Maternal Serum Heme-Oxygenase-1 (HO-1) Concentrations in Early Pregnancy and Subsequent Risk of Gestational Diabetes Mellitus

doi:10.1371/journal.pone.0048060

http://nrs.harvard.edu/urn-3:HUL.InstRepos:10579663

This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Maternal Serum Heme-Oxygenase-1 (HO-1) Concentrations in Early Pregnancy and Subsequent Risk of Gestational Diabetes Mellitus

Chunfang Qiu¹*, Karin Hevner¹, Daniel A. Enquobahrie¹², Michelle A. Williams¹³

¹Center for Perinatal Studies, Swedish Medical Center, Seattle, Washington, United States of America, ²Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, United States of America, ³Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America

Abstract

Background: Heme oxygenase-1 (HO-1) concentrations have been recently reported to be elevated in impaired glucose tolerance and type 2 diabetes mellitus (T2DM). However, no study has examined the association between HO-1 concentrations and gestational diabetes mellitus (GDM).

Methods: In a case-control study, nested within a prospective cohort of pregnant women (186 GDM cases and 191 women who remained eu-glycemic through pregnancy), we assessed the association of maternal serum HO-1 concentrations, measured in samples collected at 16 weeks gestation, on average, with subsequent risk of GDM. Maternal serum HO-1 concentrations were determined using ELISA. We fitted multivariate logistic regression models to derive estimates of odds ratios (ORs) and 95% confidence intervals (CIs).

Results: Median serum HO-1 concentrations in early pregnancy were lower in women who subsequently developed GDM compared with those who did not (1.60 vs. 1.80 ng/mL, p-value = 0.002). After adjusting for maternal age, race, family history of T2DM and pre-pregnancy body mass index, women with HO-1 ≥3.05 ng/mL (highest decile) experienced a 74% reduction of GDM risk (95% CI; 0.09–0.77) compared with women whose concentrations were <1.23 ng/mL (lowest quartile).

Conclusion: Serum HO-1 concentrations were inversely associated with subsequent GDM risk. These findings underscore the role of oxidative stress in the pathogenesis of GDM. Additional studies are warranted to confirm the clinical utility of serum HO-1 in diagnosis of GDM, particularly in the early pregnancy.

Introduction

Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications affecting approximately 7% of all pregnancies and up to 14% of pregnancies in high-risk populations [1]. GDM is manifested by pregnancy-induced insulin resistance and a relative impairment in insulin secretion [2]. Women with a history of GDM have a considerably elevated risk of developing impaired glucose tolerance or type 2 diabetes mellitus (T2DM) in the years following pregnancy. For instance, the cumulative incidence of developing T2DM later in life has been reported to range from 22% to 60% [3–5] among women with a prior history of GDM. Although the pathogenesis of GDM remains unclear, enhanced oxidative stress in the form of lipid peroxidation [6] and DNA oxidative damage [7] in GDM have been noted in previous studies. Moreover, results from other studies have indicated that chronic systemic inflammation [8], elevated leptin [9], reductions in adiponectin [10] and endothelial dysfunction [11] are important metabolic derangements that precede the clinical diagnosis of GDM.

The enzyme heme oxygenase (HO) has been implicated in several physiological functions throughout the body, including the control of vascular tone and regulation of the inflammatory and apoptotic cascades as well as contributing to the antioxidant capacity in several organ systems [12]. These various biological functions attributed to HO are mediated via the catalytic products of heme degradation, namely carbon monoxide (CO), biliverdin-derived bilirubin, and free iron (Fe²⁺) [13]. The expression of inducible isoform HO-1 is highly responsive to a broad spectrum of chemical and physical stress agents, such as hydrogen peroxide, hypoxia, hyperoxia, pro-inflammatory cytokines and heme itself. Consequently, HO-1 is regarded as a stress protein [12]. The role of HO-1 in the pathological process of T2DM and its complications has been investigated by several research teams. Of note, several investigators have assessed the influence of total HO activity and inducible isoform HO-1 on neovascularization [14].
enzyme activity are thought to play protective roles against the
development of diabetic complications [14]. In animal studies,
investigators have shown that elevated HO-1 gene expression in
pancreatic islet cells exposed to elevated glucose concentrations
[15]. Of note, other investigators have shown that chronic
hyperglycemia in a rat model, where hyperglycemia was induced by
partially pancreatectomy, resulted in decreased HO-1 gene
expressions in islets cells with increasing duration of hyperglycemia
[16]. Recently, elevated circulating plasma HO-1 concentrations
have been observed in patients with impaired glucose regulation
[17] and T2DM [18] in a Chinese population. However, these
cross-sectional, case-control study designs do not allow investiga-
tors to clarify whether alterations in HO-1 concentrations are a
cause or consequence of the impaired glucose tolerance or T2DM.

To our knowledge, no previous study has examined the extent
to which, if at all, maternal serum HO-1 concentrations in early
pregnancy may be related with incident GDM. On the basis of an
emerging literature documenting associations of HO-1 with
hyperglycemia, impaired glucose tolerance and T2DM, we used
serum specimens gathered as part of a prospective cohort study of
women receiving prenatal care before 20 weeks gestation to
examine the association between early-pregnancy serum HO-1
concentrations and subsequent risk of GDM.

Materials and Methods

Study Population

This nested case-control study was based on the Omega
study, a prospective cohort study of risk factors of pregnancy
complications [19]. In this cohort, participants were recruited
from women attending prenatal care at clinics affiliated with
Swedish Medical Center in Seattle and Tacoma General
Hospital in Tacoma, Washington. Women were ineligible if
they initiated prenatal care after 20 weeks gestation, were
younger than 18 years of age, did not speak and read English,
did not plan to carry the pregnancy to term, or did not plan to
deliver at either of the two research hospitals. Participants
completed a questionnaire administered in English by a trained
interviewer at or near enrollment. These questionnaires were
used to gather information on socio-demographic, anthropo-
metric, and behavioral characteristics and reproductive and
medical histories. After delivery, maternal and infant medical
records were abstracted for information on the course and
outcomes of pregnancy. The study protocol was approved by
Institutional Review Boards of Swedish Medical Center
and Tacoma General Hospital according to the declaration
of Helsinki and written informed consent was obtained from all
individuals. Between 1996 and 2006, 5,063 eligible women were
approached and 4,000 (approximately 79%) agreed to partici-
pate. A total of 3,886 pregnant women provided blood samples
and completed interviews.

From structured questionnaires and medical records, we
obtained information of covariates including maternal age,
educational attainment, height, pre-pregnancy weight, reproduc-
tive and medical histories, and medical histories of first-degree
family members. We also collected information on annual
household income and maternal smoking before and during
pregnancy. Pre-pregnancy body mass index (BMI) was calculated
as pre-pregnancy weight in kilograms divided by height in meters
squared. Maternal medical records were reviewed to collect
detailed medical and clinical information including laboratory
results such as glucose concentrations from screening test and first
trimester hematocrit concentrations. We used the food frequency
questionnaire (FFQ) from the Women’s Health Initiative Clinical
Trial [20] to assess maternal dietary intake during the three-month
period that started before conception and covered the first
trimester. Participants completed FFQs at an average of 15.3
weeks gestation. Dietary intake values of nutrients, and minerals
including heme iron [21] were estimated using food composition
tables from the University of Minnesota Nutrition Coding Center
nutrient database (Nutrition Coordinating Center, Minneapolis,
MN).

Maternal non-fasting blood samples, collected in 10 mL
Vacutainer tubes at 16 weeks gestation, on average, were
protected from ultraviolet light, kept on wet ice and processed
within 20 min of blood collection. Serum decanted into cryovials
was frozen at −80°C until analysis. Serum HO-1 concentrations
were determined by HO-1 ELISA kits (Enzo Life Sciences
Plymouth Meeting, PA) in accordance with the manufacturer’s
protocol. The intra- and inter-assay coefficients of variations
of HO-1 kit had been determined to be<10%. All assays
were performed without knowledge of pregnancy outcome.

In our study settings, according to the recommendations
from the American Diabetes Association (ADA) [22], pregnant
women were screened at 24–28 weeks gestation using a 50 g 1-hour oral
glucose challenge test. Those patients who failed this screening test
(glucose ≥7.8 mmol/L or 140 mg/dL) were then followed-up
within 1–2 weeks with a 100 g, 3-h oral glucose tolerance test
(OGTT). Women were diagnosed with GDM if two or more of the
100 gram OGTT glucose levels exceeded the following thresholds
based on the ADA criteria: fasting ≥5.3 mmol/L (≥95 mg/dL);
1-hour ≥10.0 mmol/L (≥180 mg/dL); 2-hour ≥8.6 mmol/L
(≥155 mg/dL); 3-hour ≥7.8 mmol/L (≥140 mg/dL) [22].

We identified and sampled all 191 women who developed
GDM and randomly selected (N = 191) controls among women
who did not develop GDM. There were 5 GDM cases with an
inadequate volume of serum for laboratory testing, thus our final
analytical study population included 186 GDM cases and 191
non-GDM controls.

Statistical Analysis

Because the distribution of serum HO-1 concentrations was not
normally distributed (Skewness/Kurtosis tests for Normality
was<0.01 in either GDM cases or controls), we tested differences
in median serum HO-1 concentrations between cases and controls
using the Mann-Whitney U test. Spearman correlation coefficients
were examined between serum HO-1 concentrations with
maternal characteristics, selected FFQ variables, plasma glucose
concentrations after the 50-gram oral glucose challenge screening
test, and first trimester hematocrit concentrations. First, we
categorized serum HO-1 concentrations according to quartiles
determined by the distribution among controls. We used logistic
regression models to estimate odds ratios (OR) and 95%
confidence interval (95% CI). We also explored the possibility of
a nonlinear relation between HO-1 and GDM odds, using
a cubic spline function with 3 knots [23]. S-Plus (version 6.1, release 2, Insightful Inc. Seattle,
WA) was used for these analyses. We evaluated the covariates in
Table 1 as potential confounders and included in the final model
those that altered unadjusted ORs by 10% or more and a prior,
including maternal age, race/ethnicity, family history of diabetes
and pre-pregnancy body mass index. All analyses except the GAM
procedure) were performed using Statas 9.0 (Stata, College Station,
TX). All reported confidence intervals were calculated at the 95%
level and all reported p-values are two-tailed.
Results

Sociodemographic, medical, and behavioral characteristics of the study population, according to case status, are presented in Table 1. Early pregnancy serum HO-1 concentrations were significantly lower among women who developed GDM as compared with women who did not (median 1.60 vs. 1.80 ng/mL, respectively, p-value = 0.002 (Table 1 and Figure 1).

Among controls, serum HO-1 concentrations were inversely correlated with dietary heme iron intake and red/processed meat intake (Spearman ρ = –0.27 with p-value<0.001; ρ = –0.18 with p-value = 0.02, respectively) (Table 2). Serum HO-1 was also inversely correlated with post-load plasma glucose concentrations and first trimester hematocrit levels within the control group (Spearman ρ = –0.16 with p-value = 0.03; ρ = –0.18 with p-value = 0.02, respectively). However, similar correlations were not observed among GDM cases.

The unadjusted ORs of GDM decreased across increasing quartiles of maternal serum HO-1 (p-value for linear trend = 0.02) (Table 3). After adjustment for maternal age, non-white race, family history of diabetes and pre-pregnancy BMI, early-pregnancy HO-1 concentrations were inversely associated with GDM risk, though the association was no longer statistically significant. Of note, the adjusted OR for the highest vs. lowest quartile for HO-1 concentrations was 0.58 (95% CI 0.30–1.11).

We also compared women with the highest concentrations of serum HO-1 concentrations (i.e., those with values in the upper decile of the distribution of HO-1 concentrations among controls)
to these women with the lowest HO-1 concentrations (i.e., women in the lowest quartile). After adjusting for confounders, extremely high HO-1 (top decile 3.05 ng/mL) was associated with a 74% decreased odds of GDM (OR = 0.26; 95% CI 0.09–0.77). This finding corresponds to the observation from our flexible dose response model (i.e., from GAM models) and related splines (Figure 2), where we noted an inverse association of GDM risk with increasing HO-1 concentrations, particularly when concentrations exceeded 3 ng/mL (Figure 2).

Discussion

To the best of our knowledge, the current study is the first to examine the relationship between circulating HO-1 concentrations and GDM risk. Furthermore, our study is particularly significant because the relationship was assessed prospectively. We found that an elevated serum HO-1 concentration in early pregnancy is associated with decreased risk of subsequent GDM.

As an inducible stress protein, HO-1 is widely accepted to be a highly sensitive and reliable marker of oxidative stress [12]. Up-regulation of HO-1 protein is thought to represent an attempt to minimize cellular injury. Notably, cells isolated from HO-1 knockout mice demonstrate lower resistance to oxidative stress [24]. And it was further confirmed in a typical two-allele HO-1 deficiency human case where enhanced endothelial injury was observed following oxidative stress [25]. A recent report also noted a parallel increase in HO-1 protein levels, HO activity, and the levels of serum adiponectin, a protein hormone that is known to modulate a number of metabolic processes, including improved insulin sensitivity and reduced adiposity [26]. The report that HO-1 regulates mitochondrial transport carriers and function [27] suggests that HO-1, by activating Bcl-2 and Bcl-xL, prevents cytochrome c release and activation of caspases. Collectively, these results suggest that it may be possible to favorably modulate the balance between pro- and anti-apoptotic mechanisms. The HO-1 system has been shown to regulate T-cell proliferation and immune response [28], [29]. A reduction in antioxidant reserves has been related to endothelial cell dysfunction in diabetes [30]. Increased levels of HO-1, through gene transfer in hyperglycemic rats, resulted in a decrease of endothelial cell sloughing [31]. Delivery of the human HO-1 gene to endothelial cells attenuated glucose-mediated oxidative stress, DNA damage, and cell death [32].

Few studies reported that circulating levels of HO-1 were increased in glucose intolerance [17] or T2DM [18] as well as other chronic diseases related to oxidative stress such as silicosis [33], secondary hemophagocytic syndrome (HPS) or adult-onset Still’s disease [34] and Parkinson’s disease [35]. However, Mateo reported that median serum levels of HO-1 did not differ significantly between Alzheimer’s disease patients and controls [35]. Most of the studies were cross-sectional. For example, our results were different from what Bao observed in patients with impaired glucose regulation or T2DM from 2 case control studies. Bao and his colleague [17] found plasma HO-1 concentration was significantly increased among non-diabetic individuals with impaired-glucose-regulation compared with healthy controls (1.34 (0.81–2.29) ng/mL versus 0.98 (0.56–1.55) ng/mL, P<0.001). In an earlier study, Bao reported that plasma HO-1 concentrations were significantly increased in newly diagnosed-T2DM cases compared to controls (median (IQR): 2.42 (1.39–3.90) ng/mL in cases vs. 1.11 (0.63–2.06) ng/mL in controls, P<0.001). The ORs for incident T2DM in the highest quartile of plasma HO-1 concentrations, compared with the lowest, was 8.23 (95% CI 5.55–12.21; P for trend<0.001) [18]. It needs to be noted, however, that these studies assessed serum HO-1 after or at the time of the clinical diagnosis of T2DM. Consequently, given the cross sectional nature of their study design, it is not possible to clarify the temporal relationship of altered HO-1 synthesis and release with the development of T2DM.

In the current study, we observed that increased serum HO-1 concentrations were associated with low dietary heme iron intake/red meat consumption among women who were euglycemic throughout pregnancy; however, this negative correlation was disrupted in women who subsequently developed GDM. High levels of dietary heme iron intake during the pre-pregnancy,
Table 2. The Spearman correlation coefficients (CC) between serum HO-1 concentrations and other biomarkers as well as maternal characteristics.

<table>
<thead>
<tr>
<th>Spearman CC (Non-Parametric Correlations)</th>
<th>GDM (n = 186)</th>
<th>Controls (n = 191)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>P-value</td>
</tr>
<tr>
<td>Maternal age (years)</td>
<td>−0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Maternal pre-pregnancy BMI (kg/m²)</td>
<td>−0.11</td>
<td>0.15</td>
</tr>
<tr>
<td>Maternal gestational age at blood collection (weeks)</td>
<td>−0.08</td>
<td>0.28</td>
</tr>
<tr>
<td>Time from last meal to blood collection (hours)</td>
<td>0.08</td>
<td>0.27</td>
</tr>
<tr>
<td>Gestational age at delivery (weeks)</td>
<td>0.05</td>
<td>0.51</td>
</tr>
<tr>
<td>Infant birth weight (kg)</td>
<td>0.01</td>
<td>0.85</td>
</tr>
<tr>
<td>Available valid FFQ (calories: 500–3500 kcal/day)</td>
<td>N = 155</td>
<td></td>
</tr>
<tr>
<td>Total energy intake (kcal/day)</td>
<td>−0.08</td>
<td>0.35</td>
</tr>
<tr>
<td>Dietary heme iron intake (mg/day)</td>
<td>−0.09</td>
<td>0.27</td>
</tr>
<tr>
<td>Dietary nonheme iron intake (mg/day)</td>
<td>−0.09</td>
<td>0.29</td>
</tr>
<tr>
<td>Dietary total iron intake (mg/day)</td>
<td>−0.09</td>
<td>0.29</td>
</tr>
<tr>
<td>Red/processed meat intake (serving/day)</td>
<td>0.03</td>
<td>0.72</td>
</tr>
<tr>
<td>Vegetable and fruit intake (servings/day)</td>
<td>0.009</td>
<td>0.91</td>
</tr>
<tr>
<td>Dietary fiber intake (mg/day)</td>
<td>−0.01</td>
<td>0.89</td>
</tr>
<tr>
<td>Dietary soluble fiber intake (mg/day)</td>
<td>0.03</td>
<td>0.72</td>
</tr>
<tr>
<td>Dietary insoluble fiber intake (mg/day)</td>
<td>−0.03</td>
<td>0.74</td>
</tr>
<tr>
<td>Egg intake (egg/weeks)</td>
<td>−0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>Cholesterol (mg/day)</td>
<td>−0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>First trimester hematocrit (%) (n = 340 available)</td>
<td>0.05</td>
<td>0.54</td>
</tr>
<tr>
<td>Glucose concentrations after a 50 g oral glucose challenge (mg/dL)</td>
<td>0.08</td>
<td>0.30</td>
</tr>
</tbody>
</table>

do:10.1371/journal.pone.0048060.t002

Figure 2. Relation between maternal serum HO-1 concentrations and the adjusted relative odds of gestational diabetes mellitus (GDM) (solid line), with 95% CI (dotted lines). The vertical bars along the serum HO-1 concentrations axis indicate distribution of study subjects. The estimates were adjusted by maternal age, race/ethnicity, family history of diabetes and pre-pregnancy body mass index. (Excluded 3 subjects with serum HO-1 measurements > 4 ng/mL, all are non-GDM).
do:10.1371/journal.pone.0048060.g002
Table 3. The odds ratio (ORs) and 95% confidence intervals (CI) of gestational diabetes mellitus (GDM) risk according to different levels of maternal serum HO-1 at early pregnancy.

<table>
<thead>
<tr>
<th>Serum HO-1 (ng/mL)</th>
<th>GDM (n = 186)</th>
<th>Controls (n = 191)</th>
<th>Unadjusted OR (95%CI)</th>
<th>Adjusted OR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartile 1 (<1.23)</td>
<td>55 (29.6)</td>
<td>47 (24.6)</td>
<td>1.00 (referent)</td>
<td>1.00 (referent)</td>
</tr>
<tr>
<td>Quartile 2 (1.23–1.79)</td>
<td>60 (32.2)</td>
<td>48 (25.1)</td>
<td>1.07 (0.62–1.84)</td>
<td>1.15 (0.64–2.07)</td>
</tr>
<tr>
<td>Quartile 3 (1.80–2.40)</td>
<td>42 (22.6)</td>
<td>48 (24.1)</td>
<td>0.75 (0.42–1.32)</td>
<td>0.96 (0.51–1.80)</td>
</tr>
<tr>
<td>Quartile 4 (≥2.41)</td>
<td>29 (15.6)</td>
<td>48 (25.1)</td>
<td>0.52 (0.28–0.94)</td>
<td>0.58 (0.30–1.11)</td>
</tr>
</tbody>
</table>

P for trend 0.018 0.10

Upper Decile (≥3.05) 6 (3.2) 20 (10.5) 0.26 (0.10–0.69) 0.26 (0.09–0.77)

OR and 95% CI adjusted for maternal age, race/ethnicity, family history of diabetes and pre-pregnancy body mass index.
doi:10.1371/journal.pone.0048060.t003

preconceptionally and early pregnancy periods are associated to increased GDM risk [36]. In our study, those who developed GDM had higher heme iron intake/red meat consumption (heme iron: 0.83 vs. 0.76 mg/day; red meat: 0.64 vs. 0.58 servings/day) which is consistent to previous report. And, further adjusting for iron: 0.83 vs. 0.76 mg/day; red meat: 0.64 vs. 0.58 servings/day) GDM had higher heme iron intake/red meat consumption (heme iron 0.83 vs. 0.76 mg/day) which is consistent to previous report. And, further adjusting for iron: 0.83 vs. 0.76 mg/day; red meat: 0.64 vs. 0.58 servings/day (Quartile 3 (1.80–2.40) 42 (22.6) 48 (24.1) 0.75 (0.42–1.32) 0.96 (0.51–1.80) Quartile 4 (≥2.41) 29 (15.6) 48 (25.1) 0.52 (0.28–0.94) 0.58 (0.30–1.11) P for trend 0.018 0.10 Upper Decile (≥3.05) 6 (3.2) 20 (10.5) 0.26 (0.10–0.69) 0.26 (0.09–0.77)

References

Author Contributions

Conceived and designed the experiments: CFQ MAW. Performed the experiments: KH. Analyzed the data: CFQ MAW. Contributed reagents/materials/analysis tools: MAW KH. Wrote the paper: CFQ KH DAE MAW.

