Insulin resistance, subclinical left ventricular remodeling, and the obesity paradox: the multi-ethnic study of atherosclerosis

Citation

Published Version

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10613668

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
ORAL PRESENTATION

Open Access

Insulin resistance, subclinical left ventricular remodeling, and the obesity paradox: the multi-ethnic study of atherosclerosis

Ravi Shah1*, Siddique Abbasi1, Bobby Heydari1, Carsten Rickers2, David R Jacobs3, Lu Wang4, Raymond Y Kwong1, David A Bluemke5, Joao A Lima5, Michael Jerosch-Herold5

From 16th Annual SCMR Scientific Sessions
San Francisco, CA, USA. 31 January - 3 February 2013

Background
Recent studies suggest that central obesity and insulin resistance may be primary mediators of obesity-related cardiac remodeling independent of body mass index (BMI). We assessed in the Multi-Ethnic Study of Atherosclerosis (MESA) whether insulin resistance and waist-to-hip ratio had effects on cardiac remodeling, independent of obesity.

Methods
We investigated 4,364 individuals without diabetes in MESA. Insulin resistance (by impaired fasting glucose, IFG: 100-125 mg/dl or homeostatic model assessment of insulin resistance, HOMA-IR) and waist-to-hip ratio (WHR) were used for cardiometabolic phenotyping. Multivariate linear regression analysis was used to determine

Figure 1

© 2013 Shah et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
the effects of the cardiometabolic markers on LV remodeling, assessed primarily through the LV mass-to-volume ratio obtained by cine cardiac magnetic resonance imaging.

Results
Individuals with IFG were more likely to be older, hypertensive, with increased prevalence of cardiometabolic risk factors regardless of BMI. In each quartile of BMI, individuals with above-median HOMA-IR, above-median WHR, or IFG had a higher LV mass-to-volume ratio (p<0.05 for all). HOMA-IR (p<0.0001), WHR (p<0.0001), and the presence of IFG (p=0.04), but not BMI (p=0.24), were independently associated with LV mass-to-volume ratio after adjustment for age, gender, hypertension, race, and dyslipidemia.

Conclusions
Insulin resistance and waist-to-hip ratio are associated with concentric LV remodeling independent of BMI. These results support the emerging hypothesis that the cardiometabolic phenotype, defined by insulin resistance and central obesity, may play a critical role in LV remodeling independently of BMI.

Funding
MESA was supported by contracts NO1-HC-95159 through NO1-HC-95169 from the National Heart, Lung, and Blood Institute. Dr. Shah is supported by an American Heart Association Post-Doctoral Fellowship Award (11POST000002) and a training grant from the Heart Failure National Institutes of Health Clinical Research Network (U01-HL084877). Dr. Jerosch-Herold receives support through R01-HL-65580. All other authors have no financial disclosures relevant to the content of this manuscript.

Author details
1Brigham and Women’s Hospital, Boston, MA, USA. 2Department of Pediatric Cardiology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany. 3University of Minnesota, School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN, USA. 4Harvard School of Public Health, Department of Epidemiology and Biostatistics, Boston, MA, USA. 5Radiology and Imaging Sciences, National Institutes of Health Clinical Center, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA.

Published: 30 January 2013