Polycomb-independent activity of EZH2 in castration resistant prostate cancer

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1186/1756-8935-6-S1-014</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:10646778</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Polycomb-independent activity of EZH2 in castration resistant prostate cancer

Kexin Xu1,2*, Zhenhua Jeremy Wu1,3†, Anna C Groner1,2, Housheng Hansen He1,2,3, Changmeng Cai4, Edward C Stack2,5,6, Massimo Loda2,5,6,7, Tao Liu1,3, Colm Morrissey8, Robert L Vessella8,9, Philip W Kantoff2, Steven P Balk4, X Shirley Liu1,3, Myles Brown1,2

From Epigenetics and Chromatin: Interactions and processes Boston, MA, USA. 11-13 March 2013

Epigenetic regulators represent a new class of therapeutic targets for cancer [1]. Substantial studies suggest that the enhancer of zeste homolog 2 (EZH2) is one of such promising targets [2-4]. The current model of EZH2 oncogenic activity primarily focuses on its function as a subunit of Polycomb repressive complex 2 (PRC2), which silences gene expression via EZH2 histone methyltransferase activity [5,6].

Using a genome-wide approach we found that the oncogenic function of EZH2 in castration resistant prostate cancer (CRPC) is independent of its role as a transcriptional repressor. Instead, it involves the ability of EZH2 to act as a co-activator for critical transcription factors including the androgen receptor (AR). This functional switch is dependent on phosphorylation of EZH2, and requires an intact methyltransferase domain. Given that the loss-of-function mutations of EZH2 were observed in myelodysplastic syndrome and acute leukemia [7,8], our discovery of the non-PRC2 function of EZH2 in CRPC raises the potential to develop inhibitors that specifically target the EZH2 activation function while sparing its PRC2 repressive function to avoid the potential hematological side effects. In addition, our finding that EZH2 cooperates with AR-associated complexes and requires phosphorylation to support CRPC growth suggests novel combination therapies for the treatment of metastatic, hormone-refractory prostate cancer.

Published: 18 March 2013

References

doi:10.1186/1756-8935-6-S1-O14

Submit your next manuscript to BioMed Central and take full advantage of:
• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

© 2013 Xu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.