Oxalidaceae.
doi:10.1371/journal.pone.0036033.g002
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Southern hybridization
Ten mg of genomic DNA was digested from Acridocarpus natalitius

with restriction enzymes (i.e., HindIII, EcoRI, and HindIII plus

EcoRI), fractionated on 0.8% agarose gels, and blotted onto a

positively charged nylon membrane (GE Healthcare Bio-Sciences

Corp., Piscataway, NJ) following the protocol in Zhang et al. [20].

A fragment containing the 3’ end of the TCP domain and the

variable region between the TCP and R domains was used as a

template to synthesize probes for detecting CYC2-like genes. A

mixture of CYC2A sequences (AnCYC2A of A. natalitius and

BcCYC2A of Byrsonima crassifolia [20]) and CYC2B sequences

(BcCYC2B of B. crassifolia [20]) in equal molar concentration was

used as a template to synthesize our 32P labeled probe. We

previously showed that the number of bands in the EcoRI digest is

a reliable indicator of CYC2 copy number [20]. Here, we identified

a single band in the EcoRI digest (Fig. S4A). In the HindIII single

digest and HindIII+EcoRI double digest, we expected more than

one band due to the presence of a single restriction site of HindIII

within the probed region (Fig. S4B). As before [20], this result is

identical to our results from PCR and cloning. These results

further demonstrate that our PCR/clone screens provide the same

estimate of gene copy number as our low stringency Southern

hybridizations.

RNA sample preparations
We examined two developmental stages for organ specific CYC2

expression. Floral organs from the latest stages were dissected in

the field from multiple flower buds ranging in size from ,70–90%

of bud size just before anthesis. Earlier stage flower buds were also

collected from each species. All materials were preserved in

cryogenic containers, and were processed in the lab using the

RNAqueous kit (Ambion, Austin, TX, USA). Floral organs from

Figure 3. Quantitative RT-PCR (qRT-PCR) expression of CYC2-like genes for the parallel floral morphologies in the Old World
Malpighiaceae Tristellateia australasiae (A) Acridocarpus natalitius (B) and Sphedamnocarpus pruriens (C). Grayscale shading on floral
diagrams summarizes the relative strength of the spatial pattern of CYC2 expression in the corolla and calyx. qRT-PCR expression data was
determined for dissected floral organs at mid and late stages. Expression levels are relative to the control b-tubulin. Error bars represent standard
errors. ds, dorsal sepal; ls, lateral sepal; vs, ventral sepal; dp, dorsal petal; lp, lateral petal; vp, ventral petal; st, stamens; ca, carpels; MB, medium buds
,40–60% of full size buds; LB, large buds ,70–90% of full size buds. Scale bars equal 5 mm.
doi:10.1371/journal.pone.0036033.g003

Figure 4. Summary of CYC2-like gene expression. Expression of
CYC2-like genes in New World Malpighiaceae [20] and in three parallel
shifts in the Old World Malpighiaceae clades represented, from left to
right, by Tristellateia australasiae, Acridocarpus natalitius, and Sphedam-
nocarpus pruriens. The blue shading of the New World Species indicates
late stage CYC2 gene expression [20] (Fig. S1A). The gradient shading in
Old World species, from white to black, indicates increasing intensity of
CYC2 expression, respectively.
doi:10.1371/journal.pone.0036033.g004

Similar Genetic Changes Explain Parallel Evolution
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earlier, medium stage samples, ,50% of flower bud size just

before anthesis, were dissected in the lab from a single bud. These

buds were dissected using the RNAlaterH-ICE Kit (Ambion-

Applied Biosystems, Austin, TX, USA). Frozen buds were

transferred to 1 ml of –80uC RNAlaterH-ICE. Vacuum infiltration

was applied followed by incubation in the same solution at –20uC
for 16 hours. Floral dissection was then performed using a

dissecting microscope at room temperature. The micro-dissected

samples were processed using the RNAqueous Micro kit (Ambion,

Austin, TX, USA). DNA contamination was removed with a

DNA-free kit (Ambion, Austin, TX, USA). RNA quality was

assessed using the Agilent 2100 Bioanalyzer with the RNA

6000 Nano LabchipH kit for our pooled samples and the RNA

6000 Pico Labchip kit for each organ dissected from a single bud

(Agilent Technologies, Palo Alto, CA, USA). Additionally, RNA

quality in all five petals and sepals were analyzed separately for

Acridocarpus natalitius, Sphedamnocarpus pruriens, and Tristellateia

australasiae.

Reverse transcription (RT)-PCR
RT-PCR was performed as previously described [20] using

locus specific primers (Table S4) to examine the expression of

CYC2. The sequence identity of RT-PCR fragments was further

confirmed by sequencing.

Quantitative RT-PCR and statistical analysis
qRT-PCR reactions were conducted using PerfeCTaH SYBRH

Green FastMixH, Low ROXTM (Quanta BioSciences, Inc.,

Gathersburg, MD) using the Stratagene Mx3005P QPCR System.

Class I b-tubulin was used as a control to normalize the qRT-PCR

[59]. The stable expression of b-tubulin was confirmed by semi-

quantitative RT-PCR (data not shown). CYC2 expression levels were

calculated relative to b-tubulin using the 2-DDCT method [60].

Absence of genomic DNA was confirmed with our b-tubulin control,

which spanned a ,90-bp intron region. No b-tubulin amplicons were

observed for the higher molecular weight intron bearing copy. Thus,

our RNA preparations were free of genomic contamination. The

identity of all amplicons was confirmed by sequencing. One

biological replicate (i.e., one extraction from .30 flower buds from

an individual plant) was analyzed for the latest stages; three

biological replicates (i.e., three extractions from three flower buds

from an individual plant) were analyzed for the medium sized bud

stages. Three technical replicates (i.e., three separate qRT-PCRs

from a single extracted sample) were analyzed for each biological

replicate. Standard errors were calculated from all technical

replicates. The statistical significance of the differential pattern of

spatial gene expression for the medium sized bud samples was

examined for the sepals and petals, respectively, as implemented in

the software package REST� 2009 (Technische UniversitŠt

München, Qiagen) [61]. We tested the null hypothesis that there

was no significant difference between the spatial pattern of gene

expression within the calyx and corolla whorls (e.g., relative

expression levels in the ventral versus the dorsal petals). Our non-

parametric analysis included 10,000 random reallocations of the

relative spatial expression data for each pair-wise comparison we

made (e.g., ventral petal expression versus dorsal petal expression).

For example, to determine whether RNA abundance of CYC2A in

the dorsal petals is significantly higher than that in the ventral petal

we applied REST to normalize the CYC2 expression ratios of beta-

Tubulin, correct the fold changes based on primer efficiencies, and

calculate p-values through a pair-wise reallocation randomization

analysis (using 10,000 replicates) of the two groups (e.g., ventral petal

expression versus dorsal petal expression) [61]. These results are

reported in Table S1.

Morphology-based character state reconstruction of
floral symmetry

We used maximum likelihood (ML) character state reconstruc-

tion as implemented in Mesquite version 2.6 [62] to infer the

evolution of floral symmetry in Malpighiaceae and its closest

relatives, Elatinaceae and Centroplacaceae. The analysis was done

using the phylogeny and methods described by Zhang et al. (2010),

and by scoring each species as zygomorphic or radial flowered.

Scanning electronic microscopy
Inflorescences of Bunchosia glandulifera, Byrsonima lucida, Galphimia

gracilis, Heteropterys sp., and Tristellateia australasiae were fixed in FAA

in the field and transferred to 70% ethanol for storage. Young

inflorescences from each species were prepared in 2% osmium for

4 hours at room temperature, washed, and dehydrated in a graded

series of ethanol. Samples were then coated with Platinum-

Palladium and observed with a Zeiss EVO 50 microscope at 10–

20 keV. Images were enhanced with Adobe Photoshop.

Supporting Information

Figure S1 Locus-specific RT-PCR for CYC2-like gene
expression in Malpighiaceae. (A), Bunchosia glandulifera shows

the conserved CYC2A and CYC2B expression in New World

Malpighiaceae [20]. (B–C), The temporal pattern of CYC2

expression in the Old World Malpighiaceae Acridocarpus zanzibar-

icus (B) and Sphedamnocarpus pruriens (C). ACTIN-specific primers

were used as a positive control. Abbreviations are as follows: dp,

dorsal petal; lp, lateral petal; vp, ventral petal; s+c, stamens and

carpals; uc, upper calyx; lc, lower calyx; MB, medium buds ,40–

60% of full size buds (MB1, ,40–50%; MB2, ,50–60%); LB,

large buds ,70–90% of full size buds; FL, open flowers. Scale bars

equal 5 mm.

(TIF)

Figure S2 Ancestral character state reconstruction of
floral symmetry. Maximum likelihood analysis indicates the

relative likelihood of floral symmetry at each node. Accessions

highlighted in red include the three Old World clades examined

here that exhibit parallel floral phenotypes–Acridocarpus, African

Sphedamnocarpus, and Tristellateia.

(TIF)

Figure S3 Floral development of Malpighiaceae. (A–I), All

Malpighiaceae species, Bunchosia glandulifera (A), Heteropterys sp. (B),

Tristellateia australasiae (C), Byrsonima lucida (D–F), and Galphimia

gracilis (G–I), have an initial axis of floral symmetry with two petals

in the dorsal position relative to the axis. In New World

Malpighiaceae this initial axis (F, I; dotted line) is replaced by a

final axis of floral symmetry (F, I; solid line) in which the single

banner petal (in yellow) is in the dorsal-most position. The Old

World species [e.g., Tristellateia australasiae (C)] do not exhibit this

secondary reorientation. Asterisks = the inflorescence apices;

dotted lines = initial axis of floral symmetry; solid lines = final axis

of floral symmetry; arrows indicate the rotation of the floral axis

achieved before anthesis [50]. Note, the direction of reorientation

varies from flower-to-flower and can be predicted using the

position of the carpel primordia and the inner-most, banner petal

[20]. Scale bars equal 400 mm in (A–E, G–H), and 100 mm in (F,

I).

(TIF)

Figure S4 CYC2 Southern hybridization results for
Acridocarpus natalitius. (A), Restriction digests using EcoRI

(E), HindIII (H), and EcoRI+HindIII (E+H) are shown for genomic

DNA of A. natalitius. Lane contains CYC2 plasmid DNA as controls
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to test probe efficiency. (B), Restriction cut site was determined

from sequence analysis and are indicated on the CYC2 gene copy

shown at bottom. Arrows and numbers indicate molecular size

markers (in base pairs). The number of bands in the EcoRI digest

reflects the CYC2 copy number based on our previous study [20].

The single band in the EcoRI digest suggests one copy of the CYC2

gene in Acridocarpus natalitius. In the HindIII and double digests, we

expected more than one band due to the presence of a restriction

site within the probed region.

(TIF)

Table S1 Statistical strength of differential pattern of
spatial gene expression within the corolla and calyx
whorls.
(DOC)

Table S2 Species sampled, with collection locations,
voucher information, and CYC2 loci.
(DOC)

Table S3 Degenerate PCR primers used in this study.
(DOC)

Table S4 qRT-PCR annealing temperatures, amplifica-
tion efficiencies, and primer sequences used in this
study.

(DOC)
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