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ABSTRACT

Scientists working with single-nucleotide variants
(SNVs), inferred by next-generation sequencing
software, often need further information regarding
true variants, artifacts and sequence coverage
gaps. In clinical diagnostics, e.g. SNVs must
usually be validated by visual inspection or several
independent SNV-callers. We here demonstrate that
0.5–60% of relevant SNVs might not be detected due
to coverage gaps, or might be misidentified. Even
low error rates can overwhelm the true biological
signal, especially in clinical diagnostics, in
research comparing healthy with affected cells, in
archaeogenetic dating or in forensics. For these
reasons, we have developed a package called
pibase, which is applicable to diploid and haploid
genome, exome or targeted enrichment data.
pibase extracts details on nucleotides from align-
ment files at user-specified coordinates and
identifies reproducible genotypes, if present. In
test cases pibase identifies genotypes at 99.98%
specificity, 10-fold better than other tools. pibase
also provides pair-wise comparisons between
healthy and affected cells using nucleotide signals

(10-fold more accurately than a genotype-based
approach, as we show in our case study of mono-
zygotic twins). This comparison tool also solves the
problem of detecting allelic imbalance within het-
erozygous SNVs in copy number variation loci, or
in heterogeneous tumor sequences.

INTRODUCTION

The first step in next-generation sequencing (NGS) of
genomic DNA is the massively parallel sequencing of
millions to billions of short DNA fragments on a single
platform, typically generating short sequences (termed
‘reads’) from each end of the DNA fragment. For
quality control purposes, the NGS platforms also
generate quality values for every sequenced base, in
analogy to the capillary sequencing quality values that
are named after the phred software (1). The second step,
which involves a high-performance workstation or a
compute cluster, is to determine the most probable
genomic origin of each fragment by aligning the reads to
a reference, typically to the sequences of a whole genome.
Automatic, fast and error-tolerant alignment methods
such as the Burrows-Wheeler Aligner (BWA) exist (2),
enabling the huge numbers of reads to be aligned within
a reasonable time span. The third step, also carried out on
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a workstation or a compute cluster, is the identification
(‘calling’) of variants from the resulting alignments. This
variant-calling is not straightforward, because of existing
experimental and platform differences, alignment
ambiguities and biological particulars such as ploidy
changes in tumors and in double minutes [tiny ‘extra’
chromosomes that may contain segmental copies of
chromosomes and are replicated during cell division, see
(3–5)]. Typically, single-nucleotide variant (SNV)-calling
algorithms, such as in SOLiD Bioscope, the SAMtools
software (6), the Genome Analysis Toolkit (GATK) (7)
and VarScan (8), generate SNV-lists using filtering or
probabilistic methods to exclude artifacts. These
software tools generally contain pre-set filters to detect
variations.
Quality control (QC) of NGS SNV data is vital and by

definition, needs to be performed independently of the
data production. For example, in clinical diagnostics,
SNVs must usually be validated by visual inspection or
several independent SNV-callers. Human geneticists are
normally forced to store and present the raw sequence
data for the mutation of interest. To this end, chromato-
grams are attached to clinical reports for Sanger-based
tests. For NGS, pibase yields accurate read statistics for
a genomic SNV of interest. As a matter of note, the SNVs
released by the 1000 Genomes Project (9) were a consensus
from at least two different groups, two different NGS
platforms and two different bioinformatic pipelines, sig-
nificantly reducing the risk of human errors, platform
errors and software errors, respectively. Data exchange
errors within the 1000 Genomes Project were mitigated
by developing shared conventions, including the current
standard alignment file format, Binary Sequence
Alignment/Map (BAM) (6) and the Variant Call Format
(VCF) (10). Further strategies and tools for QC, including
contamination detection using the pibase tools, are dis-
cussed in the Supplementary Methods. Currently, ‘one
of the main uses of next-generation sequencing is to
discover variation among large populations of related
samples’ (10) and for this purpose, probabilistic frame-
works exist (7,11,12) that help to separate good novel
SNV candidates from likely false positives (artifacts) and
to determine allele frequencies in populations.
Unfortunately, there are several challenges when faith-

fully applying the variation–discovery approaches to other
uses, such as clinical diagnostics, forensics and targeted-
sequencing-based phylogenetic analyses. To begin with,
the filtered SNV-lists generated by these approaches do
not include low-confidence genotypes, e.g. where both-
stranded validation is missing, and the unwary data recipi-
ent may interpret missing information as a reference
sequence genotype. Also, the default filters sometimes
eliminate obvious genotypes (Supplementary Tables S1
and S2; Supplementary Figures S1 and S2). The second
problem is that available variant-calling tools usually do
not list sequencing failures, where there is low coverage or
no coverage at all, and the unwary data recipient may
again interpret this omission as a reference sequence
genotype. These two errors alone can amount to high
error rates, e.g. 59.3% (Supplementary Table S3d) in an
older whole genome sequencing run, or 9.5%

(Supplementary Table S4) in a recent Illumina HiSeq
2000 exome sequencing run. We have noticed that
targeted sequencing data are much more prone to these
errors than recent whole genome sequencing data at only
0.5% error (Supplementary Table S3a–c). A third problem
is that SNV-lists usually include incorrectly identified het-
erozygotes (prompted by an occasional sequencing error,
misalignment or contaminant sequence) where the pre-set
quality filter for machine output or read-alignment is in-
appropriate. The fourth problem occurs when the user
employs several different SNV-callers to perform a basic
validation of the SNV-lists by intersecting the individual
SNV-lists to separate cross-validated SNVs from less
validated ones. Because each of these individual tools is,
as explained above, prone to filtering away valid SNVs,
the intersected consensus genotypes will exclude even
more valid SNVs.

When performing comparisons between healthy and
affected cells/individuals, a fifth problem surfaces, as
each of the first four problems will lead to false differences
in the comparative analyses. In other words, for such com-
parisons, it may not be advisable to rely on derived
SNV-lists. Instead, the underlying BAM files are needed.
Going back to the BAM files also resolves the sixth and
most important problem: a specific challenge in cell or
proband comparisons is to detect significant changes of
allelic balance in heterozygous SNVs, e.g. in heteroge-
neous tumor samples or in the case of copy number vari-
ation loci. Only the primary BAM file but not the derived
SNV-lists can re-create this proportion of alleles.

Finally, if there is a communication bottleneck between
NGS bioinformaticians (data producers) and other scien-
tists/clinicians (data users), this may result in unnecessary
analysis reruns with new work flows or filtering param-
eters, specifically when new people or new NGS experi-
ments are involved.

We have therefore, developed the pibase package
(http://www.ikmb.uni-kiel.de/pibase, 23 August 2012,
date last accessed), which, instead of relying on a single
set of filtering parameters, applies 10 sets of filtering par-
ameters and then infers the best genotype or the best com-
parison; complements the available general data analysis
tools; saves considerable manual validation work and,
unlike the manual approach, can be integrated into a bio-
informatic pipeline. pibase was developed as a conse-
quence of our previous study (13): there, we
systematically evaluated the stability of SNV-calls by
observing all reads and all unique start points, as well as
seven randomly sampled subsets of reads and unique start
points yielding average coverages of 100�, 80�, 60�,
40�, 20�, 10� and 5�, respectively. Independently of
the sequencing platform, genotype changes suddenly
began to occur when coverages were reduced to 20� or
lower (13). This coverage-related genotype instability ul-
timately affected �10% of the SNVs when the coverage
was lowered to 5� (13).

In Figure 1, we present pibase’s ‘essential’ workflow (the
prerequisite for all other workflows), in which pibase
accepts BAM files and then extracts and tabulates nucleo-
tide signals at genomic coordinates of interest using 10
different observation methods or ‘filters’ (from which
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pibase infers its ‘best genotype’): pibase observes reads
and unique start points using five distinct and increasingly
stringent quality filters (Table 1). The resulting informa-
tion is not restricted to a single stringency or a single filter
setting, and is therefore, more complete and less biased
than information from single-source SNV-lists or
manual inspections. Additionally, reference sequence in-
formation is included in this table, which pibase requires
and which, as a bonus, also reduces the need for manual
inspections in a viewer. Table 1 demonstrates pibase filter-
ing and the resulting coverage at four positions, represent-
ing the bandwidth from acceptable coverage to
unacceptably low coverage. Filtering improves genotyping
accuracy by eliminating potential errors in the raw reads
and the alignments, but at the cost of reducing the number
of remaining reads. In Table 1, filtering stringency in-
creases from left to right, as explained in the ‘Materials
and Methods’ section (pibase_bamref). Coverage is not
uniform over the genome, making the identification of
some genotypes less confident than others (Table 2). A
genotype is inferred for each of the 10 filter methods,
which ideally all should result in identical genotypes. A
summary ‘best genotype’ and its quality are computed
from these 10 observations. Table 2 shows the per-filter
genotype evaluated from the read counts in Table 1, and
the resulting pibase consensus genotype and quality grade.
The columns with Filters 1 and 3 are not shown in this
example. For directly comparing two data sets, e.g.
patients versus healthy controls in disease association

Figure 1. Flow chart showing the standard NGS sequencing and bio-
informatic analysis (gray). The ‘essential workflow’ of pibase (yellow):
pibase_bamref reads a list of genomic coordinates from a tab-separated
text file, a VCF file, a SAMtools pileup SNV file or a Bioscope gff3
SNV file. It then extracts data from a reference sequence file and a
sequence alignment (BAM) file and outputs extracted, computed and
filtered information as a tab-separated text file (output 1).
pibase_consensus reads one single or several pibase_bamref files. For
each coordinate, a ‘best genotype’ with quality and strand support, as
well as two genotypes for each filter level are inferred, and these data
are appended to the pibase_bamref data (output 2). pibase_fisherdiff is
a tool for association testing or sample comparison, requiring a pair of
pibase_consensus files as input data (e.g. case/control, germline/tumor
or affected/unaffected twin). The tool appends P-values and a filter
label to the pibase_consensus data (output 3). Further workflows
address annotation and phylogenetic analysis.

Table 1. Remaining reads after successive filtering at four positions

in a public BAM file

Genomic
coordinate

Raw Filter 0a Filter 1b Filter 2c Filter 3d Filter 4e

CV CV SP CV SP CV SP CV SP CV SP

chr22:19969075 6 3 3 0 0 0 0 0 0 0 0
chr22:19969495 14 11 8 8 6 3 2 3 2 3 2
chr22:30857373 8 5 5 2 2 1 1 1 1 1 1
chr22:31491295 17 7 7 4 4 3 3 2 2 2 2

aReads without indels; bFilter 0 and base quality� 20; cFilter 1 and read
length� 34; dFilter 2 and mismatches� 1; eFilter 3 and uniquely
mappable reads. CV: number of (all) reads covering this genomic
coordinate; SP: remaining reads after filtering away reads with the
same start points.

Table 2. Stable and instable genotypes resulting from the filtering in

Table 1

Genomic
coordinate

Filter 0 Filter 2 Filter 4 End resultb Three
platformse

CV SP CV SP CV SP BGc Qualityd

chr22:19969075 aaa aaa AA FAIL AG
chr22:19969495 GG GG gga gga gga gga GG PASS GG
chr22:30857373 aca aca cca cca cca cca AC FAIL AC
chr22:31491295 cga cga cca cca CG FAIL CG

aLow coverage; brule-based consensus over all filter levels; cpibase con-
sensus genotype; dpibase PASS/FAIL tag; ethe 1000 Genomes Project’s
consensus of three sequencing platforms (Illumina, SOLiD, FLX/454) is
shown for comparison.
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studies, pibase uses a statistical approach on filtered read
counts (original data) with associated quality control
criteria, rather than a simple comparison of SNV-lists
(processed data). We implemented this comparison
method because, we observed that SNV-calls or allele-calls
may be suppressed in one of the samples being compared,
merely because of stringency filters and coverage differ-
ences. Our approach should not be confused with the
one implemented in CRISP (14), which dramatically
improves the accuracy of rare variant-calling in pools
using Fisher’s exact test on A- and B-allele counts and
multiple pools of samples. It is also not the same as the
genotype-free likelihood-based approaches for pairwise
comparisons and family trio comparisons that have been
recently implemented by Li (11). In summary, pibase
addresses major problems pertaining to the quality
control, validation and accurate comparison of NGS
variant data, which are a bottleneck in currently emerging
translational uses of NGS. Furthermore, the pibase data
tables facilitate the practical use of NGS data by
non-bioinformaticians such as archaeogeneticists, biolo-
gists, clinicians and forensic scientists.

MATERIALS AND METHODS

Overview

The pibase package is structured into workflows and
consists of linux command line tools that can be
incorporated into sequential pipelines and into linux
cluster pipelines. When developing pibase, it was import-
ant to have simple commands and meaningful help texts at
the command line. Equally important was exception
trapping with meaningful error messages.
The ‘essential workflow’ (Figure 1) is complemented by

optional workflows and some utilities. The ‘annotate
workflow’ adds annotations to outputs 2 or 3 (Figure 1),
using the command line version of our internal SNV
categorization package snpActs (http://snpacts.ikmb.uni-
kiel.de, 23 August 2012, date last accessed). The ‘phylo-
genetics workflow’ provides a link from NGS data to
median joining network analysis (15). This network
method is widely used in the field of biology to generate
evolutionary tree-like graphics for a population of individ-
uals, in order to stratify the population and uncover evo-
lutionary structures (‘family trees’), ancestral sequences
and mutation events of significance. Traditionally,
median-joining networks are computed on the basis of
mitochondrial markers or short tandem repeats (STR)
on the Y-chromosome. These loci are usually sufficiently
hyper-variable to discriminate between individuals of the
same species. The mitochondrial and Y-chromosomal loci
are normally recombination-free, which is the prerequisite
for computing the maternal lineage and the paternal
lineage, respectively. If an evolutionary network is to be
constructed from a single individual’s germ-line and
somatic cells, any genomic marker is normally
recombination-free within this cell population.
Therefore, pibase was designed to translate mitochondrial,
Y-chromosomal and diploid SNVs into a generic format
for the network analysis software. This network method

can be used to compute the evolutionary network of het-
erogeneous tumor cells within a single patient and identify
the ancestral tumor cells, i.e. the link between the healthy
germ-line cell and the tumor cell population. More im-
portantly, networks can be used to confirm that different
samples from one individual were not confused with
samples from other individuals.

Algorithms

We have described the algorithms for each pibase tool in
the Supplementary Data, including instructions for using
pibase for contamination detection. Details on the pibase
data preparation for the Network software can also be
found in the Supplementary Data.

Implementation

System requirements and installation instructions are
listed under (http://www.ikmb.uni–kiel.de/pibase/index.
html#tutorial, 23 August 2012, date last accessed). All
tools were written in Python (http://www.python.org/,
23 August 2012, date last accessed). The pibase_bamref
tool requires the Python module pysam (http://code.
google.com/p/pysam/downloads/list, 23 August 2012,
date last accessed). The pibase_fisherdiff tool calls a
FORTRAN77 program which uses ‘algorithm 643’ (16)
(http://portal.acm.org/citation.cfm?id=214326, 23
August 2012, date last accessed) (with the original work-
space increased 1000� to 800MB) and the DATAPAC
library (http://www.itl.nist.gov/div898/software/datapac/
homepage.htm, 23 August 2012, date last accessed) and
was compiled with the free GNU Fortran compiler (http://
gcc.gnu.org/fortran/, 23 August 2012, date last accessed).
The RAM memory footprint of the Python tools was ex-
plicitly limited to 1GB, and the FORTRAN77 program is
limited to <1GB.

We have tested the tools on BAM files from the follow-
ing pipelines and sequencing platforms: ABI SOLiD reads
mapped with SOLiD Bioscope (v1.0.1 and v1.2.1) and
BFAST (17), Illumina GA II and HiSeq 2000 reads
mapped with BWA and SOAP (18) (after conversion
using soap2sam.pl and SAMtools) and Roche 454/FLX
reads mapped with BWA and SSAHA (19). The pibase
tools have been tested within locally ongoing scientific
research projects and further tools are being added to
the pibase package as needed. Users with questions or
suggestions are welcome to contact the authors.

Example data

For our example data download on the project
homepage (http://www.ikmb.uni-kiel.de/pibase, 23
August 2012, date last accessed), we used the publicly
available BAM files for chromosome 22, (ftp://ftp
.1000genomes.ebi.ac.uk/vol1/ftp/technical/pilot2_high_
cov_GRCh37_bams/, 23 August 2012, date last accessed),
for the high-coverage trio samples from Utah residents
with Northern and Western European ancestry (CEU):
NA12878 (daughter), NA12891 (father) and NA12892
(mother). The daughter’s whole genome BAM files were
available as Illumina, SOLiD and 454/FLX reads, and the
father’s and mother’s files were only available as Illumina
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reads. In the 1000 Genomes Project, the Illumina reads
were mapped using BWA, the SOLiD reads using
BFAST, and the 454/FLX reads using SSAHA.

The reference sequence used for mapping by the 1000
Genomes Project is available at (ftp://ftp.sanger.ac.uk/
pub/1000genomes/tk2/main_project_reference/human_
g1k_v37.fasta.gz, 23 August 2012, date last accessed). This
genome is largely the same as hg19, except that, e.g. the
chromosome names are changed to 1, 2, 3, etc., and the
mitochondrial reference sequence is rCRS not chrM. We
supply the file hg19.1000G.quick.fasta in our example
data download for use with chromosomes 1–22, X and Y.

We also downloaded the file of exonic variant-calls
(CEU.exon.2010_03.genotypes.vcf.gz) from (ftp://ftp
.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/release/2010_
07/exon/snps/, 23 August 2012, date last accessed). The
VCF file lists only 55 SNVs for chromosome 22, and
their genomic coordinates are counted with respect to
hg18. We transformed these SNV coordinates to hg19 co-
ordinates using the online tool at (http://genome.ucsc.edu/
cgi-bin/hgLiftOver, 23 August 2012, date last accessed)
(20) and used them for the pibase analysis examples.

For further comparisons with established results and
established tools, we used pibase to recall the HapMap
single nucleotide polymorphisms (SNPs, a class of SNVs
that occur in at least 1% of individuals in a specific
population) defined in hapmap3_r1_b36_fwd.CEU.qc.
poly.recode.map (ftp://ftp.ncbi.nlm.nih.gov/hapmap/
phase_3, 23 August 2012, date last accessed) after coord-
inate transformation from hg18/b36 to hg19. For the
above whole genome sequencing files, we recalled SNVs
in chromosome 22 using both GATK and SAMtools
(mpileup, bcftools, vcfutils), merged the GATK and
SAMtools SNV-lists (i.e. the union of both SNV-lists,
not the overlap) and recalled these SNVs using pibase.
As a targeted sequencing example, we used the fastq files
available from the EBI/NCBI SRA with the SRA run ID
SRR098401 (the high-coverage HapMap CEU trio
daughter NA12878, http://www.ebi.ac.uk/ena/data/view/
SRR098401, 23 August 2012, date last accessed). These
whole exome reads were generated with an Illumina
HiSeq 2000 at the Broad Institute, Cambridge, MA,
USA. We mapped the reads using BWA (BAM file
version 1). We removed duplicates using Picard (BAM
file version 2). We removed non-uniquely aligned reads
(BAM file version 3). We called SNVs for each BAM
file version using SAMtools and GATK with the
Variant Quality Score Recalibrator software (VQSR)
(12). We used pibase to genotype exonic HapMap SNPs
(the genomic HapMap SNPs were filtered to lie within the
regions defined by CCDS.20110907.txt, which we down-
loaded from (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/
current_human/, 23 August 2012, date last accessed),
and then filtered to exclude reference sequence genotypes).
We compared all recalled SNVs with the HapMap SNPs
in hapmap3_r1_b36_fwd.CEU.qc.poly.recode.ped to
assess the levels of specificity. Finally, using PLINK
(21), we performed Mendelian error checks for the SNV-
lists from the Illumina trio data, to further compare the
levels of specificity. We documented the settings for each
tool in the shell scripts that are included in our example

data download (subfolders chr22_snpcalling, chr22
_scripts, and exome).

SNV differences in identical twins

As part of an ongoing research project, the exomes of two
German twin pairs were analyzed. The Agilent SureSelect
Human All Exon v2 Kit was used for capturing 48Mb of
target regions. The four exome samples were each
sequenced on a quadrant of a quartet slide on the
SOLiD v4 platform using paired-end reads (50 bp
forward, 35 bp reverse). The reads were mapped using
Bioscope 1.2.1. Duplicate reads were removed from the
BAM files using Picard. SNVs were called using
Bioscope 1.2.1 and also SAMtools (pileup), resulting in
four SNV-lists per twin pair. These four SNV-lists per
twin pair were merged, and pibase was used to interrogate
each of these genomic coordinates in each twin of that
pair. Finally, pibase was used for two different methods
of comparison: the first method using conventional
genotype comparison after interrogating the BAM files
(pibase_diff) and the second method using Fisher’s exact
test of nucleotide signals at five different filter levels in the
BAM files (pibase_fisherdiff).

Median joining network analysis

To demonstrate how to check for potential sample confu-
sion if just a small number of discriminating SNVs is avail-
able, we employed median joining network analysis (15) to
compare the five example 1000 Genomes BAM files,
comprising two parents sequenced on Illumina and their
daughter sequenced on Illumina, SOLiD and FLX/454.
We used the daughter’s Illumina BAM file as the control
or reference sample. We used pibase_bamref followed
by pibase_consensus for each sample. We then performed
pibase_fisherdiff comparisons between the control sample
and each of the remaining samples at the 55 genomic
coordinates of exonic SNPs reported by the 1000
Genomes Project. We used pibase_to_rdf to generate the
rdf files setting p.med �0.2 without requesting
both-stranded confirmation. We used Network 4.6.0.0 to
compute the median joining networks using default
settings. Network accepts five main input data formats:
‘binary’ format (1/0 or difference/no difference),
‘multistate’ DNA format (A, C, G, T, N, -), ‘multistate’
amino acid format (A, B, C, D, etc.), restriction fragment
length polymorphism (RFLP) format and ‘Y-STR’ format
(counts of a repetitive marker motif at a site). pibase_to_
rdf can generate the binary format (which is the most ef-
ficient format for handling large data sets) and resolves the
challenge of defining a difference/no difference criterion
for diploid genomic genotype data.

RESULTS

Using pibase, we obtained highly specific (99.97–100.00%)
genotype calls from publicly available Illumina GAII
BAM files as detailed below in the 1000 Genomes
Project example section. We also demonstrate significantly
shorter run times to validate genotypes at the specified list
of known HapMap SNP coordinates than is required by
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samtools or GATK for a complete SNP-calling run on
chromosome 22. Furthermore, we report that the false
discovery rate of SNV differences in pairs of monozygotic
twins is 10-fold lower using pibase’s Fisher’s exact test,
than using a genotype-based comparison method.
Finally, we show that pibase can be used in combination
with a phylogenetic network method to sort out potential
sample confusions using a set of only 55 SNVs.

Example data from the 1000 Genomes Project

Tables 1–3 show the principles using selected (and
simplified) results from pibase_bamref, pibase_consensus
and pibase_fisherdiff. Within a single run, pibase_bamref
applied multiple filters with increasing stringency and
computed the resulting allele counts for each filter stage,
shown simplified as coverages in Table 1. The data in
Table 1 refer to the NA12878 SOLiD BAM file in our
example data download. The genomic coordinates are
based on hg19, and the starting coordinate is counted
from one. Then, pibase_consensus called a genotype
for each filter stage and inferred a consensus genotype
(Table 2). pibase inferred the single-platform consensus
genotypes in lines one, three and four from low coverage
or filtering ambiguities, and marked them as a failure (‘low
coverage guess’) because this quality is not acceptable in
our opinion. Regarding the genotype in line one, not a
single SOLiD read contains the G-allele that was
detected on the FLX/454 and the Illumina. The
genotype in the second line is unambiguous (stable) over
all filters, and is confirmed by sufficient reads. The
ambiguous (instable) consensus genotypes in lines three
and four were inferred from read-counts at various filter
levels and other information.
As Table 2 exemplifies, BestGen genotypes and

BestQual qualities correctly reflect the quality of geno-
types and can provide a good estimate of the genotype if
the BestQual is good, if both strands support the genotype
and if the SNV is not within the proximity of indels (that
can be filtered using the Linux commands grep and awk or
Microsoft Excel) and further provided that the control
parameters were set as recommended (see ‘Materials and
Methods’ section).
Table 3 exemplifies the results from a sample compari-

son using pibase_fisherdiff, showing that genotype differ-
ences can be detected correctly using the median of the five

two-tailed P-values, which are computed using the 2� 4
Fisher’s exact test on the unique start point counts for
each of the five pibase_bamref filter levels. The relatively
high P-value of 0.0464 for chr22:19968971 reflects the
fairly low coverage (only 17� at filter level 0) in combin-
ation with a fairly small shift in allelic counts (from 17�G
in the father to 5�A, 11�G in the daughter). To detect
differences with high confidence, coverages should gener-
ally be more like 50�, e.g. for chr22:30953295, the P-value
is 8.4� 10�6, and the daughter’s coverage is 35�. A
typical application is the pairwise comparison of affected
and unaffected twin (Table 4), or of tumor tissue and
normal tissue. For difficult genotype calls (i.e. read-count
between heterozygosity and homozygosity states or for
low-coverage genotypes) and when comparing heteroge-
neous tumor samples, the P-value is a more accurate
metric for identifying pairwise sample differences than a
comparison of SNV-calls or genotypes. Complete results
for five BAM files are available under (www.ikmb.uni-
kiel.de/pibase/output_validated.zip, 23 August 2012, date
last accessed) and the settings used for obtaining these
results are available as a shell script under (www.ikmb.
uni–kiel.de/pibase/pibase_test.html, 23 August 2012, date
last accessed). This first set of example results files is small
enough for Windows users to easily load into Excel. In
brief, the run-time for the shell script on a single core of an
AMD Shanghai 2.4GHz processor was 17 s to interrogate
the five BAM files and the reference sequence, compute
genotypes at the 55 coordinates in each BAM file and
compare the Illumina BAM file of the daughter with the
Illumina BAM file of her father at two different
stringencies. Assuming manual inspection and documen-
tation time for 275 SNVs at 3min per SNV (or 56 100
seconds for 275 SNVs), the pibase validation run is
about 3000� faster than our in-house manual inspection
and documentation process. In other studies, we manually
inspected and documented BAM files with the help of the
Integrative Genomics Viewer (IGV) (22) at a speed of
about 60–100 SNVs per day. It should be noted that
pibase is suitable for validating SNV-lists from an entire

Table 4. False discovery rate of differences in exomes of identical,

monozygotic twins

Comparison
method/stringency

Pair 1 FDRa

(%)
Pair 2 FDRa

(%)

SNVs called 65654 67997
bGenotype differences (?2) 2047 3.12 1864 2.74
bGenotype differences (?1) 527 0.80 470 0.69
bGenotype differences (stable) 55 0.08 72 0.11
cFET differences (P< 0.05) 135 0.21 169 0.28
cFET differences (P< 0.04) 92 0.14 125 0.18
cFET differences (P< 0.03) 48 0.07 74 0.11
cFET differences (P< 0.02) 25 0.04 51 0.08
cFET differences (P< 0.01*) 5 0.01 15 0.02

aNumber of computed differences divided by the number of SNVs
called; bnumbers of SNV differences including instable genotype
pairs (labels ‘?2’ and ‘?1’) and using only the stable genotype pairs;
cFisher’s exact test-based differences computed by pibase_fisherdiff
and filtered for P-value thresholds of 0.01, 0.02, 0.03, 0.04. 0.05;
*recommended setting.

Table 3. Discrimination of non-identical SNVs in BAM file pairs

using Fisher’s exact test

Genomic
coordinate

P-valuea

(from read-counts)
Best genotype

NA12878 NA12891

chr22:19968971 0.0464 AG GG
chr22:30953295 8.4� 10�6 TT CC
chr22:39440149 0.0161 CT TT
chr22:40417780 0.0009 CC CT

aP-values obtained from Fisher’s exact test on the number of
unique-start-points for each filter level, indicating the probability of
the sample pair having the same genotype at this specific genomic
coordinate.
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exome (Table 4) within a few hours or less on a single
CPU and the ca. 3 million SNVs in a human genome
within about 60 h on a single CPU.

Run times and specificity
Furthermore, we re-analyzed all 19 600 HapMap SNPs on
chromosome 22 to compare the specificity of pibase with
GATK and SAMtools, using the published non-reference
HapMap SNPs as the gold standard. Each sample was
analyzed on a linux cluster, requiring only a single CPU
per run. The run times were only 4–10min per sample
using pibase, 17–55min per sample using SAMtools and
about 5 h per sample using GATK. The intention of our
run-time comparison is to give readers a feeling for typical
pibase run-times in relation to the run-times of standard
SNV-calling tools. The intended use of pibase is to extract
in-depth information at selected coordinates of interest
(e.g. at coordinates from the National Center for
Biotechnology Information database of SNPs (dbSNP),
HapMap coordinates or SNV-call coordinates), rather
than to scan the entire chromosome for potential
non-reference genotypes. As NGS includes the potential
detection of novel personal SNVs, as well as the
genotyping of known SNV coordinates, we typically use
SAMtools and unfiltered GATK prior to pibase. The
computational cost of a pibase run is negligible,
compared with the total cost of our standard alignment
and variant-calling pipeline.

The genotype concordances of the HapMap SNP-chip
data versus the whole genome Illumina GA II runs are
broadly similar for pibase, GATK and SAMtools
(Supplementary Table S3). As a pattern, pibase called
slightly more concordant SNPs (9667, 9511, 9818 for
NA12878, NA12891 and NA12892) than GATK (9651,
9481, 9777), and GATK called slightly more concordant
SNPs than SAMtools (9637, 9456, 9691). SAMtools and
GATK were highly accurate for these runs but tended to
suppress SNVs in ‘homologous’ loci (see Supplementary
Methods) where pibase and the HapMap chip-data
indicated non-reference genotypes (Supplementary
Tables S1 and S2). In the absence of a gold standard
benchmark, e.g. in clinical research or diagnostics, it is
often required to work on the side of caution. For this
purpose, pibase provides a set of stringent criteria (well
chosen defaults that the user can change if needed), result-
ing in what we have termed ‘stable’ pibase genotype calls.
For the non-calls and the non-stable calls, pibase provides
helpful tags that describe the lacking information
(e.g. lack of reverse reads) that may be obtained from a
follow-up NGS experiment or Sanger sequencing experi-
ments. The number of stable pibase calls was 9293 (of
9667 concordant pibase calls), 8981 (of 9551) and 8971
(of 9818). The stable pibase SNP-calls (diagnostic
quality SNP-calls) for the Illumina GAII whole genome
sequencing runs were 99.97–100.00% accurate, compared
with �99.92% for GATK or SAMtools. The results are
summarized in Supplementary Table S3 and full results
are included in the example data on the pibase
homepage. Our analysis also showed that about 20 of
19 600 HapMap genotypes per family trio member in
the published data (hapmap3_r1_b36_fwd.CEU.

qc.poly.recode.ped) were affected by strand mix-ups. We
had previously also confirmed such strand mix-ups in the
published data for HapMap individual NA12752 using
Sanger sequencing (ElSharawy et al., manuscript in
revision). For NA12878 we include a list of potential
HapMap data errors in Supplementary Table S5, and
for NA12891 and NA12892, the respective lists are avail-
able on the pibase homepage.
To further analyze discordances between the individual

software tools (SAMtools, GATK, pibase) and between
the individual platforms (HapMap SNP-chip, Illumina
GAII, Roche 454/FLX, SOLiDv3), we selected represen-
tative SNPs and validated these by diterminator
sequencing on an ABI3730XL platform. The results are
described in Supplementary Table S6. Briefly, although
most Sanger-sequencing results validated the Illumina
GAII SNPs as genotyped by pibase, a single highly inter-
esting limitation of the GAII platform emerged: at
genomic coordinate 22:23937135, the GAII had sequenced
a coverage of 32 reads, of which, 31 reads indicated the
base ‘A’, and one read indicated the base ‘G’. We expected
to find a homozygous ‘AA’ genotype, but our Sanger
sequencing confirmed the heterozygous ‘AG’ genotype,
which was also concordant with the HapMap SNP-chip
data. Even the advanced probabilistic approaches imple-
mented in SAMtools or GATK did not classify this SNP
as heterozygous. Clinical researchers are therefore, often
conservative and prefer higher coverages (40� to 100�, or
more). The second most interesting insight was that the
standard PCR primer design for the Sanger sequencing
run failed to uniquely target some SNVs in homologous
regions that could be uniquely sequenced by paired-end
Illumina GAII reads. And a third interesting result was
that some HapMap SNP-chip capture probes in homolo-
gous loci may also have attracted DNA fragments from
multiple genomic loci (23). Our manual analysis of SNP
discordances (Supplementary Table S7) shows that
platform-related discordances between the HapMap
SNP-chip data and the Illumina GAII (0.30–0.36%)
weighed more heavily than software-related discordances
(0.00–0.20%). The discordances between the SNP-chip
data and the GAII data were greatest in loci of
homopolymeric runs and STR-runs (0.04–0.06% of all
SNPs), followed by indel regions (0.03–0.05%) and hom-
ologous loci (0.03–0.04%). Low-coverage discordances
were only applicable to unfiltered pibase genotypes
(0.04%) but by definition, not to stable pibase genotypes.
Regarding high-coverage false negatives, SAMtools and
GATK false negatives were most frequently associated
with homologous regions (0.27% and 0.22% of all
SNPs, Supplementary Tables S1 and S2).
The previous results were based on the default-filter

SNV-lists at the end of the SAMtools or GATK pipelines.
Out of interest in the differences between raw and filtered
data, we analyzed the more recent Illumina HiSeq 2000
whole exome run SRR098401 and called genotypes from
three different versions of BAM file, as described in the
‘Materials and Methods’ section. The results are detailed
in Supplementary Table S4. Briefly, the popularly recom-
mended BAM file read-filtering (removal of duplicate and
non-uniquely mapped reads) had a very small but
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unfortunately adverse effect on SAMtools-genotyping and
pibase-genotyping. The quality-filtering of genotypes had
the very largest effect on the concordance and on the
number of acceptable genotypes: for GATK/VQSR, the
elimination of SNVs tagged as low-quality (‘FAIL’)
increased the number of non-acceptable genotypes from
3.6% to 9.5%, and for pibase, the elimination of
non-stable SNVs increased the number of non-acceptable
genotypes from 0.8% to 13%. Despite this decrease in the
number of acceptable genotypes, in our clinical research
practice, we generally advocate the use of quality filtering
to reduce the overwhelming number of non-reproducible
or untrue SNVs that are inherent to the unfiltered data. It
is very important for bioinformaticians to communicate to
their data users whether the genotypes have been
eliminated by filtering, and that non-reported genotypes
may not be interpreted as reference sequence genotypes. If
specific genomic coordinates are of interest to the data
user, then these coordinates should be explicitly defined
by the data user, and excluded from quality filtering.
Furthermore, when performing pairwise comparisons or
phylogenetic analyses, it is important to remember that
quality filtering eliminates biologically true variants, e.g.
about 6–12% in this specific human HapMap exome.
Finally, it should be noted that the pibase parameters in

our examples were not adjusted systematically but based
on common-sense ad hoc decisions, which a new user
might make: the pibase parameters were the defaults for
the Illumina HiSeq exome, except for three changes: (i)
LR (max length of reads) increased from 50 bp to 120 bp
to process the long HiSeq reads, (ii) minor allele threshold
for heterozygotes increased, for demonstration purposes,
from 2.2% to the widespread threshold of 10% and (iii)
strand support threshold reduced from 20% to 10% in
reflection of the higher quality of HiSeq reads compared
with GAII reads. For the Illumina GAII genomes, the
pibase parameters were the defaults except for three
changes: (i) LR increased to 100 to process the long
reads in the BAM files, (ii) read length filter modified to
allow the large number of short 35 bp reads and (iii) minor
allele threshold for heterozygotes increased to the wide-
spread threshold of 10%.

Mendelian errors
We used GATK and SAMtools to detect non-reference
SNVs on chromosome 22, merged the SNV-lists, and
used pibase to re-analyze the BAM files at these SNV
positions. Using PLINK/SEQ and PLINK, we
computed the Mendelian inheritance errors within the
CEU family trio. The stable pibase SNV-calls yielded
only one (0.002%) SNV with Mendelian errors, whereas
the SNV-calls from SAMtools and GATK resulted in 52
(0.078%) and 81 (0.107%) Mendelian errors, respectively.
We expected about one true Mendelian error on chromo-
some 22, as the reported de novo mutation rate from
parents to their offspring is about 66 SNVs in a whole
genome (24). However, the single stable pibase
Mendelian error call is more likely due to an Illumina
GAII platform error and low coverage (16�) in the case
of NA12892. The Illumina GAII and HiSeq platforms are
subject to systematic errors (25,26). The results are

summarized in Supplementary Table S8, which also
shows that the main causes for the 145 Mendelian errors
in the non-stable pibase genotypes are low coverage
(41%), randomly mapped reads that align equally well
to multiple regions of the genome reference (25%),
hypervariability and/or simple repeat-related issues (15
and 10%), poor sequencing quality (8%) and indel
regions (2%). Whereas the stable pibase genotypes
include criteria for minimal coverage and both-
strandedness and lead to just the single Mendelian error,
the non-stable pibase genotypes are called more aggres-
sively at low coverage (hence flagged as a non-confident
call). High coverages would resolve many of the genotype
ambiguities seen at the lower coverages of under 20� in
Supplementary Table S12, see also our earlier work (13).
At low coverages, however, there appear to be two
primary differences in the approaches for estimating the
genotypes: First, as mentioned previously, SAMtools and
GATK may incorrectly filter away evidence of a minor
allele in homologous regions. This does not lead to a
Mendelian error in SAMtools or GATK, but may lead
to a Mendelian error in pibase if one of the trio shows
insufficient evidence for this allele (i.e. too low coverage).
The Mendelian error in pibase is therefore, a sensitive in-
dicator of insufficient coverage in one of the trio, rather
than the silent error of blunter SNV-calling that does not
show up in a Mendelian check. Secondly, SAMtools and
GATK may correctly call a heterozygote at low coverages
if there is only one read indicating the minor allele,
whereas pibase incorrectly filters these singletons as poten-
tial low-level process noise or contamination. The coord-
inates of the Mendelian errors are given in Supplementary
Tables S9–S11, a detailed analysis of the Mendelian
error of the non-stable pibase genotypes is given in
Supplementary Table S12, and full results are included
in the example data on the homepage.

SNV differences in identical twins

The false discovery rate (FDR) of genotype differences is
exemplified in Table 4. This table shows the apparent
differences within two twin pairs, as a function of the
comparison method (genotype comparison versus
Fisher’s exact test) and the comparison stringency.
Manual inspection of aligned reads at the coordinates of
potential genotype differences showed zero differences
within each pair. All results shown reflect filtering for
both-stranded confirmation of genotypes. We sequenced
the exomes of two pairs of monozygotic twins and con-
sidered SNV positions called by two SNV-callers
(Bioscope and SAMtools pileup). After filtering, about
800 apparent differences remained per twin pair. We
validated that the apparent genotype differences between
the called variants were only SNV-calling artifacts, i.e.
that the 65 654 genotypes in twin pair 1 were shared by
both twins, and that the 67 997 genotypes in twin pair 2
were shared as well by the twins. Using pibase_diff for a
simple conventional genotype comparison at the 65 654
and 67 997 coordinates, respectively, the number of
false-positive genotype differences was 2047 (in pair 1)
and 1864 (in pair 2) if low-quality genotypes with
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BestQual?2 (Table 5) were included, 527 and 470 if
BestQual?1 was included, and 55 and 72 if only the
stable genotypes were used. However, using
pibase_fisherdiff for a Fisher’s exact test analysis at the
65 654 and 67 997 coordinates, respectively, clearly shows
a 10-fold improvement: for example, at P-values <0.01,
only 5 and 15 genotype differences are indicated. We
expected to find between zero and one differences in the
exomes of twins, assuming that their differences would be
on a similar order of magnitude as the recently published
rates of de novo mutations in exomes from parents to their
offspring (27).

Phylogenetic screening for sample confusion

To exemplify the detection of potential sample confusions
using our ‘phylogenetics workflow’, we compared the
BAM files of a European family trio published by the
1000 Genomes Project, i.e. the five BAM files in our
example download. Setting out with three BAM files for
the daughter and one each for the parents, we used the
pibase tools to generate input data for the phylogenetic
network software Network version 4.6.0.0. The phylogen-
etic network (Figure 2) shows that the daughter’s three
genotypes (from the three different platforms Illumina,
SOLiD, 454/FLX) cluster together as expected, whereas
there are significant differences between the daughter
nodes versus the father node and the mother node.

This example illustrates that phylogenetic networks can
be constructed using a very small number of discrimi-
nating SNVs, making the method suitable for targeted
sequencing data of highly multiplexed NGS libraries—
such as paired tumor/normal samples or targeted
single-cell cancer-cell sequencing to reconstruct cancer
evolution within a patient (28). The classical application
of phylogenetic networks lies in the reconstruction of evo-
lutionary trees within a single species from non-
recombining markers such as mtDNA markers, the cali-
bration of a molecular clock for the set of utilized
markers, and the dating of ages and events using this
calibrated molecular clock. In anthropology and forensics,
the reconstruction of the complex human mtDNA tree,

see e.g. (29), has largely been achieved with the
median-joining network (MJN) method. In clinical
research, the MJN method has been used to identify
Major Histocompatibility Complex (MHC) haplotypes
within a population sample of European ancestry that
has evidenced little recombination within the MHC
region (30). For the evolutionary analysis of closely
related sequences, the MJN is often preferred over
minimum spanning tree/network methods, because the
minimum spanning tree is not generally the optimal
(most parsimonious) tree (15). Full median networks
usually contain all optimal trees (15) but are too

Table 5. Categorization of instable SNV-calls using SNV label (BestQual)

Label Explanation

?1 Mapping stringency versus reference sequence context class is good. Not all 10 genotyping filter stages lead to the same genotype.
However, for the high mapping stringency filter stages, at least n1 unique start points and at least n2 reads support this genotype
(defaults: n1=4, n2=8).

?2 Mapping stringency versus reference sequence context class is good. This genotype is supported by less than five filter stages, but by
at least two filter stages, of which one stage is in the unique start points category, and the other stage is in the coverage category.

?3 Poor quality. Low complex reference sequence context (homopolymeric run> 4, or STRs) and low mapping stringency, but at least
one stringent filter supports this genotype.

?4 Very poor quality. Low complex reference sequence context (homopolymeric run> 4, or STRs) and mapping stringency was low.
But at least one of the unique-start-point filters supports this genotype.

?5 Highly problematic quality. The best unique-start-point derived genotype is in conflict with the best coverage-derived genotype.
?6 Highly problematic quality. The best unique-start-point-derived genotype is in conflict to the best coverage-derived genotype, and the

best coverage-derived genotype is ‘superior’ to the best unique-start-point-derived genotype.
?7 Low-coverage guess. The coverage is less than n2 (default: n2=8).
?8 Low-coverage guess. The coverage is less than n2 (default: n2=8), low complex reference sequence context (homopolymeric run> 4, or

STRs), and there are no stringently mappable reads.

STR, short tandem repeats

Figure 2. Median joining network showing the differences between the
five examples of BAM files of the CEU trio. Data are currently
available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/pilot2_
high_cov_GRCh37_bams/ (23 August 2012, date last accessed). The
daughter (NA12878) was sequenced on Illumina, SOLiD and FLX,
the father (NA12891) and the mother (NA12892) on Illumina only.
The links between the nodes show the IDs of the discriminating
SNVs. As median-joining networks use discriminating differences to
construct an evolutionary tree, they can often successfully work with
just minimal data input, such as classically the mitochondrial DNA
(mtDNA) control region. This is relevant for inexpensive targeted
sequencing of populations.
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complex for visualization. MJN are a reduction of full
median networks that simplify visualization, and that the-
oretically converge to full median networks when the
network-parameter epsilon is increased (15). It should be
noted that, if a recombination of markers occurs within
the group of studied individuals, the MJN may become
complex or confusing – this MJN may not contain the
most parsimonious tree(s) if epsilon is too low, and in
the worst case it will display just a ‘cloud’ of links if
epsilon is too high.
In our example of recombining markers we have

demonstrated that a clean network is generated because
epsilon is set to zero, which reduces the search for optimal
trees. This network is not a classical evolutionary most
parsimonious network, but it is sufficient to validate that
the three data sets of the daughter NA12878 indeed cluster
together and have not been confused. We have applied
this QC approach successfully in a real ongoing targeted
sequencing experiment comprising a panel of patients
from whom two tissue samples each were sequenced (i.e.
unaffected tissue and affected tissue). Compared with the
identity-by-state analysis of PLINK (21), which generates
a n � n table of numerical values (n is the number of
samples), we find that the graphical MJN plot is some-
times clearer and less ambiguous to evaluate, especially
because MJN can optionally impute missing data in
samples from the sequences in the other samples (15).

DISCUSSION

We here present a set of software tools called pibase that
extract data directly from BAM files at user-specified
genomic coordinates in order to perform rule-based
genotyping at these coordinates with a high specificity
(99.97–100.00% in our examples), and optionally
pairwise sample comparisons at these genomic coordinates
using Fisher’s exact test. The pibase tools are designed for
post-processing after the typical standard alignment and
variant-calling pipelines (Figure 1) and can be integrated
into these existing pipelines as post-processing add-ons.
The pibase tools can generate detailed reports for
non-bioinformatician recipients, which are transparent,
accurate, easy to understand and to use and which there-
fore convey confidence. Recipients who will benefit are
clinicians who need to make decisions based on a set of
SNVs, forensic investigators, archaeogeneticists perform-
ing dating, or researchers who are evaluating the NGS
experiments in detail, especially in the context of compara-
tive analyses and phylogenetic analyses.
Within a pipeline, pibase can also be used for auto-

mated quality control purposes, including the rapid valid-
ation of previously called SNVs, i.e. filtering stable
genotypes from instable genotypes by re-evaluating the
original BAM file at SNV coordinates of interest. It
should be mentioned that pibase does not analyze indels,
but it indicates that an indel may be at or near a SNV
locus. The pibase software complements pre-processing
QC tools such as FASTQC (which checks the quality of
sequence reads before alignment), and probabilistic
post-processing QC tools such as VQSR (which eliminates

false-positive SNV-calls using a large data set of ‘true
data’ and a large data set of SNV-calls) and viewers
such as IGV. Whereas VQSR needs a large SNV data
set (at least exome-sized, according to recommendations)
and a training data set and uses a Bayesian model to elim-
inate called SNVs, pibase can rapidly interrogate a list of
genomic coordinates (regardless of whether there is a
mismatch at this coordinate or not) and uses deterministic
rules similar to an exceedingly thorough IGV inspection
with comprehensive filtering.

Our reads filtering approach allows sufficient user
control to be flexible and is transparent. In contrast to
other filtering approaches that usually discard data,
pibase makes use of the full set of information by display-
ing all sets of results. To this end, 10 results sets are pre-
sented to the user. Additionally, pibase makes use of all
sets of results to infer genotypes and qualities, homolo-
gous and hypervariable loci, or to compare pairs of BAM
files. Such filtering is generally performed by bioin-
formaticians, so that biologists are seldom aware of the
process or the implications when they receive the data.
Biologists who are interested in reads filtering may
consult (http://www.ikmb.uni-kiel.de/pibase/pibase_filter-
ing.html, 23 August 2012, date last accessed). In brief,
when DNA sequencing data are mapped to conserved
regions of hg18 or hg19, we would usually expect about
one SNV per 1000 base positions (31), especially if the
samples come from Central European individuals and
therefore, recommend a pibase_bamref filter ceiling of
one mismatch per read. In contrast, reads mapped to
hypervariable regions or to a dissimilar reference
sequence can be inaccurate, which becomes noticeable in
poor pibase_consensus ‘BestQual’ labels. The African
chrM sequence is an example of a genome with a
hyper-variable region, which prompted us to develop the
pibase_chrm_to_crs tool for scoring variants in the human
mitochondrial control region.

The 10 sets of pibase genotypes may surprise new users,
but the file format is designed such that the columns of
interest can easily be extracted using basic linux
commmands. For example, ‘cut –f 1-4,7-12 pibase
_snps.txt’ extracts the nine columns with the genomic co-
ordinates, reference base and sequence context, non-
reference allele coverage, total coverage, BestGen
genotype, BestQual quality and strand support for the
A- and B-allele. For experienced users, the same 10 sets
of genotypes are a useful aid for the in silico analysis of
problematic SNVs, e.g. when iteratively improving probe
or primer designs in custom targeted sequencing assays.
As shown in the 1000 Genomes example data, and espe-
cially in the exome example data, pibase tabulates data
even if the coverage is low or the alignments are biased,
potentially enabling problematic SNVs to be characterized
and targeted sequencing assays to be improved. Also, the
stable pibase genotypes inferred from the 10 sets of pibase
genotypes provided a very high confidence level and
included concordant SNP-calls in homologous regions
where SAMtools and/or GATK favored no-calls (refer-
ence sequence genotype). Even the non-stable pibase
consensus-genotypes were similarly specific and sensitive
as the probabilistic SAMtools and GATK methods,
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providing an orthogonal means of SNV validation. In a
pipeline setting, we suggest that pibase is used to interro-
gate raw unfiltered BAM files at known SNV coordinates,
e.g. from dbSNP, as well as SNV coordinates identified by
SAMtools and/or GATK.

The pibase software also facilitates data extraction for
phylogenetic analyses and phylogenetic QC, e.g. sample
swap quality control (Figure 2), identity confirmation
and sequencing accuracy checks using expected mtDNA
haplotypes (9,32), and contamination detection by
checking for heteroplasmy outside the known evolution-
ary mtDNA hotspots (33) and for implausible mtDNA
haplotypes. Further contamination detection may be per-
formed using the homologous locus tag and custom refer-
ence sequences, as described in the Supplementary Data.

For sample comparisons, our Fisher’s exact test
approach overcomes the heterozygosity/homozygosity de-
termination problem of genotype-based comparisons, and
is furthermore able to detect shifts in allelic balances of
heterozygous genotypes that can occur in heterogeneous
tumor samples or in the presence of a copy number vari-
ation. As a default, we suggest that SAMtools and/or
GATK are used at their highest sensitivity and without
any quality filtering to identify potential non-reference
genotypes, and that pibase is then used to compare the
raw unfiltered BAM files at these coordinates and also
at known SNV coordinates, e.g. from dbSNP.

Last, pibase allows researchers with bioinformatic skills
but without high-performance computing facilities to
extract genotype data of interest from publicly available
NGS BAM files for their own research projects, regardless
of which bioinformatic frameworks and options were used
to produce the BAM files. The software, example data and
documentation are freely accessible under (http://www
.ikmb.uni-kiel.de/pibase, 23 August 2012, date last
accessed).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–12, Supplementary Figures 1
and 2, Supplementary Methods and Supplementary
References [34–44].
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