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EpiFire: An open source C++ library and
application for contact network epidemiology
Thomas Hladish1*, Eugene Melamud2, Luis Alberto Barrera1,3, Alison Galvani4 and Lauren Ancel Meyers1,5
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Abstract

Background:Contact network models have become increasingly common in epidemiology, but we lack a flex
programming framework for the generation and analysis of epidemiological contact networks and for the
simulation of disease transmission through such networks.

Results:Here we present EpiFire, an applications programming interface and graphical user interface implem
in C++, which includes a fast and efficient library for generating, analyzing and manipulating networks. Netw
based percolation and chain-binomial simulations of susceptible-infected-recovered disease transmission, a
traditional non-network mass-action simulations, can be performed using EpiFire.

Conclusions:EpiFire provides an open-source programming interface for the rapid development of network
models with a focus in contact network epidemiology. EpiFire also provides a point-and-click interface for
generating networks, conducting epidemic simulations, and creating figures. This interface is particularly use
pedagogical tool.
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Background
Epidemiological models traditionally assume mass-act
dynamics: individual hosts in a population have identic
contact rates and are well-mixed, such that any given p
may interact and transmit disease with equal probabil
[1,2]. Compartmental susceptible-infected-recovered (S
models implicitly assume mass-action interactions for i
finite populations. However, the mass-action assumpti
is unlikely to be strictly valid in most instances. Althoug
there are some settings in which mass-action models p
vide reasonable approximations, there are others in wh
it is essential to consider the heterogeneous contact p
terns that underlie disease transmission [3,4].

Contact network epidemiology [5,6] explicitly mode
disease transmission through populations with heterog
neous contact patterns. Host populations are represen
as networks of individuals (the nodes) and the conta
through which disease can spread (the edges betw
nodes). The definition of a disease-causing cont
depends on the disease. For influenza, edges represen
potential for droplet or contact transmission, e.g., dire
e
g
ti-
rns
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interactions such as prolonged proximity or food sharin
[7], or indirect transmission of fomites persisting in th
environment [8]. A node's degree is the number of co
tacts an individual has, and is one indication of an indiv
dual’s epidemiological importance, relative to othe
individuals in the population. The degree distribution of
network can play a critical role in shaping epidemic d
namics [4]. By modeling disease transmission probabi
tically, contact network models can predict the expect
epidemic size, the likelihood that an epidemic will occ
given an introduction, and with some methods, the d
namics of an outbreak and likely chains of transmissi
through the population [9].

The 2003 SARS outbreak in China illustrates one limit
tion of mass-action models. Early estimates of the ba
reproduction number (R0) for SARS predicted tha
120 days after the disease was introduced in China,
tween 30,000 and 10 million individuals would have be
infected in China [4]. In fact, only 792 SARS cases w
reported [10]. This discrepancy stems, at least in pa
from the assumption that disease transmission patter
for the entire Chinese population would be similar to th
transmission patterns in the apartment building in Hon
Kong and hospital in Singapore from which the early es
mates were made. Such heterogeneity in contact patte
entral Ltd. This is an Open Access article distributed under the terms of the Creative
ivecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
original work is properly cited.
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lends itself to a network approach, in which nodes can
connected to explicitly represent the diverse patterns
interactions that occur within human populations.

The spread of sexually transmitted infections is al
often modeled more effectively with contact network
than mass-action models, because of non-randomn
and heterogeneity in sexual contact patterns. An infect
individual with many contacts may be more likely to spa
a significant outbreak than an infected individual wit
fewer contacts. A study of 2,810 randomly sampl
Swedes aged 18-74 years found that the number of sex
interactions per person approximately followed a powe
law distribution, indicating significant heterogeneity i
sexual activity [11]. A smaller study of sexual interactio
among adolescents in a Midwest US town revealed lo
chains of contacts and fewer cycles (edges forming po
gons) than would be expected by chance, patterns t
can be readily captured by network models [12].

Contact network models also allow straightforward an
lyses of epidemiological dynamics and intervention eve
occurring at particular nodes. For example, the approach h
been used to optimize the distribution of limited resource
such as vaccines and antiviral drugs within a populati
[13-15], and to identify critical bridge groups connectin
relatively disjoint parts of a high-risk population [16].

Although there are powerful mathematical methods fo
analytically estimating the dynamics of epidemics in com
plex contact networks [5,6], simulations of disease trans
mission through networks are also critical to the field. The
allow us to test the validity of mathematical approximation
and serve as the primary modeling approach when ma
ematical approximations cannot adequately describe th
complexity of a population.There are two widely-used
approaches to simulating disease transmission through net
works: the Reed-Frost chain-binomial model [17,18] and
the percolation model [19]. Although they can be made a
bitrarily complex, these modelstypically represent individ-
ual hosts as nodes with discrete disease states,
propagate infection along edges from infected to suscep
tible nodes according to the probability of disease transmis
sion, called transmissibility, which may either be fixed
determined by a function.

In the chain-binomial model, time is measured in arb
trary, discrete units. Simulations are parameterized with t
number of time steps individuals remain infected, and th
per-time-step transmissibility. The chain-binomial mode
may be used to generate epidemic curves (i.e., incide
time series data), identify chains of transmission, estimat
the probability of an epidemic,and assess the distributio
of epidemic sizes.

Percolation simulations give each infected individu
one opportunity to spread disease to each of their susc
tible contacts, but do so in an arbitrary, non-chronologic
order. One approach is to use a probabilistic breadt
s

al

-
t

s

-

d

e

-

first traversal of the network. In the simplest case, tran
missibility is the same for all edges. One approach is
maintain four dynamic lists of nodes: (a) susceptible, (
newly-infected, (c) currently-infected, and (d) recovere
At the beginning of a typical simulation, one or mor
nodes will be placed on the currently-infected list, an
the remaining nodes will be on the susceptible list. The
the following two-step procedure is repeated until th
currently-infected list is empty.

(1)For each currently-infected node, a uniform rando
number between zero and one is generated for ea
edge that connects the node to a susceptible
neighbor. If and only if the random number for a
given edge is less than the transmissibility, then th
susceptible neighbor moves from the susceptible l
to the newly-infected list.

(2)After all currently-infected nodes have been tested
in this way for transmission, the nodes in the
currently-infected list are moved to the recovered
list and the nodes in the newly-infected list are
moved to the currently-infected list.

A breadth-first approach like this will result in a coars
approximation of the epidemic curve, similar to a chain-b
nomial simulation with an infectious period of one unit
Percolation simulations tend not to predict realistic chain
of transmission, since new infections occur in cohorts, a
the order of transmission events is based on arbitra
orderings of each cohort. The percolation algorithm abo
can be modified slightly to simulate a chain-binomi
model: rather than testing each edge from an infected to
susceptible node once, we test each edgen times, wheren
is the length of the infectious period or the number of tim
steps until transmission occurs, whichever occurs first.
parameterized appropriately, the two models will yield th
same epidemic probability and final size distribution. Th
chain binomial model yields smoother, more realistic ep
demic curves, while the percolation model is more comp
tationally efficient.

While the field of contact network epidemiology i
growing rapidly, it still lacks a flexible, user-friendly pro
gramming toolkit for generating contact networks, analy
ing their structure and simulating the spread of disea
through them. There are a few freely-available libraries
simulating and analyzing networks, but they are subop
mal for epidemiological research, particularly for novic
programmers. Specifically, NetworkX [20], implemente
in Python, is straightforward but slow, whereas igrap
[21], implemented in C, is faster but less user-friendly. T
R package statnet [22] is more specialized, focusing on s
istical analysis of exponential-family random graphs. No
of these packages provides epidemiological simulations
functions for calculating important epidemiological value
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Other software packages provide valuable disease- or popu
lation-specific simulators (e.g., for pertussis [23], HIV [24
influenza [25,26], urban populations [27], metapopulatio
networks [28]), but lack a flexible framework for users
define alternative disease models and population structures.

Here, we introduce EpiFire, an applications programmin
interface (API) implemented in C++. EpiFire includes a fa
and efficient library for generating networks with a specifie
degree distribution, measuring fundamental network char-
acteristics, and performing percolation and chain-binomial
simulations of SIR (susceptible-infected-recovered) diseas
transmission on generated networks. We have also de
oped a user-friendly interface that allows the user to pe
form these functions in a point-and-click environment an
provides intuitive graphical results of epidemic simulation

Although network models can be made to approx
mate mass-action models by assuming a completely c
nected network [29], it typically does not make sense
do so. Mass-action models are computationally very e
cient and network models become computational
more demanding as the number of nodes and edg
increases. Thus, EpiFire also includes a continuous tim
stochastic mass-action simulation class to allow users
create hybrid models or to compare the results of mas
action and network-based models.

Implementation
EpiFire comprises two bodies of code that are written
object-oriented C++: the applications programmin
interface (API) and the graphical user interface (GU
The EpiFire GUI was developed using the API and Q
[30], and allows non-programmers to generate network
perform epidemic simulations, and export figures an
data. We describe the EpiFire GUI in more detail in th
Results section below. The entire EpiFire code base
open source, licensed under GNU GPLv3.

The EpiFire API consists of 20 classes and 2,500 li
of non-whitespace code. The EpiFire GUI consists of
classes and 3,500 lines of non-whitespace code.

Installation
EpiFire source code is available from GitHub at http:
github.com/tjhladish/EpiFire/ or http://epifire.com. Users
who have installed Git version control software (ope
source, available at http://git-scm.com/) may create
local copy of the EpiFire repository by executin
without quotes, "git clone git://github.com/
tjhladish/EpiFire.git " on the command line.
Microsoft Windows and Mac OS X users can downloa
precompiled binaries from http://sourceforge.net/pro
jects/epifire/.

EpiFire API
Functionally, the EpiFire API consists of tools for netwo
generation, network manipulation, network characterization
l-

-

s
,

-

,

s

s

and epidemic simulation. Programmatically, the API
divided into network, node, edge, and simulation class
Each class defines a type of variable and its associated
butes and functions. For example, the network class allo
users to define a network variable, which can contain one
more node variables that can be connected by one or m
edge variables. In the small program below, an undirec
network calledmy_network is created, and then populate
with 100 nodes. The nodes are randomly connected w
edges such that on average, each node will be connecte
five others. Finally, the structure of the network is writte
out as an edgelist in the comma-separated-value format.

#include < Network.h >
int main() {

Network my_network("example network",
Network::Undirected );
my_network.populate(100);
my_network.rand_connect_poisson(5);
my_network.write_edgelist("output.
csv");
return 0;

}

The network constructor takes two arguments: an a
bitrary text string naming the network, and eithe
Network::Undirected or Network::Directed, which spec
fies whether all edges are undirected, or some or all m
be directional.

Each time the program is run, a different random
connected graph will be produced. The following is a
example of the beginning of the output file:

0,97
0,17
0,21
1
2,49
2,51
2,36
2,73
2,66
3,45

In this case, Node 0 was connected to Nodes 97,
and 21. Node 1 was not connected to any others.

More sophisticated examples, including networks bei
used in epidemic simulations, can be found in Addition
file 1 in the examples directory provided with the sourc
code.

The network modeling portions of the code (the Ne
work, Node, and Edge classes) can be used with or w
out the epidemiological code, and may therefore
useful for non-epidemiology applications. The simulatio

http://github.com/tjhladish/EpiFire/
http://github.com/tjhladish/EpiFire/
http://epifire.com
http://git-scm.com/
git://github.com/tjhladish/EpiFire.git
git://github.com/tjhladish/EpiFire.git
http://sourceforge.net/projects/epifire/
http://sourceforge.net/projects/epifire/
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classes provided include three types of finite, stochas
epidemic simulations: percolation and chain-binomi
(both network-based), and mass-action. Users may use
provided simulation classes or may create derived clas
based on them. For example, the base class for percola
simulations, called Percolation_Sim assumes a dise
with susceptible-infectious-recovered states. A simp
derived simulation class can be created that inherits alm
all the functionality of Percolation_Sim, but that uses an a
ternate progression of states. An example of a derived sim
lation using the susceptible-exposed-infectious-recove
state progression (SEIR_Percolation_Sim.h) can be found
the research directory provided with the source code.

Networks may be constructed explicitly by reading
an edgelist file, or adding individual nodes and specifyi
their connections. Networks can also be constructed im
plicitly by using one of the network generators provide
Generators for ring and square lattice networks a
provided, as well as three random network generato
the Erd� s-Rényi model [31], resulting in approxi
mately Poisson degree distributions, the configuratio
model [32] that generates random networks with
user-specified degree distribution, 'and the Watts-Stroga
“small-world” network generation model [33].

Networks that are generated via the configuratio
model can contain edges that are usually undesirable
epidemiological models. Pairs of nodes may be random
connected by two or more edges, and nodes may
“connected” to themselves by edges going to and fro
the same node. These edges, called parallel edges and
loops respectively, may be removed using the provid
“lose-loops” function (Additional file 1: Appendix B). This
function uses a novel algorithm to reconnect the affect
edges in a randomized way that preserves the degree
quence of the network. This approach may introduc
some non-randomness to the network structure, but th
improvement in algorithmic complexity over competing
methods is significant [34].

Random numbers are generated using the Mersen
Twister algorithm [35] as implemented by Wagne
available at http://www-personal.umich.edu/~wagnerr/
MersenneTwister.html.

Percolation and chain-binomial pseudocode
EpiFire provides epidemic simulators using the perco
tion and chain-binomial models, represented as pseud
code below. Both pseudocode functions take a netwo
as an argument and return final epidemic size. The mo
recent implementations, including additional function
for the simulators, can be found online [36,37]. In th
percolation pseudocode below,T denotes the transmissi
bility of the pathogen, that is, the probability that trans
mission will occur between an infectious node and
susceptible neighbor.
c
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Percolation(network, T):
infected_queue empty list
foreachnodein network:

set state of nodeto "susceptible"
first_infected random node from network
set state of first_infectedto "infectious"
append first_infectedto infected_queue
while infected_queueis not empty:

node remove first element from
infected_queue
foreachneighborof node:

rand uniform random number
between 0 and 1
if neighboris "susceptible" and
rand< T:

set state of neighborto
"infectious"
append neighborto infected_queue

set state of nodeto "recovered"
epidemic_size count of nodes in
"recovered" state
return epidemic_size

Appendix B2 of Additional file 1 provides a version o
the percolation algorithm that produces an epidem
curve. In practice, it may be convenient to use intege
as node states rather than text strings. In the chain bin
mial algorithm below, susceptible nodes have a value
0, recovered nodes have a value of -1, and infecti
nodes have a value equal to the number of days th
have been infectious.

Appendix B3 of Additional file 1 provides a simpl
chain binomial function that performs one compariso
per time unit per infectious node. Here, we describe
more efficient implementation. Instead of checkin
whether transmission occurs to each neighbor at ea
time step, we can determine the time until transmissio
along each edge. Because each transmission attempt
be considered a Bernoulli trial, we can determine wh
transmission will occur by sampling from a truncate
geometric distribution with probability of "success"T_cb
(chain binomial transmissibility) and support on {1, 2, .
. , gamma + 1}, where gamma is the infectious period
the deviate happens to be gamma + 1, then transmiss
never occurs. In the pseudocode below,transQ is a pri-
ority queue of transmission events, sorted by time, le
to greatest.

Chain_binomial(network, T_cb, gamma):
transQ empty priority queue of [ time,
node] pairs
infected_list empty list
foreachnodein network:

set state of nodeto 0

http://www-personal.umich.edu/~wagnerr/MersenneTwister.html
http://www-personal.umich.edu/~wagnerr/MersenneTwister.html
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current_time 0
first_infected random node from network
Infect_node( current_time, first_infected)
while infected_listis not empty:

foreachnodein infected_list:
increment state of node

while infected_listis not empty:
if state of infected_list[0] � gamma:

break
else:

set state of infected_list[0] to -1
remove first element from
infected_list

while transQis not empty and time of
transQ[0] � time:

event transQ[ 0]
Infect_node(time of event, node of
event, T_cb, gamma, transQ, infected_list)

epidemic_size count of nodes in -1 state
return epidemic_size

Infect_node(current_time, node, T_cb, gamma, transQ,
infected_list):

set state of nodeto 1
append nodeto infected_list
foreachneighborof node:

if state of neighboris 0:
rand geometric_random_number
( T_cb, gamma), see main text
if rand� gamma:

append [current_time+ rand, neighbor]
to transQ

Analytic calculations of epidemic and network quantities
Given a degree distribution for a network and a tran
missibility for a pathogen, the EpiFire API includes fun
tions that calculate the expected epidemic threshold f
the network (the critical transmissibility above whic
epidemics are possible), the basic reproductive rate
the pathogen in that network (R0). EpiFire GUI further
calculates expected epidemic size under network a
mass-action assumptions. All of the network calculatio
assume the configuration network model, such that th
network is a random draw from all randomly connecte
networks with the specified degree distribution. Calcul
tions, unless otherwise noted, are adapted from Mey
(2007) [6], which provides additional mathematic
details.

The epidemic threshold for a network is a critical trans
mission probability (along edges) below which outbrea
are expected to fizzle out and above which large epidem
are possible, but not guaranteed. Technically, in an infin
network, outbreaks below the epidemic threshold w
reach only a finite number of nodes, while outbrea
above the threshold can either be finite or infect a fractio
f

s

s

of the network including an infinite number of nodes
This value is a function of the network structure and co
responds exactly to anR0 value of 1; given by

Tc ¼
� kkpk

� kk k� 1ð Þpk
;

wherek is the degree of a node, andpk is the fraction of
nodes having degreek.

The expected basic reproductive rate is the expec
number of neighbors that will be infected by each infectio
node early in an epidemic, and is equal to the ratio of t
actual transmissibility to the critical transmissibility, given
by

R0 ¼
T
Tc

:

The expected epidemic size is then given by

Enet ¼ 1� � kpk 1 þ u� 1ð ÞTð Þk;

whereu is the solution to the self-consistency equation

u ¼
� kkpk 1 þ u� 1ð ÞTð Þk� 1

� kkpk
:

We also provide a function that calculates th
expected final epidemic size in a mass-action mod
given a value ofR0 [1]:

Ema ¼ S0 1� e� R0Ema
� �

;

where S0 is the fraction of individuals who are suscep
tible at the start of the epidemic. The expected epidem
sizes under both the mass action and network mod
are solved numerically using the bisection method [38]

By calculating and comparing the network and mas
action expectations for an epidemic size of a spec
network-pathogen combination (done automatically i
the EpiFire GUI), one can assess the epidemiolog
impact of the network structure. Large differences
the values of network and mass-action expectatio
suggest that network structure plays an important ro
in disease transmission, and that traditional compa
mental models may not be adequate.

Since percolation and chain binomial transmissibilities
are per-time-unit and per-infectious-period probabilities
respectively, when users switch between simulation ty
the transmissibility parameter is recalculated accordingly.

One important property of networks is clustering,
measure of whether nodes exist in well-interconnect
groups. EpiFire implements the transitivity clustering co
efficient [39], calculated as

Transitivity ¼
3 � triangles

triples
;
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Table 1 Comparison with NetworkX and igraph

Memory required (MB) Time required (sec)

EpiFire API 45 0.830

NetworkX 1,400 15.4

Igraph 93 0.995
Performance comparison with NetworkX and igraph, generating random
networks with 100,000 nodes, Poisson(10) degree distribution. Network
generation in NetworkX was performed using the fast_gnp_random_graph()
function.
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where triangles is the number of sets of nodes A, B, a
C such that all three are interconnected, and triples
the number of sets of nodes A’, B’, and C’ such that B’ is
connected to A’ and C’.

Results
EpiFire is an applications programming interface (AP
implemented in C++, designed to efficiently genera
networks with a specified degree distribution, measu
fundamental network characteristics, and perform perc
lation and chain-binomial simulations of SIR disea
transmission for generated networks. EpiFire also includ
a continuous time, stochastic mass-action simulation cla
for creating hybrid models and/or comparing the resul
of mass-action and network-based simulations.

EpiFire allows users to develop efficient epidem
simulations in C++ by providing a high-level API fo
running simulations and manipulating the underlyin
contact networks in network-based models. The follow
ing examples demonstrate simple use-cases.

Example 1: Percolation simulation (API)
This percolation simulation is performed using a random
network constructed using the Erd� s-Rényi algorithm
with 10,000 nodes and mean degree 5. The probability
transmission between an infected node and a suscept
neighbor is 0.25, and the epidemic begins with 10 infect
nodes (selected randomly without replacement).

#include < Percolation_Sim.h >
int main() {

// Construct Network
Network net("example net", Network::
Undirected);
net.populate(10000);
net.fast_random_graph(5);
// Parameterize and run simulation
Percolation_Sim sim(&net);
sim.set_transmissibility(0.25);
sim.rand_infect(10);
cout < < "Expected R0: " < < sim.
expected_R0() < < endl;
sim.run_simulation();
cout < < "Epidemic size: " < < sim.
epidemic_size() < < endl;

}

Sample output:

Expected R0: 1.25551
Epidemic size: 3423

The output from this example is the expected value
R0 if an epidemic occurs (see Implementation) and th
s

f
e

total number of individuals infected during the epidemic
By running the simulation many times, we can genera
a distribution of epidemic sizes. Alternatively, to gene
ate an epidemic curve, we can report the size of t
infected cohort after each round of transmission (s
Additional file 1: Appendix A).

Example 1 required 0.06 sec (avg) and 5.45 MB (max
system memory. The test system was a Dell Precis
Workstation 490 with two Intel Xeon 5140 processor
and 4 GB of RAM running 32-bit Ubuntu 10.04 LTS. Ep
Fire was compiled using gcc version 4.4.3 with O
optimization. Most of the time is spent constructing th
random network; the simulation itself only require
0.5 ms (avg). Depending on the intended application,
may be acceptable to generate and reuse a single netw
for many simulations, greatly reducing the time require
Users should note that when reusing a network,sim.re-
set() should be called in between simulations to res
the state of all nodes to the default susceptible state, a
Appendix A3 of Additional file 1. The running time
required for Example 1 scales linearly with the expect
epidemic size, whereas the memory required is linear w
N * (k+ 1) where N is the network size and k is the mea
degree.

Additional API examples
Appendix A2 of Additional file 1 includes a more compli
cated simulation of an epidemic on a dynamic networ
Further examples included with the source code are
chain-binomial simulation of a network with an arbitrary
degree distribution; a derived percolation class that use
susceptible-exposed-infectious-recovered progression
states; and a stochastic, continuous time, mass-act
simulation using a Gillespie algorithm [40,41].

Comparison with NetworkX and igraph
EpiFire is not intended to replace other network API
which were developed to solve different problems. T
compare these diverse APIs, we consider one of th
common functions: generation of an Erd� s-Rényi ran-
dom network. There are several algorithms that will ge
erate random networks; we chose the most efficie
algorithm available in each API when generating
100,000 node network with a Poisson degree distributi
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with Poisson parameter (mean) equal to ten. EpiF
requires much less memory and running time than th
user-friendly NetworkX, and somewhat less memory a
time than igraph (Table 1). The comparatively poor pe
formance of NetworkX is likely due primarily to differ-
ences in efficiency between C++ and Python.

Overview of EpiFire GUI
Although the EpiFire API provides great flexibility for cre
ating custom simulations, it requires some background
programming. As a demonstration of some of the capab
ities of the EpiFire API, we present the EpiFire graphic
user interface (GUI), which allows users to generate a
analyze several common classes of random networks
conduct chain-binomial and percolation SIR simulation
on contact networks in a point-and-click environmen
with intuitive, automatically generated figures. The EpiFi
GUI requires no programming to create and analyze ne
works and run stochastic simulations on those networks

Main window
The application's main window (Figure 1) is organized
two panes, with model parameters and application sta
Figure 1 EpiFire GUI main application window.
l

d

on the left, and automatically generated plots of simul
tion data on the right. The left-hand pane is divided from
top to bottom, as follows:

Network parameterization By default, the tab labele
“Step 1: Choose a network” is active. Users choos
whether to import a network from a file or to randomly
generate a network. The import format is an edge-list fi
with each edge represented as a single line containing
names of the connected nodes, separated by a com
Currently only undirected networks are supported by th
EpiFire GUI. If users choose to generate a network, th
may specify the desired number of nodes, the degree
tribution type, and relevant parameters for the degree d
tribution. Generated networks are connected random
using the configuration model with the constraint that n
pair of nodes is connected by more than one edge, and
edges loop back to connect a node to itself. Users may
lect Poisson, exponential, power law, urban, or fixed d
gree distributions. Degree distributions are right-truncate
at n – 1, wheren is the size of the network. Exponentia
and power law distributions are also left-truncated so th
there are no nodes with degree zero. The urban deg
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distribution is a semi-empirical distribution used previ
ously to study the spread of SARS and influenza in Va
couver, Canada [4,13,14].

Simulator parameterization By clicking the tab labeled
“Step 2: Design a simulation,” users may specify simula
tion parameters. Epidemics can be simulated und
chain-binomial and percolation models. Chain-binomia
is the default because it produces epidemic curves w
finer temporal resolution, although percolation simula
tions run faster and will produce the same distributio
of final epidemic sizes. Both simulators allow users
specify a transmissibility, the number of infections th
should start the epidemic, and the number of simulatio
repetitions that should be performed. Chain-binomia
simulations are also parameterized with an infectio
period, defined as the number of time-steps an infect
individual will remain infected; when this is set to 1, th
chain-binomial and percolation models produce equiv
lent results. Users may also choose whether epidem
data is retained between runs or deleted prior to ea
new simulation. This determines which data a
included in the plots.

Theoretical predictions The EpiFire GUI also display
the expectedR0 for the current network and epidemic
simulation parameters. Epidemics will not occur whenR0

is less than one, but may occur otherwise. Given th
expectedR0, EpiFire calculates expected epidemic siz
under mass-action and configuration model assumption

Control panel The control panel allows users to clea
the current network or the current epidemic data from
memory, restore the default settings, open the help d
log, generate and load networks, and run a simulati
with the specified parameters. Note that when“Generate
Network” or “Import Edge List” is clicked, any previous
network is automatically cleared, and the“Run Simula-
tion” button is disabled unless a network has be
created.

Status log The status log provides users with update
including the status of network generation, warning
about incompatible parameters, current simulation num
ber, and final epidemic size.

The right pane of the EpiFire GUI is divided into thre
plots (initially blank) of simulation results. These plot
may be resized by resizing the main window, or by clic
ing and dragging the horizontal dividers between the to
and middle, and the middle and bottom plots. All of th
plots created by the EpiFire GUI can be exported
double-clicking the plot, and the data used to genera
the plots can be exported by right-clicking.
-

c

s

Node state plot The top plot shows the progression o
states of the first 100 nodes in the network, or all nodes
the network has fewer than 100 nodes. The horizontal a
represents the duration of the epidemic, and each horizo
tal band represents the states of a particular node. B
denotes susceptible, red is infectious and yellow is recov
ered. The range of the horizontal axis is the total duratio
in time-steps, of the most recent simulation run. Thes
plots may provide visual insights into synchrony betwe
node states and the relative amount of time nodes spend
each state.

Epidemic curve plot The middle plot displays the num-
ber of individuals in the infectious state at each time ste
The most recent epidemic curve (representing the mo
recent simulation run) is shown in red. If users choose
retain data between simulation runs, then all previo
simulations are shown in semi-transparent gray. The
gray data points effectively become a density plot, so t
after many runs, users can see the range of possible
comes and what a typical epidemic might look like.

Histogram of epidemic sizes The bottom plot shows
how many times epidemics of a given size class h
been observed, where epidemic size is defined as
total number of nodes in the recovered state at the e
of the epidemic (when there are no remaining infectiou
nodes). As more simulation runs are compiled, th
histogram of observed epidemic sizes more accurat
estimates the distribution of possible epidemic sizes.

Network visualization window
Displaying large networks is difficult, especially those w
random connections that are uncorrelated with any two
dimensional location. If networks are small (< 100 nodes)
it may, however, be useful to display their structure. W
provide a “Show network plot” option within the “Plot”
menu, which uses a variant of the Fruchterman-Reingo
algorithm [42] to plot nodes and edges in a pop-up windo
Our algorithm deviates from the classical Fruchterma
Reingold by preferentially placing high-degree nod
near the center of the plot, rather than starting with
uniform distribution of nodes. This plot is dynamic
allowing users to explore or improve the plot by clicking
and-dragging nodes to new locations. Users may zoom
and out using the +/- keys, respectively. The network pl
option is disabled for networks with more than 500 node
due to the complexity of the algorithm used.

Network analysis window
The “Network” menu includes a“Network analysis” option.
If there is a network in memory, a new pop-up window
(Figure 2) appears with the node count, edge count, me
degree, and a histogram of the degree distribution.
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Figure 2 "Analysis of current network" dialog.
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clicking on the“Calculate” buttons, the user can determin
the number of nodes in the largest component, number o
components, transitivity clustering coefficient, diameter o
the largest component, and mean shortest path in the lar
gest component. Note that the last two calculations a
computationally demanding and can take much longer
complete than the others. Insome cases, calculating on
statistic involves first calculating another. In this situatio
all calculated statistics will be shown, even if the user d
not click “Calculate” for each of the statistics.

The network analysis window is particularly useful fo
comparing networks with different degree distributions
and for elucidating unexpected simulation results. F
example, a simulation with a very high expectedR0 may
fail to create correspondingly large epidemics if th
underlying network has multiple components.

Simulation results analysis window
Under the “Results” menu is the“Simulation results ana-
lysis” option. Once results have been generated, us
 s

can open a new window (Figure 3) that automatica
calculates basic statistics about the distribution of fin
epidemic sizes, including minimum, maximum, arith
metic mean, and standard deviation. Because final s
distributions are commonly bimodal with the smalle
mode corresponding to failed epidemics (called“out-
breaks” in the analysis window) and the larger mode co
responding to actual epidemics, these statistics are a
calculated separately for the two modes. The EpiF
GUI attempts to heuristically distinguish outbreaks from
actual epidemics by checking to see if there is a sin
large range separating two clusters of data. If such
range exists, the middle of the range is used as the“out-
break/epidemic threshold,” which users may alway
change to a different value. The epidemic size distrib
tion plot shows values below the threshold in yellow
and those equal to or above the threshold in red. Use
may customize the plot by specifying the number of bin
and the minimum and maximum values to use on th
horizontal axis.
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Figure 3 "Analysis of simulation results" dialog.
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Example 2: Percolation simulation (GUI)
The simulation in Example 1 can also be performe
using the GUI according to the instructions below
Default settings are assumed unless indicated.

1. Click“Generate Network” or press CTRL-G to create
10,000 node network with a Poisson degree distribution
with expected mean degree equal to 5 (these are the
default settings on the“Choose a network” tab).

2. Click the“Design a simulation” tab or press ALT-2
n
ill

la-
s.
ia-
ge
n

on
d
a

i. Change“Simulation type” to Percolation
ii. Change“Transmissibility” to 0.25
iii. Change“Initially infected” to 10

3. Click“Run Simulation” or press ENTER to run the
simulation.

The epidemic size will be printed in the log window i
the lower left. Figures characterizing the simulation run w
be automatically generated on the right, including a nod
state plot, an epidemic curve plot, and an epidemic s
histogram. The epidemic size histogram will better approx
mate the true final size distribution as additional simula
tions are performed.

Discussion
Developing epidemiological simulations that scale effe
ively to millions of individuals can be challenging. Th
open source API of EpiFire provides a transparent,
gical framework that can be used for standard perco
tion, chain-binomial, or mass-action SIR simulation
Furthermore, it can be extended to create new, spec
lized types of simulations, such as networks that chan
in response to epidemic dynamics, or multi-pathoge
simulations where co-infection changes transmissi
probabilities. EpiFire allows for hybridized models an
alternative network interpretations, such as using
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mass-action model for within-city dynamics and a ne
work model for between-city dynamics [15].

Several other publically-available software proje
have overlapping functionality. However, none have be
written specifically for contact network epidemiolog
with the intent of providing a common, extensible tool
kit for researchers to use to develop their own models.

Although EpiFire is intended as an API for contac
network epidemiology, the network class is independe
from the simulation classes, and is thus applicable
other types of network-based modeling, such as meta
olite interaction networks [43] and animal migration be
tween habitats [44].

The EpiFire graphical interface provides a user-friend
toolkit for performing network-based SIR epidemi
simulations and gaining an intuitive understanding o
the impact of network structure on infectious diseas
dynamics. The most obvious applications are ped
gogical: the straight-forward interface and rapid feedba
allow users to learn first-hand the consequences of cha
ging epidemic and network parameters. EpiFire h
been used in courses at the University of Texas
Austin and at the Summer Institute in Statistics an
Modeling in Infectious Diseases (SISMID) at the Un
versity of Washington [45]. EpiFire GUI may be particu
larly useful to researchers during initial epidemiologic
explorations of a new contact network because of the e
with which it generates figures and network statistics.

We are currently adding support for deterministic, or
dinary differential equation models, which will includ
derived classes implementing the standard mass-act
SIR model, and a network-based SIR model [46,47]. T
stochastic, continuous time mass-action model th
EpiFire currently provides in MassAction_Sim.h wi
likely be refactored into a Gillespie model base class a
mass-action and network derived classes. Finally,
though the EpiFire simulators can be extended beyo
SIR epidemic models (e.g., see [48] for the susceptib
exposed-infected-recovered simulator), we would like
provide a generic interface for specifying an arbitra
disease-state progression.

Conclusions
Efficient and easy-to-use software plays a critical role
computational biology research. Contact netwo
approaches in epidemiology provide sophisticated an
lytical and efficient computational methods, but thes
can be technically challenging and time consuming
implement. Currently no open-source toolkit is availab
for facilitating contact network epidemiology researc
We present EpiFire, an applications programming a
graphical interface, available for Windows, OS X, a
Linux online at sourceforge.net/projects/epifire. As th
field of contact network epidemiology matures, so shou
-

-

-

t

e

n
e

d
l-

-

-

its mathematical and computational toolkit. Open-sourc
code libraries like EpiFire help to avoid programming mi
takes, increase the transparency of analyses, and red
barriers between the conception and implementation
ideas.

Availability and requirements

Project name: EpiFire

Project home page: https://github.com/tjhladish/EpiFire/
wiki/ for source code, http://sourceforge.net/projects/epifire
for binary installers

Operating systems: Platform independent

Programming language: C++

Other requirements: g++ 4.5 for API; g++ 4.5 and Q
4.7 for GUI

License: GNU GPLv3

Any restrictions for use by non-academics: none
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