
Hidden Structure: Using Network Methods to Map
Product Architecture

Citation
Baldwin, Carliss Y., Alan MacCormack, and John Rusnak. "Hidden Structure: Using Network
Methods to Map System Architecture." Research Policy 43, no. 8 (October 2014): 1381–1397.
(Was Harvard Business School Working Paper, No. 13–093, May 2013.)

Published Version
http://www.sciencedirect.com/science/article/pii/S0048733314001012

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10646422

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:10646422
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Hidden%20Structure:%20Using%20Network%20Methods%20to%20Map%20Product%20Architecture&community=1/3345929&collection=1/3345930&owningCollection1/3345930&harvardAuthors=7bd556eee0257cc59dbc2f846340be5a&department
https://dash.harvard.edu/pages/accessibility

Hidden Structure: Using Network Methods to Map System Architecture

Carliss Baldwin, Alan MacCormack (corresponding author)

Harvard Business School
Soldiers Field

Boston, MA 02163
cbaldwin@hbs.edu, amaccormack@hbs.edu

John Rusnak

jrusnak@alum.mit.edu

Abstract

In this paper, we describe an operational methodology for characterising the architecture of complex

technical systems and demonstrate its application to a large sample of software releases. Our methodology

is based upon directed network graphs, which allows us to identify all of the direct and indirect linkages

between the components in a system. We use this approach to define three fundamental architectural

patterns, which we label core-periphery, multi-core, and hierarchical. Applying our methodology to a

sample of 1,286 software releases from 17 applications, we find that the majority of releases possess a

“core-periphery” structure. This architecture is characterized by a single dominant cyclic group of

components (the “Core”) that is large relative to the system as a whole as well as to other cyclic groups in

the system. We show that the size of the Core varies widely, even for systems that perform the same

function. These differences appear to be associated with different models of development—open,

distributed organizations develop systems with smaller Cores, while closed, co-located organizations

develop systems with larger Cores. Our findings establish some “stylized facts” about the fine-grained

structure of large, real-world technical systems, serving as a point of departure for future empirical work.

Keywords: Product Design, Architecture, Modularity, Software, Dominant Designs

Hidden Structure: Using Network Methods to Map System Architecture

 1

1. Introduction

All complex systems can be described in terms of their architecture, that is, as a hierarchy of

subsystems that in turn have their own subsystems (Simon, 1962). Critically, however, not all subsystems

in an architecture are of equal importance. In particular, some subsystems are “core” to system

performance, whereas others are only “peripheral” (Tushman and Rosenkopf, 1992). Core subsystems

have been defined as those that are tightly coupled to other subsystems, whereas peripheral subsystems

tend to possess only loose connections to other subsystems (Tushman and Murmann, 1998). Studies of

technological innovation consistently show that major changes in core subsystems as well as their linkages

to other parts of the system can have a significant impact on firm performance as well as industry structure

(Henderson and Clark, 1990; Christensen, 1997, Baldwin and Clark, 2000). And yet, despite this wealth of

research highlighting the importance of understanding system architecture, there is little empirical evidence

on the actual architectural patterns observed across large numbers of real world systems.

In this paper, we propose a method for analyzing the design of complex technical systems and

apply it to a large (though non-random) sample of systems in the software industry. Our objective is to

understand the extent to which such systems possess a “core-periphery” structure, as well as the degree of

heterogeneity within and across system architectures. We also seek to examine how systems evolve over

time, since prior work has shown that significant changes in architecture can create major challenges for

firms and precipitate changes in industry structure (Henderson and Clark, 1990; Tushman and Rosenkopf,

1992; Tushman and Murmann, 1998; Baldwin and Clark, 2000; Fixson and Park, 2008).

The paper makes a distinct contribution to the literatures of technology management and system design

and analysis. In particular, we first describe an operational methodology based on network graphs that can

be used to characterize the architecture of large technical systems.1 Our methodology addresses several

weaknesses associated with prior analytical methods that have similar objectives. Specifically, i) it focuses

on directed graphs, disentangling differences in structure that stem from dependencies that flow in different

directions; ii) it captures all of the direct and indirect dependencies among the components in a system,

developing measures of system structure and a classification typology that depend critically on the indirect

linkages, and iii) it provides a heuristic for rearranging the elements in a system, in a way that helps to

1 We define a large system as one having in excess of 300 interacting elements or components.

Hidden Structure: Using Network Methods to Map System Architecture

 2

visualize the system architecture and reveals its “hidden structure” (in contrast, for example, to social

network methods, which tend to yield visual representations that are hard to comprehend).

We demonstrate the application of our methodology on a sample of 1,286 software releases from 17

distinct systems. We find that the majority of these releases possess a core-periphery architecture using our

classification scheme (described below). However, the size of the Core (defined as the percentage of

components in the largest cyclic group) varies widely, even for systems that perform the same function.

These differences appear to be associated with different models of development – open, distributed

organizations develop systems with smaller Cores, whereas closed, co-located organizations tend to

develop systems with larger Cores. We find the Core components in a system are often dispersed across

different modules rather than being concentrated in one or two, making their detection and management

difficult for the system architect. Finally, we demonstrate that technical systems evolve in different ways:

some are subject continuous change, while others display discrete jumps. Our findings establish some early

“stylized facts” about the fine-grained structure of large, real-world technical systems.

The paper is organized as follows. Next, we review the relevant literature on dominant designs, core-

periphery architectures, and network methods for characterizing architecture. Following that, we describe

our methodology for analyzing and classifying architectures based upon the level of direct and indirect

coupling between elements. We then describe the results of applying our methodology to a sample of real

world software systems. We conclude by describing the limitations of our method, discussing the

implications of our findings for scholars and managers, and identifying questions that merit further

attention in future.

2. Literature Review

In his seminal paper “The Architecture of Complexity,” Herbert Simon argued that the

architecture of a system, that is, the way the components fit together and interact, is the primary

determinant of the system’s ability to adapt to environmental shocks and to evolve toward higher levels of

functionality (Simon, 1962). However, Simon and others presumed (perhaps implicitly) that the

architecture of a complex system would be easily discernible. Unfortunately this is not always the case.

Especially in non-physical systems, such as software and services, the structure that appears on the surface

Hidden Structure: Using Network Methods to Map System Architecture

 3

and the “hidden” structure that affects adaptation and evolvability may be very different.

2.1 Design Decisions, Design Hierarchies and Design Cycles

The design of a complex technological system (a product or process) has been shown to comprise

a nested hierarchy of design decisions (Marple, 1961; Alexander, 1964; Clark, 1985). Decisions made at

higher levels of the hierarchy set the agenda (or technical trajectory) for problems that must be solved at

lower levels of the hierarchy (Dosi, 1982). These higher-level decisions influence many subsequent design

choices, hence are referred to as “core concepts.” For example, in developing a new automobile, the choice

between an internal combustion engine and electric propulsion represents a core concept that will influence

many subsequent decisions about the design. In contrast, the choice of leather versus upholstered seats

typically has little bearing on important system-level choices, hence can be viewed as peripheral.

A variety of studies show that a particular set of core concepts can become embedded in an

industry, becoming a “dominant design” that sets the agenda for subsequent technical progress (Utterback,

1996; Utterback and Suarez, 1991; Suarez and Utterback, 1995). Dominant designs have been observed in

many industries, including typewriters, automobiles and televisions (Utterback and Suarez, 1991). Their

emergence is associated with periods of industry consolidation, in which firms pursuing non-dominant

designs fail, while those producing superior variants of the dominant design experience increased market

share and profits. However, the concept has proved difficult to pin down empirically. Scholars differ on

what constitutes a dominant design and whether this phenomenon is an antecedent or a consequence of

changing industry structure (Klepper, 1996; Tushman and Murmann, 1998; Murmann and Frenken, 2006).

Murmann and Frenken (2006) suggest that the concept of dominant design can be made more

concrete by classifying components (and decisions) according to their “pleiotropy.” By definition, high-

pleiotropy components cannot be changed without inducing widespread changes throughout the system,

some of which may hamper performance or even cause the system to fail. For this reason, the authors argue,

the designs of high-pleiotropy components are likely to remain unchanged for long periods of time: such

stability is the defining property of a dominant design. The authors proceed to label high-pleiotropy

components as the “core” of the system, and other components as the “periphery.”

Ultimately, dominant design theory argues that the hierarchy of design decisions (and the

components that embody those decisions) is a critical dimension for assessing system architecture. At the

Hidden Structure: Using Network Methods to Map System Architecture

 4

top of the design hierarchy are components whose properties cannot change without requiring changes in

many other parts of the system; at the bottom are components that do not trigger widespread or cascading

changes. Thus any methodology for discovering the hidden structure of a complex system must reveal

something about the hierarchy of components and related design decisions.

In contrast to dominant design theory, where design decisions are hierarchically ordered, some

design decisions may be mutually interdependent. For example, if components A, B, C, and D must all fit

into a limited space, then any increase in the dimensions of one reduces the space available to the others.

The designers of such components are in a state of “reciprocal interdependence” (Thompson, 1967). If they

make their initial choices independently, then those decisions must be communicated to the other designers,

who may need to change their own original choices. This second-round of decisions, in turn, may trigger a

third set of changes, with the process continuing until the designers converge on a set of decisions that

satisfies the global constraint. Reciprocal interdependency thus gives rise to feedback and cycling in a

design process. Such cycles are a major cause of rework, delay, and cost overruns (Steward, 1981;

Eppinger et al, 1994; Sosa, Mihm and Browning, 2013). Thus any methodology for discovering the hidden

structure of a complex system must reveal not only the hierarchy of components and related design

decisions but also the presence of reciprocal interdependence or “cycles” between them.

2.2. Network Methods for Characterising System Design

Studies that attempt to characterize the architecture of complex systems often employ network

representations and metrics (Holland, 1992, Kaufman, 1993, Rivkin, 2000, Braha, Minai and Bar-Yam,

2006, Rivkin and Siggelkow, 2007, Barabasi, 2009). Specifically, they focus on identifying the linkages

that exist between the different elements (nodes) in a system (Simon, 1962; Alexander, 1964). A key

concept in this work is that of modularity, which refers to the way that a system’s architecture is

decomposed into different parts or modules. While there are many definitions of modularity, authors tend

to agree on the features that lie at its heart: the interdependence of decisions within modules; the

independence of decisions between modules; and the hierarchical dependence of modules on components

embodying standards and design rules (Mead and Conway, 1980; Baldwin and Clark, 2000; Schilling,

2000). The costs and benefits of modularity have been discussed in a stream of research that has explored

its impact on product line architecture (Sanderson and Uzumeri, 1995); manufacturing (Ulrich, 1995);

Hidden Structure: Using Network Methods to Map System Architecture

 5

process design (MacCormack, 2001); process improvement (Spear and Bowen, 1999); and industry

evolution (Langlois and Robertson, 1992; Baldwin and Clark, 2000, Fixson and Park, 2008) among other

topics.

Studies that use network methods to understand architecture and to measure modularity typically

focus on capturing the level of coupling (i.e., dependency or linkage) that exists between the different parts

of a system. Many of the efforts based on this approach borrow techniques from social network theory and

complexity theory (Wasserman, 1994; Braha and Bar-Yam, 2007). However, these types of methods have

important limitations, which makes their application to the study of technical systems difficult. In

particular, most social network techniques are based upon undirected graphs – if one person talks to another,

a link is assumed to exist between the dyad, in both directions. In technical systems however, it is quite

normal for dependencies to be asymmetric: Module A may depend upon B, without the reverse being true.

A consequent limitation is many measures that result from social networking approaches depend upon the

“path length” between elements, which again, is a concept that does not encompass directionality. In

technical systems, the path length from A to B might be 1 unit, whereas there may be NO path from B to A.

Another limitation is that the clustering algorithms built into these methods (for identifying modules) often

take account only of the direct connections between nearest neighbors in a system, rather than the complete

set of direct and indirect connections among components. Hence many of the measures output by these

methods (e.g., degree centrality) focus only on a component’s direct connections, and not its broader level

of connectivity via chains of indirect dependencies that may affect system performance. Finally, social

network theory and complexity theory generate visual outputs (i.e., network graphs) that while striking in

appearance, are difficult to interpret, and convey limited amounts of information to the reader. In that

respect, these methods do not help to reveal the “hidden structure” underlying the design of a system.

2.3 Design Structure Matrices (DSMs)

To address these potential disadvantages, an increasingly popular technique that has been used to

characterize the structure of complex technical systems is the Design Structure Matrix or DSM. A DSM

displays the network structure of a complex system in terms of a square matrix (Steward, 1981; Eppinger et

al, 1994; Sharman, Yassine and Carlile, 2002; Sosa et al, 2004, 2007; MacCormack et al, 2006, 2012),

where rows and columns represent components (nodes in the network) and off-diagonal elements represent

Hidden Structure: Using Network Methods to Map System Architecture

 6

dependencies (links) between the components. Metrics that capture the level of coupling for each

component can be calculated from a DSM and used to analyze and understand system structure. Critically,

these metrics include both direct and indirect linkages between elements. For example, MacCormack,

Rusnak and Baldwin (2006) and LaMantia et al (2006) use DSMs and the metric “propagation cost”

(described below) to compare software architectures before and after architectural redesigns. Luo et al

(2012) use DSMs and a measure of hierarchy to compare supply networks in the Japanese auto and

electronics industries. Cataldo et al (2006) and Gokpinar, Hopp and Iravani (2007) show that teams

developing components with higher levels of coupling require increased amounts of communication to

achieve a given level of quality. Wilkie and Kitchenham (2000) and Sosa et al (2013) show that higher

levels of component coupling are associated with more frequent changes and higher defect levels. Cai et al

(2013) and Xiao, Cai and Kazman (2014) show that defects often cluster within groups of components that

depend on the same higher-level component. Finally, MacCormack et al (2012) show that the mean level of

coupling varies widely across similar systems, the differences being explained, in part, by differences in the

way system development is organized.

These and other studies suggest that network methods can be used to evaluate both initial structure

and architectural changes aimed at making systems easier to upgrade and maintain. Furthermore, Design

Structure Matrices in particular, can facilitate the measurement and analysis of technical systems,

addressing the weaknesses identified with other network-based methods (the need for directed graphs; the

need to capture direct and indirect dependencies; and the need for superior visualization techniques). In the

next section, we describe a methodology based on DSMs that reveals both hierarchical ordering and cyclic

groups within a complex technical system. We then apply this methodology to a large sample of software

releases. Our analysis reveals both surprising similarities in the high-level architecture of many systems

plus heterogeneity in the specific details that suggests a high degree of designer discretion and impact.

3. Methodology

In this section, we describe a systematic approach to determining the hidden structure of large,

complex systems. Specifically, after identifying the dependencies between components, we analyze the

system in terms of hierarchical ordering and cycles and classify components in terms of their position in the

Hidden Structure: Using Network Methods to Map System Architecture

 7

resulting network. Two examples from our dataset serve to motivate the problem and our method of

analysis. Figure 1 shows the structure of two codebases in the form of Design Structure Matrices. Here

each diagonal cell represents a component (node), and dependencies between components (links) are

recorded in the off-diagonal cells. In this example, the components are software files and the dependencies

denote relationships between the functions and procedures in each file (i.e., function calls, class method

calls, class method definitions, and subclass definitions). In this example, if file i depends on file j, a mark

is placed in the row of i and the column of j.

Figure 1: The Network Structure of Two Codebases—Architect’s View

 Codebase A Codebase B

Codebase A is an early version of the Mozilla Application Suite, an early browser program

developed by Netscape. Codebase B is a large commercial system. Figure 1 shows what we call the

“architect’s view” of these systems. In most large software systems, program instructions are grouped

within files, which in turn are organized into a nested set of directories. Each file has a unique directory

path and filename. The directory structure is determined by the system’s architects and reflects both

programming conventions and the designers’ intuition as to which functions and files “belong together.” (In

the figure, the nested structure of directories is indicated by the boxes-within-boxes in the matrices.)

From the architect’s view, it is difficult to say whether these codebases exhibit significant

differences in terms of structure. Standard software coupling metrics also do not provide much guidance.

Hidden Structure: Using Network Methods to Map System Architecture

 8

For example, according to Chidamber and Kemerer’s (1994) coupling metric, a measure often used in

software engineering, Codebase A has a coupling of 5.39, while Codebase B has a coupling of 4.86. In

contrast, in Figure 2 we rearrange components using our methodology to reveal both hierarchy and cyclical

dependencies. Dependencies that remain above the diagonal reveal the presence of cyclic interdependencies

–A depends on B, and B depends on A – which cannot be reduced to a hierarchical ordering.

Figure 2: The Network Structure of Two Codebases—Core-Periphery View

Codebase A Codebase B

Our approach to rearranging components reveals significant differences in the underlying structure

of the two systems. Specifically, Codebase A has a large cyclic group of files, which appears in the second

block down the main diagonal. Each component in this group both depends on and is depended on by every

other member of the group. These “Core” files account for 33% of the files in the system. Furthermore, the

Core, the components depending on it, and those it depends upon, account for 73% of the system. The

remainder of the files in this system are “Peripheral” in that they have few relationships with other files.

Note that we refer to cyclic groups of any size as “cores” of the system and use the terms “cyclic

group” and “core” interchangeably. The largest cyclic group in a system however, is designated the “Core”

(with capitalization) in our methodology. When the Core is large relative to the system as a whole, and in

comparison with other cyclic groups, we say that the system has a “core-periphery” architecture.2

2 Our definition of “Core” components differs from Murmann and Frenken (2006). Their definition is based on

Hidden Structure: Using Network Methods to Map System Architecture

 9

Returning to our example, we note that the largest cyclic group in Codebase B is much smaller in

relation to the system as a whole, accounting for only 3.5% of system files. Almost 70% of the files in this

system—shown in the third block down the main diagonal—lie on pathways that do not depend upon the

Core. Systems such as these display a high level of ordering in the dependencies among components, thus

we call this a “hierarchical” architecture. Critically, the structural relationships revealed by Figure 2 cannot

be inferred from standard measures of coupling nor from DSMs based on the architect’s view alone. In the

subsections below, we present a methodology that makes this “hidden structure” visible and describe

metrics that can be used to compare systems and track changes in system structure over time.

3.1 Overview of Methodology and Rationale

A brief overview of our methodologly is as follows (the technical terms are fully defined in

sections below). First, we identify the direct and indirect dependencies between system components in a

DSM. We then use these measures to identify the cyclic groups (cores) of the system. Based on the size of

the largest cyclic group relative to the system and to other cores, we classify the system architecture as

“core-periphery,” “multi-core,” or “hierarchical.” Next we divide the components into four groups based on

their hierarchical relationship with the largest cyclic group (Core). Finally, we place the four component

groups in order along the main diagonal of a new matrix, and within each group, sort the components to

achieve a lower-diagonalized array. Appendix A provides a step-by-step description of the methodology.

These steps constitute an empirical methodology whose purpose is to reveal both cyclic groups

(cores) and hierarchical relationships among the components of a large system. Different parts of this

methodology, however, are motivated by different concerns. First, our concern with hierarchical orderings

and cyclic groups is motivated by the theories of dominant designs, design cycles, and design cost. Our

classification of architectures arose in response to empirical regularities discovered in our dataset. Finally

our method of ordering component groups in a new DSM stems from a desire to represent hidden

architectural patterns in visual form. Of course, the methodology presented in this paper is not the only way

to analyze the architecture of large technical systems. Nevertheless, in our empirical work across a large

range of systems, we have found it is a powerful way to discover a system’s hidden structure, classify

architectures, and visualize the relationships among a system’s components. Below, we describe this

hierarchical ordering only and does not take account of cyclic groups.

Hidden Structure: Using Network Methods to Map System Architecture

 10

methodology in detail.

3.2 Identify the Direct Dependencies between Components

We represent the architecture of a complex system as a directed network graph made up of

components (nodes) and directed dependencies (links) between them. The components are functional units

within the architecture, such as software files in a codebase, steps in a production process, or people in an

organization. Consistent with both dominant design theory and modularity theory, the links are

relationships of the form “A depends upon B” – i.e., if component B changes, component A may have to

change as well. Dependencies are observable linkages that (the analyst believes) may propagate change

from one component to another. Dependencies are domain-specific and may include things such as function

calls, requests for service, transfers of material, transactions between firms, or messages between

individuals. Figure 3 shows an example system as both a directed graph and a Design Structure Matrix

(DSM).3 To distinguish it from the visibility matrix (defined below), we call this the “first-order” matrix,

which captures the direct dependencies between elements.

Figure 3: Example System in Graphical and Design Structure Matrix (DSM) Form

 A B C D E F
A 0 1 1 0 0 0
B 0 0 0 1 0 0
C 0 0 0 0 1 0
D 0 0 0 0 0 0
E 0 0 0 0 0 1
F 0 0 0 0 0 0

3.3 Compute the Visibility Matrix

If we raise the first-order matrix to successive powers, the results show the direct and indirect

dependencies that exist for successive path lengths. Summing these matrices and setting all positive values

equal to one yields the “visibility matrix” V, (Figure 4) which shows the dependencies that exist for all

possible path lengths. (Sharman, Yassine and Carlile, 2002; Sharman and Yassine, 2004; MacCormack et.

al. 2006). We choose to include the matrix for N=0 (i.e., a path length of zero) when calculating the

visibility matrix, implying that a change to an element will always affect itself.4

3 Dependency matrices are also called “adjacency matrices” or “influence matrices.”
4 As a pre-processing step, the analyst should verify that all components are part of the same network. The presence

of disjoint subnetworks (of size greater than one) may confound results. Disjoint subnetworks can be found applying
the method of finding cycles (described below) to the first-order matrix made symmetric by setting <aji> = 1 if <aij> =
1 and vice versa (hence identifying all dependencies between elements in any direction). If this resulting matrix has
more than one cyclic group, then there are a corresponding number of disjoint subnetworks in the dataset.

Hidden Structure: Using Network Methods to Map System Architecture

 11

Figure 4: Visibility Matrix for the Example in Figure 3

V = Σ Mn ; n = [0,4]
 A B C D E F
A 1 1 1 1 1 1
B 0 1 0 1 0 0
C 0 0 1 0 1 1
D 0 0 0 1 0 0
E 0 0 0 0 1 1
F 0 0 0 0 0 1

The visibility matrix, V, is identical to the “transitive closure” of the first-order matrix. That is, it

shows all direct and indirect dependencies between components in the system. Transitive closure can be

calculated via matrix multiplication or algorithms such as Warshall’s algorithm (Stein, Drysdale and Bogart,

2011). Algorithms for matrix multiplication and for calculating transitive closure are widely available and

are active areas of mathematical research. Those used in computational programming languages such as

Matlab™ or Mathematica™, are heavily optimized and updated as new and better approaches are

discovered. Our strategy is to take these algorithms as given and build upon them.

3.4 Construct Measures from the Visibility Matrix

From the visibility matrix, V, we construct several measures. First, for each component (i) in the

system we define:

• VFIi (Visibility Fan-In) is the number of components that directly or indirectly depend on i. This
number can be found by summing the entries in the ith column of V.

• VFOi (Visibility Fan-out) is the number of components that i directly or indirectly depends on.
This number can be found by summing the entries in the ith row of V.

In Figure 4, element A has VFI equal to 1, meaning that no other components depend on it, and

VFO equal to 6, meaning that it depends on all other components (including itself).

In prior work (MacCormack et. al., 2006, 2012), Propagation Cost has been defined as the density

of the visibility matrix, and is used to measure visibility at the system level. Intuitively, Propagation Cost

equals the fraction of the system that could potentially be affected when a change is made to a randomly

selected component. While Propagation Cost is not the focus of this paper, it is an important measure of a

Hidden Structure: Using Network Methods to Map System Architecture

 12

system’s architectural complexity. We include it here for completeness:

Propagation Cost (PC) ≡
VFIi

i=1

N

∑
N 2 =

VFOi
i=1

N

∑
N 2

3.5 Find and Rank the Size of All Cyclic Groups

The next step is to find all of the cyclic groups in the system. By definition, each component

within a cyclic group depends directly or indirectly on every other member of the group. Hence:

Proposition 1. Every member of a cyclic group has the same VFI and VFO as every other member. (All
proofs are given in Appendix B.)

If we sort components using their measures of visibility, the members of cyclic groups will therefore appear

next to each other in the dataset.

Method to Find Cyclic Groups

(1) Sort the components, first by VFI descending, then by VFO ascending. (Other sort orders are

discussed in Appendix C.)

(2) Proceed through the sorted list, comparing the VFIs and VFOs of adjacent components. If the VFI

and VFO for two successive components are the same, then by Proposition 1, they might be

members of the same cyclic group.

(3) For a group of components with the same VFI and VFO inspect the subset of the visibility matrix

that includes the rows and columns of the group in question and no others. If there are no zeros in

the submatrix, then all components are members of the same cyclic group. If there are zeros in

this submatrix, then the group contains two or more separate cyclic groups.

(4) If they exist, identify the separate cyclic groups by (a) selecting any component, i, in the

submatrix; (b) identifying all other components in the submatrix such that <vij> = 1 (equivalently

<vji> = 1). These components will be in the same cyclic group as i. Repeat this procedure until all

the components in the submatrix have been accounted for.5

(5) Count the cyclic groups in the system and the number of components in each. The largest cyclic

group is labeled the “Core” (with capitalization), and is the focus of subsequent analysis.

5 We are grateful to Dan Sturtevant for identifying us how to quickly identify separate cyclic groups.

Hidden Structure: Using Network Methods to Map System Architecture

 13

3.6 Classify the Architecture according to the Size of the Core

Theoretically, systems can range from being purely hierarchical (i.e., have no cyclic groups) to

being comprised of any number of cyclic groups of different sizes. Our classification scheme focuses on the

largest cyclic group. It is motivated by a strong empirical regularity in our dataset, which we describe next.

Figure 5 presents a scatter plot of visibility measures for the components in Codebase A, with VFI

on the vertical dimension and VFO on the horizontal dimension. The scatter has a “four-square” structure,

indicating that there are four basic groups of components, located in the four quadrants of the graph.

Figure 5: Scatter Plot of Components (Files) for Codebase A (Mozilla)

First, the largest cyclic group appears in the upper right quadrant with VFI (=1009) and VFO

(=768). This group contains 561 interconnected components, and is larger than any other cyclic group in

the system, hence we label it the “Core”. The Core contains 33% of the components in this system and is

16 times larger than the next largest cyclic group. The 448 components that depend on the Core appear in

the lower right quadrant of the scatter plot. We label these “Control” components because they make use of

other components in the system but are not themselves used by others. The 225 components that the Core

depends on appear in the top left quadrant of the graph. We label these “Shared” components. Finally, 455

components appear in the lower left quadrant of the graph. None of these files depends on the Core and the

Core cannot depend on them. We call them “Peripheral” components.

0"

200"

400"

600"

800"

1000"

1200"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900" 1000"

Vi
si
bi
lit
y(
Fa
n,
in
((V

FI
)(

Visibility(Fan,out((VFO)(

Codebase(A((Mozilla)(

"Core""
561"files,"1"cyclic"group"

"Shared""
225"files"

"Periphery""
450"files"

"Control""
448"files"

Hidden Structure: Using Network Methods to Map System Architecture

 14

In our empirical work, we observed this “four-square” pattern of VFI and VFO dependencies

frequently. The most salient characteristic of this pattern is the size and centrality of the largest cyclic

group, the Core. In such systems, dependencies are transmitted from Control components, through Core

components, to Shared components. At the same time, there are other components (the Periphery) that

remain outside the main flow of dependencies in the system. Thus, in systems with a “four-square”

structure (as revealed here by the scatter plot), components can be categorized into four types as defined by

their relationship to the largest cyclic group (the Core). However, our empirical work also revealed

systems that did not fit this archetype. For example, one had several similarly-sized cyclic groups rather

than one dominant one. Others, like Codebase B, contained only a few extremely small cyclic groups.

Categorization. In light of the diversity observed across real world systems in our empirical work,

we sought to define a small but useful set of architectural categories. Categories allow us to adapt our

analytic approach depending on the visible properties of a particular system. Categorization is also an

important step in theory building, hypothesis formulation, and testing. That said, the precise boundaries of

any categorization scheme are necessarily somewhat subjective, and likely to depend on the context of

analysis. Our approach therefore, is informed by (and limited by) our empirical work in software systems,

and derives from the distinctive “four-square” pattern that we describe above.

We define a system as having a “core-periphery architecture” if it has a single cyclic group of

components that is (1) large relative to the system as a whole; and (2) substantially larger than any other

cyclic group. We define a system as having a “multi-core architecture” if it has two or more similarly-sized

cyclic groups of components that are large relative to the system as a whole. We define a system as having

a “hierarchical architecture” if all cyclic groups are small relative to the system as a whole.

To operationalize these definitions, we specify three parameters. The first, a Size threshold,

discriminates between systems where the Core is large or small relative to the system as a whole. The

second, a Sensitivity threshold, allows us to categorize systems as “borderline” if the Core is within a

narrow range around the Size threshold. The third, a Dominance threshold, discriminates between systems

where the Core is much larger than the next-largest cyclic group versus systems where the two are of

similar size. In our work, we adopt a size threshold of 5% of the system to define a Core-Periphery

architecture; a sensitivity threshold of 1%, to identify borderline systems near this value; and a dominance

Hidden Structure: Using Network Methods to Map System Architecture

 15

threshold of 50% to discriminate between single and multi-core systems. These choices are motivated by

the chracteristics of our dataset. In other environments, different choices may be appropriate. (For a

discussion of core-periphery network characteristics in other fields of study, see Csermely et al, 2013.)

The resulting architectural classication scheme is summarized in Figure 6. The first test is: does

the Core contain 4% or more of the system’s elements? Systems that do not meet this test are “hierarchical”

systems. Next, within the set of systems that pass this threshold, we assess whether there is a single

dominant cyclic group (as in Figure 5) or several similarly-sized groups. Hence our second test is: does the

largest cyclic group contain at least 50% more components than the next largest cyclic group? Systems that

do not meet this test are “multi-core” systems. Finally, for systems that meet both the first and second tests,

we ask, does the largest cyclic group contain more than 6% of the system? Those that meet this test are

“core-periphery” systems; those that do not are “borderline core-periphery” systems.

Figure 6: Architectural Classification Scheme6

It is important to note that the size of the Core is a continuous variable, and an important

parameter in its own right. In general, using both categorical variables (e.g., the type of architecture) and

continuous variables (e.g., the size of the Core) will be valuable in any empirical analysis.

3.7 Classify Components into Types

The four-square pattern in Figure 5 suggests a way to classify components within a given system.

In particular, if the system has core-periphery (or borderline core-periphery) architecture, we can divide its

6 The more general classification scheme for defining core-periphery, hierarchical, and multi-core systems using
different threshold parameters for Size (x) Sensitivity (y) and Dominance (z) is presented as part of Appendix A.

Yes

Largest
cyclic group
> 4% of
system?

Largest
cyclic group
> 1.5x next
largest?

Yes

No

Yes

No

Core-periphery

Multi-core

Hierarchical

Largest
cyclic group
> 6% of
system?

Borderline
Core-periphery

No

Hidden Structure: Using Network Methods to Map System Architecture

 16

components into four basic groups, corresponding to the four quadrants of the scatter plot:

• Core components are members of the largest cyclic group. By Proposition 1, all Core components
have the same VFI and VFO, denoted VFIC and VFOC respectively.

• Shared components have VFI ≥ VFIC and VFO < VFOC.

• Peripheral components have VFI < VFIC and VFO < VFOC.

• Control components have VFI < VFIC and VFO ≥ VFOC.

In hierarchical or multi-core architectures, this partitioning can be problematic. First, components

may not naturally fall into four distinct categories (e.g., there may be no cyclic groups). Second, in multi-

core systems, the classification of components may not be stable over time: if one cyclic group grows

larger than another, the identity of the “Core” may change, even if the overall pattern of dependencies

changes little. Third, in hierarchical systems, this partitioning may result in unbalanced numbers of

components in each category, creating challenges for statistical analysis.

To address these issues, we define an alternative way to classify components, based on the median

values of VFI and VFO. When applied to hierarchical and/or multi-core systems, the median partition

yields groupings that are more equal in size and more stable over time (assuming dependency patterns do

not change significantly).7 In a partition based on medians, the high-VFI and high-VFO components will

not, in general, be members of the same cyclic group, hence we call these components “Central” (instead of

“Core”). Similarly, the remaining categories are identified as Shared-M, Control-M and Periphery-M.

3.8 Visualize the Architecture

The final step in our methodology allows us to reorder the components to construct a new DSM

that reveals the “hidden structure” of the system:

(1) Place components in the order Shared, Core (or Central), Periphery, Control down the main
diagonal of the DSM; and then

(2) Sort within each group by VFI descending, then VFO ascending.

This methodology results in a reordered DSM with the following properties:

• Cyclic groups are clustered around the main diagonal.

• There are no dependencies across groups above the main diagonal.

7 It may be necessary to exclude “singletons” (i.e., components with VFI = VFO = 1), to get balanced groups when
using the median partition. As noted above, these components are, strictly speaking, not part of the same network.

Hidden Structure: Using Network Methods to Map System Architecture

 17

• There are no dependencies between the Core (or Central) group and the Periphery above or below

the main diagonal.

• Except for cyclic groups, each block is lower diagonalized (i.e., has no dependencies above the
diagonal).

The first property is a consequence of Proposition 1. The other properties are proved in Appendix B.

If the largest cyclic group is the basis of the partition, we call this the “core-periphery view” of the

system. If medians are the basis of the partition, we call it the “median view.” Figure 7 shows both views

for Codebase B. In general, these different views are complementary ways of visualizing the flow of

dependencies in a large technical system. The core-periphery view is more informative as the largest cyclic

group increases in size relative to the system as whole and other cyclic groups. However, we have found

that, especially in borderline cases, both views generate helpful information for analysis.

Figure 7: Core-Periphery and Median Views of Codebase B (a Hierarchical System)

 Core-Periphery View Median View

 Figure 8 shows the core-periphery and median views for Codebase C, a multi-core system.

Codebase C is a version of Open Office, an open source suite of applications that includes a word processor,

a spreadsheet program, and a presentation manager. The multiple cores in this system correspond to the

different applications. As anticipated above, the core-periphery view results in unbalanced groupings: 82%

of the system including the second and third largest cyclic groups are placed in the periphery. The median

partition, by contrast, results in more balanced groupings and places all signficant cyclic groups in the

“Central” category. It also reveals interesting subsidiary structures: for example, the three largest cyclic

Shared-M

Central

Periphery-M

Control-M

!

Shared
Core

Periphery

Control

Hidden Structure: Using Network Methods to Map System Architecture

 18

groups appear to be independent (which can be easily verified from the reordered DSM).

Figure 8: Core-periphery and Median Views of Codebase C (a Multi-core System)

 Core-Periphery View Median View

4. Empirical Application

In this section, we describe the application of our methodology to a large sample of software

systems. Our objective was to demonstrate the power of this methodology to reveal “hidden structure,”

establish some stylized facts about real world software systems, and identify consistent patterns across the

sample. We did not seek to specify or formally test hypotheses. We were particularly interested in the

distribution of Core size across different systems and releases. We also sought to learn whether Core

components were typically clustered in a few subsystems or distributed across many. Finally, we

investigated changes in the size of the Core as systems grew over time, with an emphasis on discontinuous

changes. This work was viewed as a way to establish useful benchmarks that could inform future studies.

4.1 Data

Our dataset comprises 1286 different software releases from 17 different software applications for

which we could secure access to the source code. (See Appendix D for a list of applications, their function

and origin, the number of releases and the size of the system as of the last release). The systems are mostly

written in the programming language C and its derivatives, C++ and C#. Many of these systems are active

open source software projects. Some started as commercial products but later were released under an open

Hidden Structure: Using Network Methods to Map System Architecture

 19

source license (e.g., the Mozilla Application Suite). Finally, a small number of releases are proprietary

systems developed by commercial firms, whose names are disguised.

We focused on large software systems that at some point in their history had many users. Hence we do

not include in our sample open source projects from repositories such as SourceForge, which are typically

very small systems. Although some of our systems (e.g., Linux) start small, all had more than three

hundred source files as of the last release in our dataset. That said, our sample is not random nor

representative of the industry; hence we do not claim our results are general. As indicated above, this

exploratory research provides a starting point for subsequent empirical investigation and hypothesis testing.

We obtained the source code for each release in the sample and processed it to identify dependencies

between source files, specifically function calls, class method calls, class method definitions, and subclass

definitions.8 We used this data to calculate VFI and VFO for each file and the Propagation Cost for each

release. Applying our methodology, we identified the Core for each release, classified architectures as

core-periphery, borderline, hierarchical, or multi-core, and classified all components into groups.

Table 1 contains descriptive data for our sample. Our dataset includes a wide spectrum of system

sizes, from less than 50 components, to over 12,000. The size of the Core also varies considerably, from

under 10 to over 3,000 components. As a fraction of the system, Core size varies from 1% to 75% of all

components. The average release has 1,724 components, of which 201 (16%) are in the Core.

Table 1: Descriptive Data for the Sample

 MIN MAX MEAN MEDIAN
System Size (files) 45 12949 1724 781
Core Size (files) 6 3310 201 74
Core Size
 % of System

1% 75% 16% 9%

4.2 The Prevalence of Core-periphery Structures

Using the classification framework in Figure 5, we classified 867 of the 1286 releases (67%) as core-

periphery; 319 (25%) as borderline core-periphery; 6 (0.5%) as multi-core; and 94 (7%) as hierarchical.

(We should note that the multi-core releases in our sample all belong to one application – Open Office, a

“Suite” of productivity applications, which contains smaller core-periphery systems – Word and Calc.)

8 These are standard forms of dependency for code written in the C family of languages. We used a commercial

static code analyzer tool (called Understand, produced by SciTools, Inc.), to extract direct dependencies.

Hidden Structure: Using Network Methods to Map System Architecture

 20

We classified systems according to the architecture of the last release in our sample. The last release is

usually the largest and offers the highest degree of functionality. Results are shown in Table 2. Thirteen

systems had a core-periphery architecture, three were borderline, two hierarchical and one multi-core.

Table 2: Classification of Systems

 Core Size
System Name No. Files

(Last Release)
 No. Files

(Last Release)
% System

(Last Release)
Classification
(Last Release)

Mozilla 5899 157 2.7% Hierarchical
OpenAFS 1304 51 3.9% Hierarchical
GnuCash 543 23 4.2% Borderline
Abiword 1183 59 5.0% Borderline
Apache 481 25 5.2% Borderline
Chrome 4186 260 6.2% Core-periphery
Linux (kernel) 8414 621 7.4% Core-periphery
MySQL 1282 160 12.5% Core-periphery
Ghostscript 653 90 13.8% Core-periphery
Darwin 5685 939 16.5% Core-periphery
Open Solaris 12949 3310 25.6% Core-periphery
MyBooks 2434 675 27.7% Core-periphery
PostGres 703 282 40.1% Core-periphery
XNU 781 351 44.9% Core-periphery
GnuMeric 314 148 47.1% Core-periphery
Berkeley DB 299 146 48.8% Core-periphery

Open Office 7360 346 4.7% Multi-core
 Write (Open Office) 814 372 45.7% Core-periphery
 Calc (Open Office) 545 328 60.2% Core-periphery

This data helps us to understand the impact of varying the thresholds used to classify different

types of architecture, described earlier. For example, choosing a size threshold of 10% and a sensitivity

threshold of ±2% would change the classification of GnuCash, Abiword, and Apache to hierarchical, while

Chrome and Linux would become borderline core-periphery. The other systems would remain the same.

Conversely, we found that changing the dominance threshold, from 50% to 100%, did not change the

classification for any system. In general, the largest cyclic group was significantly larger than the second

largest cyclic group (except in the case of Open Office, the only multi-core system in the sample).

4.3 The Size of the Core across Different Systems

Hidden Structure: Using Network Methods to Map System Architecture

 21

We next explored whether there was a systematic relationship between the relative size of the

Core and the overall size of the system, providing data to inform our threshold for classification.

Accordingly, Figure 9 plots Core size (as a % of the system) against system size for all releases in our

dataset. The graph differentiates between systems that began as open source projects (denoted as light

circles), versus those that originated as commercial products developed by firms (denoted as dark triangles).

Figure 9: The Size of the Core (Largest Cyclic Group) versus Total System Size

For very small systems, the relative size of the Core varies substantially, from less than 5% to a maximum

of 75% of the system. For larger systems however, the Core declines as a percent of the system. Indeed

there appears to be a negative exponential relationship between Core size and system size. Intuitively, this

pattern makes sense. In small systems, a relatively large Core is still small in absolute terms, hence

architects and developers can still comprehend its internal structure easily. In larger systems however, even

a moderately sized Core creates cognitive and coordination challenges, given that architects must

understand and communicate with each other about many possible direct and indirect interdependencies.

Larger systems thus benefit by having relatively smaller Cores (as a % of the whole).

The graph reveals that, with the exception of Open Solaris, as system size increases, Core sizes

0.00%$

10.00%$

20.00%$

30.00%$

40.00%$

50.00%$

60.00%$

70.00%$

80.00%$

0$ 2000$ 4000$ 6000$ 8000$ 10000$ 12000$ 14000$

Si
ze
%o
f%L
ar
ge
ts
%C
yc
lic
%G
ro
up

%
%(%

%o
f%S

ys
te
m
%S
iz
e)
%

System%Size%(No.%Files)%

Open$Systems$ Closed$Systems$

Open$Solaris$

Core=Periphery$Threshold$(x"=$5%)$

Hidden Structure: Using Network Methods to Map System Architecture

 22

appear to cluster tightly in a band centered around 5%: for a system of 6000 files, this corresponds to a

cyclic group of 300 files, which is large in absolute terms. This data influenced the decision as to the

appropriate size threshold (5%) and sensitivity threshold (1%) for our architectural classification scheme.

In future empirical work, we expect these thresholds may be refined, updated for different contexts, and

potentially, new tests added that expand the scheme, to create new architectural categories.9

Next, we focused on analyzing the Core sizes for systems that perform similar functions. Figure

10 displays data from the three operating systems in our sample: Linux, Open Solaris, and Darwin, the

platform upon which Apple’s OS X software is based. The contrasts are striking. With Linux, relative Core

size declined and then flattened as the system grew. In contrast, Open Solaris has an extremely large Core

in both absolute and relative terms. Darwin falls between these two: as it grew from 3017 files (Darwin

1.3.1) to 5685 files (Darwin 8.9), its Core grew from 512 files to 939 files components, averaging 15% of

the system. Clearly there is wide variation in the size of Cores across systems of similar function.

Figure 10: The Size of the Core for Systems of Similar Function

We next sought to explore one possible driver of differences in Core size – the type of

organization that develops a system. Here we built on prior theoretical work which argues that product

designs tend to reflect the structure of the organizations in which they are conceived, an effect known as

Conway’s Law or the “mirroring hypothesis” (Conway, 1968; Henderson and Clark, 1992; Sosa et al,

9 Note that we experimented with various logical and nonlinear thresholds as a method for defining architectural

types, but found that these brought no additional insights while creating significant additional complexity.

0.00%$

5.00%$

10.00%$

15.00%$

20.00%$

25.00%$

30.00%$

0$ 2000$ 4000$ 6000$ 8000$ 10000$ 12000$ 14000$

Si
ze
%o
f%L
ar
ge
ts
%C
yc
lic
%G
ro
up

%
%(%

%o
f%S

ys
te
m
%S
iz
e)
%

System%Size%(No.%Files)%

Linux$ Open$Solaris$ Darwin$

Open$Solaris$

Core=Periphery$Threshold$(6%)$

Darwin$

Linux$

Borderline$Threshold$(4%)$

Hidden Structure: Using Network Methods to Map System Architecture

 23

2004; Colfer and Baldwin, 2010). This theory suggests that organizations with co-located developers in

close communication (as is typical within corporations) will produce relatively tightly coupled systems. In

contrast, organizations with geographically distributed developers not in close communication (as is typical

of open source projects) will produce relatively loosely coupled systems. A relatively large (or small) Core

is in turn evidence of tighter (or looser) coupling among the components in a system.

To conduct this analysis, we compared systems with similar functions that emerged from different

types of organizations, specifically, open source versus commercial firms. We used a matched-pair design,

comparing the size of the Core between systems of similar size and function. Our sample was based on a

prior study that explored differences in the propagation cost between open source and commercial systems

(See MacCormack et al, 2012 for details on how the matched pairs were selected.)

Table 3 shows the size of the Core (relative to system size) for our five matched pairs. In every

case, the systems that originated as open source projects have smaller Cores than systems that originated as

commercial products inside firms. In one case (financial management software), the open source system

has a hierarchical architecture, while the commercial system of comparable size has a Core that accounts

for 70% of the system. Although many other factors influence the design of system architectures, this

comparison, as well as the prior study, provides strong evidence that differences in architecture and

particularly in Core size are driven, in part, by differences in the developing organization.

Table 3: The Size of the Core for a Sample of Matched-Pair Products

Application Category Open Source Product Closed (Commercial)

Product

 System Size Core Size System Size Core Size

Financial Mgmt 466 3.4% 471 69.60%
Word Processor 841 6.10% 790 46.10%
Spreadsheet 450 25.80% 532 57.30%
Operating System 1032 6.30% 994 28.00%
Database 465 7.70% 344 48.80%

4.4 Detecting the Existence and Location of Core Components in a System

It is natural to ask whether the presence of a dominant cyclic group, (hence a core-periphery

architecture) can be detected from the summary statistics for a system (e.g., number of files, directories or

lines of code, average number of dependencies per file) or from inspection of the first-order matrix. To

Hidden Structure: Using Network Methods to Map System Architecture

 24

explore this question, we compared systems that possessed a core-periphery architecture with those that did

not, focusing on differences in both the quantitative data and the visual plots of DSMs using the architect’s

view (i.e. sorting files by directory as in Figure 1). We found no variable that could reliably predict

whether a system possessed a core-periphery structure, and no consistent pattern of direct dependencies in

the architectural view of a DSM that would signal the presence of dominant cyclic group. Thus detecting

the presence of a core-periphery architecture cannot be achieved solely by examining the direct

dependencies for a system. Rather, this analysis depends critically on an assessment of the indirect paths

by which dependencies propagate.

We next investigated whether Core components tend to be located in a few subsystems or distributed

throughout a system. In software, there is no theoretical reason that the Core components must be co-

located in a single directory or module: they can be distributed throughout a system and still function as

intended. However, from the perspective of the system architect (or system maintainer) there are cognitive

benefits to locating Core components in a small number of directories or modules.

Our analysis revealed, somewhat surprisingly, that Core components often were not located in a small

number of directories, but instead were distributed throughout different parts of the system. Table 4

provides an example, showing the distribution of Core files in the top-level directories of Linux version

2.3.39. This system possesses 118 Core components out of a total of 2419 (4.9%) (hence it is borderline in

our classification scheme). However, rather than Core components being concentrated in a few subsystems,

8 of the 10 top-level directories (modules) contain at least one Core component.

Table 4: Distribution of Core Files across Directories (Linux 2.3.39)

Directory Total Files in

the Directory
Core Files in
the Directory

Core Files as %
of the Directory

'~arch 689 53 8%
'~drivers 1051 18 2%
'~fs 334 20 6%
'~init 2 1 50%
'~ipc 4 2 50%
'~kernel 23 10 43%
'~lib 5 0 0%
'~mm 18 10 56%
'~net 279 4 1%
'~scripts 14 0 0%
Total 2419 118 4.9%

Hidden Structure: Using Network Methods to Map System Architecture

 25

These findings indicate that the main flow of dependencies (from Control to Core to Shared) may

not be immediately apparent from an inspection of the parts of a system that are most salient to the architect.

Simply reviewing the directory structure will generally not be sufficient to reveal where Core components

are located. As a consequence, changes to a Core component may propagate to other Core components in

seemingly remote parts of the system, making it difficult to predict performance. This issue is especially

pertinent when a legacy system must be maintained or adapted with limited documentation. Only through a

detailed analysis of chains of both direct and indirect dependencies can the “hidden structure” of the system

be made visible, affirming the value of our methodology.

4.5 The Evolution of System Structure

In the final application of our methodology, we analyzed how the Cores of various systems

evolved over time (i.e., across successive versions of each application). We found no simple or consistent

pattern to this evolution. In three of the applications, relative Core size declined consistently; in eight

applications, relative Core size remained flat; and for two applications it increased.10 The four remaining

systems however, (Apache, Gnucash, Linux and Mozilla) exhibited discontinuous breaks in Core size as

shown in Figure 11. Hence we further investigated these systems to understand their dynamics.

Figure 11: Systems Exhibiting Discontinuous Breaks in Core Size

A. Apache (released versions only) B. Gnucash

10 In one case (Chrome), we had only one release, hence insufficient data for this analysis.

0%#

2%#

4%#

6%#

8%#

10%#

12%#

14%#

16%#

1# 11# 21# 31# 41#

La
rg
es
t(C

yc
lic
(G
ro
up

((
as
(%
(o
f(S

ys
te
m
(S
iz
e(

Release(Sequence((

Apache#2.0.28#–#2.0.52##

Apache#1.3.0#3#2.0a9#

0%#

5%#

10%#

15%#

20%#

25%#

30%#

35%#

40%#

1# 11# 21# 31# 41# 51# 61# 71# 81# 91# 101# 111#

La
rg
es
t(C

yc
lic
(G
ro
up

(
as
(a
(%
(o
f(S

ys
te
m
(S
Iz
e(

Release(Sequence(

gnucash#1.7.1##5#2.2.8#

gnucash#1.1.11#–#1.6.8#

Hidden Structure: Using Network Methods to Map System Architecture

 26

C. Linux (stable releases only) D. Mozilla

The cases of Apache and Gnucash are straightforward. Apache began with a core-periphery

architecture, with a Core in the range of 12% to 14% of system size. A significant redesign of the system

took place between version 2.0.a9 and 2.0.28. In version 2.0.28, the Core dropped to 4% of the system, and

then rose to around 5%. (A borderline system in our classification scheme.) The case of Gnucash is even

more dramatic. Early on, the Core grew significantly from 13 to 70 files or approximately 30% of the

system. With release 1.7.1, however, system size almost doubled (232 to 449 files), but the Core dropped

from 70 to 16 files (3.6% of the system). In later releases, the Core has consistently accounted for 4-5% of

the system, making this system borderline under our classification scheme. Note that both Apache and

Gnucash are relatively small systems in this sample.11 In their size range (below 500 files), Core size

relative to system size varies considerably (see Figure 9). In such systems, Core interdependencies can be

directly inspected and understood by developers, thus architectural changes aimed at reducing the Core

may have low priority.

In contrast, Linux and Mozilla are large systems, which have grown significantly over time. In the

case of Linux, discontinuous changes in the size of the Core have coincided with major releases. 12 Figure

11 C shows that Linux started out as a core-periphery system with the Core initially accounting for just

over 10% of the system. This figure dropped to around 8% for Linux 2.0 and to just over 4% with Linux

11 The last releases in our dataset contained 481 files and 543 files respectively.
12 During the period of our sample, the Linux kernel used an “even-odd” version numbering scheme. Even numbers

in the second place of the release number (e.g., 2.4.19) denoted “stable” releases that were appropriate for wide
deployment; odd numbers (e.g., 2.5.19) denoted “development” releases that were the focus of ongoing
experimentation. Work on the even and odd numbered releases would go on simultaneously, hence release numbers are
in temporal sequence only within two sets. http://www.linfo.org/kernel_version_numbering.html. The even-odd
numbering practice was discontinued with the release of version 2.6.0.

0.00%$

2.00%$

4.00%$

6.00%$

8.00%$

10.00%$

12.00%$

1$ 11$ 21$ 31$ 41$ 51$ 61$ 71$ 81$ 91$ 101$ 111$ 121$ 131$

La
rg
es
t(C

yc
lic
(G
ro
up

(
(a
s(a

(%
(o
f(S

ys
te
m
(S
iz
e(

Release(Sequence(

Linux1.2

Linux2.0

Linux2.2

Linux2.4

Linux2.6

0.00%$

5.00%$

10.00%$

15.00%$

20.00%$

25.00%$

30.00%$

35.00%$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$ 11$ 12$ 13$ 14$ 15$ 16$ 17$ 18$ 19$ 20$ 21$ 22$ 23$ 24$ 25$ 26$ 27$ 28$ 29$ 30$ 31$ 32$ 33$ 34$ 35$

La
rg
es
t(C

yc
lic
(G
ro
up

((
as
(a
(%
(o
f(S

ys
te
m
(S
iz
e(

Release(Sequence(

M$00$3/31/98$–$$
M$00$10/8/98$

M$00$12/11/98$–$
M12$

M13–MMX1.5$

Hidden Structure: Using Network Methods to Map System Architecture

 27

2.2. However, there were small discontinuous jumps in Core size associated with the release of Linux 2.4

and 2.6. Most releases of Linux 2.4 were borderline, while Linux 2.6 wavered around the 6% threshold.

The Mozilla Application Suite exhibited two discontinuous changes in Core size, although the trend is

consistently downward. (See Figure 11 D.) The first discontinuity occurred in December 1998: the Core

dropped from 680 files (29% of the system) to 223 files (15%). (System size also dropped but not as much.)

Subsequently, the system grew significantly (from 1508 to 3405 files) while the Core grew only slightly

(from 223 to 269 files or 7.9% of the system). We know from prior work that the change in Mozilla’s

design in December 1998 was the result of a purposeful redesign effort, which had the explicit objective of

making the codebase more modular, hence easier for contributors to work within (MacCormack et al, 2006).

As Table 5 shows, achieving this goal led to substantially smaller Core and Shared groups and larger

Periphery and Control groups. (Note that we do not know the reason behind the second discontinuous

change in the architecture of this codebase.)

Table 5: Percent of Components in Each Category before and after the 1998 Mozilla Redesign

Type of
Component

% before
Redesign
(4/8/98
Release)

% after
Redesign
(12/11/98
Release)

Shared 13% 3%
Core 33% 15%
Periphery 27% 36%
Control 27% 46%
Total 100% 100%

To conclude, we found no single pattern to characterize the way the Core of a system evolves over

time. Changes in relative Core size are often continuous (i.e. display no sharp discontinuities), but the Core

may increase, stay the same or decrease in relation to the system as a whole. Thus, for the majority of

applications in our sample, the Core did not seem to be a focus of major redesign efforts. In a few cases,

however, we observe discontinuous changes that seem to be the result of purposeful intervention. The most

dramatic of these resulted in large reductions in the relative size of the Core. Furthermore, in one case

(Mozilla, December 1998), we know from interviews with the architects involved that the purpose of the

redesign was to reduce system complexity. These findings are consistent with the conjecture (from design

Hidden Structure: Using Network Methods to Map System Architecture

 28

theory) that cyclical dependencies are problematic because they increase cognitive complexity and the

number of iterations needed to arrive at an acceptable design. However, our parallel observation, that Core

files are dispersed throughout a system’s modules, means that it may be hard to identify the components in

the system that give rise to these problematic cyclical dependencies. A valuable contribution of our

methodology is that it identifies the Core and its members, making this hidden structure more visible.

5. Discussion

In this paper, we describe a robust and reliable methodology to detect the core components in a

complex system, to establish whether these systems possess a core-periphery structure, and to measure

important elements of these structures. Our methodology, which is based upon network graphs, addresses

important limitations of prior analysis methods. In particular, it focuses on directed graphs, disentangling

differences in structure that stem from dependencies that flow in different directions; it captures all of the

direct and indirect dependencies among the components in a system, rather than capturing purely the direct

connections; and it provides a heuristic for rearranging the elements in a system, in a way that helps to

visualize the system architecture and reveals its “hidden structure” (in contrast to other network methods,

which tend to yield visual representations that are hard to comprehend). We apply this methodology to a

large sample of software applications. As a result, we establish some stylized facts about the structure of

real-world systems, to serve as a point of departure for future empirical investigations.

We show that the majority of systems in our sample contain a single cyclic group (the Core) that is

large relative to the system as a whole, and in comparison to the second-largest cyclic group. Other systems

have only a few, small cyclic groups, or (in one case) several cyclic groups of comparable size. The large

variations we observe with respect to the detailed characteristics of these systems however, implies that a

considerable amount of managerial discretion exists when choosing the “best” architecture for a system. .

In particular, there are major differences in the number of Core components across a range of systems of

similar size and function, indicating that the differences in design are not driven solely by system

requirements. Specifically, we find evidence that variations in system structure can be explained, in part, by

the different models of development used to build systems. That is, product structures “mirror” the

structure of their parent organizations (Henderson and Clark, 1990, Sosa et al, 2004; Colfer and Baldwin,

Hidden Structure: Using Network Methods to Map System Architecture

 29

2010). This result is consistent with work that argues designs (including dominant designs) are not

necessarily optimal technical solutions to customer requirements, but rather are driven more by social and

political processes operating within firms and industries (Noble, 1984; David, 1985; Tushman and

Rosenkopf, 1992; Tushman and Murmann, 1998; Garud, Jain and Kumaraswamy, 2002).

Our findings highlight in particular, the difficulties facing a system architect. In particular, we find no

discernible pattern of direct dependencies that reliably predicts whether a system has a single, dominant

Core, or if it does, how large it is. This problem is compounded by the fact that in many systems, the Core

components are not located in a small number of subsystems but are distributed throughout the system. The

system architect therefore has to identify where to focus attention; it is not simply a matter of concentrating

on subsystems that appear to contain most of the Core components. Important relationships may exist

between these components and others within subsystems that, on the surface, appear relatively insignificant.

This highlights the need to understand patterns of coupling at the component level, and not to assume that

all of the key relationships in a complex system are located in a few key subsystems or modules.

These issues are especially pertinent in software, given that legacy code is rarely re-written, but instead

forms a platform upon which new versions are built. With such an approach, today’s developers bear the

consequences of design decisions made long ago – obligations increasingly referred to as a system’s

“technical debt.” Unfortunately, the first designers of a system often have different objectives from those

that follow, especially if the system is successful and therefore long lasting. While early designers may

place a premium on speed and performance, later designers may value reliability and maintainability.

Rarely can all these objectives be met by the same design. A different problem stems from the fact that the

early designers of a system may no longer be available when important design choices need revisiting. This

difficulty is compounded by the fact that software designers rarely document their design choices well,

often requiring the structure to be recovered by inspection of the source code (as we do here).

Several limitations of our study must be considered in assessing its generalizability. First, our

empirical work was conducted in the software industry on codebases written for the most part in C and

related languages. Software presents a unique context given that software systems exist purely as

information, and thus are subject to different limitations than physical artifacts. Whether similar results are

found in other settings is an important empirical question (Csermely et al, 2013). However, Luo et al

Hidden Structure: Using Network Methods to Map System Architecture

 30

(2012) demonstrate that a core-periphery structure existed in the supply chain network of the Japanese

electronics industry in the mid-1990s. And a recent study by Lagerstrom et al (2014) finds a core-periphery

structure in the enterprise architecture of a large financial services organization. Thus, the evidence is

accumulating that this type of structure is pervasive across different domains, industries and technologies.

Second, we analyzed a non-random sample of systems for which we had access to the source code.

Although we limited our enquiry to successful systems with thousands of user deployments, we cannot be

sure that the results are representative of the industry as a whole. Also, our categorical results are sensitive

to the thresholds selected as breakpoints in our classification scheme. As noted, these thresholds are

necessarily somewhat subjective and may vary by context. Hence the classification of architectures

remains an open avenue for future empirical work, which we expect will prove fuitful.

Our work opens up a number of other avenues for future study. Specifically, prior work suggests that

exogenous technological “shocks” in an industry can cause major dislocations in the design of systems and

change the competitive dynamics. This assertion could be tested by examining the impact of major

technological transitions on designs and on the survival of both products and the firms that make them (e.g.,

see MacCormack and Iansiti, 2009). One such transition might be the rise of object-oriented programming

languages. Recent work by Cai et al (2013) and Xiao et al (2014) suggests that code written in an object-

oriented language like Java may have a more hierarchical structure (fewer and smaller cyclic groups) than

code written in an older, procedural programming language like C. Given appropriately designed samples,

our methods of architectural analysis could be used to test such a hypothesis.

Other work might explore, in greater detail, the association we find between product and

organizational designs. Such work is facilitated by the fact that software development tools typically assign

an author to each component of the system. As a consequence, it is possible to understand who is

developing the Core components, to analyze their social networks, and to identify whether the

organizational network as a whole predicts future product structure (or vice versa).

Another interesting avenue of research is to predict the location of product defects, developer

productivity, and even developer turnover. In separate case studies, Akaikine (2009) and Sturtevant (2013)

have applied this methodology to two large commercial codebases in different firms. Both studies find

significant differences in performance measures, including defect density, defect resolution times and

Hidden Structure: Using Network Methods to Map System Architecture

 31

developer productivity, across the four different categories of components (Core, Shared, Peripheral,

Control). However further work is needed to generalize these observationsto a larger sample of firms.

As a general rule, our methodology can be applied to any technical system whose architecture can be

represented as a network graph with directed links. In practice, however, its application may be limited by

the need to determine the dependencies between system components in an efficient way. Software is a

natural target of opportunity because reliable and efficient automatic extraction tools are commercially

available. Corporate IT systems and enterprise architectures can also be represented as directed network

graphs, and reliable automated tools to extract the dependencies between them (for example, between

applications and tasks) are currently being developed. Thus the extension of our methods to IT systems and

enterprise architectures is likely to be a promising avenue for future research.

Lastly, we believe our methods will be helpful in locating and measuring technical debt, a term

increasingly used by practitioners to describe the costs of making and verifying changes to a complex

technical system. Ultimately, this agenda promises to deepen our knowledge of the structures underlying

the design of complex technological systems. It will also improve our ability to understand the ways in

which a manager can shape and influence the evolution of these systems.

Acknowledgements

Many people contributed to making this paper better. The authors thank Andrei Akaikine, Ali al-
Mossawi, Tyson Browning, Yuanfang Cai, Arnaldo Camuffo, Marcelo Cataldo, Steven Eppinger, Michael
Golm, James Herbsleb, Robert Lagerstrom, Jianxi Luo, Jurgen Mihm, Robert Schwanke, Manuel Sosa,
Kevin Sullivan, Peri Tarr, Clay Williams, Sunny Wong, and Jason Woodard as well as two anonymous
reviewers for their comments and suggestions. Especial thanks go to Dan Sturtevant, who provided an
independent check on our data and our methodology. We also thank participants at seminars and
conferences at Carnegie Mellon University, the University of Pittsburgh, Luigi Bocconi University, the
Academy of Management Annual Meeting 2010, the Thomas Watson Research Center, and the Mathworks.
The financial support of the Harvard Business School Division of Research as well as Siemens Inc.,
through the MIT Energy Initiative (MITEI) is gratefully acknowledged. The authors alone are responsible
for any errors or omissions.

Hidden Structure: Using Network Methods to Map System Architecture

 32

Appendix A: A Methodology for Analyzing, Classifying and Viewing the
Architecture of a Complex System

1) Represent the system in terms of a Design Structure Matrix (DSM). If element j depends on
element i, place a “1” in the column of i and the row of j. Call this matrix A (the first-order matrix).

2) Compute the visibility matrix for A using matrix multiplication or an algorithm (such as
Warshall’s) for computing transitive closure. Call this matrix V.

3) For each element i, compute VFIi as the column sum of V for that element and VFOi as the row
sum of V for that element. If the VFI and VFO for two successive components are the same, then
by Proposition 1, they might be members of the same cyclic group.

4) For a group of components with the same VFI and VFO inspect the subset of the visibility matrix
that includes the rows and columns of the group in question and no others. If there are no zeros in
the submatrix, then all components are members of the same cyclic group. If there are zeros in
this submatrix, then the group contains two or more separate cyclic groups.

5) If they exist, identify the subsidiary groups by (a) selecting any component, i, in the submatrix; (b)

identifying all other components in the submatrix such that <vij> = 1 (equivalently <vji> = 1).
These components will be in the same cyclic group as i.

6) Repeat until all components in the submatrix are accounted for. Count the cyclic groups in the

system and the number of components in each. The largest cyclic group is labeled the “Core”
(with capitalization).

7) Define three threshold parameters x, y, and z in percentage terms. These can be domain- or

sample-specific. Classify the architecture using the following tests:

a. Is nC ≥ (x–y) *N? (Largest cyclic group accounts for at least (x–y) percent of the
system.)

b. Is nC ≥ (1+z) * max n~C? (Largest cyclic group is at least z percent larger than next
largest.)

c. Is nC ≥ (x+y) * N? (Largest cyclic group accounts for at least (x+y) percent of the
system.)

8) If answer to all three questions is “yes”, classify the system as having a core-periphery architecture.

If the answer to (a) and (b) is “yes”, and (c) is “no”, classify the system as borderline core-
periphery. If the answer to (a) is “yes” and (b) is “no”, classify the system as multi-core. Finally, if
the answer to (a) is “no”, classify the system as having a hierarchical architecture.

Classification of Architectures:

Yes

Largest
cyclic group
> (x-y)% of
system?

Largest
cyclic group
> (1+z)% of
next largest?

Yes

No

Yes

No

Core-periphery

Multi-core

Hierarchical

Largest
cyclic group
> (x+y)% of
system?

Borderline
Core-periphery

No

Hidden Structure: Using Network Methods to Map System Architecture

 33

9) Classify the elements of the system into four groups according to the core-periphery partition or

the median partition:

10) Core-periphery Partition. Define the largest cyclic group as the “Core” of the system. Let VFIC
and VFOC. respectively denote the VFI and VFO of elements in the Core. Allocate the non-Core
elements to three groups as follows:

a) “Shared” elements have VFI ≥ VFIC and VFO < VFOC.
b) “Peripheral “elements have VFI < VFIC and VFO < VFOC.
c) “Control” elements have VFI < VFIC and VFO ≥ VFOC.

11) Median Partition. Compute the medians, VFIM and VFOM. Allocate elements to four groups as

follows:

a) “Shared” elements have VFI ≥ VFIM and VFO < VFOM.
b) “Central” elements have VFI ≥ VFIM and VFO ≥ VFOM.
c) “Peripheral “elements have VFI < VFIM and VFO < VFOM.
d) “Control” elements have VFI < VFIM and VFO ≥ VFOM.

12) Create a reordered DSM to visualize the system based on the core-periphery or median partitions:

a) Order the elements by group as follows: Shared, Core (or Central), Peripheral, Control.
b) Within each group, sort the elements by VFI descending, VFO ascending.

Hidden Structure: Using Network Methods to Map System Architecture

 34

Appendix B: Propositions

Proposition 1. Every member of a cyclic group has the same VFI and VFO as every other member.

Proof. Members of a cyclic group all directly or indirectly depend on one another. This means that if

element x outside the group depends on a in the group, then x will indirectly depend on all other members

of the group. As this applies to any x and any a, the VFI of all members of the group will be the same.

Conversely if a in the group depends on y out of the group, then all members of the group will indirectly

depend on y. This applies to any y and a, thus the VFO of all members of the group will be the same. QED

Proposition 2. Sorting members of a sequence (with no embedded cycles) by VFI descending causes all
dependencies to fall below the main diagonal of the DSM.

Proof. Let the sort result in a particular ordering of elements: 1, 2, ..., i, j, ... N, where j is below i. Now

suppose a dependency from element i to j appears in the row of i and the column of j, which, by definition,

lies to the right of the main diagonal. The presence of a link from i to j implies that i must depend on all

elements that j depends on. If i already depends on j then i and j are part of cycle which contradicts the

premise of no embedded cycles. If i and j are not part of a cycle, then all the elements that depend on i must

depend on j. Also i itself must depend on j. Therefore:

VFI j = VFIi +1 .

But this contradicts the sorting algorithm, which stipulates that:

VFIi ≥ VFI j .

QED

Proposition 3. In a “core-periphery” or “median” DSM, there are no dependencies between groups above
the main diagonal.

Proof. Consider the core-periphery view first. The proof follows the same logic as Proposition 2. First

suppose a dependency exists from a Shared element i to a Core element j. (By definition, j lies below i in

the DSM.) Then either element i is part of the Core cyclic group or the Core has VFIC = VFIi+1 by

transitive dependency. But, according to the definition of Shared elements, VFIC ≤ VFIi < VFIi+1. Thus a

dependency from a Shared element to a Core element leads to a contradiction. Similar reasoning applies to

dependencies from Shared to Periphery and Control elements, from the Core to Periphery and Control

elements, and from the Periphery to Control elements. The proof is identical for the median view. QED

Hidden Structure: Using Network Methods to Map System Architecture

 35

Proposition 4. In a “core-periphery” or “median” DSM, there are no dependencies between the Core or
Cental group and the Periphery above or below the main diagonal.

Proof. Proposition 3 says there are no dependencies from the Core or Central group to the Periphery. But

suppose there is a dependency from element j in the Periphery to element i in the Core or Central group.

By definition, i lies above j in the DSM, thus the dependency would appear below the main diagonal. By

transitive dependency, VFOj ≥ VFOC + 1. But by definition, VFOj < VFOC, hence we have a contradiction.

QED

Appendix C: Different Sort Orders

The sort order VFI descending, VFO ascending is not unique in its ability to lower diagonalize and

identify cyclic groups. Table C-1 shows which sorting combinations achieve both goals.

Table C-1
Properties of Different Sort Orders

Of the four sort orders that work, we prefer VFI descending, VFO ascending for the following

reasons. A first sort by VFI descending places elements with many incoming dependencies at the top of the

matrix. In contrast, a first sort by VFO ascending places elements with very few dependencies, e.g., VFI =

VFO = 1 near the top.13 Given a first sort by VFI descending, a second sort by VFO ascending places

elements with many outgoing dependencies near or at the bottom of each VFI layer. 14 This reinforces the

concept of dependencies flowing from lower parts to upper parts of the matrix.

13 With a VFI descending first sort, such elements appear near the bottom.
14 Note: A “layer” is a group of elements with the same VFI, but possibly different VFOs. By Proposition 3,

elements within a layer cannot depend on each other unless they are part of a cycle. See Wong (2010) for another
method of computing layers.

First Sort Second Sort
Finds
Cycles

Lower-
Diagonalizes

VFI descending VFO ascending √ √
 descending √ √

VFI ascending VFO ascending √ no
 descending √ no

VFO descending VFI descending √ no
 ascending √ no

VFO ascending VFI descending √ √
 ascending √ √

Hidden Structure: Using Network Methods to Map System Architecture

 36

Appendix D: List of Systems Analyzed

System Name Function Number of Releases Origin

No. Files
(Last Release)

1 Mozilla Application Suite Web Browser 35 Commercial 5899
2 OpenAFS File Sharing 106 Open source 1304
3 GnuCash Financial Management 116 Open source 543
4 Abiword Word Processor 29 Open source 1183
5 Apache Web Server 52 Open source 481
6 Chrome Web Browser 1 Open source 4186
7 Linux (kernel) Operating System 544 Open source 8414
8 MySQL Database 18 Open source 1282
9 Ghostscript Image Display and Conversion 35 Open source 653

10 Darwin Operating System 36 Commercial 5685
11 Open Solaris Operating System 28 Commercial 12949
12 MyBooks Financial Management 5 Commercial 2434
13 PostGres Database 46 Open source 703
14 XNU Operating System 43 Open source 781
15 GnuMeric Spreadsheet 162 Open source 314
16 Berkeley DB Database 12 Commercial 299

17 Open Office Productivity Suite 6 Commercial 7360
18 Write (Open Office) Word Processor 6 Commercial 814
19 Calc (Open Office) Spreadsheet 6 Commercial 545

 1286

Hidden Structure: Using Network Methods to Map System Architecture

 37

References
Akaikine, Andrei (2010) "The Impact of Software Design Structure on Product Maintenance Costs and

Measurement of Economic Benefits of Product Redesign," S.M. thesis, System Design and
Management Program, Massachusetts Institute of Technology.

Alexander, Christopher (1964) Notes on the Synthesis of Form, Cambridge, MA: Harvard University Press.

Baldwin, Carliss Y. and Kim B. Clark (2000). Design Rules, Volume 1, The Power of Modularity,
Cambridge MA: MIT Press.

Barabasi, A. Scale-Free Networks: A Decade and Beyond, Science, Vol 325: 412-413

Braha, Dan., A.A. Minai and Y. Bar-Yam (2006) "Complex Engineered Systems: Science meets
technology," Springer: New England Complex Systems Institute, Cambridge, MA.

Braha, Dan., and Y. Bar-Yam (2007) “The Statistical Mechanics of Complex Product Development:
Empirical and Analytical Results,” Management Science, 53(7): 1127-1145.

Cai, Y., Wang, H., Wong, S., & Wang, L. (2013, June). Leveraging design rules to improve software
architecture recovery. In Proceedings of the 9th international ACM Sigsoft conference on Quality of
software architectures (pp. 133-142). ACM.

Chidamber, S.R. and C.F. Kemerer (1994) "A metrics suite for object oriented design," IEEE Transaction
on Software Engineering, 20(6): 476-493.

Cataldo, Marcelo, Patrick A. Wagstrom, James D. Herbsleb and Kathleen M. Carley (2006) "Identification
of Coordination Requirements: Implications for the design of Collaboration and Awareness Tools,"
Proc. ACM Conf. on Computer-Supported Work, Banff Canada, pp. 353-362

Cataldo, M., A. Mockus, J.A. Roberts and J.D. Herbsleb (2009) "Software Dependencies, Work
Dependencies, and Their Impact on Failures," IEEE Transactions on Software Engineering, 35(6): 864-
878.

Christensen, Clayton M. (1997) The Innovator's Dilemma: When New Technologies Cause Great Firms to
Fail, Boston MA: Harvard Business School Press.

Clark, Kim B. (1985) "The Interaction of Design Hierarchies and Market Concepts in Technological
Evolution," Research Policy 14 (5): 235-51.

Colfer, Lyra J. and Carliss Y. Baldwin (2010) "The Mirroring Hypothesis: Theory, Evidence and
Exceptions," Harvard Business School Working Paper No. 10-058, January 2010 (revised, June 2010),
available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1539592 .

Conway, M.E. (1968) "How do Committee's Invent," Datamation, 14 (5): 28-31.

Csermely, Peter., Adras London, Ling-Yun Wu and Brian Uzzi (2013) “Structure and Dynamics of
Core/Periphery Networks,” Journal of Complex Networks 1, 93-123.

David, Paul A. (1985) "Clio and the Economics of QWERTY," American Economic Review 75(2):332-337.

Dosi, Giovanni (1982) "Technological paradigms and technological trajectories," Research Policy, 11: 147-
162

Eppinger, S. D., D.E. Whitney, R.P. Smith, and D.A. Gebala, (1994). "A Model-Based Method for
Organizing Tasks in Product Development," Research in Engineering Design 6(1):1-13

Fixson, Sebastian K. and Jin-Kyu Park (2008). “The Power of Integrality: Linkages between Product
Architecture, Innovation and Industry Structure,” Research Policy 37(8):1296-1316.

Garud, Raghu, Sanjay Jain and Arun Kumaraswamy (2002) "Institutional Entrepreneurship in the
Sponsorship of Technological Standards: The Case of Sun Microsystems and Java," Academy of
Management Journal, 45(1):196-214.

Gokpinar, B., W. Hopp and S.M.R. Iravani (2007) "The Impact of Product Architecture and Organization
Structure on Efficiency and Quality of Complex Product Development," Northwestern University

Hidden Structure: Using Network Methods to Map System Architecture

 38

Working Paper.

Henderson, R., and K.B. Clark (1990) "Architectural Innovation: The Reconfiguration of Existing Product
Technologies and the Failure of Established Firms," Administrative Sciences Quarterly, 35(1): 9-30.

Holland, John H. (1992) Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence, 2nd Ed. Cambridge, MA: MIT Press.

Kauffman, Stuart A. (1993) The Origins of Order, New York: Oxford University Press

Klepper, Steven (1996) “Entry, Exit, Growth and Innovation over the Product Life Cycle, American
Economic Review, 86(30):562-583.

Lagerstrom, Robert, Carliss Y. Baldwin, Alan MacCormack, and David Dreyfus. "Visualizing and
Measuring Software Portfolio Architectures: A Flexibility Analysis." Harvard Business School
Working Paper, No. 14-083, March 2014.

LaMantia, Matthew J., Yuanfang Cai, Alan D. MacCormack and John Rusnak (2008) "Analyzing the
Evolution of Large-Scale Software Systems using Design Structure Matrices and Design Rule Theory:
Two Exploratory Cases," Proceedings of the 7th Working IEEE/IFIP Conference on Software
Architectures (WICSA7), Vancouver, BC, Canada, February 18-22.

Langlois, Richard N. and Paul L. Robertson (1992). “Networks and Innovation in a Modular System:
Lessons from the Microcomputer and Stereo Component Industries,” Research Policy, 21: 297-313,
reprinted in Managing in the Modular Age: Architectures, Networks, and Organizations, (G. Raghu, A.
Kumaraswamy, and R.N. Langlois, eds.) Blackwell, Oxford/Malden, MA.

Luo, J., Baldwin, C. Y., Whitney, D. E., & Magee, C. L. (2012). The architecture of transaction networks: a
comparative analysis of hierarchy in two sectors. Industrial and Corporate Change, 21(6), 1307-1335.

MacCormack, Alan and M. Iansiti, (2009) "Intellectual Property, Architecture and the Management of
Technological Transitions: Evidence from Microsoft Corporation," Journal of Product Innovation
Management, 26: 248-263

MacCormack, Alan D. (2001). “Product-Development Practices That Work: How Internet Companies
Build Software,” Sloan Management Review 42(2): 75-84.

MacCormack, Alan, Carliss Baldwin and John Rusnak (2012) "Exploring the Duality Between Product and
Organizational Architectures: A Test of the "Mirroring" Hypothesis," Research Policy, 41(8): 1309-
1324.

MacCormack, Alan, John Rusnak and Carliss Baldwin (2006) “Exploring the Structure of Complex
Software Designs: An Empirical Study of Open Source and Proprietary Code,” Management Science,
52(7): 1015-1030.

Marple, D. (1961), “The decisions of engineering design,” IEEE Transactions of Engineering Management,
2: 55-71.

Mead, Carver and Lynn Conway (1980) Introduction to VLSI Systems, Addison-Wesley, Reading, MA.

Murmann, Johann Peter and Koen Frenken (2006) "Toward a Systematic Framework for Research on
Dominant Designs, Technological Innovations, and Industrial Change," Research Policy 35:925-952.

Noble, David F. (1984) Forces of Production: A Social History of Industrial Automation, Oxford: Oxford
University Press.

Rivkin, Jan W. (2000) “Imitation of Complex Strategies” Management Science 46:824-844.

Rivkin, Jan W. and Nicolaj Siggelkow (2007) "Patterned Interactions in Complex Systems: Implications
for Exploration," Management Science, 53(7):1068-1085.

Sanderson, S. and M. Uzumeri (1995) "Managing Product Families: The Case of the Sony Walkman,"
Research Policy, 24(5):761-782.

Schilling, Melissa A. (2000). “Toward a General Systems Theory and its Application to Interfirm Product

Hidden Structure: Using Network Methods to Map System Architecture

 39

Modularity,” Academy of Management Review 25(2):312-334, reprinted in Managing in the Modular
Age: Architectures, Networks, and Organizations (G. Raghu, A. Kumaraswamy, and R.N. Langlois,
eds.), Blackwell, Oxford/Malden, MA.

Sharman, D. and A. Yassine (2004) "Characterizing Complex Product Architectures," Systems Engineering
Journal, 7(1).

Sharman, David, Ali Yassine and Paul Carlile (2002). “Characterizing Modular Architectures,”
Proceedings of the ASME 14th International Conference on Design Theory & Methodology, DTM-
34024, Montreal, Canada (September).

Simon, Herbert A. (1962) “The Architecture of Complexity,” Proceedings of the American Philosophical
Society 106: 467-482, repinted in idem. (1981) The Sciences of the Artificial, 2nd ed. MIT Press,
Cambridge, MA, 193-229.

Sosa, M. E., Mihm, J., & Browning, T. R. (2013). Linking Cyclicality and Product Quality. Manufacturing
& Service Operations Management, 15(3), 473-491.

Sosa, Manuel, Steven Eppinger and Craig Rowles (2004) "The Misalignment of Product Architecture and
Organizational Structure in Complex Product Development," Management Science, 50(12):1674-1689

Sosa, Manuel, Steven Eppinger and Craig Rowles (2007) "A Network Approach to Define Modularity of
Components in Complex Products," Transactions of the ASME Vol 129: 1118-1129

Stein, Clifford, Robert L. Drysdale and Kenneth Bogart (2011) Discrete Mathematics for Computer
Scientists, Boston, MA: Addison-Wesley.

Steward, Donald V. (1981) “The Design Structure System: A Method for Managing the Design of Complex
Systems,” IEEE Transactions on Engineering Management EM-28(3): 71-74 (August).

Sturtevant, Daniel J. (2013) "System Design and the Cost of Architectural Complexity," Ph.D thesis,
Engineering Systems Division, Massachusetts Institute of Technology.

Suarez, F and J.M. Utterback, (1995) Dominant Designs and the Survival of Firms, Strategic Management
Journal, Vol. 16: 415-430

Thompson, James D. (1967) Organizations in Action: Social Science Bases of Administrative Theory, New
York, NY: McGraw-Hill.

Tushman, Michael L. and Lori Rosenkopf (1992) "Organizational Determinants of Technological Change:
Toward a Sociology of Technological Evolution," Research in Oragnizational Behavior Vol 14: 311-
347

Tushman, Michael L. and Murmann, J. Peter (1998) "Dominant designs, technological cycles and
organizational outcomes" in Staw, B. and Cummings, L.L. (eds.) Research in Organizational Behavior,
JAI Press, Vol. 20.

Ulrich, Karl (1995) “The Role of Product Architecture in the Manufacturing Firm,” Research Policy,
24:419-440, reprinted in Managing in the Modular Age: Architectures, Networks, and Organizations,
(G. Raghu, A. Kumaraswamy, and R.N. Langlois, eds.) Blackwell, Oxford/Malden, MA.

Utterback, James M. (1996) Mastering the Dynamics of Innovation, Harvard Business School Press,
Boston, MA.

Utterback, James M. and F. Suarez (1991) Innovation, Competition and Industry Structure, Research
Policy, 22: 1-21

Wasserman, S. (1994). Social network analysis: Methods and applications (Vol. 8). Cambridge university
press.

Wilkie, F. G. and B. A. Kitchanham (1999) "Coupling Measures and Change Ripples in C++ Application
Software," The Journal of Systems and Software, 52(2000): 157-164.

Xiao, L., Cai, Y. and Kazman, R. (2014) "Design Rule Spaces: A New Form of Architecture Insight,"
Manuscript.

