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Abstract: We describe a new method for imaging leukocytes in vivo by 
exciting the endogenous protein fluorescence in the ultraviolet (UV) 
spectral region where tryptophan is the major fluorophore. Two-photon 
excitation near 590 nm allows noninvasive optical sectioning through the 
epidermal cell layers into the dermis of mouse skin, where leukocytes can 
be observed by video-rate microscopy to interact dynamically with the 
dermal vascular endothelium. Inflammation significantly enhances 
leukocyte rolling, adhesion, and tissue infiltration. After exiting the 
vasculature, leukocytes continue to move actively in tissue as observed by 
time-lapse microscopy, and are distinguishable from resident 
autofluorescent cells that are not motile. Because the new method alleviates 
the need to introduce exogenous labels, it is potentially applicable for 
tracking leukocytes and monitoring inflammatory cellular reactions in 
humans. 

©2010 Optical Society of America 

OCIS codes: (170.0170) Medical optics and biotechnology; (170.2520) Fluorescence 
microscopy; (180.4315) Nonlinear microscopy. 
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1. Introduction 

A unique feature of the immune system is the ability of leukocytes (white blood cells) to 
traffic to different tissue compartments under a broad range of physiologic and pathologic 
conditions [1]. Normal immune surveillance depends on the constant trafficking of leukocytes 
between blood and various organs in the body, whereas inflammatory conditions are 
characterized by heightened leukocyte rolling/adhesion to activated vascular endothelium and 
subsequent infiltration into tissue [2, 3]. Recent advances in intravital imaging techniques, 
particularly multiphoton microscopy (MPM) [4], together with advances in molecular probes 
and reporters for cell labeling, have made it possible to visualize these cellular processes in 
live animals as the immune response unfolds in real time [5, 6]. However, virtually all current 
fluorescence techniques to track leukocytes in vivo require cell tagging with exogenous 
fluorophores, and are therefore not readily translatable to studies in humans, since none of the 
existing fluorescent probes for labeling leukocytes are approved for human use. Reflectance 
confocal microscopy [7, 8], using backscattered light as contrast, does not require exogenous 
labeling and is able to visualize rolling and adherent leukocytes in human dermal blood 
vessels. However, when leukocytes migrate out of blood vessels, they are more difficult to 
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image because many tissue components contribute to the backscattered signal leading to 
reduced contrast. Here we describe a method for noninvasive imaging of leukocytes in vivo 
using multiphoton-excited endogenous fluorescence, and demonstrate the ability to visualize 
leukocyte trafficking in the skin of live mice under normal and inflammatory conditions 
without exogenous labels. 

Multiphoton microscopy with endogenous contrasts in biological tissues have primarily 
focused on detecting signals from the reduced nicotinamide adenine dinucleatide (NADH), its 
dinucleatide phosphate (NADPH), riboflavins, and pyridolamine cross-links in elastin and 
collagen [9]. All these fluorophores have emission in the wavelength range of 400-600 nm. 
Keratin also contributes to epidermal autofluorescence under one- and two-photon excitation 
[10]. However, detection of leukocyte endogenous signals has been conspicuously absent in 
all of the MPM studies of biological tissues reported to date [9, 11–14]. According to an early 
paper on the autofluorescence spectroscopy of ex vivo leukocyte samples under linear (one-
photon) excitation conditions [15], signals from the tryptophan moieties in cellular proteins 
should be much stronger than signals from NAD(P)H on the per cell basis. We therefore turn 
to imaging tryptophan autofluorescence in this study, using femtosecond laser pulses at 590 
nm (from a frequency-doubled optical parametric oscillator) for two-photon excitation of 
tryptophan, which has a broad linear (one-photon) absorption peak near 280 nm, and an 
emission spectrum centered at 350 nm. In this UV spectral region, tryptophan is the 
predominant fluorophore in tissue, because excitation of the other aromatic amino acid 
moieties (tyrosine and phenylalanine) is often quenched by fluorescence resonance energy 
transfer to tryptophan in the same protein [16]. Both two-photon and three-photon excitation 
spectra of tryptophan have been measured [17, 18]. Two- and three-photon imaging of 
serotonin, a neural transmitter synthesized from tryptophan, has also been reported [18, 19]. 

2. Materials and methods 

2.1 Laser source 

The schematic drawing of our two-photon microscope is shown in Fig. 1. To generate 
femtosecond laser pulses at 590 nm for two-photon excitation of tryptophan, a mode-locked 
Ti:sapphire laser (Maitai-HP, wavelength 750 nm, 100 fs pulse width, 80 MHz repetition rate, 
Spectra-Physics, Santa Clara, CA) is used for pumping an optical parametric oscillator 
(OPAL, wavelength 1180 nm, 100 fs pulse width, Spectra-Physics, Santa Clara, CA). The 
output of the OPAL (350 mW at 1180 nm) is focused into a β-barium borate crystal (BBO 2 
mm thick, CASIX USA, San Jose, CA) to generate 590 nm wavelength pulses with 60 mW 
power. 

2.2 Microscope setup 

The laser beam exiting the β-BBO crystal is collimated and deflected into a home-built video-
rate (30 frames/second) x-y scanner (polygon, galvanometer). The beam passes through a 
dichroic beam splitter (FF510-Di01, Semrock, Rochester, NY) and is then focused onto the 
sample with a 60× , N.A.=1.2, water-immersion microscope objective lens (UPlanAPO, 
Olympus USA, Center Valley, PA). The laser power at the sample site is 10 mW. The 
fluorescence signal from the sample is epi-collected, deflected with the 510 nm long-pass 
dichroic mirror, transmitted through a 330-380 nm band-pass filter (FF01-357/44, Semrock, 
Rochester, NY). For comparison we also performed MPM imaging using NADH as the 
excited fluorophore. In the setup, the excitation light is provided directly by the Ti/sapphire 
laser (730nm) and the detection filter is a 420-480 nm bandpass filter (FF01-450/60, 
Semrock, Rochester, NY). The excitation power at sample is 20mW. Second harmonic 
generation microscopy is performed with the same setup except replacing the detection filter 
with a 330-380 nm band-pass filter (FF01-357/44, Semrock, Rochester, NY). We also 
performed MPM imaging FITC-dextran in BALB/c mice (Jackson Laboratory, Bar Harbor, 
ME). Again the excitation light is provided directly by the Ti/sapphire laser (970nm), while 
the dichroic beamsplitter is now a 665nm long pass one (FF665-Di02, Semrock, Rochester, 
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NY) and the detection filter is a 505-555 nm bandpass filter (BP530/50, Chroma, Bellows 
Falls, VT). The fluorescent signal is detected by a photomultiplier tube (PMT) (R3896, 
Hamamatsu, Bridgewater, NJ) and the two-dimensional images in x-y plane are acquired by a 
frame grabber (Snapper-8/24 PCI, Active Silicon, Chelmsfor, MA) installed on a Macintosh 
personal computer. Each frame has 500×500 pixels. The imaging speed is 30 frames/sec and 
each static image is an average of 30 frames. Details of this microscope setup could be found 
in reference [20]. 

 

Fig. 1. Schematic drawing of the video-rate nonlinear optical microscope 

2.3 Preparation of cell samples 

Erythrocytes (RBCs) and leukocytes (WBCs) were obtained from whole blood of healthy 
BALB/c mice. Leukocyte subpopulations (mononuclear cells and granulocytes) were isolated 
by Ficoll-Histopaque density gradient centrifugation. Cells were suspended in phosphate-
buffered saline and imaged on glass slides. 

2.4 Spectrum measurement 

While measuring the two-photon excitation spectrum of tryptophan, we used cultured 
multiple myeloma cells (MM.1s, malignant B lymphocytes) supplied by Dr. Irene Ghobrial 
from Dana-Farber Cancer Institute, Harvard Medical School. The excitation power at the 
sample was kept at 2mW in the wavelength range of 570-600 nm and at 5mW in the 
wavelength range of 600-625 nm, respectively. The detection setup, e.g. PMT voltage, was 
unchanged. The fluorescence intensity of one single cell was quantified at 570-600 nm and 
600-625 nm respectively. Each spectral region was normalized to the measurement at 600 nm 
in the corresponding scan. Then the two spectra were plotted together to make the full 
spectrum. 

2.5 Animal experiments 

For the animal imaging, BALB/c and C57BL/6 mice were imaged following administration 
of ketamine (100mg/Kg) and xylazine (15mg/Kg) anesthesia mixture. The mice were placed 
in a temperature controlled tube and the ear skin was flattened on a glass slide using Methocel 
gel 2%. Inflammation was induced by subcutaneous injection of 5µg lipopolysaccharide 
(LPS) locally in the BALB/c mouse ear pinna. 

2.6 UV exposure 

The UV-induced inflammation experiment was carried out on 8–10-week-old female 
C57BL/6 mice (Charles River Laboratories Inc, Wilmington, MA). UV radiation was 
provided by an UV-B Phototherapy Dermalight 80 device (Dr. Hoenle Medizintechnik, 
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Germany), which contains two UV-emitting tubes (TL4W12, Philips, Einhoven, 
Netherlands). The irradiance was determined with a temperature- and wavelength-controlled 
Optronic 742 double-holographic grating spectroradiometer having a Teflon diffuser as input 
optics at 1 nm intervals from 250 to 400 nm. The average irradiance of the UV-B (280-320 
nm) was 8.10 W/m

2
 and of UV-A (320-400 nm) 5.9 W/m

2
. Hair on the ears was shaven off 24 

h before irradiation to allow UV irradiation reach of skin. Anesthetized C57BL/6 mice were 
exposed on one ear pinna with a single dose of UV radiation, consisting of 500 mJ/cm

2
 UV-B 

radiation and 358 mJ/cm
2
 UV-A radiation, corresponding 10 minutes irradiation time. The ear 

pinna was imaged for 3 hours afterwards. All procedures were approved by the Subcommittee 
on Research Animal Care of Massachusetts General Hospital (Protocol # 2006N000058 and 
2009N000137). 

2.7 Movie processing 

Media 1 and Media 2 are movies recorded at video-rate (30 frames/second). Then we did 
moving-average (3 frames/window) to reduce the speckle noise. Media 3 is a stack of 60 
tryptophan fluorescence images with continuously increasing depth into mouse skin (1 
µm/step). Each image is an average of 30 frames recorded at video-rate (30 frames/second). 
Each frame in media 4 was a static image. This static image is a 2D average projection of a 
stack of 20 z-dimensional images (1 µm/step). All the movie processing was done with 
ImageJ (http://rsbweb.nih.gov/ij/). 

3. Results 

3.1 In vivo mouse skin imaging 

Figure 2 shows tryptophan autofluorescence images of the BALB/c mouse skin at different 
depths. Figure 2 (a) is taken at the surface of skin showing corneocytes and a hair shaft at the 
right bottom corner of the image. Figure 2 (b) is taken at a depth of 5 µm beneath the skin 
surface and shows the layer of flat stratum spinosum cells. The cell nuclei appear darker than 
the cytoplasm because the UV fluorescence signal comes primarily from the protein 
components of the cytoplasm [21]. Figure 2 (c) is an image taken 15 µm below the surface, 
near the dermal-epidermal junction, where the columnar basal cells are observed. The 
variation in the image brightness across the field is due to the fact that the basal layer is not 
flat, thus the focal plane in the darker areas is in the dermal layer. It has been reported that 
keratin fluoresces in the spectral range of 350 nm and above under two-photon excitation 
[10], therefore the UV fluorescence signal in epidermis may come from both tryptophan and 
keratin. 
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Fig. 2. Tryptophan fluorescence images at a depth of 0, 5, 15, 30, 30, and 70 um (a-f) beneath 
the surface of mouse ear skin showing (a) corneocytes, (b) stratum spinosum, (c) basal cell 
layer, (d) hair follicles, (e) dermal cells, and (f) vascular structures. (scale bar 30 µm) 

Below 30 µm deep we are imaging in the dermis. Features that are prominent in the 
dermis include hair follicles (round structure in Fig. 2 (d)), dermal cells (Fig. 2 (e)), and 
vascular structures characterized by low tryptophan signal with occasional bright cells 
moving inside (Fig. 2 (f)). Notably absent in these images are fibrous structures characteristic 
of collagen, the main protein of connective tissue that is abundant in the dermis. The amino 
acid content in collagen measured by the ion-exchange chromatographic method has shown 
no tryptophan in human bone and tendon collagen [22]. In order to further investigate if 
mouse skin collagen emits tryptophan fluorescence, we performed both MPM and second 
harmonic generation (SHG) microscopy on the same mouse skin area for comparison. 
Example tryptophan fluorescence and SHG images are shown in Fig. 3 (a)-(c). The imaging 
plane is about 35 µm deep in the skin. The bright collagen fibers in Fig. 3 (b) correspond to 
the dark area in the tryptophan image as shown in Fig. 3 (a). This observation confirms that 
collagen in mouse skin does not contribute tryptophan fluorescence emission under two-
photon excitation. 
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Fig. 3. (a-c) Tryptophan fluorescence image (a), second harmonic generation image (b) and 
merged image (c) (red: tryptophan, blue: SHG. scale bar 20 µm). (d-f) Blood vessels at a depth 
of 50 µm visualized by tryptophan fluorescence image (d), FITC fluorescence image, (e), and 
merged image in (f) (red: tryptophan, green: FITC. scale bar 20 µm). 

In order to verify that structures similar to that shown in Fig. 2 (f) are indeed blood 
vessels, we performed two-photon imaging of skin after intravenous injection of a vascular 
dye, FITC-dextran. Figure 3 (d)-(f) show identical fields taken with tryptophan 
autofluorescence (Fig. 3 (d)) and with FITC fluorescence (Fig. 3 (e)). Comparison of the 
tryptophan image (Fig. 3 (d)) with the FITC image (Fig. 3 (e)) lends support to the 
identification of these structures as dermal blood vessels. The vessel diameter in the FITC 
image appears larger than in the tryptophan image. The reason for this discrepancy is not 
clear and will require further investigation. 

3.2 Leukocyte autofluorescence 

It has been reported that leukocytes contribute to tryptophan fluorescence with one-photon 
excitation and the spectroscopic signal variation in different subpopulations can be 
distinguished [15]. Since leukocytes make up about 1% of the blood cells in the peripheral 
circulation, our observation of vascular structures that are low in tryptophan signal with 
occasional bright cells moving inside is consistent with these bright cells being leukocytes 
while the majority of blood cells are nonfluorescent erythrocytes (red blood cells). To verify 
this, we imaged a small drop of mouse blood on a glass slide. Figure 4 (a) shows both MPM 
(red) and confocal reflectance (green) images of mouse blood smears that were taken 
simultaneously. The majority of cells in the confocal image are erythrocytes and are not 
detected in the tryptophan channel. Tryptophan fluorescence in heme proteins is quenched by 
nearby heme moieties [23]. The lone bright cell in the image has a diameter of around 8 µm 
consistent with the size of a leukocyte. We further verified the autofluorescence of leukocytes 
by imaging purified granulocytes (neutrophils, eosinophils and basophils) and agranulocytes 
(lymphocytes and monocytes). As shown in Fig. 4 (b) and 4 (c), respectively, the 
polymorphonuclear structure of granulocytes and the mononuclear structure of agranulocytes 
are both visible in these images. Granulocyte fluorescence is uneven and this difference may 
be explained by the granule content variation in the different subpopulations of granulocytes 
[24]. We measured the two-photon excitation spectrum of tryptophan in leukocytes by 
scanning the wavelength from 570 nm to 625 nm (Fig. 4 (d)). This spectrum has similar 
features, e.g. a small peak at 580 nm and a dip around 575 nm, as the two-photon excitation 
spectrum of tryptophan in aqueous phosphate buffer in the same spectral range (red box in 
Fig. 4 (e)) [17]. Due to the limit of the wavelength range of our optical parametric oscillator, 
we were not able to scan the wavelength further down to the major peak of two-photon 
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excitation spectrum of tryptophan, which is at 560 nm. For comparison we have also imaged 
leukocytes with MPM NADH fluorescence. Even at higher excitation power (20 mW for 
NADH vs. 10 mW for tryptophan, with identical detection arrangement except changing the 
bandpass filter) the NADH fluorescence was barely detectable. Based on published 
spectroscopic results, the (one-photon-excited) NADH fluorescence intensity level is almost 2 
orders of magnitude lower than the tryptophan level per cell [15], which explains the 
difficulty to visualize leukocytes in tissue using MPM with NADH autofluorescence. 

 

Fig. 4. Tryptophan fluorescence images of leukocytes. (a) Confocal reflectance (green) and 
tryptophan fluorescence (red) images of mouse blood smear, (b) Tryptophan fluorescence 
image of isolated granulocytes, and (c) agranulocytes. (scale bar 20 µm). (d) Two-photon 
excitation spectrum of tryptophan in leukocytes. (e) Two-photon excitation spectrum of 

tryptophan (solid line) in phosphate buffer solution (reproduced with permission from [17]). 

(f) Tryptophan fluorescence intensity change of a dermal cell under continuous illumination. 

In the normal skin, leukocytes constantly traffic to the skin at low levels as part of the 
immune surveillance mechanism. This trafficking process involves leukocyte tethering, 
rolling, arrest and transmigration through the endothelial walls into the tissue and is regulated 
by cytokines, and cell adhesion molecules (integrins and selectins) [25]. Whereas flowing 
leukocytes in the blood stream are moving too fast to image even with video-rate scanning, 
slow rolling cells can be observed interacting with the blood vessel walls (Media 1, and Fig. 5 
(a)). In this movie, a leukocyte can be seen moving with a velocity of 20-30 µm/s. The field 
of view in this movie is 200 µm. 

Both photobleaching and photodamage can be potential concerns for long-term cell 
tracking studies. We investigate the rate of photobleaching by continuous exposure of skin to 
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the 590 nm femtosecond pulse train at 10 mW average power, our typical setting for imaging 
trypotophan in vivo. Figure 4 (f) shows that a dermal cell can be imaged continuously for 30 
minutes with no appreciable photobleaching, consistent with the photostability of tryptophan 
in the protein environment (25). In addition, we did not observe enhanced leukocyte-
endothelial interaction after continuous two-photon imaging, suggesting that the imaging 
modality by itself causes minimal damage to the skin as evidenced by the absence of 
inflammation (see below). 

 

Fig. 5. Single-frame excerpts from video recordings of leukocyte trafficking in skin 
vasculature. (a) Rolling leukocyte in normal BALB/c mouse skin (Media 1). (b) Slow rolling 
and arrest of leukocyte in inflamed skin (Media 2). 

3.3 In vivo imaging of leukocyte trafficking 

The trafficking of leukocytes is greatly enhanced during inflammation. Leukocyte recruitment 
out of blood vessels and into tissues is essential for both the development of an appropriate 
inflammatory response to injury or infection and the debilitating sequence of events leading 
to inflammatory disorders such as asthma and allergy. We first induced inflammation by 
subcutaneous injection of 5 µg of lipopolysaccharide (LPS) into the mouse ear pinna close to 
its base. LPS is a prototypical endotoxin that promotes the secretion of pro-inflammatory 
cytokines that help to recruit leukocytes. Figure 6 shows images taken immediately after (Fig. 
6 (a)) and at 24 h post LPS injection (Fig. 6 (b)), both taken at a depth of about 50 µm below 
the skin surface. Whereas the first image shows no apparent change from normal skin, in the 
second image numerous leukocytes can be seen adhered to the vascular endothelium of the 
lower vein (white arrow). A real-time movie (Media 2 and Fig. 5 (b)) shows an example of 
very slow cell rolling (less than 10 µm/s) and arresting recorded 24-hour post LPS injection. 
Figure 6(c) was recorded at the same location as Fig. 6(b) with the depth about 30 µm below 
the skin surface. The red arrow points out infiltrated leukocytes in dermis. 
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Fig. 6. (a-c) Tryptophan fluorescence images of BALB/c mouse ear (a) 0-h, and (b & c) 24-h 
post LPS injection (scale bar 50 µm). 

We also induced a mild degree of inflammation on C57BL/6 mice (pigmented) ear skin by 
exposing them to the UV radiation and imaged the mouse ear dermis every 10 minutes and 
continued for 2 hours after UV exposure. Figure 7 (a), 7 (b) and 7 (c) are selected frames 
taken at 10, 60 and 120 minutes post UV exposure, and document the increase in the number 
of infiltrating leukocytes during this time period. The size of the cells (about 10 µm) and their 
polymorphonuclear structure indicate they are granulocytes. This finding agrees with 
previous histological findings that leukocyte infiltration occur within first hours after UV 
exposure [26]. Media 3 (time span 36 minutes, Fig. 7 (d)) is a time-lapse movie of leukocytes 
that have infiltrated the skin that continue to exhibit active cell movement with an average in 
plane migration speed of a few µm/min, in the same range as the reported speed of 
lymphocyte movement in peripheral lymph nodes and bone marrow [6, 27]. Figure 7 (e) 
shows the trajectory (red line) of a leukocyte migrating interstitially. 
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Fig. 7. (a-c) Tryptophan fluorescence images of C57BL/6 mouse ear at (a) 10 mins, (b) 60 
mins, and (c) 120 mins post UV exposure (scale bar 50 µm). (d) Single-frame excerpts from 
video recordings of leukocyte migration in skin tissue (Media 3). (e) Trajectory of the centroid 
of a migrating leukocyte at 80-second interval (scale bar 20 µm). 

4. Discussion 

In this study, we have demonstrated MPM imaging of mouse skin in vivo by exciting and 
detecting the endogenous cellular autofluorescence from tryptophan, which is not widely used 
as a fluorophore in fluorescence microscopy. Both epidermal and dermal cells are visualized 
by this new imaging method. Moreover, we have shown that leukocytes, critical cells of the 
immune system, can be imaged without having to label cells with exogenous fluorescent 
probes or reporters. Enhanced leukocyte trafficking to inflamed tissue can be imaged 
noninvasively over time, making this a potentially useful technique to track the inflammatory 
process longitudinally in the living host and even in humans. Intentional, prolonged exposure 
to 590 nm excitation pulses at the power level used here for imaging over 30 minutes did not 
cause appreciable photobleaching or photodamage to the skin. Tryptophan imaging can be 
combined with two-photon excited NADH and second harmonic microscopy to gain 
additional information such as cellular metabolism and interaction with the extracellular 
matrix elements [28]. 

In principle it should also be possible to excite tryptophan autofluorescence with 
simultaneous three-photon absorption in the laser wavelength range of 700-800 nm [18], a 
region that is more easily accessible with the current Ti:sapphire-based ultrashort pulse laser 
technology. However, we have not been able to obtain good signals with three-photon 
excitation in our system even with much higher available laser power. Although the 590 nm 
wavelength for two-photon excitation of tryptophan is difficult to generate at present 
requiring several frequency conversion steps, rapid advances in ultrafast laser technology (for 
example, nonlinear frequency generations in photonic crystal fibers [29]) can be expected to 
pave the way for a much simpler and more compact laser system for MPM at this wavelength. 

The absorption coefficient of hemoglobin drops off sharply around 590 nm (µa ~ 70 cm
−1

 for 
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oxy-hemoglobin and ~140 cm
−1

 for deoxy-hemoglobin). Consequently it should be possible 
to image through dermal blood vessels up to ~100 µm in diameter. The emission of 
tryptophan is around 350 nm, which does not coincide with any major peaks of hemoglobin 
absorption (e.g. the Soret band in the range of 420-450 nm). Indeed the hemoglobin 
absorption coefficient at 350 nm is lower than that at 450 nm commonly used for NADH 
autofluorescence imaging of tissue. Currently we can observe leukocytes and dermal cells to a 
depth of about 70 µm beneath the mouse skin surface, but this depth may be limited by the 
poor beam quality coming out of the BBO crystal. This nonideal (elongated) beam will affect 
the point spread function at the focus, which is critical for two-photon excitation. 

In traditional histopathology, disease diagnostics is made by examining static images from 
fixed tissue sections. Addition of dynamic information from real-time imaging may sharpen 
the diagnostic criteria when standard method of diagnosis is insufficient, for example in early 
identification of allergic and inflammatory responses, and acute graft versus host disease [30]. 
The latter is a potentially life-threatening condition that can develop after allogeneic bone 
marrow transplantation when donor leukocytes attack recipient's skin, gut, and other organs, a 
process that may be best discerned by monitoring leukocyte-endothelial interaction and 
leukocyte infiltration in the skin [8]. In addition, MPM of tryptophan may also be useful for 
detecting cellular changes in epithelial cancers. In vivo fluorescence spectroscopy of 
nonmelanoma skin cancers have shown that UV fluorescence from tryptophan is more intense 
in tumor than in normal tissue [31]. This can be explained by epidermal layer thickening or 
hyperproliferation. It has also been reported that cervical epithelial cancers cells have much 
higher level of tryptophan fluorescence compared with monocytes and neutrophils [15], 
suggesting a potential application of diagnosing epithelial cancers with MPM tryptophan 
fluorescence imaging. Finally, the uniform cytoplasmic signal in epithelial cells may facilitate 
the analysis of nuclear-to-cytoplasmic ratio, a parameter that is frequently used to 
characterize cancer transformation. 
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