Inflammation and Immune-Related Candidate Gene Associations with Acute Lung Injury Susceptibility and Severity: A Validation Study

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1371/journal.pone.0051104

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10611715

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Introduction

Acute Lung Injury (ALI) and its more severe manifestation, Acute Respiratory Distress Syndrome (ARDS) are associated with high mortality rates among intensive care unit patients [1–4]. Despite multiple clinical trials, no pharmacological agent has been shown to improve ALI-related outcomes [5]. Failure of these trials is due, in part, to an incomplete understanding of the key biologic pathways involved in the development and persistence of ALI in humans. One approach to identification of the key biologic pathways in ALI pathogenesis is gene-association studies.

Candidate gene studies in ALI have focused on variation within pathways thought to be important in ALI pathogenesis including genes involved in inflammation, immunity, oxidation, coagulation, angiogenesis, cell growth, endothelial barrier, surfactant function, and transcription regulation [6]. However, only a subset of putative ALI risk alleles have been validated in independent populations [7–11]. Robust associations between candidate gene polymorphisms and ALI validated in independent populations could support the development of more accurate models predicting risk for ALI and provide additional rationale for novel therapeutic interventions.

In this study, we sought to determine whether previously-reported associations between variants in genes of immunity, inflammation, angiogenesis and oxidative stress and risk for development of ALI or related outcomes, are robust. We used a...
nested case-control study design in a prospective cohort of critically ill patients with SIRS followed for development of ALI. Secondary analyses looked at ALI related outcomes in a case-only design.

Methods
SNP selection
We searched PubMed (www.ncbi.nlm.nih.gov/pubmed/) for publications reporting associations between genetic variants and development of ALI and/or ALI related outcomes as of August 2010. A panel of ALI investigators (DSO, BJG, MMW) selected variants based on strength of prior studies, biological relevance, and HapMap [12] minor allele frequencies (MAF) of >0.05 in Caucasians. Variants were then further narrowed to those for which Taqman® allelic discrimination assays could be designed or that were in high linkage disequilibrium (LD) with another SNP for which an assay could be prepared. As we were unable to design a Taqman assay for rs1800795, we used a surrogate SNP, rs2069832 (pairwise \(r^2 = 0.97 \)).

Study population
The cohort used for this study has been previously described [13]. Briefly, patients admitted to the intensive care unit at Harborview Medical Center, Seattle, WA (Dec 2006–Dec 2010) with systemic inflammatory response syndrome (SIRS) and known influenza therapy syndrome (SIRS) were followed prospectively for development of ALI and related outcomes such as death and other organ dysfunction. Patients were categorized as having SIRS if they had three or more of the following concurrently within a 24 hour period; a) body temperature (<36°C or >38°C) b) HR>90/min, c) RR>20/min or were on the ventilator and had PCO2<32 mmHg, and d) WBC<4,000/mm^3 or >12,000/mm^3. Exclusion criteria included trauma, HIV or immunosuppression, neurological injury, current diagnosis of cancer, and presence of a “do not resuscitate” order. ALI cases were as defined as per the American-European Consensus Committee (AECC) criteria for ARDS; presence of a proximal risk factor for ALI, presence of a PaO2/FiO2 ratio of partial pressure of oxygen in arterial blood/fraction of oxygen in gas delivered <200, absence of overt congestive heart failure, and a chest radiograph with bilateral parenchymal opacities as adjudicated by three critical care physicians [13]. We further subclassified cases as ARDS if the PaO2/FiO2 <200. According to the recently published Berlin Definition for Acute Respiratory Distress Syndrome, our definition of ALI would equate to mild, moderate, or severe ARDS while our definition of ARDS would equate to moderate and severe ARDS [14]. At-risk patients who did not meet criteria for development of ALI during the ICU hospitalization were classified as control subjects. This study was approved by the University of Washington, Division of Human Subjects Research.

Genotyping
Genomic DNA was extracted from whole blood samples using the Puregene DNA Isolation Kit (Qiagen, CA). All SNPs were genotyped using Taqman-based allelic discrimination assays, (Applied Biosystems, CA), on a multichannel microfluidics chip (Fluidigm, CA). Genotyping was carried out per the vendor’s protocol in a blinded fashion.

Statistical Analysis
We identified differences in demographic variables between ALI and control subjects using Fisher’s exact test for categorical variables and Student’s \(t \)-test for continuous variables. Observed genotype frequencies were compared with expected frequencies to test for deviations from Hardy-Weinberg equilibrium using Fisher’s exact test. To reduce possible confounding from population-stratification and racial differences, all analyses were restricted to Caucasian subjects. As a screen for major population substructure, we performed principal component analysis (PCA) using SNP genotypes from 67 SNPs available on our samples and which were also publically available for HapMap 3 subjects [12]. None of the first 5 PCs associated with case/control status.

We used multivariate logistic regression to estimate the genotype-specific odds ratio (OR) and 95% confidence interval (CI) for ALI susceptibility. The genotype associations were analyzed in both additive and recessive models. Covariates were chosen a priori based on known effects on risk for ALI development and mortality and included age, sex, APACHE III score, comorbidities, smoking status and alcohol abuse. A two sided \(P \) value \(<0.05\) was considered to be nominally significant in all analyses. To control for type I error from multiple hypotheses testing, we used a false discovery rate (FDR) approach setting a threshold of 0.1 as indicative of corrected significance. FDR was calculated separately for each association test using the total number of SNPs tested.

We conducted a sensitivity analysis restricting case and control subjects to avoid phenotype misclassification. We restricted cases of ALI to only those qualifying for moderate and severe ARDS by oxygenation criteria (PaO2/FiO2 <200) and we restricted at-risk controls to only subjects who did not have an episode of hypoxemia (PaO2/FiO2 <300).

In secondary analyses we tested for associations between genotypes and ventilator free days (VFDs) using linear regression and mortality within 28 days using logistic regression, adjusting for covariates as above.

In a post hoc analysis, and for SNPs with adequate genotyping data available in prior publications, we completed unadjusted meta-analyses for genotype associations with ALI risk or mortality in ALI subjects by combining our results with the published data.

We estimated that, under an additive model, our study would have adequate statistical power (1-\(\beta \)=0.8) to detect associations of moderate strength with ALI (relative risk (RR) >1.5) for SNPs with MAF>0.2. Assuming a recessive model, we would have adequate power to detect a strong association (RR greater than or equal to 3) with SNPs having a MAF>0.25. See Figure S2 for a description of power calculations and the range of power over varying models, allele frequencies and genotype effect strengths.

Statistical analyses were run using the R statistical package and SNP and Variation Suite 7™ (Golden Helix™, Bozeman, MT).

Results
Characteristics of the Study Population
We genotyped 879 subjects; 238 subjects who developed ALI and 641 at-risk control subjects (See Figure 1 for the subject exclusion flow chart diagram). For analyses, we restricted only to subjects that met 3 criteria for SIRS (Figure 1). These subjects had a mean age of 54 (StdDev ±16) years, were predominantly male (63.1%), and were moderately ill with a mean APACHEIII score of 64.7 (StdDev ±25). The baseline characteristics for the study population and comparisons of co-morbidities and clinical risk factors for ALI between groups are shown in Table 1. Compared with subjects who did not develop ALI, ALI cases were of similar age, more likely to be male, and had higher APACHE III scores. The proportion of subjects with coexisting end-stage renal disease, liver failure, alcohol abuse, and shock was greater in the ALI group. Hospital mortality for subjects with ALI was 24.6% which
is similar to observed rates in recent ARDSNet studies [15,16]. As would be expected, ALI cases were more likely to have acute kidney injury, sepsis, shock and fewer VFDs.

SNPs selected for validation

We searched PubMed for gene association studies of ALI and ARDS susceptibility and related outcomes. At the time of the search (August, 2010), we identified 37 genetic variants in 27 genes including SNPs, insertion/deletions, and SNP haplotypes (Table S1). The set of SNPs selected for this validation study tagged unique linkage disequilibrium bins that have been associated with ALI risk and/or ALI related outcomes and were located in or near the candidate genes. See Table 2 for the list of SNPs used in this study.

Genotyping results

We achieved genotype call rates across all subjects of over 99% for each of the 12 SNPs. One of the SNPs, rs4444903, had genotype frequencies for the control subjects that deviated from predicted frequency under Hardy Weinberg equilibrium (HWE). The remaining SNPs had genotype results for the control subjects that were not significantly different from HWE predictions using the \(\chi^2 \) test.

We did not observe strong evidence of population stratification by PCA comparing 67 shared genotypes among our subjects and HapMap3 subjects. When plotting PC1 vs. PC2, our subjects clustered with HapMap CEU and TSI subjects but not with Asian or African clusters as expected. No subject outliers or associations between phenotype and eigenvalue were observed. See Figure S1.

Association between SNPs and development of ALI

Genotype frequencies for control and case subjects are presented in Table 3. The A allele of rs4444903 in EGF was over-represented in cases but genotype frequencies for this SNP in controls deviated from HWE.

Table 1. HMC SIRS cohort population characteristics.

<table>
<thead>
<tr>
<th></th>
<th>All subjects</th>
<th>All Cases</th>
<th>At risk Controls</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects n</td>
<td>750</td>
<td>224</td>
<td>526</td>
<td></td>
</tr>
<tr>
<td>Age, yrs, (IQR)</td>
<td>54 (45–65)</td>
<td>55 (44–66)</td>
<td>54 (44–64)</td>
<td>0.381</td>
</tr>
<tr>
<td>Male (%)</td>
<td>480 (64)</td>
<td>159 (71)</td>
<td>321 (61)</td>
<td>0.007</td>
</tr>
<tr>
<td>Caucasian, %</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>ARDS</td>
<td>126 (16.8)</td>
<td>126 (56.3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>APACHE III*</td>
<td>64.7±25</td>
<td>79±25</td>
<td>63±24</td>
<td><0.001</td>
</tr>
<tr>
<td>All risk factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepsis</td>
<td>533 (71)</td>
<td>195 (87)</td>
<td>342 (65)</td>
<td><0.001</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>180 (24)</td>
<td>87 (39)</td>
<td>98 (17)</td>
<td><0.001</td>
</tr>
<tr>
<td>Aspiration</td>
<td>90 (12)</td>
<td>49 (22)</td>
<td>42 (8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Transfusion</td>
<td>16 (2.1)</td>
<td>5 (2)</td>
<td>11 (2)</td>
<td>0.096</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>203 (27)</td>
<td>56 (25)</td>
<td>142 (27)</td>
<td>0.65</td>
</tr>
<tr>
<td>ESRD</td>
<td>18 (2.4)</td>
<td>3 (1.3)</td>
<td>15 (2.9)</td>
<td>0.30</td>
</tr>
<tr>
<td>Liver failure</td>
<td>90 (10.2)</td>
<td>35 (14.7)</td>
<td>55 (8.6)</td>
<td>0.08</td>
</tr>
<tr>
<td>Alcohol</td>
<td>263 (35)</td>
<td>94 (42)</td>
<td>168 (32)</td>
<td>0.015</td>
</tr>
<tr>
<td>COPD</td>
<td>143 (19)</td>
<td>40 (18)</td>
<td>100 (19)</td>
<td>0.75</td>
</tr>
<tr>
<td>CHF</td>
<td>83 (11)</td>
<td>31 (14)</td>
<td>47 (9)</td>
<td>0.06</td>
</tr>
<tr>
<td>Smoking</td>
<td>450 (60)</td>
<td>146 (65)</td>
<td>300 (57)</td>
<td>0.062</td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFD</td>
<td>19.3±10</td>
<td>13±11</td>
<td>22±10</td>
<td><0.001</td>
</tr>
<tr>
<td>Death</td>
<td>120 (16)</td>
<td>56 (25)</td>
<td>63 (12)</td>
<td><0.001</td>
</tr>
<tr>
<td>AKI</td>
<td>632 (84)</td>
<td>204 (91)</td>
<td>428 (81)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>53 (7)</td>
<td>25 (11)</td>
<td>28 (6)</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Data is presented as mean ± SD for continuous variables and n (%) for categorical variables. P values represent results of Student’s t test comparison for difference of means for continuous variables and Fisher’s exact test for frequency counts for categorical variables. IQR, interquartile range; VFD, ventilator free days; AKI, presence of acute kidney injury by AKIN score >1 with lowest creatinine during hospitalization used as baseline; Death, subject death within 28 days of admission.

In analyses adjusted for age, gender, APACHEIII score, presence of diabetes mellitus, end stage renal disease, chronic alcohol use, cirrhosis and smoking status, we identified a nominal association between the A allele of rs2069832 in \(\text{TNF} \) and decreased risk for ALI (OR 1.33 (95% CI 1.14–1.56) p value = 0.03) (Table 4). The direction of effect and magnitude of the odds ratio result was consistent with the prior publication [17]. However, this association result did not meet our predetermined threshold for FDR (FDR <0.1). We did not observe any other significant associations with ALI susceptibility for any of the remaining SNPs in adjusted (Table 4) or unadjusted analyses (Table 3).

We evaluated whether we could complete meta-analyses by combining our genotype results with the previously published results but found that the many of the publications lacked adequate genotype results details. However, we were able to complete meta-analyses for several of the SNPs including \(\text{NAMPT} \), \(\text{VEGF} \), \(\text{IL6} \), \(\text{MBL2} \) and \(\text{TNF} \). In unadjusted genotype association meta-analyses using additive modeling, we observed an association between rs59744560 in \(\text{NAMPT} \) and increased risk for ALI (OR 1.33 (95% CI 1.14–1.56) p value <0.0003) and an association between rs61330082 in \(\text{NAMPT} \) and decreased risk for...
Table 2. Genetic variants studied.

<table>
<thead>
<tr>
<th>GENE</th>
<th>SNP</th>
<th>MAF*</th>
<th>Effect</th>
<th>Case**</th>
<th>Control**</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANGPT2 (Angiopoetin-2)</td>
<td>rs2515475</td>
<td>0.14</td>
<td>↑ risk ARDS</td>
<td>EA 449</td>
<td>1080 at risk</td>
<td>Su et al, 2009 [33]</td>
</tr>
<tr>
<td>EGF (Epidermal growth factor)</td>
<td>rs4444903</td>
<td>0.39</td>
<td>↑ risk ARDS</td>
<td>EA 416</td>
<td>1052 at risk</td>
<td>Shue et al, 2009 [34]</td>
</tr>
<tr>
<td>IL6 (Interleukin-6)</td>
<td>rs1800795</td>
<td>0.47</td>
<td>↑ mortality in ARDS</td>
<td>EA; 96</td>
<td>88 at risk; 174 healthy</td>
<td>Marshall et al, 2002 [17]</td>
</tr>
<tr>
<td>IL6 (Interleukin-6)</td>
<td>rs1800795 haplotypes</td>
<td></td>
<td>↑ risk ARDS</td>
<td>[11,29,30]</td>
<td></td>
<td>[11,29,30]</td>
</tr>
<tr>
<td>IL8 (Interleukin-8)</td>
<td>rs4073</td>
<td>0.40</td>
<td>↑ days on MV, ↑ IL8 levels</td>
<td>EA; 23</td>
<td>74 at risk</td>
<td>Hildebrand et al, 2007 [20]</td>
</tr>
<tr>
<td>IL10 (Interleukin-10)</td>
<td>rs1800896</td>
<td>0.47</td>
<td>↑ risk ARDS</td>
<td>EA; 211</td>
<td>429 at risk</td>
<td>Gong et al, 2006 [35]</td>
</tr>
<tr>
<td>MBL2 (Mannose-binding Lectin 2)</td>
<td>rs1800450</td>
<td>0.15</td>
<td>↑ risk ARDS</td>
<td>EA; 212</td>
<td>412 at risk</td>
<td>Gong et al, 2007 [36]</td>
</tr>
<tr>
<td>NFE2L2 (Nuclear factor, erythroid-derived, 2-like 2)</td>
<td>rs6721961</td>
<td>0.06</td>
<td>↑ risk ARDS</td>
<td>EA,AA; 30</td>
<td>60, matched case control</td>
<td>Marzec et al, 2007 [8]</td>
</tr>
<tr>
<td>NAMPT (Pre-B cell Colony-enhancing factor 1)</td>
<td>rs59744560, rs61330082</td>
<td>0.16, 0.33</td>
<td>↑ risk ARDS; ↓ risk ARDS</td>
<td>EA; 87</td>
<td>100 at risk</td>
<td>Ye et al, 2005 [19]</td>
</tr>
<tr>
<td>SFTPB (Surfactant. protein B)</td>
<td>rs1130866</td>
<td>0.43</td>
<td>↑ risk ARDS</td>
<td>EA,AA; 12</td>
<td>390 at risk</td>
<td>Quasney et al, 2004 [37]</td>
</tr>
<tr>
<td>TNF (Tumor necrosis factor α)</td>
<td>rs1800629</td>
<td>0.17</td>
<td>↑ mortality in ARDS</td>
<td>EA 237</td>
<td>476 at risk</td>
<td>Gong et al, 2005 [21]</td>
</tr>
<tr>
<td>VEGFA (vascular endothelial growth factor A)</td>
<td>rs3025039</td>
<td>0.19</td>
<td>↑ risk ARDS</td>
<td>EA 117</td>
<td>137 at risk; 103 healthy</td>
<td>Medford et al, 2005 [38]</td>
</tr>
</tbody>
</table>

*MAF, minor allele frequency in the HapMap; **CEU population; EA, European American; AA, African American; Number refers to number of subjects in group of the referenced study.

doi:10.1371/journal.pone.0051104.t002

ALI (OR 0.86 (95% CI 0.74–1.0) p value 0.049). We did not observe associations between SNPs in VEGF, IL8, MBL2 or TNF and ALI risk in this meta-analysis. See Table S3.

Association between SNPs and development of moderate or severe ARDS

We performed a sensitivity analysis excluding subjects with a higher likelihood for phenotypic misclassification as suggested by prior reports [13,18]. We compared controls (n = 288) without hypoxemic respiratory failure and cases with the more severe lung injury phenotypes, moderate and severe ARDS, n = 126. We identified a nominal association between rs61330082 in NAMPT and reduced ARDS susceptibility (ORadj 0.61; 95% confidence interval [CI], 0.40–0.95, P= 0.02) which replicates the direction of effect seen previously for this SNP [19]. We observed trends toward increased ARDS risk for homozygous carriers of risk ARDS EA 449 1080 at risk Su et al, 2009 [33]. We did not observe associations between previously-associated genetic variants and mortality and VFD among subjects with ALI. Genotype association meta-analysis using recessive modeling, rs1800629 in TNF was associated with increased mortality (OR 4.6 (95% CI 1.4–14.9, p value 0.001) and rs1800450 in MBL2 displayed a trend toward increased risk (OR 3.07 (95% CI 0.99–9.5), p value 0.07). See Table S4.

Discussion

At the time of our study, candidate gene association studies had identified more than 30 genetic variants in over 27 genes that associate with risk for ALI or ALI-related outcomes. These associations provide evidence that genetic factors contribute to ALI and strengthen the link between these specific genes in disease pathogenesis. In this study, we sought to identify robust associations between previously-associated genetic variants and risk for ALI and related outcomes. Using a nested case-control study in a well-phenotyped ICU cohort, we compared SIRS subjects who remained at-risk for ALI to those who developed ALI. Although, in the primary multivariable analyses, the significance levels for the associations with ALI did not survive correction for multiple comparisons, our nominal association results provide some support for prior findings. We observed a nominal association between a SNP in IL6 (rs2069832, surrogate for rs1800795) and risk for ALI. In analyses restricting case and control definitions to minimize misclassification, we observed a nominal association between rs61330082 in NAMPT and reduced risk for moderate and severe ARDS consistent with previous reports [19]. In terms of ALI-related outcomes, we observed nominal associations between rs4073 in IL8 and rs1800450 in MBL2 and decreased VFDs. We observed nominal associations between rs61330082 in NAMPT and rs6721961 in NFE2L2 and increased 28-day mortality. None of the associations observed in the secondary analyses survived correction for multiple hypothesis testing.

IL6 and IL8 have been extensively studied as important proinflammatory mediators in ALI. Elevated levels of IL-6 and IL-8 are associated with development of ALI, and persistence of
Table 3. Genotype frequencies in at-risk controls versus ALI cases.

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP rs#</th>
<th>At Risk Controls (%) (n = 526)</th>
<th>χ^2 p-value for HWE in at-risk control</th>
<th>ALI cases (%) (n = 224)</th>
<th>Fisher's Exact test genotype freq. (p-value)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFTPB</td>
<td>rs1130866</td>
<td>TT 134 (25) TC 257 (49) CC 135 (26) 0.60</td>
<td>TT 57 (25) TC 116 (52) CC 51 (23) 0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBL2</td>
<td>rs1800450</td>
<td>CC 370 (70) CT 142 (27) TT 14 (3) 0.93</td>
<td>CC 162 (72) CT 56 (25) TT 6 (3) 0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF</td>
<td>rs1800629</td>
<td>GG 383 (71) GA 131 (25) AA 12 (2) 0.84</td>
<td>GG 160 (71) GA 56 (27) AA 4 (2) 0.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL10</td>
<td>rs1800896</td>
<td>TT 144 (27) TC 256 (49) CC 126 (24) 0.56</td>
<td>TT 51 (23) TC 114 (51) CC 59 (26) 0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL6</td>
<td>rs2069832</td>
<td>GG 173 (33) GA 273 (52) AA 80 (15) 0.10</td>
<td>GG 78 (35) GA 99(44) AA 47 (21) 0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANGPT2</td>
<td>rs2515475</td>
<td>CC 410 (78) CT 102 (19) TT 14 (3) 0.016</td>
<td>CC 178 (79) CT 42 (19) TT 4 (2) 0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEGF</td>
<td>rs3025039</td>
<td>CC 381 (72) CT 133 (25) TT 12 (2) 0.92</td>
<td>CC 168 (75) CT 52 (23) TT 4 (2) 0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL8</td>
<td>rs4073</td>
<td>TT 163 (31) TA 252 (48) AA 110 (21) 0.49</td>
<td>TT 61 (27) TA 108 (48) AA 55 (25) 0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGF</td>
<td>rs4444903</td>
<td>AA 143 (27) AG 301 (57) GG 81 (15) 0.0002</td>
<td>AA 91 (41) 93 (42) 40 (18) 0.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAMPT</td>
<td>rs59744560</td>
<td>GG 398 (76) GT 114 (22) TT 14 (3) 0.10</td>
<td>GG 159 (71) GT 59 (26) TT 6 (3) 0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAMPT</td>
<td>rs61330882</td>
<td>CC 300 (57) CT 185 (35) TT 40 (8) 0.13</td>
<td>CC 141 (63) CT 67 (30) TT 16 (7) 0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFE2L2</td>
<td>rs6721961</td>
<td>GG 409 (78) GT 109 (21) TT 8 (2) 0.81</td>
<td>GG 175 (78) GT 44 (20) TT 5 (2) 0.93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HWE Hardy-Weinberg equilibrium.

*p value for the Fisher's exact test comparing genotypes for at risk controls and ALI cases.

doi:10.1371/journal.pone.0051104.t003
elevated levels has been associated with poor outcomes [22–24]. rs1800795 is a promoter SNP that results in decreased expression of IL-6, and multiple disease associations have been reported for this SNP [25]. Similarly, rs4073 in IL8 affects gene transcription and has multiple published disease associations [26–28]. Our study employed a larger carefully-phenotyped ICU population as compared to the prior published studies for genetic risk associations between these genes and ALI. The CC genotype of rs1800795 in IL6 which results in lower promoter activity was previously associated with reduced mortality in ARDS but not with risk for ALI [17]. Nonas et al. observed that a 3-SNP haplotype in IL6 that included the C allele of rs1800795 was actually associated with reduced risk of ALI [29]. In a subsequent publication, Flores et al. tested 14 SNPs across IL6 tagging all common linkage disequilibrium bins and found that none of these SNPs demonstrated an association with ALI. However, they did find that carriage of two copies of a 6-SNP haplotype that included the G allele at rs1800795 was associated with an OR of 2.73 (95% CI, 2.39–5.37) for development of ALI [11]. Finally, Sutherland et al. reported that carriage of 2 copies of an IL6 haplotype clade that included the G allele of rs1800795 was associated with increased risk of death and fewer days alive and free of ALI [30]. Here we now report that a surrogate for rs1800795 (rs2069832, r2 = 0.98), is associated with increased risk for ALI and, similar to the studies by Flores and Sutherland, the effect was best modeled assuming a recessive effect. The SNP in IL8 was previously associated with increased days on mechanical ventilation [20]; in our study, rs4073 in IL8 was similarly

<table>
<thead>
<tr>
<th>Table 4. Associations with ALI susceptibility.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDITIVE</td>
</tr>
<tr>
<td>Predictor</td>
</tr>
<tr>
<td>SFTPB</td>
</tr>
<tr>
<td>MBL2</td>
</tr>
<tr>
<td>TNF</td>
</tr>
<tr>
<td>IL10</td>
</tr>
<tr>
<td>IL6</td>
</tr>
<tr>
<td>ANGPT2</td>
</tr>
<tr>
<td>VEGF</td>
</tr>
<tr>
<td>IL8</td>
</tr>
<tr>
<td>EGF</td>
</tr>
<tr>
<td>PBEF1</td>
</tr>
<tr>
<td>PBEF1</td>
</tr>
<tr>
<td>NFE2L2</td>
</tr>
</tbody>
</table>

Multivariate logistic regression adjusted for age, sex, APACHE III score, alcohol abuse, smoking status, and history of chronic renal failure and diabetes mellitus. doi:10.1371/journal.pone.0051104.t004

<table>
<thead>
<tr>
<th>Table 5. Associations with moderate or severe ARDS susceptibility.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDITIVE</td>
</tr>
<tr>
<td>Predictor</td>
</tr>
<tr>
<td>SFTPB</td>
</tr>
<tr>
<td>MBL2</td>
</tr>
<tr>
<td>TNF</td>
</tr>
<tr>
<td>IL10</td>
</tr>
<tr>
<td>IL6</td>
</tr>
<tr>
<td>ANGPT2</td>
</tr>
<tr>
<td>VEGF</td>
</tr>
<tr>
<td>IL8</td>
</tr>
<tr>
<td>EGF</td>
</tr>
<tr>
<td>NAMPT</td>
</tr>
<tr>
<td>NAMPT</td>
</tr>
<tr>
<td>NFE2L2</td>
</tr>
</tbody>
</table>

Multivariate logistic regression adjusted for age, sex, APACHE III score, alcohol abuse, smoking status, and history of chronic renal failure and diabetes mellitus. n = 414 (126 with ARDS). doi:10.1371/journal.pone.0051104.t005
Table 6. Associations with VFDs.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Slope</th>
<th>P-value</th>
<th>FDR</th>
<th>Predictor</th>
<th>Slope</th>
<th>P-value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFTP8</td>
<td>0.07</td>
<td>0.94</td>
<td>0.94</td>
<td>MBL2</td>
<td>−0.43</td>
<td>0.75</td>
<td>0.97</td>
</tr>
<tr>
<td>IL10</td>
<td>−1.00</td>
<td>0.48</td>
<td>1.00</td>
<td>IL6</td>
<td>0.78</td>
<td>0.41</td>
<td>1.00</td>
</tr>
<tr>
<td>ANGPT2</td>
<td>−0.73</td>
<td>0.64</td>
<td>1.00</td>
<td>VEGF</td>
<td>−1.53</td>
<td>0.28</td>
<td>1.00</td>
</tr>
<tr>
<td>IL8</td>
<td>−0.70</td>
<td>0.47</td>
<td>1.00</td>
<td>EGF</td>
<td>0.82</td>
<td>0.38</td>
<td>1.00</td>
</tr>
<tr>
<td>NAMPT</td>
<td>0.46</td>
<td>0.73</td>
<td>1.00</td>
<td>NAMPT</td>
<td>−0.22</td>
<td>0.84</td>
<td>0.91</td>
</tr>
<tr>
<td>NFE2L2</td>
<td>0.36</td>
<td>0.80</td>
<td>0.95</td>
<td>SFTPB</td>
<td>−0.70</td>
<td>0.47</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Predictor Odds Ratio OR Conf. Interval P-Value FDR Odds Ratio OR Conf. Interval P-Value FDR

SFTP8 rs1130866 0.91 0.55–1.50 0.71 1.00 0.73 0.30–1.73 0.46 0.80 MBL2 rs1800450 1.02 0.52–2.01 0.96 0.96 1.74 0.27–11.3 0.57 0.76
TNF rs1800629 0.65 0.31–1.34 0.23 0.76 6.00 0.41–87.2 0.17 0.67 IL10 rs1800896 0.81 0.48–1.35 0.42 0.78 0.80 0.35–1.83 0.60 0.72
IL6 rs2069832 0.96 0.59–1.58 0.88 1.00 0.94 0.39–2.26 0.89 0.97
ANGPT2 rs2515475 1.12 0.50–2.5 0.78 1.00
VEGF rs3025039 1.27 0.62–2.60 0.52 0.84 1.11 0.09–14.5 0.93 0.93
IL8 rs4073 1.01 0.62–1.66 0.95 1.00 1.49 0.67–3.31 0.33 0.79
EGF rs444903 1.36 0.84–2.21 0.21 1.00 1.79 0.75–4.26 0.19 0.58
NAMPT rs59744560 1.46 0.77–2.80 0.25 0.66 2.26 0.32–15.8 0.43 0.85
NAMPT rs61330082 1.42 0.82–2.45 0.22 0.94 4.37 1.36–14.1 0.016 0.20
NFE2L2 rs6721961 1.40 0.68–2.88 0.37 0.80 9.73 1.27–74.8 0.030 0.18

Validating Gene Associations in Acute Lung Injury

Table 7. Associations with 28-day ALI-related mortality.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Odds Ratio</th>
<th>OR Conf. Interval</th>
<th>P-Value</th>
<th>FDR</th>
<th>Odds Ratio</th>
<th>OR Conf. Interval</th>
<th>P-Value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFTP8</td>
<td>0.91</td>
<td>0.55–1.50</td>
<td>0.71</td>
<td>1.00</td>
<td>0.73</td>
<td>0.30–1.73</td>
<td>0.46</td>
<td>0.80</td>
</tr>
<tr>
<td>MBL2</td>
<td>1.02</td>
<td>0.52–2.01</td>
<td>0.96</td>
<td>0.96</td>
<td>1.74</td>
<td>0.27–11.3</td>
<td>0.57</td>
<td>0.76</td>
</tr>
<tr>
<td>TNF</td>
<td>0.65</td>
<td>0.31–1.34</td>
<td>0.23</td>
<td>0.76</td>
<td>6.00</td>
<td>0.41–87.2</td>
<td>0.17</td>
<td>0.67</td>
</tr>
<tr>
<td>IL10</td>
<td>0.81</td>
<td>0.48–1.35</td>
<td>0.42</td>
<td>0.78</td>
<td>0.80</td>
<td>0.35–1.83</td>
<td>0.60</td>
<td>0.72</td>
</tr>
<tr>
<td>IL6</td>
<td>0.96</td>
<td>0.59–1.58</td>
<td>0.88</td>
<td>1.00</td>
<td>0.94</td>
<td>0.39–2.26</td>
<td>0.89</td>
<td>0.97</td>
</tr>
<tr>
<td>ANGPT2</td>
<td>1.12</td>
<td>0.50–2.5</td>
<td>0.78</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEGF</td>
<td>1.27</td>
<td>0.62–2.60</td>
<td>0.52</td>
<td>0.84</td>
<td>1.11</td>
<td>0.09–14.5</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>IL8</td>
<td>1.01</td>
<td>0.62–1.66</td>
<td>0.95</td>
<td>1.00</td>
<td>1.49</td>
<td>0.67–3.31</td>
<td>0.33</td>
<td>0.79</td>
</tr>
<tr>
<td>EGF</td>
<td>1.36</td>
<td>0.84–2.21</td>
<td>0.21</td>
<td>1.00</td>
<td>1.79</td>
<td>0.75–4.26</td>
<td>0.19</td>
<td>0.58</td>
</tr>
<tr>
<td>NAMPT</td>
<td>1.46</td>
<td>0.77–2.80</td>
<td>0.25</td>
<td>0.66</td>
<td>2.26</td>
<td>0.32–15.8</td>
<td>0.43</td>
<td>0.85</td>
</tr>
<tr>
<td>NAMPT</td>
<td>1.42</td>
<td>0.82–2.45</td>
<td>0.22</td>
<td>0.94</td>
<td>4.37</td>
<td>1.36–14.1</td>
<td>0.016</td>
<td>0.20</td>
</tr>
<tr>
<td>NFE2L2</td>
<td>1.40</td>
<td>0.68–2.88</td>
<td>0.37</td>
<td>0.80</td>
<td>9.73</td>
<td>1.27–74.8</td>
<td>0.030</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Multivariate logistic regression adjusted for age, sex, APACHE III score, alcohol abuse, smoking status, and history of chronic renal failure and diabetes mellitus. n = 224 (49 non-survivors at 28 days). doi:10.1371/journal.pone.0051104.t007

controls, demonstrated that two of the SNPs in the promoter region, T-1001G (rs59744560) and C-1543T (rs61330082) were associated with risk for sepsis and ALI [19]. A second study using a nested case-control design in a larger population replicated the association with the −1001G allele and increased risk for ALI while the −1543T allele was associated with decreased risk for ARDS [9]. In our study, we observed the same effect of reduced risk of ALI for carriers of the −1543T genotype in sensitivity analyses restricting to cases with ARDS and controls without hypoxemia. On the other hand, we did not replicate the risk association for the −1001G SNP (rs59744560) in our primary adjusted analysis. In a post hoc meta-analysis combining our data and published genotype data for rs59744560, we did observe a strongly significant association with risk for ALI. Taken together, these findings support a role for NAMPT in ALI pathogenesis and suggest that NAMPT promoter variants are associated with risk for disease development.

NFE2L2 is a gene that has been identified as a potential mediator of hyperoxia-induced lung damage via linkage analysis and positional cloning in mice [31]. NFE2L2 is a transcription factor that targets antioxidant response elements (AREs) leading to gene regulation that is protective in the setting of oxidative stress. Resequencing of NFE2L2 identified a variant (rs6721961) that resulted in diminished promoter activity in an in vitro transfection experiment [8]. The authors also reported that rs6721961 was associated with increased risk for development of trauma-associated acute lung injury. We observed a trend for association of this variant with increased risk for ALI among subjects with SIRS, with a stronger trend in the sensitivity analysis with ARDS as the outcome. Our analysis resulted in a strong odds ratio for increased risk for developing ALI similar to the prior report [8].

Misclassification of ALI, particularly the inclusion of subjects without true ALI among cases, can lead to significant reductions in statistical power to detect true genetic associations [32]. For example, a recent study found that removal of subjects with equivocal CXR results from a set of patients classified with ALI resulted in an improvement in the strength of associations observed [18]. We undertook a sensitivity analysis to determine...
if we would observe stronger associations following reduction of potential misclassification of ALI cases and at-risk controls. We restricted cases to only those ALI cases qualifying for ARDS (PF<200) while also restricting control subjects to those who did not have hypoxemia. This approach reduced the analysis sample size but resulted in associations with effects that were farthest from the null for the SNPs in IL6, NAMPT and NFE2L2. While these findings did not achieve statistical significance after correction for type I error they provide support for the contention that phenotypic misclassification is a major issue reducing power and precision in case-control studies of ALI.

Overall, our study failed to demonstrate robust associations between the SNPs studied and risk for ALI and related outcomes. Reasons for lack of validation include inadequate statistical power, misclassification of subject phenotypes, sample population differences compared to the prior studies, population substructure, and absence of true association with ALI. As power was limiting to identify small effect sizes, especially in the recessive model, we cannot exclude the possibility that we failed to observe true associations between the SNPs and ALI susceptibility and related outcomes. A limited analysis on 67 genotypes demonstrated that subjects from our cohort clustered with HapMap CEU and TSI subjects suggesting that there was not obvious evidence for cryptic admixture. However, more subtle differences in population substructure could have also have affected our ability to detect true associations. Finally, most of the SNPs included in this study have not been definitively shown to have functional significance and may merely serve as markers for causal variants. Future work will require more dense genotyping or sequencing at these loci to gain further insight into potential mechanisms.

This study used a well-phenotyped cohort of ICU subjects with SIRS and a nested-case control design to replicate ALI risk associations for several previously identified genetic variants. We observed nominal associations for between SNPs in IL6 and NAMPT, and risk for ALI and ARDS, but these associations failed to meet significance after adjusting for multiple comparisons. Nominal associations were also identified between SNPs in IL6, MBL2, NAMPT and NFE2L2 and ALI severity outcomes, namely VFDs and 28-day mortality. The failure to replicate the majority of ALI risk and outcome associations with statistical significance emphasizes the challenges of genetic association studies in critical care populations including sample size and disease classification. Our results also highlight the importance of independent confirmatory studies of associations with ALI susceptibility and related outcomes in order to support a better understanding of ALI pathogenesis and prognosis.

Supporting Information

Figure S1 Genotype principal component analysis plot demonstrating overlap of our subjects with HapMap

References

Validating Gene Associations in Acute Lung Injury

