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Biometric Navigation with Ultrasound
Abstract

We have designed and demonstrated a new class of medical navigation

methods that use the fingerprint-like biometrically distinct ultrasound echo

patterns produced by different locations in tissue. As an example of this new

biometric navigation approach, we have constructed and tested a system that

uses ultrasound data to achieve prospective motion compensation in MRI,

especially for respiratory motion during interventional MRI procedures in

moving organs such as the liver. The ultrasound measurements are collated

with geometrical information from MRI during a training stage to form a

mapping table that relates ultrasound measurements to positions. During

prospective correction, the system makes frequent ultrasound measurements

and uses the map to determine the corresponding position.

Results in motorized linear motion phantoms and freely breathing animals

indicate that the system performs well. Apparent motion is reduced by

up to 97.8%, and motion artifacts are reduced or eliminated in 2D Spoiled

Gradient-Echo images. The motion compensation is sufficient to permit MRI

thermometry of focused ultrasound heating during respiratory-like motion,

with results similar to those obtained in the absence of motion. This new

technique may have applications for MRI thermometry and other dynamic

imaging in the abdomen during free breathing.

We have also extended this technique to situations in which external posi-

tion information during training is unavailable or incomplete, by extending

the concept of Simultaneous Localization and Mapping to include determin-

ing the topology of a dense motion path through a gaussian random field.
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In the course of these investigations, we have also developed modified

forms of referenceless MRI thermometry and Kalman filtering, specially

adapted to optimize accuracy under our experimental conditions.
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In the beginning, there was nothing.

Nigh Omnipotent – Alex Lee Martinez

1
Background

Since time immemorial, doctors and patients alike have dreamed of

treating disease from outside the body, to reproduce the invaluable

curative power of surgery without the dangers of surgical invasion. Today

non-invasive treatments are an essential part of the medical system, and

some, such as x-ray beam therapy [11, 49] and ultrasound lithotripsy [12],

have even supplanted surgical techniques that were previously the standard

of care. However, countless invasive surgical procedures are still performed
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every day, over 125,000 in the United States alone.[26] Every invasive treat-

ment is an opportunity to advance the state of medicine, if the need for

surgical invasion can be removed.

To expand the range of treatments that can be performed non-invasively,

one of the most promising avenues is Focused Ultrasound Surgery. [51, 89]

These techniques use high-power ultrasound, often over a kilowatt of acoustic

power, that enters the body distributed over a large area of skin surface. The

ultrasound wavefront is arranged so as to focus down to a small target volume

where treatment is desired. At the target location, ultrasound intensities

can be as high as 100 watts/mm2 [79], but the power flux is confined to a

volume set by the ultrasound wavelength. At typical treatment frequencies

(150 kHz to 1.5 MHz), the wavelength is 1–10 mm, allowing highly specific

targeting. Typical focused ultrasound surgery systems operate at a single

fixed frequency set by the mechanical resonance of the piezolectric transducer

that produces the wave.

At high intensities, focused ultrasound can have several different relevant

bioeffects. Perhaps the simplest effect is hyperthermia. As human tissue is

an imperfect conductor of ultrasound, a portion of the power in the ultra-

sound wave is absorbed and converted to heat at each location along the

ultrasound beam path. Thus, these systems can produce highly localized

heating at the focus, with localization limited by the ultrasound spot size

and the tissue’s heat diffusion characteristics. When the heat is maintained

at a single location for sufficient duration, the tissue dies due to thermally

induced coagulation and subsequent apoptosis or necrosis [88]. The amount

of time required depends on the temperature, as higher temperatures kill
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more quickly [73].

At extremely high intensities, nonlinear acoustic effects become biologi-

cally important. Most crucially, when the peak negative pressure exceeds a

threshold (dependent on frequency and tissue characteristics), the stretch-

ing force is sufficient to separate the molecules of the medium and produce a

vacuum, or cavity, which quickly fills with gas [30]. Alternatively, this may

be regarded thermodynamically as a kind of spontaneous boiling due to the

low pressure. This phenomenon is called cavitation, and it can be highly

destructive to tissue [79]. Cavitation has been used as a component of some

focused ultrasound treatments in humans [43].

In recent years, research in focused ultrasound treatment has included

methods that combine focused ultrasound with one or more injectable agents.

For example, a burgeoning experimental field combines focused ultrasound

with microbubble contrast agents, which are injectable gas bubbles that cir-

culate in the blood and normally serve to improve the diagnostic capabilities

of ultrasound imaging (especially in the heart). In the extreme environ-

ment of a high-power ultrasound focus, microbubbles have been observed to

produce clinically relevant bioeffects, including tissue destruction [59] and

blood-brain barrier disruption [56]. In addition to microbubbles, other in-

jectables such as drug-laden nanoemulsions been investigated in conjunction

with focused ultrasound.[67] These combinations have been the subject of

many animal trials, but have not yet been tested in humans.

Currently, Focused Ultrasound systems have regulatory approval from the

Food and Drug Administration in the United States for treatment of uterine

fibroids.[25] These treatments have achieved patient outcomes and safety
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competitive with the current standard of care, an invasive embolization

procedure.[80] Pre-approval human trials have been conducted for treatment

of glioblastoma multiforme (a deadly cancer of the brain) [58], chronic neu-

ropathic pain [53], essential tremor [63], prostate cancer [85], bone pain due

to metastasis [29], breast cancer [38], and tumors in the liver [40, 60, 92].

In traditional invasive surgery, treatment guidance and monitoring is nor-

mally performed by the surgeon’s own hands and eyes. When performing

non-invasive treatments, more care is required to ensure that treatment oc-

curs in the desired locations, and to the desired extent, without over-or

under-treatment. In the case of focused ultrasound surgery, guidance and

monitoring serve to ensure that the focus point is in the desired location, that

its intensity is sufficient to achieve the desired biological effects, and that

nearby areas that should not be affected remain untouched. To meet these

goals, implementors typically employ either ultrasound or MRI imaging. For

guidance, the structures of interest must be visible in the images, and the

relative geometry of the image volume and the ultrasound transducer must

be known. For monitoring, the effects of treatment must be visible in the

image.

Ultrasound imaging offers the advantage of lower cost, and hence wider

availability, than MRI. Ultrasound imaging is also generally faster, with

widely available systems operating at 30 frames per second. Ultrasound

imaging also imposes different and perhaps looser requirements on the geom-

etry and construction of the focused ultrasound transducer assembly. How-

ever, MRI images are often more effective for both guidance and monitoring.

In many instances, MRI images more clearly show features such as tumor
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locations that are of interest during treatment. Tissue changes in response

to treatment can be seen well in MRI, especially with contrast enhancement

[39]. Finally, ultrasound imaging is not generally possible through the skull.

One particular advantage of MRI in the context of focused ultrasound

surgery is its ability to produce sensitive, accurate images showing the tem-

perature at each location.[42, 61] The most commonly used technique is

called Proton Resonance Frequency (PRF) shift thermometry.[41] This ap-

proach relies on the temperature sensitivity of the chemical shift of protons

in water, -0.01 ppm/℃.[36] By measuring the PRF throughout the image

volume during each sonication, it is possible to observe the course of temper-

ature elevation associated with each sonication. Thermometry of this kind

is also useful for guidance, as it can detect small temperature changes (as

small as 1℃) that are not medically significant. Thus, a common strategy is

to use the focused ultrasound transducer at a low power to produce a slight

heating, visible on MRI, in order to confirm that the focal location is as

desired. Then a second sonication may be performed in the same location

at higher power to achieve the desired effect (e.g. thermal ablation) [58].

(Other MRI imaging methods, such as MR-ARFI [57], have also been used

to verify the location of an ultrasound focus spot.)

MRI thermometry has proven tremendously useful, but it is also limited

by its need for high-quality MRI images. Acquiring a complete temperature

image can take several seconds, and any motion during this time will corrupt

the image, potentially creating artifacts that overwhelm the temperature in-

formation. This high sensitivity to motion has presented a serious challenge

for MRI thermometry, and hence MRI-guided focused ultrasound, in the
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organs of the abdomen, where large motions are present due to respiration.

For example, the publication record does not yet include any trials of MRI-

guided focused ultrasound of the liver in humans. (Both trials noted above

were performed under ultrasound imaging guidance, and hence without the

benefit of thermometry imaging.)

In order to enable MRI-guided focused ultrasound of the liver during free

breathing, several key challenges must be met. Ultrasound energy must

be directed through the ribcage (transcostal) to the desired target location,

without unacceptable heating or attenuation at the ribs. The focal point

must move to follow the motion of the target volume. Finally, a thermometry

technique is required that can operate correctly in MRI images of a moving

volume.

In existing human studies, no special effort has been made to avoid deliv-

ering ultrasound power to the ribs. As a result, patients have experienced

painful superficial burns, visible on the skin.[40] These burns were consid-

ered acceptable in the trial context, but a growing body of literature de-

scribes methods to reduce the amount of unnecessary ribcage heating by us-

ing phased array transducers.[5, 10, 35, 82] Manufacturers such as Insightec

have also begun developing phased array transducers suitable for transcostal

applications.

Phased array transducers can easily be configured to change the location

of their focus over time in response to a position input. To enable this treat-

ment, a motion tracking system that can provide such a position estimate is

required. A variety of position estimation systems have been developed for

the express purpose of steering a focused ultrasound array, deriving position
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estimates from MRI images [3, 71, 76], longitudinal speckle tracking [52, 64],

2D ultrasound imaging [4], or breath bellows [46]. The technique presented

here, biometric ultrasound navigation, is another entrant in the category of

motion tracking systems suitable for focused ultrasound guidance.

Once a steerable focused ultrasound array with real time motion tracking

is in place, the problem remains to produce MRI thermometry images that

are not corrupted by the presence of motion. Traditional MRI thermometry

will not suffice, due to its reliance on subtraction from a reference frame.

Proposed solutions to the problem of temperature estimation include refer-

enceless methods [68], multiple-baseline approaches [86], and combinations

of these [20, 32].

Respiratory motion is a major cause of image degradation in many appli-

cations of abdominal MRI, including purely diagnostic radiology. The arti-

facts caused by respiratory motion are often alleviated by the use of MRI

navigators.[23] In typical MRI navigator techniques, short imaging blocks

that serve to assess the current respiratory phase are interleaved between

the blocks that produce medically relevant images. For example, the naviga-

tor block may be a pencil beam excitation that crosses the diaphragm [90],

or a bright-blood single-shot EPI image of the liver region [71].

The position information derived from the navigator can be applied retro-

spectively to compensate during image reconstruction for the effects of mo-

tion [23], or prospectively to change the excitation and readout parameters

for the next imaging block [54]. Navigator techniques may also be classified

as gating if they simply reject unusable data or motion correcting if they

modify each acquisition in proportion to the measured position offset.[75]
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The position estimates from an MRI navigator can also be used to control

another real-time system, such as a steerable focused ultrasound ablator.[69]

(The term position, here and throughout, is used to mean a representation

of the complete geometrical state of the anatomy, a vector in Rn whose

dimensionality depends on the complexity of the motion model in use. A

simple linear shift model is parameterized by a one-dimensional position,

whereas a complex deformation model could be characterized by a position

in 10 or more dimensions.)

Navigators often achieve good artifact reduction, but they also have sig-

nificant costs. Navigator echoes typically slow down the imaging process,

can interfere with steady-state magnetization, and require laborious and

difficult pulse-sequence engineering that may need to be repeated for each

combination of navigator type and imaging sequence.

We have developed an alternative to MRI navigator echoes in the con-

text of abdominal imaging. The proposed technique employs a single MRI-

compatible ultrasound transducer, placed against the abdominal skin, which

produces a pencil-beam ultrasound field that is oriented approximately in

the dorsal direction. For maximum accuracy, the transducer is positioned

so that its beam passes near the center of the region of interest.

A number of papers have demonstrated that pulse-receive ultrasound de-

vices can be operated in the MRI environment.[77][34][15][81][19] Previous

studies that used ultrasound to compensate for motion in MRI have arranged

for their ultrasound data to indicate the position directly. In one approach,

a pencil-beam ultrasound transducer is oriented so that the direction of mo-

tion is along the axis of the beam.[19] The position may then be computed
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directly from any shift observed in the echo delay. As the authors of [19] note

in their conclusion, this technique is not expected to work in vivo because

organs such as the liver predominantly move in the cranio-caudal direction,

so no externally placed transducer can be aligned with the motion as re-

quired. As a topic for future work, they suggest that tracking such motions

with a single ultrasound probe may require a training-based method like the

one we demonstrate here.

To solve the problem of tracking motion along an inaccessible axis,

the direct shift tracking technique has been extended to three or more

transducers.[64] The transducers are widely spaced so that their beams

may be oriented toward the focus at large relative angles. The direction

of motion can be determined from the shift observed in each transducer.

This technique has the advantage of direct displacement measurement,

but requires multiple-transducer transmit-receive capability, is intrinsically

limited to simple translation measurement, and may drift as errors accu-

mulate due to velocity integration in the position estimate. (This difficulty

could potentially be addressed using techniques like the one described in

Chapter 5.) It has not been demonstrated in conjunction with MRI.

To permit measurement of non-translational motion and avoid the prob-

lems associated with cumulative estimators, another technique employs a

linear ultrasound transducer array that produces 2-D ultrasound images.[34]

The position is indicated directly by shifts and rotations observed in these

images. This approach has recently been demonstrated in vivo for motion

compensation in cardiac imaging [24], and also for MRI-guided focused ul-

trasound in a liver phantom [4]. This technique is capable of tracking motion
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along the craniocaudal axis, but requires a substantial investment in ultra-

sound equipment and electronics. It is also limited to motion within the

ultrasound imaging plane, and will not detect small displacements in the

through-plane direction, which may be important in interventional applica-

tions. To achieve 3-D sensitivity, direct image-based tracking of organ posi-

tion has been extended to use 4-D imaging with ultrasound matrix probes.[6]

However, this technique has not yet been demonstrated in conjunction with

MRI, and requires an even greater expenditure on ultrasound equipment.

The approach we have developed works differently, because the ultrasound

data do not directly indicate the organ position. Instead, it is sufficient that

the ultrasound echoes observed at different respiratory phases are distinctly

identifiable, as theorized and verified in Chapter 2. The organ position is

indicated by an MRI training navigator, and ultrasound data are acquired

concurrently with each MRI position measurement. From these synchronized

training data, the system constructs a table that maps observed ultrasound

lines to the positions indicated by MRI. During motion compensation, the

system makes frequent ultrasound echo measurements and uses the table

of training data to infer the current position. The system is thereby able

to estimate the current position without using any MRI time and without

altering the steady state magnetization. The pulse sequence need only be

modified if prospective correction is required and the pulse program does

not already accept position updates from external sources.

We describe the ultrasound measurement as a biometric navigator, by

analogy with biometric identifiers such as fingerprints and iris scans. Like

an iris scan or a fingerprint, an ultrasound echo contains a pattern produced
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by stochastic biological processes during gestational development. In both

cases, a training process is required to relate the raw biometric data (an

iris scan/ultrasound echo) to the desired information (the name of a per-

son/position of an organ). In both cases, the process relies on uniqueness:

each individual or position must exhibit a distinct biometric signature for

each system to work as designed.

A related approach has recently been presented, using the signal pro-

duced by a respiratory bellows to identify the current liver position.[46]

These methods are both indirect: they require a training period to deter-

mine the correspondence between the measured quantity and the actual

anatomical position. Both methods are therefore constrained by the con-

tents of the training data; they cannot track motion with more accuracy

than the navigator used to train them, and they can only estimate positions

along axes measured by the navigator. They are distinguished, however, by

the dimensionality of the measured quantity. A bellows measures a single

one-dimensional value, which therefore is not biometrically unique. Without

biometric uniqueness, the system cannot detect when the training data are

no longer applicable, which may occur if the patient moves laterally or the

organs undergo any unanticipated shift. One-dimensional measurements are

also restricted to reciprocal motion models unless strong assumptions are

made about the true motion cycle (as in cardiac MRI with ECG gating).

Our implementation of this design for biometric ultrasound navigation

is called ULTRACK, and is described in detail in Chapter 3. To test UL-

TRACK, we constructed motorized motion phantoms appropriate for both

ultrasound and MRI imaging, moving with amplitude and frequency approx-
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imately consistent with human respiratory motion. As we are interested in

tracking liver motion during thermal ablation in freely breathing patients

(similar to [46] and [3]), we also tested the accuracy of the system’s posi-

tion measurements and its ability to reduce motion artifacts in 2-D MRI

images, including MRI thermometry images produced by the Proton Reso-

nance Frequency Shift method.[55] Chapter 6 contains a detailed description

of our implementation of PRF shift thermometry, which includes optimiza-

tions particular to this application. To test the method’s feasibility in vivo,

we verified its performance in a freely breathing rabbit. The in vivo results,

presented in Chapter 4, show that the system performs well, with good time

efficiency, little additional position error, and dramatic reductions in visual

artifacts.

To further improve the system’s position error, we have developed a

method for generating filters to enhance the position estimation accuracy,

described in Chapter 7. The system produces Kalman-like filters that are

automatically tuned to simultaneously reduce noise and compensate for la-

tency.

Although the system, as described so far, requires an MRI navigator in

order to train the system, it is possible to provide significant motion com-

pensation and gating functionality in the absence of an MRI navigator, by

employing a more sophisticated analysis of the ultrasound data. Algorithms

for biometric navigation in the absence of a training navigator are presented

in Chapter 5.
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He propelled a hand-held array across the top of the

desk. “Put your palm on that, we need a biometric.

You’re not cleared for the medical levels yet, under-

stand?”

Judas Unchained – Peter F. Hamilton

2
Models of Biometric Navigation and

Dissimilarity

Biometric navigation is distinguished from other position measure-

ment methods by its use of a unique identifier derived from the tissue at each

location. This identifier does not itself indicate a position, but its biometric

uniqueness ensures that once a position is associated with an identifier, the

position will not be indicated spuriously. The uniqueness of the identifier
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representing each location is due to the large entropy of the high-dimensional

space from which biometric patterns are randomly drawn.

In the case of ultrasound navigators, entropy is provided by reflections

from macroscopic anatomical structures, but also by sound scattered off

of countless microstructures. The resulting interference pattern is termed

speckle, and is well approximated by a broadband Gaussian random field that

does not change with time unless the relevant microstructures are moved or

altered.[1]

Most cellular tissues in the body, including the liver, produce a strong

speckle signal in backscatter ultrasound. The analysis in this section assumes

that the only content of the signal is uniform speckle. This assumption is

certainly untrue; the existence of diagnostic ultrasound imaging disproves it.

However, we expect that additional scattering from macroscopic structures

will typically further improve the uniqueness properties of the signal, by

adding more distinct content at each location. If non-uniformity in the

signal proves disruptive, it may be possible to apply some processing (such

as dynamic range compression) to improve apparent uniformity.

The uniqueness property only applies for measurements that are unre-

lated, in the sense that they represent patterns produced by non-overlapping

sets of scatterers. Clearly two measurements made at the same location, and

otherwise in the same configuration, will be identical, and measurements

made very close together will be very similar.

We may anticipate that the length scale above which a transverse motion

produces a new, unrelated scattering pattern is set by the shape of the

ultrasound beam, which is the volume within which scatterers contribute
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to the received speckle pattern. If two measurements are made sufficiently

far apart that the beam profiles are largely non-overlapping, then we may

expect that the two echo patterns will show no relationship. Conversely, if

the two measurements are made close together, so that the shift is small

relative to the scale of variation in the beam, then we may expect that the

two echo patterns will be very similar.

A typical simple ultrasound transducer has a flat, circular active surface

that is several times large in diameter than the wavelengths at which it oper-

ates. Transducers of this type are sometimes termed pencil-beam transducers

because they produce a beam that is approximately collimated near the tran-

ducer surface, diverging only gradually at greater distances. For transverse

motion, the similarity length scale is set by the width of this column.

This simple intuitive model of echo pattern similarity at different distances

is sufficient to understand how biometric navigation might be possible. Sup-

pose that a table of ultrasound echoes is recorded that covers the range of

observed motion at a granularity much smaller than the similarity length

scale, and also suppose that each of these echoes is associated with a known

position. Then when a new echo is recorded, it will be similar only to those

echoes that correspond to nearby positions, and will be unrelated (i.e. dis-

similar) to the other echo patterns representing positions that are further

away. The system may therefore infer that the present position is close to

the position associated with the similar echoes in the table. This method is

discussed at greater length in Section 3.1.

15



2.1 Information theoretic arguments for uniqueness

We may estimate the entropy of the ultrasound navigators by considering

only the speckle and applying the Shannon-Hartley channel capacity theorem

for a noisy channel:[78]

C = B log2

(
1 +

S

N

)
. (2.1)

In our experiments a typical ultrasound transducer has bandwidth of at

least B = 1.5 MHz and signal-to-noise ratio of at least S/N = 3. (Note that

although speckle is often regarded as noise, here the time-invariant speckle is

signal, and its magnitude sets the value of S in this calculation.) From these

parameters we compute a channel capacity of C = 3 Megabits per second, or

4 bits/mm in pulse-echo ultrasound. (For comparison, biometric iris scans

exhibit an effective entropy of 3.2 bits/mm2.[16]) A target region 20 mm in

size would have an entropy of 80 bits, or a collision probability of 10−24.

This strong expectation of uniqueness motivates our study of ultrasound

navigators for position tracking.

We use the term false positive to describe a situation in which two sig-

nals are deemed to match even though the signals are actually drawn from

distant locations. In a probabilistic model of echo patterns, the chance that

any individual’s echo patterns exhibit a collision that could produce a false

positive is never exactly zero, but it can be negligibly small.

To estimate the probability of a false positive, we return to the example

above, a signal space representing 20 mm of tissue at a bandwidth of 1.5 MHz

and S/N = 3. This signal contains 80 bits of random information, providing
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high uniqueness. We will sacrifice some of this uniqueness by employing the

shift-invariant distance metric in Section 2.2, so we now include an estimate

of the entropy lost to shift invariance. A bandwidth of 1.5 MHz corresponds

to a longitudinal decorrelation length of 1 mm, indicating that the set of all

shifts of each test signal corresponds approximately to 20 different indepen-

dent test signals. This is between 24 and 25, so it corresponds to a loss of

4–5 bits of information, leaving about 75 bits of unique information.

By the birthday theorem,[47] a collision would be expected when there

are more than 275/2 = 2 × 1011 samples in the set. Our ultrasound beams

typically have a width of at least 1 mm, so this would correspond to a dis-

placement path spanning 2× 108 meters. A typical human has a respiratory

displacement path spanning about 5 × 10−2 meters) [17], well below the

birthday paradox threshold. Over that path length, the collision probability

is approximately 3× 10−20, indicating that there is less than one chance in

a billion that such a collision would occur for any human being presently

alive.

These extreme numbers are highly approximate estimates, not accounting

for any of the nonidealities of a real (finite) implementation, for which perfect

information capture performance is mathematically impossible.[78] However,

the very low probability of false positives suggests that there is a significant

engineering safety factor: even imperfect implementations will be unlikely

to suffer from false positives and similar errors.
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2.2 Dissimilarity function

To make use of this intuitive model we must formalize a definition of simi-

larity. We do so by defining a dissimilarity function D(U ,V ) between two

ultrasound signals U(t) and V (t) as

D2(U ,V ) = min
∆t

∫ +∞

−∞
(W (t)U(t)−W (t+∆t)V (t+∆t))2 dt. (2.2)

By this definition, D(U ,V ) is the minimum Euclidean distance between U

and any shifted copy of V , where both U and V have been windowed by

multiplication with a window function W . For a pencil-beam transducer,

a window in time corresponds approximately to a range of depths, or a

total volume approximately in the shape of a finite cylinder. Minimizing

across a range of time shifts ∆t is important in order to isolate transverse

displacement (across the ultrasound beam) from longitudinal displacement

(along the beam axis). The ultrasound signals are rapidly varying functions

of t, so without this minimization a small shift in time (corresponding to a

very small displacement along the direction of the beam) might result in a

large difference between two otherwise identical signals.

The sensitivity of the difference to small shifts in time is set by the highest

frequency containing significant energy in the signal. Thus, one alternative

to minimizing over many shifts would be to produce a new signal with a lower

maximum frequency. Because our signals are naturally band-limited by the

physical properties of our ultrasound transducers, it is often possible to de-

modulate without a large loss of information. However, this approach has

not been very attractive because much of the information content in the sig-
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nal is in the phase, so a simple magnitude-only demodulation (i.e. an ampli-

tude envelope) is not sufficient. The computational complexity of broadband

phase-preserving demodulation is high enough that it does not represent an

important savings over our optimized shift search (Section 3.2.1).

The value of ∆t that minimizes D(U ,V ) represents an estimate of the

longitudinal shift, which may be valuable information when motion along

this axis is of interest. It is even possible to envision a variety of techniques

that combine this shift with the transverse dissimilarity for tracking of mo-

tions oblique to the beam path. However, throughout this thesis, we will

assume that all interesting motion is transverse to the primary beam axis,

and discard the information provided by ∆t. This greatly simplifies the anal-

ysis of system behavior, and also corresponds well to the natural geometry

of our primary application.

In an actual implementation, the continuous ultrasound signal will nec-

essarily be sampled at some rate. Discretizing Equation 2.2 to operate on

sampled signals produces a new formula

d2(u,v) = min
s

∑
i

(wiui − wi+svi+s)
2 (2.3)

where w is a rectangular window corresponding to the selected range of sam-

ples. Discretization is necessarily an approximation, but the error introduced

is small as long as the signal is well oversampled, i.e. most of the signal’s

energy is present in frequencies that are small relative to the Nyquist rate.

A detailed description of our optimized implementation of Equation 2.3 for

real-time applications is available in Section 3.2.1.
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2.3 Gaussian Random Field models of dissimilarity

Intuitively, the ultrasound signal observed at a given location is determined

by the set of scatterers that fall within the ultrasound beam profile. A trans-

verse motion much smaller than the beam’s width only slightly changes the

set of scatterers, and so should only slightly change the received signal. This

property is important for our application; if small changes could cause un-

bounded variation in the ultrasound signal, then no finite number of samples

would suffice to capture the variation present in some region.

We can formalize this intuition by determining how the expected dis-

similarity of two ultrasound lines depends on the transverse distance that

separates them. To do so, we model the ultrasound echo pattern as a sta-

tionary Gaussian Random Field (GRF). This model is known to apply well

for ultrasound speckle due to the central limit theorem, although it is not

an accurate description of larger-scale anatomical structures.[1]

A stationary zero-mean GRF is fully described by a domain vector space

SD, a range vector space SR, and an autocovariance function

C : SD → SR × SR.[2] (2.4)

In this model of transverse motion, SD is the two-dimensional position space

R2, SR is the space of ultrasound signals, windowed to represent the depths

of interest, and C represents the whole spatiotemporal sensitivity of the

ultrasound transducer.

To model the behavior of the dissimilarity of ultrasound signals made

at various transverse separations, we suppose for simplicity that the shift
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search finds only the geometrically correct alignment, so that d2 is exactly

the Euclidean metric. Consider two ultrasound signals U and V recorded

at a two-dimensional transverse separation ~x. Each signal is then a random

column vector drawn from a Gaussian distribution on SR with covariance

matrix C(~0), and the covariance between the two vectors is C(~x), i.e.

〈UU∗〉 = 〈V V ∗〉 = C(~0), (2.5)

〈UV ∗〉 = 〈V U∗〉 = C(~x). (2.6)

We define the difference between these vectors as ∆ ≡ U−V , a new gaussian

random vector with mean zero and covariance

C∆(~x) = 〈∆∆∗〉 = 〈(U − V )(U∗ − V ∗)〉 = 2C(~0)− 2C(~x). (2.7)

With this model for the difference between ultrasound signals, we now con-

sider two special cases: signals measured at very distant locations, and sig-

nals measured at very close locations.

2.3.1 Dissimilarity of distant ultrasound signals (no false pos-

itives)

When two ultrasound echoes are acquired at widely separated locations, they

are essentially uncorrelated, because each signal is generated by a different

random set of scatterers within the tissue. More formally, we may assert

that

lim
|~x|→∞

C(~x) = 0, (2.8)
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because the covariance function is determined by the ultrasound beam pro-

file, which is spatially localized. If two signals U and V are acquired at

sufficiently wide locations that C(~x) ≈ 0, then their difference ∆ is a Gaus-

sian random vector with mean zero and covariance 2C(~0). Although the

mean difference is zero, the probability that the difference is actually near

zero can be low if the effective dimensionality (i.e. degrees of freedom) is

high.

The effective dimensionality of an ultrasound echo is approximately given

by its time-bandwidth product. For the example numbers above (20 mm→

27µs, 1.5 MHz) this is approximately 40 degrees of freedom, meaning that

magnitude of the difference is distributed according to a χ distribution with

a parameter of approximately k = 40. This distribution is approximately

normal, with its mean greater than the standard deviation by a factor of

µ

σ
=
√
2k − 1 = 8.9. (2.9)

The chance of a sample from a normal distribution being more than 6 stan-

dard deviations below the mean is less than 10−9, and is lower still for a χ

distribution. Therefore, we may expect to find a threshold value, well above

zero, such that any pair of ultrasound echoes whose dissimilarity is below

the threshold were almost certainly acquired at nearby locations with over-

lapping sound fields. With high confidence, we may infer a close distance

when two measurements show low dissimilarity. We term this property the

guarantee of no false positives.
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2.3.2 Dissimilarity of nearby ultrasound signals (no false neg-

atives)

When two measurements are sufficiently close together, we would also like

to have confidence that we will not make the opposite error of Section 2.3.1

and incorrectly judge them to be far apart. To see that this is the case, we

first note that the ultrasound beam profile, and therefore the autovariance C

is smooth below some transverse length scale. In the case of our disc-shaped

transducers, the beam profile’s smallest length scale (outside the evanescent

wave zone) is set by the ultrasound wavelength and disc radius.[14] There-

fore, below this length scale, C is smooth and differentiable. As the beam

profile is radially symmetric, and there is no distinction between the two

transverse axes of displacement, our model is isotropic, and the covariance

function depends only on the distance |~x|.[2] We may therefore approximate

the autocovariance by a function of scalar distance C(|~x| > 0), with a Taylor

expansion near the origin:

C(~x) = C(0) +
1

2
C′′(0)|~x|2 +O(|~x|4). (2.10)

Combined with the previously derived expression for the covariance of the

difference vector C∆ (Equation 2.7), we may conclude that for small ~x,

C∆(~x) = −C′′(0)|~x|2 +O(|~x|4). (2.11)

Using the covariance, we may compute the expected dissimilarity:

〈
||∆||2

〉
= 〈∆∗∆〉 = tr(C∆(~x)) ∝ |~x|2 +O(|~x|4). (2.12)
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Thus, the mean squared dissimilarity is expected to be linearly proportional

to the squared distance, for small distances. By an argument on the number

of degrees of freedom, as in Section 2.3.1, we expect the standard deviation

of ||∆||2 to be relatively small, so that values are tightly clustered.

For the proposed dissimilarity-based method to work effectively in prac-

tice, the essential requirement is to be able to tell reliably whether a newly

measured ultrasound signal was acquired near to the position of one that has

been recorded previously. At a minimum, it must be possible to distinguish

reliably between an ultrasound echo acquired close to the reference, and one

acquired far from the reference. Since the dissimilarity of nearby points be-

comes arbitrarily small as the points get closer, and the dissimilarity of far

away points is effectively bounded below by a constant, it follows that there

exists a discriminatory threshold T 2 and two distances a > b > 0 such that if

the true distance is greater than a, then the dissimilarity d2 is always greater

than T 2, and if the true distance is less than b, then the d2 is always less

than T 2. (See Figure 2.2 for an example of data providing these properties.)

This latter property allows a guarantee of no false negatives.

2.4 Experiment: Distance-Dissimilarity Relationship

The purpose of this experiment was to determine whether the expected be-

haviors described in Section 2.3 are observed in practice.

2.4.1 Materials: Phantom tracking transducer

The phantom tracking transducer used was a broadband piston-type ultra-

sound transducer with a nominal center frequency of 5 MHz and diameter of
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4 mm. It was the center element of an annular array produced by Acoustic

Technologies Laboratories. It was not manufactured for MRI-compatibility,

and as such did produce a significant dropout of MR signal in its immediate

vicinity due to the induced magnetic field inhomogeneity.

The phantom tracking transducer was driven by a pulser-receiver (Olym-

pus 5072PR) pulsing at its lowest energy setting (13 µJ) and a damping

impedance of 50 W. The receiver was configured for a bandpass of 1–10 MHz

and +30dB of amplification.

The ultrasound field of the phantom tracking transducer was mapped in

a tank of degassed water with a 0.2-mm diameter needle hydrophone (Onda

HNC-0200) mounted on a computer-controlled, three-axis positioning sys-

tem (Velmex VP-9000). (Experiments testing the accuracy of displacement

tracking in the structured phantom target were performed by attaching the

transducer to the same positioner.) A maximum ultrasound intensity of

16 mJ/m2 (pulse intensity integral) was measured at a focal distance of

36 mm, with a half-intensity width of 2.0 mm and length of 55 mm. At the

focus, the maximum spectral energy density occurred at 5.3 MHz, with a

half-power bandwidth of 1.6 MHz (Q = 3.2). For additional characteriza-

tion data, see Figure 2.1.

2.4.2 Methods

We attached the tracking transducer to a computer-controlled positioning

device, aimed at the structured phantom in a water tank. The positioner

scanned 1000 locations in each of two transverse grid patterns (coarse and

fine), recording the ultrasound echo at each location. The dissimilarity func-
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Figure 2.1: Characterization of the phantom tracking transducer, as described in
Section 2.4.1.

tion was then computed for all pairs of ultrasound echoes in each data set

(106 pairs in total), and compared to the true transverse distance between

the two locations in the grid. This arrangement was also used to simulate the

response of motion compensation to a lateral shift (i.e. motion perpendicular

to the expected trajectory).

2.4.3 Results

The results of the dissimilarity assessment are plotted in Figure 2.2. At

short distances, below 0.5 mm, the squared dissimilarity is linearly related

to the squared distance. At large distances, above 2 mm, the dissimilarity
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Figure 2.2: The dissimilarity measured between all pairs of ultrasound signals sepa-
rated by a given distance. The center line shows the mean dissimilarity observed at
that distance, the shaded region indicates one standard deviation above and below,
and the outer lines show the minimum and maximum. Data for nearby points are
shown in (a) with quadratically scaled axes, and data for larger distances are shown in
(b) with linear scaling.

saturates, and becomes constant.

These behaviors are as expected from a simple model of ultrasound

echogenicity, in which the signal changes smoothly on scales smaller than

the ultrasound beam width, but becomes uncorrelated at distances larger

than the beam width (2.0 mm for this transducer). The offset at zero

distance is expected due to factors such as thermal and electrical noise that

decrease the similarity of successive measurements even if the location is

unchanged.

Importantly, the data suggest that an appropriately chosen dissimilarity

threshold may reject all pairs separated by more than 2 mm, and accept

all pairs separated by less than 0.5 mm. This is sufficient to enable reliable

matching as required by the subsequent experiments.
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Henk decided it must be some kind of specialised

tracker. Febron’s science had been right on the

money.

Doctor Who New Series Adventures 36: The

Krillitane Storm

3
ULTRACK: a prospective Biometric

Ultrasound position tracking system

To put the ultrasound dissimilarity measure of Chapter 2 to

use, we constructed a system called ULTRACK that provides prospective

motion correction of MRI images. In order to validate the effectiveness of

the ULTRACK motion compensation system we conducted a series of exper-

iments in motorized motion phantoms, designed to resemble the geometry
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and motion parameters of potential medical applications of the ultrasound

biometric navigation technique for MRI motion compensation. The results

show that the system performs well, suggesting that the principle of biomet-

ric navigation may be applicable to real-world motion compensation prob-

lems.

3.1 Basic Biometric Tracking Algorithm

Having concluded in Chapter 2 that the dissimilarity measure will not pro-

duce false positives or false negatives, we may outline a basic algorithm that

uses dissimilarity for position tracking. This algorithm requires two inputs:

the biometric signatures and an additional source of position information.

It operates in two stages: training and tracking. The algorithm relies on

one core assumption: the motion is essentially repetitive, in the sense that it

crosses and recrosses the same locations, not deviating by further than the

length scale set by the biometric signature.

In the training stage, the system accepts synchronized input, forming pairs

of simultaneous biometric and position data. These pairs are accumulated

over the course of the training stage, which should be long enough to capture

most or all of the distinct patterns that are seen along the motion path.

When the training period concludes, the system summarizes the training

data, producing a smaller set of paired biometric signatures and positions.

Summarization may proceed by selecting a subset of the training data ac-

cording to some criterion, or it may include a more complex synthesis of the

training data, producing biometric signatures that are not identical to any

single input measurement. One reasonable heuristic for summarization is to
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select a set of input measurements that are approximately equally separated

(according to the position data) and span the range of observed motion. The

reduced set of signatures and positions is called a mapping table, because it

serves to map biometric signatures to their corresponding positions.

Once the mapping table is ready, the system may transition to the track-

ing stage. In this stage, only biometric input is received. Each input is

compared, using the dissimilarity measure, to the biometric signature com-

ponent of each entry in the mapping table. Whichever entry produces the

lowest dissimilarity is termed the best match, and its position component is

transmitted as the response to the input signature.

If the dissimilarity between the input and the best match is too high, then

by the property of no false negatives, the input signature must not be very

close to any element of the mapping table. While the best match is still the

best estimate of the current position, the confidence in this estimate is now

very low. In some systems it may be valuable to convey this information, for

example by replacing the transmitted position by a flag indicating that no

reliable position estimate could be computed. This kind of failure to match

can occur if the repetitivity assumption is violated (i.e. the system has

moved to a position not explored during training), or if the summarization

discarded too much information.

3.2 Biometric Ultrasound position tracking system: UL-

TRACK

We constructed an ultrasound-MRI motion compensation system that imple-

ments the basic biometric tracking algorithm where the biometric signatures
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are ultrasound echoes from a single transducer, and the position measure-

ments are derived from one-dimensional MRI navigators. (There is no sub-

stantial barrier to the use of multi-dimensional navigators, but development

of that capability was not undertaken.) At the core of the system is a soft-

ware program called ULTRACK that manages all ultrasound data collection

and MRI motion compensation. Real-time components of ULTRACK are

written in C, and other components are written in Python using the SciPy

numerical analysis framework.[44]

The system is designed to operate in two stages. First, in the training

stage, an MRI navigator that indicates all desired position information is

configured to run continuously. The MRI control electronics produce an

external trigger pulse at the beginning of each navigator block. This pulse

triggers the acquisition of an ultrasound echo by the pulser-receiver and

digitizer (National Instruments PXI-5124). Each ultrasound echo is recorded

to disk for later analysis, as are the corresponding MRI data.
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Figure 3.1: Diagram of the motion compensation system including ULTRACK

The training period must be long enough to ensure that the entire range

of motion is densely sampled, so it typically spans multiple motion cycles.

Once all the training data are recorded, the ultrasound and MRI data are

condensed into a mapping table containing a set of ultrasound measurements

and their corresponding positions. For reasons of computation speed, the

maximum number of entries in the mapping table may be limited. In this

case, the training software must select a representative subset of measure-

ments for use in the mapping table.

During the correction stage, an identical triggering arrangement is used,

and the pulse sequence is configured to produce the desired images. UL-

TRACK compares each incoming ultrasound line against every entry in the

mapping table, using the discretized dissimilarity function. The current po-

sition estimate is determined to be the position associated with the most

similar entry.
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Once a position estimate has been determined, ULTRACK transmits the

position update to the pulse program running on the MRI scanner. The

pulse program changes its imaging parameters as needed to center on the

new position. The position information transmitted by ULTRACK includes

a three-dimensional vector indicating the center of the imaging volume and

a rotation matrix indicating the slice coordinate system. The pulse sequence

was modified to check for changes in these parameters before every excitation

pulse, and adjust oscillator frequencies and gradient amplitudes accordingly.

In the current implementation, ULTRACK transmits positions, and re-

ceives MRI data, using the OpenIGTLink protocol.[83] The pulse program

receives positions and transmits data using the RTHawk realtime library

for GE scanners.[72] These two systems are connected by a proxy server,

running programs that convert messages between these two protocols. The

servers communicate over ethernet.

3.2.1 Optimized Computation of Discretized Dissimilarity

Biometric navigation, when used in real-time applications such as prospec-

tive motion compensation, requires fast computation of dissimilarity between

newly measured biometric data and entries in the mapping table. For bio-

metric ultrasound, this means a fast method of computing the dissimilar-

ity function described by Equation 2.3. To find a fast implementation, we

first reformulate Equation 2.3 to expand the quadratic and extract constant
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terms:

d2(u,v) = min
s

∑
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To achieve maximum speed, we choose a simple rectangular window function

wi = 1 if a ≤ i < a+N else 0, (3.4)

and define new windowed ultrasound vectors

xi = wi−aui−a, (3.5)

yi = wi−avi−a. (3.6)

This simplifies our formula to

d2(u,v) =

N−1∑
j=0

x2j

+

(
N−1∑
k=0

y2k

)
− 2max

s

N−max(s,0)−1∑
i=−min(s,0)

xiyi+s. (3.7)
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For convenience we define

P =
N−1∑
j=0

x2j , (3.8)

Q =

N−1∑
k=0

y2k, (3.9)

Rs =

N−max(s,0)−1∑
i=−min(s,0)

xiyi+s, (3.10)

so that

d2(u, v) = P +Q− 2max
s

Rs. (3.11)

If computed naively, R will require an independent sum over products at each

value of s, requiring Θ(N2) computation time. To perform the computation

faster, we first note that R is the cross-correlation vector of x and y:

Rs = (x ? y)s. (3.12)

By the Fourier cross-correlation theorem, Equation 3.12 is equivalent to

R = F−1(F(x)∗ · F(y)), (3.13)

where F(·) represents a discrete Fourier transform of length at least 2N − 1.

With a Fast Fourier Transform, this allows d2 to be computed in Θ(N logN)

time.

In our implementation, the dissimilarity function is used to compare a

newly acquired ultrasound signal v with each vector u from the mapping

table. Because all the vectors u are known before real-time computation
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starts, we may compute and store P and F(x)∗ ahead of time. We also only

compute Q and F(y) once for each new signal, and reuse these values in

each of the dissimilarity computations. If there are K entries in the mapping

table, then these choices reduce the total number of P and Q computations

required for each search from 2K to 2, and the total number of forward and

inverse transforms from 3K to K + 1. We use the FFTW package [27] to

compute these transforms quickly, and perform the other computations in

C++.

Because each of the K computations of d2 is independent, they may be

performed in parallel. We use the OpenMP multithreading abstraction to

spread these K computations across CPU cores. As expected, we observe

near-perfect linear scaling with the number of cores. On an 8-core 2.5 GHz

Xeon E3560, with N = 4096 and K = 256, we observed an average table

search time of 2.5 ms, i.e. 400 Hz, or 100,000 computations of d2 per sec-

ond. This is significantly faster than required by our current experiments,

indicating that larger mapping tables may be feasible.

There are many possibilities for future optimization, should it be neces-

sary, such as excluding unlikely (i.e. distant) reference vectors from con-

sideration or using extremely parallel hardware such as GPUs. This prob-

lem should be well-suited for GPU acceleration because of the very small

amount of data transfer, highly parallel search, and use of power-of-2 FFTs.

The performance optimization techniques used here may also be applicable

to variations on this distance metric. For example, it is possible to avoid

windowing both inputs, or to use a non-rectangular apodization, without

losing the key performance advantages achieved here.
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3.3 Materials

3.3.1 Structured Phantom Target

The structured phantom target consisted of polyacrylamide gel, cast into a

mold containing a few arbitrary non-MRI-visible plastic objects that pro-

vided visible structure in MRI. The gel contained 6% powdered silica by

Figure 3.2: A cartoon of the motorized phantom, showing the structured phantom
tied to a string that rolls it over a water bath containing the ultrasound transducer.

mass, which created a strong ultrasound speckle. Ultrasound measurements

were performed in a region of the phantom containing speckle only; the

plastic objects were used only for experiments that served to evaluate the

tracking in MRI.

3.3.2 Heating Phantom Target

The heating phantom target contained polyacrylamide gel with 3% powdered

silica, in order to produce scattering and also match the absorption observed

in human soft tissues.[62] A focused ultrasound transducer was attached to

the phantom so that its focus was at a stationary point inside the gel.
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Figure 3.3: A photo of the heating phantom in the water bath.

3.3.3 MRI-compatible motorized linear motion system

To model human respiratory motion, we constructed a motorized system

that imparted motion to the gel phantoms described in Sections 3.3.1 and

3.3.2. The motor, which was located outside the MRI room, was coupled

to the target by a rope running through the waveguide and around several

MRI-compatible pulleywheels (K’Nex). The target was attached to a dolly

and constrained to move along one direction, parallel to the MRI bore. The

gel was partially immersed in a water bath that served to conduct ultrasound

from the transducer, which was oriented vertically.

The motor moved the phantom at a controllable speed. The motion was

not sinusoidal, but was approximately periodic and reciprocal. The phantom
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could be operated at two different motion amplitudes covering a distance

of approximately 6.5 cm or 7.5 cm. The motion amplitude was chosen to

exceed the maximum reported liver motion observed during deep breathing

(5.7 cm).[17]

3.4 Experiment: Assessing the accuracy and latency of

ULTRACK

This experiment served to measure the accuracy and latency of ULTRACK’s

MRI motion compensation by applying the compensation to the navigator it-

self. If ULTRACK were providing perfectly ideal motion compensation, then

the motion-compensated navigator would appear stationary, even though the

phantom is moving.

3.4.1 Methods

In this experiment, the imaging pulse sequence was Spoiled Gradient-Echo

with TE/TR=4.2/8.9 ms, imaging a 22 cm square coronal slice with 10 mm

thickness at a resolution of 256 × 256. The frequency encode direction was

aligned with the MRI bore. The MRI navigator used for training purposes

consisted of the same sequence with phase encoding disabled.

The training period consisted of 104 acquisitions, requiring 89 seconds to

complete and covering approximately 9 cycles of the motion phantom. Dur-

ing the training stage, the phantom was set to its larger motion amplitude,

akin to asking a patient to breathe deeply during training, in order to ensure

that the entire range of motion was observed.

Analyzing the navigator to determine the position of the phantom was
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trivial because the slice consists of a rigid body moving linearly in air. Once

the software had extracted positions from each MRI acquisition, it used this

information to select 256 measurements that were evenly spaced in position

and spanned the whole observed range of motion.

After training was complete, ULTRACK was configured for motion com-

pensation, and the phantom was changed to its lower motion amplitude. The

MRI navigator pulse sequence was run again, this time under prospective

compensation from ULTRACK. The positions were extracted again from

these data by the same algorithm.

3.4.2 Results

The results of Experiment 3.4 are shown in Figure 3.4. Using prospective

motion compensation, ULTRACK reduced the observed standard deviation

of position from 25.3 mm to 0.57 mm. This indicates that ULTRACK pre-

served 97.8% of the MRI navigator’s positioning accuracy.

The residual position error in Figure 3.4 exhibits periodic behavior due

to the latency of correction. These data were acquired and reconstructed

without predictive filtering, so any delay contributes to the positioning error

during prospective compensation. For retrospective motion correction, the

delay can easily be removed. By minimizing the observed positioning error,

we determined that the total motion compensation delay in this experiment

was 27 ms. Retrospectively compensating for this delay reduced the observed

standard deviation to 0.35 mm.
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Figure 3.4: The top image shows the MRI training data used to compute the map-
ping table. The middle image shows the result when the same pulse sequence is per-
formed under prospective navigation from this mapping table. The lower plot shows
the residual position variation in the middle image. The variation is the sum of error
in the ULTRACK motion compensation and in the MRI navigator itself.

3.5 Experiment: Determining the ability of ULTRACK to

reduce artifacts in 2D images

This experiment served to determine whether ULTRACK can successfully

achieve its goal of reducing motion artifacts in three different types of 2D

images: coronal, axial, and oblique. The oblique plane was generated by

rotating the coronal slice by approximately 15 degrees from all three cardinal

axes (double oblique).
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3.5.1 Methods

Each image type was tested using the same procedure as in Experiment 3.4,

except that phase encoding was enabled during motion compensation. Ad-

ditionally, a control image set was acquired for each imaging plane with

ULTRACK disabled, to determine the effects of motion without compensa-

tion.

3.5.2 Results

The results indicate that ULTRACK’s motion compensation performance

is nearly sufficient to eliminate all motion artifacts from the moving ob-

ject. In the in-plane motion test (Figure 3.5), the residual artifacts are

greatly suppressed, and not easy to see. One source of remaining artifacts
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Figure 3.5: Prospective motion compensation performance for in-plane motion. The
top row shows images during uncorrected motion. The bottom row shows images
acquired during corrected motion, and the middle row shows the corresponding ap-
plied position correction over time. All images are originally 256 × 256, but have
been cropped to show the region of interest. The tracking was performed in a ho-
mogeneous region of the phantom. Plastic objects were placed behind this region for
visualization in MRI.

is position-dependent geometric distortion due to nonideality of the MRI

gradient fields. In static images this distortion is corrected by the gradient

warping procedure during reconstruction, but no such correction has been

applied here. Correction of dynamically varying gradient warping is possible,

but it requires the use of complex, computationally intensive reconstruction

techniques.[65]

In the through-plane test (Figure 3.7), the appearance of the moving

object is substantially improved compared to the uncorrected images, in

which the phantom is often invisible because it has moved out of the imaging

plane entirely. Unrelated artifacts are still visible due to turbulence in the

water tank and the presence of ferromagnetic material in this ultrasound
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Figure 3.6: The profile of a single line through each of 31 motion compensated coro-
nal images, taken from the same data set as Figure 3.5. The line is parallel to the
direction of motion.

transducer.

In the oblique test (Figure 3.8), ULTRACK greatly reduced the appear-

ance of motion artifacts by applying corrections along the phase, read, and

slice axes.

3.6 Experiment: Determining whether ULTRACK permits

MRI thermometry of a moving phantom

This experiment served to determine whether ULTRACK’s motion compen-

sation accuracy is sufficient to enable MRI thermometry of moving objects,

using the heating phantom with attached focused ultrasound transducer.

3.6.1 Methods

The temperature rise was estimated by Proton Resonance Frequency Shift

analysis of data from a standard sequence used for this purpose: Spoiled

Gradient-Echo (SPGR) with TE/TR=11.7/23.8 ms, and a bandwidth of
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Figure 3.7: Prospective motion compensation performance for through-plane motion,
structured as in Figure 3.5. The dark blooming artifact was caused by ferromagnetic
components of the transducer, and the surrounding brightness variation is due to tur-
bulence and saturation effects in the water bath.

3.57 kHz, imaging a 12 cm square coronal slice with a thickness of 3 mm at

a resolution of 128 × 128. The slice was selected to pass through the focal

spot of the heating transducer with an orientation orthogonal to its central

axis. Compared to Experiment 3.5, motion compensation in this experiment

is much more challenging due to this sequence’s longer TR and TE, thinner

slices, and extreme sensitivity to phase variation.

After waiting for 7 images without heating, 8.3 Watts of electrical power

was applied for 60 seconds. This procedure was performed 16 times, while

the phantom was alternately stationary or moving with ULTRACK motion

compensation. The motion phantom was configured for a period of 18 sec-

onds and a maximum velocity of 1.3 cm/sec.

Temperature changes were computed by referenceless thermometry similar

to [68], with a basis consisting of a 5th-order polynomial (the background

phase) and a Gaussian spot with variable amplitude and radius (the focal
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Figure 3.8: Prospective motion compensation performance for an oblique plane,
structured as in Figure 3.5. In some points along the motion trajectory the oblique
imaging plane includes a portion of the water bath, visible in the upper left corner of
the compensated images. The three curves represent displacements along the phase,
read, and slice axes.

heating). Referenceless thermometry was chosen because it removes the need

for subtraction. This reduces the sensitivity to spurious drift and fluctuation,

and also increases the number of independent temperature measurements

that can be obtained in an experiment of fixed duration. This maximizes

the opportunity to detect any systematic error induced in the temperature

measurements.[20] The thermometry method is detailed in Chapter 6.

3.6.2 Results

The results indicate that MRI thermometry is possible under ULTRACK

guidance. As shown in Figure 3.9, the temperature curves observed over

time are similar. A linear fit between the stationary and moving mean peak

temperatures had a slope of 0.92 and a R2 value of 0.96, indicating that

any systematic error introduced by motion compensation is small. During
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Figure 3.9: (a) Temperature data reconstructed with and without motion. In
each color, the central line shows the mean peak temperature timeline for eight
experiments, and the shaded area shows one standard deviation above and below.
(b) Bland–Altman plot comparing the two sets of temperature measurements. Each
point represents a single time during heating (from 21–81 seconds), averaged over all
repetitions.

heating, the mean standard deviation in peak temperature was 0.83℃ while

stationary and 0.78℃ while moving, indicating that motion compensation

did not introduce significant additional temperature noise.
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Figure 3.10: (a) Average temperature image at 79 seconds (near peak heating) after
background phase subtraction. Both images are shown in the same temperature scale.
(b) Three consecutive magnitude images of the heating phantom undergoing motion
without compensation, using the same pulse sequence as used for temperature im-
ages. The black box indicates the image region in which thermometry was performed.

The geometry of the temperature image is also preserved, as seen in Fig-

ure 3.10a, although a slight broadening is evident. Without motion com-

pensation this pulse sequence produces images, shown in Figure 3.10b, that

are corrupted by severe motion artifacts and displacements that would likely

preclude any thermometry.
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“As they were never truly alive,” I replied, “they

could never truly be killed. But they are as dead

as phantoms can ever be.”

A Nameless Witch – Alex Lee Martinez

4
On the practicality of biometric ultrasound

navigation in vivo

In the preceding chapters we have considered highly idealized

models, both mathematical and mechanical, of the clinical scenario we wish

to address. One critical idealization has been that the ultrasound patterns

repeat over many respiratory cycles. The motion phantoms used in Chap-

ter 3 are internally inert and mounted on rails, so they have extremely high
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repeatability. The dynamic nature of living tissue, and the tendency of liv-

ing organisms to move and shift over time, both cast doubt on the ideal of

repeatability. If the repertoire of ultrasound patterns is entirely different

after just a few breath cycles, then each mapping table will be effective only

briefly before a new training stage is required. If frequent retraining were

necessary, it could require such a large fraction of imaging time as to negate

any benefits from biometric ultrasound navigation.

In this chapter we describe two experiments to discern the behavior of

biometric ultrasound navigation in the absence of idealized repeatability. In

the first experiment, we simulate the effect of a lateral shift, as if a patient

had moved slightly to the left or right, using a phantom. In the second

experiment, we perform biometric ultrasound navigation on MRI images of

a live, freely breathing rabbit.

4.1 Experiment: Lateral shift sensitivity simulation

Most current methods of anatomical motion tracking, such as MRI navi-

gators, breath bellows, ultrasound cross-correlation, and image-based ultra-

sound methods, cannot detect motion outside of the degrees of freedom that

they are designed to track. For example, for 2D image-based methods, an

anatomical shift perpendicular to the image plane is unlikely to be detected

until its magnitude is far greater than motions that can be detected in-plane.

As noted in Section 3.1, the biometric tracking method relies on an as-

sumption that the motion remains repetitive to within the length scale set

by the width of the ultrasound beam. In respiratory motion compensation,

the repetitive motion is predominantly along a single axis, but the patient
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may make an unexpected motion perpendicular to this axis (i.e. lateral),

either suddenly or by gradual drift. In some motion tracking applications

(such as MRI-guided Focused Ultrasound Surgery) it is important to detect

and report when even a small lateral displacement has occurred, while in

other applications it is preferable that tracking along the main axis not be

affected by lateral motions.

4.1.1 Methods

To assess the sensitivity of our motion compensation system to lateral mo-

tions, we acquired data to simulate the effect of a lateral shift on the accuracy

of motion tracking. As in Experiment 2.4, the phantom tracking transducer

(Section 2.4.1) was mounted on a computer-controlled positioning device

and aimed at the structured gel phantom (Section 3.3.1). The positioner

was programmed to acquire data that closely resembled the experiments in

Chapter 3, with 256 equally spaced samples in a 70 mm row. We acquired

several parallel rows separated by a lateral distance of 0.2 mm. One of these

rows was selected as the reference (i.e. a mapping table), and the position

of each echo was estimated as equal to the position of the most similar echo

in the reference row.

4.1.2 Results

The results are shown in Figure 4.1.

The results show that for lateral shifts of up to 1 mm, the simulated

tracking error parallel to the reference row was always less than 1 mm. At

a lateral shift of 1.2 mm the parallel tracking error was less than 1 mm
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Figure 4.1: Cumulative distribution function of tracking error at 10 different lateral
shifts. Motion tracking was simulated using a data set acquired using a robotic posi-
tioner.

for 96% of samples, but only 21% of samples were this accurate at a shift

of 1.8 mm. These results suggest that, for this phantom, transducer, and

geometrical arrangement, lateral shifts of up to 1 mm outside the reference

set are unlikely to cause significant tracking errors. This result is consistent

with the dissimilarity saturation observed in Figure 2.2, indicating that the

sensitivity to lateral shift is also determined by the shape of the transducer’s

ultrasound field.

4.2 Experiment: Biometric Ultrasound Navigation in a

Freely Breathing Rabbit

The animal experiments were approved by our institutional animal commit-

tee. Imaging was performed on a male rabbit (4 kg). Before the experiments,

the animal was anesthetized with ketamine and xylazine, but was not intu-

bated and was allowed to breathe freely. For optimal ultrasound coupling,

the rabbit’s ribcage area was shaved and coated in ultrasound gel. The an-
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imal was placed head first and right lateral decubitus on a circular MRI

surface coil, with the animal tracking transducer in the center underneath a

1 cm-thick ultrasound gel pad.

4.2.1 Materials

4.2.1.1 MRI

Animal imaging was performed on a 3T MRI (GE), using a circular surface

coil and the clinical Fast SPGR gradient-echo pulse sequence. Real-time

scanner control was not available, so experiments were performed by re-

trieving raw acquisition data from the scanner and simulating prospective

correction in purpose-built software after acquisition was complete.

4.2.1.2 Ultrasound

The animal tracking transducer was a broadband piston-type transducer

with a nominal center frequency of 5 MHz and a diameter of 8 mm. It

was manufactured from MRI-compatible materials by Imasonic SAS. It was

driven by the same pulser-receiver, set identically except for a damping

impedance of 25 W.

The transducer was driven by the same electronics as the phantom trans-

ducer (Section 2.4.1), and characterized using the same positioning system,

tank, and hydrophone. For the animal tracking transducer, a maximum ul-

trasound intensity of 31 mJ/m2 was measured at a focal distance of 54 mm,

with a half-intensity width of 1.9 mm and length of 52 mm. At the focus, the

maximum spectral energy density occurred at 5.8 MHz, with a half-power

bandwidth of 3.0 MHz (Q = 1.9). For additional transducer characterization
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data, see Figure 4.2.
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Figure 4.2: Characterization of the animal tracking transducer, as described in Sec-
tion 4.2.1.2.

4.2.2 Methods

The purpose of this experiment was to confirm whether biometric ultrasound

navigation can be accurate and effective in vivo, by analyzing simultaneous

ultrasound and MRI data acquired from a freely breathing anesthetized rab-

bit. For all imaging, the MRI scanner executed a Spoiled Gradient Echo

sequence with a resolution of 256 × 256, 5 mm slice thickness, 31.25 kHz

receive bandwidth, and frequency encode along the S/I axis. MRI navigator

data were acquired by the same pulse sequence used for imaging, but with

phase encoding disabled. The mapping tables contained 256 entries and
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were computed from a training period lasting 14 seconds.

To assess the accuracy of the method in vivo, we acquired 143 seconds of

test data consisting of paired navigator and ultrasound acquisitions, similar

to the preceding training period. The images represented a coronal slice with

a 17 cm square field of view and TE/TR=3.6/7.8 ms. Using the mapping

table from the training period, we computed position estimates from the

ultrasound data and compared them to the position computed from the

navigator, which served as a reference. The paired position measures are

plotted in Figure 4.3.
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Figure 4.3: Scatter plot showing 17654 paired position measurements acquired in a
rabbit during 143 seconds of free breathing. The dashed line represents perfect per-
formance, and the solid line shows the least-squares linear fit.

The standard deviation of the reference position during the test period
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was 1.41 mm. After subtracting the position estimate from ultrasound,

the standard deviation of the residual was 0.16 mm, indicating that the

biometric navigator captured 89% of the variation in the MRI navigator. A

least-squares linear fit between the two position measures had a slope of 0.95

and a R2 value of 0.98.

To assess the effectiveness of the method in vivo, we acquired a sagit-

tal image series and training scan with an 11 cm field of view and

TE/TR=4.1/11.5 ms. A mapping table was computed from the training

scan and used to estimate the displacement at each ultrasound acquisition

during the image series. Motion compensation of the MRI images was

achieved retrospectively by applying a phase roll to each line of k-space

to remove the displacement estimated from ultrasound. This set of MRI

data, reconstructed with and without retrospective motion compensation,

is visualized in Figure 4.4. The correction produced a clear improvement in

image stability and reduction of motion artifacts.

These results show that biometric ultrasound navigation can provide ac-

curate respiratory displacement estimates in vivo, using less than 9% of total

imaging time for training. They also demonstrate that the method is effec-

tive at producing sharp, stable MRI images during free breathing.
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Figure 4.4: (a) Mean and standard deviation of 32 consecutive images of a freely
breathing rabbit, with and without retrospective biometric ultrasound motion com-
pensation. Each image pair is shown in the same contrast. (b) Time series showing
the central section from 16 consecutive images, with and without motion compensa-
tion. Horizontal dashed lines indicate the main area of motion compensation, contain-
ing bright blood vessels just below the diaphragm. Cardiac motion artifacts at the top
of each image are not corrected.
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Digby ordered the smartcore to distort the worm-

hole’s pseudostructure. Negative energy fluxes

reached out from the starship’s drive, attempting to

destabilize the wormhole’s integrity.

Commonwealth 5: The Evolutionary Void – Peter F.

Hamilton

5
Biometric Bootstrapping in

Pseudo-position Space

We have assumed, in the preceding chapters, that a fast, accurate position

monitoring system is already available as an input for any biometric naviga-

tion system. The basic biometric navigation algorithm, which has been the

focus of all results so far presented, requires such a position measure as an

input during the training stage.

58



In this chapter we consider what can be achieved using only a single ul-

trasound transducer oriented transverse to the direction of motion, when an

external position input for training is unavailable or incomplete. Our method

works by first extracting as much information as possible from the biometric

signature alone, and then augmenting it with any external position input

that may be available. Our results indicate that biometric navigation can

provide a significant amount of information about motion patterns without

requiring any additional equipment or data. To gain the benefits of spatial

mapping without relying on external position data, the method operates in

pseudo-position space, a Euclidean space that represents the abstract posi-

tional state space of the object being observed.

5.1 Algorithms for Pseudoposition mapping

The overall algorithm for motion model construction using pseudo-position

mapping consists of three main stages: Pseudo-SLAM, bin reconstruction,

and motion model extraction. Pseudo-SLAM operates only on the biometric

signatures themselves, while the subsequent stages rely on the presence of

an external position information source. It uses pairwise distance measure-

ments to find a pseudoposition assignment pseudo-positions based solely on

the biometric data. Bin reconstruction aggregates external training infor-

mation corresponding to locations in pseudo-position space, in order to con-

struct complete data for many pseudospace locations. Finally, motion model

extraction analyzes and compares the aggregated training data, producing

a mapping from pseudo-position space to real geometrical parameters.
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5.1.1 Pseudo-SLAM

In the Basic Biometric Navigation Algorithm, an external position data

source (such as an MRI imager) is used to tag every biometric signature

(such as an ultrasound echo) with its corresponding position. These pairs

can then be used to build up a table representing the relationship between

biometric signatures and positions. Once the training is complete, the table

can be used to determine the present location given a biometric signature.

In robotics, problems analogous to the computation of this table are sim-

ply called mapping, in the sense of cartography. An environmental data

source (e.g. camera, LIDAR) is combined with an external position data

source (e.g. GPS) to build up a representation of the robot’s surroundings.

The problem of determining the current position, given the map and an

environmental measurement, is called localization.

Given only a series of biometric signatures and no external position data

source, we may still wish to estimate a map. The problem is much harder

than simple mapping, however, because the location of each biometric signa-

ture within the map is not initially known. In the field of robotics, problems

of this class are termed Simultaneous Localization and Mapping (SLAM).[22]

In the usual conception of SLAM, the output map does not represent

position in any pre-existing absolute reference space, because there is not

enough information available. For example, a robot navigating an indoor

maze may not be able to determine its latitude, longitude, or compass orien-

tation. Thus, the map produced by SLAM is often regarded as degenerate

up to rigid transformations.

When biometric signatures are the only available data source, we can
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expect even more degeneracy in the resulting map. By the analysis in Chap-

ter 2, it is possible to determine some information about the distance between

two biometric signatures with good reliability, but there is almost no infor-

mation about the direction in which this separation occurs. Even if all the

distances among a set of points are known exactly, it is still impossible to

distinguish between one set of points and its mirror image, so the degener-

acy in the position coordinates includes not only rigid transformations but

also reflections. The limited range of distance measurements on biometric

signatures (a consequence of the saturation phenomenon discussed in Sec-

tion 2.3) limits the accuracy of long-range measurements, so only the local

structure can be reproduced reliably. As a result, the coordinate space will

also be nearly degenerate up to smooth deformations that do not greatly

alter the distances between nearby points. Because the resulting map space

is likely to be so different from the true position space, we describe the map

coordinate as a pseudo-position. Accordingly, we call SLAM-like problems

on biometric signatures Pseudo-SLAM.

The pseudo-position space is a representation of the abtract phase space

of the system, with the additional property that the function that maps its

coordinates to real position space is smooth. There is no need for the pseudo-

position and the real position to occupy a space of the same dimensionality,

and indeed their dimensionalities are different in the current implementation

of the algorithm.
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5.1.1.1 Multi-Dimensional Scaling for Pseudo-SLAM

Our system for Pseudo-SLAM proceeds as follows. After acquiring the train-

ing data, approximately 104 samples, we first make pairwise similarity mea-

surements between the biometric signatures. Our signatures take the form of

ultrasound echoes, and so our similarity measurements are computed using

the measure described in Equation 2.3. We express similarity in terms of an

estimated distance

D(a, b) = min
s

√√√√(∑
i

(ai − bi−s)2

)
− n. (5.1)

Here n is a noise-compensation term, to account for the fact that, even if

there has been no motion, successive acquisitions will not be identical. (This

is the offset observed in Figure 2.2a.) The minimization over all shifts serves

to discard information about small shifts parallel to the beam axis, which

would otherwise overwhelm the effects of transverse displacements.

This distance measure is suitable for small displacements because the pro-

file of the ultrasound beam is smooth and radially symmetric. Its spatial au-

tocorrelation function is therefore approximately quadratic in a small region

around the origin, which makes D(a, b) proportional to the true transverse

displacement. For larger displacements, the ultrasound echoes become un-

correlated, and their observed numerical distance approaches a fixed ceiling.

Therefore, we select a threshold T , lower than D(a, b) for all widely sepa-

rated measurements but higher than D(a, b) for all closely spaced measure-

ments. Such a threshold must exist for any biometric signature, and we ex-

pect it to exist in our case due to the analysis in Section 2.3. If D(a, b) > T ,
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then we regard the distance between a and b in pseudo-position space as

unknown, but constrained to be at least T .

The function described for D(a, b) is too computationally intensive to

calculate for all pairs of input biometric signatures in large training sets. An

optimized implementation (Section 3.2.1) can compute 105 dissimilarities

per second. On a typical training set of 104 signatures, there are 108/2

distinct pairs, so computing all the dissimilarities would require about 500

seconds, which is unacceptably long. Moreover, even if the dissimilarity

computation can be made faster, subsequent steps in the algorithm also take

time proportional to the number of measured dissimilarities. Therefore, we

avoid calculating all 108/2 pairs, and instead only compute distances for a

small, strategically chosen subset of pairs.

First, each signature is compared to the 60 readouts acquired before and

after it. As long as the training data represents continuous motion sampled

at a fast constant rate, the dissimilarity between successive signatures should

be very small, leading to low apparent distance. Given only this information,

the input should form a sort of chain in pseudo-position space, with a spac-

ing representing the instantaneous velocity. Additionally, 60 evenly spaced

readouts are selected as anchor points. Each anchor point is compared to all

104 readouts (except those to which distances have already been computed).

Each anchor point tells us that a certain set of points in the chain should all

be at the same location (because they have similar signatures), forcing the

chain to fold back over itself. In total, about 106 pairwise dissimilarities are

measured, or 2% of the total, although most of these are found to be greater

than T .
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Knowledge of pairwise distances is sufficient to reconstruct the relative

positions of a set of measurements. The problem of identifying a spatial

embedding of a set of points that is most nearly consistent with known

pairwise distances is called Multi-Dimensional Scaling (MDS).[84]

The form of MDS used in our implementation, known as metric MDS,

works by minimizing a quantity called the stress:

S =
∑

(i,j)∈P

Kij (d(~xi, ~xj)−Dij)
2 (5.2)

where P is the set of all pairs with known distances, d(·, ·) is the Euclidean

distance function, ~xi is the pseudo-position associated with the measurement

i, Dij is the known distance between samples i and j, and Kij is a constant

representing the confidence in the measurement of Dij . If each measure-

ment Dij is subject to independent Gaussian noise with standard deviation

1/Kij , then minimizing S corresponds to a Maximum Likelihood Estima-

tion (MLE). For our ultrasound measurements, we do expect Dij to have an

approximately Gaussian distribution, as discussed in Section 2.3. However,

the MLE is only the correct Maximum a posteriori (MAP) estimate in a

Bayesian framework if the prior on Dij is uniform (i.e. flat). The flat prior

is clearly a problematic choice, as it suggests that, in the absence of other

information, all points are expected to be infinitely far apart.

As noted in Section 5.1.1, the distance measures available for the data

set are only valid for small distances. Accordingly, we introduce a modified
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stress:

Eij =


Kij · (d(~xi, ~xj)−Dij)

2 : Dij ≤ T

Kij · (d(~xi, ~xj)− T )2 : Dij > T ∧ d(~xi, ~xj) < T

0 : else

(5.3)

S =
∑

(i,j)∈P

Eij (5.4)

The new Eij represents the squared distance error associated with the pair

(i, j). If Dij is larger than a threshold T , the pair is only regarded as

contributing error when the d(~xi, ~xj) < T .

The modified stress is designed to retain compatibility with the technique

of stress majorization.[18] The standard stress function is not a polynomial

function of the positions, and there is no analytic method for locating even a

local minimum. Instead, one must use iterative methods. The most popular

iterative methods work by, at each step, minimizing a quadratic expansion

S̃ of the stress function around the current set of pseudopositions. With

the traditional metric stress function, this approximation is guaranteed to

converge because S̃ touches S at the current location and S̃ is a convex

upper bound on S. These properties make S̃ a majorizing function.

For the modified stress with constraint conditions, S̃ is no longer neces-

sarily an upper bound on S, and so the existing convergence proof does not

hold. We have designed our modified stress to retain a strong convergence

guarantee, but a formal proof of this guarantee has not yet been formulated.

In our implementation, minimizing S̃ proceeds by the Conjugate Gradient

method, as the corresponding matrix is both very large and very sparse.
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MDS can determine the geometrical shape of the point set, but not the

set’s global orientation. Thus, the set of ultrasound echo distances is insuf-

ficient to determine the motion parameters of the observed organ. Our data

is further insufficient because only 2% of the distances are actually com-

puted, and of these most have only a known lower bound. Standard MDS

algorithms rely on known distances between far away points in order to re-

construct large-scale structure correctly. Without known large distances,

these algorithms tend to get stuck in false optima, with the set’s large-scale

structure folded in on itself.

One technique for determining structure from only small distances has

been termed Local MDS (LMDS).[13] In LMDS, the standard stress function

is supplemented by a repulsive force between every pair of points, similar to

the dark energy or cosmological constant of modern general relativity. This

force serves to stretch out the set’s geometry, so that points are only near to

each other if the known distances require them to be. Mathematically, this

corresponds to a second modification to the stress:

E+
ij = Eij − α · d(~xi, ~xj)2. (5.5)

This term may be regarded as stretching out the points to form a smooth,

low-dimensional manifold embedded in the output space, countering the ten-

dency of noise in Dij to cause the manifold to buckle and crinkle wherever a

distance is locally underestimated. We experimented with local smoothness

penalties on the chain of points, but found that they were too easily trapped

in false minima.

One difficulty with the repulsion, as it is described in [13], is that it
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eliminates the sparsity of the system, because E+
ij is non-zero for almost all

i and j. This sparsity is crucial for computational efficiency. However, we

can rescue the sparsity by reformulating the repulsion:

S+ = S − α
∑
i,j

d(~xi, ~xj)
2 (5.6)

= S − α
∑
i,j

∑
k

(xi,k − xj,k)
2 (5.7)

= S − α
∑
i,j

∑
k

x2i,k + x2j,k − 2xi,kxj,k (5.8)

= S − α
∑
i

∑
k

nx2i,k +

∑
j

x2j,k

− 2xi,k
∑
j

xj,k (5.9)

= S − α
∑
k

n

(∑
i

x2i,k

)
+ n

∑
j

x2j,k

− 2

(∑
i

xi,k

)∑
j

xj,k


(5.10)

= S − α
∑
k

2n

(∑
i

x2i,k

)
− 2

(∑
i

xi,k

)2

(5.11)

= S − 2αn2
∑
k

1

n

(∑
i

x2i,k

)
−

(
1

n

∑
i

xi,k

)2

(5.12)

: = S − 2αn2
∑
k

1

n

(∑
i

x2i,k

)
− µ2

k (5.13)

= S − 2αn
∑
k

∑
i

x2i,k − µ2
k. (5.14)

= S − 2αn
∑
i

d(~xi, ~µ)
2. (5.15)

(5.16)

This derivation proves that the repulsion stress between all pairs is equivalent
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to a force that acts only between each vector ~xi and the mean vector ~µ.

Since the absolute location within pseudo-position space is arbitrary, we set

~µ = ~0 without loss of generality. This reformulated repulsion allows Θ(n)

computational complexity instead of Θ(n2), which is important because the

known distances are extremely sparse and n is on the order of 104.

In our implementation, we combine the repulsion of LMDS, reformulated

for sparsity, with the modified stress function (Equation 5.4) to account for

constraints. We call this approach Constrained LMDS.

An additional difficulty with LMDS and Constrained LMDS is the need to

determine an appropriate strength for the repulsion force. A repulsive force

that is stronger than the attractive forces between the measurement points

can prevent the optimization from converging. If the repulsion strength

exceeds some threshold, S̃ will become nonconvex and the points will repel

each other away to infinity. However, too weak a repulsion will not have the

desired regularizing effect.

In Bayesian terms, the repulsion of LMDS represents an even more prob-

lematic and improper prior than the flat prior implicit in Equation 5.2. The

flat prior corresponds to a probability distribution that, while not normal-

izable, is at least contained in the L2 Hilbert space (i.e. square-integrable),

and is representable as a normal distribution in the limit of infinite variance.

This means that as long as the likelihood function is a proper probability

distribution, by Bayes’ theorem the posterior distribution will be proper as

well. The repulsion prior, in contrast, resembles a normal distribution with

negative variance, and there are many proper likelihood functions that, with

this prior, will produce improper posterior distributions. In these cases,
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the gradient of the posterior points toward configurations that are infinitely

large. These situations correspond to a repulsion force that is too strong.

To ensure that the optimization does not diverge, we first determine the

value of this upper bound on repulsion. In the limit of infinitely widely

separated points, the constraint penalties are all zero, and we are left with

K∞
ij = Kij if Dij < T else 0 (5.17)

E∞
ij = K∞

ij · (d(~xi, ~xj)−Dij)
2 − α · d(~xi, ~xj)2 (5.18)

= (K∞
ij − α)d(~xi, ~xj)

2 +O(d(~xi, ~xj)). (5.19)

Thus, the stress is dominated by the quadratic distance term, which can be

expressed in linear algebraic terms (for each pseudoposition axis separately)

as

Lij =

 −K
∞
ij : i 6= j∑

k Kik : i = j
(5.20)

Cij =

 −1 : i 6= j

n− 1 : i = j
(5.21)

S∞ = x∗(L− αC)x+O(||x||) (5.22)

If we regard K as representing the weights of an undirected graph whose

nodes are the measurement timepoints, then L is called the graph Laplacian

matrix. Like all Laplacian matrices, the smallest eigenvalue (λ0) is zero,

corresponding to the eigenvector [11...1]. This represents the insensitivity of

the stress to a translation of the entire point set.
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The second smallest eigenvalue of L (λ1) is called the algebraic connectivity

of the graph, and the corresponding eigenvector (e1) is called the Fiedler

vector.[8] For any eigenvector ek of L and k > 0, we have Cek = nek due

to the construction of C, and therefore

(L− αC)ek = (λk − nα)ek. (5.23)

If L − αC has all positive eigenvalues (apart from λ0 = 0), then the opti-

mization of S∞ is stable, because S∞ is dominated by a convex function.

However, if L − αC has any negative eigenvalue, then the optimization is

unstable, because the stress maybe made arbitrarily low by increasing the

amplitude of the corresponding eigenvector. Therefore, the optimization is

stable if and only if α < λ1/n, i.e. the repulsion is weaker than the al-

gebraic connectivity. In our implementation, we compute this eigenvalue

using LOBPCG [48] as implemented by Scipy [44], and heuristically choose

α = λ1/5n.

The optimization problem in question resembles folding a chain, repre-

senting the pseudo-position over time, back and forth on top of itself, so

that appropriate sections of the string are adjacent to each other. (Any

resemblance to the protein folding problem is purely coincidental.) The

problem can easily be captured in local minima, preventing it from reaching

the correct solution. We make two additional tweaks to the algorithm to

improve the avoidance of local minima.

One way the system can be trapped in a minimum is if the string of po-

sitions is tied in a knot. This can easily happen if the initial positions are

randomized, and the system can tie itself in knots even from other initial
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positions. To avoid the formation of knots, we operate in a pseudo-position

space with dimensionality of at least 4, because it is known from knot theory

that a finite chain cannot be knotted in a Euclidean space with dimension-

ality greater than 3.[93]

To encourage convergence to the global optimum, we choose the initial

conditions based on the graph Laplacian eigenvectors. Each of the M di-

mensions is assigned to one of the M smallest nonzero eigenvectors, as com-

puted by LOBPCG. This initial condition contains no information about

the distances computed between individual points, only whether a distance

between each pair is known at all. Each axis is initially scaled according to a

simple heuristic such that the energy associated with each dimension is equal

to 1. All axes are then rescaled so that the overall scale is approximately

consistent with the desired distances between points.

In summary, the Constrained LMDS algorithm is:

1. Take as input: n × n sparse matrices D (distance between pairs) and

K (strength of each known pairwise connection); repulsion factor α;

pseudo-space dimensionality m; distance threshold T .

2. Construct K∞ containing only the attractive interactions.

3. From K∞ compute the graph Laplacian matrix L.

4. Using LOBPCG, compute the first m nonzero eigenvalues (λ, m× 1)

and eigenvectors (V, n×m) of L.

5. Compute V′ such that V ′
ij = Vij/λj .

6. Compute β that minimizes S(βV′), considering only the attractive
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interactions. Set P0 ← βV′, representing the initial pseudopositions.

Set k = 0.

7. Compute a representation of S̃k, which majorizes S around Pk.

8. Compute Pk+1 by minimizing S̃k using the method of conjugate gra-

dients.

9. Increment k. While k < klimit, go to step 7

5.1.1.2 Bin reconstruction

The output from Pseudo-SLAM is a mapping of acquisition time points

into a generic state space of arbitrary dimension, which we call the pseudo-

position space. Nearby points in this space correspond to similar positional

states, and local distances are proportional to physical distance. If the only

available information is the biometric signatures, then the pseudo-position

is the closest we can come to a reconstruction of the true position. However,

if some external position data is available, then we can determine the rela-

tionship between pseudo-position space into real space. Bin reconstruction

is the first step in that process. It is a method by which data representing

real position is assembled at a specific location in pseudo-position space.

The purpose of pseudo-position mapping is to permit position estimation

from a biometric signature, even when complete position information is not

available for each measured signature. For example, suppose the position

information consists of N sequential types of acquisitions that must be com-

bined to form a position estimate, and a biometric signature is available for

each measurement. Then during the training period, each biometric signa-
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ture only has a fraction of the data required to compute a position estimate.

If significant motion occurs during the course of the N acquisitions, then

their combination will not be a correct position estimate, if it is even inter-

pretable.

Our motivating application is to use 2D Gradient-Echo MRI as the train-

ing source for biometric navigation. An N ×N MRI image contains N lines

of k-space acquired sequentially, often over the course of multiple seconds.

Movement during this time will causing blurring and other motion artifacts,

making position information difficult to discern.

To determine a mapping from pseudo-position space into true positional

state, we first select a large number (40, in the current implementation)

of seed points, selected from among the sample points and approximately

uniformly separated in pseudo-position space. From each seed point, we

synthesize a complete position measurement by selecting, for each of the N

types of acquisitions, the one that is nearest in pseudo-position space. Thus,

we build up a complete position measurement (e.g. an MRI image) whose

components may have been acquired at widely separated times, but were all

acquired in similar geometric conformations. Conversely, a single acquisition

may participate in multiple nearby measurements.

In MRI, this kind of acquisition reordering and binning is termed cine, in

the sense of building up a movie that represents a cyclical process. It is most

commonly applied to the heartbeat, with the cardiac phase (determined from

EKG) serving as a sort of pseudo-position.[91] Thus, for some applications

it may be that these binned images are the desired output product, and no

further analysis is required.
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5.1.1.3 Motion model extraction

Once the binning process has produced complete position measurements cor-

responding to various locations in pseudo-position space, the system uses

these measurements to deduce the mapping to real space. The exact mecha-

nism for this depends on the nature of the position measurements. In some

cases each binned measurement may be analyzed independently, while other

methods (especially those that rely on image registration) require compar-

ison between different reconstructed measurements. In any case, the result

should be, for each complete measurement, a vector in the output position

space.

Each element of the output position vector may then be tabulated with

the pseudo-position coordinates of the images’ seed points, forming a table

that represents a pseudo-position input vector and a scalar output. Fit-

ting each table with a low-order multivariate polynomial, and combining

these polynomials into a single vector-valued function, produces a smooth

mapping from pseudo-position space to the desired output position space.

This mapping may be computed for each acquisition timepoint based on its

pseudo-position, with the result that each biometric signature (and position

acquisition) is tagged with a position estimate.

Once position estimates are available, the system may be configured to

do either retrospective or prospective motion compensation. In the retro-

spective case, the biometric signatures are no longer relevant, and motion

compensation is accomplished by performing a motion-aware reconstruction

of the images used for training, using the new position estimate associated

with each acquisition. This only works if the images for which motion com-
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pensation is desired are the same ones that served as position measurements

during motion model extraction. This might be true when the application

requires retrospective motion compensation of dynamic images, the images

also show the required motion information, and the changes to be observed

are not large enough to corrupt the motion information.

For prospective compensation, the position-data acquisitions are no longer

needed and may be discarded. The remaining data, in the form of paired

biometric signatures and position estimates, is of exactly the form produced

by the basic biometric navigation algorithm (Section 3.1). The same pro-

cedure applies here. The system summarizes the database of pairs into a

mapping table that relates biometric signatures to output positions.

5.2 Experiment: Retrospective compensation of rigid 2D

motion using the pseudoposition method

To test the pseudoposition method described in Section 5.1, we constructed

an MRI/Ultrasound motion phantom exhibiting rotational and translational

motion. Unlike the linear translation motion phantom in Section 3.3.3, this

phantom’s motion could not be captured by a single linear MRI navigator,

and fully phase-encoded images showed substantial motion artifacts because

the phantom could move through a substantial fraction of its range during

a single image acquisition. Without an MRI image that accurately captures

the current position, it is not possible to construct a mapping table by the

method used in Chapter 3.
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5.2.1 Methods

The motorized motion system (Section 3.3.3) was configured to rotate the

structured gel phantom (Section 3.3.1) about an off-center axis perpendicular

to the coronal plane. Images were made in the coronal plane, so that there

was no or minimal motion through the plane.

The MRI scanner (GE Signa 1.5T) acquired a 22 × 22 cm field of view

with a 10 mm slice thickness at a resolution of 256 × 256 using a gradient-

echo (SPGR) pulse sequence with TE/TR=4.2/8.9 ms. (These are the same

imaging parameters as in Experiment 3.5.) A total of 104 readouts were

acquired, corresponding to 39 images.

Each gradient echo excitation readout was accompanied by a synchronized

ultrasound echo made using the phantom tracking transducer (Section 2.4.1).

This ultrasound data served as input to a Pseudo-SLAM implementation op-

erating in 4 dimensions. Because the motion was known to be reciprocal,

after pseudo-SLAM the coordinates were projected onto their principal axis

(the largest eigenvector), reducing the dimensionality to 1. Bin reconstruc-

tion was then performed in the linear pseudo-position space, seeded at the

location of each MRI line that passes through DC in k-space. One recon-

structed image was chosen as the coordinate reference, and all the others

were registered to it using 2D rigid registration (3 degrees of freedom) im-

plemented in Scipy.[44]. This resulted in a 3-component vector at each of 34

different seed locations. A mapping from pseudo-position to real geometry

was then estimated by fitting each component of the vector as a second-order

polynomial (quadratic) in the pseudo-position. This polynomial was then

used to compute a rigid transform for each input timepoint.
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To simulate some aspects of prospective motion compensation, the 104

input lines were summarized into a 256-entry mapping table. A table search

was then used to produce a degraded transform estimate for each timepoint.

The sequence of 34 images was then reconstructed again in the order in which

they were acquired, with each line of k-space transformed in accordance with

its position estimate. This resulted in non-uniformly sampled k-space, which

was reconstructed by the DING regridding algorithm.[28]

5.2.2 Results

Figure 5.1 shows the dissimilarities computed from the biometric ultrasound.

Visual inspection shows a square grid rotated at 45 degrees, consistent with

periodic reciprocal motion.
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Figure 5.1: Matrix of dissimilarities Dij , computed among the 104 biometric signa-
tures. Blue entries were not computed, green entries are too dissimilar to estimate
a distance, and the remaining entries show an estimated distance. For visualization,
only entries with i, j multiples of 10 are shown.

The exact motion through pseudo-position space over time, and also the

linear geometry of the optimized path, is shown in Figure 5.2. Images

reconstructed around various seed points are shown in Figure 5.3, and the

resulting map between pseudo-positions and real positions is plotted in Fig-
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Figure 5.2: Pseudo-positions after optimization by Pseudo-SLAM. The upper scatter
plot shows the four-dimensional distribution of points in pseudo-position space, with
dimensions 3 and 4 portrayed by the red and green color channels. The lower line plot
shows all 4 pseudospace vector components over time.

Figure 5.3: Cine image series, produced by bin reconstruction at each seed point.
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ure 5.4. Finally, images motion-compensated by the estimated real positions

are compared with uncompensated images in Figure 5.5

Figure 5.4: Quadratic fit between the pseudo-position coordinate of each seed point
and one component of the rigid transformation.
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Figure 5.5: Three consecutive images with and without motion compensation. The
dark line that is sometimes visible in the motion-compensated images represents the
cropping filter applied after RF chopping.[7, 422] It is dark due to local suppression of
background noise, and it is visible when the transformation rotates it into the field of
view.
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The pseudo-position method successfully reduced the apparent motion

and artifact in this experiment. Some artifacts and motion are still visible

in the reconstructed images. There are many possible remaining sources of

error, including inaccuracies in the position estimates and regridding recon-

struction. One particularly notable source of error is gradient nonlinearity.

In MRI imaging, spatial coordinates are defined by the strength of the gra-

dient fields at each location, and where the gradients deviate from uniform

linearity, the coordinate grid is distorted from rectilinear. An object moving

rigidly through a nonuniform gradient field will appear to be subject to addi-

tional non-rigid deformations. The rigid 2D motion model in this experiment

cannot capture such deformations, and so cannot correct for them.
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She tapped out temperature. At ambient, which was

no surprise. Then she squeezed the trigger for the

sample function—no data—and asked for hotspots.

Nothing: still at ambient temperature. Whatever this

was, it was absorbing the energy and not ablating; not

even warming up.

“In The Hall of the Mountain King” – Jerry

Pournelle and S.M. Stirling

6
A high-precision method for referenceless

Proton Resonance Frequency thermometry

of focal heating

Every mechanism that couples the temperature of tissue to its MRI-visible

properties creates a method of measuring temperature with MRI. Temper-

ature dependences have been observed for at least three such properties: T1
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[61] (with correction for spin density variation by Curie’s Law [37]), diffu-

sion rate [50], and water proton resonance frequency [41]. Of these three, the

last (often referred to as PRF shift thermometry) is the most preferred and

widely used in Focused Ultrasound Surgery research and practice.[21, 55, 66]

PRF shift thermometry relies on the temperature dependence of the ap-

parent resonant frequency of protons in water when the magnetic field B0 is

constant. In the range of interest, the shift is well approximated by a linear

relationship of -0.01 ppm/℃. The shift has been known since the 1950s [74],

but it was only with the advent of high-field MRI scanners that it could

applied to produce spatial temperature maps in vivo.

The principal difficulty with PRF shift thermometry is that temperature

is not the only factor that contributes to the proton resonance frequency.

Spatial variations in the B0 field, due both to the patient’s susceptibility

distribution and the scanner’s unavoidable non-uniformity, lead to consider-

able differences in proton resonance frequency at different locations, even at

a uniform temperature. Thus, the term PRF shift is used to indicate that

temperature causes some additional variation from the non-uniform baseline.

In the original, and still widely used, conception of PRF shift thermom-

etry, the baseline variation in resonance frequency was accounted for by

subtraction.[41] Subtraction systems must acquire a baseline image at a ref-

erence temperature, giving the resonance frequency at each location before

heating occurs. Subsequent images giving frequency can be subtracted from

the reference, producing a spatial map of the temperature-induced frequency

shift, and thereby an image of the temperature distribution.

Subtraction-based PRF shift thermometry is highly effective, but it can
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be difficult to apply in certain circumstances. It is particularly problematic

when the object in which to perform thermometry exhibits significant mo-

tion. Motion alters the magnetic field, because it represents a change in the

magnetic field. In fact, even motion of objects outside the MRI field of view

can still cause changes in B0 field that significantly impair the accuracy of

the temperature measurements.

To improve thermometry performance during motion, one proposed solu-

tion extends this method to multiple baseline images, each representing a

different point in the motion cycle.[86] This requires the system to acquire

a complete set of baseline images, representing a closely-spaced set of points

that span the range of observed motions, before thermometry can begin.

It also requires positions to be known both during baseline acquisition and

during later temperature measurements.

This technique’s requirement of extensive baseline acquisition and con-

tinuous position monitoring has motivated the development of alternative

solutions for PRF shift thermometry during motion. One class of solutions

is termed referenceless thermometry because they do not require the user to

acquire a separate reference image. Instead, they rely on assumptions about

the shape of the magnetic field.

The original formulation of referenceless thermometry works by making

two approximate assumptions: temperature changes are confined to a known

region of the image (the thermometry region), and the baseline proton res-

onance frequency (i.e. the local magnetic field strength) is a polynomial of

known order (i.e. smooth) within a larger region that includes the ther-

mometry region.[68] With these assumptions, each image contains enough
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information to compute a surrogate reference, by removing the portion of

the image in which heating occurs and replacing it by a polynomial fit to

the surrounding area. The difference between the polynomial fit and the

observed frequency provides the temperature estimate. In Bayesian terms,

this technique adopts a strong prior assumption about the nature of the

background field in each image, but a very weak prior on the foreground

heating (just a region constraint).

In some cases we know more about the expected pattern of heating, and so

we can employ stronger assumptions. Many heating methods, such as laser

and focused ultrasound, produce a heating pattern that is known to be small

and localized (pointlike), at least in one plane. A newer method, reweighted-

L1 referenceless thermometry, takes advantage of this knowledge by replacing

the region constraint prior with a sparsity prior.[31] This method assumes

that most of the image shows no temperature change at all, but does not

constrain the rare locations that do show a change. By employing a stronger

prior than standard referenceless thermometry, this method achieves higher

temperature-to- noise ratio (TNR) than standard referenceless thermometry.

However, its stronger priors also restrict the range of applications in which

it will provide correct output; broad heat distributions may not be detected

at all.

For the purpose of validating motion compensated thermometry, we

have introduced a form of referenceless thermometry that resembles the

reweighted-L1 approach, but uses an even stronger prior on the foreground

heating. Our prior assumes that the true heating pattern is a symmetric

Gaussian spot centered on a known location. This model is motivated by
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the central limit theorem as applied to our application (focused ultrasound

surgery). When imaging an ultrasound heating focus in a plane orthogonal

to the beam axis, the observed heating spot is described by a convolution

of the ultrasound focus pattern, heat conduction spreading, and MRI point

spread function, centered on the ultrasound transducer’s focal point. (Ac-

cording to simple models, they are respectively an Airy disc [14], Gaussian,

and sinc function [7].) The convolution of several such symmetric functions

with similar variances is well approximated by a Gaussian function.

6.1 Mathematical formulation of Gaussian spot thermom-

etry

For any fixed standard deviation (and polynomial order), the Gaussian spot

and polynomial background form a linearly independent basis for the PRF.

For simplicity of analysis, we model the noise in the PRF as Gaussian, which

becomes exact in the limit of high SNR. With this signal, we have a forward

model for the measured PRF f̂ at each location i in the image:

fi =
∑
j

Bijcj , (6.1)

dP [f̂i = x] =
1

σi
√
2π

exp

(
−(x− fi)

2

2σ2
i

)
dx. (6.2)

Given a basis set B consisting of the polynomial background and Gaussian

foreground, the Maximum Likelihood Estimate for the coefficients c will be
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the one that minimizes an objective function of the form

F (c) =
∑
i

1

σ2
i

f̂i −
∑
j

Bijcj

2

(6.3)

or in matrix terms,

F (c) = ||w∗(f̂ −Bc)||2 (6.4)

where wi = 1/σi is the weight assigned to location i.

Common imaging sequences used for MRI thermometry are single-echo

sequences, meaning that they produce an image consisting of one real and

imaginary value for each location in the image.[7] The phase of each value v

is computed as

φi = arctan(=(vi),<(vi)). (6.5)

MRI images are contaminated by a significant amount of random error,

which is usually well-modeled as independent and identically distributed

Gaussian noise. However, the amount of error in the phase depends on the

magnitude of the value. If one pixel has a small magnitude and another

has a large magnitude, the same amount of noise may overwhelm the phase

of the former but have no effect on the latter. An exact accounting of the

error probability induced in the phase is complicated due to its nonlinear

relationship with the input, but a simple geometrical argument gives the

amount of phase noise in the limit of magnitudes |v| much greater than the
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absolute noise level n: [33]

σi =
n

|vi|
(6.6)

wi =
|vi|
n

. (6.7)

The overall scale of w does not affect the location of the minimum of F ,

so for the purposes of the optimization we can ignore the value of n, or

equivalently, set it to 1.

As a matter of physics, the phase of a pixel is controlled by

φi = fi · TE mod 2π (6.8)

For a fixed TE, several different values of f may produce the same values of

φ, and two close values of f may produce φ values that differ by 2π. This

phenomenon is termed phase wrapping in the literature. To maintain the

problem’s simple linear structure despite the nonlinear phase wrapping, we

employ the finite-difference method also used in [31]. This solution works

by applying the fit to the horizontal and vertical phase differences between

neighboring pixels, which are wrapped into the range [−π, π):

D =

 Dx

Dy

 (6.9)

φ′ = wrap (Dφ) . (6.10)

where Dx and Dy are the horizontal and vertical first difference operators.

As long as neighboring pixels do not have phase differences larger than π, this
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method produces a correct value for φ′. To incorporate this into the objective

function, we move the entire computation into the difference space:

f ′ = φ′/TE, (6.11)

B′ = DB, (6.12)

F ′(c) = |w′∗(f̂ ′ −B′c)|2. (6.13)

Choosing a correct weighting w′ is not as simple. Our current implementa-

tion uses a harmonic mean of the two contributing weights, e.g. for horizon-

tal differences:

w′
i =

1
1

wleft(i)
+ 1

wright(i)

. (6.14)

This weighting serves principally to ensure that a difference receives low

weighting if either of its inputs is very noisy. In future implementations a

harmonic Euclidean mean might be preferable

w′
i =

1√
1

w2
left(i)

+ 1
w2

right(i)

(6.15)

because it would match the way that variances of Gaussians add:

σ2
a+b = σ2

a + σ2
b . (6.16)

Because the difference operator D removes any spatial-DC offset in f̂ ,

minimizing F ′ does not produce a correct value for the DC component.

Specifically, suppose we compute a residual phase

r = wrap(f̂ −Bc′). (6.17)
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Then where c′ minimizes F ′, r will still contain an arbitrary constant offset.

To ease fixing this problem, we take one small novel step of structuring

the rows of B as products of horizontal and vertical Laguerre polynomials,

which are orthonormal on the square region of interest. The DC offset is

then represented exclusively by the first row of B, and so we may fix the

offset by simply computing the appropriate weighted mean of r:

cDC =
w∗r

w∗1
(6.18)

A more sophisticated approach, not reliant on the orthogonal polynomial

structure, could resolve the DC problem by a second optimization on a new

objective function

G(∆c) = ||w∗(r −B∆c)||2, (6.19)

resulting in a final estimated value of c′ +∆c. This method would require

more computation, but has the additional advantage of canceling out any

noise amplification at high spatial frequencies, created by the finite difference

operator. This effectively uses the image model once for phase unwrapping,

and then again for actual fitting.

In previous referenceless thermometry techniques, the output of the opti-

mization essentially resembles an image, providing temperature at each pixel

location. A user who wanted to compute, for example, the peak temperature

in the image would have to search the output image in order to locate the

maximum value. This method is different because it incorporates an ex-

plicit, low-dimensional model of the foreground heating: the amplitude and

width of a Gaussian spot. In our implementation we set the maximum value
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of the Gaussian basis function to 1 by convention, so that the maximum

foreground temperature rise is given directly by its coefficient in c.

So far we have described the optimization process when the width of the

heating spot is known. However, in our images we observe heating spots

whose apparent width grows and changes over time. Thus, we run this

optimization for a range of widths.

The natural way to select a width, in the absence of prior information

about widths, is to select the width that produced the best fit, i.e. the

lowest objective function value or maximum likelihood. However, when there

is little or no actual heating, this approach produces problematic results.

Empirically, we found that in the absence of heating, the system always

selected either the maximum or minimum allowed width. We conceptualize

this as fitting to either the smooth background B0 variations or to a localized

phase noise. Either way, the foreground Gaussian is not fitting any actual

foreground heating, and its coefficient provides no useful information about

the amount of heating.

To remedy this problem, we adopted a modified search criterion, based

on the observation that if a Gaussian spot is actually present within the

image, a basis function of the correct width produces a better fit than one

that is too large or too small. Instead of simply choosing the radius ρ that

produced the smallest fitting error, we choose the value that produced the

lowest local minimum along ρ of fitting error. If no local minimum is present,

we conclude that no focal heating could be detected, and return a foreground

heating amplitude of zero. An example of this search is plotted in Figure 6.1.
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Figure 6.1: A plot of the Gaussian spot radius search for one image acquired during
Experiment 3.6. The best fit was achieved at the minimum radius (lower arrow), but
our modified search criterion instead selected the radius corresponding to the unique
local minimum at a radius of 4.2 pixels (upper arrow).

This modification to the search has the effect of generating a dead zone, i.e.

a threshold of heating below which the deviation cannot be detected. The

size of the dead zone varies with the width of the heating pattern, becoming

larger as the heating spot becomes wide enough to be represented well by

the polynomial basis.
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Figure 6.2: An illustration of the internal structure of each thermometry method,
using a single data set. Each column is presented in a fixed contrast.
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An explanatory illustration of the thermometry methods is presented in

Figure 6.2. The data are derived from a single temperature image from

Experiment 3.6, acquired using the heating phantom (Section 3.3.2) in the

absence of motion. The image is 3 cm wide, and all the referenceless methods

were configured to use a 5th-order polynomial background phase fit.

A comparison of the methods on all the stationary data from Exper-

iment 3.6 is shown in Figure 6.3. The results suggest that this method is

more reproducible than standard thermometry, i.e. it appears to have higher

temperature-to-noise ratio for the same input image. This is not surprising,

given the strong prior assumption about the spatial structure of heating,

which creates an effect similar to local averaging. The reduction in variabil-

ity is especially strong during active heating, when the temperature spot is

highly localized.
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Figure 6.3: A comparison of the four different thermometry methods on the sta-
tionary data from Experiment 3.6. The band around each curve is half a standard
deviation wide, in order to illustrate the relative variability of each method.

All of the referenceless methods show a systematic underestimation of the

temperature change, especially in the cooldown period when the heat has

spread out across length scales comparable to the background field varia-
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tions. This method’s underestimation appears to be no worse than that of

existing methods.

In general, referenceless thermometry has lower sensitivity to spurious

drift and fluctuation than subtraction methods.[20] For experiments that

aim to detect small systematic temperature difference between two groups

of images, and in which this method’s geometrical assumptions are valid,

this method’s low noise sensitivity may make it preferable to the other ref-

erenceless methods.
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You can predict the future based on dice (clero-

mancy), dots on paper (geomancy), fire and smoke

(pyromancy), entrails of sacrificed animals (harus-

picy), animal livers (hepatoscopy)...

The Know-it-all – A. J. Jacobs

7
A method for producing optimal

Kalman-like filters for system inversion

Kalman filters are ubiquitous in control systems engineering, where

they convert past measurements of a system into an ideal estimate of its

current and future states. The traditional construction of a Kalman filter

requires a physics model, a measurement model, and a noise model. The

physics model describes how the future state of the system is determined
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by its present state, the measurement model describes how measured values

are related to the physical values, and the noise model describes the sources

of uncertainty in the physics and measurement. The Kalman filter requires

that the physics and measurement models be linear operators, and the noise

models be zero-mean Gaussian noise that is stationary and independent in

time.[45]

Mathematically, Kalman filters are easiest to model in discrete time, where

all events take place at multiples of some timestep ∆t. In such a formulation,

the physics model operates by the recurrence

xk = Fkxk−1 +wk (7.1)

where xk is the state of the system at time k∆t, Fk is the linear physics

model, and wk is random Gaussian noise with covariance matrix Qk as

specified by the noise model. The matrices F and Q are given with subscripts

because models are permitted in which these matrices change over time,

although the change cannot depend on the values of x. Some versions of the

Kalman filter also include a term representing the effect of outside control

forces, but in this case we prefer to model systems over which we have no

control.

The measurement model is similarly structured:

zk = Hkxk + vk (7.2)

where zk is the measurement made of xk, Hk is the linear measurement

model, and vk is random Gaussian noise with covariance matrix Rk. The
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variation of H over time can be used to model situations in which differ-

ent measurements are made at different times, or even times at which no

measurement is made at all (H = 0).

Kalman filters work by maintaining x̂, a running estimate of x, and also

P, a noise covariance representing the uncertainty in x̂. At each timestep

these two variables are updated:

Pk = Fk(I−PkHk
T (HkPkHk

T +Rk)
−1Hk)Pk−1Fk

T +Qk, (7.3)

x̂k = Fkx̂k−1 +PkHk
T (HkPkHk

T +Rk)
−1(zk −HkFkx̂k−1). (7.4)

If all three models are correct, then x̂k is the best possible estimate of the

current state of the system given the available data.

Our interest in Kalman filters is motivated by a delay compensation prob-

lem. The motion compensation system described in Chapter 3 produces a

series of position measurements that indicate the present position of a target

that is being tracked. The measurements are acceptable for the required use

case, but they are corrupted by a certain amount of noise, and are subject

to a delay in transmission. We sought to compensate for this delay while

also suppressing noise to the extent possible.

Our application represents a very special case of the general Kalman filter,

because our system is metronomic (making measurements at a fixed interval)

and not changing in time. The natural model for the measurement system

therefore has F, H, Q, and R all time-independent constant matrices. This

means that the recurrence relation for P will approach a constant asymptote

P∞ except in pathological cases, such as when the physics model F contain

subsystems that do not interact with the measurement.
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Once P has reached its asymptotic, optimal value, the recurrence relation

on x̂ can be reorganized to have the form

x̂k = Ax̂k−1 −Kzk−1 (7.5)

where A and K are time-independent matrices that each depend on all of

F, H, Q and R

In the preceding description of a Kalman filter we have assumed that a

complete model of the system, including its random behaviors, is known

prior to the construction of the filter, but no mention has been made of

how these parameters can be determined. In fact, for our application it

is of no importance whether the model parameters correctly describe the

system. We are only interested in how accurately the model predicts future

measurements; it is a black box, in the sense that we are concerned only

with the relationship between its input and output.

Therefore, rather than build an a priori model of the system, we may

instead deduce such a model from an example dataset. To do so, we can

define an objective function

E(A,K,H) =
∑
k

|Hx̂k − zk|2 (7.6)

representing the squared error between the predicted measurement values

and the actual measurement values. Choosing matrices that minimize E

produces a predictive filter that best matches the observed data. This filter

represents the realization of any of a continuum of Kalman filters that have

different system models but produce the same predictions given the same
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measurements.

So far we have described our goal as delay compensation, to predict ahead

by a time span equal to the amount of lag present in our system, so that

position estimates are correct for the time at which they arrive, instead of

for the time at which they were computed. However, delay compensation

is only part of our aim. Our larger goal is to transform the output of the

position estimation in whatever manner is necessary in order for it to match

the position observed by the position receiver (in our case, an MRI machine)

at the time that the position estimate arrives. As a technical matter, this is

greatly simplified by the fact that each MRI position measurement is labeled,

by the RTHawk framework [72], with the position estimate that was available

at that time.

We may model the position receiver as a new measurement matrix G,

and produce an optimal filter by minimizing E(A,K,G). The resulting

filter is computed by the same recurrence (Equation 7.5), but the position

estimate for the receiver is given by z′ = Gx̂. We term this arrangement a

Kalman cross-filter because it serves not to predict the behavior of a single

measurement system, but to predict the output of a second measurement

system given the first as input.

Our application is especially simple because each position measurement

vector z is actually a scalar value (z), so K is a column vector (K). The

entire predictive model is represented by A, K, and G. If x has N en-

tries, then in this representation the model has N2 +2N degrees of freedom

(compared to 1.5N2 + 1.5N + 1 in the original model). We started with

first-order prediction filters, i.e. N = 2, which require 8 degrees of free-
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dom. We optimized this model using a standard nonlinear optimization

package to minimize E, discarding the first 10% of samples to give ~̂x time to

converge.[44] This approach produced filters that reduced E, but the numer-

ical optimization process was exceedingly slow, and would sometimes fail to

converge. One particular difficulty was that the optimizer would sometimes

attempt to evaluate E over values of A that had an eigenvalue of greater

than unity magnitude, leading to an exponential divergence behavior that

could trigger floating-point overflow. To avoid this behavior, our implemen-

tation required an explicit computation of the eigenvalues of A before each

computation of E.

To improve the performance of our optimization, we searched for a partial

analytic solution that would improve the speed and reliability of the search.

By matrix algebra, we may decompose the square matrix A into a product

of complex square matrices VDV−1, with V unitary and D diagonal. If we

define y = V−1x as an alternative (but equivalent) representation of the

internal state, then

ŷk = Dŷk−1 −Lzk−1 (7.7)

where L = V−1K. Because D is diagonal, this is equivalent to a set of

independent scalar first-order difference equations of the form

γk = dγk−1 − lzk−1 (7.8)

with γ, d, and l elements of ŷ, D, and L. If we define

σ = γ/l (7.9)
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then we may trivially rewrite this equation as

σk = dσk−1 − zk−1, (7.10)

A first-order difference equation with only a single parameter. If σ represents

an element of a new vector s, then x may be reconstituted by

x = Vy = Vdiag(L)s (7.11)

and therefore our desired cross-filtered output is given by

z′ = GVdiag(L)s = Bs (7.12)

where B = GVdiag(L) is a row vector if z′ is scalar.

This formulation has reduced the number of apparent parameters from

N2+2N in A, K, and G to just 2N in B and D, although these matrices may

contain complex values. To further shrink the search space, suppose that D

is fixed. Then sk is also fixed, and all that remains is to find value of B that

minimizes the sum of |z′k−Bsk|2. This is a linear least-squares problem, so it

has a fast, straightforward analytic solution. Thus, a nonlinear optimization

is only required over the contents of D, representing N parameters. Because

these parameters are exactly the eigenvalues of A, we may ensure system

stability by simply limiting the search domain.

Our present implementation is structured in exactly this fashion, with

the additional simplification that D must contain only real values. This is

equivalent to excluding underdamped (i.e. oscillatory) filters, a limitation
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that we view as acceptable for our application.

7.1 Results

On a test data set, we computed optimized causal Kalman cross-filters of

varying order N , and compared the RMS error to that achieved by the

unfiltered data. The results are presented in Table 7.1.

Comparison RMS error (mm)

Original 0.582359

Retrospective 0.371393

N = 1 0.565738

N = 2 0.383132

N = 3 0.382216

N = 4 0.381956

N = 5 0.381907

Table 7.1: RMS error produced by the different filtering methods on a test data set
from Experiment 3.4.

These results show that a causal predictive filter with N = 2 captures 94% of

the error reduction achievable by retrospective delay compensation. Increas-

ing the model order beyond 2 further improved the match, but by amounts

too small to be useful. The filter impulse responses are plotted in Figure 7.1.

Note that the impulse responses all go below zero, and those with N > 1

remain there for an extended period.

It is possible that the numerical optimization was trapped in a local min-

imum, and that the global minimum would represent a more significant im-
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Figure 7.1: Impulse response for the optimal filter discovered for the range of model
orders that were tested.
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Figure 7.2: Error achieved on the test data set for a range of filters with model order
2.
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provement. The data in Figure 7.2 are somewhat reassuring in this regard,

as they show no false minima on our test data for N = 2. However, higher

dimensions may have more complicated optimization landscapes.

Future work on this topic should include additional theoretical analysis,

such as determining if an analytic formula for ∇E exists, as this would

further accelerate the numerical optimization. It would also be valuable to

know how many nondegenerate local minima exist, and under what con-

ditions. Finally, adding support for complex eigenvalues to the numerical

optimization would greatly improve the generality of the technique.
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All tasks, great or small, were of equal importance in

the end.

Too Many Curses – Alex Lee Martinez

8
Conclusions

Ultrasound biometric navigation appears to be a promising tech-

nique for respiratory motion compensation and position monitoring. Possi-

ble applications include not only dynamic MRI (interventional and diagnos-

tic) but also other imaging modalities, and even non-imaging interventions.

Using relatively inexpensive hardware and simple software, we have imple-

mented the technique and demonstrated that it achieves excellent artifact

reduction in mechanical and animal models of human respiratory motion.
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The accuracy is sufficient to enable temperature monitoring in a moving ob-

ject, modeling the requirements of MRI-guided focused ultrasound surgery

during free breathing. The speed, accuracy, and reliability of the technique

may also be sufficient to serve as a safety-critical position monitor during

medical interventions.

8.1 Limitations and Future Work

As described here, biometric ultrasound makes no use of the information

conveyed by longitudinal shifts visible in the echo signals. This places it in

stark contrast to methods such as the multiple-transducer system of [64],

which derive position information exclusively from these shifts. It may be

that the best tracking system would be one that uses a combination of these

techniques, instead of ignoring either the longitudinal or transverse motion

information provided by each transducer.

The ultrasound properties of human tissues are complex, and neither

phantom nor animal experiments mimic them rigorously. When used in

humans, ULTRACK may require a more sophisticated dissimilarity func-

tion. A suitable function might be derived from the displacement tracking

techniques developed for ultrasound elastography and Doppler imaging.[87]

Biometric ultrasound, in all its variations, relies especially on the assump-

tion that the ultrasound properties of a volume of tissue are highly repeatable

over the course of an imaging session. To the extent that this assumption

holds true, biometric navigation can function during arbitrary repetitive

motions, even if the pattern includes nonrigid deformations that alter the

speckle pattern (although only the motion components visible in the training
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data can be reported, and some imaging modalities may not be able to make

effective use of all the motion information that biometric navigation can pro-

duce). However, if the ultrasound appearance of the tissue is not stable over

many breath cycles, the method may require such frequent re-training that

it cannot offer a significant benefit.

The animal experiments show stable tracking performance over a period

10 times longer than the training period, indicating that the repeatability

of ultrasound appearance and breathing patterns may be sufficiently high

for this technique to function as desired in vivo. However, human breathing

patterns, and the motions they produce, are complex.[9] They may vary from

cycle to cycle, or drift over longer timescales, to a greater degree than was

observed in our animal experiment. Stimuli experienced during an interven-

tion such as focused ultrasound surgery might cause patients to alter their

breathing patterns. Some applications of the technique would require the

patients to be awake during the procedure, creating the possibility of volun-

tary motions that are not well modeled by the breathing of an anesthetized

rabbit.

Motions outside of the training data, due to a gross patient shift or other

unexpected motion, would result in ultrasound echoes that do not imply

any position because they do not resemble any entry in the mapping table,

effectively rendering the training invalid. Extensions to ULTRACK, such

as occasional retraining when drift is detected or continuous adaptation of

the mapping table, may help to improve performance in real use, but such

extensions have not yet been tested.

High sensitivity to lateral or unexpected motions is not appropriate for
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all imaging applications, but it is a valuable safety feature in focused ul-

trasound surgery, where it is crucial to detect any unexpected displacement

instantly. The transducers used throughout this study were designed for

high sensitivity to lateral shifts, consistent with their focal width of 2 mm.

For applications in which lower sensitivity is desirable, we may be able to

broaden the focus by changing the transducer’s geometry. For example, elon-

gated rectangular transducers might provide reduced sensitivity along their

long axis, appropriate for applications where small displacements along that

axis are not of interest.

The motion of the human liver during breathing is not exactly a lin-

ear shift, so motion compensation in the liver may benefit from a position

model with more degrees of freedom.[70] Methods for motion compensa-

tion of multi-dimensional position models are discussed in Chapter 5, but

these techniques have not yet been integrated into ULTRACK, nor otherwise

demonstrated in a prospective configuration. The mathematical complexity

of these advanced methods will demand extensive real-world testing to de-

termine the system’s failure modes, and how to detect failure.

8.2 Closing Thoughts

One core question remains unanswered: will biometric ultrasound navigation

really work on humans? A satisfactory answer to this question will, at a

minimum, require a trial in human volunteers to verify that human breathing

motion provides the required repeatability.

Even if a first test in humans provides positive results, a long and difficult

road remains for widespread use of any new medical device. It must outclass
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every alternative, not just in technical superiority but in a hazier combi-

nation of clinical utility, convenience, comfort, and cost. It must overcome

barriers of institutional inertia and personal familiarity that favor existing

solutions. It will need industrial support for manufacturing, marketing, and

regulatory approval. In short, it is no sure thing.
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