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Abstract 20 

Primarily driven by concern about rising levels of atmospheric CO2, ecologists and earth 21 

system scientists are collecting vast amounts of data related to the carbon cycle. These 22 

measurements are generally time-consuming and expensive to make, and, unfortunately, 23 

we live in an era where research funding is increasingly hard to come by. Thus, important 24 

questions are: �‘Which data streams provide the most valuable information?�’ and, �‘How 25 

much data do we need?�’ These questions are relevant not only for model developers, who 26 

need observational data to improve, constrain and test their models, but also for 27 

experimentalists and those designing ecological observation networks. 28 

 29 

Here we address these questions using a model-data fusion approach. We constrain a 30 

process-oriented, forest ecosystem C cycle model with seventeen different data streams 31 

from the Harvard Forest. We iteratively rank each data source according to its 32 

contribution to reducing model uncertainty. Results show the importance of some 33 

measurements commonly unavailable to carbon cycle modelers, such as estimates of 34 

turnover times from different carbon pools. Surprisingly, many data sources are relatively 35 

redundant in the presence of others, and do not lead to a significant improvement in 36 

model performance. A few select data sources lead to the largest reduction in parameter 37 

based model uncertainty. Projections of future carbon cycling were poorly constrained 38 

when only hourly net ecosystem exchange measurements were used to inform the model. 39 

They were well constrained, however, with only five of the seventeen data streams, even 40 

though many individual parameters are not constrained. The approach taken here should 41 
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stimulate further cooperation between modelers and measurement teams, and may be 42 

useful in the context of setting research priorities and allocating research funds. 43 

 44 

Key Words: process-based models, carbon fluxes, biosphere-atmosphere interaction, 45 

carbon sequestration, data assimilation 46 

  47 



 4

Introduction  48 

In recent years our ability to collect vast amounts of data related to the structure and 49 

function of the biosphere, at both high temporal and spatial frequency, has greatly 50 

increased (Luo et al. 2008). New large-scale monitoring through networks such as NEON 51 

(www.neoninc.org), ICOS (www.icos-infrastructure.eu), FLUXNET 52 

(www.fluxnet.ornl.gov), and LTER (www.lternet.edu), along with the extended satellite 53 

record, and data collation efforts such as TRY (www.try-db.org, Kattge et al. 2011), are 54 

amassing tremendous amounts of data. However, the ultimate value of the accumulating 55 

diverse data sources will depend on the extent to which the data can be used to improve 56 

our understanding of, and ability to model, the earth system.  57 

 58 

One of the main motivations for the increase in data availability is the need to improve 59 

our understanding of terrestrial carbon cycling (IPCC, 2007). Much of the 60 

anthropogenically emitted CO2 cycles through terrestrial ecosystems. Current estimates 61 

of CO2 removed from the atmosphere by global photosynthesis stand at around 120PgC 62 

(Beer et al. 2010). A slightly smaller amount is respired back into the atmosphere, giving 63 

an estimated net global carbon sink in terrestrial ecosystems of ~1-2PgC (Le Quere et al. 64 

2009, Pan et al. 2011). The main biological processes of photosynthesis and respiration 65 

that drive this cycle have long been identified. Large uncertainty remains, however, as to 66 

the mechanisms controlling the response of these processes to drivers at different spatial 67 

and temporal scales. This uncertainty is reflected in the broad range of model projections 68 

of the future of global terrestrial carbon storage (Friedlingstein et al. 2006, Heimann & 69 
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Reichstein, 2008), making the implementation of effective policy difficult at best (IPCC, 70 

2007).  71 

 72 

New approaches that can combine models with multiple data sources - �“model-data 73 

fusion�” - are emerging as a means to better understand the dominant processes controlling 74 

terrestrial carbon cycling. Such techniques can be employed both to directly inform 75 

carbon cycle models and as a tool to synthesize the growing amounts of data. The basic 76 

philosophy is that using data in a statistically rigorous manner to give the best model 77 

possible (conditional on model structure) can both highlight model deficiencies and 78 

integrate different data sources. Recent efforts have used a diverse range of data types 79 

with process-oriented models (e.g. Braswell et al. 2005, Williams et al. 2005, Sacks et al., 80 

2007, Moore et al., 2008, Richardson et al. 2010, Weng & Luo 2011, Keenan et al. 81 

2012b). A strength of the approach is that it can be used to assess the model against all 82 

observations simultaneously. Using multiple constraints goes beyond simple testing of a 83 

model against a single measurement type �– the approach uses data both to test and inform 84 

model behavior for all aspects of the system for which observations are available. The 85 

result is a data-informed process-oriented model, which allows the researcher to quantify 86 

the degree of uncertainty in model projections.  87 

 88 

Carbon cycle modelers typically rely on experimental and observational data that have 89 

been collected by others. One of the most common questions asked by experimentalists 90 

and (more recently) data acquisition network designers of modelers is �“what data are 91 

most useful?�” In response to such questions, however, modelers generally do not have a 92 
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better answer than what is essentially an educated guess. Indeed, from a modeling 93 

perspective using more data does not always lead to a better-constrained model 94 

(Richardson et al. 2010). In an environment of increasingly organized data acquisition 95 

networks (Keller et al. 2008) and efforts that seek to merge models with data (Wang et al. 96 

2007, Keenan et al. 2011a), it becomes imperative to develop ways of quantifying the 97 

usefulness of different data sources. By identifying the next measurement that should be 98 

made, which maximizes the information gained from all measurements together, the 99 

efficiency and cost-effectiveness of measurement campaigns can be improved, along with 100 

model projections.  101 

 102 

Here, we develop a framework to address the question, �“How useful is a particular 103 

measurement for reducing uncertainty in a process-oriented model of terrestrial carbon 104 

cycling?�” We use multiple data sources from long-term records at the Harvard Forest, in 105 

the northeastern US, in combination with a model-data fusion framework. We rank the 106 

different data streams according to the incremental information that each data stream 107 

provides. We do this by iteratively testing the reduction in model uncertainty achieved by 108 

informing the model with each data source. At each step in the process, we assess the 109 

impact of a particular measurement type on both short-term (diurnal, seasonal, annual) 110 

model projections, and long-term (decadal) model responses to climate change. 111 

 112 

 113 

Materials and Methods  114 

 115 
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Site 116 

Hourly model simulations were run for 12 complete years (1992-2003) at the Harvard 117 

Forest Environmental Measurement Site (HFEMS) 118 

(http://atmos.seas.harvard.edu/lab/hf/index.html), located in the northeastern United 119 

States (42.53N 72.17W, elevation 340m) (Wofsy et al. 1993, Goulden et al. 1996, Barford 120 

et al. 2001, Urbanski et al. 2007). Measurements and simulations pertain to the area 121 

within the EMS tower footprint, which is largely comprised of deciduous trees. The area 122 

is dominated by the deciduous species red oak (Quercus rubra, 52% basal area), red 123 

maple (Acer rubrum, 22% basal area), with a small conifer component that includes 124 

eastern hemlock (Tsuga Canadensis, 17% basal area), and occasional white and red pine 125 

(Pinus strobus, Pinus resinosa).  126 

 127 

Data 128 

All data used were gathered between 1992 and 2003. We used hourly meteorological and 129 

eddy-covariance (Wofsy et al. 1993, Urbanski et al. 2007) measurements of net 130 

ecosystem exchange (NEE) (http://atmos.seas.harvard.edu/lab/data/nigec-data.html). 131 

Gap-filled meteorological variables used include hourly incident photosynthetically 132 

active radiation (PAR), air temperature above the canopy, soil temperature at a depth of 5 133 

cm, vapor pressure deficit, and atmospheric CO2 concentrations.  134 

 135 

Quality controlled hourly eddy-covariance observations (without gap-filling) of NEE 136 

were used to constrain parameters of an ecosystem model. Gap-filled data, or model-137 

based partitioning of NEE to respiration and photosynthesis components, were not used. 138 
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For ancillary data constraints we used 15 different data sources, which included 139 

measurements of leaf area index, soil organic carbon content, carbon in roots, carbon in 140 

wood, wood carbon annual increment, observer-based estimates of bud-burst and leaf 141 

senescence, leaf litter, woody litter, soil carbon turnover times, and three different 142 

measurement sets of soil respiration that capture spatial and methodological variability 143 

(Table 1). These data are freely available from the Harvard Forest Data Archive 144 

(http://harvardforest.fas.harvard.edu/data/archive.html) or the references in Table 1.  145 

 146 

Measurement based estimates of uncertainty were used for each data stream in the 147 

optimization. Flux uncertainty estimates were taken from Richardson et al. (2006), where 148 

uncertainties were shown to follow a double-exponential distribution, with the standard 149 

deviation of the distribution specified as a linear function of the flux. Soil respiration 150 

uncertainty estimates were taken from Savage et al. (2009) and Phillips et al. (2010), 151 

where measurement uncertainty increased linearly with the magnitude of the flux. 152 

Estimates of uncertainties for the remaining data streams were based on either spatial 153 

variation or standard deviations from repeat sampling. Full details of uncertainty 154 

estimates are given in Keenan et al. (2012b). 155 

 156 

The FöBAAR Model 157 

We used a forest carbon cycle model that strikes a balance between parsimony and 158 

detailed process representation. Working on an hourly timescale, FöBAAR (Forest 159 

Biomass, Assimilation, Allocation and Respiration; Keenan et al. 2012b) calculates 160 

photosynthesis from two canopy layers, and respiration from eight carbon pools (leaf, 161 
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wood, roots, soil organic matter [microbial, slow and passive pools], leaf litter and 162 

[during phenological events] mobile stored carbon). Meteorological drivers considered 163 

are: canopy air temperature (Ta), 5 cm soil temperature (Ts), photosynthetic active 164 

radiation (PAR), vapor pressure deficit (VPD), and atmospheric CO2. Model parameters 165 

are given in Table 1. 166 

 167 

The canopy in FöBAAR is described in two compartments representing sunlit and shaded 168 

leaves (Sinclair et al., 1976; Wang & Leuning, 1998). Canopy light penetration depends 169 

on the position of the sun, and the area of leaf exposed to the sun based on leaf angle and 170 

the canopy�’s ellipsoidal leaf distribution (Campbell, 1986), assuming a spherical leaf 171 

angle distribution. Assimilation rates are calculated via the Farquhar approach (Farquhar 172 

et al., 1980; De Pury & Farquhar, 1997). Stomatal conductance is calculated using the 173 

Ball�–Berry model (Ball et al., 1987), coupled to photosynthetic rates through the 174 

analytical solution of the Farquhar, Ball Berry coupling (Baldocchi, 1994). 175 

 176 

Maintenance respiration is calculated as a fraction of assimilated carbon. The remaining 177 

assimilate is allocated to different carbon pools (foliar, wood and root) on a daily time 178 

step. Root respiration is calculated hourly and coupled to photosynthesis through the 179 

direct allocation to roots. Dynamics of soil organic matter is modeled using a three-pool 180 

approach (microbial, slow, and passive pools) (Knorr et al., 2005). Decomposition in 181 

each pool is calculated hourly, with a pool specific temperature dependency. Litter 182 

decomposition is also calculated hourly, but on an air temperature basis. Litter and root 183 
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carbon are transferred to the microbial pool, then to the slow and finally to the passive 184 

pool. For further details on model structure see Keenan et al. (2012b). 185 

  186 

Model-data fusion 187 

An adaptive multiple constraints Markov-chain Monte Carlo approach was used to 188 

optimize the process-oriented model and explore model uncertainty. The algorithm uses 189 

the Metropolis-Hastings (M-H) approach (Metropolis and Ulam 1949, Metropolis et al. 190 

1953, Hastings 1970) combined with simulated annealing (Press et al. 2007). Prior 191 

distributions for each parameter (Table 1) were assumed to be uniform (non-informative, 192 

in a Bayesian context). 193 

 194 

The optimization process uses a two-step approach. In the first stage, the parameter space 195 

is explored for 100,000 iterations using the optimization algorithm. At each iteration the 196 

current step size is used as the standard deviation of random draws from a normal 197 

distribution with mean zero, by which parameters are varied around the previous 198 

accepted parameter set. This stage identifies the optimum parameter set by minimizing 199 

the cost function (see below). In the second stage, the parameter space is again explored 200 

using a Markov chain starting from the optimum identified in step 1. Acceptance of a 201 

parameter set is based on whether the cost function for each data stream (defined below) 202 

passes a 2 test (at 90% confidence) for acceptance/rejection, after variance normalization 203 

(e.g. Franks et al. 1999, Richardson et al. 2010).  204 

 205 
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The cost function quantifies the extent of model-data mismatch using all available data 206 

(eddy-covariance, biometric, etc.). Individual data stream cost functions, ji, are calculated 207 

as the total uncertainty-weighted squared data-model mismatch, averaged by the number 208 

of observations for each data stream (Ni): 209 

           (1) 210 

where yi(t) is a data constraint at time t for data stream i and pi(t) is the corresponding 211 

model predicted value. i(t) is the measurement specific uncertainty. For the aggregate 212 

multi-objective cost function we use the average of the individual cost functions, which 213 

can be written as: 214 

          (2) 215 

where M is the number of data streams used. 216 

 217 

Each individual cost function is averaged by the number of observations for the relative 218 

data stream. The average of the cost functions from all data streams is taken as the total 219 

cost function. In this manner each data stream is given equal importance in the 220 

optimization (Franks et al. 1999, Barrett et al. 2005).  221 

 222 

Experimental Set-up  223 

We used a simple three-step iterative algorithm for the model experiment. The basic 224 

premise is to successively add data streams as model constraints, according to which data 225 

stream gives the best incremental reduction in model uncertainty. 226 

  227 

ji = yi(t) − pi(t)
δi(t)
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1. For i = 1, perform model-data fusion with each measurement type in Table 1 228 

individually.  229 

2. Identify the single best measurement type, i.e., that which gives the minimum 230 

posterior distribution of model-data mismatch (see below). 231 

3. For i = 2 �… M, repeat steps 1 and 2 again to identify the next best measurement 232 

type (in addition to the data streams already selected). Do this until no more data 233 

streams are available. 234 

 235 

We calculate the reduction in model uncertainty through the posterior distribution of 236 

model-data mismatch (the difference between modeled and observed variables, Eq. 2). At 237 

each iteration of Step 2 above, we calculate the model uncertainty using the entropy of 238 

the posterior distribution of model-data mismatch for each data combination. Entropy is a 239 

measure of the uncertainty associated with a random variable (Shannon 1948, Jaynes 240 

1957, Kolmogorov 1968) and can be used to quantify the information gained by the use 241 

of a particular data source (e.g. Weng & Luo 2011). At each stage 2 in the above 242 

algorithm, we identify the best data combination as that which gives the lowest entropy 243 

(and thus lowest model uncertainty) in the posterior distribution of model data-mismatch. 244 

Running the above algorithm took about 3 days on an 18-core computational cluster. 245 

 246 

Climate projections to 2100 247 

We used the extracted posterior parameter distributions to project carbon cycling and 248 

stocks to 2100 for each step in the above outlined experiment. This served as an 249 

additional means by which to quantify the incremental benefit of each additional data 250 
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stream. For the future climate scenario, we used downscaled data (Hayhoe et al. 2007) 251 

from the regionalized projection of the GFDL-CM global coupled climate-land model 252 

(Delworth et al. 2006) driven with socio-economic change scenario A1fi (IPCC 2007). 253 

Mean annual temperature at Harvard forest, using this projection, is predicted to increase 254 

from 7.1 to 11.9 °C, with an associated increase in atmospheric CO2 to 969 ppm by 2100.255 
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Results 256 

 257 

What measurements are most important?  258 

At each stage in the optimization process, we identified the next best measurement type 259 

by quantifying how much each data stream reduced the uncertainty in model projections 260 

(via Eq. 2). The most useful measurements were those that quantified how carbon flowed 261 

through the ecosystem at different time scales (Fig. 1). In particular, the combination of 262 

measurements on fast (net ecosystem exchange, soil respiration) and slow (soil carbon 263 

turnover rates, monthly/annual cumulative fluxes, litter from wood/leaves) carbon flows 264 

in the ecosystem lead to the largest improvement in model performance. Many 265 

measurements did not inform the model in the presence of others: for example the use of 266 

data on the size of the soil carbon pool did not lead to a large reduction in model 267 

uncertainty when soil respiration data was available along with turnover rates from the 268 

different soil carbon pools (Fig. 1). Estimates of bud-burst dates did not lead to a large 269 

reduction in model uncertainty, as they could be inferred by the model from the eddy-270 

covariance CO2 flux data. Observations of leaf senescence dates, on the other hand, were 271 

highly ranked. Autumn shifts in carbon cycling are driven by gradual biotic changes in 272 

canopy status, and co-occur with gradual abiotic changes in mean climate forcings. The 273 

senescence data, being biotic in nature, therefore improved the ability of the model to 274 

distinguish between autumn dynamics driven by biotic and abiotic changes. In addition to 275 

bud-burst data, litter turnover, and the proportion of autotrophic respiration in soil 276 

respiration measurements were ranked low, implying that the information contained in 277 

these measurements is also available from the higher ranked data (Fig. 1). The low 278 
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ranking of nighttime net ecosystem exchange is a good example of a situation where the 279 

information provided by a measurement is already present in another, as both annual and 280 

monthly NEE sums are constructed using night-time NEE data.  281 

 282 

  Figure 1. The iterative reduction in model posterior uncertainty. 283 

 284 

The extent to which measurements can identify model parameters 285 

When using all data, twenty-six of the forty parameters included could be effectively 286 

identified (parameters a to y, Table 2, Fig. 2). Here, we consider a parameter identifiable 287 

if the size of the posterior parameter distribution was half that of the prior distribution. In 288 

general, posterior parameter distributions were gradually reduced as more data streams 289 

were added to the system. Using all data together reduced the posterior parameter 290 

distributions by ~60% over all parameters (Fig. 3), when compared to the priors. The 291 

majority of the reduction in the range of posterior parameter distributions, however, was 292 

achieved with the use of relatively few data streams (Fig. 3). For example, fourteen 293 

parameters were well constrained with the use of only six different data sources (Fig. 2). 294 

The top ten parameters that were most informed by the data related to the respiration 295 

rates of the different soil carbon pools, phenology, and litterfall. Fourteen parameters 296 

were not constrained, even when using all data together (parameters z to k2). These were 297 

predominantly related to canopy processes (e.g. leaf mass per area, dark respiration, 298 

photosynthetic potential and the fraction of photosynthesis used for maintenance 299 

respiration), and rates of transfer between soil organic matter carbon pools. 300 

 301 
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Figure 2. The iterative reduction in parameter uncertainty 302 

Figure 3. Total parameter constraint per iteration 303 

 304 

Equifinality and parameter interactions 305 

When analyzing parameter posterior distributions in terms of parameter correlations, 306 

using additional data constraints increased the number of correlated parameters for the six 307 

data constraints that gave the largest reduction in model uncertainty (Fig. 4a). Using more 308 

data streams, in addition to these six, did not significantly change parameter correlations. 309 

Eight of the forty parameters optimized were strongly correlated (r2>=0.3) when using all 310 

data to constrain the model. For example, the extracted values for photosynthetic 311 

potential (Vcmax, Table 2, l2, Fig. 4b) were highly correlated with the proportion of 312 

photosynthate lost as maintenance respiration (parameter 8, Table 2, Fig. 4b). The 313 

strongest parameter correlations were between the basal rate and temperature dependence 314 

of root respiration (parameters 6, q, Table 2, Fig. 4b) and between different parameters 315 

governing spring phenology (parameters i, 1, Table 2, Fig. 4b). Parameters that were 316 

poorly constrained (z-K2, Fig. 4b) did not tend to show a better-defined correlation 317 

structure than parameters that were well constrained. This suggests that reducing 318 

correlations in the posterior parameter distributions does not imply a better-constrained 319 

model. The same is not true for parameter covariance, which was steadily reduced with 320 

the addition of each new data stream (Fig. 4c). Covariance scales the correlation by the 321 

standard deviation of the parameters, thus lowering the weight of parameters that have 322 

well constrained posterior distributions. Parameters that were not well constrained when 323 

using all available data tended to show a strong covariance structure (Fig. 4d). Well-324 
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constrained parameters had limited covariance, even though some were highly correlated, 325 

reflecting the narrow range of variability for those parameters. This implies that using 326 

data relevant to these parameters could lead to a better-constrained model. 327 

 328 

Figure 4. Fully optimized parameter co-variance   329 

The effect of improved parameterization on future projections 330 

Reduced model uncertainty under current climate conditions (Fig. 1) translated to 331 

reduced uncertainty in modeled future projections (Fig. 5). However, uncertainty in 332 

future projections of net ecosystem exchange was most reduced by the use of the few 333 

data streams that had the largest impact on model uncertainty under current climate 334 

conditions. Parameter-based uncertainty (i.e. without consideration of process based 335 

uncertainty) as to whether the system could be projected to be a source or a sink for 336 

atmospheric carbon for the next 100 years was reduced to near zero with the use of only 337 

five of the seventeen data streams available. The use of additional data streams led to 338 

only a minor reduction in parameter-based prediction uncertainty for net ecosystem 339 

exchange (Fig. 5). This was despite the fact that fourteen model parameters remained 340 

unconstrained (Fig. 2). 341 

 342 

Figure 5. Future projections of model uncertainty 343 

 344 

  345 
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Discussion 346 

 347 

By iteratively testing the reduction in model uncertainty gained by the use of seventeen 348 

different data streams, we have quantified the relative value of different data for 349 

informing a carbon cycle model. By running simulations to 2100 under a climate change 350 

scenario we also assess the value of each data stream for informing future model 351 

projections. The results show that that: 352 

 353 

1. If the appropriate data are used, relatively few data sources are needed to give a 354 

large reduction in uncertainty in both short- and long-term projections of carbon 355 

cycling. 356 

2. The data streams that proved most effective are those that characterize the flow of 357 

carbon through the system at different time scales. In particular, turnover times 358 

from different pools, in combination with flux data, led to the largest reduction in 359 

uncertainty. 360 

3. Parameter uncertainty was similarly reduced by the addition of a few appropriate 361 

data streams. The use of additional data streams did not lead to a significant 362 

further reduction in parameter uncertainty, though parameter covariance was 363 

reduced with each data stream added. 364 

 365 

Short vs long-term data needs  366 

Terrestrial carbon cycle models are usually designed and tested using data representing 367 

diurnal or seasonal time scales (e.g. Kramer et al. 2002, Morales et al. 2005, Schwalm et 368 
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al. 2010, Richardson et al. 2012, Schaefer et al. in press), and occasionally interannual 369 

(e.g. Siqueira et al. 2006, Desai 2010, Keenan et al. 2012a). Model sensitivity and 370 

uncertainty analysis is commonly performed with a focus on short-term processes (e.g. 371 

Knorr & Kattge 2005). On the other hand, such models are widely used for long-term 372 

projections (e.g. Friedlingstein et al. 2006, Sitch et al. 2008). It has previously been 373 

shown that, when using only high-frequency net ecosystem exchange data, parameter sets 374 

that give comparable fits to the observations under current climatic conditions can lead to 375 

disparate projections of future carbon cycling (Keenan et al. 2012b). Here we show that 376 

the selection of a few key data constraints, which represent both short- and long-term 377 

processes, can substantially reduce parameter-based uncertainty in future projections.   378 

 379 

Future projections & model uncertainty 380 

Model projections are subject to two types of uncertainty: that due to parameter 381 

misspecification, and that due to process misrepresentation (Keenan et al. 2011a). In our 382 

approach we only evaluate the affect of uncertainty stemming from model 383 

parameterization, which represents an underestimate of the true uncertainty due to factors 384 

not included in the model system (e.g. Richardson et al. 2007, Keenan et al. 2012b). 385 

Thus, the fact that long-term projections from the process-oriented model were subject to 386 

low uncertainty does not imply that we should be confident about modeled future 387 

projections. Processes that are not considered in this model (e.g. disturbances, adaptation, 388 

community dynamics, carbon�–nitrogen interactions) may also affect the long-term state 389 

of the ecosystem. The relatively low uncertainty in future projections (when using 390 

adequate data constraints), however, suggests that uncertainty due to parameter 391 
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misspecification can be effectively eliminated, leaving process representation as the 392 

remaining source of uncertainty. This is highly beneficial in that a model with well-393 

constrained parameters and narrow confidence intervals is much easier to falsify (or 394 

prove wrong) than one with poorly constrained parameters and large uncertainties. The 395 

evaluation of process error in long-term model projections is non-trivial (Medlyn et al. 396 

2011, Keenan et al. 2011b, 2012b, Migliavacca et al. 2012), and may require observations 397 

of long-term ecosystem processes (Luo et al. 2011) in combination with manipulation 398 

experiments (Templer & Reinmann 2011, Leuzinger et al. 2011). 399 

 400 

Parameter uncertainty 401 

One predominant goal of studies that aim to inform models with data is to identify model 402 

parameters. Early attempts in the field of terrestrial carbon cycling reported a limited 403 

number of parameters could be identified when using only eddy-covariance data (Wang 404 

et al. 2001, 2007, Knorr & Kattge, 2005). Recent efforts using multiple constraints 405 

(Rayner 2010) report a much larger proportion of identifiable parameters. Richardson et 406 

al. (2010) reported 11 out of 12 parameters were well constrained when using 6 different 407 

data constraints with a simple model, whilst two studies (Weng & Luo, 2011, Keenan et 408 

al. 2012b) constrained roughly half of the model parameters with comparatively more 409 

complex models. Here we show that improving parameter constraint is not solely a matter 410 

of using more data, but of selecting the correct data to use. Four of the available data sets 411 

(net ecosystem exchange, soil carbon turnover, soil respiration, leaf and woody litter fall) 412 

constrained 16 (64%) of the total parameters constrained (Fig. 2). Many parameters 413 

remained unconstrained even when using all data streams together. The fact that these 414 
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parameters were not identifiable, whilst model projections were well constrained, may 415 

suggest that they are redundant in the current model structure (when accounting for 416 

parameter covariance, see below). Simplifying process representation for model aspects 417 

that cannot be parameterized could aid in reducing the complexity of current models. 418 

Invoking �‘Occam�’s razor�’ in this fashion (making models only as complex as justified by 419 

the data), would minimize the common problem of model over-fitting, and could be 420 

considered a necessary step to avoid the development of excessively complex models. 421 

 422 

Equifinality and parameter co-variance 423 

Equifinality is defined as the situation where different parameter combinations or model 424 

structures can yield similar model performance (Beven, 2006). In the case of parameters, 425 

equifinality can be detected by assessing correlation and co-variance in posterior 426 

parameter distributions. Here we find that the level of equifinality depends on the number 427 

of different measurement types used to constrain the model. When using few data 428 

constraints, large equifinality allowed for divergent future projections of carbon cycling 429 

(Fig. 5). When using sufficient constraints, however, a lower level of equifinality was 430 

reached that did not prove detrimental to model performance and did not necessarily lead 431 

to an increase in model uncertainty over time. The model parameters that were least 432 

constrained tended to be those that had higher covariance (Fig. 4d). This implies that 433 

trade offs between these parameters allowed the model to get equivalent results with 434 

varied parameter values. 435 

 436 
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Strong parameter correlations were observed for both well and poorly constrained 437 

parameters. For example, despite being very well constrained, parameters governing the 438 

basal respiration rates and temperature sensitivity of different soil organic matter layers 439 

were highly correlated (parameters a, b, c, Fig. 4b). Similarly, parameters controlling the 440 

rate of root turnover, and the size of the root carbon pool were correlated, with higher 441 

values of one compensated for by lower values in the other (parameters o, k, Fig. 4b). 442 

Eight out of fourteen parameters that were poorly constrained showed strong correlation 443 

with other parameters. The majority of these correlative pairs were with other parameters 444 

that were already relatively well constrained (i.e. all except pairings photosynthetic 445 

potential (j2) with the fraction of photosynthesis respired for maintenance (8), Fig. 4b). 446 

Some poorly constrained parameters were not correlated with other parameters (e.g. the 447 

soil respiration scaling parameter, k2). In our analysis, the introduction of additional data 448 

constraints increased parameter correlations, implying that apparently uncorrelated 449 

parameters may have high-dimensional parameter relationships that are not detected by 450 

simple 1-1 correlative analysis (Richardson & Hollinger 2005, Trudinger et al. 2009, 451 

Ricciuto et al. 2011). Strong posterior parameter correlation is often interpreted as an 452 

indicator that the constraining data was not sufficient to distinguish between 453 

counteracting processes in the model (e.g. Ricciuto et al. 2011). Here we show that 454 

strong, non-detrimental correlations can persist even in a well-constrained model, and 455 

may be an inevitable consequence of model structure. This correlation is not necessarily 456 

reduced by the use of additional data. Parameter co-variance, however, was continuously 457 

reduced with the use of additional data. 458 

 459 
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What data are most useful? 460 

Previous studies have demonstrated the success of using additional data streams in 461 

conjunction with eddy-covariance flux data to improve estimates of ecosystem carbon 462 

exchange at different time scales (e.g. Williams et al. 2005, Moore et al., 2006, Xu et al. 463 

2006, Richardson et al., 2010, Weng & Luo 2011, Ricciuto et al. 2011, Keenan et al., 464 

2012b). The majority of studies emphasized the combination of stocks with fluxes, 465 

though no guidance is available as to what is the most appropriate or informative data to 466 

use. Our results show highly informative measurements at both ends of the cost of 467 

acquisition spectrum (e.g. senescence dates or leaf litter fall, vs eddy covariance or soil 468 

carbon turnover times). Coarse (woody) litterfall and leaf litterfall are often-overlooked 469 

measurements, but are ranked highly here. The results also show that some 470 

measurements, which have been the focus of much interest, are of low relative 471 

importance for modeling the carbon cycle. It should be kept in mind that we have not 472 

included all measurements that can possibly be made. Other measurements could include, 473 

for example, non-structural carbohydrate reserves, nutrient stoichiometry, leaf-angle 474 

distributions, transfer rates between carbon pools, bole respiration, etc. All data sources 475 

are almost never available at the same site, but studies using synthetic data could be 476 

performed by those interested in quantifying the relative value of different data (e.g. for 477 

proposed measurement campaigns). 478 

 479 

The weight assigned to each measurement potentially has a large impact on the ranking 480 

of different data. In our optimization framework, we chose to weight each data stream 481 

equally, independent of the number of observations, to ensure that the optimization did 482 
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not favor model performance for one aspect of the ecosystem over another. We also 483 

weight each data stream by its associated uncertainty to account for the quality of the 484 

information contained therein. This choice, however, could affect the ranking of data 485 

streams. Other alternatives include giving each measurement equal weight, instead of 486 

each data stream. The problem boils down to information content: theoretically, an 487 

observation should be given weight relative to the information it contributes to the 488 

optimization. When using multiple constraints, the problem of quantifying the relative 489 

information is well exemplified by, say, quantifying the contribution of one estimate of 490 

soil carbon, compared to one half hourly measurement of net ecosystem carbon 491 

exchange. This is particularly relevant when using high frequency measurements of net 492 

ecosystem exchange �– given 10,000 estimates of net ecosystem exchange, one additional 493 

NEE estimate does not necessarily contribute new information, whilst one estimate of the 494 

soil carbon stock does. Our chosen approach is in keeping with the philosophy that a 495 

model should predict all observations within measurement uncertainty, independent of 496 

the number of measurements available. Clearly, a detailed assessment of the real 497 

information content of observations, and an associated scheme for adequately weighting 498 

different data streams is an area in need of much research.  499 

 500 

Turnover times of soil carbon pools have been suggested to be of utmost importance for 501 

accurately modeling the carbon cycle (Matamala et al. 2003, Strand et al. 2008, 502 

Richardson et al. 2010, Gaudinski et al. 2010). They have been inferred by model 503 

inversion approaches (Barrett 2002, Luo et al. 2003, Xu et al. 2006, Zhou and Luo, 2008, 504 

Zhang et al. 2010), though measurements are rarely available to test different model 505 
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structures and parameterizations (but see Riley et al. 2009, Gaudinski et al. 2009). Here 506 

we show that, after net ecosystem carbon exchange, turnover rates of the different soil 507 

carbon pools have the largest impact for improving model performance. Turnover times 508 

of different soil carbon pools (e.g. Gaudinski et al. 2010) and non-structural carbohydrate 509 

reserves (Richardson et al. in press), are not commonly available for model testing and 510 

should greatly aid in generating better-informed models in the future.  511 

  512 
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Conclusions 513 

Financial resources in the field of earth system science are highly limited, and field 514 

campaigns expensive, so it is imperative to identify what measurements are of most use 515 

for a specific question. Here we present results using a method by which to quantify the 516 

value of a diverse range of ecological data for improving models of the terrestrial carbon 517 

cycle. Using a hierarchical framework, we show that relatively few data streams 518 

contribute to the largest reduction in uncertainty in model performance. In the presence of 519 

these data streams, which are distributed across the cost of acquisition spectrum, other 520 

measurement sources become redundant. For example, bud-burst dates, and carbon stock 521 

sizes, were of relatively little value for constraining model performance in the presence of 522 

more informative measurements. Our results highlight the importance of estimates of 523 

carbon stock turnover times, in conjunction with soil respiration and net ecosystem 524 

carbon exchange measurements. These data sources should be given priority in future 525 

efforts. Using this framework together with information on the cost of measurement 526 

acquisition would help project managers to develop more efficient and effective 527 

measurement campaigns. 528 

 529 

  530 
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 778 

Table 1. Data sets used in this study 779 

Data 

set 

no. 

Measurement Acronym Frequency # data 

points 

Reference 

1 Eddy-covariance NEE Hourly 73,198 Urbanski et al., and 1

2 Soil Respiration 1 Rsoil Hourly 26,430 Savage et al., 2009 

 

3 Soil Respiration 2 Rsoil Hourly 19,030 Phillips et al., 2010 

4 Soil Respiration 3 Rsoil Weekly 498 2 

5 Leaf area index LAI Monthly  51 Norman, 1993; 

Urbanski et al., and 1 

6 Leaf litter fall  Lfleaf Yearly  10 Urbanski et al., and 1 

7 Woody biomass  Wood C Yearly  15 Jenkins et al., 2004. 

Urbanski et al., and 1 

8 Woody litterfall Lfwood Yearly 8 Urbanski et al., and 1 

9 Fine root biomass Root C One Year 1 DIRT project1 

       

10 Forest floor carbon  Lit C One Year  1 Gaudinski et al., 2000 

11 Budburst Budburst Yearly 15 O�’Keefe, 20001 

12 Leaf Drop Senescence Yearly 14 O�’Keefe, 20001 

13 Soil carbon pools  Soil C Three years 3 Gaudinski et al., 2000 

Magill et al., 2000 
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Bowden et al., 2009 

14 Soil carbon turnover  Soil C TO One 1 Gaudinski et al., 2000 

15 Proportion of     

heterotrophic  

respiration in soil 

% Root 

Resp. 

One 1 Gaudinski et al., 2000 

Bowden et al., 1993 

16 Litter Turnover Litter TO One 1 Gaudinski et al., 2000 

 780 

1 See data download page: http://harvardforest.fas.harvard.edu/data/archive.html 781 

2 ftp://ftp.as.harvard.edu/pub/nigec/HU_Wofsy/hf_data/ecological_data/soilR/ 782 

783 
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Table 2. FöBAAR model parameters and pools. Both parameters and initial pool sizes 784 

were optimized conditional on the data constraints. Parameters are arranged in 785 

descending order of constraint (i.e. best constrained parameters first, to worst constrained 786 

parameters last) to relate to Figure 2. 787 

Id. Name Definition Min Max 

a SOMCPd Passive SOMC respiration rate (Log)  -10 -1 

b SOMCSdT Fast cycling SOMC temperature dependence  0.01 0.1 

c SOMcFd Fast cycling SOMC respiration rate (Log)  -6 -1 

d AirTs Leaf senescence onset mean air temperature (°C) 0 15 

e Lff  Litterfall from foliage (Log)  -6 -1 

f SOMCSd Slow cycling SOMC respiration rate (Log) -6 -1 

g Lfw  Litterfall from wood (Log)  -6 -1 

h Fc Fraction of Cf not transferred to mobile carbon  0.4 0.7 

i GDD0 Day of year for growing degree day initiation 50 150 

j Lit2SOM Litter to fast SOMC transfer rate (Log)  -6 -1 

k Lfr  Litterfall from roots (Log) -6 -1 

l Af Fraction of GPP allocated to foliage 0.5 1 

m LitdT Litter respiration temperature dependence 0.01 0.1 

n LitC Carbon in litter  10 1000 

o RC Carbon in roots  20 500 

p Litd Litter respiration rate (Log)  -6 -1 

q Rrootd Root respiration rate (Log) -6 -1 
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r MobCTr Fraction of mobile transfers respired 0 0.01 

s Rsoil1 Soil respiration scaling co-efficient (data set 1) 0.5 1.5 

t WC Carbon in wood 8000 14000 

u Ar Fraction of NPP allocated to roots  0.5 1 

v Lit2SOMT Litter to fast SOMC temperature dependence 0.03 0.5 

w Rsoil2 Soil respiration scaling co-efficient (data set 2) 0.5 1.5 

x SOMCP Carbon in passive cycling SOM layer 2000 12000 

y SOMCS Carbon in slow cycling SOM layer 2000 12000 

z MobCR Mobile stored carbon respiration rate (Log)  -6 -1 

1 GDD1 Growing degree days for spring onset 150 300 

2 SOMCF2SOMCS Fast SOMC to slow SOMC rate 0.03 0.5 

3 SOMCS Carbon in slow cycling SOM layer 2000 12000 

4 SOMCS2SOMCP  Transfer rate from slow to passive SOM 0.001 0.4 

5 SOMCS2SOMCPT Fast SOMC to slow SOMC temp. dependence      0.03 0.5 

6 RrootdT Root respiration rate temperature dependence 0.01 0.2 

7 GDD2 Spring photosynthetic GDD maximum 500 1000 

8 MaintR Fraction of GPP respired for maintenance 0.1 0.4 

9 LMA Leaf mass per area (gC m-2)  50 90 

i2 Rd Rate of dark respiration  0.001 0.1 

j2 Vcmax Velocity of carboxylation (umol mol-1)  60 150 

l2 MobC Mobile carbon  75 200 

f2 Q10Rd Temperature dependence of Rd  0.5 2.5 

k2 Rsoil3 Soil respiration scaling co-efficient (data set 3) 0.5 1.5 
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Figure 1. The frequency distribution of model-data mismatch (log), when constraining 1 

the model with different data combinations. At each stage of the hierarchical optimization 2 

process (represented as rows in the graph), the model is constrained using a combination 3 

of different data sources, and tested against all data available. Each shaded curve 4 

represents the distribution of model-data mismatch for the model constrained using a 5 

particular data combination. The area under each curve represents the log distribution of 6 

model-data mismatch (Error) for all available data, quantified using the cost function (Eq. 7 

1, 2) and 100,000 model runs. A value of one signifies that model estimates are on 8 

average within the error associated with the observations. Each row thus presents the 9 

posterior distribution of model uncertainty for all simulations at that stage. The data 10 

combination that gave the best model performance (shown in black) is selected for use in 11 

the next stage. Sub-optimal data combinations are shown in grey. As an example of the 12 

approach, in the first row, all data are tested together and daytime NEE is selected as 13 

giving the greatest reduction in model uncertainty. In the second row, the model is 14 

optimized again, this time with daytime NEE plus each other data stream independently. 15 

By the last column, all data streams are being used to optimize the model. Please note 16 

that the range is restricted for illustrative purposes. For the first few rows most 17 

distributions extend far beyond the restricted range. 18 

 19 

Figure 2. The posterior parameter distributions for the best data combination at each 20 

stage in the hierarchical optimization process. Rows directly relate to the rows in Figure 21 

1. Parameter identifiers and initial ranges are given in Table 1. The right hand column (#) 22 

gives the number of parameters well constrained at each iteration. Parameters are deemed 23 



to be well constrained if their posterior distribution occupies at most half the range of the 24 

prior distribution. Grey dots represent the optimum parameter value. 25 

 26 

Figure 3. The extent of the improvement in parameter constraint with the inclusion of 27 

additional data. Iteration numbers relate to the rows in Figure 1. The normalized 28 

parameter constraint is the mean standard deviation of all posterior parameter 29 

distributions, normalized by the standard deviation of a uniform distribution from 0 to 1 30 

(i.e. 0.289). If all posterior parameter distributions were uniform (i.e. uninformed by the 31 

data) the normalized parameter constraint would have a value of 1. A value of zero 32 

signifies that all parameters are fully constrained. 33 

 34 

Figure 4. (a) The number of posterior parameter distributions that show significant 35 

(p<0.01) correlations for different levels of correlation and different numbers of 36 

constraining data sets. Data sets 1-18 are those depicted in Fig.’s 1,2, & 4. (b) The 37 

correlation matrix of model parameters for the model constrained by all available data 38 

sets. The color scale represents the r2 correlation between each parameter.  Parameters are 39 

as listed in Table 2. (c) The posterior parameter covariance for different numbers of 40 

constraining data sets, normalized to the maximum total covariance observed. (d) The 41 

covariance matrix for the for model parameters for the model constrained by all available 42 

data sets. The color code represents the covariance normalized to the maximum observed 43 

covariance value. 44 

 45 



Figure 5. The range of equally plausible modeled annual net ecosystem exchange (gC m-46 

2 y-1) from 2000 to 2100 for the best data constraint combination at each stage of the 47 

hierarchical optimization process. Rows directly correspond to those of Fig. 1 and 2. The 48 

dashed line is the zero line, indicating whether the ecosystem is predicted to be either a 49 

source (>0) or a sink (<0) for CO2. Shaded areas represent the 95% confidence interval 50 

for model projections. 51 

 52 
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