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Abstract

Flow-based microfluidic systems have been widely utilized for cell migration studies given their ability to generate versatile
and precisely defined chemical gradients and to permit direct visualization of migrating cells. Nonetheless, the general need
for bulky peripherals such as mechanical pumps and tubing and the complicated setup procedures significantly limit the
widespread use of these microfluidic systems for cell migration studies. Here we present a simple method to power
microfluidic devices for chemotaxis assays using the commercially available ALZETH osmotic pumps. Specifically, we
developed a standalone chemotaxis platform that has the same footprint as a multiwell plate and can generate well-
defined, stable chemical gradients continuously for up to 7 days. Using this platform, we validated the short-term (24 hours)
and long-term (72 hours) concentration dependent PDGF-BB chemotaxis response of human bone marrow derived
mesenchymal stem cells.
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Introduction

While cell migration is critical for embryogenesis, homeostasis,

and tissue regeneration, a simple, robust, and accessible in vitro

assay for the study of chemotaxis that can generate long-term

stable linear gradients from nearly any agent has remained elusive.

Flow-based microfluidic gradient generators are useful to over-

come many key limitations in traditional chemotaxis assays by

providing exquisite control over chemotactic gradient profiles and

permitting direct visualization and quantification of cell migration

[1,2,3]. Gradient generating devices typically utilize diffusive

mixing of parallel flowing streams of different concentrations to

instantly generate a chemical gradient in the direction perpendic-

ular to the flow [4,5]. Due to the use of continuous fluid flow, these

flow-based gradient generators maintain stable and robust

gradients of chemoattractants for both short-term and long-term

studies, which are critical for the study of chemotaxis of slow

migrating cells, yet are not possible with traditional migration

assays [6].

However, despite substantial improvements made by flow-based

microfluidic gradient generators, traditional chemotaxis assays

(e.g. modified Boyden chamber) remain the method of choice for

studying cell migration due to their simplicity [3]. Flow-based

systems are relatively complex to utilize (compared to placing

transwell inserts in a multiwell plate) and often require bulky

equipment such as external electrical or pneumatic pumps, tubing,

and fittings.[2] Assembling these components is laborious and they

cannot be simply integrated into common cell culture procedures

[7]. This becomes particularly problematic for long-term chemo-

taxis studies where the experimental setup must be maintained

under standard cell culture conditions for days (i.e. at 37uC and

5% CO2). Recent studies by Park et al have used small PDMS

osmotic pumps, where the osmotic flow was driven by the

transport of buffer solution from the microfluidic device into a

bath of poly(ethylene glycol) solution [8]. However, for long-term

studies (.12 hours), this system is impractical as it is limited by the

small capacity of the osmotic pump (120 mL) which only lasts for

several hours at the rate of 20 mL/hr. Furthermore, the need to

fabricate osmotic pumps discourages the routine use of this system.

To enable general use of flow-based gradient generators in

chemotaxis studies, the ideal platform should be easy to use and be

portable. The latter is often overlooked in designing laboratory

devices, but is critical to permit users to readily transfer platforms

between existing lab equipments (i.e. cell culture hood, incubator,

and microscope) [2]. Universal chemotaxis platforms should also

work for a wide range of chemoattractants (e.g. small molecules,

peptides, and protein based growth factors). The shape and

steepness of the gradients should be easily controlled, and the

gradients should rapidly stabilize and remain constant for at least

24 hours to permit the study of both slow and fast migrating cell

types.

Here, we have developed a standalone chemotaxis platform that

has the same footprint as a multiwell plate and can generate well-
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defined, stable chemical gradients for up to 7 days. We used

commercially available osmotic pumps (ALZETH Osmotic Pump)

to drive fluid flow in a microfluidic gradient generator [5].

ALZETH pumps were originally designed for continuous drug

delivery in small animals; therefore, these pumps are compact (size

of a micro-centrifuge tube), battery-free, and operate at a constant

slow flow rate for days. This permits us to strip away all the bulky

peripherals and power connections that are normally required in

existing flow-based chemotaxis systems. Moreover, unstable

chemoattractants inside the pump can easily be replaced by

withdrawing old medium and infusing fresh medium into the

pump maintaining their activity during long-term studies. For

versatile control over the chemical gradients we used a universal

microfluidic gradient generator [5]. Using mathematical modeling

software, we could accurately predict the resultant gradient

profiles given the identity of the chemoattractants. Using this

platform, we validated the assay over the short and long term by

examining the chemotactic response of human bone marrow

derived Mesenchymal Stem Cells (MSCs) under a gradient of

Platelet-Derived Growth Factor BB (PDGF-BB) for 24 hours and

72 hours respectively [9]. Given its simplicity and ability to

generate long-term stable gradients, we believe combining

microfluidic gradient generators and ALZETH osmotic pumps

has the potential to become a universal routine assay for the study

of chemotaxis.

Results

The chemotaxis platform comprises of a microfluidic gradient

generator and two osmotic pumps (ALZETH, Durect Corp.,

Cupertino, CA). The microfluidic device is adapted from our

previous design, containing three components: a pair of inlets, a

gradient-forming region, and a cell migration region (Figure 1A)

[5]. This gradient generator enables creation of a stable gradient of

any profile (e.g. linear, power, exponential) by modulating the

inter-diffusion between two adjacent streams using multiple

parallel dividers along the direction of flow. The arrangement of

these dividers determines the resultant gradient profile. In the

system presented here, solutions from the two inlets flow through

the gradient-forming region and exit into the cell migration region,

where a linear gradient is formed. The microfluidic device was

connected to two ALZETH pumps that were immersed in

phosphate buffered saline (PBS) inside two conical tubes to keep

the pumps hydrated. The flow rate reaches the nominal value

when pumps are hydrated at 37uC. Bubble traps were added along

the inlet channels to prevent bubbles from entering the

microfluidic device that could destroy the gradient and damage

the adherent cells (Figure 1A). The assembly was placed inside a

small transparent plastic box (size of a multiwell plate) (Figure 1B)

that can be conveniently stored in a standard incubator and

transferred between a culture hood and a microscope.

A critical consideration was the selection of the pumping rate.

Extremely slow flow rates will not generate a stable gradient,

whereas high flow rates may impose excessive shear stress on the

adherent cells. To determine the optimal pumping rate, we

perfused fluorescein sodium salt solution (fluorescein) and PBS into

the two inlets using a mechanical syringe pump under four flow

rates (20, 10, 5, and 0.5 mL/hr). As shown in Figure 2B & 2C, a

fluorescein gradient was generated within the cell migration region

(denoted as Lv 10 in Figure 2A) under all flow rates. Gradients

generated under 5, 10 and 20 mL/hr had the highest linearity and

exhibited the largest concentration range. At 0.5 mL/hr, the flow

was so slow that sufficient mixing had taken place near the upper

and lower boundaries of the microchannel, resulting in a

decreased concentration range of the gradient. We chose a

pumping rate of 5 mL/hr to maximize the gradient range while

minimizing shear stress induced by the flow and consumption of

chemoattractants. By powering the microfluidic device with two

ALZETH osmotic pumps rated at 5 mL/hr, we achieved a similar

fluorescein gradient to those generated by the mechanical syringe

pump at the same pumping rate (Figure S1).

To show that gradients generated can reliably be predicted

through mathematical modeling, we modeled the gradient profiles

of three different-sized molecules (376 Da fluorescein sodium salt,

4 kDa and 70 kDa fluorescein isothiocyanate–dextran (FITC-

dextran)) and compared them to experimental observations

(Figure S2). Quantification of the fluorescence intensity in the

cell migration region (Lv10) shows that our experimental profile

matches closely with our theoretical profile (,5% variability).

Chemotaxis in vivo typically occurs on the order of days during

several biological processes (e.g. embryonic development, stem cell

differentiation, wound healing, and growth of axon) [10,11,12].

Flow-based chemotaxis assays offer excellent control over the

chemotactic gradient but they are difficult to be maintained inside

the standard cell incubator with typical culturing conditions (37uC,

5% CO2, 100% humidity) for days, owing to the need for bulky

peripheral equipments. On the other hand, traditional transwell

assays can be conveniently handled in the form of multiwell plates

but their control over the gradient is poor and the stability of the

gradient only lasts for a few hours. Here, we show that by

powering our chemotaxis platform with two ALZETH osmotic

pumps, our chemotaxis platform can achieve both exquisite

control and long-term stability over the gradient. As shown in

Figure 2D, our platform is able to maintain a stable, linear

gradient for up to 7 days, which is the rated lifetime of the

ALZETH osmotic pump. At day 9, the quality of the gradient had

diminished. Due to the low flow rate used in our platform, less

than 1.7 mL of chemoattractants was consumed over the course of

7 days.

One of the possible consequences of applying flow is that the

fluid shear stress inside the microfluidic channel may negatively

impact cell viability and proliferation [13,14]. We performed

theoretical modeling to predict the wall shear stress in the cell

migration region of the device (Figure 2E). Modeling results

showed that a flow rate of 10 mL/hr (i.e. 5 mL/hr at each of the

two inlets) would generate 0.14 dynes/cm2 and 0.03 dynes/cm2 on

the top and bottom of a cell, respectively. This level of shear stress

has been shown to have minimal impact on cell phenotype [14].

We confirmed this by examining cell viability and morphology of

MSCs under flow at 10 mL/hr for three days (Figure S3). At the

end of three days, we observed a slight proliferation of MSCs as

the number of cells in the cell migration region increased from 132

(0 hour) to 152 (72 hours) (Figure S3A), and we did not observe

any significant changes in cell morphology (Figure S3B). These

results suggest that the platform may be suitable for performing

long-term chemotaxis assays (on the order of days), where

continuous exposure to very low shear stress (0.03–0.14 dynes/

cm2) would have limited effects on cell viability and morphology.

Using this chemotaxis platform, we examined the short-term

and long-term effects of PDGF-BB gradient on MSCs migration.

PDGF-BB is a well-studied chemotactic cue to many mammalian

cell types, including MSCs [9,15]. Currently, the chemotactic

response of MSCs in a PDGF-BB gradient is mainly studied using

modified Boyden Chambers, which only provides a temporal

PDGF-BB gradient for a few hours. Results achieved using

Boyden Chambers do not provide any information about the real-

time response of MSCs towards a stable PDGF-BB gradient or the

long term effect of the gradient over cell migration. Here, we
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established a linear PDGF-BB gradient (0 to 100 ng/mL) in the

cell migration region and observed the migratory response of

MSCs for 24 hours using live-cell imaging (Figure 3 & Mov. S1).

We also modeled the PDGF-BB gradient using COMSOL to

verify the profile shape (Figure S4). As shown in Figure 3, MSCs

that were initially exposed to the lower concentrations of the

PDGF-BB gradient (0–50 ng/ml, cell no. 1-13 in Figure 3A & 3B)

exhibited directed migration towards the higher concentrations of

Figure 1. Osmotic pump powered microfluidic platform. (A) Schematic (not to scale) of the chemotaxis platform. Two ALZETH osmotic pumps
are connected to a microfluidic gradient generator through flexible tubing. Gradient profile is controlled by the pump speed and the arrangement of
the dividers within the gradient-forming region. (B) An image of the chemotaxis platform contained within a small plastic box.
doi:10.1371/journal.pone.0044995.g001

Figure 2. Gradient evolution inside the microfluidic gradient generator. (A) A macroscopic image of the gradient generator. (B–C) Gradient
evolution inside the microfluidic gradient generator at different pumping rates powered by mechanical pump: (B) Visualization of the gradient at
level 2 (Lv2), 5 (Lv5), 8 (Lv8), and 10 (Lv10)), as denoted by the dashed boxes. Fluorescence images were captured within each zone 2 hours after
starting the pump. Fluorescence intensity was measured in the middle of the cell migration region denoted by the red dashed lines. Yellow dashed
lines denote the upper and lower boundaries of the microchannel. (C) Normalized fluorescence intensity of the fluorescein gradients along the cell
migration channel (red dashed line in b) at different pumping rates. (D) Fluorescein gradient evolution across the cell migration region (Lv10) inside
the microfluidic gradient generator powered by ALZETH osmotic pumps (5 mL/hr) throughout a 9-day period. Normalized by taking the fluorescent
intensity at 0 mm as 1. (E) Shear stress within the cell migration region modeled using COMSOL. Inset at bottom: a model cell (height 1.5 mm),
experiences shear stresses in the range of 0.03–0.14 dynes/cm2.
doi:10.1371/journal.pone.0044995.g002

Portable Microfluidic Platform

PLOS ONE | www.plosone.org 3 September 2012 | Volume 7 | Issue 9 | e44995



the PDGF-BB gradient (50–100 ng/mL, upper half of the

channel). The longest displacement of MSCs along the direction

of gradient was 296 mm (,12 mm/hour) (cell No. 6, Figure 3A &

3B). Conversely, the majority of MSCs that were initially exposed

to the higher concentrations of the PDGF-BB gradient (cell

no. 14-26 in Figure 3A & 3C) showed a random migration pattern

(i.e. chemokinesis). The different migration behavior of cells

between 0–50 ng/ml region and 50–100 ng/ml region was

confirmed through examining chemotactic index (CI) [16]. The

CI of MSCs in the 0–50 ng/ml region was much higher than that

of MSCs in 50–100 ng/ml region (Figure 3D), which agrees with

previous studies that have shown that MSCs exhibit a chemotactic

response towards PDGF-BB and the maximal response is typically

observed in the range of 10–50 ng/mL [17].

One of the unmet needs in chemotaxis studies is that it is very

difficult to perform long-term assays (on the order of days). To

validate the microfluidic platform for long-term chemotaxis

analysis, we examined the effects of a PDGF-BB gradient (0–

100 ng/mL) on MSCs migration for 72 hours (Figure 4 and

Figure S7). In one typical example (Figure 4A), 72 hours after

introducing the gradient, the number of cells in the region with

lower PDGF-BB concentrations (0–50 ng/mL, bottom region)

decreased significantly from 50 to 25, whereas the number of cells

in the region with higher PDGF-BB concentrations (50–100 ng/

mL, top region) increased from 55 to 82. The accumulated data

from three independent experiments revealed that the ratio of the

number of MSCs in the top region vs. the bottom region

significantly increased from 0.9860.21 to 2.8560.8, 72 hours

after the introduction of the gradient (Figure 4B), indicating that

MSCs underwent a directed migration in response to the PDGF-

BB gradient. In the absence of a PDGF-BB gradient (i.e. 0–0 ng/

mL (2/2) or 100-100 ng/mL (+/+) of PDGF-BB), we did not

observe a significant change in cell distribution (Figure 4B and

Figure S2 & S5), confirming our observation in Figure 4A is a

result of long-term directed migration in the presence of a PDGF-

BB gradient. The total number of MSCs in the channel did not

change significantly before and 72 hours after introducing the

gradient indicating that the flow stream did not detach cells, and

calcein AM imaging indicated that the viability of MSCs was

minimally impacted (Figure S6).

The precise control over the chemotactic gradients for more

than 3 days described here is a unique feature among chemotaxis

Figure 3. Microfluidic platform for short-term chemotaxis assay. (A) Time-lapse images of MSCs migration under a PDGF-BB gradient for
24 hours. Images were taken every 15 minutes and individual color-coded cell tracks were assembled after 0, 8, 16, and 24 hours. A movie clip of the
24-hour cell migration data is available (Mov. S1). (B, C) Migration traces of cells initially seeded in the lower PDGF-BB concentration region (cell
no. 1-13) and in the higher PDGF-BB concentration region (cell no. 14-26), respectively. These cell traces (B) indicate that cells in the bottom half of
the channel (0–50 ng/mL of PDGF-BB) exhibited directed migration, whereas (C) cells in the top half of the channel (50–100 ng/mL of PDGF-BB)
exhibited random motion. Axes are in the units of 200 microns. (D) Chemotactic index, CI of MSCs in 0–50 ng/ml and 50–100 ng/ml PDGF-BB
regions. Statistical significance was determined by Student’s t-test comparing cells in the bottom and top parts of the channel (*p,0.05).
doi:10.1371/journal.pone.0044995.g003
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assays. Traditional assays such as modified Boyden chambers,

Dunn chambers, and under-agarose assays exhibit gradients that

quickly deteriorate (in less than 24 hours) and they offer limited

control over the gradient profiles [18]. Flow-based microfluidic

gradient generators facilitate long-term stable chemotactic gradi-

ents with excellent control over the gradient profiles, but require

bulky peripherals [19]. Furthermore, non-trivial steps in main-

taining the existing gradient generators under culture conditions

for days present significant challenges for wide adoption. The

long-term stability of the gradients enables studies of slowly

migrating adherent cells including fibroblasts, cancer cells,

neurons, and stem cells.

Conclusion

In summary, we have designed a simple, robust, and accessible

system for the study of chemotaxis experiments lasting several

days. The device includes a microfluidic chamber and two

commercially available ALZETH osmotic pumps, is easy to

assemble, avoids the use of bulky peripheral devices, has a small

footprint, requires minimal maintenance, and is capable of

generating stable gradients that can persist for 7 days. Importantly,

low cost microfluidic devices for academic research can be

fabricated through government sponsored foundries (e.g. http://

www.stanford.edu/group/foundry/). The assembled device was

used to show the short-term and long-term directional migration

of MSCs under a PDGF-BB gradient. This simple portable

microfluidic platform has potential to become widely adopted for

experiments requiring stable gradients, and may find use in non-

laboratory settings.

Materials and Methods

Mesenchymal stem cell culture and characterization
Primary human MSCs were obtained from the Texas A&M

Health Science Center, College of Medicine, Institute for

Regenerative Medicine at Scott & White Hospital which has a

grant from NCRR of the NIH, Grant #P40RR017447. MSCs

were derived from healthy consenting donors and thoroughly

characterized as previously described [20]. MSCs were main-

tained in a-MEM expansion media (Invitrogen) supplemented

with 10% Fetal Bovine Serum (Premium Select, Atlanta Biolog-

icals), 1% (v/v) L-Glutamine (Invitrogen), and 1% penicillin:-

streptomycin solution (Invitrogen). Cells were cultured to 70–80%

confluence before passaging. All experiments were performed

using MSCs at passage number 3–6 where cells expressed high

levels of MSC markers CD90 and CD29 (.99% cells), and did not

express hematopoietic markers CD34 or CD45 (0% of cells) as

observed from flow cytometry analysis. Prior to cell experiments,

MSCs were detached with 16 Trypsin (Gibco) and filtered with

40 mm Nylon Mesh (Fisher Scientific).

Fabrication of gradient generator
Standard microfabrication technology was used to fabricate

10 mm-wide dividers in 900 mm-wide and 40 mm-high channels in

poly-(dimethylsiloxane) (PDMS, Sylgard 184; Dow Corning,

Midland, MI) on glass. Briefly, a 40 mm layer of SU8 (Microchem,

Newton,MA) was spun on a silicon wafer and photo-patterned

according to manufacturer’s instructions and using a Mylar mask

(Fineline Imaging, Colorado Springs, CO). PDMS was prepared

according to the manufacturer’s instructions and cast over the

developed photoresist mold to create complementary microchan-

nels in PDMS. Through holes, defining the inlets and outlets, were

punched using a flat bottomed 25-gauge needle. The bonding

surfaces of the PDMS and a regular glass slide (163 inch; Fisher

Scientific) were treated with oxygen plasma (150 mTorr, 50 W,

20 s) produced in the parallel plate plasma asher (March Inc.,

Concord, CA). Before use, devices were sterilized with 70%

ethanol, coated with 5 mg/mL fibronectin for 45 min, washed with

PBS, and equilibrated with full media.

Establishment of a fluorescence gradient profile with a
mechanical pump and analysis

An automatic syringe pump (Harvard Apparatus PHD 2000)

was used to study the effect of flow rate on gradient generation.

Prior to use, the microfluidic channel was pre-wetted with PBS for

at least 30 minutes. One syringe was loaded with 0.1% Fluorescein

sodium salt (FITC) (Aldrich) dye in PBS solution and the other

syringe with pure PBS. Both syringes were connected to the

microfluidic channel inlets and each syringe was pumped at flow

rates of 20, 10, 5, and 0.5 mL/hr, which correspond to flow rates

of 40, 20, 10, and 1 mL/hr and flow velocities of 352, 176, 88, and

8.8 mm/s in the cell migration region. Gradients were permitted

Figure 4. Microfluidic platform for long-term chemotaxis assay. (A) Long-term migration of MSCs (labeled with CFSE/Calcein AM) within a
PDGF-BB gradient (0–100 ng/ml). The total number of cells present within the cell migration region was 105 at 0 hour and 107 at 72 hours. Limited
by the visualization area of microscope, fluorescent images of adjacent areas were taken individually and spliced together. (B) Cell distribution within
the cell migration region in the presence (0–100 ng/mL PDGF-BB) or absence (0-0 ng/mL or 100-100 ng/mL PDGF-BB) of a chemotactic gradient.
Data from Figure 4A, S3, and S5 were represented as ratios of number of cells present in the upper half of the channel to that in the lower half of the
channel. Results are means 6 STD for n = 3. Statistical significance was determined by Student’s t-test comparing results in the presence of a gradient
from 0 and 72 hours (*p,0.05).
doi:10.1371/journal.pone.0044995.g004
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sufficient time to establish and stabilize. The gradient was imaged

using an inverted fluorescence microscope (TE2000, Nikon, Japan)

equipped with a CCD camera.

Establishment of a fluorescence gradient profile with
ALZETH osmotic pump and analysis

Fluorescence gradient generation was confirmed using AL-

ZETH osmotic pumps with a flow rate of 5 mL/hr. The gradient

generator was pre-wetted with PBS at least for 30 min. Pumps

were filled with the same solutions as above (FITC and PBS) and

incubated in sterile PBS. Then the pumps and bubble trap were

connected into the inlets of the devices and the gradient was

allowed to stabilize for 1 hour. The gradient was imaged every

24 hours thereafter on an inverted fluorescence microscope

(TE2000, Nikon) equipped with a CCD camera and tempera-

ture-maintaining system. The images were analyzed by ImageJ.

Preparation of ALZETH osmotic pump for the study of
cell migration

ALZETH osmotic pumps were prepared 24 hours ahead of

experiment. The media containing 10% FBS or PDGF-BB

(100 ng/ml in complete media) was pre-equilibrated within a cell

incubator for 6 hours to allow sufficient gas exchange. The pre-

equilibrated media was injected into ALZETH osmotic pumps.

Finally, each media containing ALZETH osmotic pump was

placed inside a 15 ml-conical tube filled with water and connected

to 8 cm gas-permeable silicon tubing (VersiliH SPX-50, Saint-

Gobain Performance Plastics Corp.) that ran through the cap of

the conical tubing. The final pump systems were placed in an

incubator overnight to remove air bubbles that were introduced

during the media loading process.

FBS or PDGF-BB gradient generation with ALZETH
osmotic pump

The devices were disinfected with 70% ethanol, coated with

5 mg/mL fibronectin for 45 min, washed with PBS, and equili-

brated with full media for 1 hour. To facilitate cell tracking, MSCs

were stained with 5 mg/mL CFSE (Molecular Probes) based on

the manufacturer’s standard protocol. The CFSE stained MSCs

were detached and seeded through the outlet with 5 mL of cell

suspension at a density of 1.56106 cells/mL. Following 6 hours to

permit cell attachment, the device was connected with previously

prepared ALZETH osmotic pumps.

For the live-cell imaging in the PDGF-BB gradient, the device

was imaged every 15 min on a microscope (TE2000, Nikon,

Japan) equipped with a CCD camera and temperature-maintain-

ing system. Orientation bias of cells was quantified by chemotactic

index (CI) [16], which is defined as the displacement along the

direction of the gradient divided by the total displacement.

For the long-term migration, the device was maintained in a

standard cell incubator. Prior to imaging, 0.5–1 mL PBS was

added to the top of the outlet to prevent air bubbles from entering

the channel. At the end of the experiment, calcein AM staining

was used to label the living cells. Introduction of calcein AM

staining solutions within the microfluidic device is convenient and

simple, as the negative pressure generated by the temperature

drop from 37uC to room temperature allows backward suction

through the outlet. Calcein AM staining solution was placed on

the outlet and the device was removed from the incubator for

30 min to allow calcein AM solution to enter the channel. The

device was then placed in the cell incubator for 1 hour to pump

out the calcein AM solution prior to imaging.

Computational evaluation of gradient profile and shear
stress

Three-dimensional flow in the microfluidic channel was

modeled using COMSOL Multiphysics 4.2 finite element method.

Diffusion coefficients of three molecules used in the modeling are

Fluorescein sodium salt (MW = 376.27; 3.361026 cm2 s21), Dex-

tran-FITC (MW = 4000, 1.4861026 cm2 s21), and Dextran-

FITC (MW = 70000, 0.3661026 cm2 s21), and PDGF-BB

(MW = 24300, 1.2961026 cm2 s21) [21].

Computational simulations were used to evaluate the wall shear

stress distribution in the channel and identify the regions in which

cells would experience minimal shear stress. Flow in the

microfluidic device was assumed to be laminar flow of an

incompressible Newtonian fluid. The physical properties (i.e.

density and viscosity) of cell culture media were taken to be that of

water at 37uC. The cell model used in the shear stress simulations

was based on experimental observations [22] and the model

described by Gaver and Kute [23]. The cell was taken to be a semi

ellipsoid with semi-axes a = 130 mm (length), b = 5 mm (width) and

c = 1.5 mm (height),.To model the environment of the microfluidic

channel, two strands of four cells, randomly orientated, were

spread across the bottom face of a cube the width and height of the

real cell chamber. The inlet had laminar inflow at 10 mL/hr, no-

slip boundary conditions and laminar outflow. The simulation was

performed using a mesh with 1,236,479 elements over the

computational domain (0.1044 mm3) with dramatically refined

mesh elements around the model cells.

Supporting Information

Figure S1 Comparison of gradient profiles (measured
along the red dashed lines in Figure 2B) generated at
5 mL/hr by a mechanical syringe pump vs ALZETH
osmotic pumps.

(TIF)

Figure S2 Comparison of theoretical modeling and
experimental result of gradients generated at a pumping
rate of 5 mL/hr by ALZETH osmotic pumps. We modeled

and tested three different fluorescent molecules: (A) 376 Da

fluorescein sodium salt, (B) 4 kDa FITC-dextran, and (C)

70 kDa FITC-dextran. Gradient profiles shown were measured

within the cell migration region (Lv10).

(TIF)

Figure S3 (A) Tracking MSC response under flow for 3 days.

MSCs labeled with CFSE dye were plated within the cell

migration region of the device and subjected to a shear flow of

media containing 10% FBS at 10 mL/hr for 3 days. 24 hours after

seeding, the number of adherent cells was 132 (0 hour). 3 days

later, the cell number increased to 152 (72 hours), indicating that

cells were not compromised and exhibited a slow proliferation rate

within the device under flow conditions. Limited by the

visualization area of microscope, fluorescent images of adjacent

areas were taken individually and spliced together. (B) Morphol-

ogy characterization (area per cell, circularity index, and aspect

ratio) of MSCs following exposure to shear flow for 3 days.

(TIF)

Figure S4 Theoretical modeling of PDGF-BB gradient
within the cell migration region at pumping speed of
5 mL/hr

(TIF)

Figure S5 Lack of migration of CFSE stained MSCs
within PDGF-BB containing media (100 ng/ml) in both
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the upper and lower channels by 5 mL/hr osmotic pump.
(Total cell number was 131 at 0 hour and 142 at 72 hours).

Limited by the visualization area of microscope, fluorescent

images of adjacent areas were taken individually and spliced

together.

(TIF)

Figure S6 Total number of viable MSCs. (Determined by

Calcein AM staining in the channel at 0 and 72 hours under three

conditions. Results are means 6 STD for n = 3.)

(TIF)

Figure S7 Tracking MSC response under flow for 4
days. (A) MSCs labeled with CFSE dye were plated within the

cell migration region of the device and subjected to a shear flow of

media containing 10% FBS at 10 mL/hr for 4 days. Limited by the

visualization area of the microscope, fluorescent images of

adjacent areas were taken individually and spliced together. (B)

Cell distribution within the cell migration region in the presence

(i.e. 0–100 ng/mL PDGF-BB) of a chemotactic gradient for 4

days. Data were represented as ratios of number of cells present in

the upper half of the channel to that in the lower half of the

channel. Results are means 6 STD for n = 3. Statistical analysis

was performed by a one way ANOVA with Tukey’s HSD post-hoc

analysis for multiple comparisons, and p-values,0.05 were

considered statistically significant, labeled with *.

(TIF)

Movie S1 24-hour MSC migration under the PDGF-BB
gradient of 100-0 ng/ml in the microfluidic device.

(AVI)
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