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Introduction

Despite the high frequency of migraineurs in the general
population, the pathogenesis of this disorder is still unclear.

There is a great need for a better understanding of the
mechanisms underlying the pain, the accompanying symp-
toms, as well as the premonitory symptoms and the aura.
Progress in translational research is impeded by the lack of
a validated experimental model and by the lack of tools to
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Abstract Migraine is a complex
pathophysiology in which both cen-
tral and peripheral components of
the trigeminal pain pathway proba-
bly play a significant role, both in
the symptoms and signs of the
attack and in the mechanisms of
action of antimigraine compounds,
such as triptans, which constitute
the most important therapy for
aborting migraine pain and posses
several mechanisms on 5-HT recep-
tor-mediated actions. The experi-
mental neurogenic inflammation
model represents a simple proce-
dure to obtain preliminary informa-
tion on well characterized receptor-
targeted drugs. The apparent para-
dox observed with certain drugs
that are shown to be effective in
this model but not in clinical trials
offers the opportunity to better
manipulate structure-activity to
obtain the best pharmacological
profile using an array of experi-
mental models. The observation
that nitric oxide donors induce
migraine-like pain in migraineours

and that nitric oxide plays a pivotal
role in the control of several func-
tions in the central nervous system,
has prompted the use of such mole-
cules for better understanding the
pathophysiology of migraine
attacks. A link between central and
peripheral components of the
trigeminal pain pathway is provided
by the observation that cortical
spreading depression in the rat acti-
vates trigeminovascular afferents
and induces a series of cortical
meningeal and brainstem events
consistent with the development of
headache. Studies in humans sup-
port the hypothesis that cortical
spreading depression underlies
migraine aura. Therefore, it is pos-
sible that visual, motor or sensory
aura might be responsible for the
generation of the pain through the
above mechanisms
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study specific sites of pharmacological activity in humans.
The role of the brain in migraine remains unclear,

although recent findings link migraine to other neurological
conditions, i.e., hemiplegic migraine is allelic with episodic
ataxias and cerebellar disorders [1]. This observation pro-
vides a possible link between different pathological condi-
tions residing primarily in the central nervous system (CNS).

The brain is usually considered as an insensitive organ.
However, like other visceral organs, the brain possesses
connective tissue coverings that serve to protect the organ
[2]. In fact, the meninges receive a rich vascular supply
and dense trigeminal as well as autonomic innervation,
and contain resident macrophages and mast cells that par-
ticipate in an inflammatory response when the brain or the
meninges themselves are chemically or otherwise injured.
The pattern of innervation is preserved among mammals,
no matter what the size and specialisation of the brain, and
it is unilateral, except for the midline, the latter being the
possible explanation for the bilateral location or side-
shifting of head pain during an attack.

The trigeminovascular system

During the last two decades the trigeminovascular system
(TVS) has been proposed [3] and studied [4–6] to evalu-
ate the peripheral component of the migraine attack and to
possibly identify the mechanism of action of migraine-
aborting drugs, namely ergot derivatives and triptans. The
TVS has been challenged in the rat with chemical stimu-
lation (systemic capsaicin) or unilateral electrical trigem-
inal ganglion stimulation (UETGS) to induce neurogenic
inflammation (NI), i.e., vasodilation and plasma protein
extravasation in tissue receiving trigeminal innervation
(dura mater, conjunctiva, eyelid, lip) upon release of
vasoactive peptides (CGRP, SP) from nerve endings [5,
6]. Degranulation of mast cells accompanies the oedema
response [7] and a stimulation intensity-dependent
increase of CGRP is observed during UETGS in the plas-
ma obtained from the superior sagittal sinus (SSS) [8].

The antimigraine drugs dihydroergotamine (DHE) and
sumatriptan (SUM), the first triptan synthesised for
migraine attack treatment, were effective in blocking NI
[4, 6–9]. Because of strong claims that these drugs had
limited central penetration, a peripheral, prejunctional
mechanism of action was proposed [10, 11]. For example,
SUM, given at therapeutic doses, is not able to cross the
blood-brain barrier (BBB) unless the latter is altered [12].
Interestingly, in the NI model, extravasation occurs in rat
dura mater but not brain, thus ruling out the possibility
that electrical stimulation of the trigeminal ganglion,
although potent, is able to damage the BBB [5]. An inter-

esting finding is that UETGS, while inducing tissue oede-
ma, also provokes conjunctival injection, tearing and rhi-
norrhoea on the stimulated side, suggesting the presence
of a trigeminal-autonomic reflex. Increase of CGRP plas-
ma levels is also reported in the cat following trigeminal
ganglion stimulation, and in blood obtained from the
jugular vein of humans during migraine attacks [13]. The
levels of GCRP decrease in humans, and the pain
improves as well, following SUM administration. This
observation should be interpreted cautiously, as CGRP
plasma levels increase at the very beginning of electrical
stimulation of the trigeminal ganglion and start decreasing
when the stimulation sustains [8]. Nevertheless, a recent
clinical trial using a CGRP receptor antagonist proved that
this drug was effective in aborting migraine headaches,
and raising the profile of CGRP in acute attacks [14].

Interestingly, among migraine patients, about 45% of
them report local autonomic signs during unilateral severe
migraine attacks [15] and a larger proportion of responders
to SUM, rizatriptan and zolmitriptan are found among
migraine patients in whom local signs of neurovascular
activation are present during attacks [16]. Gadolinium-
enhanced MRI is normal during migraine attacks, thus rul-
ing out overt damage to the BBB [17]. While dural inflam-
mation was not observed with this procedure, there is very
preliminary evidence that NI, when measured by Tc 99m-
HAS SPECT scan [18], occurs in the dura mater during the
migraine attack, and retro-orbital oedema (vascular inflam-
mation with plasma extravasation in the basal venous ves-
sels of the skull) has been described using the same tech-
nique during the active period in cluster headache [19].

The trigeminal pain pathway and CNS-penetrating
5-HT1B/1D agonists

The NI model has been used for several years to predict the
efficacy of other 5-HT1B /1D agonists. Second-generation
triptans differ from SUM in their ability to cross the BBB
at therapeutic doses. Some of those agonists, such as avit-
riptan, show little potency to block NI but are able to block
migraine pain [20]. On the contrary, the conformationally
restricted SUM analogue CP122,288 is a potent inhibitor
of NI, but it is not effective on migraine pain [21, 22]. It
seems that the oedema component of NI is less clinically
relevant than vasodilation for the acute attack. Because the
migraine attack has been regarded by some as a discharge
from a central “generator”, probably located in the brain-
stem [23], a central mechanism in rostral brain stem has
been advocated as a trigger. Although it may be unrelated
to this trigger, the central action of the “second-generation
triptans” was not more effective for treating pain or block-
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ing headache recurrence. In fact, the degree of pain relief
and pain freedom, as well as recurrence, is about the same
for SUM and the newly synthesised triptans.

Activation of neurons, seen as increased c-fos expres-
sion in the TNC following trigeminal ganglion, dural or
SSS stimulation in the cat, is blocked by local application
of triptans with peripheral+central actions on primary
trigeminal afferents [24, 25]. The expression of c-fos can
be suppressed not only by drugs that block central actions
within TNC, but also by drugs that block, primarily,
peripheral inputs. CP122,288 does not block TNC cell
activation, whereas eletriptan, which is able to inhibit
both NI and c-fos expression in the TNC, is effective in
blocking migraine pain [26]. On the basis of these obser-
vations, the TNC has been proposed as the possible site
of action of CNS-penetrating compounds in migraine
attack treatment. In vivo pretreatment with CP93,129,
SUM or DHE inhibits c-fos expression in the TNC
induced by subarachnoid haemorrhage [27]. c-fos activa-
tion following unilateral spreading depression is inhibit-
ed by both SUM and by trigeminal denervation, suggest-
ing a role for peripheral inputs in this model and their
involvement in the mechanism of action of the drugs
[28]. Levy and colleagues have provided strong evidence
implicating 5-HT1B/D receptor blockade of neurotrans-
mitter release from central endings on trigeminovascular
afferents within trigeminal nucleus caudalis [29].

In some patients dystonia and akathisia have been
reported as well as the efficacy of SUM in treating palatal
myoclonus [30–33], thus suggesting a central action of the
drug. The presence of SUM binding sites is described in
several CNS areas other than the TNC, and the substantia
nigra also possesses SUM binding sites, providing a locus
for drug activity in the above patients [34, 35]. SUM and
zolmitriptan are able, when systemically administered or
locally applied on brain slices, to abolish NOS and cGMP
increase following NMDA receptor activation [36]. The
usefulness of the NI model is also evident when testing
prophylactic drugs such as valproate, a gamma-amino
butyric acid (GABA)-agonist, which has been shown to be
effective in blocking dural plasma extravasation following
UETGS and SP administration, via a bicuculline-
reversible mechanism [37] and c-fos expression following
intracisternal capsaicin, suggesting a role for GABA A
receptor in migraine attack pathophysiology [38].

To summarise, migraine is a complex pathophysiolo-
gy in which both central and peripheral components of
the trigeminal pain pathway probably play a significant
role, both in the symptoms and signs of the attack and in
the mechanisms of action of antimigraine compounds.
In fact, triptans, which constitute the most important
therapy for aborting migraine pain, possess several
mechanisms on 5-HT receptor-mediated actions and

some of them are still not completely understood. More
detailed clinical research studies are needed in order to
clarify what is still unknown about these drugs. Does
sumatriptan cross the BBB during a migraine attack?
Drugs that are devoid of peripheral action should be
designed in order to test the existence of a CNS genera-
tor. Patients with unilateral migraine pain show
decreased pain perception threshold during corneal
reflex recording [39]. This observation suggests sensiti-
sation of the peripheral and/or central pain pathway
[40]. From this perspective, the triptans can be regarded
as inhibitors of the perpetuation of pain mediated by the
peripheral inputs from the TVS.

NO donors activate the trigeminal pain pathway: a link
with a clinical model of migraine

The ability of nitrovasodilators to act as prodrugs that
release nitric oxide (NO) in several body tissues (vessel
wall, lungs and brain) has peaked scientific interest in NO
[41, 42]. The demonstration that NO plays a pivotal role
in the control of several functions in the CNS (nocicep-
tion, toxicity, degeneration, memory) has prompted the
use of NO donors as probes to study NO in a variety of
neurological diseases [43–46].

Among NO donors, nitroglycerin (NTG) has under-
gone extensive experimental investigation, because typi-
cal headaches develop in migraineurs (but not normals)
with a 4–6 h latency after its administration [47–50]. NTG
is highly lipophilic and easily crosses the BBB [42].
Experimental evidence for its accumulation in brain has
been provided [51]. Systemic administration of this organ-
ic nitrate induces neuronal activation in several brain
nuclei belonging to the neurovegetative, neuroendocrine,
behavioural and nociceptive systems [52, 53]. This activa-
tion develops with a latency of hours, which contrasts
with the very short plasma half-life of NTG. Co-localisa-
tion studies show that NTG-induced neuronal activation
takes place in adrenergic, nitrergic and neuropeptidergic
structures [54, 55], thus suggesting some putative sig-
nalling pathways implicated in this model.

Exogenous (NTG-derived) NO might directly act at
both the vascular and neuronal levels and indirectly evoke
neurovascular responses via multiple pathways that
include the synthesis of NO synthase and perhaps
cyclooxygenase, and the induction of a trigeminovascular-
mediated biochemical response [56]. Neuronal activation
following NTG shows that neuronal activation begins as
early as 60 min postinjection in brain areas that control the
cardiovascular function, and reaches a maximum 3 h later
in nociceptive and related structures [52]. This modulated
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temporal course again suggests a dual mechanism of
action for NTG; an initial effect on the vascular compart-
ment followed by the involvement of integrative nocicep-
tive structures. NTG administration evokes changes in the
noradrenergic system at both the vascular and neuronal
levels, and in the serotonergic system in specific brain
areas [57]. Changes in central and/or peripheral neuro-
transmission may cause hyperalgesia, and a sustained acti-
vation of nociceptive nuclei in the rat [52]. In predisposed
humans, this might initiate a spontaneous migraine attack
following NTG administration [47–50]. This hypothesis
has also been supported by other findings. Pardutz et al.
[58] showed that NTG administration increases the num-
ber of NOS-immunoreactive cells in the rat spinal trigem-
inal nucleus, which points to the activation of second-
order neurones via a presynaptic excitatory mechanism.
Lambert et al. [59] reported that systemic NTG increases
the firing rate of second order trigeminal neurones, which
transport inputs from cranial structures via a 5-HT-medi-
ated mechanism that is prevented by the administration of
selective 5-HT agonists. A valid criticism for many of
these studies though is the use of large NTG dosages.
Using doses more in line with human studies, Reuter et al.
[60] demonstrated that NTG administration up-regulates
pro-inflammatory genes such as iNOS, interleukin-6,
interleukin-1, plus mast cell and macrophage activation,
with a subsequent, delayed inflammatory reaction in the
rat dura mater (4–6 h). Taken together, these findings
strongly suggest that the study of NTG might lead to a
better understanding of the pathophysiology of migraine
attacks and of the role played by NO. Interestingly, SUM
reduces CGRP levels and migraine pain during NTG-
induced migraine attack [61].

To summarise, the experimental NI model represents a
simple procedure to obtain preliminary information on
well characterised receptor-targeted drugs. The apparent
paradox observed with certain drugs that are shown to be
effective in this model but not in clinical trials offers the
opportunity to better manipulate structure-activity to
obtain the best pharmacological profile using an array of
experimental models.

The migraine aura: ascending to the central origin of
migraine

Migraine is a common and debilitating disorder. Visual aura
heralds the attacks in 20% of cases [62]. The typical aura is
represented by an arc of scintillating, shining, crenellated
shapes, beginning adjacent to central vision and expanding
peripherally over 5–20 min, within one visual field, usual-
ly followed by headache. The scintillations are followed

temporarily by a blind region, after the same retinotopic
progression from central to peripheral visual fields. A rela-
tionship between cortical spreading depression (CSD) and
migraine aura was first suggested by Leao [63]. CSD is a
wave of neuronal and glial depolarisation, followed by
long-lasting suppression of neural activity, and it can be
evoked in mammals with lissencephalic [63, 64] or folded
cortex [65]. Human neuroimaging such as planar Xenon
[66–69], single photon emission tomography [68, 70–74]
positron-emission tomography [75, 76], magnetoen-
cephalography [77, 78] and MRI [79–81] support the
hypothesis that CSD underlies migraine [82]. However
many subjects never experience symptoms of typical visu-
al auras in studies showing spreading hypoperfusion [75] or
blood oxygenation level-dependent (BOLD) signal changes
[79], and the initial hyperaemia characteristics of CSD were
not directly demonstrated in human cortex.

High-field strength functional MRI to map progression
of the BOLD events during migraine aura confirmed previ-
ous reports that CSD-like phenomena can be seen with neu-
roimaging techniques [80]. A slowly spreading area of per-
turbed BOLD signal has also been described in the occipital
lobe during migraine aura. This perturbation shows an initial
increase, perhaps corresponding to hyperaemia, followed by
a decrease, and prolonged suppression of the light-evoked
response. At least 8 features of CSD in the rat were found in
these human studies. Based upon such findings and those of
Cao [79], it seems highly likely that migraine aura is not
evoked by ischaemia. More likely, it is evoked by aberrant
firing of neurons and related cellular elements characteristic
of CSD, and vascular changes develop due to fluctuations in
neuronal activity during visual aura [83]. Drugs that inhibit
the development and propagation of CSD provide novel
treatment targets for both migraine aura, even before
headache onset, as well as for stroke.

As discussed above, the trigeminal nerve innervates
the meninges and participates in the genesis of migraine
pain. However, the mechanisms that trigger migraine
attacks are poorly understood. To better clarify this issue,
recent data demonstrate that in the rat CSD activates
trigeminovascular afferents and induces a series of corti-
cal meningeal and brainstem events consistent with the
development of headache [84]. CSD, in fact, is responsi-
ble for long-lasting blood-flow enhancement selectively
within the middle meningeal artery upon activation of
trigeminal and parasympathetic systems. Plasma protein
leakage also occurs following CSD, within the dura mater
in part by a neurokinin-1-receptor mechanism. These find-
ings provide a neural mechanism by which extracerebral
cephalic blood flow couples to brain events; this mecha-
nism explains vasodilation during headache (including
cluster headache) and links intense neurometabolic brain
activity with the transmission of headache pain by the
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