Anion-Sensitive Fluorophore Identifies the Drosophila Swell-Activated Chloride Channel in a Genome-Wide RNA Interference Screen

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th>Citation</th>
<th>Stotz, Stephanie C., and David E. Clapham. 2012. Anion-sensitive fluorophore identifies the drosophila swell-activated chloride channel in a genome-wide RNA interference screen. PLoS ONE 7(10): e46865.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1371/journal.pone.0046865</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:10522863</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Anion-Sensitive Fluorophore Identifies the *Drosophila* Swell-Activated Chloride Channel in a Genome-Wide RNA Interference Screen

Stephanie C. Stotz1, David E. Clapham1,2,3*

1 Howard Hughes Medical Institute, Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States of America, 2 Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, Massachusetts, United States of America, 3 Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America

Abstract

When cells swell in hypo-osmotic solutions, chloride-selective ion channels (Cl_{swell}) activate to reduce intracellular osmolality and prevent catastrophic cell rupture. Despite intensive efforts to assign a molecular identity to the mammalian Cl_{swell} channel, it remains unknown. In an unbiased genome-wide RNA interference (RNAi) screen of *Drosophila* cells stably expressing an anion-sensitive fluorescent indicator, we identify Bestrophin 1 (dBest1) as the *Drosophila* Cl_{swell} channel. Of the 23 screen hits with mammalian homologs and predicted transmembrane domains, only RNAi specifically targeting dBest1 eliminated the Cl_{swell} current (I_{Clswell}). We further demonstrate the essential contribution of dBest1 to *Drosophila* I_{Clswell} with the introduction of a human Bestrophin disease-associated mutation (W94C). Overexpression of the W94C construct in *Drosophila* cells significantly reduced the endogenous I_{Clswell}. We confirm that exogenous expression of dBest1 alone in human embryonic kidney (HEK293) cells creates a clearly identifiable *Drosophila*-like I_{Clswell}. In contrast, activation of mouse Bestrophin 2 (mBest2), the closest mammalian ortholog of dBest1, is swell-insensitive. The first 64 residues of dBest1 conferred swell activation to mBest2. The chimera, however, maintains mBest2-like pore properties, strongly indicating that the Bestrophin protein forms the Cl_{swell} channel itself rather than functioning as an essential auxiliary subunit. dBest1 is an anion channel clearly responsive to swell; this activation depends upon its N-terminus.

Introduction

All mammalian cells express chloride channels activated by decreases in extracellular osmolality, albeit with different biophysical properties [1]. The ubiquitous expression of Cl_{swell} suggests its essential cellular function. Tightly regulated Cl_{swell} channels participate in volume regulation, motility, cell survival, and cell division [1]. In contrast, de-regulated constitutively active Cl_{swell} channels exacerbate several cardiac diseases, including myocardial hypertrophy and heart failure [2]. The mammalian Cl_{swell} channel-encoding gene has yet to be identified despite the wealth of proteins nominated by candidate approaches [3]. These proteins include ClC-2 [4], ClC-3 [5], P-glycoprotein [6,7], plClh [8,9], p64 [10], phospholemman [11], Best1 and 2 [12], TMEM16A [13], and TMEM16F [14]. The research community has yet to agree on any of these candidates as a *bona fide* Cl_{swell} channel.

In *Drosophila*, however, accumulating evidence indicates that dBest1 encodes for a Cl_{swell} channel. RNAi targeting dBest1 eliminates *Drosophila* Schneider (S2) cell I_{Clswell}, an effect rescued by re-introduction of dBest1 [15]. Further, swell activated dBest1 mutants have altered biophysical properties and reactivity to sulfhydryl reagents [16]. dBest1 likely forms the chloride conducting pore, but it may be an obligate auxiliary subunit of *Drosophila* I_{Clswell} that modifies channel properties akin to CaV β subunits [17].

Assigning chloride channel function to any protein is difficult. The known chloride channel families (*e.g.*, ClC, Anoctamin/TMEM16, CFTR, and ionotropic GABA_A and GlyR) lack structural pore or gating motifs that might form the basis for *in silico* identification. Expression cloning approaches have also failed due to widespread Cl_{swell} channel expression that precludes the separation of endogenous and over-expressed protein activities. Moreover, known chloride channels blockers are non-specific and their affinities are far too low to encourage affinity purification. Finally, previous chloride indicators are poor tools for screening due to loading and retention issues, inconsistent results, and poor reproducibility [18].

Here we present an unbiased genome-wide, high-throughput RNAi screen designed to identify the *Drosophila* Cl_{swell} channel and its regulators. Our screen employed H148Q-YFP, a genetically encoded anion-sensitive yellow fluorescent protein [19], to report Cl_{swell} activity in *Drosophila* S2R+ cells. Of our 595 initial hits that altered chloride handling, we concentrated on characterizing proteins with mammalian homology and at least one transmembrane domain as potential Cl_{swell} channels. dBest1 emerged from our screen as the lead candidate for *Drosophila* Cl_{swell}. Both RNAi
knockdown of dBest1 and overexpression of a dominant-negative dBest1 eliminated the Cl_{swell} current in Drosophila S2R+ cells. Conversely, dBest1 overexpression in a mammalian system (HEK cells) produced a Drosophila-like I_{Clswell}. To identify domains necessary for swell activation we characterized chimeras between the swell-sensitive dBest1 and the swell-insensitive mBest2. Swell sensitivity is only apparent in mBest2, the closest mammalian homolog of dBest1, when the protein contains the dBest1 amino (N)-terminus. This chimera maintains the pore properties of mBest2, providing additional evidence that the protein itself forms a channel rather than functioning as a necessary auxiliary subunit. We conclude that dBest1 is the channel underlying the Drosophila I_{Clswell}.

Results

Drosophila S2R+ Cells have Robust I_{Clswell}

Drosophila S2 cells are used extensively in genome-wide RNAi screens to dissect signaling pathways, determine protein functions, and assign protein molecular identity [20]. These macrophage-like cells, derived from primary culture of late stage Drosophila melanogaster embryos [21] readily take up RNAi from serum-free media. The subsequent process of targeted mRNA ablation is efficient and highly reproducible [22,23]. For our screen we used S2R+ cells [24], an adherent S2 variant well suited for assays that require multiple solution changes. Importantly, S2R+ cells have a consistent, large I_{Clswell} that activates slowly upon a drop in extracellular osmolality (Figure 1A). I_{Clswell} starts to activate within 2 min exposure to hypo-osmotic media, reaching steady state activation by 5 min. The fully activated Cl_{swell} conductance is anion selective (Figure 1B). The relative permeability sequence of S2R+ Cl_{swell} is I = SCN > Cl > MES> aspartate (ASP) while the slope conductance sequence is I = SCN = Cl > MES > ASP (Table 1 & 2). The Cl_{swell} I-V relationship has a slight “S” shape, revealing rectification. An extended step protocol further illustrates features of S2R+ Cl_{swell} (Figure 1C). I_{Clswell} exhibits an initial instantaneous activation followed by a second slow activation phase, suggesting that more than one type of Cl− conductance is turned on in S2R+ cells with cell swelling. In contrast, Chien & Hartzell [15] reported a single phase, time-independent I_{Clswell} activation in their S2 cells, perhaps indicating Cl− channel expression differences in the two cell lines. Tail currents, normally indicating time dependence of activation of the channel, are evident in our recordings. However, since tail currents were not observed under symmetrical recording conditions [15], we attribute these currents to the exit of intracellular Cl− accumulated during the prolonged steps. S2R+ I_{Clswell} has an interesting pharmacological profile (Figure 2A). Even at a high concentration (100 μM), the non-specific chloride channel blocker 4,4′-disothiocyanato-2,2′-stilbenedisulfonic acid (DIDS) [25] blocks less than 25% of the S2R+ I_{Clswell} (Figure 2A). 4-2-butyln-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl (DCPIB), a mammalian selective Cl_{swell} blocker [26], fails to completely block S2R+ I_{Clswell} at 30 μM (Figure 2A & E). DCPIB blocks in a voltage-dependent manner (Figure 2E); at 0 mV 52% of S2R+ I_{Clswell} is blocked, while 90% is blocked at 80 mV. Surprisingly, furosemide, a Na-K-2Cl cotransporter (NKCC; SLC12A2) blocker, almost completely inhibits S2R+ I_{Clswell} at 1 mM (Figure 2A & 9C).

H148Q-YFP Reliably Reports the Activity of S2R+ Cell Cl_{swell} Channels

Cl_{swell} conducts iodide better than chloride, favoring the use of the H148Q-YFP indicator as a reporter of its activity (I− K_D = 20 mM and Cl− K_D = 100 mM [19,27,28]). Several anion-sensitive YFP variants accurately quantify intracellular Cl− concentration or changes [27,29-31]; anion binding near the YFP chromophore suppresses fluorescence emission by altering chromophore resonance [19]. H148Q-YFP was chosen for Cl_{swell} detection because it is bright and potently suppressed by I−; these properties are critical for good signal-to-noise ratios during screening. H148Q-YFP (pK_a = 6.7) is also sensitive to intracellular pH changes [19,28]. S2R+ cells stably expressing H148Q-YFP maintain their fluorescence in 240 mMNaCl however (Figure 3A), indicating that cell swelling does not appreciably alter intracellular pH. Subsequent replacement of bath Cl− with I− rapidly suppresses indicator fluorescence by 50% as I− enters the cells through open channels and interacts with the probe. The large fluorescence change and low intrinsic assay variability favor clear separation of potential hits. In the absence of hypo-osmotic solution, I− is unable to enter the S2R+ cells and fluorescence is maintained (Figure 3B), indicating that S2R+ cells lack alternative constitutively active I− entry pathways that could confound our ability to identify the Cl_{swell} channel. Further, furosemide block of open Cl_{swell} channels prevents appreciable fluorescence suppression (Figure 3C & D), suggesting that RNAi effectively targeting the Cl_{swell} channel will be readily identifiable as hits.

Genome-wide RNAi Screening of H148Q-YFP S2R+ Cells Identifies dBest1 as the Cl_{swell} Channel

The primary screen was conducted at the Harvard/HHMI Drosophila RNAi Screening Center using our stable H148Q-YFP-expressing S2R+ cell line. Each well of sixty-six 384-well assay plates contained a dsRNA targeting 1 of 13,900 genes encoding proteins or non-coding RNAs (DRSC 2.0; Figure 4A). Five days after S2R+ cells were treated with RNAi, we assessed cellular fluorescence under swell conditions in the presence of Cl− and I−. Wells with fluorescence or ratio (I−/fluorescence/Cl−/fluorescence) changes greater than 1.5 times the standard deviation of the plate mean were initially considered as hits (Cl_{swell} channel candidates or regulators of its activation pathway). We pared the list of 595 hits to genes with mammalian homologs and those with predicted transmembrane domains (Figure 4B, Table S1). In a secondary screen, we confirmed that each RNAi significantly reduced swelling-induced fluorescence and targeted only the mRNA from the identified gene (qPCR). We then directly measured I_{Clswell} via whole-cell voltage clamp. Candidates genes, whose RNAi significantly reduced the S2R+ cell I_{Clswell} were cloned and expressed in HEK293 or CHO-K1 cells. I_{Clswell} was then measured via whole-cell recording and compared with currents from untransfected cells. The only candidate of our screen to satisfy all the criteria for a Cl_{swell} channel was dBest1 (Table S1).

DSRC26457 RNAi Targeting dBest1 Eliminates I_{Clswell}

dBest1 is a protein of 769 amino acids containing 4 transmembrane domains [32,33] (Figure 4C). It is one of four Bestrophin family members in Drosophila, with highest homology to mBest2/hBest2 (51% identity and 67% similarity; BLAST). Hartzell and colleagues first proposed that dBest1 was a chloride channel activated by high intracellular Ca2+ and cell swelling [15,16]. In our H148Q-YFP fluorescence assay dBest1 RNAi (Table S1) abrogated the fluorescence change normally observed when I− enters the S2R+ cells through activated Cl_{swell} conductances (Figure 5A, B). Interestingly, DSRC26457 also decreased the baseline fluorescence variability of S2R+ cells (Figure 5B), suggesting that I_{Best1} contributes to resting intracellular Cl− concentrations. S2R+ I_{Clswell} was essentially eliminated by dBest1 RNAi DSRC26457 treatment (Figure 5C). This RNAi specifically and effectively reduced dBest1 mRNA by 91.5% ± 0.5
(n = 3; qPCR); mRNA levels for the 3 remaining Bestrophin members and other Clswell candidates were unaffected. A second RNAi targeting dBest1 (DRSC16909; corresponds with dB1S [15]) was part of our initial screen. It was less effective at knocking down dBest1 mRNA (85% reduction, n = 3; significantly less than DRSC26457; p < 0.001, Student’s t-test) and had two predicted off-target hits: CG4623 (20/20) and CG16711 (18/18). DRSC16909 did not significantly alter H148Q-YFP I–induced

Figure 1. Characterization of the S2R+ cell I_{Clswell}. (A) Hypo-osmotic solutions slowly activate I_{Clswell}. I_{Clswell} begins to activate 1.7±0.3 min after exposure to 200 mOsm solution and reaches steady state activation within 5±0.3 min (n = 13). I_{Clswell} was assessed in ramp protocols and reported at +84.5 mV (upper trace) and -115.5 mV (lower trace). 240 mOsm stimulates I_{Clswell} activation slightly more slowly (1.8±0.3 min to initiation and 5.2±0.6 min to steady state, n = 12; data not shown). (B) The S2R+ cell I_{Clswell} is anion-selective. I_{Clswell} was activated by 200 mOsm solution; relative permeability and slope conductance sequences were determined for the steady state I_{Clswell} by replacing Cl\^− with equimolar anion concentrations. (C) An extended step protocol (red inset) reveals more than one set of activation kinetics with offset activation initiation times.

doi:10.1371/journal.pone.0046865.g001
Figure 2. Pharmacological profiles of S2R+ \(I_{\text{Cl}_\text{swell}}\) and \(I_{\text{dB}31}\) match and differ from those of HEK \(I_{\text{Cl}_\text{swell}}\) and \(I_{\text{dB}4m}\). (A–D) % Block of S2R+ \(I_{\text{Cl}_\text{swell}}\), HEK \(I_{\text{Cl}_\text{swell}}\) and \(I_{\text{dB}4m}\) by 1 mM furosemide, 100 \(\mu\)M DIDS, and 30 \(\mu\)M DCPIB. Block at 0 mV is presented to emphasize the incomplete voltage-dependent DCPIB block of S2R+ \(I_{\text{Cl}_\text{swell}}\) and \(I_{\text{dB}31}\). (A) Steady state S2R+ \(I_{\text{Cl}_\text{swell}}\) activated by 200 mOsm stimulation was blocked 96% ± 1.6 by furosemide, 19% ± 4 by DIDS, and 52% ± 10.6 by DCPIB. * no difference compared to \(I_{\text{dB}31}\) block and significantly different compared to HEK \(I_{\text{Cl}_\text{swell}}\) and \(I_{\text{dB}4m}\) (ANOVA, \(p < 0.05\)). (B) \(I_{\text{dB}31}\), stimulated for 2 min by 200 mOsm, was blocked 96% ± 1.7 by furosemide, 44% ± 10 by DIDS, and 47% ± 10.9 by DCPIB. * no difference compared to S2R+ \(I_{\text{Cl}_\text{swell}}\) block and significantly different compared to HEK \(I_{\text{Cl}_\text{swell}}\) and \(I_{\text{dB}4m}\) (ANOVA, \(p < 0.05\)). (C) Steady-state HEK \(I_{\text{Cl}_\text{swell}}\) activated by 200 mOsm stimulation was blocked 7% ± 3.5 by furosemide, 77% ± 3 by DIDS, and 99% ± 0.7 by DCPIB. (D) Constitutive \(I_{\text{dB}4m}\) (320 mOsm) was blocked 77% ± 3 by furosemide, 98% ± 1.5 by DIDS, and 98% ± 1.2 by DCPIB. * significantly different compared to S2R+ \(I_{\text{Cl}_\text{swell}}\) and \(I_{\text{dB}4m}\) (ANOVA, \(p < 0.05\)). (E–F) I–V relations for S2R+ \(I_{\text{Cl}_\text{swell}}\) and \(I_{\text{dB}31}\) demonstrate DCPIB voltage-dependent block. At 80 mV, DCPIB block of S2R+ \(I_{\text{Cl}_\text{swell}}\) is 90% ± 3.6 (\(n = 6\)), and 82% ± 6.5 for \(I_{\text{dB}31}\) (\(n = 7\)).

doi:10.1371/journal.pone.0046865.g002
fluorescence suppression (Figure 5A), and was not a hit in our initial screen. It is possible that the 15% remaining mRNA translated sufficient amounts of functional dBest1/Clswell channels to exclude it as a hit in our screen. This prospect emphasizes the importance of validated, effective RNAi for accurate screening.

Table 1. Relative Permeabilities.

<table>
<thead>
<tr>
<th></th>
<th>P_x/P_c</th>
<th>S2R+</th>
<th>dBest</th>
<th>mBest2</th>
<th>d64m</th>
<th>HEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>105 mM NaCl</td>
<td>15±0.12</td>
<td>1.8±0.05</td>
<td>1.7±0.15</td>
<td>2.2±0.34</td>
<td>1.5±0.06</td>
</tr>
<tr>
<td>SCN</td>
<td>240 mOsm NaCl</td>
<td>1.6±0.15</td>
<td>2.0±0.04</td>
<td>2.9±0.68</td>
<td>2.6±0.11</td>
<td>1.8±0.2</td>
</tr>
<tr>
<td>Cl</td>
<td>240 mOsm Cl</td>
<td>0.74±0.15</td>
<td>0.63±0.04</td>
<td>0.45±0.14</td>
<td>0.43±0.14</td>
<td>0.62±0.005</td>
</tr>
<tr>
<td>MES</td>
<td>240 mOsm Mes</td>
<td>0.07±0.015</td>
<td>0.09±0.0017</td>
<td>0.05±0.006</td>
<td>0.07±0.011</td>
<td>0.11±0.003</td>
</tr>
<tr>
<td>ASP</td>
<td>240 mOsm Asp</td>
<td>0.0015</td>
<td>0.00017</td>
<td>0.0006</td>
<td>0.0011</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Table 2. Slope Conductance.

<table>
<thead>
<tr>
<th></th>
<th>Slope Conductance (G; I/V)</th>
<th>S2R+</th>
<th>dBest</th>
<th>mBest2</th>
<th>d64m</th>
<th>HEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>105 mM NaCl</td>
<td>29.6±6.8</td>
<td>8.2±1.5</td>
<td>10±4.9</td>
<td>10±3.5</td>
<td>26.2±8.2</td>
</tr>
<tr>
<td>SCN</td>
<td>240 mOsm NaCl</td>
<td>26.9±5.9</td>
<td>6.6±1.1</td>
<td>2.4±0.95</td>
<td>2.5±0.36</td>
<td>24.9±7.1</td>
</tr>
<tr>
<td>Cl</td>
<td>240 mOsm Cl</td>
<td>28.7±5.1</td>
<td>5.2±0.7</td>
<td>6.6±3.4</td>
<td>4.4±0.3</td>
<td>26.7±9.5</td>
</tr>
<tr>
<td>MES</td>
<td>240 mOsm Mes</td>
<td>16.4±3.5</td>
<td>3.3±0.4</td>
<td>2±1.3</td>
<td>1.9±0.5</td>
<td>9.5±5.4</td>
</tr>
<tr>
<td>ASP</td>
<td>240 mOsm Asp</td>
<td>7.8±1.5</td>
<td>1.9±0.3</td>
<td>1.7±1.1</td>
<td>1.7±0.3</td>
<td>5.4±2.7</td>
</tr>
</tbody>
</table>

Figure 3. H148Q-YFP stably expressed in S2R+ cells reports the entry of I– through activated Clswell channels. (A) Cellular swelling in 240 mOsm Cl– did not alter fluorescence intensity as Clswell Channels activate (Student’s t-test, p = 0.65; n = 76). Replacement of Cl– with I– evoked a 51% ± 1.3 decrease in fluorescence (Student’s t-test, p < 0.001; n = 76). Imaging assay; fluorescence is in arbitrary units (a.u.). (B) Clswell channels must be open for I– induced fluorescence suppression to occur. 320 mOsm NaI suppresses fluorescence by 16% ± 0.7 (Student’s t-test, p = 0.1; n = 54). (C) Furosemide, an NKCC2 blocker, completely inhibits the S2R+ cell Clswell channels at 1 mM (n = 3). (D) 1 mM Furosemide block of Clswell prevents significant I– induced suppression of H148Q-YFP fluorescence (Student’s t-test, p = 0.54; n = 16).

doi:10.1371/journal.pone.0046865.g003

doi:10.1371/journal.pone.0046865.t001

doi:10.1371/journal.pone.0046865.t002

Table 1. Relative Permeabilities.

Table 2. Slope Conductance.
Figure 4. Genome-wide RNAi screening of H148Q-YFP S2R+ cells identifies Clswell channel candidates and regulators. (A) RNAi treatment alters S2R+ cell H148Q-YFP fluorescence levels. Heat map plate reader data following 5d RNAi treatment (240 mOsm Cl−). Fluorescence was subsequently measured in 240 I−. Wells where the I− to Cl− fluorescence ratio was high are hits. Control RNAis are found in columns 13 and 14. Thread RNAi is in 13B, 13G, 14K, and 14N. Rho RNAi is in 13D, 13E, 14J, and 14O. GFP RNAi is in 13C, 13F, 14L, and 14M. Wells with elevated fluorescence in 240 mOsm Cl− are shown in red and orange. (B) Functional classification of the 595 hits identified in our screen. 21 hits were transmembrane proteins of unknown function, putative ion channels, or transporters. 9 candidates with human homology were further evaluated (Table S1). (C) Protein sequence alignment of dBest1 and mBest2 (Multalign; multalin.toulouse.inra.fr/multalin/). Green bars indicate transmembrane domains. Yellow bars indicate other putative α-helices (SOSUI; bp.nuap.nagoya-u.ac.jp/sosui/). A red star indicates the W94C mutation. A blue star indicates the Ca2+-binding bowl. A pink arrow indicates Stop 383. A pink box outlines the region switched in the d64m chimera. doi:10.1371/journal.pone.0046865.g004

Figure 5. DRSC26457 identifies dBest1 as Clswell. (A & B) RNAi efficiently targeting dBest1 prevents significant I−-induced H148Q-YFP suppression following hypo-osmotic stimulation. Fluorescence is in arbitrary units (a.u.). (A) Plate reader assay. DRSC26457 RNAi treatment resulted in a fluorescence decrease of 6.4% ± 19. Control and DRSC16909 RNAi treatment resulted in fluorescence decreases of 40.5% ± 9.1 and 43.7% ± 6.2 respectively. * 240 mOsm NaCl and NaI fluorescence levels are significantly different (Student’s t-test, p < 0.05). (B) Imaging assay. The fluorescence levels of individual S2R+ cells treated with control or dBest1 DRSC26457 RNAi were measured during hypo-osmotic stimulation in the sequential presence of Cl− and I−. The fluorescence of control cells decreased by 56% (n = 44); in contrast, the fluorescence of dBest1 DRSC26457 RNAi treated cells was suppressed by 15% (n = 174). (C) dBest1 DRSC26457 RNAi eliminated IClswell in S2R+ cells. Following dBest1 RNAi treatment IClswell is not significantly different from I240 (Student’s t-test, p = 0.1). * control and RNAi treated I240 are significantly different (Student’s t-test, p = 0.02). (D) dBest1 W94C-gfp overexpression suppresses S2R+ IClswell. * control and W94C-gfp I200 mOsm are significantly different (Student’s t-test, p = 0.02). (E) Confocal images of dBest1 W94C-gfp overexpression in S2R+ cells. Images were obtained before (320 mOsm) and after swell (200 mOsm). Scale bar indicates 10 μm. doi:10.1371/journal.pone.0046865.g005
(Best’s disease [34,35]). One mutation, W93C, occurs in a conserved sequence of the channel's putative pore [36,37] (Figure 4C). When we expressed the homolog dBest1 W94C-gfp in S2R+ cells, I_{Clswell} was significantly reduced (Figure 5D). Interestingly, the late activating component of I_{Clswell} remained clearly evident at depolarized potentials (Figure S1). We could not study this current in more detail as a loss of cell membrane integrity rapidly ensued. We conclude that dBest1 is responsible for the early activating S2R+ cell I_{Clswell}. W94C might interact with WT dBest1 to disrupt the Clswell channel pore or it may prevent proper protein trafficking [38]. In S2R+ cells, dBest1 W94C-gfp has a distinct intracellular expression pattern unaltered by osmotic changes (Figure 5E), suggesting the latter explanation over the former. Regardless, dBest1 W94C has a dominant negative impact on I_{Clswell}, further evidence that dBest1 is integral to the Clswell channel.

Another disease-associated Bestrophin mutation, D308A, occurs in a putative Ca^{2+}-binding bowl located in the channel’s C-terminus (Figure 4C; blue star). D308A is proposed to eliminate Bestrophin activation by disruption of calcium binding [39]. We introduced this mutation into dBest1 to determine if activation by calcium and cell swelling could be separated. Unfortunately dBest1 D308A-gfp was not functional in HEK cells (data not shown). Three possible explanations may underlie this result: 1) activation by multi-modal stimuli is simultaneously disrupted by the mutation; 2) the mutation causes protein misfolding and the channel function has been eliminated for reasons unrelated to activation; 3) the mutant channel is mislocalized. Our GFP-tagged protein was expressed (data not shown), but we cannot exclude the possibility that it mislocalizes or fails to interact appropriately with other proteins necessary for I_{Clswell} activation or channel function [34].

Exogenous dBest1 Expression Creates a Drosophila-like I_{Clswell}

Exogenous expression of a candidate protein substantiates whether the protein is necessary and/or sufficient in a given process. Our secondary screen assessed whether candidate protein expression resulted in a novel I_{Clswell} or augmented the endogenous HEK I_{Clswell} (Table S1). The HEK cell line chosen for candidate over-expression lacked constitutive I_{Cl} and I_{SCN} (potentially contaminating conductances attributable to SLC1A family member expression [40]; data not shown). The endogenous HEK I_{Clswell} develops very slowly (Figure 6A & B); a two fold increase was noted within the first 2 min of swell. Once the HEK I_{Clswell} reaches steady state, however, it has increased more than forty fold (44.4±10.7 fold, n = 29; Student’s t-test, p<0.000005). Tail currents are absent (Figure 6B & C). Characteristic voltage-dependent inactivation develops during steps to positive potentials (Figure 6C). HEK I_{Clswell} is anion selective; its permeability and slope conductance of mBest2 (Figure 8E, F; Table 1 & 2), suggesting that the channel's pore domain is downstream of residue 64. Two other groups have assessed mBest2 selectivity [44,45] and found greater permeability for SCN & F; Table 1 & 2), suggesting that the channel's pore domain is downstream of residue 64. Two other groups have assessed mBest2 selectivity [44,45] and found greater permeability for SCN than we report here. Both groups used high intracellular calcium to activate I_{mBest2}; we report constitutive I_{mBest2} measured with high internal calcium buffering (i.e. <10 nM free calcium). Our HEK cell line was also screened for potentially contaminating I_{SCN} (data not shown) attributable to SLC1A family member expression [40]. The pharmacological profile of I_{mBest2} diverged nearly independently from both that of HEK I_{Clswell} and I_{mBest} (Figure 2). Furosemide blocked 75% of I_{mBest2} while DIDS and DCPIB both blocked I_{mBest} to near completion (Figure 2D). We conclude that the dBest1 N-terminal domain is required for swell activation of the mBest2 channel. The reverse chimera (m64d) was non-functional; exogenous currents were not observed with swelling or in the presence of high intracellular Ca^{2+} (data not shown). We cannot conclude with this data however, that the N-terminus is a “swelling” domain as it lacks any predictive motifs. We hypothesize that it works in concert with domains present both in dBest1 and mBest2 to facilitate swell activation. The strong correlation between S2R+ I_{Clswell} and I_{mBest1}, combined with the unique selectivity and pharmacology of the d64m chimera, support the conclusion that the Bestrophin protein itself forms the Clswell channel rather than functioning as an auxiliary subunit.

Discussion

Our study validates the H14Q-YFP fluorophore as a reliable reporter of Clswell channel activity in genome-wide RNAi screening studies. H14Q-YFP has been employed very effectively in the identification of novel chloride channel activators, modulators, and blockers of CFTR and Ca^{2+}-activated Cl- channels [18]. This is the first reported RNAi screen using an
Figure 6. The endogenous HEK cell I_{Clswell} has characteristic mammalian I_{Clswell} properties. (A) HEK cell I_{Clswell} develops slowly, reaching steady state after 5 min exposure to 200 mOsm solution. ◆ indicate min in 200 mOsm. (B) Ramp protocol (inset) assessment of the HEK I_{Clswell}. Little I_{Clswell} has developed after 2 min in 200 mOsm solution. The steady state I_{Clswell} is outwardly rectifying and inactivating at positive potentials. No tail currents are apparent. (C) Step protocol (inset) assessment of the HEK I_{Clswell}. Rapid inactivation is observed at positive potentials. No tail currents are apparent. (D) Relative permeability and slope conductance sequences for the endogenous HEK I_{Clswell} are $\text{SCN} = I > \text{Cl} > \text{MES} > \text{ASP}$ vs $\text{SCN} = I = \text{Cl} = \text{MES} = \text{ASP}$.

doi:10.1371/journal.pone.0046865.g006
anion-sensitive fluorescent protein to assign molecular identity to a chloride channel. Our screen supports the findings of the Hartzell lab [15]: dBest1 RNAi eliminates Drosophila I_clswell. We found that the RNAi effectiveness was essential for Clswell candidate identification. Two separate dBest1-targeting RNAi’s were part of our initial screen: DRSC26457 and DRSC16909.

Figure 7. dBest1 overexpression in HEK cells produces a S2R+ cell-like I_clswell. (A) dBest1-gfp targets to the membrane of HEK cells. Confocal images of dBest1-gfp overexpressed in HEK-293 cells. The DIC image is on the left, GFP in the middle, overlapped images on the right. Scale bar indicates 10 μm. (B) I_{dBest1} rapidly develops within the first 2 min of hypo-osmotic stimulation. (C) The developing I_{dBest1} has the same "S" shape rectification as the endogenous S2R+ cell I_clswell. (D) Step protocol shows that I_{dBest1} shares time-dependent activation and tail current properties with S2R+ cell I_clswell. (E) The constitutively active I_{dBest1} and S2R+ cell I_clswell selectivity sequences are very similar. (F) I_{dBest1} is clearly separable from the endogenous HEK cell I_clswell. I_{dBest1} increases 15.8 fold ±4.5 (n = 18; ** paired Student’s t-test, p<0.005) in the first 2 min of hypo-osmotic stimulation; the endogenous HEK cell I_clswell increases 2.1 fold ±0.4 (n = 29; * paired Student’s t-test, p<0.05). doi:10.1371/journal.pone.0046865.g007

We found that the RNAi effectiveness was essential for Clswell candidate identification. Two separate dBest1-targeting RNAi’s were part of our initial screen: DRSC26457 and DRSC16909.
which corresponds to dB1S [15]), but only DRSC26457 was a hit. qPCR reported a 95% reduction in dBBest1 mRNA with DRSC26457 treatment versus an 85% reduction with DRSC16909. Hartzell and colleagues found that S2 cell IC\textsubscript{swell} was significantly reduced following treatment with 0.4 mg f0 DRSC16909 [15], while in our screen each assay well had a standardized 0.25 mg of RNAi. Using more RNAi may have effected greater target knockdown and resulted in the detection of DRSC16909 as a hit in our screen. This result emphasizes the importance of RNAi effectiveness in hit identification.

Exogenously expressed dB\textsubscript{Best1} and endogenous S2R+ IC\textsubscript{swell} share similar characteristics, including time-dependent activation, tail currents, relative permeability sequences, slope conductance sequences, and pharmacological profiles. The shared properties of Drosophila \textit{IC\textsubscript{swell}} and dB\textsubscript{Best1} suggest that the same protein forms the channel responsible for both. Bestrophin is a known ion channel modulator, altering voltage-gated calcium channel activity [46].

Figure 8. Chimeras between dB\textsubscript{Best1} and m\textsubscript{Best2} confer swell activation on m\textsubscript{Best2}. (A) Truncation of dB\textsubscript{Best1} does not interfere with swell sensitivity. Constitutive currents are apparent with both dB\textsubscript{Best1} and Stop 383 overexpression in iso-osmotic solutions (320 m\text{OSM}). With swell, current increased dramatically for both constructs (Student's t-test, * p < 0.05, ** p < 0.005). (B) d94m current increases significantly within the first 2 min of swelling (* Student's t-test, p < 0.05). (C) Time course for d64m swell activation. (D) Current-voltage relations for constitutive d64m, and following 2 min 200 m\text{OSM} solution. (E) Selectivity sequence for the constitutively active d64m current. (F) Selectivity sequence for the constitutively active m\textsubscript{Best2} currents.

doi:10.1371/journal.pone.0046865.g008
dBest1 expression simply modulated or upregulated the endogenous HEK IClswell channel expression, we would have expected the resulting IClswell to maintain the properties of HEK IClswell. Instead we observed that dBest1 introduced an exogenous Drosophila-like IClswell whose development preceded that of the endogenous HEK IClswell. Our experiments support the hypothesis that mutant wild-type was identical to colleagues [16]. IClswell measured in peritoneal mast cells isolated from the endogenous HEK IClswell channel. It further validates a live cell genetically engineered fluorescent screening platform to identify other mammalian chloride channels.

Several Bestrophin mutations are associated with vitelliform macular dystrophy [36,37]. How these mutations are causally linked to the disease is not clear. Here we found that overexpression of the disease-linked W94C dBest1 mutant in S2R+ cells significantly suppressed the endogenous Drosophila IClswell. The W94C mutation occurs in the putative pore of dBest1 and thus may disrupt IClswell conductance. However, the fluorescently tagged W94C dBest1 protein appears to localize to intracellular compartments, consistent with mislocalization. Milenkovic et al. have recently proposed that disease-associated Bestrophin mutations cause defects in intracellular trafficking [38]. Both scenarios may explain the dominant negative effect of dBest1 W94C on Drosophila IClswell: non-functional, pore-disrupting, mutant Bestrophin proteins complexing with wild-type dBest1 may be largely retained within the endoplasmic reticulum. The end result would be the elimination of endogenous Drosophila IClswell. Our experiments support the hypothesis that mutant Bestrophin W93C expression could significantly disrupt chloride flux and homeostasis in the human macula, contributing to the disease state.

The distinction of Bestrophin function in Drosophila versus mammalian cells is most clearly illustrated by Hartzell and colleagues [16]. IClswell measured in peritoneal mast cells isolated from mBest1−/−, mBest2−/−, and mBest1/2 double knockout mice was identical to wild-type IClswell. hBest1 and mBest2 are swell sensitive in that their currents are inhibited by hyperosmotic solutions. However, their activity does not increase with swell [12]. We confirm here that mBest2 activation does not increase when cells swell. Our db4m chimera contained only a small portion of dBest1, yet it responded to cellular swelling. The crucial N-terminal region contains no distinct association domains or predictive structures that might explain its coupling to changes in cell stretch, tension, or osmolarity. We speculate that the N-terminus contributes to a required tertiary structure that enables swelling signaling events to activate the dBest1 channel.

Our genome-wide RNAi screen of S2R+ cells and follow-up study firmly establishes that the dBest1 protein forms the Drosophila IClswell channel. It further validates a live cell genetically engineered fluorescent screening platform to identify other mammalian chloride channels.

Materials and Methods

Generation of the S2R+ YFP- H148Q Stable Cell Line

The stable S2R+ cell line expressing a halide-sensitive YFP (H148Q-YFP, kindly provided by Dr. Alan Verkman, UCSF) was generated with a selection vector (pCoBlast). H148Q-YFP was subcloned into the pAc5.1/V5-HisA vector (Invitrogen, CA). The S2R+ cells were transfected by electroporation (Amaxa cell line nucleofector kit V; Lonza). Cells were placed under selective pressure with 25 μg/ml blasticidin for 2 weeks. Two rounds of fluorescence-activated cell sorting (FACS; DFCI Flow Cytometry

Core Facility) normalized YFP fluorescence intensities. These S2R+ cells exhibited a robust IClswell as described in Figure 1. S2R+ cells were maintained in Schneider’s Drosophila medium (Invitrogen), with 10% heat inactivated fetal bovine serum (Invitrogen), and 1% penicillin/streptomycin (Sigma-Aldrich). For the primary screen, cells were spun down and resuspended in serum-free medium at a density of 9×10⁶ cells/ml. 10 μl of the cell suspension was added to each of the 304 wells using the Matrix Wellmate 8-channel microplate dispenser (ThermoScientific; DRSC). Cells were incubated for 30 min, then 30 μl of serum containing medium were added to each well. Cells were cultured for 5 d before the swell assay was performed (5 d RNAi treatment is necessary to sufficiently knock down proteins with slow turnover rates). For the secondary screen, cells were plated at a density of 40% in a 6 well dish. Once cells were adherent, the medium was replaced with 1 ml of serum-free medium containing 0.015 μg/μl dsRNA. Cells were incubated for 30 min at room temperature followed by addition of 3 ml of serum-containing medium to each well. Transfections were performed in duplicate; 1 well was used for functional studies and the other for qPCR analysis of knockdown at day 5.

Screening Solutions

Iso-osmotic (320 milliOsm/kg; mOsm) solutions contained in mM: 105 NaCl or NaI, 2 CaCl2, 1 MgCl2, 5 KCl, 10 HEPES, 10 Glucose, 90 Mannitol [pH 7.4 NaOH]. For hypo-osmotic (240 mOsm) solutions, mannitol was omitted. 1 mM furosemide (Sigma-Aldrich) blocked 100% of the S2R+ IClswell and prevented significant H148Q-YFP suppression. Furosemide is a specific blocker of Na-K-2Cl co-transporters (SLC12A2) at concentrations in the μM range.

The Primary Screen

Our genome-wide screen was conducted at the Harvard/HHMI Drosophila RNAi Screening Center using the DRSC 2.0 Genomewide RNAi Library. DRSC 2.0 is a collection of dsRNAs for genome-wide RNAi knockdown covering ~13,900 genes encoding proteins and non-coding RNAs while minimizing off-target effects due to sequence similarity to other genes. Each gene is targeted by 1.3 dsRNA/gene. The screen consisted of 66 384-well assay plates in duplicate. Each well of the 384-well plate contained 5 μl of 0.05 μg/μl dsRNA in water (0.25 μg dsRNA/well). Each plate contained control RNAi specific for Thread (Drosophila inhibitor of apoptosis protein), Rho (a small GTPase activator of the EGFR signaling pathway), and GFP. On day 5 of RNAi treatment, the cellular fluorescence of the H148Q-YFP probe was measured under several treatment conditions using the Analyst GT plate reader (Molecular Devices; DRSC). The probe was excited at 485 nm and emissions collected at 530 nm. Before fluorescence measurements were taken, the media was aspirated and the cells were equilibrated in 320 mOsm NaCl solution. After 10 min this solution was removed by aspiration and cells incubated in 240 mOsm NaCl for 5 min. Fluorescence was then measured, the NaCl solution removed and cells were incubated in 240 mOsm NaI for 5 min. Fluorescence was again measured; the change in fluorescence was determined by dividing the fluorescence in 240 mOsm NaCl by that in 240 mOsm NaCl. Wells with fluorescence or ratio changes (240 mOsm I− fluorescence/240 mOsm Cl− fluorescence) greater than 1.5 times the standard deviation (1.5×S.D.) of the plate mean were initially considered as hits (candidates of IClswell channel or regulators of its activation pathway). False positives could potentially result if the RNAi treatment caused a
high internal pH as H148Q-YFP has a pKa of 6.7. Cell death was detected in control wells indicating effective RNAi treatment.

Generation of dsRNA

cDNA templates were generated by PCR amplification of genomic DNA using primers designed by the DRSC (SnapDragon tool). These primers had the T7 promoter sequence (TAATACGACTCACTATAGGG) added to the 5’ end of both primers. The templates generally corresponded to exons but occasionally sequences with two or more exons interrupted by introns were used. The PCR fragments were ~150–600 base pairs in length, and any complete 19-mer homology to other genes that could lead to non-specific dsRNA are reported. Individual RNAi sequences used here are found in the DRSC website (www.flyrnai.org). dsRNAs against *Drosophila melanogaster* were synthesized with the MEGAscript kit (Ambion). RNA was purified with the RNeasyPlus mini kit (Qiagen) and stored at -80°C.

qPCR Analysis of RNAi Efficiency

After 5 d RNAi treatment, RNA was prepared from the S2R+ cells using the RNeasyPlus mini kit (Qiagen). 2.5 μg RNA was used for each first-strand cDNA synthesis reaction (SuperScript Vilo cDNA Synthesis kit, Invitrogen). Primers for qPCR were designed on the NCBI/PrimerBlast site (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) with the following restrictions: PCR product size was between 70 and 300 bp, primer melting temperatures were between 57 and 63°C, primers spanned an exon-exon junction, and primers were specific to the intended PCR template as determined by BLAST analysis of the *Drosophila melanogaster* RefSeq mRNA database. Primer sets were only used if the melting curve had a single peak. The RT² Real-Time SYBR Green/Rox PCR master mix (SA Biosciences) was used for qPCR. qPCR reactions were set up in quadruplicate to minimize pipetting errors, and run on the Mastercycler ep Realplex real-time PCR system (Eppendorf). Average cycle numbers for each primer set were normalized to the endogenous ISCN and any complete 19-mer homology to other genes that could lead to non-specific dsRNA are reported. Individual RNAi sequences used here are found in the DRSC website (www.flyrnai.org). dsRNAs against *Drosophila melanogaster* were synthesized with the MEGAscript kit (Ambion). RNA was purified with the RNeasyPlus mini kit (Qiagen) and stored at -80°C.

Secondary Screening of Candidates

Comprehensive bioinformatics analysis of the hit list was performed to identify potential candidates for Clswell. Hits were limited to those with human homologs and at least a single transmembrane domain. Potential regulators of the Clswell activation pathway were left for future consideration. The effects of RNAi on fluorescence changes were confirmed by plate reader activation pathway were left for future consideration. The effects of RNAi on fluorescence changes were confirmed by plate reader.

Electrophysiology

Whole-cell patch clamp recordings were made at room temperature. Recordings were obtained using an Axopatch 200B amplifier, Digidata 1322A analog-to-digital converter, and pClamp 8.01 software (Molecular Devices, Union City, CA). Data were low-pass filtered at 2 kHz and digitized at 5 kHz. Fire-polished thin or thick wall borosilicate glass pipettes of 3–4 MΩ resistances were used for recordings; access resistance was compensated to >80%. Cells were held at -70 mV to clearly eliminate cells with leaky seals and voltage ramps (400 ms in duration) from the Goldman-Hodgkin-Katz equation. For our calculations, the [Cl]i was set to 0 mM. Cells were held at -70 mV during all recordings, rapidly depleting Cl− Cation permeability was essentially nil, as replacement of 200 mOSM NaCl solution with 200 mOSM NMDG-Cl solution did not change the reversal potential (Erev; data not shown). Slope conductances were calculated for each anionic substitution between the Erev and +80 mV. For the S2R+ and HEK cells Erev and I+80 mV were measured in 200 mOSM solutions. For exogenously expressed dBest1, mBest2, and d64m Erev and I+80 mV were measured in 320 mOSM solutions to prevent contamination with the endogenous HEK cell IClswell. The HEK cell line chosen for over-expression studies had no constitutive IClswell (I+80 mOSM did not change when switching between Cl− and ASP); the endogenous IClswell developed very slowly, and the cells did not have an endogenous ISCN (attributable to SLC1A family member expression [40].

Pharmacology

Stock solutions of DIDS (0.1 M in DMSO; Sigma), DCPIB (50 mM in EtOH; Tocris), and furosemide (1M in DMSO; Sigma) were prepared and diluted in 320 mOSM or 200 mOSM NaCl solution to their final concentrations.

Molecular Biology

dBest1 was a kind gift from Dr. Criss Hartzell (Emory University). All other constructs were either ordered from Open Biosystems or cloned from a *Drosophila* cDNA library or Human Brain (whole Marathon ready cDNA library; BD Biosciences). Candidate cDNAs were subcloned into pEGFP-N3 (C-terminal tag; BD Biosciences) and an engineered Red pTracer vector (untagged). We found that an X-terminal EGFP tag rendered dBest1 nonfunctional (data not shown). Using site-directed mutagenesis we introduced the W94C mutation into dBest1/pEGFP-N3 (GeneArt site-directed mutagenesis, Invitrogen, CA). dBest1 W94C-gfp was then subcloned into the pAc5.1 V5-HisA vector (Invitrogen, CA).

Supporting Information

Figure S1 The late activating component of S2R+ IClswell remains despite overexpression of dBest1 W94C-gfp. (A) The late activating component of S2R+ IClswell is isolated after dominant negative elimination of *dBest1*. Inset: Step protocol. (B) The late activating component of S2R+ IClswell is sharply rectifying (ramp protocol; inset). Red trace is 320 mOSM solution, blue trace is 80 s after the 200 mOSM solution change. The late activating IClswell develops after 36 s in 200 mOSM solution. (TIF)

Table S1 Secondary screening identifies Best1 as the *Drosophila* Clswell channel. Candidates with transmembrane domains and human homologs were further studied to determine if they formed the Clswell channel. ✓ indicates a positive secondary screening result; X indicates a negative result. ◆ indicates that several qPCR primer sets consistently had more than 1 melting
point peak suggesting nonspecific primer binding. The effectiveness of RNAi knockdown, therefore, could not be determined by qPCR. ?? indicates that two cells overexpressing SLC1A2 had substantial IClswell currents but small IClswell. Thus, SLC1A2 overexpression may upregulate endogenous HEK cell IClswell in the majority of the population but does not form the channel itself. HeLa cells treated with SLC1A3 siRNA (which reduced SLC1A2 expression) showed a point peak suggesting nonspecific primer binding. The effective-ness of RNAi knockdown, therefore, could not be determined by qPCR.

References

Acknowledgments

We thank the Drosophila RNAi Screening Center at Harvard Medical School (NIH/NIGMS R01GM067761) for providing RNAi libraries, laboratory space, bioinformatics tools and other support for the screen.

Author Contributions

Conceived and designed the experiments: SCS. Performed the experiments: SCS. Analyzed the data: SCS. Contributed reagents/materials/analysis tools: SCS DEG. Wrote the paper: SCS DEG.