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Abstract

Introduction: Recent studies demonstrated that circulating fibroblast growth factor (FGF)-23 was associated with risk of end
stage renal disease (ESRD) and mortality. This study aims to examine whether the predictive effect of FGF-23 is independent
from circulating levels of tumor necrosis factor receptor 1 (TNFR1), a strong predictor of ESRD in Type 2 diabetes (T2D).

Methods: We studied 380 patients with T2D who were followed for 8–12 years and were used previously to examine the
effect of TNFR1. Baseline plasma FGF-23 was measured by immunoassay.

Results: During follow-up, 48 patients (13%) developed ESRD and 83 patients (22%) died without ESRD. In a univariate
analysis, baseline circulating levels of FGF-23 and TNFR1 were significantly higher in subjects who subsequently developed
ESRD or died without ESRD than in those who remained alive. In a Cox proportional hazard model, baseline concentration of
FGF-23 was associated with increased risk of ESRD, however its effect was no longer significant after controlling for TNFR1
and other clinical characteristics (HR 1.3, p = 0.15). The strong effect of circulating level of TNFR1 on risk of ESRD was not
changed by including circulating levels of FGF-23 (HR 8.7, p,0.001). In the Cox multivariate model, circulating levels of FGF-
23 remained a significant independent predictor of all-cause mortality unrelated to ESRD (HR 1.5, p,0.001).

Conclusions: We demonstrated that the effect of circulating levels of FGF-23 on the risk of ESRD is accounted for by
circulating levels of TNFR1. We confirmed that circulating levels of FGF-23 have an independent effect on all-cause mortality
in T2D.
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Introduction

Diabetic nephropathy is one of the most devastating complica-

tions of diabetes. It remains the leading cause of end-stage renal

disease (ESRD), accounting for 44% of ESRD incident cases in the

United States [1]. Type 2 diabetes (T2D) also increases risk of

mortality [2]. Increased urinary excretion of albumin has long

been considered a major determinant of diabetic nephropathy

progression. However, its value as an accurate marker of the

progression to ESRD was recently challenged [3–5]. Thus, new

markers that will better identify diabetes patients with at risk of

ESRD or mortality unrelated to ESRD are needed.

Recently, results from the Joslin Kidney Study demonstrated

that among several inflammatory markers measured, increased

concentrations of circulating Tumor Necrosis Factor Receptor

(TNFR) 1 and TNFR2 emerged as very strong predictors of

diabetic nephropathy progression to chronic kidney disease (CKD)

stage 3 or ESRD [6,7]. TNFR1 and TNFR2 are cell membrane-

bound receptors involved in apoptosis, inflammation and immune

response [8]. They are released into the extracellular space by the

action of a cleavage enzyme or by exocytosis within exosome-like

vesicles [9]. It remains unclear how circulating levels of TNFRs

impact risk of renal function decline in diabetes [6,7].

Fibroblast growth factor (FGF)-23 is an endocrine hormone

secreted by bone cells [10]. The primary physiologic actions of

FGF-23 levels are to induce phosphaturia by decreasing urinary

reabsorption in proximal tubule, to reduce active vitamin D

production and to inhibit PTH secretion [11,12]. Recent

epidemiologic studies have focused on the prognostic values of

plasma FGF-23 levels and demonstrated that the circulating level

of FGF-23 is strongly associated with higher risk of ESRD and

death in subjects with CKD [13–17]. Also, circulating levels of
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FGF-23 are associated with serum levels of several inflammatory

markers in non-diabetic subjects with CKD [18,19], and with

circulating levels of TNFR1 in diabetic patients [20].

This study aims to evaluate the effect of circulating levels of

FGF-23 on risk of ESRD and mortality unrelated to ESRD in a

prospective study of T2D subjects. The question of great

importance is whether the effect of TNFR1 can account for the

effect of FGF-23, or are these two effects independent.

Materials and Methods

Study patients
The Joslin Kidney Study in T2D patients was previously

described [7]. Briefly, a random sample of Joslin Clinic patients

with T2D was recruited into the Joslin Study between 1991 and

1995. Eligibility criteria included residence in Massachusetts, T2D

diagnosed between ages 35 and 64 years, and age at examination

40 to 69 years. The study protocol and informed written consent

procedures were approved by the Joslin Diabetes Center

Institutional Review Board. Trained recruiters performed a

physical examination that included standardized measurements

of blood pressure and collected samples of urine and blood

biochemical determinations (stored at 280uC). Questionnaires

were supplemented with data from medical records and clinical

laboratory database. Of the 600 patients selected, 509 were

examined and enrolled into the study. Patients with evidence of

nephropathy unrelated to diabetes and patients in CKD stage 5

[defined as an estimated glomerular filtration rate (eGFR)

,15 ml/min per 1.73 m2 using the Modified Diet in Renal

Disease formula] were excluded. This left 410 patients, with 85%

defining themselves as Caucasian. Three hundred eighty patients

with available plasma samples for FGF-23 measurements were

included in this study.

Assessment of albuminuria status and estimated GFR at
baseline

We determined the albumin to creatinine ratio (ACR, mg/g Cr)

using the urine sample obtained at the baseline examination. The

ACR value was converted to an albumin excretion rate (AER)

according to a previously published formula [21]. This AER was

used in the univariate and multivariate analyses.

In addition to the baseline urine, we retrieved the results of

urinalysis performed on these patients’ urine during the preceding

two-year interval from the Joslin Clinical computer database, and

converted it to an AER as previously described [21]. We

determined geometric mean AER for the preceding two-year

interval to assign an albuminuria status: normoalbuminuria

(AER,30 mg/min), microalbuminuria (AER 30–300 mg/min)

and macroalbuminuria/proteinuria (.300 mg/min).

Plasma creatinine was measured in stored baseline samples at

the University of Minnesota with the Roche enzymatic assay (Prod

No. 11775685) on a Roche/Hitachi Mod P analyzer. eGFR was

obtained from plasma concentrations of creatinine using the

IDMS-traceable Modified Diet in Renal Disease formula [5].

These measurements were performed in 2009.

Measurements of plasma markers
All plasma markers were measured in baseline specimens by

immunoassays in 2009. Circulating TNFR1 levels were deter-

mined with ELISA (Cat# DRT100, R&D Systems, Minneapolis,

MN) as previously described [7]. Plasma concentrations of C-

terminal FGF-23 were determined with ELISA (Cat# 60-6100,

Immutopics, San Clemente, CA). All measurements were

performed according to the manufacturer’s protocols.

Ascertainment of outcomes
The US Renal Data System (USRDS) maintains a roster of US

patients receiving renal replacement therapy that includes dates of

dialysis and transplantation [22]. The National Death Index (NDI)

is a comprehensive roster of deaths in the United States, and

includes date and causes of death [23]. All patients were queried

against rosters of the USRDS and the NDI covering all events up

to the end of 2004, as formerly reported [7].

Statistical Analysis
Analyses were performed in SAS software (SAS Institute, Cary,

NC, version 9.2). Differences among the three outcome groups

were tested using the chi-squared test for categorical variables, and

ANOVA with post hoc Tukey’s t-test for continuous variables.

Bonferroni correction was applied for the number of group

comparisons. Spearman rank correlation matrix was created to

evaluate the relationships among clinical variables and plasma

markers. AER and the levels of markers were transformed to their

logarithms for statistical analysis. Incidence rates of ESRD and

deaths were tested for trend across quartiles of marker distribution

using SAS macro provided by the Mayo Clinic [24,25]. To

evaluate the independent effects of markers for the prediction of

outcome, we applied Cox proportional hazard models. P,0.05

was considered significant.

Results

Baseline characteristics of the study subjects according
to outcomes

At study entry, the mean eGFR of the study group was

92631 mL/min per 1.73 m2 and 325 subjects (86%) had

preserved renal function (eGFR $60 mL/min per 1.73 m2).

One hundred ninety five subjects (51%) had normoalbuminuria,

114 (30%) had microalbuminuria and 71 (19%) had proteinuria.

At the end of follow-up, 249 of the 380 subjects (65%) remained

alive. ESRD had developed in 48 (13%) patients. The remaining

83 patients (22%) died without ESRD. Baseline characteristics are

summarized in Table 1 according to three outcomes: Alive,

ESRD, and Deceased. Those categorized as ESRD or Deceased

were older, had longer duration of diabetes, higher AER and

lower eGFR than those who remained Alive. The three outcome

groups did not differ significantly with regard to HbA1c.

Concentrations of two markers in baseline plasma are also

summarized in Table 1. As we previously reported, the ESRD

group showed higher baseline concentrations of TNFR1 com-

pared with the Alive group [7]. The Deceased group had levels

that, while elevated, were only half as high as the ESRD group.

Differences in plasma concentrations of FGF-23 according to

outcome groups mirrored the pattern of TNFR1. However, the

differences were weaker in case of FGF-23. Interestingly, the

plasma concentrations of FGF-23 and TNFR1 in the total study

subjects were only moderately correlated (Spearman correlation

coefficient = 0.49, p,0.001).

Results of Follow-up Study
To further evaluate the effects of plasma markers on the

occurrence of ESRD and all-cause mortality, we used prospective

analysis. During 8–12 years of follow-up the cohort of 380 patients

with T2D had 3585 person-years of observation; 48 patients

developed ESRD (incidence rate; 13/1000 person-years) and 83

died due to causes unrelated to ESRD (mortality rate; 23/1000

person-years). Incidence rate of ESRD increased from 3 to 6, 10

and 46 per 1000 person-years according to increasing quartiles of

baseline FGF-23 (p,0.0001 for trend). An even more dramatic

FGF-23, TNFR1 and Progression to ESRD in Diabetes
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increase was seen for incidence rate of ESRD (rates 0, 1, 3 and 72

per 1000 person-years, p,0.0001 for trend) according to quartiles

of baseline TNFR1. Mortality rates increased from 10 to 18, 26

and 49 per 1000 person-years with increasing quartiles of baseline

FGF-23 (p,0.0001 for trend). Mortality rate increase (rates 13, 14,

26 and 53 per 1000 person-years, p,0.0001 for trend) according

to quartiles of baseline TNFR1 were very similar to that observed

for quartiles of baseline FGF-23. More detailed data about

incidence rates of ESRD and all cause mortality according to both

quartiles of baseline concentrations of FGF-23 and TNFR1 are

shown in Table 2 and in Table S1, respectively.

Risk of ESRD according to both plasma markers
Incidence rates of ESRD by quartiles of baseline plasma

concentrations of FGF-23 and TNFR1 are presented in Figure 1A.

Darker bars represent higher concentrations of FGF-23. It was

clear that although the rates increased with quartiles of FGF-23 in

univariate analysis, the risk of ESRD was restricted almost

exclusively to patients with the highest quartile of TNFR1. Among

Table 1. Baseline characteristics of subjects with T2D according to their outcome during 8–12 years of follow-up.

Baseline Characteristics Outcome P-value

Alive (n = 249) ESRD (n = 48) Deceased (n = 83) Alive vs ESRD Alive vs Deceased

Clinical Characteristics

Male (%) 54.6 43.8 65.1 0.1672 0.0959

Age (yr) 54610 6067 6067 3.861024 7.961027

Duration of Diabetes (yr) 1268 1866 1668 8.561027 5.961025

HbA1c (%) 8.361.7 8.961.5 8.661.6 0.0607 0.506

AER (mg/min) 20 (12–68) 657 (359–1544) 77 (20–217) ,10228 4.861027

eGFR (mL/min per 1.73 m2) 100627 60627 90630 ,10228 0.0093

Plasma Markers

TNFR1 (pg/mL) 1188 (1006–1447) 2543 (2151–3771) 1597 (1171–2079) ,10228 5.8610212

FGF-23 (RU/mL) 50 (36–75) 117 (65–238) 84 (53–133) 5.661028 2.961026

Data are mean 6 SD, median (25th, 75th percentiles), or percentage. AER and plasma markers were transformed to base 10 logarithms for the statistical analyses.
Bonferroni correction for a number of groups was applied.
doi:10.1371/journal.pone.0058007.t001

Table 2. Incidence rate of ESRD in subjects with T2D stratified by quartiles of FGF-23 and TNFR1.

FGF-23 Q1 FGF-23 Q2 FGF-23 Q3 FGF-23 Q4 Total

TNFR1 Q1

Incidence rate (/1000 person-year) 0 0 0 0 0

No of Events/No of person-years 0/439 0/396 0/203 0/45 0/1083

No of subjects 37 36 18 4 95

TNFR1 Q2

Incidence rate (/1000 person-year) 0 0 0 8.7 1.0

No of Events/No of person-years 0/355 0/246 0/302 1/115 1/1019

No of subjects 31 23 29 13 96

TNFR1 Q3

Incidence rate (/1000 person-year) 4.8 0 0 10.4 3.4

No of Events/No of person-years 1/208 0/220 0/259 2/193 3/880

No of subjects 22 22 27 23 94

TNFR1 Q4

Incidence rate (/1000 person-year) 52.8 55.9 55.4 91.3 72.9

No of Events/No of person-years 2/38 6/107 9/163 27/296 44/603

No of subjects 5 14 21 55 95

Total

Incidence rate (/1000 person-year) 2.9 6.2 9.7 46.3 13.4

No of Events/No of person-years 3/1039 6/970 9/927 30/648 48/3585

No of subjects 95 95 95 95 380

Quartile cut-off values were 1049, 1302, and 1812 pg/mL for TNFR1 and 42, 60, and 96 RU/mL for FGF-23, respectively.
doi:10.1371/journal.pone.0058007.t002

FGF-23, TNFR1 and Progression to ESRD in Diabetes
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subjects with the highest quartile of TNFR1, the concentrations of

FGF-23 did not discriminate the risk of ESRD (p = 0.13 for trend

according to FGF-23 quartiles). Subjects who had plasma TNFR1

concentrations in quartiles 1-2 did not develop ESRD regardless of

FGF-23 concentrations. To evaluate the effect of FGF-23 on the

development of ESRD controlling for other clinical characteristics

and plasma TNFR1, we used Cox proportional hazard models.

The results are shown in Table 3. In a univariate analyses, clinical

characteristics and both plasma markers were strongly associated

with risk of ESRD. In multivariate analyses (model #1),when

clinical characteristics were considered together with each marker,

the hazard ratio (HR) for TNFR1 and FGF-23 declined

significantly but still remained associated with risk of ESRD (HR

8.4, 95% C.I. 3.1–22.6 for one quartile increase of TNFR1 and

HR 1.6, 95% C.I. 1.2–2.1 for one quartile increase of FGF-23). In

model #2 when both markers were considered together with

clinical characteristics, only the HR for TNFR1 was significant

(HR 6.9, 95% C.I. 2.5–19.0 for one quartile increase). The effect

of FGF-23 was not significant (HR 1.2, 95% C.I. 0.9–1.7 for one

quartile increase).

Mortality according to plasma markers
Rates of all-cause mortality according to quartiles of baseline

FGF-23 and TNFR1 are presented in Figure 1B. Darker bars

represent higher concentrations of FGF-23. Mortality rates clearly

increased with quartiles of FGF-23 and with quartiles of TNFR1.

The two effects were additive. To evaluate the effect of FGF-23 on

the mortality controlling for other clinical characteristics and

plasma TNFR1, we used Cox proportional hazard models. The

results are shown in Table 4. In univariate analyses only two

clinical characteristics, age and AER, were significant together

with baseline concentrations of FGF-23 and TNFR1. In multi-

variate analyses (model #1) when clinical characteristics were

considered together with each marker, the HRs for TNFR1 and

FGF-23 declined somewhat but remained strongly associated with

mortality (for one quartile increase of TNFR1, HR 1.4, 95% C.I.

1.1–1.7 and for one quartile increase of FGF-23, HR 1.6, 95%

C.I. 1.3–2.0). In model #2 when both markers were considered

together with clinical characteristics, the HR for FGF-23 was

significant (for one quartile increase of TNFR1, HR 1.1, 95% C.I.

0.8–1.5 and for one quartile increase of FGF-23, HR 1.5, 95%

C.I. 1.2–2.0).

When cardiovascular death risk (n = 47) was analyzed separate-

ly, FGF-23 levels remained independent predictors in the model,

which included age, AER and TNFR1 (effect for one quartile

FGF-23 increase HR 1.4, 95% C.I. 1.0–2.0). More detailed results

are presented in Table S2.

Discussion

In our prospective study of subjects with T2D, we demonstrated

that baseline plasma concentration of FGF-23 was associated with

increased risk of ESRD. However its effect was no longer

significant after controlling for plasma concentration of TNFR1.

In other words, plasma concentration of TNFR1 accounted for the

effect of FGF-23 on risk of ESRD. However, baseline level of

FGF-23 was a significant independent predictor of all-cause as well

as cardiovascular mortality unrelated to ESRD.

Recent epidemiologic studies reported association between

plasma FGF-23 levels and clinical outcomes in patients with

CKD [13–17]. Several cross-sectional studies demonstrated that

FGF-23 levels were increased in patients with CKD [26]. Several

reports show high levels of circulating FGF-23 as a predictor of

progression to ESRD [13,14,17]. In the Chronic Renal Insuffi-

ciency Cohort Study during 3.5 years of follow-up elevated FGF-

23 was an independent risk factor for ESRD [14]. In another

follow-up study of 177 patients with non-diabetic CKD, higher

levels of C-terminal FGF-23 and intact FGF-23 were indepen-

dently associated with incident ESRD [17]. A small study of

subjects with diabetes and impaired renal function at baseline

reported that FGF-23 was a predictor of renal outcome

independent of creatinine clearance, although its 12 ESRD events

did not allow a fully adjusted Cox analysis [16].

The mechanisms are unclear as to which circulating FGF-23

may impact/be associated with impaired renal function and

contributes to progression to ESRD. In non-diabetic subjects with

impaired renal function, circulating levels of FGF-23 were

correlated with serum concentrations of several markers of

Figure 1. Incidence rate of ESRD and all-cause mortality stratified by quartiles of FGF-23 and TNFR1. Figure 1A demonstrates incidence
rate of ESRD and Figure 1B shows incidence of all cause mortality. Q1–Q4 represents quartiles 1 to 4. Quartile cut-off values were 1049, 1302, and
1812 pg/mL for TNFR1 and 42, 60, and 96 RU/mL for FGF-23, respectively. Increasing color intensity of the columns corresponds to higher
concentrations (quartiles) of FGF-23.
doi:10.1371/journal.pone.0058007.g001

FGF-23, TNFR1 and Progression to ESRD in Diabetes
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systemic inflammation such as IL-6, C-reactive protein and TNFa
[18,19]. One study reported that elevated FGF-23 levels were

associated with TNFR1 levels in subjects with diabetic nephrop-

athy [20]. Interestingly these findings were confirmed in our study.

Table S3 shows correlations between baseline plasma levels of

FGF-23 and ACR, eGFR and plasma markers such as CRP, IL-6,

free and total TNFa, TNFR1 and TNFR2. Although these

correlations were statistically significant, they were only moderate.

The correlations between these markers and plasma level of

TNFR1, a marker that accounted for the initial effect of FGF-23

on risk of ESRD in T2D, were almost twice as strong. These

patterns of associations may indicate that both FGF-23 and

TNFR1 (TNF markers) cause progression to ESRD in the same

pathway. TNFR1 appeared to be stronger predictor, either

because it is more directly involved in progression to ESRD or

because its features as a biomarker are potentially better (i.e. better

stability over time). Another possibility is that FGF-23 is simply a

correlate of circulating level of TNFRs and is not causally related

to progression to ESRD.

The role of FGF-23 on the inflammatory pathway has not yet

been studied in depth. The effect of FGF-23 may be mediated via

expression of Klotho. Klotho is an essential cofactor of FGF-23,

expressed highly in renal tubules [27]. Higher FGF-23 levels may

be associated with low Klotho tissue expression [28,29]. Klotho

expression is down-regulated in several kidney injury models and

its over-expression attenuates renal damage in the experimental

models of kidney injury [30]. Moreno et al. reported that TNF

(TNFRs ligand) decreases Klotho expression [31]. The relation

between expression of Klotho and plasma levels of TNFRs is

unknown. On the other hand, exogenous administration of Klotho

suppressed NF-kB activation and subsequent inflammatory

cytokines production in in-vitro study [32]. A few studies

examined the clinical implication of plasma Klotho levels in

subjects with CKD, but failed to demonstrate consistent associ-

ation of Klotho levels with renal function or poor outcome [33].

Additionally, increased FGF-23 levels reduce vitamin D activation,

which has known anti- inflammatory properties [34,35]. Increase

of vitamin D levels by dietary supplement resulted in decrease of

systemic inflammatory markers such as CRP and TNFa in

subjects with T2D [36].

In contrast to the lack of independent effect of circulating FGF-

23 on progression to ESRD, our study demonstrated that FGF-23

Table 3. Univariate and multivariate Cox proportional hazard models assessing risk of ESRD adjusting for relevant baseline clinical
characteristics and plasma markers in subjects with T2D followed for 8–12 years.

Univariate analyses Multivariate analyses

Model #1 Model #2

HR* (95% CI) P-value HR* (95% CI) P-value HR* (95% CI) P-value

Clinical Characteristics

AER 4.3 (3.2–5.9) ,0.0001 2.4 (1.7–3.5) ,0.0001 2.5 (1.7–3.6) ,0.0001

eGFR 2.0 (1.7–2.3) ,0.0001 1.3 (1.1–1.6) 0.0106 1.3 (1.1–1.6) 0.01

HbA1c 1.3 (1.0–1.6) 0.027 1.3 (1.1–1.7) 0.0092 1.4 (1.1–1.7) 0.008

Plasma Markers

TNFR1 35.5 (15.0–84.0) ,0.0001 8.4 (3.1–22.6) ,0.0001 6.9 (2.5–19.0) 0.0002

FGF-23 2.8 (2.0–3.9) ,0.0001 1.6 (1.2–2.1) 0.002 1.2 (0.9–1.7) 0.15

*Effect measures are expressed as the HR for a one-quartile increase in the distribution of each covariate except for eGFR, for which it is a one-quartile decrease.
Model #1 included relevant clinical characteristics and plasma TNFR1 and FGF-23 independently.
Model #2 included relevant clinical characteristics and plasma TNFR1 and FGF-23 together.
doi:10.1371/journal.pone.0058007.t003

Table 4. Univariate and multivariate Cox proportional hazard models assessing risk of all-cause mortality adjusting for relevant
baseline clinical characteristics and plasma markers in subjects with T2D followed for 8–12 years.

Univariate analyses Multivariate analyses

Model #1 Model #2

HR* (95% CI) P-value HR* (95% CI) P-value HR* (95% CI) P-value

Clinical Characteristics

Age 1.6 (1.3–1.9) ,0.0001 1.4 (1.1–1.8) ,0.0001 1.4 (1.1–1.7) 0.0011

AER 1.4 (1.2–1.7) ,0.0001 1.2 (0.99–1.5) 0.059 1.3 (1.04–1.6) 0.0206

Plasma Markers

TNFR1 1.9 (1.5–2.4) ,0.0001 1.4 (1.1–1.8) 0.012 1.1 (0.8–1.5) 0.42

FGF-23 1.8 (1.5–2.3) ,0.0001 1.6 (1.3–2.0) ,0.0001 1.5 (1.2–2.0) 0.0005

*Effect measures are expressed as the HR for a one-quartile increase in the distribution of each covariate except for eGFR, for which it is a one-quartile decrease.
Model #1 included relevant clinical characteristics and plasma TNFR1 and FGF-23 independently.
Model #2 included relevant clinical characteristics and plasma TNFR1 and FGF-23 together.
doi:10.1371/journal.pone.0058007.t004

FGF-23, TNFR1 and Progression to ESRD in Diabetes
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had an independent impact on risk of death unrelated to ESRD,

including CVD deaths. Interestingly, in multivariate analyses,

FGF-23 effect accounted for an effect of circulating TNFRs on

mortality in T2D shown in our previous report [7]. The

mechanism underlying the association between FGF-23 levels

and mortality remains unclear. First, some investigators suggest

that FGF-23 levels may be a sensitive surrogate marker for the

toxicity of disturbance in phosphate and mineral metabolism in

CKD patients [15]. However, the predictive effect of FGF-23

levels is not attenuated by serum phosphate, PTH, and vitamin D

levels and FGF-23 levels are stronger predictors of mortality than

other bone-related markers [13,16]. Alternatively, FGF-23 levels

may be a surrogate marker of the severity of CKD and subsequent

increased risk of mortality. However, this scenario is also unlikely

given the observation that the association with mortality was

independent of TNFR1 levels in this study, while the association

with ESRD was not. The third possibility is that elevated FGF-23

levels may be a causal factor contributing to increased mortality.

This possibility is indirectly supported by the observation that

higher FGF-23 levels are associated with vascular calcification,

endothelial dysfunction and left ventricular hypertrophy in CKD

patients [15,37,38].

Finally, we should mention a few limitations of our study. First,

we measured only C-terminal, and not the intact form of FGF-23.

However, a recent study showed the following: both forms are

highly correlated; biologically active FGF-23 is accurately

measured by either form; and clinical associations are comparably

strong between the two [39]. Second, it is not clear how stable

plasma concentration of FGF-23 is over a period of several years.

For example, we showed that plasma concentrations of TNFR1

are very stable in patients with T1D over several years [6]. Third,

our study was conducted in mostly Caucasian subjects with T2D

so it is uncertain if our findings could be applied to Non-

Caucasians and to the subjects with T1D.
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