A gp41 MPER-specific Llama VHH Requires a Hydrophobic CDR3 for Neutralization but not for Antigen Recognition

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Published Version doi:10.1371/journal.ppat.1003202

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10611671

Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
A gp41 MPER-specific Llama VHH Requires a Hydrophobic CDR3 for Neutralization but not for Antigen Recognition

David Lutje Hulsik1,9, Ying-ying Liu2,*, Nika M. Strokappe2, Simone Battella2, Mohamed El Khattabi2, Laura E. McCoy3, Charles Sabin1, Andreas Hinz1,*, Miriam Hock1, Pauline Macheboeuf1, Alexandre M. J. J. Bonvin4, Johannes P. M. Langedijk5,*, David Davis6, Anna Forsman Quigley3, Marlén M. I. Aasa-Chapman3, Michael S. Seaman3, Alejandra Ramos3, Pascal Poignard3,8,9, Adrien Favier10,11,12, Jean-Pierre Simorre10,11,12, Robin A. Weiss3, C. Theo Verrips2,13, Winfried Weissenhorn1,*, Lucy Rutten2,*

1 Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France, 2 Biomedical Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands, 3 MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom, 4 Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands, 5 Pepsan Therapeutics BV, Lelystad, The Netherlands, 6 Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands, 7 Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America, 8 Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America, 9 International AIDS Vaccine Initiative, New York, New York, United States of America, 10 CNRS, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France, 11 CEa, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France, 12 UJF-Grenoble-1, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France, 13 QVQ BV, Utrecht, The Netherlands.

Abstract

The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10.

Editor: Ronald C. Desrosiers, Harvard University, United States of America

Received September 25, 2012; Accepted January 7, 2013; Published March 7, 2013

Copyright: © 2013 Lutje Hulsik et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Bill & Melinda Gates Foundation as part of the Collaboration for AIDS Vaccine Discovery (CAVD grant 38637), Combined Highly Active Anti-Retroviral Microbicides (CHARMMhttp://charmm.eu), the Dutch Foundation for Scientific Research (NWO) through a Vici grant (no. 700.56.442) (AMJJB), the TGE RMN THC Fr3050 (JPS) and the LabEx GRAL (WW). MH is supported by a post-doctoral fellowship from Sidaction and WW is supported by the Institut Universitaire de France. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: weissenhorn@embibi.fr (WW); LRutten@uu.nl (LR)
*, Current address: Tianjin Medical University, Tianjing, China.
*, Current address: Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt/Main, Germany.
* These authors contributed equally to this work.

Introduction

The trimeric HIV-1 envelope glycoprotein [Env], composed of its receptor binding subunit gp120 and the fusion protein gp41, is the main target for neutralizing antibodies. Although recent studies have demonstrated the potential of the human immune system to produce broadly neutralizing antibodies (bnAbs) directed against gp120 [1–10], generation of antibodies with broad cross-clade neutralization activity via recombinant Env immunization has been rare [11–14]. This may be due in part to the long time frame required to generate such antibodies as well as to multiple evasive strategies developed by the virus [15–17].

Because Env gp41 contains highly conserved sequences that are exposed during the conformational changes leading to membrane fusion [18,19] a considerable effort is underway to target gp41 with a focus on the membrane proximal external region (MPER). The MPER is recognized by the broadly neutralizing antibodies (bnAbs) 2F5, Z13, 4E10 and 10E8 [9,20–23]. They interact with
Author Summary

Due to the absence of an effective vaccine or cure for acquired immunodeficiency syndrome (AIDS), HIV-1 infections still result in high mortality. Two antibodies, 2F5 and 4E10, previously isolated from HIV-1 infected patients, prevent infections by binding to the MPER of gp41, a part of the virus that is difficult to access and only transiently exposed. Here, we immunized llamas with a gp41-based immunogen and subsequently isolated a small antibody fragment (VHH) that can easily access and recognize the MPER. We showed that a unit of two VHH, named bi-2H10, was indeed capable of preventing HIV-1 from infecting cells. We determined the three dimensional structure of the VHH and mapped its interaction site to an MPER region that overlaps with the 2F5 epitope. The 2H10 VHH displays a membrane binding component important for neutralization that resembles that of 2F5. In conclusion, we have developed an immunogen and a small antibody that may have great potential for development of novel anti-HIV/AIDS vaccines and treatments.

linear epitopes of the MPER [9,24–26] and gp41-mAb interaction most likely prevents refolding of gp41 into the six-helical bundle conformation [27–29]. Notably, 2F5 and 4E10 are among the broadest cross-reactive human neutralizing antibodies directed against HIV-1 gp41 while recently-described 10E8 combines this extensive breadth with substantially increased potency [9,22]. The potencies of 2F5 and 4E10 are confirmed by their ability to prevent HIV-1 transmission in rhesus macaques by passive immunization [30–35].

Numerous studies have been performed with purified gp41 proteins and gp41-derived peptides in an attempt to induce such antibodies by immunization; however, with very limited success so far [36–45]. This was partly attributed to the fact that both 4E10 and under some experimental conditions also 2F5 display lipid binding and potential polyreactivity [46], which may be a special feature of anti-HIV antibodies [47]. However mAb 10E8 does not bind lipids and is not polyreactive [9]. 2F5 and 4E10 contain hydrophobic residues within the third complementarity-determining region of the heavy chain (CDR H3), which do not contact the antigen directly, but are required for virus neutralization [48–51]. CDR H3 was suggested to insert into the viral membrane and extract membrane-embedded MPER leading to tight binding [52,53]. In addition CDR H3 of 2F5 may function in destabilizing the helical region downstream of the core 2F5 epitope leading to the extended-loop conformation of the 2F5 epitope [54]. Both models are consistent with the finding that neutralization activity of MPER antibodies depends on the transmembrane region allowing functional MPER exposure [55]. Furthermore, MPER antibody epitopes of most primary isolates become only accessible after receptor/co-receptor-binding induced conformational changes in Env [56,57]. In addition, MPER mAb Env recognition was reported to induce gp120 shedding leading to irreversible neutralization effects [58]. Moreover, MPER antibody epitope access may be size-restricted [59], which is consistent with the proposal that such antibodies target the transient fusion-intermediate conformational state of gp41 [60] that is also difficult to access by HRI-specific neutralizing antibodies [61–63]. Accordingly, anti-MPER-like neutralization activity in patient sera was reported to be rare [64–67] or absent [68,69]. This was attributed to the fact that MPER-specific antibodies in acutely infected individuals are polyreactive [70] and their B cells may undergo clonal deletion [71]. However, a recent study suggested that 10E8-like potent anti-MPER antibodies occur frequently in sera with high neutralizing breadth and potency without exhibiting autoreactivity such as lipid interaction [9].

Thus a major challenge remains to induce MPER-specific neutralizing antibodies upon immunization. Therefore we immunized two llamas with proteoliposomes containing trimeric gp41 consisting of the HIV-1 Env transmembrane region and MPER. Llamas (Lama glama) and other Camelid species produce classical antibodies as well as heavy chain-only antibodies [72]. Notably, VHH (variable domain of the heavy chain of a heavy chain only antibody) specific for gp120 with broad neutralizing activity have been successfully produced by immunization before [73–78]. Here we report the functional and structural characterization of the llama anti-MPER VH1 2H10. Our data suggest that this is the first MPER-specific antibody induced by immunization that employs similar structural features as mAbs 2F5 and 4E10 for neutralization. 2H10 requires a hydrophobic CDR3 for neutralization but not for interaction with its epitope, like mAbs 2F5 and 4E10. Furthermore, 2H10 binds to a 2F5 overlapping epitope that is in an alpha-helical conformation, which provides insights for the development of MPER based vaccines.

Materials and Methods

Ethics statement

This study was carried out in strict accordance with the Dutch Experiments on Animals Act 1997. In accordance with article 18 of the Act the protocol was assessed and approved by the Animal Ethics Committee of the Utrecht University (Permit Number: DEC#2007.III.01.013). All efforts were made to minimize discomfort related to immunizations and blood sampling. The animal welfare officers of the Utrecht University checked the mandatory administration and supervised the procedures and the well-being of the llamas that were used.

Preparation of gp41 constructs

The HIV-1 gp41 constructs ‘gp41CHR’ , clade B C-terminal Heptad Repeat (CHR), MPER and transmembrane (TM) regions (residues 629–706, HXB2c numbering, ‘gp41-GCN’, gp41 residues 629–683 (HXB2c numbering) fused to a trimeric GCN4 leucine zipper [79], and ‘gp41INT’, which has a similar design as reported [60] with the exception that the trimeric GCN4 zipper was fused in frame with part of gp41 NHR, were cloned into pETM-11 (EMBL, Heidelberg) or pETM-13 using standard PCR techniques. Proteins were expressed in Escherichia coli strains C41 or BL21. Cells were grown to an OD600 of 0.8 and induced with 1 mM isopropyl-D-thiogalactopyranoside (IPTG). Cells were harvested by centrifugation and lysed in either phosphate buffered saline (PBS) supplemented with 1% 3-[3-Cholamidopropyl]dimethylammonio]-1-propanesulfonate (CHAPS) or lysed in 20 mM tris(hydroxymethyl)ammonium hydrogen carbonate (Tris-HCl) pH 8.0, 100 mM NaCl, or in 20 mM Bis-Tris pH 9.3, 100 mM NaCl, for ‘gp41CHR’ , ‘gp41-GCN’ and ‘gp41INT’ respectively. Purification was performed using a Ni2+ affinity or Q-sepharose column (‘gp41INT’) and gel filtration on a Superdex 200 column (GE Healthcare). Gp41H96-683 was produced as described [29].

Preparation of immunogen

The concentration of gp41CHR was adjusted to 1 mg/ml. Lipids POPC, POPE, POPS, Cardiolipin/Sphingomyelin and cholesterol (Avanti Polar Lipids) were dissolved in chloroform and mixed in a 1:2:1:2.5 ratio (w/w). After solvent evaporation, the lipid film was dried under vacuum. Multilamellar vesicles were

PLOS Pathogens | www.plospathogens.org 2 March 2013 | Volume 9 | Issue 3 | e1003202
obtained by resuspending the lipid film in PBS to a final concentration of 1 mg/ml. After three quick freeze/thaw rounds the liposome suspension was extruded through a 100 nm membrane. Liposomes and gp41CHRTM were mixed in a 1:1 ratio (w/w). CHAPS was removed by extensive dialysis with PBS containing 0.1 mg/ml BioBeads (BioRad), changing the solution every eight hours for two days. The quality of gp41CHRTM proteoliposomes was confirmed by dynamic light scattering (Malvern Nano ZS).

Immunization and construction of phage libraries

Two llamas (L6 and L7) were immunized intramuscularly with the gp41CHRTM reconstituted in the trimeric form into synthetic liposomes (gp41 proteoliposomes) without adjuvant. The immunization scheme consisted of a priming immunization at day 0 followed by 5 boosts, which were given at days 7, 14, 21, 28 and 35. During the prime and the first boost 0.25 mg of gp41 and 0.5 mg of lipids were used per injection. These amounts were halved for the remaining boosts. Importantly no adjuvants were used. The immune response was measured in the serum taken at day 21 and compared to day 0. At day 43 lymphocytes were collected from the two llamas for construction of two separate phage libraries, as described previously [80]. The genes encoding for the VHH were amplified and cloned in the phage-display plasmid, pAX50. The plasmids were transferred to E. coli strain TG1 [supE hsdA5 thi D(lac-proAB) F’traD36 proAB dlacIq lacZAM15].

Selection of gp41-specific VHH

Two rounds of selection with phage libraries were carried out by phanning phages onto gp41-proteoliposomes immobilized in microtiter plate wells. In the first round selection, gp41 proteoliposomes at 5, 1 and 0.2 µg were coated in the wells of Polysorp (Nunc) microplate overnight at 4°C followed by PBS containing 4% Marvel dried skimmed milk (Premier International Foods UK Ltd) for one hour at room temperature. The wells were then blocked with 2% skimmed milk in PBS and empty liposomes to reduce nonspecific binding, then added to the wells for 2 hours followed by extensive washing (15 times) with PBS containing 0.05% Tween 20 (PBS-T). The wells were incubated for one hour and washed with PBS-T and PBS between each incubation. The plates were developed using OPD containing 0.03% H2O2. The reaction was stopped with the addition of 1 M H2SO4, and the optical density was measured at 490 nm.

Phage ELISA

MaxiSorp [Nunc] plate wells were coated overnight at 4°C with gp41-GCN in PBS. After blocking of the wells with 4% skimmed milk in PBS, they were incubated with VHH fused to M13 phages in the presence of 2% skimmed milk. The wells were washed with PBS-T, and bound phages were detected by incubation with a mouse monoclonal antibody against M13 phage coupled to horse radish peroxidase (HRP). The amount of HRP was visualized by the addition of O-phenylenediamine (OPD) supplemented with 0.03% H2O2. The reactions were stopped by the addition of 1 M H2SO4, and the optical density was measured at 490 nm.

Production and purification of gp41-specific VHH

TG1 strains expressing monoclonal VHH were cultivated in 2×YT medium supplemented with 100 µg/ml of ampicillin until the optical density of culture medium reached 0.5 at 600 nm. Then 1 mM IPTG was added to induce VHH production for 5 hours at 37°C. VHH were extracted from the periplasmic fraction and bound to Talon metal-affinity resin (Clontech 635504). After washing away unbound material, the bound VHH were eluted by 300 mM imidazole in PBS. The eluted VHH were dialyzed against PBS with two buffer changes. The VHH were dialyzed twice for 1.5 hours at room temperature, followed by dialysis overnight at 4°C. The VHH were analyzed on 15% acrylamide sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) stained with Coomassie Brilliant Blue and a Western blot using the antibody against the myc-tag (9E10).

Binding of VHH to HIV-1 envelope proteins in ELISA

The binding of the VHH to HIV-1 envelope was performed on the immobilized gp41 and gp40-92UG037 in the microtiter plate (MaxiSorp from Nunc) in ELISA. 200 ng Gp41-GCN or 280 ng gp40-92UG037 protein were coated in the wells of microtiter plates overnight at 4°C followed by incubation with 4% skimmed milk to block non-specific binding. Dilution series of purified VHH were incubated with the coated wells for one hour at room temperature followed by the removal of unbound VHH by washing three times with PBS-T and one time with PBS. Bound VHH were detected with anti-myc tag antibody (9E10) and donkey anti mouse peroxidase (DAMPO). The antibodies were incubated for one hour and washed with PBS-T and PBS between each incubation. The plates were developed using OPD containing 0.03% H2O2. The reaction was stopped with 1 M H2SO4. The optical density was measured at 490 nm.

Binding of VHH to membrane anchored Env

Titrating amounts of antibodies were added to JR-FL HIV-1 Env-transfected 293T cells expressing either cleaved or uncleaved Env, incubated for 1 h at 37°C and washed with FACS buffer (PBS, 3% heat-inactivated fetal calf serum [HIFBS], 0.02% azide). MAbs b6, b12, and b10 were detected with a secondary anti-IgG Ab conjugated to phycoerythrin (Jackson ImmunoResearch). MAb b12 and the VHH 2H10, bi-2H10 and bi-2H10 W100A were biotinylated and detected with streptavidin PE. MAb b6 binding was weak on cleaved Env, confirming that most Env is cleaved [81]. Binding was analyzed using flow cytometry, and binding curves were generated by plotting the mean fluorescence intensity of antigen binding as a function of antibody concentration.

human monoclonal antibody (Remicade, Schering-Plough) or with the phages eluted from the empty wells. DNA inserts of a number of selected phages binding to gp41 were recloned to plasmid pAX51 using the restriction sites BglII and BsiEI.

HIV-1 Neutralizing Anti-gp41 VHH

Phage ELISA

MaxiSorp [Nunc] plate wells were coated overnight at 4°C, with gp41-GCN in PBS. After blocking of the wells with 4% skimmed milk in PBS, they were incubated with VHH fused to M13 phages in the presence of 2% skimmed milk. The wells were washed with PBS-T, and bound phages were detected by incubation with a mouse monoclonal antibody against M13 phage coupled to horse radish peroxidase (HRP). The amount of HRP was visualized by the addition of O-phenylenediamine (OPD) supplemented with 0.03% H2O2. The reactions were stopped by the addition of 1 M H2SO4, and the optical density was measured at 490 nm.

Production and purification of gp41-specific VHH

TG1 strains expressing monoclonal VHH were cultivated in 2×YT medium supplemented with 100 µg/ml of ampicillin until the optical density of culture medium reached 0.5 at 600 nm. Then 1 mM IPTG was added to induce VHH production for 5 hours at 37°C. VHH were extracted from the periplasmic fraction and bound to Talon metal-affinity resin (Clontech 635504). After washing away unbound material, the bound VHH were eluted by 300 mM imidazole in PBS. The eluted VHH were dialyzed against PBS with two buffer changes. The VHH were dialyzed twice for 1.5 hours at room temperature, followed by dialysis overnight at 4°C. The VHH were analyzed on 15% acrylamide sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) stained with Coomassie Brilliant Blue and a Western blot using the antibody against the myc-tag (9E10).

Binding of VHH to HIV-1 envelope proteins in ELISA

The binding of the VHH to HIV-1 envelope was performed on the immobilized gp41 and gp40-92UG037 in the microtiter plate (MaxiSorp from Nunc) in ELISA. 200 ng Gp41-GCN or 280 ng gp40-92UG037 protein were coated in the wells of microtiter plates overnight at 4°C followed by incubation with 4% skimmed milk to block non-specific binding. Dilution series of purified VHH were incubated with the coated wells for one hour at room temperature followed by the removal of unbound VHH by washing three times with PBS-T and one time with PBS. Bound VHH were detected with anti-myc tag antibody (9E10) and donkey anti mouse peroxidase (DAMPO). The antibodies were incubated for one hour and washed with PBS-T and PBS between each incubation. The plates were developed using OPD containing 0.03% H2O2. The reaction was stopped with 1 M H2SO4. The optical density was measured at 490 nm.

Binding of VHH to membrane anchored Env

Titrating amounts of antibodies were added to JR-FL HIV-1 Env-transfected 293T cells expressing either cleaved or uncleaved Env, incubated for 1 h at 37°C and washed with FACS buffer (PBS, 3% heat-inactivated fetal calf serum [HIFBS], 0.02% azide). MAbs b6, b12, and b10 were detected with a secondary anti-IgG Ab conjugated to phycoerythrin (Jackson ImmunoResearch). MAb b12 and the VHH 2H10, bi-2H10 and bi-2H10 W100A were biotinylated and detected with streptavidin PE. MAb b6 binding is weak on cleaved Env, confirming that most Env is cleaved [81]. Binding was analyzed using flow cytometry, and binding curves were generated by plotting the mean fluorescence intensity of antigen binding as a function of antibody concentration.
Bivalent VHH construction

PCR was used to amplify the VHH sequences. Different primer sets designed to amplify the VHH that will be located at the N terminus and the VHH that will be located at the C terminus of the bivalent VHH. The primers at the 3’ of the N-terminal VHH and at the 5’ of the C-terminal VHH, may encode a flexible sequence glycine-serine (GS) linker represented by a repeat of the pentapeptide “G-G-G-G-S”, also called 5GS. These same primers contain a unique restriction site (BamHI). We constructed bi-2H10 with 5GS, 15GS, and 25GS linkers and with the linker GGGSGGGGSSGGGGGG, called 17GS. For the studies we used the bi-2H10 with the 17GS linker, unless specified differently.

After PCR amplification, the generated fragments were cleaved at a unique N-terminal restriction site (SfI restriction site) and BamHI for the VHH that will be located at the N terminus, and with BamHI and at a unique C-terminal restriction site (BstEII) for VHH that will be located at the C terminus. The fragments are ligated into pAX51, which was digested with SfiI and BstEII.

Lipid binding assays

Antibodies were mixed with liposomes having the lipid composition as described above in PBS and their buffer was adjusted to 40% sucrose. The 40% sucrose mixture was overlaid stepwise with 30, 20, 10 and 5% sucrose and centrifuged in a Ti55 swinging bucket rotor for 18 h at 50 K rpm. Six fractions were recovered from the gradient and samples thereof were analyzed by SDS-PAGE.

For ELISA analysis, cardiolipin from bovine heart (SIGMA, C0563) and l-β-phosphatidyllyl-serine from bovine brain (SIGMA, P7769) were dissolved in ethanol to a concentration of 5 mg/ml and further diluted with PBS to 50 μg/ml of which 10 μl was coated per well in PolySorp plates (Nunc) overnight at room temperature without a cover foil to allow complete evaporation of the vapor. As a control gp140-92UG037 was coated on a MaxiSorp plate (Nunc). Dilution series were prepared of 2H10, bi-2H10 with 5GS, 15GS, and 25GS linkers and with the linker GGGSGGGGSSGGGGGG, called 17GS. For the studies we used the bi-2H10 with the 17GS linker, unless specified differently.

Neutralization assay

Neutralization was measured using pseudovirus or 200 50% tissue culture infective doses (TCID50) of virus in the TZM-bl cells as targets following the methods of Derdeyn et al. [82] Wei et al. [83] and Li et al. [84], with Bright-Glo luciferase reagent (Promega, Southampton, UK). The neutralization activity of each VHH was assayed in duplicate. No virus inactivation was observed with a negative control VHH. VHH IC50 titer were calculated using the XLFit4 software (ID Business Solutions, Guildford, UK).

The HIV-1 neutralization potency of llama 6 & 7 serum/plasma samples were also evaluated in TZM-bl. Neutralization was measured using 200 TCID50 of IIIB virus in the TZM-bl cell-based assay, as described above, using a GloMax plate reader (Promega). Serum samples were heat-inactivated to inactivate complement by incubation at 56°C for 1 h before use in neutralization assays. Threefold serial dilutions of llama sera were then tested, starting at a 1:5 dilution.

Epitope mapping

The binding of VHH and mAb to peptides was assessed in a Pepscan-based ELISA [85]. Structural aspects of antibody antigen interaction were revealed through small random peptide libraries [86]. Each VHH and mAb was titrated to ensure that optimal binding was achieved and that nonspecific binding was avoided. Each well in the card containing covalently linked peptides that were incubated overnight at 4°C with VHH and mAb, between 1 and 10 ng/ml in PBS containing 5% horse serum (v/v), 5% OVA (v/v), and 1% (v/v) Tween 00, or in an alternative blocking buffer of PBS containing 4% horse serum (v/v), and 1% (v/v) Tween 00. After washing, the plates were incubated with a HRP-linked rabbit anti-Ab (DakoCytomation) for 1 h at 25°C. After further washing, peroxidase activity was assessed using substrate (0.5 g/l 2,2’-azino-di[3-ethyl-benzthiazolinesulfonate(6)]]diammonium salt (ABTS)) with 0.006% H2O2 in 0.18 M Na2HPO4, 0.22 M citric acid was added until the solution had a pH of 4. The color development was quantified after 60 minutes using a charge-coupled device camera and an image-processing system.

Protein expression and purification of 2H10 for crystallization

The cDNA corresponding to 2H10 was synthesized (GeneArt) and cloned into vector pMEK220 (without his-tag or myc tag) and 2H10 was expressed in E. coli strain BL21gold (DE3) (Invitrogen). Cells were grown to an OD600 of 0.7 and induced with 1 mM IPTG at 37°C. After 5 hours cells were harvested by centrifugation and lysed by sonication in 0.02 M 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid (HEPES), 0.1 M NaCl, pH 7.4 (HEPES buffer). 2H10 was purified by affinity chromatography using a Protein A column (Roche), 2H10 was eluted with 0.01 M glycine, pH 2.5, and fractions containing 2H10 were neutralized with 1 M Tris-HCl, pH 8. These fractions were further purified by gel filtration on a Superdex 200 column (GE Healthcare) in HEPES buffer. Purity of the sample was confirmed on a 12% SDS-Tris-Tricine gel.

Crystallization, data collection and structure determination

2H10 in complex with peptide 903 was subjected to crystallization at a concentration of 12 mg/ml. Crystals were obtained by the vapor diffusion method in hanging drops, with equal volumes of a precipitant solution containing 10% (v/v) PEG 3350, 200 mM sodium acetate buffer, pH 5.3 and a reservoir solution containing 0.1 M sodium citrate, pH 5.0. Crystals were cryoprotected in a precipitant solution containing 15% (v/v) glycerol and 0.1 M sodium citrate, pH 5.0 and flash frozen at −150°C in a nitrogen stream. X-ray diffraction data were collected at beamline ID34-1 at the ESRF, Grenoble, France, to a resolution of 1.30 Å. Data were processed with the program MOSFLM and scaled with SCALA in the CCP4 suite. The structure was solved by molecular replacement using MOLREP with the model of 2H10 (PDB code: 4I3X) as the search model; the resulting solution was refined with REFMAC5 to an R factor of 0.201 at 1.30 Å resolution.
of antibody and reservoir solution (0.1 M Bicine, 3.2 M NH₄SO₄, pH 9). The crystal was cryo-cooled at 100 K in reservoir buffer containing 25% (v/v) glycerol. A complete dataset was collected at the ESRF (Grenoble, France) beamline ID4-4. Data were processed and scaled with MOSFLM [87], and SCALX [90]. The crystals belong to space group I23 with unit cell dimensions of a = 89.95 Å, b = 89.95 Å, c = 89.95 Å and α = 90.0°. The structure was solved by molecular replacement using PHASER [89] and the VHH structure from Protein Data Bank (PDB: ID 3EZJ) as a search model. An initial model was built with ARP/wARP [90] and completed by several cycles of manual model building with Coot [91] and refinement with refmac [92] using data to 1.3 Å resolution. The final model contains 2H10 residues 1–122. Molecular graphics figures were generated with PyMOL (W. Delano; http://www.pymol.org). Coordinates and structure features have been deposited in the Protein Data Bank with accession ID 4B50.

NMR analyses of 2H10 and 2H10 in complex with its peptide epitope

A 15N-labeled protein sample was prepared at a concentration of 0.95 mM in 20 mM HEPES buffer and 75 mM NaCl at pH 6.7 with 10% D₂O. For the study of the peptide:2H10 complex, a solution of gp41 peptide (Δ152KNEQELLELDK-WASL-669) was prepared at 7.9 mM in the same HEPES buffer and 5 μl were added step by step to the 15N-labeled protein sample. A final protein:peptide ratio of 1:1.5 was obtained and 15N HSQC experiments were recorded for each peptide addition in order to control the complete disappearance of the free form. Sequential backbone resonance assignments of free and peptide bound 2H10 were performed by recording series of 3D experiments using the BEST scheme (HNCO, HNCA, HN(CO)C(C)N, and BEST-TROSY scheme [hNcocaNH, hNcocaNH]) [93].

All NMR experiments were performed at 37°C on Agilent VNMR 600 or 800 MHz spectrometers equipped with triple-resonance (1H, 13C, and 15N) coldpores and shielded z-gradients. NMR data were processed with NMRPipe [94] and analyzed using the CcpNmr Analysis routines of CCPN [95]. Chemical shifts were referenced with respect to the H₂O signal at 4.66 ppm relative to DSS, using the 1H:15N frequency ratios of the zero point according to Markley et al. [96].

Surface plasmon resonance

Surface plasmon resonance (SPR) analysis was performed with a Biacore T100 (GE Healthcare). As a flow buffer 10 mM HEPES, 150 mM NaCl, pH 7.4 with 0.005% Tween-20 was used. Gp140-92UG037 was immobilized to 1500 response units using 50 μg/ml protein in flow buffer on an activated CM-5 sensor chip (GE Healthcare: BR-1000-50) according to the manufacturer’s instructions. Specific binding to the target protein was corrected for nonspecific binding to the deactivated control channel. The flow rate was 30 μL/min. Regeneration of the sensor chip was achieved with 25 mM NaOH for 30 seconds at 50 μL/min. Data were analyzed with Origin version 5 (MicroCal) software.

Modeling of the gp41 peptide interaction with 2H10

Models of gp41 peptide docked onto 2H10 were built with the webserver version “The HADDOCK web server for data-driven biomolecular docking” of HADDOCK2.1 [97] using CNS1.2 [98] for the structure calculations. The coordinates of 2H10 were taken from the crystal structure, and the gp41 peptide coordinates were based on those of the helical peptide (Δ53–QEKKNQQVLDK-WASL-669) from the crystal structure of a late fusion intermediate of HIV-1 gp41 (PDB code: 2X7R [29]). Ambiguous interaction restraints were defined, based on the NMR chemical shift perturbation (CSP) mapping using the program SAMPLEX [99].
and the epitope mapping. The SAMPLEX program takes as input a set of data and the corresponding three-dimensional structure and returns the confidence for each residue to be in a perturbed or unperturbed state. Residues 47–51, 57–62 and 95–99 identified as perturbed in 2H10 upon binding to gp41 and residues 653, 658, 661, 662 and 665 identified from the epitope mapping, were used as interaction restraints for docking. Phi-psi angles were deduced from the 13C chemical shifts using TALOS [100] and the resulting dihedral and H-bond restraints were used in the modeling as well. The docking was performed with default HADDOCK parameters, except that random removal of restraints was turned off and the clustering cutoff was decreased to 2.5 Å because of the small size of the peptide. Non-bonded interactions were calculated with the OPLS force field using a cutoff at 8.5 Å. The electrostatic potential (E_{elec}) was calculated by means of a shift function, while a switching function – between 6.5 and 8.5 Å – was used for the Van der Waals potential (E_{vdw}). The HADDOCK score is used to rank the generated models. It consists of a weighted sum of intermolecular electrostatics, Van der Waals, desolvation (G_{solv}) [101] and ambiguous interaction restraint (E_{AIR}) energies, defined as:

$$\text{Haddock Score} = 0.2E_{\text{elec}} + 1.0E_{\text{vdw}} + 0.2E_{\text{predicted}} + 0.1E_{\text{AIR}}$$

Results

Immunization of llamas, library construction and selection of VHH against gp41

Two llamas (L6 and L7) were immunized with the gp41 protopolisopines composed of an HIV-1-like lipid envelope [102] and membrane-anchored gp41CHRTM peptides in the antibody in sera/plasma at day 21 post immunization. However, no significant neutralization was detected at the domain/region boundaries are given. B) Gel filtration chromatogram of recombinant gp41CHRTM, which elutes at 13.3 ml from the column, similar to the elution profile of a marker protein of 158 kDa. These indicate that gp41CHRTM is most likely trimeric and may have an elongated structure. The inset shows a Coomassie stained SDS-PAGE gel with the gp41CHRTM protein band at the left and a protein marker at the right with the marker protein sizes in kDa indicated at the right.

doi:10.1371/journal.ppat.1003202.g001

Figure 1. The gp41CHRTM antigen used for immunization. A) Schematic representation of gp41 and of the regions present in gp41CHRTM. FP, fusion peptide; HR1, N-terminal heptad repeat; C-C loop, cysteine loop, HR2, C-terminal heptad repeat; MPR, membrane proximal external region; TM, transmembrane region. The residue numbers at the domain/region boundaries are given. B) Gel filtration chromatogram of recombinant gp41CHRTM, which elutes at 13.3 ml from the column, similar to the elution profile of a marker protein of 158 kDa. This indicates that gp41CHRTM is most likely trimeric and may have an elongated structure. The inset shows a Coomassie stained SDS-PAGE gel with the gp41CHRTM protein band at the left and a protein marker at the right with the marker protein sizes in kDa indicated at the right.

Two llamas (L6 and L7) were immunized with the gp41 protopolisopines composed of an HIV-1-like lipid envelope [102] and membrane-anchored gp41CHRTM peptides in the antibody in sera/plasma at day 21 post immunization. However, no significant neutralization was detected at the domain/region boundaries are given. B) Gel filtration chromatogram of recombinant gp41CHRTM, which elutes at 13.3 ml from the column, similar to the elution profile of a marker protein of 158 kDa. These indicate that gp41CHRTM is most likely trimeric and may have an elongated structure. The inset shows a Coomassie stained SDS-PAGE gel with the gp41CHRTM protein band at the left and a protein marker at the right with the marker protein sizes in kDa indicated at the right.

doi:10.1371/journal.ppat.1003202.g001

Next, we tested whether 2H10 recognizes its epitope in a helical conformation. To achieve this, the peptide sequence (residues 653–669) was fused to a short coiled-coil that was shown to favor a helical MPER conformation [24] shows a dramatically reduced binding to the coiled-coil MPR construct (Fig. 3D). Replacement of heptad positions by Gly, which are helix breakers and thus do not support a helical MPER conformation, (Fig. 3D). Replacement of heptad positions by Gly, which are helix breakers and thus do not support a helical MPER conformation, further leads to the loss of 2H10 interaction (Fig. 3C).
Bi-2H10 neutralizes HIV-1

The 2H10 VHH monohed did not neutralize any of the HIV-1 strains tested (Table 1). However, bivalent 2H10, which showed an increased affinity for gp41 as compared to the monohed, was able to neutralize HIV-1 isolates and pseudoviruses in a TZM-bl assay. No substantial difference was observed for bi-2H10 with a 15 or 17 amino acid linker. The activity of bi-2H10 with the 17 amino acid linker (bi-17GS) was mainly directed towards clade B, neutralizing 14 of 26 B isolates, one clade A (i.e. 92UG037) and none of the clade C isolates due to the sequence conservation of the epitope. Eight strains neutralized were Tier 1 and seven are Tier 2 viruses. Bi-2H10 also neutralized both the neutralization sensitive and resistant variants of SHIV SF162 consistent with SF162.LS neutralization (Table 1). The IC50 values were between 100-fold and 10-fold lower than those of mAb 2F5, which neutralized 18 out of 23 clade B viruses tested (Table 1). Bi-2H10, like 2H10, did not interact with cell surface expressed JR-FL Env (Fig. 4), although the virus was neutralized. We conclude that bi-2H10 acts downstream of receptor-induced conformational changes in Env and the increased avidity of bi-2H10 renders the VHH neutralization active.

2H10 exposes W100 at the tip of CDR3 which is required for neutralization

To study the interaction of 2H10 with its epitope, several attempts were made to obtain crystals of 2H10 in complex with various MPER peptides based on the Pepscan analyses. However, in each attempt, diffraction quality crystals were obtained that contained the VHH, but not the peptide. The best 2H10-containing crystals diffracted to 1.3 Å resolution and the structure was solved by molecular replacement (Table 2). The structure resembles the framework of known VHH structures [76], with the major exception that most other VHH structures have CDR3 loops that fold back on the framework of the VHH, whereas the CDR3 of 2H10 protrudes from the framework of 2H10. However, it should be noted that its orientation may have been influenced by crystal contacts. Its most notable feature is the exposure of W100 at the tip of CDR3 which is required for neutralization of hydrophobic residues within the CDR3 heavy chains of 2F5 and 4E10 [24,25], which are not essential for epitope interaction although changes in affinity have been reported depending on the nature of the antigen for some mutants. In contrast, mutations of 4E10 [24,25], which are not essential for epitope interaction although changes in affinity have been reported depending on the nature of the antigen for some mutants. In contrast, mutations of 4E10 [24,25], which are not essential for epitope interaction although changes in affinity have been reported depending on the nature of the antigen for some mutants. In contrast, mutations of 4E10 [24,25], which are not essential for epitope interaction although changes in affinity have been reported depending on the nature of the antigen for some mutants.
neutralization, the W100A mutation was introduced into bi-2H10 (bi-2H10-W100A). SPR confirmed that bi-2H10-W100A binds to gp140 comparable to wild type bi-2H10 revealing the same dissociation rate together with a slightly slower on-rate (Fig. 6B). Although not essential for gp41 interaction, the exchange of W100 to alanine completely abrogated neutralization of most strains. Four other strains tested showed a reduced potency as evident from the 4- and 6-fold increased IC50 values for these viruses (Table 1). In addition, bi-2H10 W100A did not interact with surface-expressed Env as expected (Fig. 4). We thus conclude that CDR3 W100 is dispensable for epitope interaction but is essential for neutralization similar to the role of hydrophobic CDR3 heavy chain residues present in mAbs 2F5 and 4E10 [48–50]. In order to map the gp41 binding site on 2H10 the following mutants (S29F, F34L, F35I, S37C, S38C, S40C, S42C, S43C, S45C, S46C, S47C, S48C, S49C, S50C, S51C) were generated and used in SPR analysis (Fig. 5A). SPR confirmed that bi-2H10 S29F binds to gp140 comparable to wild type bi-2H10 revealing the same dissociation rate together with a slightly slower on-rate (Fig. 6B). Although not essential for gp41 interaction, the exchange of S29 to phenylalanine completely abrogated neutralization of most strains. Four other strains tested showed a reduced potency as evident from the 4- and 6-fold increased IC50 values for these viruses (Table 1). In addition, bi-2H10 S29F did not interact with surface-expressed Env as expected (Fig. 4). We thus conclude that CDR3 S29 is dispensable for epitope interaction but is essential for neutralization similar to the role of hydrophobic CDR3 heavy chain residues present in mAbs 2F5 and 4E10 [48–50]. In order to map the gp41 binding site on 2H10 the following mutants (S29F, F34L, F35I, S37C, S38C, S40C, S42C, S43C, S45C, S46C, S47C, S48C, S49C, S50C, S51C) were generated and used in SPR analysis (Fig. 5A). SPR confirmed that bi-2H10 S29F binds to gp140 comparable to wild type bi-2H10 revealing the same dissociation rate together with a slightly slower on-rate (Fig. 6B). Although not essential for gp41 interaction, the exchange of S29 to phenylalanine completely abrogated neutralization of most strains. Four other strains tested showed a reduced potency as evident from the 4- and 6-fold increased IC50 values for these viruses (Table 1). In addition, bi-2H10 S29F did not interact with surface-expressed Env as expected (Fig. 4). We thus conclude that CDR3 S29 is dispensable for epitope interaction but is essential for neutralization similar to the role of hydrophobic CDR3 heavy chain residues present in mAbs 2F5 and 4E10 [48–50]. In order to map the gp41 binding site on 2H10 the following mutants (S29F, F34L, F35I, S37C, S38C, S40C, S42C, S43C, S45C, S46C, S47C, S48C, S49C, S50C, S51C) were generated and used in SPR analysis (Fig. 5A).
D53T/R54S, R54S, R56A, R71S, R93A, E95A, R97A) were designed based on the structure (Fig. 5A) and the VHH germline sequence of CDR1 and CDR2 (Fig. 2). Assessment of binding by SPR revealed that the single mutants R56A, R93A, E95A, and R97A lost binding to gp140-92UG037 (Fig. 6A). All other mutants (S29F, D53T/R54S, R54S, R71S) still bound gp140, although the affinities for some seemed to be marginally lower than for wild-type 2H10. This thus implicates the charged residues R56 in affinities for some seemed to be marginally lower than for wild-type 2H10 and depend on the peptide concentration (Fig. 5B). These data reveal a slow exchange process between the bound and the free form in agreement with the affinity constant measured for this complex. The complete list of chemical shift differences (CSD) induced in 2H10 upon peptide binding is listed in Figure S5 (Fig. S5), which confirmed further that peptide binding, did not induce conformational changes in the tertiary structure of 2H10. Notably most significant CSDs map to one surface of the 2H10 structure providing a first clue on the gp41 ligand position (Fig. 5C).

Discussion

The HIV-1 envelope fusion subunit gp41 contains highly conserved epitopes within its MPER that are recognized by the potent and broadly neutralizing antibodies 2F5 and 4E10.
Table 1. 2H10, bivalent 2H10 and mutant bi-2H10 IC50 titers against HIV-1 in TZM-bl cells.

<table>
<thead>
<tr>
<th>HIV-1/SHIV strain</th>
<th>Type</th>
<th>Clade</th>
<th>Tier</th>
<th>Accession code</th>
<th>Epitope sequence</th>
<th>2H10</th>
<th>bi-15GS</th>
<th>bi-17GS</th>
<th>W100A bi-15GS</th>
<th>2F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>14.10</td>
<td>4.92</td>
<td>0.91</td>
<td>28.9</td>
<td>17.21</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.05</td>
<td>14.35</td>
<td>4.0</td>
<td>0.2</td>
<td>15.7</td>
<td>13.46</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.04</td>
<td>10.8</td>
<td>2.42</td>
<td>0.78</td>
<td>15.1</td>
<td>10.05</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.03</td>
<td>11.0</td>
<td>2.42</td>
<td>0.78</td>
<td>15.1</td>
<td>10.05</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.02</td>
<td>11.0</td>
<td>2.42</td>
<td>0.78</td>
<td>15.1</td>
<td>10.05</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td>14.10</td>
<td>4.92</td>
<td>0.91</td>
<td>28.9</td>
<td>17.21</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.05</td>
<td>14.35</td>
<td>4.0</td>
<td>0.2</td>
<td>15.7</td>
<td>13.46</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.04</td>
<td>10.8</td>
<td>2.42</td>
<td>0.78</td>
<td>15.1</td>
<td>10.05</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.03</td>
<td>11.0</td>
<td>2.42</td>
<td>0.78</td>
<td>15.1</td>
<td>10.05</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.02</td>
<td>11.0</td>
<td>2.42</td>
<td>0.78</td>
<td>15.1</td>
<td>10.05</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Neutralization activities of 2H10, bivalent 2H10, W100A mutant bi-2H10 and as a control 2F5 were determined against the indicated viruses. The type, clade, tier and the accession code of the envelope protein sequence are given for each virus strain. The wild-type bi-2H10s are named bi-15GS and bi-17GS and have a 15 and 17 residue linker respectively. The W100A mutant bi-2H10 is named W100A bi-15GS and has a 15 residue linker. The column labeled Tier indicates whether the virus is classified for 1, 2, or 3 assessment of neutralizing antibodies [116]. The column labeled Epitope sequence, shows the sequence that aligns with the part of the HBX2 sequence to which 2H10 is directed. The underlined, boldfaced residues are essential for the binding of 2H10 and are equal to the residues at the equivalent positions in HBX2, which was used for immunization. Residues in grey are at the position of an essential residue, but deviate from the HBX2 equivalent. * indicates IC50>50 μg/ml; the empty cells represent non-performed measurements.

Although these bnAbs recognize linear epitopes, immunization with gp41 peptides or proteins has not yet produced such antibodies [107]. In this study, we isolated and characterized a VHH from a llama immunized with gp41 proteoliposomes. Similar gp41 proteoliposomes, with a different liposome formulation and gp41 construct, used in a previous immunization study of mice using a different immunization strategy, yielded sera with no significant neutralization [37]. The VHH 2H10 recognizes an
epitope \(\text{EQELLELDK} \) that partially overlaps with the 2F5 epitope \([20,24]\) and binds to its epitope present in various Env conformations with low nanomolar affinity.

One hypothesis is that neutralizing antibodies directed against MPER target epitopes that are only transiently exposed during the entry process \([60,104]\). Consequently their binding to the native Env structure may be weak, as demonstrated for mAb 2F5. Binding of 2F5 to 2H10 single domain mutants. The curves are labeled with the mutant codes in colors corresponding with the colors of the curves. The mutants R56A, R96A, E98A and R100A do not bind at all to gp140-92UG037. Fitting the curves with the two-state reaction algorithm yielded \(K_D \) of 8.0 nM for 2H10 WT and 10.1 nM for 2H10-R100A. The other fits, except for those of the non-binding mutants, yielded \(K_D \)s between 5.5 nM for 2H10-S29F and 18.7 nM for 2H10-R71S. Because the maximum responses units are slightly different for the two bi-2H10 molecules, the curves were normalized to the maximum response, to be able to compare the dissociation rates well.

Figure 5. Crystal structure of 2H10 and NMR analysis of 2H10 interaction with the gp41 peptide.

Figure 6. Surface plasmon resonance affinity measurements reveal essential and non-essential 2H10 residues for gp41 interaction.

A 2H10 mutants. The curves are labeled with the mutant codes in colors corresponding with the colors of the curves. The mutants R56A, R96A, E98A and R100A do not bind at all to gp140-92UG037. Fitting the curves with the two-state reaction algorithm yielded \(K_D \) of 8.0 nM for 2H10 WT and 10.1 nM for 2H10-R100A. The other fits, except for those of the non-binding mutants, yielded \(K_D \)s between 5.5 nM for 2H10-S29F and 18.7 nM for 2H10-R71S. Because the maximum responses units are slightly different for the two bi-2H10 molecules, the curves were normalized to the maximum response, to be able to compare the dissociation rates well.

B bi-2H10-W100A mutant and wild type bi-2H10 on immobilized gp140-92UG037. Because the maximum responses units are slightly different for the two bi-2H10 molecules, the curves were normalized to the maximum response, to be able to compare the dissociation rates well.

C Chemical shift perturbations (CSPs) were mapped onto the 2H10 structure. Residues showing \(^{15}N,^{1}H \) chemical shift perturbations greater than 0.15 ppm are shown in red and residues with an amide resonance disappearing in the free or the bound form are colored in green.

doij:10.1371/journal.ppat.1003202.g005

doij:10.1371/journal.ppat.1003202.g006
Bi-2H10 may achieve HIV-1 entry inhibition by binding two gp41 molecules from the same trimer or crosslink two gp41 trimers. The crystal structure of the 2H10 VHH highlighted the longer than usual CDR3 that displays a solvent exposed tryptophan (W100) at its tip. Mutagenesis showed that W100 is not required for interaction with gp41NT or gp140. However, bi-2H10 with a W100A mutation either no longer neutralized or showed largely reduced neutralization potency (increases of IC50 values, 6- and 4-fold) against Tier 1 and Tier 2 strains despite its wild-type-like interaction with gp41NT. The presence of W100 in the CDR3 of 2H10 is reminiscent of hydrophobic determinants within the CDR3 H3 regions of mAbs 2F5 and 4E10, which are not required for gp41 interaction, but are important for neutralization activity [48–50]. In case of mAb 2F5, single Ser substitutions resulted in a 15- to 500-fold reduction in neutralization potency, while double mutations to Ser completely abrogated 2F5-mediated neutralization [50]. Even though most HIV-1 strains were no longer neutralized by the bi-2H10 W100A mutant, it is conceivable that a W100 to Ser mutation may have been even more efficient in affecting neutralization due to the polar propensity of Ser. Similarly, single mutations in the CDR3 of mAb 4E10 reduced its neutralization potency [48] and it was noted that Asp substitutions exerted a greater effect on neutralization potency than Ala substitutions [49]. The effect of the bi-2H10 W100A mutant also suggests that neutralization by bi-2H10 is not solely due to heteroligation of two antigen binding domains via an increased avidity [59,109]. We therefore propose that CDR3 W100 plays a crucial role in neutralization by bi-2H10, which resembles the role of the hydrophobic CDR3 of mAbs 2F5 and 4E10 in neutralization.

Numerous studies suggested that the hydrophobic CDR3 residues are implicated in lipid/membrane interaction thereby facilitating

Table 2. Data collection and refinement statistics.

<table>
<thead>
<tr>
<th>Space group</th>
<th>I23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell dimensions</td>
<td>a, b, c (Å)</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.9395</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>25.00–1.3 (1.3–1.37)</td>
</tr>
<tr>
<td>Measured reflections</td>
<td>3427903</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>38741</td>
</tr>
<tr>
<td>Rmerge</td>
<td>0.069 (0.295)</td>
</tr>
<tr>
<td>Rmerge</td>
<td>6.1 (2.2)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>99.0 (100.0)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>13.9 (14.2)</td>
</tr>
<tr>
<td>Wilson B factor (Å²)</td>
<td>12.2</td>
</tr>
<tr>
<td>Rcryst (N’ reflections)</td>
<td>0.14 (29381)</td>
</tr>
<tr>
<td>Rfree (N’ reflections)</td>
<td>0.17 (1509)</td>
</tr>
<tr>
<td>No. atoms</td>
<td>Protein</td>
</tr>
<tr>
<td></td>
<td>Water</td>
</tr>
<tr>
<td>B-factors</td>
<td>Protein</td>
</tr>
<tr>
<td></td>
<td>Water</td>
</tr>
<tr>
<td>r.m.s deviations</td>
<td>Bond lengths (Å)</td>
</tr>
<tr>
<td></td>
<td>Bond angles (°)</td>
</tr>
</tbody>
</table>

Numbers in parentheses refer to the highest resolution shell. $R_{merge} = \sum_i |I_i - \langle I_i \rangle|/\sum_i I_i$, where I_i = observed intensity. $R_{merge} = \sum_i|F_o - F_c|/\sum_i F_o$, where $|F_o|$ = observed structure factor amplitude and $|F_c|$ = calculated structure factor amplitude. R_{free} is R_{cryst} for 3% of reflections excluded from the refinement.

doi:10.1371/journal.ppat.1003202.t002

Figure 7. Molecular modeling of the 2H10-gp41 peptide interaction suggests that 2H10 W100 is oriented towards the membrane. A) Molecular model of the gp41 peptide interaction with 2H10 produced by HADDOCK. Salt bridges and hydrogen bonds present in the top model and found in most of the top10 models are shown as dashed lines. B) Superpositioning of the Cα atoms of the gp41 peptide derived from the HADDOCK 2H10-peptide model onto the structure of a late fusion intermediate of gp41 [29] shows that the CDR3 W100 is oriented towards the membrane and found in the same plane as gp41 residues W678, W680 and Y681. Note that there are no clashes between the 2H10 VHH and gp41.

doi:10.1371/journal.ppat.1003202.g007
antigen binding \[46, 110, 111]. One possibility is that MPER itself becomes membrane-embedded during the fusion reaction and MPER-specific antibodies need to recognize their epitope within the membrane context \[52, 112]. We therefore presented MPER in a lipid bilayer context to allow selection of antibodies that can recognize lipid and protein determinants. However, despite the presence of W100 in CDR3, 2H10 as well as the control mAb 2F5 did not show any detectable lipid binding specificity as seen.

All HIV-1 strains that were neutralized by bi-2H10 have the epitope sequence determined by pepscan analyses except for 92UG037.A9 which has Q658 replaced by a lysine. However, SPR measurements of 2H10 to gp140 env derived from 92UG037.A9 corroborate 2H10 binding. The discrepancy may be explained by the use of cyclic peptides in the pepscan experiment, which showed a lower affinity in the ITC experiment. Therefore a Q658K exchange may have had a larger effect on binding within the cyclic version than within natural contexts of the epitope. Sequence analysis of 2300 Env sequences revealed that \(\sim 28\%\) have the epitope 657-E(Q/K/H)-X-E-XX-K-665. Considering only B clades, the number of isolates covered would rise to \(\sim 61\%\). In comparison, 2F5 and 4E10 have been shown to neutralize \(68\%\) and \(97\%\) of all clade B strains tested and \(60\%\) and \(98\%\) of all clades, respectively \[1\].

The combined structural approach using peptide modeling, NMR, docking and mutagenesis showed that 2H10 interacts with a helical linear gp41 epitope. VH4H14 maturation played an important role in optimizing antigen binding, because somatic mutations involve both CDR and framework residues at the interaction site. High framework mutation rate has been observed in broadly neutralizing human antibodies as well \[5–7, 113]. The helical epitope conformation is present in the late fusion intermediate conformation of gp41, gp41\(\text{28-683}\) \[29\] that interacts with 2H10. This is unexpected, because 4E10 whose epitope is exposed and accessible in gp41\(\text{28-683}\) \[29\] does not interact with this conformation due to molecular clashes of the light chain with gp41 heptad repeat region 1 \[29\]. The fact that the small size of 2H10 allows binding to gp41\(\text{28-683}\) may constitute a disadvantage for using small llama VH\(\text{H}\) over complete antibodies; the VH\(\text{H}\) may thus less efficiently prevent refolding of gp41 into the six helical bundle post fusion conformation. Nevertheless, an interesting feature surfaced from the 2H10-gp41\(\text{28-683}\) complex model. The model poses 2H10 CDR3 W100 in the same plane as gp41 MERIC residues W678, W680 and Y681, which may insert into the membrane during the fusion process \[29\]. This indirectly corroborates the hypothesis that the necessity of W100 for HIV-1 neutralization is in agreement with the suggestion that part of MPER may be membrane embedded. Because MPER, as observed in the late fusion-intermediate gp41\(\text{28-683}\) structure, may be already membrane-embedded at an earlier stage, anti-MPER antibodies such as 2H10 may act much earlier to block the fusion process. Alternatively, bi-2H10 binding may prevent membrane extraction of MPER, which is likely required to finalize membrane fusion \[29\].

The epitope of 2H10 overlaps with the helical epitope of mAb 13H11, which is, however, non-neutralizing due to the absence of a long hydrophobic heavy chain CDR3 \[114\]. The helical epitope of 2H10 is part of the helical epitope recognized by the broadly neutralizing anti-MPER mAb 10E8, isolated from a patient \[9\]. In this MPER conformation, which may represent the structure of MPER within native Env trimers, residues 656 to 683 form two short L-shaped helices of which the C-terminal helix provides most antibody binding contacts. Most notably, mAb 10E8 employs hydrophobic CDR3 residues Phe 100A and W100B for interaction with its epitope. Because mAb 10E8 displays no autoreactivity it presents a new class of potent anti-MPER antibodies \[9\].

The VH\(\text{H}\) 2H10, which was elicited by gp41 proteoliposomes as antigen stresses the importance of a membrane component in generating anti-MPER neutralizing antibodies. Although there have been many attempts to generate neutralizing MPER-specific anti gp41 antibodies in animals, no protein-based immunization scheme has produced sera or antibodies that neutralized HIV-1 in the stringent TZM-bi assay \[16, 17, 107\]. In this study, we have demonstrated that it is possible to elicit anti-MPER antibodies that neutralize HIV-1 by employing proteoliposomes containing the native Env transmembrane region that may orient MPER optimally with respect to the lipid bilayer, which in turn is important for antibody neutralization \[55\]. Although bi-2H10 lacks the potency and breadth of 2F5, 4E10 or 10E8, optimization of the immunization protocol such as longer immunization schemes which may produce more extensive somatic mutations could yield antibodies with higher breadth and potency.

Supporting Information

Figure S1 SPR with 2H10 and bi-2H10. The following ligands were immobilized on a were immobilized on a CM5 chip: gp41\(\text{INT}\) A), B) and H), gp41\(\text{28-683}\) C) and D), and gp41\(\text{40-92UG037}\) E), F) and G). Injections were performed with a range of 1 to 200 nM for 150 seconds each on both gp41 constructs, while for the immobilized gp41\(\text{40-92UG037}\), 6.25, 25, 100 and 400 nM for 60 seconds was used. The fitted curves are represented by black lines and the raw data are shown in color. The data were measured in triplicates and the curves superpose very well. A) Response for 2H10 on gp41\(\text{INT}\), fitted with separate association and dissociation (shown association fit). B) Response for bi-2H10 on gp41\(\text{INT}\). The curves were fitted using 1:1 Langmuir model. C), D). Response for 2H10 and bi-2H10 on gp41\(\text{28-683}\) fitted using 1:1 Langmuir model. E) Proof of two-state reaction of 2H10 binding to gp140 on gp41\(\text{40-92UG037}\). Injections were performed with 100 nM 2H10 with different injection durations. The curves were normalized to the maximum of obtained response units. The observation that the dissociation is dependent on injection duration indicates a two-state reaction binding. F) Response for 2H10 on gp41\(\text{40-92UG037}\). The curves were fitted with the two-state reaction algorithm. G) Response for bi-2H10 on gp41\(\text{40-92UG037}\). The curves were fitted with the heterogeneous ligand algorithm. H) Response for mutant 2H10-W100A on gp41\(\text{INT}\), fitted with separate association and dissociation (shown association fit).

(TIF)

Figure S2 Lipid binding test of 2H10, 4E10 and 2F5. A) Sucrose gradient centrifugation analyses of 2H10, 4E10 and 2F5. The top and bottom of the gradient are indicated; hc, heavy chain; lc, light chain. B) ELISA with cardiolipin and phosphatidylserine. Binding of 4E10, 2F5, 2H10 and bi-2GH10 are indicated. Left panel binding to cardiolipin; right panel, binding to phosphatidylserine.

(TIF)

Figure S3 15N HSQC of 2H10 without and with a 1.5-fold excess of peptide. The spectra were acquired at 600 MHz, \(T = 37\) C. Protein concentration was 0.95 mM, in 25 mM HEPES buffer and 75 mM NaCl (pH 6.7).

(TIF)

Figure S4 Secondary structure propensity of the free and bound form of 2H10 determined from CB, CA, CO, N chemical shift analysis using the program TALOS-. The chemical shift index (CSI) value of 1 corresponds to 100% helical conformation propensity and a value of \(-1\) corresponds to a 100% \(\beta\)-strand conformation propensity.
Figure S5 Histograms showing the value of the chemical shift difference (CSD) in 2H10 induced upon binding with the gp41 peptide (1.5 fold excess). Residue numbers are indicated on the X axis (residues for which CSD is missing are prolines. The green and pale green bars with an arbitrary height represent residues whose NH correlation is not present in the 15N-HSQC spectrum for the free and bound form of 2H10, respectively (probably because of conformation exchange broadening). The C3I analysis of the free and bound form of 2H10 show that upon addition of an excess of ligand, the secondary structure of the protein does not change.

(TIFF)

References

Acknowledgments

We are grateful for the assistance of Roland T. Urbanus with the design of the Biacore studies. We thank the Partnership for Structural Biology (PSB; http://www.psb-grenoble.eu) for access to the common platforms and the ESRF (Grenoble) staff for access and support at the beam lines.

Author Contributions

Conceived and designed the experiments: DLH YYL RAW CTW WW LR. Performed the experiments: DLH YYL NMS SB LEM CS AH MH PM AMJJB JPML DD AFQ MMIAC MSS AR AF LR. Analyzed the data: DLH YYL SB MEK LEM AMJJB JPML DD AFQ MSS PP AF JPSS WW LR. Wrote the paper: DLH YYL AMJJB JPSS LEM CTW WW LR.

PLOS Pathogens | www.plospathogens.org 14 March 2013 | Volume 9 | Issue 3 | e1003202

HIV-1 Neutralizing Anti-gp41 VH

