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Abstract 

In this paper, we describe an operational methodology for characterising the architecture of complex 

technical systems and demonstrate its application to a large sample of software releases.  Our methodology 

is based upon directed network graphs, which allows us to identify all of the direct and indirect linkages 

between the components in a system.  We use this approach to define three fundamental architectural 

patterns, which we label core-periphery, multi-core, and hierarchical. Applying our methodology to a 

sample of 1,286 software releases from 17 applications, we find that the majority of releases possess a 

“core-periphery” structure. This architecture is characterized by a single dominant cyclic group of 

components (the “Core”) that is large relative to the system as a whole as well as to other cyclic groups in 

the system.  We show that the size of the Core varies widely, even for systems that perform the same 

function. These differences appear to be associated with different models of development—open, 

distributed organizations develop systems with smaller Cores, while closed, co-located organizations 

develop systems with larger Cores. Our findings establish some “stylized facts” about the fine-grained 

structure of large, real-world technical systems, serving as a point of departure for future empirical work.  
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1. Introduction 

All complex systems can be described in terms of their architecture, that is, as a hierarchy of 

subsystems that in turn have their own subsystems (Simon, 1962).  Critically, however, not all subsystems 

in an architecture are of equal importance.  In particular, some subsystems are “core” to system 

performance, whereas others are only “peripheral” (Tushman and Rosenkopf, 1992).  Core subsystems 

have been defined as those that are tightly coupled to other subsystems, whereas peripheral subsystems 

tend to possess only loose connections to other subsystems (Tushman and Murmann, 1998).  Studies of 

technological innovation consistently show that major changes in core subsystems as well as their linkages 

to other parts of the system can have a significant impact on firm performance as well as industry structure 

(Henderson and Clark, 1990; Christensen, 1997, Baldwin and Clark, 2000).  And yet, despite this wealth of 

research highlighting the importance of understanding system architecture, there is little empirical evidence 

on the actual architectural patterns observed across large numbers of real world systems. 

In this paper, we propose a method for analyzing the design of complex technical systems and 

apply it to a large (though non-random) sample of systems in the software industry. Our objective is to 

understand the extent to which such systems possess a “core-periphery” structure, as well as the degree of 

heterogeneity within and across system architectures.  We also seek to examine how systems evolve over 

time, since prior work has shown that significant changes in architecture can create major challenges for 

firms and precipitate changes in industry structure (Henderson and Clark, 1990; Tushman and Rosenkopf, 

1992; Tushman and Murmann, 1998; Baldwin and Clark, 2000; Fixson and Park, 2008). 

The paper makes a distinct contribution to the literatures of technology management and system design 

and analysis.  In particular, we first describe an operational methodology based on network graphs that can 

be used to characterize the architecture of large technical systems.1  Our methodology addresses several 

weaknesses associated with prior analytical methods that have similar objectives.  Specifically, i) it focuses 

on directed graphs, disentangling differences in structure that stem from dependencies that flow in different 

directions; ii) it captures all of the direct and indirect dependencies among the components in a system, 

developing measures of system structure and a classification typology that depend critically on the indirect 

linkages, and iii) it provides a heuristic for rearranging the elements in a system, in a way that helps to 

                                                             
1  We define a large system as one having in excess of 300 interacting elements or components. 
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visualize the system architecture and reveals its “hidden structure” (in contrast, for example, to social 

network methods, which tend to yield visual representations that are hard to comprehend). 

We demonstrate the application of our methodology on a sample of 1,286 software releases from 17 

distinct systems.  We find that the majority of these releases possess a core-periphery architecture using our 

classification scheme (described below). However, the size of the Core (defined as the percentage of 

components in the largest cyclic group) varies widely, even for systems that perform the same function.  

These differences appear to be associated with different models of development – open, distributed 

organizations develop systems with smaller Cores, whereas closed, co-located organizations tend to 

develop systems with larger Cores. We find the Core components in a system are often dispersed across 

different modules rather than being concentrated in one or two, making their detection and management 

difficult for the system architect.  Finally, we demonstrate that technical systems evolve in different ways: 

some are subject continuous change, while others display discrete jumps. Our findings establish some early 

“stylized facts” about the fine-grained structure of large, real-world technical systems. 

The paper is organized as follows. Next, we review the relevant literature on dominant designs, core-

periphery architectures, and network methods for characterizing architecture. Following that, we describe 

our methodology for analyzing and classifying architectures based upon the level of direct and indirect 

coupling between elements.  We then describe the results of applying our methodology to a sample of real 

world software systems.  We conclude by describing the limitations of our method, discussing the 

implications of our findings for scholars and managers, and identifying questions that merit further 

attention in future. 

 

2. Literature Review 

In his seminal paper “The Architecture of Complexity,” Herbert Simon argued that the 

architecture of a system, that is, the way the components fit together and interact, is the primary 

determinant of the system’s ability to adapt to environmental shocks and to evolve toward higher levels of 

functionality (Simon, 1962). However, Simon and others presumed (perhaps implicitly) that the 

architecture of a complex system would be easily discernible. Unfortunately this is not always the case. 

Especially in non-physical systems, such as software and services, the structure that appears on the surface 
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and the “hidden” structure that affects adaptation and evolvability may be very different.  

2.1 Design Decisions, Design Hierarchies and Design Cycles 
 
The design of a complex technological system (a product or process) has been shown to comprise 

a nested hierarchy of design decisions (Marple, 1961; Alexander, 1964; Clark, 1985).  Decisions made at 

higher levels of the hierarchy set the agenda (or technical trajectory) for problems that must be solved at 

lower levels of the hierarchy (Dosi, 1982).  These higher-level decisions influence many subsequent design 

choices, hence are referred to as “core concepts.”  For example, in developing a new automobile, the choice 

between an internal combustion engine and electric propulsion represents a core concept that will influence 

many subsequent decisions about the design.  In contrast, the choice of leather versus upholstered seats 

typically has little bearing on important system-level choices, hence can be viewed as peripheral. 

A variety of studies show that a particular set of core concepts can become embedded in an 

industry, becoming a “dominant design” that sets the agenda for subsequent technical progress (Utterback, 

1996; Utterback and Suarez, 1991; Suarez and Utterback, 1995). Dominant designs have been observed in 

many industries, including typewriters, automobiles and televisions (Utterback and Suarez, 1991).  Their 

emergence is associated with periods of industry consolidation, in which firms pursuing non-dominant 

designs fail, while those producing superior variants of the dominant design experience increased market 

share and profits. However, the concept has proved difficult to pin down empirically. Scholars differ on 

what constitutes a dominant design and whether this phenomenon is an antecedent or a consequence of 

changing industry structure (Klepper, 1996; Tushman and Murmann, 1998; Murmann and Frenken, 2006).  

Murmann and Frenken (2006) suggest that the concept of dominant design can be made more 

concrete by classifying components (and decisions) according to their “pleiotropy.” By definition, high-

pleiotropy components cannot be changed without inducing widespread changes throughout the system, 

some of which may hamper performance or even cause the system to fail. For this reason, the authors argue, 

the designs of high-pleiotropy components are likely to remain unchanged for long periods of time: such 

stability is the defining property of a dominant design. The authors proceed to label high-pleiotropy 

components as the “core” of the system, and other components as the “periphery.” 

Ultimately, dominant design theory argues that the hierarchy of design decisions (and the 

components that embody those decisions) is a critical dimension for assessing system architecture. At the 
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top of the design hierarchy are components whose properties cannot change without requiring changes in 

many other parts of the system; at the bottom are components that do not trigger widespread or cascading 

changes. Thus any methodology for discovering the hidden structure of a complex system must reveal 

something about the hierarchy of components and related design decisions. 

In contrast to dominant design theory, where design decisions are hierarchically ordered, some 

design decisions may be mutually interdependent. For example, if components A, B, C, and D must all fit 

into a limited space, then any increase in the dimensions of one reduces the space available to the others. 

The designers of such components are in a state of “reciprocal interdependence” (Thompson, 1967). If they 

make their initial choices independently, then those decisions must be communicated to the other designers, 

who may need to change their own original choices. This second-round of decisions, in turn, may trigger a 

third set of changes, with the process continuing until the designers converge on a set of decisions that 

satisfies the global constraint. Reciprocal interdependency thus gives rise to feedback and cycling in a 

design process. Such cycles are a major cause of rework, delay, and cost overruns (Steward, 1981; 

Eppinger et al, 1994; Sosa, Mihm and Browning, 2013). Thus any methodology for discovering the hidden 

structure of a complex system must reveal not only the hierarchy of components and related design 

decisions but also the presence of reciprocal interdependence or “cycles” between them.  

2.2. Network Methods for Characterising System Design 
 
Studies that attempt to characterize the architecture of complex systems often  employ network 

representations and metrics (Holland, 1992, Kaufman, 1993, Rivkin, 2000, Braha, Minai and Bar-Yam,  

2006, Rivkin and Siggelkow, 2007, Barabasi, 2009).  Specifically, they focus on identifying the linkages 

that exist between the different elements (nodes) in a system (Simon, 1962; Alexander, 1964).  A key 

concept in this work is that of modularity, which refers to the way that a system’s architecture is 

decomposed into different parts or modules.  While there are many definitions of modularity, authors tend 

to agree on the features that lie at its heart: the interdependence of decisions within modules; the 

independence of decisions between modules; and the hierarchical dependence of modules on components 

embodying standards and design rules (Mead and Conway, 1980; Baldwin and Clark, 2000; Schilling, 

2000).  The costs and benefits of modularity have been discussed in a stream of research that has explored 

its impact on product line architecture (Sanderson and Uzumeri, 1995); manufacturing (Ulrich, 1995); 
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process design (MacCormack, 2001); process improvement (Spear and Bowen, 1999); and industry 

evolution (Langlois and Robertson, 1992; Baldwin and Clark, 2000, Fixson and Park, 2008) among other 

topics. 

Studies that use network methods to understand architecture and to measure modularity typically 

focus on capturing the level of coupling (i.e., dependency or linkage) that exists between the different parts 

of a system. Many of the efforts based on this approach borrow techniques from social network theory and 

complexity theory (Wasserman, 1994; Braha and Bar-Yam, 2007).  However, these types of methods have 

important limitations, which makes their application to the study of technical systems difficult.   In 

particular, most social network techniques are based upon undirected graphs – if one person talks to another, 

a link is assumed to exist between the dyad, in both directions.  In technical systems however, it is quite 

normal for dependencies to be asymmetric:  Module A may depend upon B, without the reverse being true.  

A consequent limitation is many measures that result from social networking approaches depend upon the 

“path length” between elements, which again, is a concept that does not encompass directionality.  In 

technical systems, the path length from A to B might be 1 unit, whereas there may be NO path from B to A.  

Another limitation is that the clustering algorithms built into these methods (for identifying modules) often 

take account only of the direct connections between nearest neighbors in a system, rather than the complete 

set of direct and indirect connections among components.  Hence many of the measures output by these 

methods (e.g., degree centrality) focus only on a component’s direct connections, and not its broader level 

of connectivity via chains of indirect dependencies that may affect system performance.  Finally, social 

network theory and complexity theory generate visual outputs (i.e., network graphs) that while striking in 

appearance, are difficult to interpret, and convey limited amounts of information to the reader. In that 

respect, these methods do not help to reveal the “hidden structure” underlying the design of a system.   

2.3 Design Structure Matrices (DSMs) 
 
To address these potential disadvantages, an increasingly popular technique that has been used to 

characterize the structure of complex technical systems is the Design Structure Matrix or DSM.  A DSM 

displays the network structure of a complex system in terms of a square matrix (Steward, 1981; Eppinger et 

al, 1994; Sharman, Yassine and Carlile, 2002; Sosa et al, 2004, 2007; MacCormack et al, 2006, 2012), 

where rows and columns represent components (nodes in the network) and off-diagonal elements represent 
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dependencies (links) between the components.  Metrics that capture the level of coupling for each 

component can be calculated from a DSM and used to analyze and understand system structure.  Critically, 

these metrics include both direct and indirect linkages between elements.  For example, MacCormack, 

Rusnak and Baldwin (2006) and LaMantia et al (2006) use DSMs and the metric “propagation cost” 

(described below) to compare software architectures before and after architectural redesigns. Luo et al 

(2012) use DSMs and a measure of hierarchy to compare supply networks in the Japanese auto and 

electronics industries. Cataldo et al (2006) and Gokpinar, Hopp and Iravani (2007) show that teams 

developing components with higher levels of coupling require increased amounts of communication to 

achieve a given level of quality. Wilkie and Kitchenham (2000) and Sosa et al (2013) show that higher 

levels of component coupling are associated with more frequent changes and higher defect levels. Cai et al 

(2013) and Xiao, Cai and Kazman (2014) show that defects often cluster within groups of components that 

depend on the same higher-level component. Finally, MacCormack et al (2012) show that the mean level of 

coupling varies widely across similar systems, the differences being explained, in part, by differences in the 

way system development is organized.  

These and other studies suggest that network methods can be used to evaluate both initial structure 

and architectural changes aimed at making systems easier to upgrade and maintain.  Furthermore, Design 

Structure Matrices in particular, can facilitate the measurement and analysis of technical systems, 

addressing the weaknesses identified with other network-based methods (the need for directed graphs; the 

need to capture direct and indirect dependencies; and the need for superior visualization techniques). In the 

next section, we describe a methodology based on DSMs that reveals both hierarchical ordering and cyclic 

groups within a complex technical system. We then apply this methodology to a large sample of software 

releases. Our analysis reveals both surprising similarities in the high-level architecture of many systems 

plus heterogeneity in the specific details that suggests a high degree of designer discretion and impact. 

 

3. Methodology 

In this section, we describe a systematic approach to determining the hidden structure of large, 

complex systems. Specifically, after identifying the dependencies between components, we analyze the 

system in terms of hierarchical ordering and cycles and classify components in terms of their position in the 
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resulting network. Two examples from our dataset serve to motivate the problem and our method of 

analysis. Figure 1 shows the structure of two codebases in the form of Design Structure Matrices. Here 

each diagonal cell represents a component (node), and dependencies between components (links) are 

recorded in the off-diagonal cells. In this example, the components are software files and the dependencies 

denote relationships between the functions and procedures in each file (i.e., function calls, class method 

calls, class method definitions, and subclass definitions).  In this example, if file i depends on file j, a mark 

is placed in the row of i and the column of j.  

Figure 1:  The Network Structure of Two Codebases—Architect’s View 
 

     Codebase A      Codebase B  

 

 

Codebase A is an early version of the Mozilla Application Suite, an early browser program 

developed by Netscape. Codebase B is a large commercial system. Figure 1 shows what we call the 

“architect’s view” of these systems. In most large software systems, program instructions are grouped 

within files, which in turn are organized into a nested set of directories. Each file has a unique directory 

path and filename. The directory structure is determined by the system’s architects and reflects both 

programming conventions and the designers’ intuition as to which functions and files “belong together.” (In 

the figure, the nested structure of directories is indicated by the boxes-within-boxes in the matrices.)  

From the architect’s view, it is difficult to say whether these codebases exhibit significant 

differences in terms of structure. Standard software coupling metrics also do not provide much guidance. 
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For example, according to Chidamber and Kemerer’s (1994) coupling metric, a measure often used in 

software engineering, Codebase A has a coupling of 5.39, while Codebase B has a coupling of 4.86. In 

contrast, in Figure 2 we rearrange components using our methodology to reveal both hierarchy and cyclical 

dependencies. Dependencies that remain above the diagonal reveal the presence of cyclic interdependencies 

–A depends on B, and B depends on A – which cannot be reduced to a hierarchical ordering. 

Figure 2: The Network Structure of Two Codebases—Core-Periphery View 
 
Codebase A      Codebase B 

 

Our approach to rearranging components reveals significant differences in the underlying structure 

of the two systems.  Specifically, Codebase A has a large cyclic group of files, which appears in the second 

block down the main diagonal. Each component in this group both depends on and is depended on by every 

other member of the group. These “Core” files account for 33% of the files in the system. Furthermore, the 

Core, the components depending on it, and those it depends upon, account for 73% of the system.  The 

remainder of the files in this system are “Peripheral” in that they have few relationships with other files.   

Note that we refer to cyclic groups of any size as “cores” of the system and use the terms “cyclic 

group” and “core” interchangeably. The largest cyclic group in a system however, is designated the “Core” 

(with capitalization) in our methodology. When the Core is large relative to the system as a whole, and in 

comparison with other cyclic groups, we say that the system has a “core-periphery” architecture.2  

                                                             
2 Our definition of “Core” components differs from Murmann and Frenken (2006). Their definition is based on 
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Returning to our example, we note that the largest cyclic group in Codebase B is much smaller in 

relation to the system as a whole, accounting for only 3.5% of system files. Almost 70% of the files in this 

system—shown in the third block down the main diagonal—lie on pathways that do not depend upon the 

Core.   Systems such as these display a high level of ordering in the dependencies among components, thus 

we call this a “hierarchical” architecture.  Critically, the structural relationships revealed by Figure 2 cannot 

be inferred from standard measures of coupling nor from DSMs based on the architect’s view alone. In the 

subsections below, we present a methodology that makes this “hidden structure” visible and describe 

metrics that can be used to compare systems and track changes in system structure over time. 

3.1 Overview of Methodology and Rationale 
 

A brief overview of our methodologly is as follows (the technical terms are fully defined in 

sections below). First, we identify the direct and indirect dependencies between system components in a 

DSM. We then use these measures to identify the cyclic groups (cores) of the system. Based on the size of 

the largest cyclic group relative to the system and to other cores, we classify the system architecture as 

“core-periphery,” “multi-core,” or “hierarchical.” Next we divide the components into four groups based on 

their hierarchical relationship with the largest cyclic group (Core). Finally, we place the four component 

groups in order along the main diagonal of a new matrix, and within each group, sort the components to 

achieve a lower-diagonalized array. Appendix A provides a step-by-step description of the methodology. 

These steps constitute an empirical methodology whose purpose is to reveal  both cyclic groups 

(cores) and hierarchical relationships among the components of a large system. Different parts of this 

methodology, however, are motivated by different concerns. First, our concern with hierarchical orderings 

and cyclic groups is motivated by the theories of dominant designs, design cycles, and design cost. Our 

classification of architectures arose in response to empirical regularities discovered in our dataset. Finally 

our method of ordering component groups in a new DSM stems from a desire to represent hidden 

architectural patterns in visual form. Of course, the methodology presented in this paper is not the only way 

to analyze the architecture of large technical systems. Nevertheless, in our empirical work across a large 

range of systems, we  have found it is a powerful way to discover a system’s hidden structure, classify 

architectures, and visualize the relationships among a system’s components.  Below, we describe this 

                                                                                                                                                                                     
hierarchical ordering only and does not take account of cyclic groups.  
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methodology in detail. 

3.2 Identify the Direct Dependencies between Components 
 
We represent the architecture of a complex system as a directed network graph made up of 

components (nodes) and directed dependencies (links) between them. The components are functional units 

within the architecture, such as software files in a codebase, steps in a production process, or people in an 

organization. Consistent with both dominant design theory and modularity theory, the links are 

relationships of the form “A depends upon B” – i.e., if component B changes, component A may have to 

change as well. Dependencies are observable linkages that (the analyst believes) may propagate change 

from one component to another. Dependencies are domain-specific and may include things such as function 

calls, requests for service, transfers of material, transactions between firms, or messages between 

individuals.  Figure 3 shows an example system as both a directed graph and a Design Structure Matrix 

(DSM).3 To distinguish it from the visibility matrix (defined below), we call this the “first-order” matrix, 

which captures the direct dependencies between elements. 

Figure 3:  Example System in Graphical and Design Structure Matrix (DSM) Form 

 

   A  B  C  D  E  F 
A  0  1  1  0  0  0 
B  0  0  0  1  0  0 
C  0  0  0  0  1  0 
D  0  0  0  0  0  0 
E  0  0  0  0  0  1 
F  0  0  0  0  0  0 

 
3.3 Compute the Visibility Matrix 

 
If we raise the first-order matrix to successive powers, the results show the direct and indirect 

dependencies that exist for successive path lengths.  Summing these matrices and setting all positive values 

equal to one yields the “visibility matrix” V, (Figure 4) which shows the dependencies that exist for all 

possible path lengths. (Sharman, Yassine and Carlile, 2002; Sharman and Yassine, 2004; MacCormack et. 

al. 2006).  We choose to include the matrix for N=0 (i.e., a path length of zero) when calculating the 

visibility matrix, implying that a change to an element will always affect itself.4 

                                                             
3 Dependency matrices are also called “adjacency matrices” or “influence matrices.” 
4 As a pre-processing step, the analyst should verify that all components are part of the same network. The presence 

of disjoint subnetworks (of size greater than one) may confound results. Disjoint subnetworks can be found applying 
the method of finding cycles (described below) to the first-order matrix made symmetric by setting <aji> = 1 if <aij> = 
1 and vice versa (hence identifying all dependencies between elements in any direction). If this resulting matrix has 
more than one cyclic group, then there are a corresponding number of disjoint subnetworks in the dataset.   
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Figure 4: Visibility Matrix for the Example in Figure 3 
 

V = Σ Mn ; n = [0,4] 
   A  B  C  D  E  F 
A  1  1  1  1  1  1 
B  0  1  0  1  0  0 
C  0  0  1  0  1  1 
D  0  0  0  1  0  0 
E  0  0  0  0  1  1 
F  0  0  0  0  0  1 

 

The visibility matrix, V, is identical to the “transitive closure” of the first-order matrix. That is, it 

shows all direct and indirect dependencies between components in the system. Transitive closure can be 

calculated via matrix multiplication or algorithms such as Warshall’s algorithm (Stein, Drysdale and Bogart, 

2011). Algorithms for matrix multiplication and for calculating transitive closure are widely available and 

are active areas of mathematical research. Those used in computational programming languages such as 

Matlab™ or Mathematica™, are heavily optimized and updated as new and better approaches are 

discovered. Our strategy is to take these algorithms as given and build upon them. 

3.4 Construct Measures from the Visibility Matrix 
 
From the visibility matrix, V, we construct several measures. First, for each component (i) in the 

system we define: 

• VFIi (Visibility Fan-In) is the number of components that directly or indirectly depend on i. This 
number can be found by summing the entries in the ith column of V. 
 

• VFOi (Visibility Fan-out) is the number of components that i directly or indirectly depends on. 
This number can be found by summing the entries in the ith row of V. 

 
In Figure 4, element A has VFI equal to 1, meaning that no other components depend on it, and 

VFO equal to 6, meaning that it depends on all other components (including itself). 

In prior work (MacCormack et. al., 2006, 2012), Propagation Cost has been defined as the density 

of the visibility matrix, and is used to measure visibility at the system level. Intuitively, Propagation Cost 

equals the fraction of the system that could potentially be affected when a change is made to a randomly 

selected component. While Propagation Cost is not the focus of this paper, it is an important measure of a 
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system’s architectural complexity. We include it here for completeness: 

Propagation Cost (PC) ≡
VFIi

i=1

N

∑
N 2 =

VFOi
i=1

N

∑
N 2  

 

3.5 Find and Rank the Size of All Cyclic Groups 
 
The next step is to find all of the cyclic groups in the system. By definition, each component 

within a cyclic group depends directly or indirectly on every other member of the group. Hence:  

Proposition 1. Every member of a cyclic group has the same VFI and VFO as every other member. (All 
proofs are given in Appendix B.) 
 
If we sort components using their measures of visibility, the members of cyclic groups will therefore appear 

next to each other in the dataset.  

Method to Find Cyclic Groups 

(1) Sort the components, first by VFI descending, then by VFO ascending. (Other sort orders are 

discussed in Appendix C.) 

(2) Proceed through the sorted list, comparing the VFIs and VFOs of adjacent components. If the VFI 

and VFO for two successive components are the same, then by Proposition 1, they might be 

members of the same cyclic group.  

(3) For a group of components with the same VFI and VFO inspect the subset of the visibility matrix 

that includes the rows and columns of the group in question and no others. If there are no zeros in 

the submatrix, then all components are members of the same cyclic group. If there  are zeros in 

this submatrix, then the group contains two or more separate cyclic groups.  

(4) If they exist, identify the separate cyclic groups by (a) selecting any component, i, in the 

submatrix; (b) identifying all other components in the submatrix such that <vij> = 1 (equivalently 

<vji> = 1). These components will be in the same cyclic group as i. Repeat this procedure until all 

the components in the submatrix have been accounted for.5 

(5) Count the cyclic groups in the system and the number of components in each. The largest cyclic 

group is labeled the “Core” (with capitalization), and is the focus of subsequent analysis. 

                                                             
5 We are grateful to Dan Sturtevant for identifying us how to quickly identify separate cyclic groups. 



Hidden Structure: Using Network Methods to Map System Architecture 

 13 

3.6 Classify the Architecture according to the Size of the Core 
 
Theoretically, systems can range from being purely hierarchical (i.e., have no cyclic groups) to 

being comprised of any number of cyclic groups of different sizes. Our classification scheme focuses on the 

largest cyclic group. It is motivated by a strong empirical regularity in our dataset, which we describe next.   

Figure 5 presents a scatter plot of visibility measures for the components in Codebase A, with VFI 

on the vertical dimension and VFO on the horizontal dimension. The scatter has a “four-square” structure, 

indicating that there are four basic groups of components, located in the four quadrants of the graph. 

Figure 5: Scatter Plot of Components (Files) for Codebase A (Mozilla) 
 

 
 

First, the largest cyclic group appears in the upper right quadrant with VFI (=1009) and VFO 

(=768). This group contains 561 interconnected components, and is larger than any other cyclic group in 

the system, hence we label it the “Core”. The Core contains 33% of the components in this system and is 

16 times larger than the next largest cyclic group. The 448 components that depend on the Core appear in 

the lower right quadrant of the scatter plot. We label these “Control” components because they make use of 

other components in the system but are not themselves used by others.  The 225 components that the Core 

depends on appear in the top left quadrant of the graph. We label these “Shared” components. Finally, 455 

components appear in the lower left quadrant of the graph. None of these files depends on the Core and the 

Core cannot depend on them. We call them “Peripheral” components.  
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In our empirical work, we observed this “four-square” pattern of VFI and VFO dependencies 

frequently. The most salient characteristic of this pattern is the size and centrality of the largest cyclic 

group, the Core. In such systems, dependencies are transmitted from Control components, through Core 

components, to Shared components. At the same time, there are other components (the Periphery) that 

remain outside the main flow of dependencies in the system.  Thus, in systems with a “four-square” 

structure (as revealed here by the scatter plot), components can be categorized into four types as defined by 

their relationship to the largest cyclic group (the Core).  However, our empirical work also revealed 

systems that did not fit this archetype. For example, one had several similarly-sized cyclic groups rather 

than one dominant one.  Others, like Codebase B, contained only a few extremely small cyclic groups.  

Categorization. In light of the diversity observed across real world systems in our empirical work, 

we sought to define a small but useful set of architectural categories. Categories allow us to adapt our 

analytic approach depending on the visible properties of a particular system. Categorization is also an 

important step in theory building, hypothesis formulation, and testing. That said, the precise boundaries of 

any categorization scheme are necessarily somewhat subjective, and likely to depend on the context of 

analysis. Our approach therefore, is informed by (and limited by) our empirical work in software systems, 

and derives from the distinctive “four-square” pattern that we describe above. 

We define a system as having a “core-periphery architecture” if it has a single cyclic group of 

components that is (1) large relative to the system as a whole; and (2) substantially larger than any other 

cyclic group.  We define a system as having a “multi-core architecture” if it has two or more similarly-sized 

cyclic groups of components that are large relative to the system as a whole.   We define a system as having 

a “hierarchical architecture” if all cyclic groups are small relative to the system as a whole. 

To operationalize these definitions, we specify three parameters.  The first, a Size threshold, 

discriminates between systems where the Core is large or small relative to the system as a whole. The 

second, a Sensitivity threshold, allows us to categorize systems as “borderline” if the Core is within a 

narrow range around the Size threshold. The third, a Dominance threshold, discriminates between systems 

where the Core is much larger than the next-largest cyclic group versus systems where the two are of 

similar size.  In our work, we adopt a size threshold of 5% of the system to define a Core-Periphery 

architecture; a sensitivity threshold of 1%, to identify borderline systems near this value; and a dominance 
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threshold of 50% to discriminate between single and multi-core systems.  These choices are motivated by 

the chracteristics of our dataset.  In other environments, different choices may be appropriate.  (For a 

discussion of core-periphery network characteristics in other fields of study, see Csermely et al, 2013.) 

The resulting architectural classication scheme is summarized in Figure 6.  The first test is: does 

the Core contain 4% or more of the system’s elements? Systems that do not meet this test are “hierarchical” 

systems.  Next, within the set of systems that pass this threshold, we assess whether there is a single 

dominant cyclic group (as in Figure 5) or several similarly-sized groups. Hence our second test is: does the 

largest cyclic group contain at least 50% more components than the next largest cyclic group? Systems that 

do not meet this test are “multi-core” systems. Finally, for systems that meet both the first and second tests, 

we ask, does the largest cyclic group contain more than 6% of the system? Those that meet this test are 

“core-periphery” systems; those that do not are “borderline core-periphery” systems. 

Figure 6: Architectural Classification Scheme6 
 

   
 

It is important to note that the size of the Core is a continuous variable, and an important 

parameter in its own right. In general, using both categorical variables (e.g., the type of architecture) and 

continuous variables (e.g., the size of the Core) will be valuable in any empirical analysis.  

 
3.7 Classify Components into Types 

 
The four-square pattern in Figure 5 suggests a way to classify components within a given system. 

In particular, if the system has core-periphery (or borderline core-periphery) architecture, we can divide its 
                                                             

6   The more general classification scheme for defining core-periphery, hierarchical, and multi-core systems using 
different threshold parameters for Size (x) Sensitivity (y) and Dominance (z) is presented as part of Appendix A. 
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components into four basic groups, corresponding to the four quadrants of the scatter plot: 

• Core components are members of the largest cyclic group. By Proposition 1, all Core components 
have the same VFI and VFO, denoted VFIC and VFOC  respectively.  
 

• Shared components have VFI ≥ VFIC and VFO < VFOC. 
 

• Peripheral components have VFI < VFIC and VFO < VFOC. 
 

• Control components have VFI < VFIC and VFO ≥ VFOC. 
 

In hierarchical or multi-core architectures, this partitioning can be problematic. First, components 

may not naturally fall into four distinct categories (e.g., there may be no cyclic groups).  Second, in multi-

core systems, the classification of components may not be stable over time: if one cyclic group grows 

larger than another, the identity of the “Core” may change, even if the overall pattern of dependencies 

changes little. Third, in hierarchical systems, this partitioning may result in unbalanced numbers of 

components in each category, creating challenges for statistical analysis.  

To address these issues, we define an alternative way to classify components, based on the median 

values of VFI and VFO. When applied to hierarchical and/or multi-core systems, the median partition 

yields groupings that are more equal in size and more stable over time (assuming dependency patterns do 

not change significantly).7 In a partition based on medians, the high-VFI and high-VFO components will 

not, in general, be members of the same cyclic group, hence we call these components “Central” (instead of 

“Core”). Similarly, the remaining categories are identified as Shared-M, Control-M and Periphery-M. 

 
3.8 Visualize the Architecture 

 
The final step in our methodology allows us to reorder the components to construct a new DSM 

that reveals the “hidden structure” of the system: 

(1) Place components in the order Shared, Core (or Central), Periphery, Control down the main 
diagonal of the DSM; and then 
 

(2) Sort within each group by VFI descending, then VFO ascending. 
 
This methodology results in a reordered DSM with the following properties: 

• Cyclic groups are clustered around the main diagonal. 
 

• There are no dependencies across groups above the main diagonal. 
                                                             

7 It may be necessary to exclude “singletons” (i.e., components with VFI = VFO = 1), to get balanced groups when 
using the median partition.  As noted above, these components are, strictly speaking, not part of the same network. 
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• There are no dependencies between the Core (or Central) group and the Periphery above or below 

the main diagonal. 
 

• Except for cyclic groups, each block is lower diagonalized (i.e., has no dependencies above the 
diagonal). 

 
The first property is a consequence of Proposition 1.  The other properties are proved in Appendix B. 

If the largest cyclic group is the basis of the partition, we call this the “core-periphery view” of the 

system. If medians are the basis of the partition, we call it the “median view.” Figure 7 shows both views 

for Codebase B.  In general, these different views are complementary ways of visualizing the flow of 

dependencies in a large technical system.  The core-periphery view is more informative as the largest cyclic 

group increases in size relative to the system as whole and other cyclic groups. However, we have found 

that, especially in borderline cases, both views generate helpful information for analysis. 

 
Figure 7: Core-Periphery and Median Views of Codebase B (a Hierarchical System) 

 
   Core-Periphery View       Median View 

 

 Figure 8 shows the core-periphery and median views for Codebase C, a multi-core system. 

Codebase C is a version of Open Office, an open source suite of applications that includes a word processor, 

a spreadsheet program, and a presentation manager. The multiple cores in this system correspond to the 

different applications. As anticipated above, the core-periphery view results in unbalanced groupings: 82% 

of the system including the second and third largest cyclic groups are placed in the periphery. The median 

partition, by contrast, results in more balanced groupings and places all signficant cyclic groups in the 

“Central” category. It also reveals interesting subsidiary structures: for example, the three largest cyclic 
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groups appear to be independent (which can be easily verified from the reordered DSM). 

 

 
Figure 8: Core-periphery and Median Views of Codebase C (a Multi-core System) 

 
   Core-Periphery View         Median View 

 

4.  Empirical Application 

In this section, we describe the application of our methodology to a large sample of software 

systems.  Our objective was to demonstrate the power of this methodology to reveal “hidden structure,” 

establish some stylized facts about real world software systems, and identify consistent patterns across the 

sample.  We did not seek to specify or formally test hypotheses. We were particularly interested in the 

distribution of Core size across different systems and releases.  We also sought to learn whether Core 

components were typically clustered in a few subsystems or distributed across many. Finally, we 

investigated changes in the size of the Core as systems grew over time, with an emphasis on discontinuous 

changes. This work was viewed as a way to establish useful benchmarks that could inform future studies. 

4.1 Data 
 

Our dataset comprises 1286 different software releases from 17 different software applications for 

which we could secure access to the source code. (See Appendix D for a list of applications, their function 

and origin, the number of releases and the size of the system as of the last release). The systems are mostly 

written in the programming language C and its derivatives, C++ and C#. Many of these systems are active 

open source software projects. Some started as commercial products but later were released under an open 
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source license (e.g., the Mozilla Application Suite).  Finally, a small number of releases are proprietary 

systems developed by commercial firms, whose names are disguised. 

We focused on large software systems that at some point in their history had many users. Hence we do 

not include in our sample open source projects from repositories such as SourceForge, which are typically 

very small systems.  Although some of our systems (e.g., Linux) start small, all had more than three 

hundred source files as of the last release in our dataset.  That said, our sample is not random nor 

representative of the industry; hence we do not claim our results are general. As indicated above, this 

exploratory research provides a starting point for subsequent empirical investigation and hypothesis testing. 

We obtained the source code for each release in the sample and processed it to identify dependencies 

between source files, specifically function calls, class method calls, class method definitions, and subclass 

definitions.8 We used this data to calculate VFI and VFO for each file and the Propagation Cost for each 

release.  Applying our methodology, we identified the Core for each release, classified architectures as 

core-periphery, borderline, hierarchical, or multi-core, and classified all components into groups.  

Table 1 contains descriptive data for our sample.  Our dataset includes a wide spectrum of system 

sizes, from less than 50 components, to over 12,000.  The size of the Core also varies considerably, from 

under 10 to over 3,000 components. As a fraction of the system, Core size varies from 1% to 75% of all 

components.  The average release has 1,724 components, of which 201 (16%) are in the Core. 

Table 1:  Descriptive Data for the Sample 
 

 MIN MAX MEAN MEDIAN 
System Size (files) 45 12949 1724 781 
Core Size (files) 6 3310 201 74 
Core Size 
 % of System 

1% 75% 16% 9% 

 

4.2 The Prevalence of Core-periphery Structures 
 

Using the classification framework in Figure 5, we classified 867 of the 1286 releases (67%) as core-

periphery; 319 (25%) as borderline core-periphery; 6 (0.5%) as multi-core; and 94 (7%) as hierarchical. 

(We should note that the multi-core releases in our sample all belong to one application – Open Office, a 

“Suite” of productivity applications, which contains smaller core-periphery systems – Word and Calc.)  

                                                             
8 These are standard forms of dependency for code written in the C family of languages. We used a commercial 

static code analyzer tool (called Understand, produced by SciTools, Inc.), to extract direct dependencies.   
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We classified systems according to the architecture of the last release in our sample. The last release is 

usually the largest and offers the highest degree of functionality. Results are shown in Table 2.  Thirteen 

systems had a core-periphery architecture, three were borderline, two hierarchical and one multi-core.  

 
Table 2:  Classification of Systems 
 

  Core Size  
System Name No. Files 

(Last Release) 
 No. Files 

(Last Release) 
% System 

(Last Release) 
Classification 
(Last Release) 

Mozilla 5899 157 2.7% Hierarchical 
OpenAFS 1304 51 3.9% Hierarchical 
GnuCash 543 23 4.2% Borderline 
Abiword 1183 59 5.0% Borderline 
Apache 481 25 5.2% Borderline 
Chrome 4186 260 6.2% Core-periphery 
Linux (kernel) 8414 621 7.4% Core-periphery 
MySQL 1282 160 12.5% Core-periphery 
Ghostscript 653 90 13.8% Core-periphery 
Darwin 5685 939 16.5% Core-periphery 
Open Solaris 12949 3310 25.6% Core-periphery 
MyBooks 2434 675 27.7% Core-periphery 
PostGres 703 282 40.1% Core-periphery 
XNU 781 351 44.9% Core-periphery 
GnuMeric 314 148 47.1% Core-periphery 
Berkeley DB 299 146 48.8% Core-periphery 
     
Open Office 7360 346 4.7% Multi-core 
     Write (Open Office) 814 372 45.7% Core-periphery 
     Calc (Open Office) 545 328 60.2% Core-periphery 

 
This data helps us to understand the impact of varying the thresholds used to classify different 

types of architecture, described earlier.  For example, choosing a size threshold of 10% and a sensitivity 

threshold of ±2% would change the classification of GnuCash, Abiword, and Apache to hierarchical, while 

Chrome and Linux would become borderline core-periphery. The other systems would remain the same.   

Conversely, we found that changing the dominance threshold, from 50% to 100%, did not change the 

classification for any system.  In general, the largest cyclic group was significantly larger than the second 

largest cyclic group (except in the case of Open Office, the only multi-core system in the sample). 

4.3 The Size of the Core across Different Systems 
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We next explored whether there was a systematic relationship between the relative size of the 

Core and the overall size of the system, providing data to inform our threshold for classification.  

Accordingly, Figure 9 plots Core size (as a % of the system) against system size for all releases in our 

dataset. The graph differentiates between systems that began as open source projects (denoted as light 

circles), versus those that originated as commercial products developed by firms (denoted as dark triangles).  

Figure 9: The Size of the Core (Largest Cyclic Group) versus Total System Size 
 

  

For very small systems, the relative size of the Core varies substantially, from less than 5% to a maximum 

of 75% of the system.  For larger systems however, the Core declines as a percent of the system.  Indeed 

there appears to be a negative exponential relationship between Core size and system size.  Intuitively, this 

pattern makes sense.  In small systems, a relatively large Core is still small in absolute terms, hence 

architects and developers can still comprehend its internal structure easily.  In larger systems however, even 

a moderately sized Core creates cognitive and coordination challenges, given that architects must 

understand and communicate with each other about many possible direct and indirect interdependencies. 

Larger systems thus benefit by having relatively smaller Cores (as a % of the whole). 

The graph reveals that, with the exception of Open Solaris, as system size increases, Core sizes 
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appear to cluster tightly in a band centered around 5%: for a system of 6000 files, this corresponds to a 

cyclic group of 300 files, which is large in absolute terms.  This data influenced the decision as to the 

appropriate size threshold (5%) and sensitivity threshold (1%) for our architectural classification scheme. 

In future empirical work, we expect these thresholds may be refined, updated for different contexts, and 

potentially, new tests  added that expand the scheme, to create new architectural categories.9  

Next, we focused on analyzing the Core sizes for systems that perform similar functions. Figure 

10 displays data from the three operating systems in our sample: Linux, Open Solaris, and Darwin, the 

platform upon which Apple’s OS X software is based. The contrasts are striking.  With Linux, relative Core 

size declined and then flattened as the system grew. In contrast, Open Solaris has an extremely large Core 

in both absolute and relative terms.  Darwin falls between these two: as it grew from 3017 files (Darwin 

1.3.1) to 5685 files (Darwin 8.9), its Core grew from 512 files to 939 files components, averaging 15% of 

the system.  Clearly there is wide variation in the size of Cores across systems of similar function. 

Figure 10: The Size of the Core for Systems of Similar Function 
 

  
 

We next sought to explore one possible driver of differences in Core size – the type of 

organization that develops a system.  Here we built on prior theoretical work which argues that product 

designs tend to reflect the structure of the organizations in which they are conceived, an effect known as 

Conway’s Law or the “mirroring hypothesis” (Conway, 1968; Henderson and Clark, 1992; Sosa et al, 

                                                             
9 Note that we experimented with various logical and nonlinear thresholds as a method for defining architectural 

types, but found that these brought no additional insights while creating significant additional complexity.  
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2004; Colfer and Baldwin, 2010).  This theory suggests that organizations with co-located developers in 

close communication (as is typical within corporations) will produce relatively tightly coupled systems. In 

contrast, organizations with geographically distributed developers not in close communication (as is typical 

of open source projects) will produce relatively loosely coupled systems. A relatively large (or small) Core 

is in turn evidence of tighter (or looser) coupling among the components in a system. 

To conduct this analysis, we compared systems with similar functions that emerged from different 

types of organizations, specifically, open source versus commercial firms.  We used a matched-pair design, 

comparing the size of the Core between systems of similar size and function.  Our sample was based on a 

prior study that explored differences in the propagation cost between open source and commercial systems  

(See MacCormack et al, 2012 for details on how the matched pairs were selected.)   

Table 3 shows the size of the Core (relative to system size) for our five matched pairs. In every 

case, the systems that originated as open source projects have smaller Cores than systems that originated as 

commercial products inside firms. In one case (financial management software), the open source system 

has a hierarchical architecture, while the commercial system of comparable size has a Core that accounts 

for 70% of the system. Although many other factors influence the design of system architectures, this 

comparison, as well as the prior study, provides strong evidence that differences in architecture and 

particularly in Core size are driven, in part, by differences in the developing organization. 

Table 3:  The Size of the Core for a Sample of Matched-Pair Products 
 
Application Category Open Source Product Closed (Commercial) 

Product 

 System Size Core Size System Size Core Size 

Financial Mgmt 466 3.4% 471 69.60% 
Word Processor 841 6.10% 790 46.10% 
Spreadsheet 450 25.80% 532 57.30% 
Operating System 1032 6.30% 994 28.00% 
Database 465 7.70% 344 48.80% 

 
4.4 Detecting the Existence and Location of Core Components in a System 
 

It is natural to ask whether the presence of a dominant cyclic group, (hence a core-periphery 

architecture) can be detected from the summary statistics for a system (e.g., number of files, directories or 

lines of code, average number of dependencies per file) or from inspection of the first-order matrix. To 
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explore this question, we compared systems that possessed a core-periphery architecture with those that did 

not, focusing on differences in both the quantitative data and the visual plots of DSMs using the architect’s 

view (i.e. sorting files by directory as in Figure 1).  We found no variable that could reliably predict 

whether a system possessed a core-periphery structure, and no consistent pattern of direct dependencies in 

the architectural view of a DSM that would signal the presence of dominant cyclic group. Thus detecting 

the presence of a core-periphery architecture cannot be achieved solely by examining the direct 

dependencies for a system.  Rather, this analysis depends critically on an assessment of the indirect paths 

by which dependencies propagate. 

We next investigated whether Core components tend to be located in a few subsystems or distributed 

throughout a system.  In software, there is no theoretical reason that the Core components must be co-

located in a single directory or module: they can be distributed throughout a system and still function as 

intended.  However, from the perspective of the system architect (or system maintainer) there are cognitive 

benefits to locating Core components in a small number of directories or modules. 

Our analysis revealed, somewhat surprisingly, that Core components often were not located in a small 

number of directories, but instead were distributed throughout different parts of the system. Table 4 

provides an example, showing the distribution of Core files in the top-level directories of Linux version 

2.3.39.  This system possesses 118 Core components out of a total of 2419 (4.9%) (hence it is borderline in 

our classification scheme).  However, rather than Core components being concentrated in a few subsystems, 

8 of the 10 top-level directories (modules) contain at least one Core component. 

Table 4: Distribution of Core Files across Directories (Linux 2.3.39) 
 
Directory Total Files in 

the Directory 
Core Files in 
the Directory 

Core Files as % 
of the Directory 

'~arch 689 53 8% 
'~drivers 1051 18 2% 
'~fs 334 20 6% 
'~init 2 1 50% 
'~ipc 4 2 50% 
'~kernel 23 10 43% 
'~lib 5 0 0% 
'~mm 18 10 56% 
'~net 279 4 1% 
'~scripts 14 0 0% 
Total 2419 118 4.9% 
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These findings indicate that the main flow of dependencies (from Control to Core to Shared) may 

not be immediately apparent from an inspection of the parts of a system that are most salient to the architect. 

Simply reviewing the directory structure will generally not be sufficient to reveal where Core components 

are located.  As a consequence, changes to a Core component may propagate to other Core components in 

seemingly remote parts of the system, making it difficult to predict performance. This issue is especially 

pertinent when a legacy system must be maintained or adapted with limited documentation. Only through a 

detailed analysis of chains of both direct and indirect dependencies can the “hidden structure” of the system 

be made visible, affirming the value of our methodology. 

4.5 The Evolution of System Structure  

In the final application of our methodology, we analyzed how the Cores of various systems 

evolved over time (i.e., across successive versions of each application).  We found no simple or consistent 

pattern to this evolution. In three of the applications, relative Core size declined consistently; in eight 

applications, relative Core size remained flat; and for two applications it increased.10 The four remaining 

systems however, (Apache, Gnucash, Linux and Mozilla) exhibited discontinuous breaks in Core size as 

shown in Figure 11.  Hence we further investigated these systems to understand their dynamics. 

 

Figure 11: Systems Exhibiting Discontinuous Breaks in Core Size 
 

A. Apache (released versions only)   B. Gnucash 

  
 

                                                             
10 In one case (Chrome), we had only one release, hence insufficient data for this analysis. 
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C. Linux (stable releases only)    D. Mozilla 

  

 

The cases of Apache and Gnucash are straightforward. Apache began with a core-periphery 

architecture, with a Core in the range of 12% to 14% of system size. A significant redesign of the system 

took place between version 2.0.a9 and 2.0.28. In version 2.0.28, the Core dropped to 4% of the system, and 

then rose to around 5%. (A borderline system in our classification scheme.) The case of Gnucash is even 

more dramatic. Early on, the Core grew significantly from 13 to 70 files or approximately 30% of the 

system.  With release 1.7.1, however, system size almost doubled (232 to 449 files), but the Core dropped 

from 70 to 16 files (3.6% of the system). In later releases, the Core has consistently accounted for 4-5% of 

the system, making this system borderline under our classification scheme.  Note that both Apache and 

Gnucash are relatively small systems in this sample.11 In their size range (below 500 files), Core size 

relative to system size varies considerably (see Figure 9). In such systems, Core interdependencies can be 

directly inspected and understood by developers, thus architectural changes aimed at reducing the Core 

may have low priority.  

In contrast, Linux and Mozilla are large systems, which have grown significantly over time. In the 

case of Linux, discontinuous changes in the size of the Core have coincided with major releases. 12 Figure 

11 C shows that Linux started out as a core-periphery system with the Core initially accounting for just 

over 10% of the system. This figure dropped to around 8% for Linux 2.0 and to just over 4% with Linux 

                                                             
11 The last releases in our dataset contained 481 files and 543 files respectively. 
12 During the period of our sample, the Linux kernel used an “even-odd” version numbering scheme. Even numbers 

in the second place of the release number (e.g., 2.4.19) denoted “stable” releases that were appropriate for wide 
deployment; odd numbers (e.g., 2.5.19) denoted “development” releases that were the focus of ongoing 
experimentation. Work on the even and odd numbered releases would go on simultaneously, hence release numbers are 
in temporal sequence only within two sets. http://www.linfo.org/kernel_version_numbering.html. The even-odd 
numbering practice was discontinued with the release of version 2.6.0. 
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2.2. However, there were small discontinuous jumps in Core size associated with the release of Linux 2.4 

and 2.6. Most releases of Linux 2.4 were borderline, while Linux 2.6 wavered around the 6% threshold. 

The Mozilla Application Suite exhibited two discontinuous changes in Core size, although the trend is 

consistently downward. (See Figure 11 D.) The first discontinuity occurred in December 1998: the Core 

dropped from 680 files (29% of the system) to 223 files (15%). (System size also dropped but not as much.) 

Subsequently, the system grew significantly (from 1508 to 3405 files) while the Core grew only slightly 

(from 223 to 269 files or 7.9% of the system).  We know from prior work that the change in Mozilla’s 

design in December 1998 was the result of a purposeful redesign effort, which had the explicit objective of 

making the codebase more modular, hence easier for contributors to work within (MacCormack et al, 2006). 

As Table 5 shows, achieving this goal led to substantially smaller Core and Shared groups and larger 

Periphery and Control groups. (Note that we do not know the reason behind the second discontinuous 

change in the architecture of this codebase.) 

Table 5: Percent of Components in Each Category before and after the 1998 Mozilla Redesign 
 
Type of 
Component 

% before 
Redesign 
(4/8/98 
Release) 

% after 
Redesign 
(12/11/98 
Release) 

   
Shared 13% 3% 
Core 33% 15% 
Periphery 27% 36% 
Control 27% 46% 
Total 100% 100% 

 

To conclude, we found no single pattern to characterize the way the Core of a system evolves over 

time. Changes in relative Core size are often continuous (i.e. display no sharp discontinuities), but the Core 

may increase, stay the same or decrease in relation to the system as a whole. Thus, for the majority of 

applications in our sample, the Core did not seem to be a focus of major redesign efforts. In a few cases, 

however, we observe discontinuous changes that seem to be the result of purposeful intervention. The most 

dramatic of these resulted in large reductions in the relative size of the Core. Furthermore, in one case 

(Mozilla, December 1998), we know from interviews with the architects involved that the purpose of the 

redesign was to reduce system complexity. These findings are consistent with the conjecture (from design 
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theory) that cyclical dependencies are problematic because they increase cognitive complexity and the 

number of iterations needed to arrive at an acceptable design. However, our parallel observation, that Core 

files are dispersed throughout a system’s modules, means that it may be hard to identify the components in 

the system that give rise to these problematic cyclical dependencies. A valuable contribution of our 

methodology is that it identifies the Core and its members, making this hidden structure more visible. 

 

5. Discussion 

In this paper, we describe a robust and reliable methodology to detect the core components in a 

complex system, to establish whether these systems possess a core-periphery structure, and to measure 

important elements of these structures. Our methodology, which is based upon network graphs, addresses 

important limitations of prior analysis methods.  In particular, it focuses on directed graphs, disentangling 

differences in structure that stem from dependencies that flow in different directions; it captures all of the 

direct and indirect dependencies among the components in a system, rather than capturing purely the direct 

connections; and it provides a heuristic for rearranging the elements in a system, in a way that helps to 

visualize the system architecture and reveals its “hidden structure” (in contrast to other network methods, 

which tend to yield visual representations that are hard to comprehend).  We apply this methodology to a 

large sample of software applications.  As a result, we establish some stylized facts about the structure of 

real-world systems, to serve as a point of departure for future empirical investigations. 

We show that the majority of systems in our sample contain a single cyclic group (the Core) that is 

large relative to the system as a whole, and in comparison to the second-largest cyclic group. Other systems 

have only a few, small cyclic groups, or (in one case) several cyclic groups of comparable size.  The large 

variations we observe with respect to the detailed characteristics of these systems however, implies that a 

considerable amount of managerial discretion exists when choosing the “best” architecture for a system. . 

In particular, there are major differences in the number of Core components across a range of systems of 

similar size and function, indicating that the differences in design are not driven solely by system 

requirements. Specifically, we find evidence that variations in system structure can be explained, in part, by 

the different models of development used to build systems. That is, product structures “mirror” the 

structure of their parent organizations (Henderson and Clark, 1990, Sosa et al, 2004; Colfer and Baldwin, 
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2010). This result is consistent with work that argues designs (including dominant designs) are not 

necessarily optimal technical solutions to customer requirements, but rather are driven more by social and 

political processes operating within firms and industries (Noble, 1984; David, 1985; Tushman and 

Rosenkopf, 1992; Tushman and Murmann, 1998; Garud,  Jain and Kumaraswamy, 2002). 

Our findings highlight in particular, the difficulties facing a system architect. In particular, we find no 

discernible pattern of direct dependencies that reliably predicts whether a system has a single, dominant 

Core, or if it does, how large it is. This problem is compounded by the fact that in many systems, the Core 

components are not located in a small number of subsystems but are distributed throughout the system. The 

system architect therefore has to identify where to focus attention; it is not simply a matter of concentrating 

on subsystems that appear to contain most of the Core components. Important relationships may exist 

between these components and others within subsystems that, on the surface, appear relatively insignificant. 

This highlights the need to understand patterns of coupling at the component level, and not to assume that 

all of the key relationships in a complex system are located in a few key subsystems or modules.  

These issues are especially pertinent in software, given that legacy code is rarely re-written, but instead 

forms a platform upon which new versions are built. With such an approach, today’s developers bear the 

consequences of design decisions made long ago – obligations increasingly referred to as a system’s 

“technical debt.” Unfortunately, the first designers of a system often have different objectives from those 

that follow, especially if the system is successful and therefore long lasting. While early designers may 

place a premium on speed and performance, later designers may value reliability and maintainability. 

Rarely can all these objectives be met by the same design. A different problem stems from the fact that the 

early designers of a system may no longer be available when important design choices need revisiting. This 

difficulty is compounded by the fact that software designers rarely document their design choices well, 

often requiring the structure to be recovered by inspection of the source code (as we do here). 

Several limitations of our study must be considered in assessing its generalizability. First, our 

empirical work was conducted in the software industry on codebases written for the most part in C and 

related languages. Software presents a unique context given that software systems exist purely as 

information, and thus are subject to different limitations than physical artifacts. Whether similar results are 

found in other settings is an important empirical question (Csermely et al, 2013). However, Luo et al 
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(2012) demonstrate that a core-periphery structure existed in the supply chain network of the Japanese 

electronics industry in the mid-1990s. And a recent study by Lagerstrom et al (2014) finds a core-periphery 

structure in the enterprise architecture of a large financial services organization.  Thus, the evidence is 

accumulating that this type of structure is pervasive across different domains, industries and technologies. 

Second, we analyzed a non-random sample of systems for which we had access to the source code. 

Although we limited our enquiry to successful systems with thousands of user deployments, we cannot be 

sure that the results are representative of the industry as a whole. Also, our categorical results are sensitive 

to the thresholds selected as breakpoints in our classification scheme. As noted, these thresholds are 

necessarily somewhat subjective and may vary by context.  Hence the classification of architectures 

remains an open avenue for future empirical work, which we expect will prove fuitful. 

Our work opens up a number of other avenues for future study. Specifically, prior work suggests that 

exogenous technological “shocks” in an industry can cause major dislocations in the design of systems and 

change the competitive dynamics. This assertion could be tested by examining the impact of major 

technological transitions on designs and on the survival of both products and the firms that make them (e.g., 

see MacCormack and Iansiti, 2009). One such transition might be the rise of object-oriented programming 

languages.  Recent work by Cai et al (2013) and Xiao et al (2014) suggests that code written in an object-

oriented language like Java may have a more hierarchical structure (fewer and smaller cyclic groups) than 

code written in an older, procedural programming language like C.  Given appropriately designed samples, 

our methods of architectural analysis could be used to test such a hypothesis.  

Other work might explore, in greater detail, the association we find between product and 

organizational designs. Such work is facilitated by the fact that software development tools typically assign 

an author to each component of the system. As a consequence, it is possible to understand who is 

developing the Core components, to analyze their social networks, and to identify whether the 

organizational network as a whole predicts future product structure (or vice versa).  

Another interesting avenue of research is to predict the location of product defects, developer 

productivity, and even developer turnover. In separate case studies, Akaikine (2009) and Sturtevant (2013) 

have applied this methodology to two large commercial codebases in different firms. Both studies find 

significant differences in performance measures, including defect density, defect resolution times and 
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developer productivity, across the four different categories of components (Core, Shared, Peripheral, 

Control). However further work is needed to generalize these observationsto a larger sample of firms.  

As a general rule, our methodology can be applied to any technical system whose architecture can be 

represented as a network graph with directed links. In practice, however, its application may be limited by 

the need to determine the dependencies between system components in an efficient way. Software is a 

natural target of opportunity because reliable and efficient automatic extraction tools are commercially 

available. Corporate IT systems and enterprise architectures can also be represented as directed network 

graphs, and reliable automated tools to extract the dependencies between them (for example, between 

applications and tasks) are currently being developed. Thus the extension of our methods to IT systems and 

enterprise architectures is likely to be a promising avenue for future research. 

Lastly, we believe our methods will be helpful in locating and measuring technical debt, a term 

increasingly used by practitioners to describe the costs of making and verifying changes to a complex 

technical system. Ultimately, this agenda promises to deepen our knowledge of the structures underlying 

the design of complex technological systems. It will also improve our ability to understand the ways in 

which a manager can shape and influence the evolution of these systems. 
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Appendix A: A Methodology for Analyzing, Classifying and Viewing the 
Architecture of a Complex System 
 

1) Represent the system in terms of a Design Structure Matrix (DSM). If element j depends on 
element i, place a “1” in the column of i and the row of j. Call this matrix A (the first-order matrix).  
 

2) Compute the visibility matrix for A using matrix multiplication or an algorithm (such as 
Warshall’s) for computing transitive closure. Call this matrix V.  
 

3) For each element i, compute VFIi as the column sum of V for that element and VFOi as the row 
sum of V for that element. If the VFI and VFO for two successive components are the same, then 
by Proposition 1, they might be members of the same cyclic group.  
 

4) For a group of components with the same VFI and VFO inspect the subset of the visibility matrix 
that includes the rows and columns of the group in question and no others. If there are no zeros in 
the submatrix, then all components are members of the same cyclic group. If there  are zeros in 
this submatrix, then the group contains two or more separate cyclic groups. 

 
5) If they exist, identify the subsidiary groups by (a) selecting any component, i, in the submatrix; (b) 

identifying all other components in the submatrix such that <vij> = 1 (equivalently <vji> = 1). 
These components will be in the same cyclic group as i.  

 
6) Repeat until all components in the submatrix are accounted for. Count the cyclic groups in the 

system and the number of components in each. The largest cyclic group is labeled the “Core” 
(with capitalization). 

 
7) Define three threshold parameters x, y, and z in percentage terms. These can be domain- or 

sample-specific. Classify the architecture using the following tests: 
 

a. Is nC ≥  (x–y) *N? (Largest cyclic group accounts for at least  (x–y) percent of the 
system.) 

b. Is nC ≥ (1+z) * max n~C? (Largest cyclic group is at least z percent larger than next 
largest.) 

c. Is nC ≥ (x+y) * N? (Largest cyclic group accounts for at least  (x+y) percent of the 
system.) 

 
8) If answer to all three questions is “yes”, classify the system as having a core-periphery architecture. 

If the answer to (a) and (b) is “yes”, and (c) is “no”, classify the system as borderline core-
periphery. If the answer to (a) is “yes” and (b) is “no”, classify the system as multi-core. Finally, if 
the answer to (a) is “no”, classify the system as having a hierarchical architecture. 

 
Classification of Architectures: 
 

 

Yes 

Largest 
cyclic group 
> (x-y)% of 
system? 

Largest 
cyclic group 
> (1+z)% of 
next largest? 

Yes 

No 

Yes 

No 

Core-periphery 

Multi-core 

Hierarchical 

Largest 
cyclic group 
> (x+y)% of 
system? 

Borderline  
Core-periphery 

No 
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9) Classify the elements of the system into four groups according to the core-periphery partition or 

the median partition: 
 

10) Core-periphery Partition. Define the largest cyclic group as the “Core” of the system. Let VFIC 
and VFOC. respectively denote the VFI and VFO of elements in the Core. Allocate the non-Core 
elements to three groups as follows: 
 
a) “Shared” elements have VFI ≥ VFIC and VFO < VFOC. 
b) “Peripheral “elements have VFI < VFIC and VFO < VFOC. 
c) “Control” elements have VFI < VFIC and VFO ≥ VFOC. 

 
11) Median Partition. Compute the medians, VFIM and VFOM. Allocate elements to four groups as 

follows: 
 
a) “Shared” elements have VFI ≥ VFIM and VFO < VFOM. 
b) “Central” elements have VFI ≥ VFIM and VFO ≥ VFOM. 
c) “Peripheral “elements have VFI < VFIM and VFO < VFOM. 
d) “Control” elements have VFI < VFIM and VFO ≥ VFOM. 

 
12) Create a reordered DSM to visualize the system based on the core-periphery or median partitions: 

 
a) Order the elements by group as follows: Shared, Core (or Central), Peripheral, Control. 
b) Within each group, sort the elements by VFI descending, VFO ascending.  
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Appendix B: Propositions 

Proposition 1. Every member of a cyclic group has the same VFI and VFO as every other member.  
 
Proof. Members of a cyclic group all directly or indirectly depend on one another. This means that if 

element x outside the group depends on a in the group, then x will indirectly depend on all other members 

of the group. As this applies to any x and any a, the VFI of all members of the group will be the same. 

Conversely if a in the group depends on y out of the group, then all members of the group will indirectly 

depend on y. This applies to any y and a, thus the VFO of all members of the group will be the same. QED 

Proposition 2. Sorting members of a sequence (with no embedded cycles) by VFI descending causes all 
dependencies to fall below the main diagonal of the DSM. 
 
Proof. Let the sort result in a particular ordering of elements: 1, 2, ..., i, j, ... N, where j is below i. Now 

suppose a dependency from element i to j appears in the row of i and the column of j, which, by definition, 

lies to the right of the main diagonal. The presence of a link from i to j implies that i must depend on all 

elements that j depends on. If i already depends on j then i and j are part of cycle which contradicts the 

premise of no embedded cycles. If i and j are not part of a cycle, then all the elements that depend on i must 

depend on j. Also i itself must depend on j. Therefore: 

VFI j = VFIi +1 . 

But this contradicts the sorting algorithm, which stipulates that: 

VFIi  ≥ VFI j . 

QED 

Proposition 3. In a “core-periphery” or “median” DSM, there are no dependencies between groups above 
the main diagonal. 
 
Proof. Consider the core-periphery view first. The proof follows the same logic as Proposition 2. First 

suppose a dependency exists from a Shared element i to a Core element j. (By definition, j lies below i in 

the DSM.) Then either element i is part of the Core cyclic group or the Core has VFIC = VFIi+1 by 

transitive dependency. But, according to the definition of Shared elements, VFIC ≤ VFIi < VFIi+1.  Thus a 

dependency from a Shared element to a Core element leads to a contradiction. Similar reasoning applies to 

dependencies from Shared to Periphery and Control elements, from the Core to Periphery and Control 

elements, and from the Periphery to Control elements. The proof is identical for the median view.  QED 
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Proposition 4. In a “core-periphery” or “median” DSM, there are no dependencies between the Core or 
Cental group and the Periphery above or below the main diagonal. 
 
Proof. Proposition 3 says there are no dependencies from the Core or Central group to the Periphery. But 

suppose there is a dependency from element j in the Periphery to element i in the Core or Central group.  

By definition, i lies above j in the DSM, thus the dependency would appear below the main diagonal. By 

transitive dependency, VFOj ≥ VFOC + 1. But by definition, VFOj < VFOC, hence we have a contradiction. 

QED 

 

Appendix C: Different Sort Orders 

The sort order VFI descending, VFO ascending is not unique in its ability to lower diagonalize and 

identify cyclic groups. Table C-1 shows which sorting combinations achieve both goals. 

Table C-1 
Properties of Different Sort Orders 
 

 
 

Of the four sort orders that work, we prefer VFI descending, VFO ascending for the following 

reasons. A first sort by VFI descending places elements with many incoming dependencies at the top of the 

matrix. In contrast, a first sort by VFO ascending places elements with very few dependencies, e.g., VFI = 

VFO = 1 near the top.13 Given a first sort by VFI descending, a second sort by VFO ascending places 

elements with many outgoing dependencies near or at the bottom of each VFI layer. 14 This reinforces the 

concept of dependencies flowing from lower parts to upper parts of the matrix.  

  

                                                             
13 With a VFI descending first sort, such elements appear near the bottom. 
14 Note: A “layer” is a group of elements with the same VFI, but possibly different VFOs. By Proposition 3, 

elements within a layer cannot depend on each other unless they are part of a cycle. See Wong (2010) for another 
method of computing layers. 

First Sort Second Sort
Finds 
Cycles

Lower-
Diagonalizes

VFI descending VFO ascending √ √
       descending √ √

VFI ascending VFO ascending √ no
       descending √ no

VFO descending VFI descending √ no
      ascending √ no

VFO ascending VFI descending √ √
      ascending √ √
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Appendix D: List of Systems Analyzed 

 
System Name Function Number of Releases Origin 

No. Files 
(Last Release) 

1 Mozilla Application Suite Web Browser 35 Commercial 5899 
2 OpenAFS File Sharing 106 Open source 1304 
3 GnuCash Financial Management 116 Open source 543 
4 Abiword Word Processor 29 Open source 1183 
5 Apache Web Server 52 Open source 481 
6 Chrome Web Browser 1 Open source 4186 
7 Linux (kernel) Operating System 544 Open source 8414 
8 MySQL Database 18 Open source 1282 
9 Ghostscript Image Display and Conversion 35 Open source 653 

10 Darwin Operating System 36 Commercial 5685 
11 Open Solaris Operating System 28 Commercial 12949 
12 MyBooks Financial Management 5 Commercial 2434 
13 PostGres Database 46 Open source 703 
14 XNU Operating System 43 Open source 781 
15 GnuMeric Spreadsheet 162 Open source 314 
16 Berkeley DB Database 12 Commercial 299 

      
17 Open Office Productivity Suite  6 Commercial 7360 
18      Write (Open Office) Word Processor 6 Commercial 814 
19      Calc (Open Office) Spreadsheet 6 Commercial 545 

   1286   
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