Genetic Modulation of Lipid Profiles following Lifestyle Modification or Metformin Treatment: the Diabetes Prevention Program

Citation

Published Version
doi:10.1371/journal.pgen.1002895

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10589802

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Genetic Modulation of Lipid Profiles following Lifestyle Modification or Metformin Treatment: The Diabetes Prevention Program

Toni I. Pollin1,9, Tamara Isakova2,3, Kathleen A. Jablonski3, Paul I. W. de Bakker4,5,6,7, Andrew Taylor4,8, Jarred McAteer4,8, Qing Pan3, Edward S. Horton9,10, Linda M. Delahanty9,10,11, David Altshuler4,5,8,10,12, Alan R. Shuldiner1,13, Ronald B. Goldberg4,14,15, Jose C. Florez4,8,10,16, Paul W. Franks17,18, for the Diabetes Prevention Program Research Group1

1Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, and Program in Genetics and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America, 2Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America, 3The Biostatistics Center, George Washington University, Rockville, Maryland, United States of America, 4Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America, 5Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, 6Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands, 7Department of Epidemiology, University Medical Center Utrecht, Utrecht, The Netherlands, 8Center for Human Genetic Research, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 9Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America, 10Diabetes Prevention Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 11Diabetes Clinic, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 12Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 13Genetic Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland, United States of America, 14Lipid Disorders Clinic, Division of Endocrinology, Diabetes, and Metabolism, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America, 15The Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America, 16Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America, 17Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden, 18Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America

Abstract

Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.04−1 × 10−11). Except for total HDL particles (r = −0.03, P = 0.26), all components of the lipid profile correlated with the GRS (partial R2 = 0.07−0.17, P = 5 × 10−5−1 × 10−19). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (β = 0.87, SEE ± 0.22 mg/dl/allele, P = 8 × 10−5, Pinteraction = 0.02) in the lifestyle intervention group, but not in the placebo (β = +0.20, SEE ± 0.22 mg/dl/allele, P = 0.35) or metformin (β = −0.03, SEE ± 0.22 mg/dl/allele, P = 0.90; Pinteraction = 0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (β = +0.30, SEE ± 0.012 ln nmol/L/allele, P = 0.01, Pinteraction = 0.01) but not in the placebo (β = −0.002, SEE ± 0.008 ln nmol/L/allele, P = 0.74) or metformin (β = +0.013, SEE ± 0.008 nmol/L/allele, P = 0.12; Pinteraction = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss.

Editor: David B. Allison, University of Alabama at Birmingham, United States of America

Received March 26, 2012; Accepted June 26, 2012; Published August 30, 2012

Copyright: © 2012 Pollin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health provided funding to the clinical centers and the Coordinating Center for the design and conduct of the study, and collection, management, analysis, and interpretation of the data. The Southwestern American Indian Centers were supported directly by the NIDDK and the Indian Health Service. The General Clinical Research Center Program, National Center for Research Resources, supported data collection at many of the clinical centers. Funding for data collection and participant support was also provided by the Office of Research on Minority Health, the National Institute of Child Health and Human Development, the National Institute on Aging, the Centers for Disease Control and Prevention, the Office of Research on Women’s Health, and the American Diabetes Association. Bristol-Myers Squibb and Parke-Davis provided medication. This research was also supported, in part, by the intramural research program of the NIDDK. LifeScan, Health O Meter, Hoechst Marion Roussel, Merck-Medco Managed Care, Merck, Nike Sports Marketing, Slim Fast Foods, and Quaker Oats donated materials, equipment, or medicines for concomitant conditions. McKesson BioServices, Matthews Media Group, and the Henry M. Jackson Foundation provided support services under subcontract with the Coordinating Center. The opinions expressed are those of the investigators and do not necessarily reflect the views of the Indian Health Service or other funding agencies. A complete list of centers, investigators, and staff is shown in the Acknowledgments. Genetics research in the DPP and the work reported in this manuscript was supported in part by R01 DK072041 to DA, JCF, KAJ, TIP, and ARS (PWF was an unpaid co-investigator) and by a Doris Duke Charitable Foundation Distinguished Scientist Clinical Award to DA. TI was supported by NIH grant K23DK087838. JCF is supported by a Physician Scientist Development Award by the
Introduction

Dyslipidemia is a strong risk factor for atherosclerotic heart disease [1–3], has a well-defined genetic basis [4], and is modifiable through therapeutic lifestyle changes and weight-loss interventions [5,6]. Individuals at risk for diabetes are also at high risk of cardiovascular disease [7], and individualized lifestyle intervention programs, like the one incorporated into the Diabetes Prevention Program (DPP), have a salutary effect on dyslipidemia and cardiovascular disease risk in this population. However, the cost of widespread implementation of such interventions has been highlighted as a major limitation [8] and not all benefit equally from such interventions. Identifying persons most likely to benefit from intensive lifestyle modification could provide justification for targeting this subpopulation first, making the clinical translation of findings from studies such as the DPP more feasible.

Selection of persons whose dyslipidemia is likely to respond well to lifestyle interventions or pharmacotherapy could help target resources and optimize prevention strategies. To do so requires knowledge of the underlying risk factors for the trait and knowledge of how personal characteristics interact with exercise, diet, and weight loss. Although the heritability of polygenic dyslipidemia [9–11] and its sequelae [12] have been elucidated, little is known of how lifestyle interventions modify the effects of these loci, singly or in combination, on lipid profiles. Thus, learning how a person’s genetic background modulates his or her response to therapeutic lifestyle changes and weight-loss interventions might help optimize the targeting of interventions designed to mitigate cardiovascular and metabolic disease risk.

The purpose of this study was to examine whether loci reliably associated with polygenic dyslipidemia modified the response to cardio-protective interventions in the DPP, a randomized clinical trial of intensive lifestyle modification, metformin treatment, or placebo with standard care. We hypothesized i) that the baseline lipid profiles of DPP participants would be associated with gene variants known to associate with polygenic dyslipidemia and ii) that improvement in lipemia following treatment would depend on these genetic variants. We also used NMR spectroscopy to characterize the associations of these previously reported loci with lipoprotein subfractions.

Results

Table 1 shows participant characteristics stratified by DPP treatment arm. The effects of the DPP interventions on 1 yr changes in weight [14], insulin secretion [13], beta-cell function [13], and lipid traits [29] are reported in detail elsewhere.

Individual SNP Replication

Thirty-two SNPs previously associated with triglycerides (TG), low-density lipoprotein-cholesterol (LDL-C) and/or high-density lipoprotein-cholesterol (HDL-C) levels were considered [10]. Thirty-one of these were successfully genotyped in the DPP, and two SNPs in CETP, serving as HapMap proxies (r²=0.90) for rs173539, including rs247616, were subsequently successfully genotyped, with rs247616 retained as the replacement for rs173539. Twenty-three of these 32 non-redundant SNPs replicated with their respective traits in a directionally consistent manner (P≤0.05), including 8/11 for TG, 9/14 for HDL-C and 8/11 for LDL-C. Two of the SNPs, rs12678919 and rs964184, replicated for both HDL-C and TG (Table S1).

Association of Individual SNPs with All Four Lipid Traits and Ten Lipoprotein Traits

Additionally, we evaluated the associations of the 32 lipid loci with baseline lipids and nuclear magnetic resonance (NMR)-derived lipoprotein traits [Large HDL particles, Small HDL particles, Total HDL particles, HDL size, LDL size, Total LDL particles, Small LDL particles, Total VLDL particles, Large VLDL particles, VLDL size]. Of all analyses of baseline traits, roughly one third of the tests were nominally significant associations, and 35 associations were significant after correcting for all 448 hypothesis tests; these involved 12 SNPs and 13 traits (Table S2). Interestingly, SNP rs10401969 did not replicate for LDL-C (C vs. T: β±SEM = −0.1±1.6 mg/dl, additive P=0.94), but was associated with decreased large VLDL (mean 5.43, 4.26, 4.07 mmol/L for TT, TC, CC genotypes respectively, additive P=4×10⁻⁶ and smaller VLDL size (53.18, 50.94, 49.55 nm, P=2×10⁻⁶). SNP rs7679 did not quite reach nominal significance for decreased HDL-C (C vs. T: β±SEM = −0.016±0.009 mg/dl, additive P=0.07), but was very strongly associated with increased small HDL particle number (17.93, 20.14 and 21.89 µmol/L for TT, CT and CC genotypes respectively; additive P=4×10⁻¹⁰) and consequently total HDL particle number (34.07, 35.10 and 36.76 µmol/L, P=2×10⁻⁷).

Association of Genetic Risk Score (GRS) with Baseline Lipid and Lipoprotein Traits

A lipid GRS was calculated for each individual by first replacing missing genotypes with ethnicity-specific imputed means and then adding up the number of risk alleles possessed for each of the 32 independent SNPs. Of the 32 SNPs evaluated, 11 were originally associated in the meta-analysis with LDL cholesterol, 10 with HDL cholesterol only, seven with triglycerides only, and four with both HDL cholesterol and triglycerides. A risk allele was defined as one associated with increased TG or LDL-C or decreased HDL in the original meta-analysis [10]. After adjustment for age, sex, ethnicity, and BMI, the GRS was significantly associated with all baseline traits evaluated except total HDL particles (P=0.26, Table 2). The following are P-values for the effects of the GRS, as a quantitative covariate, and geometric means for the upper and
Author Summary

The study included 2,993 participants from the Diabetes Prevention Program, a randomized clinical trial of intensive lifestyle intervention, metformin treatment, and placebo control. We examined associations between 32 gene variants that have been reproducibly associated with dyslipidemia and concentrations of lipids and NMR lipoprotein particle sizes and numbers. We also examined whether genetic background influences a person’s response to cardioprotective interventions on lipid levels. Our analysis, which focused on determining whether common genetic variants impact the effects of cardioprotective interventions on lipid and lipoprotein particle size, shows that in persons with a high genetic risk score the benefit of intensive lifestyle intervention on LDL and small LDL particle levels is substantially diminished; this information may be informative for the targeted prevention of cardiovascular disease. A unit (allele) GRS increase was associated with higher residual ln-small LDL particles in the lifestyle group (P=0.087, SEE=0.0.022 mg/dl, P=8 x 10^-10) but not in the metformin or placebo group, suggesting that the lifestyle intervention was less effective at lipid-lowering in those with a higher genetic burden. A unit (allele) GRS increase was associated with higher residual LDL-C levels in the lifestyle group (β=0.087, SEE=0.022 mg/dl, P=8 x 10^-10) but not in the metformin (β=0.03, SEE=0.022 mg/dl, P=0.90) or placebo (β=0.20, SEE=0.22 mg/dl, P=0.35) groups (Figure 1). Similarly, the GRS was associated with higher residual ln-small LDL particles in the lifestyle group (β=0.030, SEE=0.0012 ln nmol/mL, P=0.01), but not in the metformin (β=0.013, SEE=0.0088 ln nmol/mL, P=0.0001).

<table>
<thead>
<tr>
<th>Trait</th>
<th>Placebo</th>
<th>Metformin</th>
<th>Lifestyle</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>947</td>
<td>939</td>
<td>962</td>
</tr>
<tr>
<td>Age</td>
<td>49 (43–57)</td>
<td>50 (44–57)</td>
<td>49 (42–58)</td>
</tr>
<tr>
<td>Sex (M:F [% male])</td>
<td>290:657 (31% male)</td>
<td>321:618 (34% male)</td>
<td>308:654 (32% male)</td>
</tr>
<tr>
<td>White/AA/Hisp/Asian/Al: n (%)</td>
<td>515(54)/207/22/157/17/38(4)/30(3)</td>
<td>534(57)/194/21/155/17/33/4/23(3)</td>
<td>517(54)/191/20/173/18/53/6/28/3</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>33.4 (29.2–38.3)</td>
<td>33.0 (29.1–37.7)</td>
<td>32.8 (29.0–37.3)</td>
</tr>
<tr>
<td>Waist Circumference (cm)</td>
<td>104.4 (95–114.7)</td>
<td>104.3 (94.7–114.0)</td>
<td>103.8 (95.0–113.6)</td>
</tr>
<tr>
<td>Total Cholesterol (mg/dl)</td>
<td>201 (178–227)</td>
<td>202 (177–225)</td>
<td>202 (179–227)</td>
</tr>
<tr>
<td>LDL-C (mg/dl)</td>
<td>123 (102–147)</td>
<td>123 (103–145)</td>
<td>124 (102–145)</td>
</tr>
<tr>
<td>HDL-C (mg/dl)</td>
<td>43 (37–50)</td>
<td>44 (38–52)</td>
<td>44 (37–53)</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>146 (102.5–205.5)</td>
<td>135 (97–195)</td>
<td>136 (94–200)</td>
</tr>
<tr>
<td>Large HDL particles (umol/L)</td>
<td>3.3 (2.1–5.5)</td>
<td>3.4 (2.2–5.3)</td>
<td>3.3 (2.2–5.4)</td>
</tr>
<tr>
<td>Small HDL particles (umol/L)</td>
<td>19 (16.1–22.2)</td>
<td>19.2 (16.3–22.6)</td>
<td>18.9 (15.8–21.8)</td>
</tr>
<tr>
<td>Total HDL particles (umol/L)</td>
<td>34.1 (30.4–38.5)</td>
<td>34.7 (31.2–38.9)</td>
<td>33.95 (30.2–38.1)</td>
</tr>
<tr>
<td>HDL size (nm)</td>
<td>8.8 (8.6–9.1)</td>
<td>8.8 (8.6–9.1)</td>
<td>8.8 (8.6–9.1)</td>
</tr>
<tr>
<td>LDL size (nm)</td>
<td>0.263 (0.237–0.289)</td>
<td>0.263 (0.237–0.289)</td>
<td>0.263 (0.237–0.289)</td>
</tr>
<tr>
<td>Total LDL particles (nmol/mL)</td>
<td>1369 (1140–1629)</td>
<td>1367 (1108–1607)</td>
<td>1332 (1123–1591)</td>
</tr>
<tr>
<td>Small LDL particles (nmol/mL)</td>
<td>788 (517–1059)</td>
<td>779 (525–1041)</td>
<td>764 (520–1040)</td>
</tr>
<tr>
<td>Total VLDL particles (nmol/mL)</td>
<td>63.3 (43.9–88.1)</td>
<td>62.4 (42.6–86.2)</td>
<td>63.2 (42.1–88.5)</td>
</tr>
<tr>
<td>Large VLDL particles (nmol/mL)</td>
<td>5.4 (2.8–10.8)</td>
<td>6.1 (2.8–11)</td>
<td>5.9 (2.7–10.8)</td>
</tr>
<tr>
<td>VLDL size (nm)</td>
<td>52.2 (47.0–58.9)</td>
<td>53.0 (46.9–59.4)</td>
<td>52.8 (47.0–59.0)</td>
</tr>
</tbody>
</table>

Table 1. Baseline Characteristics of the Study Population by Treatment Group [Quantitative Traits Are Shown as Median (Interquartile Range)].
unobserved functional variants, resulting in some degree of
may be underestimated in our paper. This is because the majority
Detection, Evaluation, and Treatment of High Blood Cholesterol
mutation in LDLR, where lifestyle intervention combined with
also facilitate patient-provider dialogue, owing to improved
intense lifestyle interventions, or aggressive pharmaceutical inter-
these persons may benefit from more frequent surveillance, more
GRS does not negate the clinical relevance of our findings in terms
LDL-C and small LDL particle levels after one year of
placebo or metformin groups, the GRS was associated with higher
trait, which in the context of clinical use may benefit from sub-
We also observed that within the lifestyle group but not the
the genetic burden on these traits cannot be completely overcome by lifestyle modification. However, even those with the greatest genetic burden benefit to a limited extent from lifestyle intervention in terms of LDL-C
reduction (Figure 1A), although the effect on LDL particle size
reduction is almost completely ablated (Figure 1B). Even a true
residual effect of lifestyle on LDL-C in people with the highest
GRS does not negate the clinical relevance of our findings in terms of
potential to facilitate tailored treatment decisions. Seeing less of
an effect of lifestyle in a particular patient subgroup indicates that
these persons may benefit from more frequent surveillance, more
intensive lifestyle interventions, or aggressive pharmaceutical inter-
ventions to supplement lifestyle interventions. Conversely, knowing
that lifestyle intervention is likely to be adequate in persons with
the lowest genetic burden may maximize the patient’s diet adherence and potentially reduce the costs and side effects associated with prescribing lipid-lowering medications unnecessarily. The availability of information on genetic background may also facilitate patient-provider dialogue, owing to improved diagnostic accuracy. This is similar to the strategy used to control cholesterol levels in patients with a monogenic disorder such as familial hypercholesterolemia due to a severe loss of function mutation in LDLR, where lifestyle intervention combined with pharmacotherapy is needed to bring LDL-C levels within an acceptable range (Third Report of the NCEP-ATP III on the Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults).

It is also important to bear in mind that the interaction effects may be underestimated in our paper. This is because the majority of SNPs included in the GRS are likely to be imperfect proxies for unobserved functional variants, resulting in some degree of genotype misclassification. Moreover, all 32 SNPs were included within the GRS, even though not all SNPs convey statistically significant effects in the DPP and do not individually modify the effects of the interventions. A parsimonious GRS including only those SNPs that are statistically significant in the DPP would likely be overfitted to our data, resulting in biased conclusions about the strength and magnitude of gene x treatment interactions.

Dyslipidemia is a long-established risk factor for CVD [1–3]. Thus, the primary and secondary prevention of atherosclerotic CVD often involves intervening on lipid levels [16]. Lifestyle interventions [17] and metformin treatment [18] that result in weight loss have the potential to improve lipid profiles; nevertheless, as long recognized [19], changes in lipid profiles following interventions vary greatly from one person to the next. Some of the variability in response to interventions may be because genotypes modulate the effects of preventive interventions on lipid homeostasis and CVD risk [20].

Of the many known dyslipidemia-predisposing loci discovered so far [10], only a handful have been the focus of studies testing hypotheses of gene x treatment interactions [21–28], and most of these studies are small (N<150), non-randomized trials of dietary intervention. Although some of these studies have focused on genomic regions that are confirmed to harbor dyslipidemia-predisposing loci, such as APOB, CETP, LIPC and LPL [21,22,24–
sh]F, no exhaustive studies testing whether GWAS-discovered loci [10,29] modify response to treatments have been previously reported.

The GRS used in this study attenuated the impact of the DPP lifestyle intervention on LDL levels and small LDL particle number. This suggests that a genetic predisposition to high LDL levels and more small LDL particles is difficult to overcome through lifestyle intervention alone. These data also unmask the effects of an underlying genetic defect of LDL levels and small LDL particles found in individuals with a high genetic burden, which becomes visible when adiposity and blood TG content are reduced through lifestyle intervention. This information may justify the combination of lifestyle and lipid lowering drug treatment from the outset in these individuals, rather than the usual approach of stepping from lifestyle to drug therapy when the former fails.

The DPP lifestyle intervention prioritized weight loss, daily fat gram intake and physical activity goals over intake of saturated fat, cholesterol, viscous fiber and plant stanols/sterols; this may have influenced the nature of the changes in the lipid profile. When compared to the metformin and placebo groups, the lifestyle intervention group reported improved physical activity levels and reductions in calorie intake, resulting in significantly greater weight losses [31], each of which has major influences on TG levels. The lifestyle intervention group reported significantly greater reductions in percent calories from total fat and saturated fat than the metformin and placebo groups [31]. However, they did not, on average, achieve the National Cholesterol Education Program target for saturated fat intake and did not focus on the other therapeutic lifestyle changes, such as the additional dietary changes mentioned above, that often have the largest effects on LDL concentrations. The ethnic diversity of the DPP cohort facilitates the generalizability of results, but may also lead to confounding by population stratification in genetic analyses. However, Sensitivity analyses in the European White sub-cohort of the DPP yielded comparable effect estimates to the results obtained in the entire DPP genetics cohort (results for baseline traits shown in Table S3), supporting the conclusion that confounding by population stratification is unlikely to explain our findings.

Discussion

In the present study, the majority of previously associated SNPs replicated for baseline lipid traits, and there was a statistically significant relationship between the GRS and the vast majority of standard lipid traits and NMR lipoprotein subfractions. Importantly, in several cases the evidence for association with NMR subfractions was much stronger than for the original standard lipid trait, which may be owing to the relative proximity of the subfractions to the genetic loci. For example, SNP rs7679, originally associated with total HDL-C levels in previous GWASs, in the DPP was not significantly associated with HDL-C (P = 0.07) but was strongly associated with small HDL particle levels (P = 4 x 10^-18). This SNP is near PLTP, encoding phospholipid transfer protein, a molecule directly influencing HDL particle size [14]. Such findings extend our understanding of lipid biology and suggest that, compared to standard lipid levels, measurements of lipoprotein subfractions may provide a more effective way of capturing genetically influenced risk. This is particularly important, as recent studies have shown that HDL-C is a heterogeneous trait, which in the context of clinical use may benefit from sub-
stratification by genotype [15].

It is also important to bear in mind that the interaction effects may be underestimated in our paper. This is because the majority of SNPs included in the GRS are likely to be imperfect proxies for unobserved functional variants, resulting in some degree of
Table 2. Association of 32-SNP GRS with Baseline Lipid and Lipoprotein Traits (n=2,843).

<table>
<thead>
<tr>
<th>Trait</th>
<th>Q1 (22–33*)</th>
<th>Q2 (33–35*)</th>
<th>Q3 (35–37*)</th>
<th>Q4 (37–44*)</th>
<th>%diff**</th>
<th>Partial r*</th>
<th>Beta±SE/unit</th>
<th>p-value***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chol (mg/dl)</td>
<td>195 (192–197)</td>
<td>199 (196–202)</td>
<td>201 (199–204)</td>
<td>206 (204–209)</td>
<td>6%</td>
<td>0.12</td>
<td>+0.007±0.001</td>
<td>4×10⁻¹¹</td>
</tr>
<tr>
<td>LDL-C (mg/dl)</td>
<td>121 (119–123)</td>
<td>124 (122–127)</td>
<td>126 (124–129)</td>
<td>129 (127–132)</td>
<td>7%</td>
<td>0.11</td>
<td>+1.01±0.19</td>
<td>9×10⁻⁸</td>
</tr>
<tr>
<td>HDL-C (mg/dl)</td>
<td>47 (47–48)</td>
<td>46 (45–46)</td>
<td>45 (44–46)</td>
<td>43 (42–44)</td>
<td>9%</td>
<td>–0.15</td>
<td>–0.011±0.001</td>
<td>1×10⁻⁵</td>
</tr>
<tr>
<td>TG (mg/dl)</td>
<td>127 (123–131)</td>
<td>140 (135–145)</td>
<td>146 (141–152)</td>
<td>160 (153–166)</td>
<td>26%</td>
<td>0.14</td>
<td>+0.026±0.003</td>
<td>4×10⁻¹⁹</td>
</tr>
<tr>
<td>LDL size (mm)</td>
<td>0.269 (0.267–0.271)</td>
<td>0.264 (0.262–0.266)</td>
<td>0.260 (0.258–0.262)</td>
<td>0.256 (0.254–0.258)</td>
<td>5%</td>
<td>–0.17</td>
<td>–0.0059±0.0007</td>
<td>1×10⁻¹⁹</td>
</tr>
<tr>
<td>Total VLDL particles (nmol/L)</td>
<td>53 (51–55)</td>
<td>59 (56–61)</td>
<td>62 (59–65)</td>
<td>67 (64–71)</td>
<td>26%</td>
<td>0.17</td>
<td>+0.027±0.004</td>
<td>6×10⁻¹⁴</td>
</tr>
<tr>
<td>Large VLDL particles (nmol/L)</td>
<td>4.21 (3.91–4.54)</td>
<td>4.93 (4.54–5.35)</td>
<td>5.87 (5.37–6.42)</td>
<td>6.57 (5.99–7.2)</td>
<td>56%</td>
<td>0.15</td>
<td>+0.052±0.057</td>
<td>1×10⁻⁴</td>
</tr>
<tr>
<td>Total LDL particles (nmol/L)</td>
<td>1262 (1234–1292)</td>
<td>1304 (1272–1337)</td>
<td>1345 (1308–1382)</td>
<td>1412 (1373–1453)</td>
<td>12%</td>
<td>0.13</td>
<td>+0.013±0.002</td>
<td>2×10⁻¹⁰</td>
</tr>
<tr>
<td>Small LDL particles (nmol/L)</td>
<td>543 (511–577)</td>
<td>621 (581–664)</td>
<td>703 (654–756)</td>
<td>743 (689–801)</td>
<td>37%</td>
<td>0.17</td>
<td>+0.037±0.005</td>
<td>2×10⁻¹¹</td>
</tr>
<tr>
<td>Large HDL particles (nmol/L)</td>
<td>3.68 (3.52–3.86)</td>
<td>3.31 (3.15–3.48)</td>
<td>3.21 (3.04–3.39)</td>
<td>2.98 (2.82–3.15)</td>
<td>19%</td>
<td>–0.15</td>
<td>–0.023±0.004</td>
<td>2×10⁻⁸</td>
</tr>
<tr>
<td>Small HDL particles (nmol/L)</td>
<td>18.10 (17.21–18.49)</td>
<td>18.42 (17.99–18.85)</td>
<td>18.57 (18.1–19.05)</td>
<td>19.17 (18.67–19.69)</td>
<td>6%</td>
<td>0.08</td>
<td>+0.007±0.002</td>
<td>0.0005</td>
</tr>
<tr>
<td>HDL size (mm)</td>
<td>8.90 (8.87–8.93)</td>
<td>8.87 (8.83–8.9)</td>
<td>8.83 (8.8–8.87)</td>
<td>8.82 (8.78–8.85)</td>
<td>1%</td>
<td>–0.07</td>
<td>–0.001±0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>VLDL size (nm)</td>
<td>51.84 (51.21–52.48)</td>
<td>52.34 (51.66–53.04)</td>
<td>53.65 (52.88–54.43)</td>
<td>53.86 (53.07–54.66)</td>
<td>4%</td>
<td>0.10</td>
<td>+0.007±0.0011</td>
<td>1×10⁻⁵</td>
</tr>
<tr>
<td>Total HDL particles (nmol/L)</td>
<td>34.62 (34.17–35.07)</td>
<td>34.19 (33.71–34.68)</td>
<td>34.52 (33.99–35.06)</td>
<td>34.17 (33.63–34.73)</td>
<td>1%</td>
<td>–0.03</td>
<td>–0.003±0.0012</td>
<td>0.26</td>
</tr>
</tbody>
</table>

*Quartiles were assigned separately in each ethnic group, leading to slight overlap in quartile ranges of number of risk alleles. Traits are age-, sex-, ethnicity- and BMI-adjusted geometric means and 95% confidence intervals, except LDL-C, for which arithmetic mean and 95% confidence interval are shown. Ethnic specific quartile upper limits are 32, 34, 36, 44 alleles for both Whites and African Americans, 32, 35, 37, 43 alleles for Hispanics, 32, 35, 37, 42 alleles for Asians/Pacific Islanders and 33, 34, 36, 40 alleles for American Indians.

**Percent difference between Q4 and Q1 in reference to Q1.

***Partial r and p-value based on analysis of GRS as a quantitative covariate with adjustment for age, sex, ethnicity and BMI.

doi:10.1371/journal.pgen.1002895.t002
Table 3. Association of 32-SNP GRS with Baseline-Adjusted One-Year Lipid and Lipoprotein Traits (n = 2,686).

<table>
<thead>
<tr>
<th>Trait Placebo</th>
<th>Metformin</th>
<th>p</th>
<th>ILS</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trait</td>
<td>GRS±SE</td>
<td>GRS±SE</td>
<td>GRSxMet</td>
<td>GRS±SE</td>
</tr>
<tr>
<td>n</td>
<td>895</td>
<td>884</td>
<td>–</td>
<td>907</td>
</tr>
<tr>
<td>Chol (mg/dl)</td>
<td>+0.001±0.001</td>
<td>–0.0002±0.0012</td>
<td>0.42</td>
<td>+0.004±0.001</td>
</tr>
<tr>
<td>LDL-C (mg/dl)</td>
<td>+0.20±0.22</td>
<td>–0.03±0.22</td>
<td>0.64</td>
<td>+0.87±0.22</td>
</tr>
<tr>
<td>HDL-C (mg/dl)</td>
<td>–0.002±0.001</td>
<td>–0.001±0.001</td>
<td>0.78</td>
<td>–0.001±0.002</td>
</tr>
<tr>
<td>TG (mg/dl)</td>
<td>+0.008±0.004</td>
<td>+0.004±0.004</td>
<td>0.50</td>
<td>+0.005±0.004</td>
</tr>
<tr>
<td>Total LDL particles (nmol/L)</td>
<td>–0.004±0.009</td>
<td>–0.0022±0.0009</td>
<td>0.17</td>
<td>–0.0024±0.0009</td>
</tr>
<tr>
<td>Large VLDL particles (nmol/L)</td>
<td>–0.003±0.0058</td>
<td>+0.0077±0.0054</td>
<td>0.49</td>
<td>+0.0142±0.0059</td>
</tr>
<tr>
<td>Total LDL particles (nmol/L)</td>
<td>–0.0028±0.0027</td>
<td>+0.0013±0.0027</td>
<td>0.34</td>
<td>+0.0035±0.0030</td>
</tr>
<tr>
<td>Large HDL particles (μmol/L)</td>
<td>+0.014±0.006</td>
<td>–0.011±0.006</td>
<td>0.90</td>
<td>–0.009±0.006</td>
</tr>
<tr>
<td>Small HDL particles (μmol/L)</td>
<td>+0.001±0.003</td>
<td>+0.001±0.003</td>
<td>0.56</td>
<td>+0.001±0.006</td>
</tr>
<tr>
<td>Small LDL particles (μmol/L)</td>
<td>+0.002±0.008</td>
<td>+0.013±0.008</td>
<td>0.24</td>
<td>+0.030±0.012</td>
</tr>
<tr>
<td>HDL size (nm)</td>
<td>–0.0004±0.0004</td>
<td>–0.0009±0.0004</td>
<td>0.38</td>
<td>–0.0011±0.0005</td>
</tr>
<tr>
<td>VLDL size (nm)</td>
<td>–0.0005±0.00163</td>
<td>+0.00015±0.00169</td>
<td>0.97</td>
<td>–0.00096±0.00189</td>
</tr>
<tr>
<td>Total HDL particles (μmol/L)</td>
<td>+0.003±0.0015</td>
<td>–0.0021±0.0016</td>
<td>0.36</td>
<td>–0.0010±0.0017</td>
</tr>
</tbody>
</table>

All traits except LDL-C ln-transformed prior to analysis and presentation of beta coefficients and standard errors. Treatment-specific results in bold indicate p≤0.05; bold italics indicate p<0.01; underlined bold italics indicate p<0.001. doi:10.1371/journal.pgen.1002895.t003

Interestingly, no significant interaction was observed between the GRS and other biochemical components of the lipid profile in the present study. It is important to bear in mind, however, that despite being the largest clinical trial of its kind, the DPP is only moderately powered to detect gene×treatment interactions [32]; it is likely, therefore, that gene×treatment interactions that are small in magnitude will have been overlooked here. Moreover, during the course of writing this paper, many smaller impact lipid loci have been discovered [9,11]. Thus, it is possible that with a larger sample size and the inclusion of some or all of these additional loci, we may have discovered interaction effects on other lipid traits.

In summary, we have shown that common genetic loci that influence polygenic dyslipidemia also modify the effects of clinical interventions designed to mitigate cardiovascular and metabolic risk. This report is the first comprehensive effort to examine validated lipid loci within the context of a large randomized clinical trial. The findings of this study may facilitate the implementation of complex trait genetics into the clinical setting.

Methods

Participants

The DPP was a multi-center randomized controlled trial that examined the effects of metformin or intensive lifestyle modification on the incidence of type 2 diabetes [33,34]. Briefly, overweight persons with elevated but non-diabetic fasting and post-challenge glucose levels were randomized to receive placebo, metformin (850 mg twice daily) or a program of intensive lifestyle modification. The lifestyle intervention was designed to achieve ~150 min/wk of physical activity and ~7% weight loss via focus on daily fat gram goals. Fat gram goals were based on initial weight and 25% of calories from fat using a calorie level estimate to produce a weight loss of ~0.5–1 kg/wk. The principal endpoint was the development of diabetes by confirmed semi-annual fasting plasma glucose or annual oral glucose tolerance testing (OGTT). Other phenotypes, such as changes in weight, waist circumference, lipids, insulin and glucose, were also ascertained. Written, informed consent was obtained from each participant, and each of the 27 DPP centers obtained institutional review board approval prior to initiation of the study protocol. A total of 2,993 participants in the placebo, lifestyle and metformin groups had DNA available and provided consent for genetic analysis. Individuals taking lipid lowering medications at baseline (n = 145) were excluded from all analyses.

Measurements

All participants fasted for ≥12 hrs the night before blood was drawn from an antecubital vein. Standard blood lipid measurements (triglyceride [TG], total cholesterol, HDL-C, calculated LDL-C) were performed at the DPP central biochemistry laboratory. TG and total cholesterol levels were measured using enzymatic methods standardized to the Centers for Disease Control and Prevention reference methods [35]. HDL fractions for cholesterol analysis were obtained by the treatment of whole plasma with dextran sulfate Mg2+ [36]. LDL cholesterol was calculated by the Friedewald equation [37]. In participants with TGs>4.5 mmol/l, the lipoprotein fractions were separated using preparative ultracentrifugation of plasma by β quantification [38]. Lipoprotein subclass particle concentrations and average VLDL, LDL, and HDL particle diameters were measured by NMR spectroscopy at LipoScience, Inc (Raleigh, NC) with modification of existing methods [39].

Genotyping

Thirty-two SNPs previously associated with lipid concentrations in GWAS meta-analyses [10] were selected. DNA was extracted from peripheral blood leukocytes using standard methods. Genotyping was performed by allele-specific primer extension of multiplex amplified products and detection using matrix-assisted laser desorption ionization time-of-flight mass spectrometry on a Sequenom iPLEX platform [40]. The mean genotyping success
incorporate all individuals in the analysis, including those assigned a risk allele if it was associated with higher TG across ethnicities) prior to score calculation. First, after coding the previously reported associations of SNPs with baseline traits and evaluating the association of the individual SNPs with NMR lipoprotein particle sizes and numbers, measurements were compared across genotypic groups by ANCOVA (general model, 2 df test for three possible genotypes), and evidence for an additive effect of genotype was also evaluated using the measured genotype approach, in which each genotype was assigned a value of 0, 1 or 2 according to the number of minor alleles. Analyses of baseline traits were adjusted for age, sex, self-reported ethnicity (to minimize confounding due to potential differences in both allele frequency and lipid traits across ethnicities) and BMI. For the individual SNP analyses, the Bonferroni-corrected P-value for significance was set at \(P < 0.0001 \) to account for multiple comparisons (32 SNPs \(\times \) 14 traits = 448 tests; 0.05/448 = 0.0001).

A genetic risk score (GRS) was calculated from the 32 SNPs using the direction of association from the initial association seen in the published meta-analysis [10]; for each SNP, an allele was designated as a risk allele if it was associated with higher TG or LDL-C and/or lower HDL-C. In order to be able to incorporate all individuals in the analysis, including those missing genotypes at one or more loci, a simple imputation procedure within each self-reported ethnic group was implemented (in order to account for allele frequency differences across ethnicities) prior to score calculation. First, after coding the genotype as the number of minor alleles (0, 1 or 2), an ethnicity-specific mean genotype was calculated and rounded to the nearest whole number. Missing genotypes were replaced by the appropriate rounded mean genotype [41]. We calculated a GRS for each individual by adding up the number of risk alleles for each of the 32 tested SNPs, where a risk allele was defined as one associated with increased TG or LDL-C or decreased HDL.

The GRS was then included as a quantitative independent variable in a multiple regression model for each baseline lipid/lipoprotein trait to test for association, adjusted for age, sex, self-reported ethnicity, and BMI. GRS quartiles were constructed separately within each self-reported ethnicity prior to calculating quartile-specific arithmetic means or geometric means and 95% confidence intervals. To test for interaction of the risk score with treatment, a multiple regression model was constructed with the 1 year value as the outcome variable and including GRS, lifestyle and metformin treatment and GRS \(\times \) lifestyle and GRS \(\times \) metformin terms, along with adjustments for the corresponding baseline trait, baseline age, sex and self-reported ethnicity.

Sample Size and Power

A priori power calculations are an important study-planning tool, providing relevant information on likely effect sizes and variances is accessible. It is possible to obtain a broad understanding of the power constraints of our study by extrapolating results from other experimental settings (as described in detail in [42]), but specific a priori power calculations could not be performed for the current study because reliable effect estimates and variances for tests of genotype x treatment interactions for the index genotypes and phenotypes were unavailable in the published literature at the time this study was planned. Post-hoc power calculations were not performed, as these are well known to cause bias when interpreting a study’s results [43–46]. However, confidence intervals are included in the figures, which give insight into the precision of the GRS effect estimates and hence the power to detect those estimates in the DPP cohort.

Supporting Information

Figure S1: a: Box plots for Small LDL particles measured at baseline in the placebo arm of the Diabetes Prevention Program stratified by level of the genetic risk score. b: Box plots for Small LDL particles measured at baseline in the metformin arm of the Diabetes Prevention Program stratified by level of the genetic risk score. c: Box plots for Small LDL particles measured at baseline in the lifestyle arm of the Diabetes Prevention Program stratified by level of the genetic risk score. d: Box plots for Small LDL particles measured at 1 yr follow-up in the placebo arm of the Diabetes Prevention Program stratified by level of the genetic risk score. e: Box plots for Small LDL particles measured at 1 yr follow-up in the metformin arm of the Diabetes Prevention Program stratified by level of the genetic risk score. f: Box plots for Small LDL particles measured at 1 yr follow-up in the lifestyle arm of the Diabetes Prevention Program stratified by level of the genetic risk score.

Table S1: Details of individual SNP replication results (n \(= \) 2,843). The table compares results for each of the SNP loci in published meta-analysis and elsewhere with those reported here in the DPP. Analyses and means adjusted for age, sex, ethnicity and BMI.

Table S2: Associations of individual SNPs with lipid or lipoprotein traits significant at the Bonferroni-significant \(P \) value of \(< 0.0001 \) for additive model (see Table 1 for units). Shown are geometric means for all traits except LDL-C, for which arithmetic means are shown. All analyses and means adjusted for age, sex, ethnicity and BMI.

Table S3: Associations of individual SNPs with lipid or lipoprotein traits measured at baseline in White participants from the DPP (n = 1,565). Analyses were performed to determine whether population stratification owing to the multiethnic nature of the DPP is likely to confound the associations reported in the main analyses. The comparability of the results in White DPP participants with the main analyses indicates that confounding by population stratification is unlikely to underly the main results reported here. Analyses and means adjusted for age, sex, and BMI.
Acknowledgments

The Investigators gratefully acknowledge the commitment and dedication of the participants of the DPP.

List of all DPP staff:

Pennington Biomedical Research Center (Baton Rouge, LA)

George A. Bray, MD*
Iris W. Colbert, BSN, RN, CCRC**
Catherine M. Champagne, PhD, RD
Barbara Eberhardt, RD, LDN
Frank Greenway, MD
Fonda G. Guillory, LPN
April A. Herbert, RD
Michael L. Jeffirs, LPN
Betty M. Kennedy, MPA
Jennifer C. Lovejoy, PhD
Laura H. Morris, BS
Lee E. Melancon, BA, BS
Donna Ryan, MD
Deborah A. Sanford, LPN
Kenneth G. Smith, BS, MT
Donna Ryan, MD
Deborah A. Sanford, LPN
Kenneth G. Smith, BS, MT

University of Chicago (Chicago, IL)

Kenneth S. Polonsky, MD*
Janet Tobian, MD, PhD*
David Ehrmann, MD*
Margaret J. Matulik, RN, BSN**
Bart Clark, MD
Kirsten Czech, MS
Catherine DeSandre, BA
Ruthanne Hillbrich, RD
Wylie McNabb, EdD
Ann R. Semenske, MS, RD

Jefferson Medical College (Philadelphia, PA)

Jose F. Caro, MD*
Pamela G. Watson, RN, ScD*
Barry J. Goldstein, MD, PhD*
Kellie A. Smith, RN, MSN**
Jewel Mendoza, RN, BSN**
Renee Liberoci, MPH
Constance Pepe, MS, RD
John Spanakofor, MD

University of Miami (Miami, FL)

Richard P. Donahue, PhD*
Ronald B. Goldberg, MD*
Ronald Prineas, MD, PhD*
Patricia Rowe, MPA*
René Liberoci, MPH
Paul Casanova, MSH
Ann E. Giannella, RN
Mary E. Murphy, RN, BSN, CDE**
Jocelyn Pan, BS, MPH
Maritza Quijotin
Stacy Rubtchinsky, BS
Ellen W. Seely, MD
Dana Schweizer, BSN
Donald Simonson, MD
Caren G. Solomon, MD, MPH
James Warram, MD

VA Puget Sound Health Care System and University of Washington (Seattle, WA)

Steven E. Kahn, MB, ChB*
Brenda K. Montgomery, RN, BSN, CDE**
Wilfred Fujimoto, MD
Robert H. Knopp, MD
Edward W. Lipkin, MD
Michelle Marr, BA
Dace Trence, MD

University of Tennessee (Memphis, TN)

Abbas E. Kitabchi, PhD, MD, FACP*
Mary E. Murphy, RN, MS, CDE, MBA**
William B. Applegate, MD, MPH
Michael Breyer-Ash, MD
Sandra L. Frieson, RN
Robert N. Knopp, MD
Edward W. Lipkin, MD
Michelle Marr, BA

University of Texas Health Science Center (San Antonio, TX)

Steven M. Haffner, MD, MPH*
Marla G. Montez, RN, MSHP, CDE**
Carlos Lorenzo, MD, PhD
Arleen Martinez, RN, BSN, CDE

University of Colorado (Denver, CO)

Richard F. Hamman, MD, DrPH*
Patricia V. Nash, MS**
Lisa Testaverde, MS**

Joslin Diabetes Center (Boston, MA)

Edward S. Horton, MD*
Kathleen E. Lawton, RN**
Ronald A. Arky, MD
Marybeth Bryant
Jacqueline P. Burke, BSN
Enrique Caballero, MD
Karen M. Callaham, BA
Om P. Ganda, MD
Therese Franklin
Sharon D. Jackson, MS, RD, CDE
Alan M. Jacobsen, MD
Lyn M. Kula, MD
Margaret Kocak, RN, CDE
Maureen A. Malloy, BS
Maryanne Nicosia, MS, RD
Cathryn F. Oldmixon, RN
Jocelyn Pan, BS, MPH
Maritza Quijotin
Stacy Rubtchinsky, BS
Ellen W. Seely, MD
Dana Schweizer, BSN
Donald Simonson, MD
Fannie Smith, MD
Caren G. Solomon, MD, MPH
James Warram, MD

Northwestern University's Feinberg School of Medicine (Chicago, IL)

Boyd E. Metzger, MD*
Mariana K. Johnson, MS, RN**
Catherine Behrends
Michelle Cook, MS
Marian Fitzgibbon, PhD
Mimi M. Giles, MS, RD
Deloris Heard, MA
Cheryl K.H. Johnson, MS, RN
Diane Larsen, BS
Anne Lowe, BS
Megan Lyman, BS
Thomas Pitts, MD
Renee Reinhart, RN, MS
Diane Larsen, BS
Anne Lowe, BS
Megan Lyman, BS
Thomas Pitts, MD
Renee Reinhart, RN, MS

Massachusetts General Hospital (Boston, MA)

David M. Nathan, MD*
Charles McKitrick, BSN**
Heather Turgeon, BSN**
Kathy Abbott
Ellen Anderson, MS, RD
Laurie Bissett, MS, RD
Enrico Cagliero, MD
Jose C. Florez, MD, PhD
Linda Delahanty, MS, RD
Valerie Goldman, MS, RD
Alexandra Poulos

University of California-San Diego (San Diego, CA)

Jerrold M. Olefsky, MD*
Mary Lou Carrión-Petersen, RN, BSN**
Elizabeth Barrett-Connon, MD
Steven V. Edelman, MD
Robert R. Henry, MD
Javiva Horne, RD
Simona Szeredi Janesch, BA
Diana Leos, RN, BSN
Sundar Madalair, MD
William Polonsky, PhD
Jean Smith, RN

St. Luke’s-Roosevelt Hospital (New York, NY)

F. Xavier Pi-Sunyer, MD*
Jane E. Lee, MS**
David B. Allison, PhD
Nancy J. Aronoff, MS, RD
Jill P. Cran dall, MD
Sandra T. Foo, MD
Carmen Pal, MD
Kathy Parkes, RN
Mary Beth Pena, RN
Ellen S. Rooney, BA
Gretchen E.H. VanWye, MA
Kristine A. Viscovich, ANP

Indiana University (Indianapolis, IN)

Melvin J. Prince, MD*
Susie M. Kelly, RN, CDE**
Yolanda F. Dotson, BS
Edwin S. Fineberg, MD
John C. Guarino, PhD
Angela M. Hallden
James M. Ignaut, MA
Marcia L. Jackson
Marion S. Kirkman, MD
Kieren J. Matner, MD
Beverly D. Porter, MSN
Paris J. Roach, MD
Nancy D. Rowland, BS, MS
Made lyn L. Wholey, RD

Medstar Research Institute (Washington, DC)

Robert E. Ratner, MD*
Gretchen Youssif, RD, CDE**
Sue Shapiro, RN, BSN, CCRC**
Catherine Davido-Arrage, MS, RD, LD
Geraldine Boggs, MSN, RN

University of Southern California/UCLA Research Center (Alhambra, CA)

Mohammed F. Saad, MD*
Maria Budget**
Sujata Jinaoutdi, MD**
Khan Akbar, MD
Claudia Conzuas
Perpetua Magpuri
Kathy Ngo
Amer Rassam, MD
Debra Waters
Kathy Kaphalamos

Washington University (St. Louis, MO)

Julio V. Santiago, MD* (deceased)
Samuel Dagogo-Jack, MD, MSc, FRCP, FACP*
Neil H. White, MD, CDE*
Samia Das, MS, MBA, RD, LD**
Ana Santiago, RDN**
Angela Brown, MD
Edwin Fisher, PhD
Emma Hurt, RN
Tracy Jones, RN
Michelle Kerr, RD
Lucy Ryder, RN
Cormarie Verninmont, MS, RD

Johns Hopkins School of Medicine (Baltimore, MD)

Christopher D. Sandeck, MD*
Vanessa Bradley, BA**
Emily Sullivan, MEd, RN**
Tracy Whittington, BS**
Caroline Abbas
Frederick L. Brancati, MD, MHS
Jeanne M. Clark, MD
Jeanne B. Charleston, RN, MSN
Janice Fred
Katherine Horak, RD
Dawn Jiggetts
Deloris Johnson
Hope Joseph
Kimberly Loman
Henry Mosley
Richard R. Rubin, PhD
Alafia Samuels, MD
Kerry J. Stewart, EdD
Paula Williamson

University of New Mexico (Albuquerque, NM)

David S. Schade, MD*
Karwyn S. Adams, RN, MSN**
Carolyn Johannes, RN, CDE**
Leslie F. Atler, PhD
Patrick J. Boyle, MD
Mark R. Burge, MD
Janene L. Canady, RN, CDE
Lisa Chai, RN
Yaela Gonzales, RN, MSN
Doris A. Hernandez-McGinnis
Patricia Katz, LPN
Carolyn King
Amer Rassam, MD
Sofya Rubinchik, MD
Willette Senter, RD
Debra Waters, PhD

PLOS Genetics | www.plosgenetics.org
Albert Einstein College of Medicine (Bronx, NY)
Harry Shamoon, MD*
Janet O. Brown, RN, MPH, MSN**
Elsie Adorno, BS
Liane Cox, MS, RD
Jill Cranfall, MD
Helena Duffy, MS, C-ANP
Samuel Engel, MD
Allison Friedler, BS
Crystal J. Howard-Century, MA
Stacey Kloiber, RN
Nadege Longchamp, LPN
Helen Martinez, RN, MSN, FNP-C
Dorothy Pompiti, BA
Jonathan Scheindlin, MD
Elsa Vidrine, RD, MS
Elizabeth Walker, RN, DNSc, CDE
Judith Wykle-Rosett, EdD, RD
Elise Zimmerman, RD, MS
Joel Zonszein, MD

University of Pittsburgh (Pittsburgh, PA)
Trevor Orchard, MD*
Rena R. Wing, PhD*
Gaye Koenning, MS, RD**
M. Kaye Kramer, BSN, MPH**
Susan Barr, BS
Miriam Boraz
Lisa Clifford, BS
Rebecca Calyba, BS
Marlene Frazier
Ryan Gilligan, BS
Susan Harrier, RN
Louann Harris, RN
Susan Jeffries, RN, MSN
Andrea Kriska, PhD
Qurashia Manjoo, MD
Monica Mullin, MHP, RD
Alicia Noel, BS
Amy Otto, PhD
Linda Selem, MS, RD
Cheryl F. Smith, PhD
Marie Smith, RN, BSN
Elizabeth Venditti, PhD
Valerie Weinzierl, BS
Katherine V. Williams, MD, MPH
Tara Wilson, BA

University of Hawaii (Honolulu, HI)
Richard F. Arakaki, MD*
Renee W. Latimer, BSN, MPH**
Narleen K. Baker-Ladao, BS
Ralph Beddow, MD
Lorna Dias, AA
Jillian Inouye, RN, PhD
Marjorie K. Man, MD
Kathy Mikami, BS, RD
Pharis Mohideen, MD
Sharon K. Odom, RD, MPH
Raynette U. Perry, AA

Southwest American Indian Centers (Phoenix, AZ; Shiprock, NM; Zuni, NM)
William C. Knowler, MD, DrPH*
Norman Cooeyate**
Mary A. Hoskin, RD, MS**
Carol A. Percy, RN, MS**
Kelly J. Acton, MD, MPH
Vickie L. Andre, RN, FNP
Rosalyn Barber
Shandumin Begay, MPH
Peter H. Bennett, MB, FRCP
Mary Beth Benson, RN, BSN
Evelyn C. Bird, RD, MPH
Brenda A. Brousard, RD, MPH, MBA, CDE
Marcella Chavez, RN, AS

University of Hawaii Biostatistics Center (DPP Coordinating Center Rockville, MD)
Raymond Bani, PhD*
Sarah Fowler, PhD*
Tina Brenneman**
Solone Abbe
Julie Bamud, MS
Jackie Gallagher
Sharon L. Edelstein, ScM
Yuping Gao
Kristina L. Grimes
Nizha Grover
Lori Hafifin, MS
Steve Jones
Tara L. Jones
Richard Katz, MD
John M. Lachin, ScD
Pamela Mucik
Robert Orlosky
James Rochlon, PhD
Alla Sapozhnikova
Hanna Sherif, MS
Charlotte Stimpson
Marinella Temprosa, MS
Fredricka Walker-Murray

Central Biochemistry Laboratory (Seattle, WA)
Santica Marcovina, PhD, ScD*
Kristina L. Grimes
Nisha Grover
Lori Hafifin, MS
Steve Jones
Tara L. Jones
Richard Katz, MD
John M. Lachin, ScD
Pamela Mucik
Robert Orlosky
James Rochlon, PhD
Alla Sapozhnikova
Hanna Sherif, MS
Charlotte Stimpson
Marinella Temprosa, MS
Fredricka Walker-Murray

Carotid Ultrasound
Dan O’Leary, MD*

CT Scan Reading Center
Elizabeth Stammen, MD*

Epidemiological Cardiology Research Center- Epicare (Winston-Salem, NC)
Penni Rautaharju, MD, PhD*
Ronald J. Princen, MD, PhD**
Teresa Alexander
Charles Campbell, MS
Sharon Hall
References

32. Pitman TD, Robert L. Hanson, MD, MPH3

33. Robert L. Hanson, MD, MPH3

34. Robert L. Hanson, MD, MPH3

35. Robert L. Hanson, MD, MPH3

36. Robert L. Hanson, MD, MPH3

37. Robert L. Hanson, MD, MPH3

38. Robert L. Hanson, MD, MPH3

39. Robert L. Hanson, MD, MPH3

40. Robert L. Hanson, MD, MPH3

41. Robert L. Hanson, MD, MPH3

42. Robert L. Hanson, MD, MPH3

43. Robert L. Hanson, MD, MPH3

44. Robert L. Hanson, MD, MPH3

45. Robert L. Hanson, MD, MPH3

46. Robert L. Hanson, MD, MPH3

47. Robert L. Hanson, MD, MPH3

48. Robert L. Hanson, MD, MPH3

49. Robert L. Hanson, MD, MPH3

50. Robert L. Hanson, MD, MPH3

51. Robert L. Hanson, MD, MPH3

52. Robert L. Hanson, MD, MPH3

53. Robert L. Hanson, MD, MPH3

54. Robert L. Hanson, MD, MPH3

55. Robert L. Hanson, MD, MPH3

56. Robert L. Hanson, MD, MPH3

57. Robert L. Hanson, MD, MPH3

58. Robert L. Hanson, MD, MPH3

59. Robert L. Hanson, MD, MPH3

60. Robert L. Hanson, MD, MPH3

61. Robert L. Hanson, MD, MPH3

62. Robert L. Hanson, MD, MPH3

63. Robert L. Hanson, MD, MPH3