
Hepatitis C Virus and Hepatocarcinogenesis

Citation
Jeong, Soung Won, Jae Young Jang, and Raymond T. Chung. 2012. Hepatitis C virus and 
hepatocarcinogenesis. Clinical and Molecular Hepatology 18(4): 347-356.

Published Version
doi:10.3350/cmh.2012.18.4.347

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10617870

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:10617870
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Hepatitis%20C%20Virus%20and%20Hepatocarcinogenesis&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=be19438049799b921b3b20a26a1397c2&department
https://dash.harvard.edu/pages/accessibility


Copyright © 2012 by The Korean Association for the Study of the Liver
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) 
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

pISSN 2287-2728      
eISSN 2287-285X

Review
http://dx.doi.org/10.3350/cmh.2012.18.4.347

Clinical and Molecular Hepatology 2012;18:347-356

INTRODUCTION 

Hepatitis C virus (HCV) is an RNA virus that is unable to inte-

grate into the host genome. However, its proteins interact with 

various host proteins and induce host responses that potentially 

contribute to the malignant transformation of cells. Hepatocellular 

carcinoma (HCC) development is usually a final consequence of 

sequential progression of chronic fibrosing liver diseases, and HCC 

usually occurs only after establishment of liver cirrhosis in HCV-

infected individuals.1 In cirrhotic patients with HCV infection, the 

annual HCC development rates range between 1-7%.2

The incidence of HCV-related HCC continues to rise and is esti-

mated to remain high in the next two decades.3 Although epide-

miological evidence has suggested a clear, close relationship be-

tween HCV infection and HCC,4,5 the prevalence of HCV infection 

in HCC patients differs noticeably between geographical regions. 

HCV infection is found in 70-80% of HCC patients in Japan, 70% 

in Egypt, 40-50% in Italy and Spain, about 20% in the United 

States and Korea, and less than 10% in China.6-8 HCV increases 

the risk of HCC by promoting inflammation and fibrosis of the 
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classification is required and an understanding of these molecular complexities may provide the opportunity for 
effective chemoprevention and personalized therapy for HCV-related HCC patients in the future. In this review, we 
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infected liver that eventually results in liver cirrhosis. Other factors 

including alcohol intake, diabetes, and obesity have also been 

reported to increase the risk of HCC development by about two- 

to fourfold, indicating a strong life-style effect on the process of 

hepatocarcinogenesis.9,10

Recent genome-wide association studies (GWAS) have suggest-

ed that the natural course of HCV infection might be modified by 

the genetic background of the host.11,12 Thus, both host and virus 

factors are considered to affect the process of hepatocarcinogen-

esis in a complex manner.

In this review, we summarize the current knowledge of the 

mechanisms of hepatocarcinogenesis induced by HCV infection.

Molecular pathways in hepatocarcinogenesis

HCC is a highly heterogeneous tumor. Hepatocarcinogenesis is 

a complex multistep process involving a number of genetic and 

epigenetic alterations, the activation of cellular oncogenes and/

or the inactivation of tumor suppressor genes, and dysregulation 

of multiple signal transduction pathways. These pathways include 

Wnt/β-catenin, p53, pRb, Ras, mitogen-activated protein kinase 

(MAPK), Janus kinase (JAK)/signal transducer and activator of 

transcription (STAT), phosphatidylinositol 3-kinase (PI3K)/Akt, 

Hedgehog and growth factors such as epidermal growth factor, 

and transforming growth factor-β (TGF-β) pathways.13-15

Fibrosis and hepatocarcinogenesis

The vast majority (80-90%) of HCCs develop in a cirrhotic liver.16 

During the progression of liver injury, hepatic stellate cells (HSCs) 

become activated, losing retinoid-containing lipid droplets and 

transforming into myofibroblast-like cells, which produce extracel-

lular matrix, the first step in hepatic fibrosis.17 Unchecked progres-

sion of fibrosis ultimately eventuates in irreversible cirrhosis. The 

activated HSCs become responsive to both proliferative platelet-

derived growth factor (PDGF)18 and fibrogenic (TGF-β) cytokines,19 

which are upregulated in fibrogenesis and modulate inflammatory 

signaling from infiltrating immune cells.20 PDGF can activate both 

MAPK and PI3K/Akt signaling cascades.20 In PDGF-C transgenic 

mice, activation and proliferation of HSCs precedes development 

of fibrosis, which in turn is followed by the occurrence of HCC. 

This progression is analogous to that seen in human HCC.21 The 

cirrhotic liver is also associated with telomere shortening, which 

may in turn lead to chromosomal instability and deletion of check 

points.22 Increased survival factors that prevented apoptosis of 

DNA-damaged hepatocytes and activated stellate cells (for ex-

ample, Gas6215) and reduced tumor surveillance function due to 

decreased natural killer cell function are all possible factors related 

to HCC development in cirrhosis.23 Recent studies have found that 

stellate cells express stem cell markers such as CD133, nestin, 

c-kit and p75 neurotrophin receptor,24-27 and activated stellate 

cells appear to contribute to the stem cell niche.28 Hedgehog and 

Wnt signaling pathways involved in stem cell differentiation and 

cancer formation are also found in stellate cells.29,30 These lines of 

evidences suggest that stellate cells may harbor the potential to 

transdifferentiate into progenitor cells and possibly be linked to 

the development of HCC.23

Virus proteins and host responses

HCV belongs to the Flaviviridae family. It has a 9.6-kb positive-

stranded linear RNA genome containing 5’ and 3’ untranslated 

regions including control elements required for translation and 

replication. The untranslated regions flank an uninterrupted open-

reading frame encoding a single polyprotein of 3010 or 3011 

amino acids, which is processed into three structural (core, E1, and 

E2) and seven non-structural (p7, NS2, NS3, NS4A, NS4B, NS5A, 

and NS5B) proteins by host and viral proteases.31 HCV is an RNA 

virus unable to reverse transcribe its genome and thus to integrate 

it into the host genome. Instead, viral proteins and their evoked 

host responses contribute mostly to the viral oncogenic processes.

Core protein
HCV core protein has been proposed to be involved in apopto-

sis, signal transduction, reactive oxygen species (ROS) formation, 

lipid metabolism, transcriptional activation, transformation and 

immune modulation (Fig. 1).15,32

Several recent studies have indicated the statistically significant 

high frequency of mutations in the core gene in HCV-infected pa-

tients who developed HCC.33,34 

HCV core protein binds to several tumor suppressor proteins, 

including p53, p73 and pRb.35,36 HCV core interacts with p73, 

causes nuclear translocation of core protein and prevents p73 

α-dependent cell growth arrest in a p53-dependent manner.37 

HCV core can also modulate the expression of the cyclin depen-

dent inhibitor p21WAF1, which is a major target of p53 and regu-

lates the activities of cyclin/cyclin-dependent kinase complexes 

involved in cell-cycle control and tumor formation.38,39 Core pro-

tein may also influence the growth and proliferation of host cells 

through activation of signaling pathways such as Raf/MAPK,40 



349

Soung Won Jeong, et al. 
Hepatitis C virus and hepatocarcinogenesis 

http://www.e-cmh.org http://dx.doi.org/10.3350/cmh.2012.18.4.347

Wnt/β-catenin,41 and TGF-β.15,42 These pathways are known to be 

activated in HCC.43 However, the functional relevance of mutant 

core proteins on the malignant transformation of hepatocytes or 

the HCV life cycle has yet to be clarified. 

NS3 protein
HCV NS3 protein may exert its hepatocarcinogenic effect on 

host cells in early stages.44,45 

NS3 inhibits the activity of the p21WAF1 promoter in a dose-

dependent manner and is synergistic with core in this regard.46 

NS3 inhibits the function of p53 in an NS3 sequence in an NS3 

sequence-dependent manner.47 The expression of NS3 enhances 

cell growth, JNK activation and DNA-binding activities of the 

transcription factors AP-1 and ATF-2.48 NS3 also induces TNF-a 

production by activation of AP-1 and NF-kB.49

NS5A protein
NS5A is essential for the replication of the HCV genome and is 

localized mainly in the cytoplasm of infected cells in association 

with the endoplasmic reticulum (ER). NS5A is involved in a large 

number of cellular functions, including apoptosis, signal transduc-

tion, transcription, transformation and ROS production. High fre-

quencies of wild-type NS5A genes were reported to be dominant 

in liver cirrhosis patients who finally developed HCC compared 

with those who did not,50 but the mechanistic significance of the 

NS5A wild/mutant genotypes in the process of HCV-related hepa-

tocarcinogenesis remains uncertain. NS5A protein has been sug-

gested to interact with various signaling pathways including cell 

cycle/apoptosis51 and lipid metabolism52-54 in host cells and shares 

some signaling targets with core protein. NS5A is recognized as 

a transcriptional activator for many target genes55 including p53 

and its binding protein, TATA binding protein (TBP). Transcrip-

tion factor IID activities were reported to be modified by NS5A in 

the suppression of p53-dependent transcriptional transactivation 

and apoptosis.56,57 NS5A may also interact with pathways such as 

Bcl2,58 PI3-K,59 Wnt/β-catenin signaling,60 and mTOR61 to activate 

cell proliferation signaling and inhibit apoptosis. Taken together, 

intriguing data concerning the function of core and NS5A proteins 

on host cell signaling pathways, transcriptional activation, apop-

tosis, oxidative stress, and lipid metabolism suggest a diverse role 

for HCV proteins in the pathophysiology of chronic HCV infection 

that leads to malignant transformation in infected hepatocytes. 

Genomic characteristics of HCV related HCC

It is now widely believed that tumors originate from normal cells 

as a result of accumulated genetic/epigenetic changes. These al-

terations affect the signaling pathways at transcriptional and post-

transcriptional level that drive cells into uncontrolled cell division, 

growth, and migration. HCV proteins in infected cells can cause 

various host responses at transcriptional/translational/posttrans-

latonal levels, so genetic/genomic alterations and transcriptional/

translational modifications can ultimately affect the cellular signal-

ing pathway at the transcriptional level.

Figure 1. Cellular signaling pathways implicated in hepatitis C virus (HCV) core protein-related hepatocarcinogenesis. 
Blue boxes indicate key driving forces for carciniogenesis.
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Recent advancement of molecular technologies have yielded 

comprehensive gene expression profiling techniques that have 

successfully provided candidate diagnostic and prognostic markers 

in human cancers.

Over the past decade, several methods (including differential 

display, serial analysis of gene expression [SAGE], and microarray) 

have been developed to allow comparative studies of gene expres-

sion between normal and cancer cells on a genome-wide scale,62 

and the analysis of a set of all RNA molecules (mainly indicating 

messenger RNAs [mRNAs]) is termed as whole transcriptome 

analysis.

Early microarray and SAGE studies investigating the gene ex-

pression patterns of chronic hepatitis B (CHB) and CHC indicated 

that many genes were differentially regulated between hepatitis B 

and C. In CHB, genes for induction of apoptosis, cell cycle arrest, 

and extracellular matrix degrading were up-regulated, whereas in 

hepatitis C, genes with antiapoptotic effects, cell cycle accelera-

tion, and extracellular matrix storage were up-regulated.63,64

An early study comparing genes activated in HCV-related and 

HBV-related HCCs showed that expression of genes encoding 

CYP2E, AKR1C4, EPHX1, and FMO3 enzymes that convert several 

pro-carcinogens to activated metabolites increased exclusively 

in HCV-positive HCCs, which may suggest that their enhanced 

expression leads to a greater contribution of carcinogenic metabo-

lites to the mechanisms of HCV-specific hepatocarcinogenesis. On 

the other hand, decreased expression of detoxification enzymes 

including UGT1A1, UGT2B10, and GPX2 was noted in HBV-

positive HCCs. These results suggest that decreased expression of 

detoxification enzymes may be involved especially in the mecha-

nisms of HBV-specific hepatocarcinogenesis.

The genes associated with xenobiotic metabolism were more 

abundantly expressed in HCV-related HCC, suggesting a detoxifi-

cation role, which is potentially induced by chronic inflammation 

and generation of ROS resulting from HCV infection.65 In contrast, 

HBV-related HCC might closely correlate with the activation of 

imprint genes, including insulin-like growth factor-II (IGF-II), sug-

gesting a role of de-differentiation or epigenetic alteration of the 

host genome in HBV-related HCC. The expression levels of many 

detoxification-related genes were increased in HCV-related HCC 

in comparison to HBV-related HCC. Markedly reduced levels of 

detoxification-related genes in HBV-related HCC suggests that 

HBV-infected liver could be more susceptible than HCV-infected 

liver to various xenobiotics or carcinogens.66 Activation of genes 

associated with interferon, oxidative stress, apoptosis, and lipid 

metabolism signaling was detected in HCV-related HCC and CHC 

specimens,64,67,68 consistent with numerous functional studies that 

have investigated the host response evoked by HCV structural and 

non-structural proteins.51

HCC risk predictors that identify the subset of cirrhotic patients 

with the highest risk of HCC are sorely needed. In addition, iden-

tification of molecular biomarkers may open new prospect toward 

the discovery of therapeutic targets.

Transcriptome analysis has also recently gave new understand-

ing on the transcriptional alteration events occurring in early stag-

es of HCV-related hepatocarcinogenesis. GPC3 (encoding Glypican 

3) was suggested as one of the most activated transcripts in the 

early stage of hepatocarcinogenesis,64,69 also several recent stud-

ies have reported that gene signatures including GPC3 can suc-

cessfully discriminate HCCs from pre-malignant dysplastic nodules 

and cirrhosis nodules.70,71

The genetic approach between each of the stages from normal, 

cirrhotic, and dysplastic to early and advanced HCV-related HCC 

identified gene signatures that accurately reflect the pathological 

progression of disease at each stage. In addition, pathway analy-

sis revealed dysregulation of the Notch and Toll-like receptor path-

ways in cirrhosis, followed by deregulation of several components 

of the JAK/STAT pathway in early carcinogenesis, then upregula-

tion of genes involved in DNA replication and repair and cell cycle 

in late cancerous stages.50,72 These findings provide a comprehen-

sive molecular portrait of genomic changes in progressive HCV-

related HCC. Aimed at identifying etiology-specific or independent 

genetic variants predictive of HCC risk, efforts have focused on 

the search for single nucleotide polymorphisms (SNPs) associated 

with the presence of HCC in candidate genes such as epidermal 

growth factor (EGF) based on certain biological hypothesis.73 

Recent development of high-throughput genomics technology 

has enabled genome-wide scans of such loci in the setting of a 

GWAS. In HCC, the first GWAS was conducted on hepatitis B-

related HCC patients and identified a SNP possibly associated with 

altered expression and function of several potential tumor sup-

pressor genes in 1p36.22 namely KIF1B, UBE4B, and PGD.74 

The first GWAS on HCV-related HCC has recently been reported 

by Kumar and colleagues.75 By analyzing 721 patients with HCV-

related HCC and 2890 HCV-negative controls of Japanese origin 

for 432,703 autosomal SNPs, they identified eight possible HCC 

susceptibility loci with modest statistical significance. The follow-

ing replication stage, involving 673 independent cases and 2596 

HCV-negative controls, confirmed a novel SNP rs2596542 located 

in the 50 flanking region of MICA, the MHC class I polypeptide-

related sequence A gene, on chromosome 6p21.33.
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The authors further genotyped the locus in additional 1730 

individuals with CHC who had not developed liver cirrhosis, and 

found that the association of the risk allele was observed in the 

comparison between CHC and HCC patients, but not in the com-

parison between CHC patients and HCV-negative controls, sug-

gesting that the SNP is associated with progression from CHC to 

HCC rather than susceptibility to HCV infection. 

However, the study by Kumar et al75 did not use HCV-related 

cirrhosis without HCC as the controls, it is possible that the risk 

allele in the MICA gene is actually responsible for increased pro-

gression of liver cirrhosis, which eventually contributes to develop-

ment of HCC. That is, information from this allele may not be use-

ful in distinguishing HCC high risk population among HCV related 

cirrhotic patients. In fact, the soluble MICA protein level was not 

different between CHC, cirrhosis, and HCC patients. This needs to 

be clarified in future studies for example by genotyping patients 

with HCV-related cirrhosis and following for HCC development to 

evaluate the risk allele’s association with hazard of HCC occur-

rence within cirrhotic patients.76

The study by Miki et al77 is the last of a recent series of GWAS 

focused on HCC (Table 1).78

Authors analyzed a large set of HCV Japanese carriers (n=3,312) 

using a case-control design, and they interrogated 467,538 germ-

line SNPs and identified one, rs1012068, significantly associated 

with the risk of developing HCC. The SNP is located in chromo-

some 22, and by using fine mapping studies the authors identified 

DEPDC5 as the target gene harboring the different genotypes. De-

spite the function of this gene is unknown, there is some evidence 

of aberrations affecting its locus in human cancer (e.g., glioblas-

toma). 

Recent advances in transcriptome analysis have also provided 

detailed information on the status of small noncoding RNAs, 

microRNAs (miRNAs) that regulate gene expression by target-

ing mRNAs through translational repression or RNA degrada-

tion. Many fundamental biological processes are modulated by 

miRNAs, and an important role for miRNAs in carcinogenesis is 

emerging.

Although the mechanisms of altered miRNA levels in human 

cancer are quite varied, including deletions, amplification or mu-

tations involving miRNA genes, it is clear that miRNA-regulated 

expression of oncogenes and tumor suppressor genes contribute 

to most – if not all – human cancers.1 Earlier studies noted specific 

changes in miRNA expression patterns in HCC as compared with 

adjacent normal liver tumor tissues, or liver cirrhosis that corre-

lated with the disease outcome (Table 2).3,81-84

Since there is no HCV encoded oncoprotein, the question arises 

whether the deregulated miRNAs in HCC serve as “oncomiRs,” 

that could function as an oncogene or a tumor suppressor, to reg-

ulate cell proliferation by targeting cell cycle check points and/or 

growth factors. Such oncomiRs in liver cancer would be expected 

to be involved through each step from normal liver to cirrhosis to 

HCC. The extant literature strongly supports the role of specific 

oncoMirs in the development and maintenance of HCC. 

More recently, the investigators focused on miR-26a whose ex-

pression is most significantly perturbed in MYC-induced liver can-

cer model.87 MiR-26a targets expression of cyclins D2 and E2; and 

ectopic expression of miR-26a induced G1 arrest in HepG2 HCC 

cell line. Examination of paired biopsies from normal human liver 

tissues as compared with liver cancer showed consistent reduction 

of miR-26a in liver cancer, while miR-26a is expressed at high lev-

els in normal liver as well as other tissues. Since miR-26a induces 

G1 arrest by targeting cyclins D2 and E2, the authors reasoned 

that forced expression of miR-26a in liver cancer cells might arrest 

tumor growth.

Indeed, the systemic administration of miR-26a in a mouse 

model of HCC using adeno-associated virus vector system, result-

ed in the inhibition of cancer cell proliferation by inducing tumor-

specific apoptosis, with dramatic protection from disease progres-

Table 1. Published GWAS in hepatocellular carcinoma (Adapted from Villanueva A, et al. J Hepatol 2012;57:213-214)78

Article
Sample analyzed Etiology of 

liver disease
DNA regions 

identified
Candidate 

genes
Effect size/Odds ratio 

(95% CI)HCC (validation) Controls (validation) Total

Miki D70 212 (710)   765 (1625) 3312 HCV Chr 22q12.2 DEPDC5 1.75 (1.51-2.03)

Kumar V71 721 (673) 2890 (2596) 6880 HCV Chr 6p21.33 MICA 1.39 (1.27-1.63)

Zhang H77  348 (1962)   359 (1430) 4099 HBV Chr 1p36.22 UBE4B-
KIF1B-PDG

 0.61 (0.55-0.67)

Clifford RJ78 180 (337) 206 (336) 1059 HBV, HCV Chr 13q12.11 TPTE2 0.27 (0.19-0.39)

Chr 2q14.1 Non-coding 3.38 (2.07-5.52)

HCC, hepatocellular carcinoma;  HCV, hepatitis C virus;  HBV, hepatitis B virus;  Chr, chromosome; MICA, MHC class I polypeptide-related sequence A gene.
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sion without toxicity.87

Thus, the delivery of miR-26a, which is highly expressed and 

therefore tolerated in normal, but not in liver cancer cells, may be 

a useful strategy for miRNA-replacement therapy for HCC.89

Expression of miRNAs including miR-122 and -199a has been 

reported to modulate HCV replication,3,85,90 and miR-122 expres-

sion can be regulated by host interferon signaling and responses.52 

HCV induced miR-155 expression promotes hepatocyte prolifera-

tion and tumorigenesis by activating Wnt signaling. The overex-

pression of miR-155 significantly inhibited hepatocyte apoptosis 

and promoted cell proliferation.91

HCV protein expression in turn could induce miRNAs and might 

affect the tumor suppressor DLC1 and the chemosensitivity of 

malignantly transformed cells.53,88 Several miRNAs were also dif-

ferentially expressed between HCV-related and HBV-related HCCs 

as well as their corresponding non-cancerous liver tissues. The 

candidate signaling pathways potentially altered by miRNAs in 

HCV-related tissues were those associated with antigen presenta-

tion, cell cycle, and lipid metabolism,92 consistent with the mRNA 

microarray data described above. MiRNAs have also recently 

been reported to successfully discriminate between HCC and cir-

rhotic liver tissues,55 implicating their role in the early stages of 

Table 2. Selected examples of reported alterations in miRNA expression in HCV infection and their proposed role in Hepatocellular carcinoma 
(Adapted from Kumar A, et al. Biochimica et biophysica acta 2011;1809:694-699).84

Selected examples of microRNAs in HCV infection and Hepatocellular carcinoma

MicroRNA Target Phenotype References

MiR-122 HCV 5’-UTR Viral RNA amplification 85,86

MicroRNA alterations Not validated HCC/normal tissue HCV Inf.HCC 81

Mir-199a HCV 5’-UTR Suppression of HCV replication 3

MiR-181 Transcription regulation Up regulated in HCC 73

Mir-221 CDK inhibitor Up regulated in HCC 74

Mir-199a Predicted cell Increased expression in HCC 83

Mir-21, Mir-301 Cycle genes

Mir-26a Cyclin D2/E2 Reduced expression in HCC 87

Mir-141 DLC-1 Up regulated HCV infection 88

HCV, hepatitis C virus;  UTR, untranslated region;  HCC, hepatocellular carcinoma; Inf., infected; CDK, cyclin-dependent kinase; DLC-1, a Rho GTPase-
activating protein.

Figure 2. Hepatitis C virus and hepatocarcinogenesis.
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malignant transformation. These data suggest that miRNAs may 

be good targets for the eradication of HCC as well as hepatocytes 

infected with HCV.

CONCLUSION

Hepatocarcinogenesis is a multistep process and involves 

multiple cellular signaling pathways. Although HCV is the ma-

jor risk factors leading to the development of HCC, the precise 

pathogenetic mechanisms linking viral infection and HCC remain 

uncertain. Viral proteins also have been implicated in disrupting 

several cellular signal transduction pathways that affect cell sur-

vival, proliferation, migration and transformation (Fig. 2).15 Current 

advances in gene expression profile and selective mRNA analysis 

have improved approach to the pathogenesis of HCC. The het-

erogeneity of genetic events observed in HCV-related HCCs has 

suggested that complex mechanisms underlie malignant transfor-

mation induced by HCV infection. Considering the complexity and 

heterogeneity of HCCs of both etiological and genetic aspects, 

further molecular classification is required and an understanding 

of these molecular complexities may provide the opportunity for 

effective chemoprevention and personalized therapy for HCV-

related HCC patients in the future.
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