Nickel-Mediated Oxidative Fluorination for PET with Aqueous [\^^\{18\}F
)] Fluoride

Citation

Lee, Eunsung, Jacob M. Hooker, and Tobias Ritter. 2012. Nickel-mediated oxidative fluorination for PET with aqueous [
(^\{18\}F
)] Fluoride. Journal of the American Chemical Society 134 (42): 17456-17458.

Published Version

doi:10.1021/ja3084797

Permanent link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:10861160

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use\#OAP

Share Your Story

The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility

Supporting Information

Nickel-Mediated Oxidative Fluorination for PET with Aqueous [${ }^{18}$ F]Fluoride

Eunsung Lee, ${ }^{\dagger}$ Jacob M. Hooker, ${ }^{\ddagger, \S}$ and Tobias Ritter ${ }^{\star, \uparrow, \S}$
\dagger Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
\ddagger Athinoula A.Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown,MA 02129, United States
§ Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States
E-mail: ritter@chemistry.harvard.edu

Table of Contents

Materials and Methods 5
Experimental Data 6
Synthesis of hypervalent iodine oxidant (6) and (2-(2-pyridinyl)phenyl-2- nitrobenzenesulfonamide)silver(I) complex (8) 6
1,1'-(phenyl- λ^{3}-iodanediyl)bis(4-methoxypyridinium) bis(trifluoromethanesulfonate) (6)... 6
2-(2-Pyridinyl)aniline (S1) 6
2-(2-Pyridinyl)-2-nitrobenzenesulfonanilide (S2) 7
Synthesis of (2-(2-Pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) (8) 8
Synthesis of aryl and alkenyl nickel complexes (1a-11) 8
Synthesis of nickel aryl bromide complex 7a 8
Synthesis of nickel aryl complex 1a 9
Synthesis of nickel aryl bromide complex 7b 9
Synthesis of nickel aryl complex $\mathbf{1 b}$ 10
Synthesis of nickel aryl bromide complex 7c. 11
Synthesis of nickel aryl complex 1c 11
Synthesis of nickel aryl bromide complex 7d 12
Synthesis of nickel aryl complex 1d 13
Synthesis of nickel aryl bromide complex $\mathbf{7 e}$ 13
Synthesis of nickel aryl complex $\mathbf{1 e}$ 14
4-bromophenethyl benzoate (S3) 15
Synthesis of nickel aryl bromide complex $7 \mathbf{f}$ 15
Synthesis of nickel aryl complex $1 f$ 16
Synthesis of 3-deoxy-3-bromoestrone (S4) 16
Synthesis of nickel aryl bromide complex $\mathbf{7 g}$ 17
Synthesis of nickel aryl complex $\mathbf{1 g}$ 18
5-Bromo-2-(cyclopropylmethoxy)benzaldehyde (S5) 18
(E)-ethyl 3-(5-bromo-2-(cyclopropylmethoxy)phenyl)acrylate (S6) 19
(E)-3-(5-bromo-2-(cyclopropylmethoxy)phenyl)prop-2-en-1-ol (S7) 20
((1S,2S)-2-(5-bromo-2-(cyclopropylmethoxy)phenyl)cyclopropyl)methanol (S8) 20
Figure S1: Enantiodiscriminating HPLC trace of S8 22
2-((1S,2S)-2-(azidomethyl)cyclopropyl)-4-bromo-1-(cyclopropylmethoxy)benzene (S9) 22
t-Butyl (((1S,2S)-2-(5-bromo-2-(cyclopropylmethoxy)phenyl)cyclopropyl)methyl)
carbamate (S10) 23
Figure S2. Enantiodiscriminating HPLC trace of S10 24
Synthesis of nickel aryl bromide complex $\mathbf{7 h}$ 24
Synthesis of nickel aryl complex $\mathbf{1 h}$ 25
N-(tert-butoxycarbonyl)-3,4-di(tert-butoxycarbonyloxy)-6-bromo-L-phenylalaninemethyl ester (S11) 26
Synthesis of nickel aryl bromide complex $7 \mathbf{7}$ 26
Synthesis of nickel aryl complex 1i 27
Synthesis of nickel aryl bromide complex 7j 28
Synthesis of nickel aryl complex $\mathbf{1 j}$ 28
4-bromobenzoic acid succinimidyl ester (S12) 29
Synthesis of nickel aryl bromide complex $7 \mathbf{k}$ 29
Synthesis of nickel aryl complex $\mathbf{1 k}$ 30
Synthesis of nickel alkenyl bromide complex 71 31
Synthesis of nickel alkenyl complex 11 31
Fluorination of nickel aryl complexes and preparation of authentic 2 33
4-Flurobiphenyl (2a) 33
1-Cyclohexyl-2-fluorobenzene (2e) 34
2-(4-Fluorophenyl)ethyl benzoate ($\mathbf{2 f}$) 34
N-(tert-butoxycarbonyl)-3,4-di(tert-butoxycarbonyloxy)-6-trimethylstannyl-L- phenylalaninemethyl ester (S13) 35
N -Boc- O -Boc-6-fluoro-DOPA methyl ester (2i) 35
1-Fluoro-1,2,2-triphenylethylene (21) 36
Radiochemistry 37
General methods 37
Radiosynthesis of ${ }^{18} \mathrm{~F}$-labeled Molecules 37
Calculation of equivalents of $\left[{ }^{18} \mathrm{~F}\right]$ fluoride relative to nickel complex 37
Measurement of Radiochemical Yield. 39
Table S1. Radiochemical Yield Data 39
Example Radio TLC Scans: 42
Figure S3. Example Radio TLC Scan of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 a}$ 42
Figure S4. Example Radio TLC Scan of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 b}$ 42
Figure S5. Example Radio TLC Scan of $\left[{ }^{18} \mathbf{F}\right] 2 \mathbf{c}$ 43
Figure S6. Example Radio TLC Scan of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 d}$ 43
Figure S7. Example Radio TLC Scan of $\left[{ }^{18} \mathbf{F}\right] 2 \mathbf{e}$ 44
Figure S8. Example Radio TLC Scan of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 f}$ 44
Figure S9. Example Radio TLC Scan of $\left[{ }^{18} \mathbf{F}\right] 2 \mathrm{~g}$ 45
Figure S10. Example Radio TLC Scan of $\left[{ }^{18} \mathbf{F}\right] 2 h$ 45
Figure S11. Example Radio TLC Scan of $\left[{ }^{18} \mathbf{F}\right] 2 i$ 46
Figure S12. Example Radio TLC Scan of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2} \mathbf{j}$ 46
Figure S13. Example Radio TLC Scan of $\left[{ }^{18} \mathbf{F}\right] 2 \mathbf{k}$ 47
Figure S14. Example Radio TLC Scan of $\left[{ }^{18} \mathbf{F}\right] 21$ 47
Characterization of ${ }^{18} \mathrm{~F}$-labeled Molecules 48
Figure S15. Characterization of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 a}$ 49
Figure S16. Characterization of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 b}$ 50
Figure S17. Characterization of $\left[{ }^{18} \mathbf{F}\right] 2 \mathbf{c}$ 51
Figure S18. Characterization of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 d}$ 52
Figure S19. Characterization of $\left[{ }^{18} \mathbf{F}\right] 2 \mathbf{e}$ 53
Figure S20. Characterization of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 f}$. 54
Figure S21. Characterization of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 g}$ 55
Figure S22. Characterization of $\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{~h}$ 56
Figure S23. Characterization of $\left[{ }^{18} \mathbf{F}\right] 2 \mathbf{i}$ 57
Figure S24. Characterization of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2} \mathbf{j}$ 58
Figure S25. Characterization of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 k}$ 59
Figure S26. Characterization of [$\left.{ }^{18} \mathbf{F}\right] 21$ 60
Determination of specific activity of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 g}$ 61
Table S2. Data for standard curve of UV absorbance vs amount of $\mathbf{2 g}$ 61
Figure S27. Standard curve of UV absorbance vs amount of $\mathbf{2 g}$ 61
X-ray Crystallographic Analysis 62
Experimental (nickel aryl complex 1c) (CCDC 896034) 62
Figure S28. The structure of 1c. The atoms are depicted with 50% probability ellipsoids 63
Table S3. Experimental details 63
Table S4. Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$ 65
Spectroscopic Data 79
References 147

Materials and Methods

All air- and moisture-insensitive reactions were carried out under an ambient atmosphere, magnetically stirred, and monitored by thin layer chromatography (TLC) using EMD TLC plates pre-coated with $250 \mu \mathrm{~m}$ thickness silica gel 60 F 254 plates and visualized by fluorescence quenching under UV light. Flash chromatography was performed on Dynamic Adsorbents Silica Gel $40-63 \mu \mathrm{~m}$ particle size using a forced flow of eluent at $0.3-0.5$ bar pressure. ${ }^{1}$ All air- and moisture-sensitive manipulations were performed using oven-dried glassware, including standard Schlenk and glovebox techniques under an atmosphere of nitrogen. Methylene chloride, diethyl ether, toluene, and pentane were purged with nitrogen, dried by passage through activated alumina, and stored over $3 \AA$ molecular sieves. ${ }^{2}$ Benzene, benzene- d_{6}, dioxane and THF were distilled from deep purple sodium benzophenone ketyl. Methylene chloride- d_{2} was dried over CaH_{2} and vacuum-distilled. Acetonitrile and acetonitrile- d_{3} were dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ and vacuumdistilled. Pyridine and tetramethylethylenediamine (TMEDA) were dried over CaH_{2} and distilled. DMSO was distilled from sodium triphenylmethanide and stored over $3 \AA$ sieves. ${ }^{3}$ Acetone was distilled over $\mathrm{B}_{2} \mathrm{O}_{3}$. MeOH was degassed at $-30^{\circ} \mathrm{C}$ under dynamic vacuum ($10^{-4} \mathrm{Torr}$) for one hour and stored over $3 \AA$ sieves. Anhydrous DMF and dioxane bottles equipped with a SureSeal ${ }^{\mathrm{TM}}$ were purchased from Sigma Aldrich®. 18 -Crown- 6 was sublimed. KF was ground finely and dried at $200^{\circ} \mathrm{C}$ under dynamic vacuum (10^{-4} Torr) before use. $\mathrm{Ni}(\mathrm{COD})_{2}$ and all other chemicals were used as received. All deutrated solvents were purchased from Cambridge Isotope Laboratories. $\mathrm{Ni}(\mathrm{COD})_{2}$ and 18 -crown-6 were purchased from Strem Chemicals. (Diacetoxyiodo)benzene, potassium fluoride, 4-methoxypyridine, pyrrolidine, p-toluenesulfonic acid, p-methoxybenzenesulfonamide, and F-TEDA- BF_{4} (Selectfluor ${ }^{\circledR}$) were purchased from Sigma-Aldrich®. TMSOTf and trifluoroacetic acid were purchased from Oakwood Products. NMR spectra were recorded on either a Varian Unity/Inova 600 spectrometer operating at 600 MHz for ${ }^{1} \mathrm{H}$ acquisitions, a Varian Unity/Inova 500 spectrometer operating at 500 MHz and 125 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ acquisitions, respectively, a Varian Mercury 400 spectrometer operating at 375 MHz and 101 MHz for ${ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ acquisitions, respectively, or a Varian Mercury 300 spectrometer operating at 100 MHz for ${ }^{11} \mathrm{~B}$ acquisitions. Chemical shifts were referenced to the residual proton solvent peaks $\left({ }^{1} \mathrm{H}: \mathrm{CDCl}_{3}, \delta 7.26 ; \mathrm{C}_{6} \mathrm{D}_{6}, \delta 7.16 ; \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta 5.32 ; \mathrm{D}_{2} \mathrm{O}, \delta 4.79\right.$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta 2.50 ; \mathrm{CD}_{3} \mathrm{CN}, \delta 1.94\right)$, solvent ${ }^{13} \mathrm{C}$ signals $\left(\mathrm{CDCl}_{3}, \delta 77.16 ; \mathrm{C}_{6} \mathrm{D}_{6}, \delta 128.06 ; \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\left.\delta 53.84 ; \mathrm{CD}_{3} \mathrm{CN}, \delta 1.32,\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta 39.52\right),{ }^{4}$ dissolved or external neat $\mathrm{PhF}\left({ }^{19} \mathrm{~F}, \delta-113.15\right.$ relative to CFCl_{3}) or dissolved 3-nitrofluorobenzene (-112.0 ppm). Signals are listed in ppm, and multiplicity identified as $\mathrm{s}=$ singlet, $\mathrm{br}=$ broad, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, sep $=$ septet, $\mathrm{m}=$ multiplet; coupling constants in Hz; integration. Concentration under reduced pressure was performed by rotary evaporation at $25-30^{\circ} \mathrm{C}$ at appropriate pressure. Purified compounds were further dried under high vacuum ($0.01-0.05$ Torr). Yields refer to purified and spectroscopically pure compounds.

Experimental Data

Synthesis of hypervalent iodine oxidant (6) and (2-(2-pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) complex (8)

1,1'-(phenyl- λ^{3}-iodanediyl)bis(4-methoxypyridinium) bis(trifluoromethanesulfonate) (6) ${ }^{5}$

All manipulations were carried out in a dry box under a N_{2} atmosphere. To (diacetoxyiodo)benzene ($3.00 \mathrm{~g}, 9.31 \mathrm{mmol}, 1.00$ equiv) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}$) in a round-bottom flask was added TMSOTf ($4.14 \mathrm{~g}, 18.6 \mathrm{mmol}, 2.00$ equiv) drop-wise over 1 minute at $23{ }^{\circ} \mathrm{C}$. 4-Methoxypyridine ($2.03 \mathrm{~g}, 18.6 \mathrm{mmol}, 2.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added to the solution drop-wise over 5 minutes. The reaction mixture was then concentrated in vacuo until a white solid was observed. To the reaction mixture was added $100 \mathrm{~mL}^{\text {of }} \mathrm{Et}_{2} \mathrm{O}$ to precipitate a white solid while stirring vigorously, and the resulting solid was collected on a frit. The solid was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and subsequently dried under vacuum to afford 6.52 g of the title compound as a colorless solid (97%).

NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 23^{\circ} \mathrm{C}, \delta$): $8.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 8.60(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.99(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 23^{\circ} \mathrm{C}, \delta$): 172.1, 149.9, 136.1, 135.7, 134.2, 125.7, 121.9 (q, $J=319 \mathrm{~Hz}$, triflate), 115.3, 58.5. ${ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 23^{\circ} \mathrm{C}, 8$): -77.5 . Anal: calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{IN}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$: C, 33.34; H, 2.66; N, 3.89; found: C, 33.05; H, 2.59; N, 3.73.

2-(2-Pyridinyl)aniline (S1)

Under air, to 2-bromopyridine ($4.54 \mathrm{~g}, 28.7 \mathrm{mmol}, 1.00$ equiv) in DME- $\mathrm{H}_{2} \mathrm{O}(1: 1,100 \mathrm{~mL}$) at 23 ${ }^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($5.96 \mathrm{~g}, 43.1 \mathrm{mmol}$, 1.50 equiv), 2-aminophenylboronic acid pinacol ester $(6.30 \mathrm{~g}, 28.7 \mathrm{mmol}, 1.00$ equiv), and tetrakis(triphenylphosphine)palladium ($1.66 \mathrm{~g}, 1.44 \mathrm{mmol}$,
$5.00 \mathrm{~mol} \%$). The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 3.0 h . After cooling to $23^{\circ} \mathrm{C}$, the phases were separated and the aqueous phase was extracted with $\operatorname{EtOAc}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine $(100 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel eluting with hexanes/EtOAc $4: 1$ (v / v) to afford 4.20 g of the title compound as a red-brown oil (86%).
$\mathrm{R}_{f}=0.38$ (hexanes/EtOAc 3:1 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta$): $8.61-8.60(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.19-7.16 (m, 2H), 6.80-6.76 (m, 2H), 5.72 (br s, 2H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta$): $159.5,147.9,146.6,136.9,129.9,129.4,122.2,122.2,121.0,117.6,117.2$. These spectroscopic data correspond to previously reported data. ${ }^{6}$

2-(2-Pyridinyl)-2-nitrobenzenesulfonanilide (S2)

To 2-(2-pyridinyl)aniline (S1) ($851 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added pyridine ($1.60 \mathrm{~mL}, 20.0 \mathrm{mmol}, 4.00$ equiv) and 2 -nitrobenzenesulfonyl chloride (2.20 g , $10.0 \mathrm{mmol}, 2.00$ equiv). The reaction mixture was warmed to $23^{\circ} \mathrm{C}$ and stirred for 2.0 hr before the addition of water $(10 \mathrm{~mL})$. The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$. The combined organic phases were washed with brine (30 mL) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel eluting with hexanes/EtOAc $3: 7$ (v/v) to afford 1.33 g of the title compound as a pale-yellow solid (75\%).
$\mathrm{R}_{f}=0.12$ (hexanes/EtOAc 7:3 (v/v)). Melting Point: 91-94 ${ }^{\circ} \mathrm{C}$. NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): 8.73 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 (dd, $J=7.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.82 (dd, $J=8.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74$ (ddd, $J=7.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.52$ (m, 5H), 7.38 (ddd, $J=7.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.18$ (ddd, $J=7.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta$): 156.9, 156.2, 148.0, 137.9, 136.4, 133.6, 132.2, 131.0, 130.0, 129.0, 127.1, 125.0, 124.7, 122.4, 121.9, 121.9, 110.9. Mass Spectrometry: HRMS-FIA $(\mathrm{m} / \mathrm{z})$: Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}+\mathrm{H}\right]$, 356.06995. Found, 356.07008. These spectroscopic data correspond to previously reported data. ${ }^{7}$

Synthesis of (2-(2-Pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) (8)

To silver(I) oxide ($4.99 \mathrm{~g}, 21.5 \mathrm{mmol}, 0.500$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(200 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ was added 2-(2-pyridinyl)phenyl-2-nitrobenzenesulfonanilide ($\mathbf{S 2}$) ($15.3 \mathrm{~g}, 43.1 \mathrm{mmol}, 1.00$ equiv). After stirring for 12 h at $65^{\circ} \mathrm{C}$, the resulting light gray solid was collected on a frit and dried in vacuo to afford 18.3 g of the title compound as a light gray solid (92%).

Anal: calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{AgN}_{3} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 44.17$; $\mathrm{H}, 2.62$; $\mathrm{N}, 9.09$; found: C, $44.06 ; \mathrm{H}, 2.66 ; \mathrm{N}, 9.00$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were not obtained due to low solubility.

Synthesis of aryl and alkenyl nickel complexes (1a-11)

Synthesis of nickel aryl bromide complex $7 \mathrm{a}^{8}$

To a solution of TMEDA ($83.0 \mathrm{mg}, 0.107 \mathrm{~mL}, 0.717 \mathrm{mmol}, 1.00$ equiv) and 4-bromobiphenyl ($167 \mathrm{mg}, 0.717 \mathrm{mmol}, 1.00$ equiv) in toluene $(4 \mathrm{~mL})$ was added $\mathrm{Ni}(\mathrm{COD})_{2}(200 \mathrm{mg}, 0.717 \mathrm{mmol}$, 1.00 equiv), and the mixture was stirred at room temperature for 2 h . Pentane (16 mL) was added to the mixture and the resulting solid was collected on a frit. The solid was washed with pentane $(3 \times 5 \mathrm{~mL})$ and dried in vacuo to afford 288 mg of the title compound as an orange solid (99\%).

NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right): 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.26(\mathrm{br}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): 142.2, 137.9, 134.6, 128.9, 126.9, 126.5, 123.5, 61.5 (br), 57.4 (br), 59.5 (br), 48.4 (br). Broadness of TMEDA signals in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra was previously reported for a similar nickel complex. ${ }^{8 \mathrm{a}}$ Anal: calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{Ni}$: C, $52.99 ; \mathrm{H}, 6.18$; N, 6.87; found: C, 52.69; H, 6.16; N, 6.84.

Synthesis of nickel aryl complex 1a

7a

1a

To (2-(2-pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) (8) ($0.227 \mathrm{~g}, 0.490 \mathrm{mmol}, 1.00$ equiv) and nickel aryl bromide complex 7 a ($0.200 \mathrm{~g}, 0.490 \mathrm{mmol}, 1.00$ equiv) in a 20 mL vial was added a toluene solution (4 mL) that contained pyridine ($78.0 \mathrm{mg}, 79.0 \mu \mathrm{~L}, 0.980 \mathrm{mmol}, 2.00$ equiv) at $23{ }^{\circ} \mathrm{C}$, followed by addition of acetonitrile (1 mL). After stirring for 1 min at 23 , the solution was filtered through a glass frit, and the filtered cake was extracted further with dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined filtrate was concentrated in vacuo and the resulting residue was dissolved in dichloromethane (8 mL), the solution was filtered through a pad of Celite, and the filtrate was concentrated in vacuo. The resulting residue was recrystallized by dissolving the solid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and layering with pentane (17 mL). After one hour, the solid was collected by filtration to afford 0.256 g of the title compound as a yellow solid (81\%).
NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 9.17 (d, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}$), $8.25(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.21-6.97(\mathrm{~m}, 10 \mathrm{H}), 6.61-6.59$ (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 156.0, 154.9, 152.7, 151.4, 147.0, 141.6, 141.2, 137.2, $136.7,136.5,135.8,135.6,135.5,131.6,130.4,130.2,129.9,128.7,128.6,128.3,126.6,126.4$, 124.4, 124.3, 124.2, 122.8, 122.6, 121.8. Anal: calcd for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{NiO}_{4} \mathrm{~S}: \mathrm{C}, 63.28 ; \mathrm{H}, 4.06$; N , 8.68; found: C, 63.02; H, 4.31; N, 8.48.

Synthesis of nickel aryl bromide complex 7b

To a solution of TMEDA ($104 \mathrm{mg}, 0.133 \mathrm{~mL}, 0.896 \mathrm{mmol}, 1.00$ equiv) and 2-bromofluorene (220 $\mathrm{mg}, 0.896 \mathrm{mmol}, 1.00$ equiv) in toluene (4 mL) was added $\mathrm{Ni}(\mathrm{COD})_{2}(250 \mathrm{mg}, 0.896 \mathrm{mmol}, 1.00$ equiv), and the mixture was stirred at room temperature for 2 h . Pentane (16 mL) was added to the mixtures and the resulting solid was collected on a frit. The solid was washed with pentane (3 $\times 5 \mathrm{~mL}$) and dried in vacuo to afford 348 mg of the title compound as a pink solid (92%).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right): 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.45 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.55-2.23$ (br, 16 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): 143.1, 142.4, 140.3, 136.3, 135.0, 134.0, 126.6, 125.6, 125.1, 118.9, 116.1, 61.4 (br), 57.3 (br), 49.4 (br), 48.3 (br), 36.5. Anal: calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{Ni}^{\text {: }}$ C, 54.33; H, 6.00; N, 6.67; found: C, 53.98; H, 5.85; N, 6.56.

Synthesis of nickel aryl complex 1b

7b

95\%

1b

To (2-(2-pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) (8) ($110 \mathrm{mg}, 0.238 \mathrm{mmol}, 1.00$ equiv) and nickel aryl bromide complex $7 \mathbf{b}$ ($100 \mathrm{mg}, 0.238 \mathrm{mmol}, 1.00$ equiv) in a 20 mL vial was added a toluene solution $(4 \mathrm{~mL})$ that contained pyridine ($37.7 \mathrm{mg}, 38.4 \mu \mathrm{~L}, 0.476 \mathrm{mmol}, 2.00$ equiv) at $23^{\circ} \mathrm{C}$, followed by addition of acetonitrile (0.5 mL). After stirring for 1 min at 23 , the solution was filtered through a glass frit, and the filtered cake was extracted further with dichloromethane $(3 \times 3 \mathrm{~mL})$. The combined filtrate was concentrated in vacuo, and the resulting residue was purified by chromatography on silica gel eluting with hexanes/EtOAc 1:2 (v/v) and further recrystallized by dissolving the solid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and layering with pentane (20 mL) to afford 0.148 g of the title compound as a yellow solid (95%).
$\mathrm{R}_{f}=0.53$ (hexanes/EtOAc 1:2 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): $9.18(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.37(\mathrm{~m}$, 2H), 7.29-7.21 (m, 3H), 7.16-7.07 (m, 6H), 7.02-6.97 (m, 2H), 6.57-6.54 (m, $J=6.3,1 \mathrm{H}), 3.72-$ $3.58(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta$): $156.0,155.2,152.6,151.4,147.0,142.6$, $142.2,141.3,141.0,137.1,137.1,136.7,136.6,135.6,133.0,131.8,131.6,130.4,130.2,129.9$, 128.7, 128.3, 126.5, 125.6, 124.9, 124.4, 124.1, 122.8, 122.7, 121.7, 118.9, 117.1, 36.4. Anal: calcd for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{NiO}_{4} \mathrm{~S} \cdot\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{0.1}$: C, 63.31; H, 3.97; N, 8.41; found: C, 63.04; H, 4.18; N,
8.36.

Synthesis of nickel aryl bromide complex 7c

To a solution of TMEDA ($122 \mathrm{mg}, 0.157 \mathrm{~mL}, 1.05 \mathrm{mmol}, 1.00$ equiv) and tert-butyl 5-bromoindole-1-carboxylate ($311 \mathrm{mg}, 1.05 \mathrm{mmol}, 1.00$ equiv) in toluene (5 mL) was added $\mathrm{Ni}(\mathrm{COD})_{2}$ ($293 \mathrm{mg}, 1.05 \mathrm{mmol}, 1.00$ equiv), and the mixture was stirred at room temperature for 3 h . Pentane (16 mL) was added to the mixtures and the resulting solid was collected on a frit. The solid was washed with pentane ($3 \times 5 \mathrm{~mL}$) and dried in vacuo to afford 491 mg of the title compound as a peach solid (99\%).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): $7.64(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.21(\mathrm{br}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right): 150.3,132.9,129.3,129.0,128.5,124.2,111.8,106.4,83.1,61.4$ (br), 57.3 (br), 49.3 (br), 48.4 (br), 28.0. Anal: calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{BrN}_{3} \mathrm{NiO}_{2}: \mathrm{C}, 48.44 ; \mathrm{H}, 6.42$; $\mathrm{N}, 8.92$; found: C, 48.14; H, 6.22; N, 8.84.

Synthesis of nickel aryl complex 1c

7c

93\%

1c

To (2-(2-pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) (8) ($98.0 \mathrm{mg}, 0.212 \mathrm{mmol}, 1.00$ equiv) and nickel aryl bromide complex 7 c ($100 \mathrm{mg}, 0.212 \mathrm{mmol}, 1.00$ equiv) in a 20 mL vial was added a toluene solution (3 mL) that contained pyridine ($33.6 \mathrm{mg}, 34.2 \mu \mathrm{~L}, 0.425 \mathrm{mmol}, 2.00$ equiv) at $23^{\circ} \mathrm{C}$, followed by addition of acetonitrile $(0.5 \mathrm{~mL})$. After stirring for 1 min at 23 , the solution was filtered through a glass frit, and the filtered cake was extracted further with
dichloromethane $(3 \times 3 \mathrm{~mL})$. The combined filtrate was concentrated in vacuo and the resulting residue was purified by chromatography on silica gel eluting with hexanes/EtOAc 1:2 (v/v) and further recrystallized by dissolving the solid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and layering with pentane (20 mL) to afford 140 mg of the title compound as a yellow solid (93\%).
$\mathrm{R}_{f}=0.53$ (hexanes/EtOAc 1:2 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): 9.10 (d, $J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.16$ (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.39$ (m, 6H), 7.33-7.29 (m, 2H), 7.21$7.18(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.00(\mathrm{~m}, 5 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.48-6.47(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=4.3,1 \mathrm{H})$, 1.50 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta$): 156.0, 152.7, 151.5, 150.1, 147.0, 146.8, $141.3,137.0,136.6,136.6,135.7,131.6,130.7,130.4,130.1,129.9,129.3,128.8,128.3,126.7$, $124.4,124.3,124.1,122.8,122.6,121.7,112.6,83.1,28.0$. Anal: calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{NiO}_{6} \mathrm{~S}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{0.1}: \mathrm{C}, 58.81 ; \mathrm{H}, 4.39 ; \mathrm{N}, 9.77$; found: C, $58.49 ; \mathrm{H}, 4.39 ; \mathrm{N}, 9.81$. X-ray quality crystals were obtained from $2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution that contained 10.0 mg of the title compound slowly layered with 8.0 mL pentane at $23^{\circ} \mathrm{C}$. For crystallography data, see X-ray section.

Synthesis of nickel aryl bromide complex 7d

To a solution of TMEDA ($83.0 \mathrm{mg}, 0.107 \mathrm{~mL}, 0.717 \mathrm{mmol}, 1.00$ equiv) and 4bromobenzophenone ($187 \mathrm{mg}, 0.717 \mathrm{mmol}, 1.00$ equiv) in toluene (4 mL) was added $\mathrm{Ni}(\mathrm{COD})_{2}$ ($200 \mathrm{mg}, 0.717 \mathrm{mmol}, 1.00$ equiv), and the mixture was stirred at room temperature for 15 min . Pentane (16 mL) was added to the mixtures and the resulting solid was collected on a frit. The solid was washed with pentane ($3 \times 5 \mathrm{~mL}$) and dried in vacuo to afford 305 mg of the title compound as an orange solid (98%).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): 7.77 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.52$ (m, $1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.22(\mathrm{br}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): 197.3, 162.4, 139.2, 137.4, 131.7, 129.9, 128.3, 125.6, 111.0, 61.5 (br), 57.4 (br), 49.7 (br), 48.4 (br), 36.5. Anal: calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{NiO}$ (PhMe) ${ }_{0.1}$: C, 53.15; H, 5.84; N, 6.29; found: C, 53.41; H, 5.84; N, 6.18 .

Synthesis of nickel aryl complex 1d

7d

45\%

To (2-(2-pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) (8) ($212 \mathrm{mg}, 0.459 \mathrm{mmol}, 1.00$ equiv) and nickel aryl bromide complex $7 \mathbf{d}(200 \mathrm{mg}, 0.459 \mathrm{mmol}, 1.00$ equiv) in a 20 mL vial was added a toluene solution $(4 \mathrm{~mL})$ that contained pyridine $(78.0 \mathrm{mg}, 79.0 \mu \mathrm{~L}, 0.980 \mathrm{mmol}, 2.00$ equiv) at $23{ }^{\circ} \mathrm{C}$, followed by addition of acetonitrile (1.0 mL). After stirring for 1 min at 23 , the solution was filtered through a glass frit, and the filtered cake was extracted further with dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined filtrate was concentrated in vacuo and the resulting residue was purified by chromatography on silica gel eluting with hexanes/EtOAc 1:2 (v/v) and further recrystallized by dissolving the solid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and layering with pentane (20 mL) to afford 138 mg of the title compound as a yellow solid (45\%).
$\mathrm{R}_{f}=0.41$ (hexanes/EtOAc 1:2 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}$, §): 9.13 (d, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.17$ (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.56(\mathrm{~m}, 5 \mathrm{H})$, $7.52-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.02(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.67-6.64(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, \delta$): 197.1, 169.1, 156.2, 152.5, 151.5, 147.3, 141.2, 138.8, 138.0, 137.4, 136.6, 136.0, 135.6, 132.8, 131.9, $131.8,130.9,130.8,130.3,130.0,128.8$, 128.7, 128.3, 126.9, 124.8, 124.6, 123.4, 123.0, 122.4. Anal: calcd for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{NiO}_{5} \mathrm{~S}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{0.15}$: C, $61.53 ; \mathrm{H}, 3.86 ; \mathrm{N}, 8.17$; found: C, 61.19; H, 4.20; N, 8.58.

Synthesis of nickel aryl bromide complex 7e

To a solution of TMEDA ($83.0 \mathrm{mg}, 0.107 \mathrm{~mL}, 0.717 \mathrm{mmol}, 1.00$ equiv) and 1 -bromo-2cyclohexylbenzene ($171 \mathrm{mg}, 0.717 \mathrm{mmol}, 1.00$ equiv) in toluene $(4 \mathrm{~mL})$ was added $\mathrm{Ni}(\mathrm{COD})_{2}$
($200 \mathrm{mg}, 0.717 \mathrm{mmol}, 1.00$ equiv), and the mixture was stirred at room temperature for 6 h . Pentane (16 mL) was added to the mixtures and the resulting solid was collected on a frit. The solid was washed with pentane ($3 \times 5 \mathrm{~mL}$) and dried in vacuo to afford 208 mg of the title compound as a pink solid (70\%).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): $7.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.68-6.62(\mathrm{~m}, 3 \mathrm{H}), 5.55-5.45(\mathrm{~m}, 1 \mathrm{H})$, $2.75-2.23(\mathrm{br}, 16 \mathrm{H}), 2.05-1.73(\mathrm{~m}, 8 \mathrm{H}), 2.05-1.73(\mathrm{~m}, 8 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): 153.3, 143.2, 136.8, 123.1, 123.0, 122.3, 61.4 (br), 57.2 (br), 50.8 (br), 49.9, 48.9 (br), 48.2 (br), 47.5 (br), 35.8 (br), 34.3 (br), 28.4 (br), 27.2. Anal: calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{Ni}$: C, 52.21; H, 7.55; N, 6.77; found: C, 51.87; H, 7.43; N, 6.73.

Synthesis of nickel aryl complex 1e

$7 e$

$1 \mathbf{1 e}$

To (2-(2-pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) (8) ($223 \mathrm{mg}, 0.483 \mathrm{mmol}, 1.00$ equiv) and nickel aryl bromide complex 7 e ($200 \mathrm{mg}, 0.483 \mathrm{mmol}, 1.00$ equiv) in a 20 mL vial was added a toluene solution (4 mL) that contained pyridine ($76.0 \mathrm{mg}, 78.0 \mu \mathrm{~L}, 0.966 \mathrm{mmol}, 2.00$ equiv) at $23^{\circ} \mathrm{C}$, followed by addition of acetonitrile $(1.0 \mathrm{~mL})$. After stirring for 1 min at 23 , the solution was filtered through a glass frit, and the filtered cake was extracted further with dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined filtrate was concentrated in vacuo and the resulting residue was purified by chromatography on silica gel eluting with hexanes/EtOAc 1:2 (v/v) and further recrystallized by dissolving the solid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and layering with pentane (20 mL) to afford 146 mg of the title compound as a yellow solid (46\%).
$\mathrm{R}_{f}=0.66$ (hexanes/EtOAc 1:2 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): 9.09 (d, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.33(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.46(\mathrm{~m}, 4 \mathrm{H})$, $7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.73-6.70(\mathrm{~m}, 1 \mathrm{H})$, 6.59-6.56 (m, 1H), 6.49 (d, $J=7.4,1 \mathrm{H}), 4.86-4.82(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.01(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125, $\left.\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta\right): 156.2,156.1,153.1,151.8,151.2,147.0,141.2,137.0,136.6,135.4$, $134.2,131.8,130.3,130.1,129.8,128.9,128.6,125.1,124.1,124.0,123.0,122.7,122.5,121.7$, 49.0, 35.5, 34.5, 27.4, 26.9, 26.4. Anal: calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{NiO}_{4} \mathrm{~S}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{0.1}: \mathrm{C}, 62.07 ; \mathrm{H}, 4.92$; N, 8.49; found: C, 61.91; H, 4.92; N, 8.69.

4-bromophenethyl benzoate (S3)

To a mixture of 2-(4-bromophenyl)ethanol $\left(1.00 \mathrm{~g}, 4.97 \mathrm{mmol}, 1.00\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.763 \mathrm{ml}$, $0.554 \mathrm{~g}, 5.47 \mathrm{mmol}, 1.10$ equiv) in a round-bottom flask in THF (20 ml) was added benzoyl chloride ($0.589 \mathrm{~mL}, 0.713 \mathrm{~g}, 5.07 \mathrm{mmol}, 1.02$ equiv). The reaction mixture was stirring for 4 h at $23{ }^{\circ} \mathrm{C}$ and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with hexanes/EtOAc $1: 1(\mathrm{v} / \mathrm{v})$ to afford 1.50 g of the title compound as a colorless solid (99\%).
$\mathrm{R}_{f}=0.70$ (hexanes/EtOAc 1:1 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): $8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta\right): 166.6,137.1$, 133.1, 131.8, 130.8, 130.3, 129.7, 128.5, 120.6, 65.2, 34.8. HRMS-FIA (m/z): calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}, 326.9991\right.$; found, 327.0007.

Synthesis of nickel aryl bromide complex $7 f$

To a solution of TMEDA ($83 \mathrm{mg}, 0.107 \mathrm{~mL}, 0.717 \mathrm{mmol}, 1.00$ equiv) and 4-bromophenethyl benzoate ($219 \mathrm{mg}, 0.717 \mathrm{mmol}, 1.00$ equiv) in toluene (4 mL) was added $\mathrm{Ni}(\mathrm{COD})_{2}(200 \mathrm{mg}$, $0.717 \mathrm{mmol}, 1.00$ equiv), and the mixture was stirred at room temperature for 1.5 h . Pentane (16 mL) was added to the mixtures and the resulting solid was collected on a frit. The solid was washed with pentane $(3 \times 5 \mathrm{~mL})$ and dried in vacuo to afford 208 mg of the title compound as an orange-pink solid (90%).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): $7.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 4 \mathrm{H})$, $6.77(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.15(\mathrm{br}, 16 \mathrm{H}) .$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): 166.4, 142.4, 137.3, 132.9, 130.8, 130.8, 129.6, 128.5, 125.7, 66.4, 61.1 (br), 57.2 (br), 49.3 (br), 49.2 (br), 34.5. Anal: calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{BrN}_{2} \mathrm{NiO}_{2}$: C, 52.54; H , 6.09; N, 5.84; found: C, 52.81; H, 5.95; N, 5.53.

Synthesis of nickel aryl complex if

7f

$$
51 \%
$$

$1 f$

To (2-(2-pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) (8) (193 mg, $0.417 \mathrm{mmol}, 1.00$ equiv) and nickel aryl bromide complex $7 \mathbf{7 f}(200 \mathrm{mg}, 0.417 \mathrm{mmol}, 1.00$ equiv) in a 20 mL vial was added a toluene solution (4 mL) that contained pyridine ($65.9 \mathrm{mg}, 67.1 \mu \mathrm{~L}, 0.833 \mathrm{mmol}, 2.00$ equiv) at $23^{\circ} \mathrm{C}$, followed by addition of acetonitrile (1.0 mL). After stirring for 1 min at 23 , the solution was filtered through a glass frit, and the filtered cake was extracted further with dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined filtrate was concentrated in vacuo and the resulting residue was purified by chromatography on silica gel eluting with hexanes/EtOAc 1:2 (v/v) to afford 152 mg of the title compound as a yellow solid (51%).
$\mathrm{R}_{f}=0.52$ (hexanes/EtOAc 1:2 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): $9.13(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 5 \mathrm{H})$, $7.41-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 5 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=7.6,2 \mathrm{H}), 6.57-6.54(\mathrm{~m}$, $1 \mathrm{H}), 4.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz} \mathrm{CDCl}{ }_{3} 23^{\circ} \mathrm{C}, \delta$): 166.7, 156.0, 152.6, 152.3, 151.5, 147.1, 141.3, 137.1, 136.7, 136.6, 136.3, 135.6, 135.5, 132.9, $131.8,131.6,130.6,130.4,130.1,129.8,129.6,128.8,128.5,128.4,128.3,127.2,126.7,124.3$, 124.1, 122.8, 122.6, 121.7, 66.1, 34.6. Anal: calcd for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NiO}_{6} \mathrm{~S}: \mathrm{C}, 61.94 ; \mathrm{H}, 4.21$; N , 7.81; found: C, 61.58; H, 4.16; N, 7.47.

Synthesis of 3-deoxy-3-bromoestrone (S4)

To 3-pinacolatoboroestra-1,3,5-(10)-triene-17-one ($3.50 \mathrm{~g}, 9.20 \mathrm{mmol}, 1.00$ equiv) ${ }^{9}$ in a roundbottom flask in MeOH (70 ml) was added copper(II) bromide ($11.0 \mathrm{~g}, 49.2 \mathrm{mmol}, 5.00$ equiv) in $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{~mL})$ in one portion. The reaction mixture was stirred at reflux for 3 d . The reaction
mixture was cooled to $23{ }^{\circ} \mathrm{C}$ and subsequently poured into $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. The colorless precipitate was collected on a frit, followed by washing with water $(3 \times 30 \mathrm{~mL}) . \mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ mL) was added to the solid and the solution was filtered though a pad of Celite. The filtrate was concentrated, triturated with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and dried to afford 2.60 g of the title compound as a colorless solid (85% yield).
NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta\right): 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H})$, $7.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.21-1.98(\mathrm{~m}$, $4 \mathrm{H}), 1.69-1.41(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): 220.7, 139.0, 138.9, $131.8,128.8,127.3,119.7,50.5,48.0,44.2,38.0,35.9,31.6,29.3,26.4,25.8,21.7,13.9$. HRMSFIA (m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrO}[\mathrm{M}+\mathrm{Na}]^{+}, 333.0849$; found, 333.0861 .

Synthesis of nickel aryl bromide complex 7 g

79
To a solution of TMEDA ($83.0 \mathrm{mg}, 0.134 \mathrm{~mL}, 0.896 \mathrm{mmol}, 1.00$ equiv) and 3-deoxy-3bromoestrone ($299 \mathrm{mg}, 0.896 \mathrm{mmol}, 1.00$ equiv) in toluene (5 mL) was added $\left(\mathrm{Ni}(\mathrm{COD})_{2}(200\right.$ $\mathrm{mg}, 0.896 \mathrm{mmol}, 1.00$ equiv), and the mixture was stirred at room temperature for 2 h . Pentane $(16 \mathrm{~mL})$ was added to the mixtures and the resulting solid was collected on a frit. The solid was washed with pentane ($3 \times 5 \mathrm{~mL}$) and dried in vacuo to afford 406 mg of the title compound as a peach solid (89\%).

NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): $7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.16(\mathrm{~s}, 1 \mathrm{H}), 6.73$ (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (br s, 2H), 2.52-2.23 (br, 18H), 2.10-1.85 (m, 6H), 1.59-1.29 (4H), 0.87 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): 220.9, 137.8, 135.0, 133.1, 133.1, 121.9, 110.9, 61.4 (br), 57.3 (br), 50.9, 49.4 (br), 48.3, 44.3, 38.8 (br), 36.1, 32.1, 29.7, 27.2, 26.1, 21.8, 14.0. Anal: calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{BrN}_{2} \mathrm{NiO}: \mathrm{C}, 56.73 ; \mathrm{H}, 7.34$; N, 5.51 ; found: C, $52.92 ; \mathrm{H}, 6.91$; N, 5.50. Numerous attempts (recrystallization using different solvents) were made to obtain satisfactory elemental analysis data but none of them was successful. However, this material was of sufficient quality to allow preparation of analytically pure $\mathbf{1 g}$ (see below). HRMS-FIA (m / z): calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{NiO}[\mathrm{M}-\mathrm{Br}]^{+}, 427.2259$; found, 427.2263.

Synthesis of nickel aryl complex 1 g

7g

51\%

To (2-(2-pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) (8) (193 mg, $0.417 \mathrm{mmol}, 1.00$ equiv) and nickel aryl bromide complex $7 \mathbf{g}(200 \mathrm{mg}, 0.417 \mathrm{mmol}, 1.00$ equiv) in a 20 mL vial was added a toluene solution (4 mL) that contained pyridine $(65.9 \mathrm{mg}, 67.1 \mu \mathrm{~L}, 0.833 \mathrm{mmol}, 2.00$ equiv) at $23^{\circ} \mathrm{C}$, followed by addition of acetonitrile $(1.0 \mathrm{~mL})$. After stirring for 1 min at 23 , the solution was filtered through a glass frit, and the filtered cake was extracted further with dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined filtrate was concentrated in vacuo and the resulting residue was purified by chromatography on silica gel eluting with hexanes/EtOAc 1:2 (v/v) and further recrystallized by dissolving the solid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and layering with pentane (20 mL) to afford 152 mg of the title compound as a yellow solid (51%).
$\mathrm{R}_{f}=0.35$ (hexanes/EtOAc 1:2 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta$): $9.14(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.28-8.26(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.16-6.97(\mathrm{~m}$, $9 \mathrm{H}), 6.66-6.62(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.21-1.85(\mathrm{~m}, 6 \mathrm{H}), 1.55-1.27$ $(4 \mathrm{H}), 0.82(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz} \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta\right): 221.3,156.0,152.7,152.7,151.5$, $150.7,150.6,147.0,141.3,137.0,136.6,135.9,135.8,135.7,133.9,133.8,133.7,133.1,132.9$, $131.6,131.3,130.5,130.4,130.1,129.7,128.8,128.4,128.3,124.4,124.2,124.1,122.8,122.7$, $122.7,122.6,121.7,50.7,48.2,44.2,44.2,38.4,38.3,36.0,31.8,29.5,29.5,26.9,25.6,25.6,21.7$, 14.0. Anal: calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{NiO}_{5} \mathrm{~S}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{0.1}$: C, $63.88 ; \mathrm{H}, 5.11$; N, 7.43; found: C, 63.62; H , 5.26; N, 7.06.

5-Bromo-2-(cyclopropylmethoxy)benzaldehyde (S5) ${ }^{9}$

To 5-bromo-2-hydroxybenzaldehyde ($1.00 \mathrm{~g}, 4.97 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.44 \mathrm{~g}, 24.9$
mmol, 5.00 equiv) in THF (10 mL) in an oven-dried round-bottom flask fitted with a reflux condenser under a N_{2} atmosphere at $23{ }^{\circ} \mathrm{C}$ was added (bromomethyl)cyclopropane ($1.01 \mathrm{~g}, 0.724$ $\mathrm{mL}, 7.46 \mathrm{mmol}, 1.50$ equiv). The reaction mixture was warmed in an oil heating bath at a temperature of $70^{\circ} \mathrm{C}$ and heated at reflux with vigorous stirring for 40 hours. The reaction mixture was cooled to $23^{\circ} \mathrm{C}$ and poured into $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ in a separatory funnel. $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ was added, the funnel was shaken and the organic phase collected. The aqueous phase was then extracted with $\mathrm{CHCl}_{3}(2 \times 30 \mathrm{~mL})$. The combined organic phases were washed with brine (30 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with $2-7 \%$ EtOAc in hexanes (v/v) to afford 1.05 g of the title compound as a colorless solid (83% yield).
$\mathrm{R}_{f}=0.30$ (hexanes/EtOAc 19:1 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$, §): 10.45 ($\mathrm{s}, 1 \mathrm{H}$), $7.91(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.71-0.63(\mathrm{~m}, 2 \mathrm{H}), 0.41-0.34(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): 188.7, 160.5, 138.3, 130.9, 126.5, 115.0, 113.5, 73.9, 10.1, 3.4. HRMS-FIA (m / z): calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 276.9840; found, 276.9820 .

(E)-ethyl 3-(5-bromo-2-(cyclopropylmethoxy)phenyl)acrylate (S6)

To 5-bromo-2-(cyclopropylmethoxy)benzaldehyde ($\mathbf{S 5}$) ($3.10 \mathrm{~g}, 12.2 \mathrm{mmol}, 1.00$ equiv) and LiCl $\left(0.541 \mathrm{~g}, 12.8 \mathrm{mmol}, 1.05\right.$ equiv) in $\mathrm{MeCN}(45 \mathrm{~mL})$ in a round-bottom flask under a N_{2} atmosphere at $0^{\circ} \mathrm{C}$ was added triethyl phosphonoacetate $(3.00 \mathrm{~g}, 2.68 \mathrm{~mL}, 13.4 \mathrm{mmol}, 1.10$ equiv) and 1,8-diazabicycloundec-7-ene (DBU) ($2.04 \mathrm{~g}, 2.02 \mathrm{~mL}, 13.4 \mathrm{mmol}, 1.10$ equiv). Upon the addition of DBU, the reaction mixture turned yellow. The reaction mixture was warmed to 23 ${ }^{\circ} \mathrm{C}$ and stirred for 15 hours. The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL})$ in a separatory funnel. $\mathrm{CHCl}_{3}(75 \mathrm{~mL})$ was added and the funnel was shaken and the organic phase collected. The aqueous phase was extracted from with $\mathrm{CHCl}_{3}(2 \times 50 \mathrm{~mL})$. All organic phases were combined and washed with brine (50 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with $5-10 \%$ EtOAc in hexanes (v / v) to afford 3.89 g of the title compound as a colorless solid (98% yield).
$\mathrm{R}_{f}=0.25$ (hexanes/EtOAc 19:1 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ}{ }^{\circ} \mathrm{C}$, ס): 7.93 (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (dd, $J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, 8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.34-1.25$ $(\mathrm{m}, 4 \mathrm{H}), 0.70-0.61(\mathrm{~m}, 2 \mathrm{H}), 0.40-0.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta$): 167.3, $156.9,138.7,133.7,131.3,125.9,120.0,114.4,113.0,73.9,60.6,14.4,10.2,3.4$. HRMS-FIA
$(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 325.0439$; found, 325.0428.
(E)-3-(5-bromo-2-(cyclopropylmethoxy)phenyl)prop-2-en-1-ol (S7)

To (E)-ethyl 3-(5-bromo-2-(cyclopropylmethoxy)phenyl)acrylate (S6) (3.78 g, $11.6 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{PhMe}(30 \mathrm{~mL})$ in a flame-dried round-bottom flask under a N_{2} atmosphere at $-78{ }^{\circ} \mathrm{C}$ was added a 1.0 M solution of diisobutylaluminum hydride (DIBAL-H) in PhMe ($26 \mathrm{~mL}, 26$ mmol, 2.2 equiv) in 6 portions dropwise every 10 minutes for 1 hour. The reaction was warmed to $0^{\circ} \mathrm{C}$ over 2 hours and then warmed to $23^{\circ} \mathrm{C}$ and stirred at this temperature for 1 hour. The reaction mixture was poured onto a concentrated aqueous Rochelle's salt (potassium sodium tartrate) solution (400 mL). EtOAc (400 mL) was added and the mixture was stirred for 3 hour until two liquid phases separated cleanly. The phases were partitioned and the aqueous phase was extracted from with EtOAc (300 mL). The organic phases were combined and washed with brine (200 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with a gradient of $10-25 \%$ EtOAc in hexanes (v / v) to afford 2.77 g of the title compound as a colorless solid (84% yield).
$\mathrm{R}_{f}=0.15$ (hexanes/EtOAc 6:1 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): $7.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.39$ (dt, $J=16.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ (br dd, $J=4.6,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.71(\mathrm{brt}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 1 \mathrm{H}), 0.68-0.58(\mathrm{~m}, 2 \mathrm{H}), 0.38-0.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta$): 155.4, 131.2, 130.5, 129.7, 128.2, 125.0, 114.2, 113.2, 73.7, 64.1, 10.3, 3.4. HRMS-FIA (m/z): calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 305.0153; found, 305.0123.
((1S,2S)-2-(5-bromo-2-(cyclopropylmethoxy)phenyl)cyclopropyl)methanol (S8)

Following a published procedure for asymmetric allylic cyclopropanation: ${ }^{10}$ To dimethoxyethane (DME) ($1.39 \mathrm{~g}, 1.60 \mathrm{~mL}, 15.4 \mathrm{mmol}, 1.90$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ in a flame-dried round-
bottom flask under a N_{2} atmosphere cooled in an ethyleneglycol/ CO_{2} bath at $-15^{\circ} \mathrm{C}$ was added diethylzinc ($2.01 \mathrm{~g}, 1.67 \mathrm{~mL}, 16.3 \mathrm{mmol}, 2.00$ equiv), while maintaining the bath temperature between -15 and $-10^{\circ} \mathrm{C} . \mathrm{CH}_{2} \mathrm{I}_{2}(8.70 \mathrm{~g}, 2.62 \mathrm{~mL}, 32.5 \mathrm{mmol}, 4.00$ equiv) was added dropwise over 20 minutes at $-15^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for 10 minutes. A solution of ($4 R, 5 R$)-2-butyl- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,3,2-dioxaborolane-4,5-dicarboxamide ($2.63 \mathrm{~g}, 2.46$ $\mathrm{mL}, 9.75 \mathrm{mmol}, 1.20$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ from a separate flame-dried round-bottom flask under a N_{2} atmosphere was added over 5 minutes via syringe. A solution of (E)-3-(5-bromo-2-(cyclopropylmethoxy)phenyl)prop-2-en-1-ol (S7) ($2.30 \mathrm{~g}, 8.12 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) from a separate flame-dried round-bottom flask under a N_{2} atmosphere was added over 5 minutes via syringe. The reaction mixture was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for 20 hours. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) and $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ were added to the reaction mixture. The reaction mixture was transferred to a separatory funnel. Diethyl ether (200 mL) was added and the separatory funnel was shaken and the organic phase was separated. The aqueous phase was extracted from with diethyl ether (200 mL) and then again with diethyl ether $(100 \mathrm{~mL})$. The combined organic phases were transferred to an Erlenmeyer flask. 2 M NaOH solution (60 mL) and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution (15 mL) were added. The reaction mixture was stirred vigorously for 5 minutes. The reaction mixture was transferred into a separatory funnel and partitioned. The organic phase was washed with 1.0 M aqueous $\mathrm{HCl}(75 \mathrm{~mL})$, saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (75 mL), saturated aqueous NaHCO_{3} solution (75 mL) and brine $(75 \mathrm{~mL}$). The organic phase was dried with MgSO_{4}, and concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with a gradient of $10-30 \%$ EtOAc in hexanes (v / v) to afford 2.21 g of the title compound as a colorless oil (92% yield and 96% ee as determined on a Chiracel ODH column with 5\% isopropanol/hexanes eluent (see Figure S4). Racemic S8 was synthesized using the above procedures omitting the addition of $(4 R, 5 R)$-2-butyl- $N, N, N^{\prime}, N^{\prime}$ 'tetramethyl-1,3,2-dioxaborolane-4,5-dicarboxamide. Absolute stereochemistry was assigned by analogy. ${ }^{10}$
$\mathrm{R}_{f}=0.20$ (hexanes/EtOAc 6:1 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): 7.24 (dd, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{ddd}, J=$ $10.7,8.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{ddd}, J=10.7,10.7,2.0,1 \mathrm{H}), 2.40(\mathrm{dd}, J=$ $8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{ddd}, J=8.5,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}) 1.34-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.15(\mathrm{~m}, 1 \mathrm{H})$, $1.14-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{ddd}, J=9.0,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.71-0.65(\mathrm{~m}, 2 \mathrm{H}), 0.40-0.34(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta$): 157.2, 132.4, 130.2, 129.9, 112.8, 112.6, 73.6, 67.3, 24.5, 17.2, 10.2, 9.9, 3.7, 3.2. HRMS-FIA (m/z): calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 319.0310$; found, 319.0327.

Figure S1: Enantiodiscriminating HPLC trace of S8

HPLC method: Chiracel ODH column with 5\% isopropanol/hexanes eluent for racemic $\mathbf{S 8}$ and enantioenriched S8. Percent of total integration listed for each peak.

2-((1S,2S)-2-(azidomethyl)cyclopropyl)-4-bromo-1-(cyclopropylmethoxy)benzene (S9)

To ((1S,2S)-2-(5-bromo-2-(cyclopropylmethoxy)phenyl)cyclopropyl)methanol (S8) ($2.15 \mathrm{~g}, 7.23$ mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ in an oven-dried round-bottom flask under a N_{2} atmosphere at $0^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(2.20 \mathrm{~g}, 3.03 \mathrm{~mL}, 21.7 \mathrm{mmol}, 3.00$ equiv $)$ and $\mathrm{MsCl}(1.66 \mathrm{~g}$, $1.13 \mathrm{~mL}, 14.5 \mathrm{mmol}, 2.00$ equiv). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture turned yellow and a precipitate formed. The reaction mixture was poured into a separatory funnel with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(40 \mathrm{~mL})$. The funnel was shaken and the organic phase collected. The aqueous phase was extracted from with diethyl ether ($3 \times 75 \mathrm{~mL}$). The organic phases were combined and washed with saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried with MgSO_{4}, and concentrated in vacuo. The residue was dissolved in DMF (30 mL) and $\mathrm{NaN}_{3}\left(1.88 \mathrm{~g}, 28.9 \mathrm{mmol}, 4.00\right.$ equiv) was added. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 1 hour. The reaction mixture was cooled and poured into 60 mL of water. The reaction mixture was extracted from with diethyl ether $(3 \times 75 \mathrm{~mL})$. The combined organic phases were washed with brine (100 mL), dried with MgSO_{4}, and concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with a gradient of 5-10\% EtOAc in hexanes (v / v) to afford 1.95 g of the title compound as a colorless oil (84% yield).
$\mathrm{R}_{f}=0.60$ (hexanes/EtOAc 19:1 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$, ס): $7.21(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.78(\mathrm{~m}$,
$2 \mathrm{H}), 3.40(\mathrm{dd}, J=12.8,6.4,1 \mathrm{H}), 3.24(\mathrm{dd}, J=12.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (ddd, $J=8.7,5.0,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.08-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.68-0.58(\mathrm{~m}$, $2 \mathrm{H}), 0.40-0.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta\right): 156.9,132.8,129.5,128.8,113.4$, 112.9, 73.3, 55.3, 20.8, 16.2, 12.8, 10.4, 3.3, 3.2. HRMS-FIA (m/z): calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{NaO}$ [M $+\mathrm{Na}]^{+}, 344.0374$; found, 344.0363.

t-Butyl (((1S,2S)-2-(5-bromo-2-(cyclopropylmethoxy)phenyl)cyclopropyl)methyl) carbamate $(S 10){ }^{9}$

To 2-((1S,2S)-2-(azidomethyl)cyclopropyl)-4-bromo-1-(cyclopropylmethoxy)benzene (S9) (1.90 g, $5.90 \mathrm{mmol}, 1.00$ equiv) in a round-bottom flask open to air in a $2: 1$ solution of dioxane: $\mathrm{H}_{2} \mathrm{O}$ $(45 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$ was added $\operatorname{tin}(\mathrm{II})$ chloride $(5.59 \mathrm{~g}, 29.5 \mathrm{mmol}, 5.00$ equiv). The reaction mixture was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for 15 hours. Saturated aqueous NaHCO_{3} solution (50 mL) was carefully added. The addition was accompanied by foaming. $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added followed by $\mathrm{Boc}_{2} \mathrm{O}(3.86 \mathrm{~g}, 4.11 \mathrm{~mL}, 17.7 \mathrm{mmol}, 3.00$ equiv $)$. The reaction mixture was stirred for 3 hours and then transferred to a separatory funnel. The reaction mixture was extracted from with EtOAc $(3 \times 75 \mathrm{~mL})$. The combined organic phases were washed with brine (75 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with a gradient of 5-20\% EtOAc in hexanes (v/v) to afford 1.96 g of the title compound as a colorless solid (85% yield). The enantioenriched product could be recrystallized by suspending the solid in hexanes (10 mL), heating the suspension to reflux to dissolve the solid, cooling the solution, and collecting the solid by filtration, affording the title compound in $>99 \%$ ee as determined on a Chiracel ODH column with 5\% isopropanol/hexanes eluent (see Figure S5).
$\mathrm{R}_{f}=0.25$ (hexanes/EtOAc 19:1 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$, ס): 7.23 (dd, $J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (br d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (br, $1 \mathrm{H}), 3.97$ (dd, $J=9.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.72-3.66$ (m, 2H), 2.66 (br dd, $J=10.0,10.0,1 \mathrm{H}), 1.83$ (ddd, $J=6.6,6.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{br}, 10 \mathrm{H}), 1.06-0.99(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 0.83-0.80(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 0.67(\mathrm{br} \mathrm{m}$, 2 H), 0.38 (br m, 2H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): 157.2, 155.9, 132.6, 130.3, 129.7, 112.8, 112.7, 79.1, 73.5, 45.7, 28.6, 21.1, 17.4, 10.6, 10.3, 3.5. HRMS-FIA (m / z): calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{BrNNaO}_{3}\left[\mathrm{M}+\mathrm{Na}^{+}, 418.0988\right.$; found, 418.0994.

Figure S2. Enantiodiscriminating HPLC trace of S10

HPLC method: Chiracel ODH column with 5\% isopropanol/hexanes eluent for racemic S10 and enantioenriched S10. Percent of total integration listed for each peak.

Synthesis of nickel aryl bromide complex 7h

To a solution of TMEDA ($41.6 \mathrm{mg}, 53.7 \mu \mathrm{~L}, 0.358 \mathrm{mmol}, 1.00$ equiv) and t-butyl (($(1 \mathrm{~S}, 2 \mathrm{~S})$-2-(5-bromo-2-(cyclopropylmethoxy)phenyl)cyclopropyl)methyl) carbamate (S10) ($0.142 \mathrm{~g}, 0.358$ $\mathrm{mmol}, 1.00$ equiv) in toluene (3 mL) was added $\mathrm{Ni}(\mathrm{COD})_{2}(0.100 \mathrm{~g}, 0.358 \mathrm{mmol}, 1.00$ equiv), and the mixture was stirred at room temperature for 45 min . Pentane $(16 \mathrm{~mL})$ was added to the mixtures and the resulting solid was collected on a frit. The solid was washed with pentane (3×5 mL) and dried in vacuo to afford 0.183 g of the title compound as a peach solid (89%).
Reliable ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data could not be obtained due to the instability of $\mathbf{7 h}$ in most organic solvents. However, some representative peaks were observed in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, \delta\right): 7.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.47$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{br}, 1 \mathrm{H}), 3.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.52-2.19$ (br, 18H), 1.41 (s, 9 H), 0.61 (br m, 2H), 0.33 (br s, 2H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, \delta$): 156.5, 155.4, 135.5, 135.2, 127.9, 110.2, 79.1, 74.0, 61.9 (br), 58.0 (br), 50.1 (br), 49.0 (br), 46.8, 29.1, 21.7 (br), 18.3 (br), 11.3, 11.1, 4.0, 3.8. Anal: calcd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{BrN}_{3} \mathrm{NiO}_{3}$: C, 52.57; H, 7.41; N, 7.36; found: C, 50.08; H, 7.03; N, 7.10. Numerous attempts (recrystallization using different solvents) were made to obtain satisfactory elemental analysis data but none of them was successful. However, this material is of sufficient purity for use in the preparation of analytically pure $\mathbf{1 h}$ in the next step. HRMS-FIA (m / z): calcd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{NiO}_{3}[\mathrm{M}-\mathrm{Br}]^{+}$, 490.2574; found, 490.2590.

Synthesis of nickel aryl complex 1h

7h

 38%

1h

To (2-(2-pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) (8) ($0.113 \mathrm{~g}, 0.245 \mathrm{mmol}, 1.00$ equiv) and nickel aryl bromide complex $7 \mathrm{~h}(0.140 \mathrm{~g}, 0.245 \mathrm{mmol}, 1.00$ equiv) in a 20 mL vial was added a toluene solution (3 mL) that contained pyridine ($38.8 \mathrm{mg}, 39.5 \mu \mathrm{~L}, 0.490 \mathrm{mmol}, 2.00$ equiv) at $23^{\circ} \mathrm{C}$, followed by addition of acetonitrile (0.5 mL). After stirring for 1 min at 23 , the solution was filtered through a glass frit, and the filtered cake was extracted further with dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined filtrate was concentrated in vacuo and the resulting residue was purified by chromatography on silica gel eluting with hexanes/EtOAc 1:2 (v/v) and further recrystallized by dissolving the solid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and layering with pentane (20 mL) to afford 75.0 mg of the title compound as a yellow solid (38\%).
$\mathrm{R}_{f}=0.47$ (hexanes/EtOAc 1:2 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}$, ס): 9.09 (d, $J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{dd}, J=8.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H})$, 7.21-7.18 (m, 3H), 7.15-7.13 (m, 3H), 7.04-6.99 (m, 2H), 6.85 (s, 1H), 6.63-6.60 (m, 1H), 6.36$6.31(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{br}, 1 \mathrm{H}), 3.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.52(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.58-2.50$ (br m, 2H), 1.62 (br s, 1H), 1.42-1.29 (m, 10H), 0.67-0.62 (br m, 2H), 0.57-0.54 (m, 2H) 0.26$0.24(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, \delta\right): 155.4,152.7,151.7,141.5,137.7,137.1$, 136.7, 136.1, 133.2, 131.6, 130.7, 130.7, 130.0, 128.8, 128.7, 124.6, 124.3, 123.2, 123.1, 122.9, 122.1, 73.1, 38.4, 28.5, 21.2, 10.7, 3.4. Note: A conformational isomer was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum. Reliable ${ }^{13} \mathrm{C}$ NMR data were not obtained due to the decomposition of $\mathbf{1 h}$ in the solvent over time. Anal: calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{NiO}_{7} \mathrm{~S}$: C, 60.90 ; $\mathrm{H}, 5.36$; N, 8.66; found: C, 60.21 ; H , 5.57; N, 8.66. HRMS-FIA (m / z): calcd for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{NiO}_{7} \mathrm{~S}[\mathrm{M}-\text { pyridine }+\mathrm{H}]^{+}, 729.1887$; found, 729.1843.

N-(tert-butoxycarbonyl)-3,4-di(tert-butoxycarbonyloxy)-6-bromo-L-phenylalaninemethyl ester (S11)

(S)- N -(tert-butyloxycarbonyl)-2-bromo-4,5-dihydroxyphenylalanine methyl ester was prepared by a published method. ${ }^{11}$ To the mixture of (S)-N-(tert-butyloxycarbonyl)-2-bromo-4,5dihydroxyphenylalanine methyl ester ($8.00 \mathrm{~g}, 20.5 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(5.72 \mathrm{ml}, 4.15 \mathrm{~g}$, $164 \mathrm{mmol}, 2.00$ equiv) in a round-bottom flask in $\mathrm{PhMe}(100 \mathrm{ml})$ was added $\mathrm{Boc}_{2} \mathrm{O}(3.86 \mathrm{~g}, 4.11$ $\mathrm{mL}, 17.7 \mathrm{mmol}, 3.00$ equiv) in one portion. The reaction mixture was stirring under nitrogen atmosphere at $80^{\circ} \mathrm{C}$ for 9 h . The reaction mixture was cooled to $23^{\circ} \mathrm{C}$ and was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with a gradient of 30% EtOAc in hexanes (v / v) to afford 11.5 g of the title compound as a light yellow solid (95% yield).
$\mathrm{R}_{f}=0.53$ (hexanes/EtOAc 2:1 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): $7.46(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.20(\mathrm{~m}$, $1 \mathrm{H}), 3.11-3.06(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 18 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta$): $172.2,155.0,150.3,141.8,141.7,134.6,127.2,125.3,120.8,84.3,84.1,80.1,53.3,52.5,38.2$, 28.3, 27.6, 27.5. HRMS-FIA (m / z): calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{BrNO}_{10}[\mathrm{M}+\mathrm{Na}]^{+}$, 612.1415; found, 612.1413.

Synthesis of nickel aryl bromide complex 7i

To a solution of TMEDA ($125 \mathrm{mg}, 0.161 \mathrm{~mL}, 1.08 \mathrm{mmol}, 1.00$ equiv) and N-(tert-butoxycarbonyl)-3,4-di(tert-butoxycarbonyloxy)-6-bromo-L-phenylalaninemethyl ester (S11) ($635 \mathrm{mg}, 1.08 \mathrm{mmol}, 1.00$ equiv) in toluene $(8 \mathrm{~mL})$ was added $\mathrm{Ni}(\mathrm{COD})_{2}(300 \mathrm{mg}, 1.08 \mathrm{mmol}$, 1.00 equiv), and the mixture was stirred at room temperature for 2 h . The solution was concentrated in vacuo and pentane (16 mL) was added to the mixtures and the resulting solid was collected on a frit. The solid was washed with pentane $(3 \times 5 \mathrm{~mL})$ and dried in vacuo to afford 735 mg of the title compound as a red solid (92%).
NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN} 23{ }^{\circ} \mathrm{C}, \delta$): $7.39(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{br} \mathrm{s}$,
$1 \mathrm{H}), 4.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.70(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.22(\mathrm{br}, 18 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~s}$, 9 H), 1.35 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN} 23{ }^{\circ} \mathrm{C}, \delta$): 174.2, 156.1, 151.8, 151.6, 144.5, $140.5,139.1,137.5,129.7,118.4,83.4,79.1,61.3$ (br), 57.3 (br), 56.5 (br), $52.3,50.0$ (br), 48.7 (br), 48.0 (br), 47.1 (br), 40.1, 29.2, 28.1, 27.5, 27.4. Note: Conformational isomers were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum. Anal: calcd for $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{BrN}_{3} \mathrm{NiO}_{10}(\mathrm{PhMe})_{0.2}$: C, 49.65; H , 6.89; N, 5.36; found: C, 49.29; H, 6.65; N, 4.74.

Synthesis of nickel aryl complex 1i

$7 i$

$1 i$

To (2-(2-pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) (7) (302 mg, $0.650 \mathrm{mmol}, 1.00$ equiv) and nickel aryl bromide complex $7 \mathbf{i}(500 \mathrm{mg}, 0.650 \mathrm{mmol}, 1.00$ equiv) in a round-bottom flask was added a toluene solution (8 mL) that contained pyridine ($103 \mathrm{mg}, 105 \mu \mathrm{~L}, 1.31 \mathrm{mmol}$, 2.00 equiv) at $23^{\circ} \mathrm{C}$, followed by addition of acetonitrile (2.0 mL). After stirring for 1 min at 23 , the solution was filtered through a glass frit, and the filtered cake was extracted further with dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined filtrate was concentrated in vacuo and the resulting residue was purified by chromatography on silica gel eluting with hexanes/EtOAc $1: 3(\mathrm{v} / \mathrm{v})(0.5 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) to afford 260 mg of the title compound as a yellow solid (40\%).
$\mathrm{R}_{f}=0.40$ (hexanes/EtOAc 1:2 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}$, ס): 9.04 (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.32(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 8.26(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H})$, $7.66-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.27-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.73-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 0.6 \mathrm{H})$, $6.32(\mathrm{~s}, 0.4 \mathrm{H}), 4.35-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.07-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.41(\mathrm{~m}, 3 \mathrm{H})$, $1.59(\mathrm{~s}, 5 \mathrm{H}), 1.58(\mathrm{~s}, 5 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~s}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz} \mathrm{CD}{ }_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, \delta$): $173.2,156.2,155.3,154.5,151.8,151.5,151.4,147.2,140.8,140.7,139.7,139.5,139.3,138.3$, $138.0,137.6,137.5,136.6,136.3,135.8,132.0,130.9,130.8,130.2,129.1,129.1,128.6,127.9$, $127.8,124.8,124.7,124.6,123.6,123.0,122.7,122.5,119.4,119.2,83.5,83.4,79.8,54.6,52.3$, 40.8, 28.4, 28.1, 27.9, 27.7. Note: Conformational isomers were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum, which is possibly due to slow rotation about bonds as seen for similar complexes. ${ }^{12}$ Anal: calcd for $\mathrm{C}_{47} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{NiO}_{14} \mathrm{~S}$: C, 56.30; H, 5.33 ; N, 6.98 ; found: C, $55.98 ; \mathrm{H}, 5.18 ; \mathrm{N}, 6.90$. HRMS-FIA (m/z): calcd for $\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{NiO}_{14} \mathrm{~S}$ [M - pyridine +H$]^{+}$, 923.2314; found, 923.2276.

Synthesis of nickel aryl bromide complex 7j

7j

To a solution of TMEDA ($83.0 \mathrm{mg}, 0.107 \mathrm{~mL}, 0.717 \mathrm{mmol}, 1.00$ equiv) and 3-bromobenzamide ($143 \mathrm{mg}, 0.717 \mathrm{mmol}, 1.00$ equiv) in toluene (4 mL) was added $\mathrm{Ni}(\mathrm{COD})_{2}(200 \mathrm{mg}, 0.717 \mathrm{mmol}$, 1.00 equiv), and the mixture was stirred at room temperature for 6 h . Pentane (16 mL) was added to the mixtures and the resulting solid was collected on a frit. The solid was washed with pentane $(3 \times 5 \mathrm{~mL})$ and dried in vacuo to afford 225 mg of the title compound as a pink solid (84%).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): $7.97(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.90-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.56-2.20(\mathrm{br}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR spectra were not obtained due to low solubility. Anal: calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{NiO}: \mathrm{C}, 41.64 ; \mathrm{H}, 5.91 ; \mathrm{N}, 11.21$; found: C, 41.36; $\mathrm{H}, 5.78$; $\mathrm{N}, 10.95$.

Synthesis of nickel aryl complex $\mathbf{1 j}$

To (2-(2-pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) (8) ($247 \mathrm{mg}, 0.533 \mathrm{mmol}, 1.00$ equiv) and nickel aryl bromide complex $7 \mathbf{j}$ ($200 \mathrm{mg}, 0.533 \mathrm{mmol}, 1.00$ equiv) in a 20 mL vial was added a toluene solution (4 mL) that contained pyridine $(84.0 \mathrm{mg}, 86.0 \mu \mathrm{~L}, 1.07 \mathrm{mmol}, 2.00$ equiv) at $23{ }^{\circ} \mathrm{C}$, followed by addition of acetonitrile (1.0 mL). After stirring for 1 min at 23 , the solution was filtered through a glass frit, and the filtered cake was extracted further with dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined filtrate was concentrated in vacuo and the resulting residue was purified by chromatography on silica gel eluting with EtOAc and further recrystallized by dissolving the solid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and layering with pentane (20 mL) to afford 154 mg of the title compound as a yellow solid (47\%).
$\mathrm{R}_{f}=0.26$ (EtOAc). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, \delta\right): 9.13$ (d, $J=4.9$ $\mathrm{Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 3 \mathrm{H})$, $7.42-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.64-6.61(\mathrm{~m}, 1 \mathrm{H})$, $5.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz} \mathrm{CD}{ }_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, \delta$): 157.1, 156.2, 152.5, $151.5,147.3,141.3,139.5,137.9,137.3,136.7,136.0,134.1,131.7,130.9,130.8,130.2,128.8$, 128.7, 126.0, 124.8, 124.5, 123.4, 123.0, 122.3. Anal: calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{NiO}_{5} \mathrm{~S}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{0.25}: \mathrm{C}$, 55.46; H, 3.74; N, 11.05; found: C, 55.22; H, 3.82; N, 11.28.

4-bromobenzoic acid succinimidyl ester (S12)

To 4-bromobenzoic acid ($5.00 \mathrm{~g}, 24.9 \mathrm{mmol}, 1.00$ equiv) and N-hydroxysuccinimide ($3.66 \mathrm{~g}, 31.8$ mmol, 1.28 equiv) in a round-bottom flask in dioxane (120 mL) was added an dioxane solution (30 mL) that contained 1,3-dicyclohexylcarbodiimide (DCC) ($6.77 \mathrm{~g}, 32.8 \mathrm{mmol}, 1.32$ equiv) dropwise over 5 min at $23^{\circ} \mathrm{C}$. The reaction mixture was stirring at $23^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was concentrated in vacuo and the crude product was obtained by recrystallization in a cold acetone. The crude product was further purified by chromatography on silica gel eluting with hexanes/EtOAc 2:1 (v/v) to afford 6.34 g of the title compound as a colorless solid (86%).
$\mathrm{R}_{f}=0.25$ (hexanes/EtOAc 2:1 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): $7.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23$ $\left.{ }^{\circ} \mathrm{C}, \delta\right): 169.2,161.5,132.5,132.1,130.6,124.2,25.8$. These spectroscopic data correspond to the reported data. ${ }^{13}$

Synthesis of nickel aryl bromide complex 7k

To a solution of TMEDA ($83.0 \mathrm{mg}, 0.107 \mathrm{~mL}, 0.717 \mathrm{mmol}, 1.00$ equiv) and 4-bromobenzoic acid succinimidyl ester (S12) ($214 \mathrm{mg}, 0.717 \mathrm{mmol}, 1.00$ equiv) in toluene (4 mL) was added $\mathrm{Ni}(\mathrm{COD})_{2}(200 \mathrm{mg}, 0.717 \mathrm{mmol}, 1.00$ equiv $)$, and the mixture was stirred at room temperature for 1.5 h . Pentane (16 mL) was added to the mixtures and the resulting solid was collected on a frit. The solid was washed with pentane ($3 \times 5 \mathrm{~mL}$) and dried in vacuo to afford 300 mg of the title compound as an orange solid (89%).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): $7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.83$ (br s, 4H), 2.57-2.22 (br, 16H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): 170.1, 163.6, 138.2, 124.9, 118.6, 111.1, 61.5 (br), 57.5 (br), 49.7 (br), 48.4 (br), 26.1. Anal: calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{NiO}_{4}$: C, 43.17; H, 5.11; N, 8.88; found: C, 43.65; H, 4.54; N, 7.48.

Synthesis of nickel aryl complex 1 k

7k
 51%

1k

To (2-(2-pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) (8) (195 mg, $0.423 \mathrm{mmol}, 1.00$ equiv) and nickel aryl bromide complex $7 \mathbf{k}$ ($200 \mathrm{mg}, 0.423 \mathrm{mmol}, 1.00$ equiv) in a 20 mL vial was added a toluene solution (4 mL) that contained pyridine ($66.9 \mathrm{mg}, 68.1 \mu \mathrm{~L}, 0.833 \mathrm{mmol}, 2.00$ equiv) at $23^{\circ} \mathrm{C}$, followed by addition of acetonitrile (1.0 mL). After stirring for 1 min at 23 , the solution was filtered through a glass frit, and the filtered cake was extracted further with dichloromethane ($3 \times 5 \mathrm{~mL}$). The combined filtrate was concentrated in vacuo and the resulting residue was purified by chromatography on silica gel eluting with hexanes/EtOAc 1:2 (v/v) to afford 152 mg of the title compound as a yellow solid (51%).
$\mathrm{R}_{f}=0.47$ (hexanes/EtOAc 1:6 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): 9.10 (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.05$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.7(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.54$ (m, 3H), $7.47-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.63-6.61(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz} \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$, δ): 174.2, 169.7, 162.9, 155.9, 152.3, 151.2, 147.0, 140.9, 137.6, 137.1, 136.4, 136.0, 135.4, 131.8, 130.5, 130.4, 130.1, 128.6, 128.4, 126.4, 124.6, 124.4, 122.9, 122.8, 122.0, 119.5, 25.7. Anal: calcd for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{NiO}_{8} \mathrm{~S}$: C, 55.80 ; H, 3.55; N, 9.86; found: C, 55.53; H, 3.50; N, 9.61.

Synthesis of nickel alkenyl bromide complex 71

71

To a solution of TMEDA ($83.0 \mathrm{mg}, 0.107 \mathrm{~mL}, 0.717 \mathrm{mmol}, 1.00$ equiv) and bromotriphenylethylene ($240 \mathrm{mg}, 0.717 \mathrm{mmol}, 1.00$ equiv) in toluene (4 mL) was added $\mathrm{Ni}(\mathrm{COD})_{2}(200 \mathrm{mg}, 0.717 \mathrm{mmol}, 1.00$ equiv), and the mixture was stirred at room temperature for 40 min . Pentane (16 mL) was added to the mixtures and the resulting solid was collected on a frit. The solid was washed with pentane ($3 \times 5 \mathrm{~mL}$) and dried in vacuo to afford 305 mg of the title compound as a pink solid (86%). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 9.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.88(\mathrm{~m}, 1 \mathrm{H})$, 1.89 (br, 16H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta$): 148.3, 147.7, 145.2, 144.2, 143.5, 132.2, 131.2, $131.0,126.1,125.5,124.6,50.0$ (br), 48.2 (br). Attempts (recrystallization using different solvents) were made to obtain satisfactory elemental analysis data but none of them was successful. However, this material is of sufficient purity for use in the preparation of analytically pure 11 in the next step. HRMS-FIA (m / z): calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{Ni}[\mathrm{M}-\mathrm{Br}]^{+}$, 429.1841; found, 429.1845.

Synthesis of nickel alkenyl complex 11

To (2-(2-pyridinyl)phenyl-2-nitrobenzenesulfonamide)silver(I) (8) ($93.0 \mathrm{mg}, 0.417 \mathrm{mmol}, 1.00$ equiv) and nickel alkenyl bromide complex $7 \mathbf{7 l}(0.100 \mathrm{mg}, 0.417 \mathrm{mmol}, 1.00$ equiv) in a 20 mL vial was added a toluene solution (3 mL) that contained pyridine ($32.0 \mathrm{mg}, 32.5 \mu \mathrm{~L}, 0.833 \mathrm{mmol}$, 2.00 equiv) at $23^{\circ} \mathrm{C}$, followed by addition of acetonitrile (0.5 mL). After stirring for 1 min at 23 , the solution was filtered through a glass frit, and the filtered cake was extracted further with
dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined filtrate was concentrated in vacuo and the resulting residue was purified by chromatography on silica gel eluting with hexanes/EtOAc 1:2 (v/v) and further recrystallized by dissolving the solid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and layering with pentane (20 mL) to afford 78.0 mg of the title compound as a yellow solid (52%).
$\mathrm{R}_{f}=0.66$ (hexanes/EtOAc 1:2 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): $9.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.77-8.60(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.49-$ $7.30(\mathrm{~m}, 6 \mathrm{H}), 7.24-6.82(\mathrm{~m}, 15 \mathrm{H}), 6.69-6.59(\mathrm{~m}, 4 \mathrm{H}), 6.40(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta\right): 160.7,156.7,156.5,154.6,152.3,152.0,151.9,151.6,148.0,147.9$, $147.3,146.9,145.2,143.7,143.2,142.4,141.8,141.0,137.4,136.8,136.5,136.2,135.9,135.8$, 135.2, 131.4, 131.1, 131.0, 130.7, 130.6, 130.3, 130.1, 130.0, 130.0, 129.9, 129.5, 129.4, 129.1, $128.9,128.7,128.2,127.6,127.5,127.4,127.2,127.0,127.0,127.0,126.5,125.8,125.3,125.0$, $124.6,123.5,123.4,123.2,123.0,122.8,122.6,122.4,122.0,121.6$. There are more ${ }^{13} \mathrm{C}$ peaks than could be expected, possibly due to slow rotation about bonds as seen for similar complexes. ${ }^{9}$ Anal: calcd for $\mathrm{C}_{42} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{NiO}_{4} \mathrm{~S}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{0.15}$: C, $66.59 ; \mathrm{H}, 4.28$; $\mathrm{N}, 7.37$; found: $\mathrm{C}, 66.71$; $\mathrm{H}, 4.24$; $\mathrm{N}, 7.51$. HRMS-FIA (m / z): calcd for $\mathrm{C}_{37} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaNiO}_{4} \mathrm{~S}[\mathrm{M}-\text { pyridine }+\mathrm{H}]^{+}, 668.1149$; found, 668.1150 .

Fluorination of nickel aryl complexes and preparation of authentic 2

Most of the aryl fluorides were either purchased from a commercial source or synthesized by previous methods. $\mathbf{2 b}$ and $\mathbf{2 j}$ were purchased from Matrix Scientific and Aldrich, respectively. $\mathbf{2 c},{ }^{14} \mathbf{2 d},{ }^{15} \mathbf{2 g},{ }^{9} \mathbf{2 h},{ }^{9} \mathbf{2 i},{ }^{15}$ and $\mathbf{2 k}{ }^{16}$ were synthesized based on reported procedures. 2e, 2f, and $\mathbf{2 l}$ were synthesized by electrophilic fluorination of $\mathbf{1 e}, \mathbf{1 f}$, and $\mathbf{1 1}$ with Selectfluor®.

4-Flurobiphenyl (2a)

In a glove box under a N_{2} atmosphere, nickel aryl complex $\mathbf{1 a}(40 \mathrm{mg}, 0.062 \mathrm{mmol}, 1.0$ equiv), tetrabutylammonium difluorotriphenylsilicate (TBAT) ($50 \mathrm{mg}, 0.093 \mathrm{mmol}, 1.5$ equiv), and oxidant 6 ($69 \mathrm{mg}, 0.093 \mathrm{mmol}, 1.5$ equiv) were placed in a 20 mL vial. The vial was taken out of the glove box, and immersed in an ice bath at $0^{\circ} \mathrm{C}$ for 5 minutes. To the reaction mixture was added quickly pre-cooled acetonitrile $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ in one portion and the solution was stirred for 1 min at $0^{\circ} \mathrm{C}$. After warming to $23^{\circ} \mathrm{C}$, the solution was concentrated in vacuo and the residue was purified by chromatography on silica gel eluting with hexane/EtOAc 99:1 (v/v) to afford 6.9 mg of the title compound as a white solid (65% yield).
$\mathrm{R}_{f}=0.60$ (hexanes/EtOAc 19:1 (v/v)). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta\right): \delta 7.56-7.54(\mathrm{~m}$, 4H), 7.45-7.42 (m, 2H), 7.36-7.33 (m, 1H), 7.15-7.11 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23\right.$ $\left.{ }^{\circ} \mathrm{C}, \delta\right): 162.7$ (d, $J=244 \mathrm{~Hz}$), 140.5, 137.6, 129.0, 128.9 (d, $J=8.5 \mathrm{~Hz}$), 127.5, 127.3, 115.8 (d, J $=21 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$-NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta-116.2$. These spectroscopic data correspond to previously reported data. ${ }^{12}$

1-Cyclohexyl-2-fluorobenzene (2e)

Nickel aryl complex 1e ($50 \mathrm{mg}, 0.077 \mathrm{mmol}, 1.0$ equiv) and 1-chloromethyl-4-fluoro-1,4diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor ${ }^{\circledR}$) ($33 \mathrm{mg}, 0.092 \mathrm{mmol}, 1.5$ equiv) were placed in a 20 mL vial. To the reaction mixture was added acetonitrile (4 mL) at 23 ${ }^{\circ} \mathrm{C}$ in one portion and the solution was stirred for 1 min at $23^{\circ} \mathrm{C}$. The solution was concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with pentane to afford 8.1 mg of the title compound and cyclohexylbenzene as a $1: 2$ mixture (a colorless oil, 22% yield based on 1-cyclohexyl-2-fluorobenzene). Due to the difficulty of purification of the title compound and its volatility, ${ }^{17}$ the above mixture was used without further purification for identifying [$\left.{ }^{18} \mathrm{~F}\right] 2 \mathrm{e}$ by HPLC analysis.
$\mathrm{R}_{f}=0.67$ (pentane). NMR Spectroscopy: Selected ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta$): 7.07$7.03(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.89(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($\left.375 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 23{ }^{\circ} \mathrm{C}, \delta\right):-120.0$. These spectroscopic data correspond to previously reported data. ${ }^{17}$

2-(4-Fluorophenyl)ethyl benzoate (2f)

1f

55\%

$2 f$

Nickel aryl complex $1 f\left(30 \mathrm{mg}, 0.042 \mathrm{mmol}, 1.0\right.$ equiv) and Selectfluor ${ }^{\circledR}$ ($18 \mathrm{mg}, 0.050 \mathrm{mmol}$, 1.2 equiv) were placed in a 20 mL vial. To the reaction mixture was added quickly acetonitrile (3 mL) at $23^{\circ} \mathrm{C}$ in one portion and the solution was stirred for 1 min at $23^{\circ} \mathrm{C}$. The solution was subsequently concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc $4: 1(\mathrm{v} / \mathrm{v})$ to afford 5.6 mg of the title compound as a colorless solid
(55\% yield).
$\mathrm{R}_{f}=0.47$ (hexanes/EtOAc 4:1 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): 7.00 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23$ (m, 2H), 7.02-6.99 (m, $2 \mathrm{H}), 5.51(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta\right)$: $166.6,161.9(\mathrm{~d}, J=243 \mathrm{~Hz}), 133.7(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.1(\mathrm{~s}), 130.5(\mathrm{~s}), 130.4(\mathrm{~d}, J=27 \mathrm{~Hz})$, 129.7, 128.5, $115.5(\mathrm{~d}, J=22 \mathrm{~Hz}), 65.5,34.6 .{ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta$): -116.8 . HRMS-FIA (m/z): calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 245.0972$; found, 245.0982.

N-(tert-butoxycarbonyl)-3,4-di(tert-butoxycarbonyloxy)-6-trimethylstannyl-Lphenylalaninemethyl ester (S13)

S11
S13

To $\quad N$-(tert-butoxycarbonyl)-3,4-di(tert-butoxycarbonyloxy)-6-bromo-L-phenylalaninemethyl ester (S11) ($1.00 \mathrm{~g}, 1.69 \mathrm{mmol}, 1.00$ equiv) in dioxane $(20 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ was added lithium chloride ($0.359 \mathrm{~g}, 8.47 \mathrm{mmol}, 5.0$ equiv), tetrakis(triphenylphosphine)palladium ($0.391 \mathrm{~g}, 0.339$ $\mathrm{mmol}, 20.0 \mathrm{~mol} \%$) and bis(trimethyltin) ($1.11 \mathrm{~g}, 3.39 \mathrm{mmol}, 2.00$ equiv). After stirring for 5 hr at $100{ }^{\circ} \mathrm{C}$, the reaction mixture was cooled to $23^{\circ} \mathrm{C}$ and concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 5:1 (v/v), to afford 420 mg of the title compound as a colorless oil (37% yield).
$\mathrm{R}_{f}=0.55$ (hexane/EtOAc 3:1 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): $7.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.10-$ $3.00(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 0.35(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.23{ }^{\circ} \mathrm{C}, \delta\right): 172.7,155.2,150.9,150.8,142.7,141.7,141.5,141.0,130.4,123.4,110.8,83.8,80.2$, 54.5, 52.5, 40.4, 28.3, 27.7, 27.7, -7.7. HRMS-FIA (m/z): calcd for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{NO}_{10} \mathrm{Sn}[\mathrm{M}+\mathrm{H}]^{+}$, 676.2144; found, 676.2171.

N -Boc- O -Boc-6-fluoro-DOPA methyl ester (2i)

To N-Boc- O-Boc-6-trimethylstannyl-DOPA methyl ester (S13) (142 $\mathrm{mg}, 0.211 \mathrm{mmol}, 1.00$ equiv)
in acetone (4 mL) at $23^{\circ} \mathrm{C}$ was added silver oxide ($2.45 \mathrm{mg}, 0.0106 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$), sodium bicarbonate ($35.5 \mathrm{mg}, 0.422 \mathrm{mmol}, 2.0$ equiv), sodium trifluoromethanesulfonate ($36.3 \mathrm{mg}, 0.211$ $\mathrm{mmol}, 1.0$ equiv) and Selectfluor® ($112 \mathrm{mg}, 0.317 \mathrm{mmol}, 1.50$ equiv). The reaction mixture was stirred for 5 hr at $65^{\circ} \mathrm{C}$ in a sealed vial. After cooling to $23^{\circ} \mathrm{C}$, the reaction mixture was filtered through a pad of celite, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the filtrate was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc $4: 1(\mathrm{v} / \mathrm{v})$, to afford 45.0 mg of the title compound as a colorless solid (40% yield).
$\mathrm{R}_{f}=0.37$ (hexane/EtOAc 3:1 (v/v)). NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): $7.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.53(\mathrm{~m}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.04(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta\right): 172.0,158.2(\mathrm{~d}, J=246 \mathrm{~Hz}), 155.1,150.8,150.4,142.1(\mathrm{~d}, J=12 \mathrm{~Hz}), 138.6$, $125.4(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 121.5(\mathrm{~d}, J=18 \mathrm{~Hz}), 110.8(\mathrm{~d}, J=28 \mathrm{~Hz}), 84.4,84.1,80.2,53.5,52.6,31.7$, 28.4, 27.7, 27.7. ${ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta$): -117.6 . Mass HRMS-FIA (m / z): calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{FNO}_{10}[\mathrm{M}+\mathrm{Na}]^{+}$, 552.2215; found, 552.2214.

I-Fluoro-1,2,2-triphenylethylene (21)

Nickel aryl complex 11 ($30 \mathrm{mg}, 0.040 \mathrm{mmol}, 1.0$ equiv) and Selectfluor® ($17 \mathrm{mg}, 0.048 \mathrm{mmol}$, 1.2 equiv) were placed in a 20 mL vial. To the reaction mixture was added quickly acetonitrile (3 mL) at $23^{\circ} \mathrm{C}$ in one portion and the solution was stirred for 1 min at $23^{\circ} \mathrm{C}$. The solution was subsequently concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1(\mathrm{v} / \mathrm{v})$ to afford 4.0 mg of the title compound as a colorless solid (36\% yield).
$\mathrm{R}_{f}=0.88\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1(\mathrm{v} / \mathrm{v})\right)$. NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta\right)$: 7.39-6.95 (m, 15H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}, \delta$): $130.8(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=$ $3.4 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 128.7$, 128.3, 128.2, 128.1, 128.1, 128.0, 127.7, 127.6, 127.5, 127.1. ${ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}, \delta$): -101.2. These spectroscopic data correspond to previously reported data. ${ }^{18}$

Radiochemistry

General methods

No-carrier-added $\left[{ }^{18} \mathrm{~F}\right] f l u o r i d e$ was produced from water 97% enriched in ${ }^{18} \mathrm{O}$ (ISOFLEX, USA) by the nuclear reaction ${ }^{18} \mathrm{O}(\mathrm{p}, \mathrm{n})^{18} \mathrm{~F}$ using a Siemens Eclipse HP cyclotron and a silver-bodied target at Massachusetts General Hospital Athinoula A. Martinos Center for Biomedical Imaging. The produced $\left[{ }^{18} \mathrm{~F}\right]$ fluoride in water was transferred from the cyclotron target by helium push. An Agilent Eclipse XDB-C18, $5 \mu \mathrm{~m}, 4.6 \times 150 \mathrm{~mm}$ HPLC column was used for analysis. Analytical HPLC used the following mobile phases: $0.1 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in water (A) $0.1 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in acetonitrile (B). Program: 5\% (B) and 95% (A) for 10 minutes. In the HPLC analysis of the ${ }^{18} \mathrm{~F}$ labeled compounds, isotopically unmodified (${ }^{19} \mathrm{~F}$-containing) substances were used as references for identification. Radioactivity was measured in a Capintec, Inc. CRC-25PET ion chamber.

Solvents and reagents for radiochemical experiments: Acetonitrile was distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$. Water was obtained from a Millipore Milli-Q Integral Water Purification System. 18-crown-6 was sublimed.

Radiosynthesis of ${ }^{18}$ F-labeled Molecules

A portion of aqueous $\left[{ }^{18} \mathrm{~F}\right] f l u o r i d e$ solution $(20-50 \mu \mathrm{~L}, 2-5 \mathrm{mCi})$ obtained from a cyclotron was added to an acetonitrile solution ($2.0-5.0 \mathrm{~mL}$) of 20 mg of $18-\mathrm{cr}-6$. The resulting solution (200$500 \mu \mathrm{l}$) was added quickly to a septum-capped vial containing 1.0 mg nickel complex $\mathbf{1}$ and 1.0 equiv of $\mathbf{6}$ (relative to $\mathbf{1}$). The solution immediately became pink, red, or yellow, depending on the nickel complex used, and then became colorless 5 to 10 seconds later. A capillary tube was used to spot part of the solution on a silica gel TLC plate. The TLC plate was developed in an appropriate organic solvent mixture. The TLC plate was scanned with a Bioscan AR-2000 Radio TLC Imaging Scanner.

Calculation of equivalents of [$\left.{ }^{18} \mathrm{~F}\right] f l u o r i d e$ relative to nickel complex ${ }^{19}$

Method to calculate the number of $\left.{ }^{18} \mathrm{~F}\right] f l u o r i d e ~ a t o m s ~ t h a t ~ e x h i b i t ~ r a d i o a c t i v i t y ~ o f ~ 1.0 ~ C i: ~$
N (atoms) $\times \lambda\left(\mathrm{s}^{-1}\right)=1.0 \mathrm{Ci}=3.7 \times 10^{10}(\mathrm{~Bq})$
$\mathrm{N}=3.7 \times 10^{10} / \lambda\left(\lambda\right.$ is the decay constant in $\left.\left(\mathrm{s}^{-1}\right): \lambda\left({ }^{[18} \mathrm{F}\right] f l u o r i d e\right)$ is $\left.1.5 \times 10^{-4} \mathrm{~s}^{-1}\right)$
Typical radioactivity for a reaction: 0.5 mCi

$$
\mathrm{N}\left(\left[{ }^{18} \mathrm{~F}\right] \text { fluoride }\right) \times \lambda\left(\mathrm{s}^{-1}\right)=0.5 \mathrm{mCi}=1.9 \times 10^{7}(\mathrm{~Bq})
$$

$$
\mathrm{N}=1.9 \times 10^{7}(\mathrm{~Bq}) / \lambda=1.9 \times 10^{7} / 1.5 \times 10^{-4}=1.3 \times 10^{11}
$$

Mole of $\left[{ }^{18} \mathrm{~F}\right] f l u o r i d e: ~ 1.3 \times 10^{11} / 6.02 \times 10^{23}=0.21 \mathrm{pmol}$
Reaction conditions: For the aqueous solutions of [$\left.{ }^{18} \mathrm{~F}\right]$ fluoride $(2-5 \mu \mathrm{l}, 100-500 \mu \mathrm{Ci}$; $500 \mu \mathrm{Ci}$ in $5 \mu \mathrm{l}$ water corresponds to a concentration of 42 nM in $\left.\left[{ }^{18} \mathrm{~F}\right]\right)$.

Measurement of Radiochemical Yield

Radiochemical yield was determined by multiplying the percentage of radioactivity in the solution and the relative peak integrations of a radio TLC scan. After spotting the solution on a silica gel TLC plate, the TLC plate was eluted with an appropriate solvent mixture, and then the TLC plate was scanned with a Bioscan AR-2000 Radio TLC Imaging Scanner. The Radiochemical TLC (RTLC) yield was calculated by dividing the area of the product peak by the total area of all peaks, and multiplying by 100% to convert to percentage units.

The remaining reaction solution was transferred to another vial. The radioactivity of the solution was measured in an ion chamber and the amount of radioactivity left on the walls of the initial vial was also measured in this way, and the $\%$ of ${ }^{18} \mathrm{~F}$ in solution was determined by dividing the radioactivity of the solution by the sum of the radioactivity of the solution and the empty vial, and multiplying by 100% to convert to percentage units. The radiochemical yield (RCY) was determined by multiplying the RTLC yield by the fraction of radioactivity in solution (typically $0.75-0.85$).

Table S1. Radiochemical Yield Data

Entry	Molecule	RTLC yield (\%)	${ }^{18} \mathrm{~F}$ in solution (\%)	RCY (\%)	Average RCY (\%)
1	$\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{a}$	57	83	47	42
2		68	80	54	
3		49	82	40	
4		48	82	39	
5		49	81	40	
6		38	82	31	
7	$\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{~b}$	69	83	58	51
8		61	83	51	
9		52	77	40	
10		47	83	39	
11		73	82	60	
12		69	80	55	
13	$\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{c}$	54	81	44	53
14		72	84	61	
15		72	84	60	
16		64	84	54	
17		57	78	45	
18		69	80	56	

19	$\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{~d}$	28	78	22	17
20		18	80	14	
21		19	79	15	
22		19	79	15	
23		24	79	19	
24		21	76	16	
25	$\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{e}$	40	80	32	21
26		24	82	20	
27		21	82	17	
28		25	78	19	
29		26	73	19	
30		26	73	19	
31	$\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{f}$	57	83	47	54
32		57	84	48	
33		54	82	44	
34		72	86	62	
35		78	84	66	
36		75	75	56	
37	$\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{~g}$	70	89	62	58
38		66	88	58	
39		76	87	66	
40		66	84	55	
41		61	79	48	
42		72	81	58	
43	$\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{~h}$	60	83	50	43
44		66	84	55	
45		52	81	42	
46		44	73	32	
47		42	80	34	
48		56	80	45	
49		24	70	17	
50		22	65	14	

51	$\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{i}$	41	68	28	15
52		14	76	11	
53		17	59	10	
54		13	64	8	
55	$\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{j}$	45	84	38	38
56		53	83	44	
57		51	78	40	
58		51	79	40	
59		33	77	25	
60		49	79	39	
61	$\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{k}$	27	74	20	21
62		30	75	23	
63		34	76	26	
64		32	77	25	
65		21	79	17	
66		20	75	15	
67	$\left[{ }^{18} \mathrm{~F}\right] 21$	11	86	9	13
68		14	82	11	
69		15	84	13	
70		14	81	11	
71		20	82	16	
72		17	86	15	

Example Radio TLC Scans:

(Note: the baseline of the TLC plate where the reaction mixture was spotted corresponds to about 60 mm on the horizontal axis of the following radio TLC scans).

Figure S3. Example Radio TLC Scan of $\left[{ }^{18}\right.$ F $] \mathbf{2 a}$

Entry 1 of Table S1. Percent of total integration listed for $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 a}$

Figure S4. Example Radio TLC Scan of $\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{~b}$

Entry 7 of Table S1. Percent of total integration listed for $\left[{ }^{[8} \mathbf{F}\right] \mathbf{2 b}$

Figure S5. Example Radio TLC Scan of [${ }^{18}$ F] 2 c

Entry 14 of Table S1. Percent of total integration listed for $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 c}$
Figure S6. Example Radio TLC Scan of $\left[{ }^{18}\right.$ F] 2 d

Entry 23 of Table S1. Percent of total integration listed for $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 d}$

Figure S7. Example Radio TLC Scan of $\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{e}$

Entry 25 of Table S1. Percent of total integration listed for $\left[{ }^{18} \mathbf{F}\right] 2 \mathbf{e}$
Figure S8. Example Radio TLC Scan of $\left[{ }^{18} \mathrm{~F}\right] 2 f$

Entry 34 of Table S1. Percent of total integration listed for $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 f}$

Figure S9. Example Radio TLC Scan of $\left[{ }^{18}\right.$ F $] 2 \mathrm{~g}$

Entry 39 of Table S1. Percent of total integration listed for $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 g}$
Figure S10. Example Radio TLC Scan of [${ }^{18}$ F] 2 h

Entry 44 of Table S1. Percent of total integration listed for $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 h}$

Figure S11. Example Radio TLC Scan of $\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{i}$

Entry 53 of Table S1. Percent of total integration listed for $\left[{ }^{18} \mathbf{F}\right] 2 \mathbf{i}$
Figure S12. Example Radio TLC Scan of $\left[{ }^{[18} \mathrm{F}\right] 2 \mathrm{j}$

Entry 57 of Table S1. Percent of total integration listed for $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 j}$

Figure S13. Example Radio TLC Scan of [${ }^{18}$ F] ${ }^{1} \mathrm{k}$

Entry 63 of Table S1. Percent of total integration listed for $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 k}$
Figure S14. Example Radio TLC Scan of $\left[{ }^{18} \mathrm{~F}\right] 21$

Entry 71 of Table S1. Percent of total integration listed for $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 1}$

Characterization of ${ }^{18} \mathbf{F}$-labeled Molecules

All ${ }^{18}$ F-labeled molecules were characterized by comparing the HPLC trace (measured by radioactivity) of the crude reaction mixture to the HPLC trace (measured by UV) of the corresponding authentic ${ }^{19}$ F-containing reference sample. An Agilent Eclipse XDB-C18, $5 \mu \mathrm{~m}$, $4.6 \times 150 \mathrm{~mm}$ HPLC column was used for analytical HPLC analysis. Analytical HPLC used the following mobile phases: $0.1 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in water (A) $0.1 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in acetonitrile (B). Program: 95% (A) and 5% (B) for 10 minutes. Note: radioactivity chromatographs have been offset (-0.125 min) to account for the delay volume (time) between the UV diode array detector and the radioactivity detector.

Figure S15. Characterization of $\left[{ }^{18} \mathrm{~F}\right] \mathbf{2 a}$

280 nm UV trace (top) of authentic sample (2a), radioactivity trace of the reaction mixture (middle) containing [${ }^{18} \mathbf{F} \mathbf{~} \mathbf{2 a}$, and 280 nm UV trace (bottom) of the reaction mixture. Note: radioactivity chromatographs have been offset (-0.125 min) to account for the delay volume (time) between the diode array detector and the radioactivity detector.

Figure S16. Characterization of $\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{~b}$

280 nm UV trace (top) of authentic sample (2b), radioactivity trace of the reaction mixture (middle) containing $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 b}$, and 280 nm UV trace (bottom) of the reaction mixture. Note: radioactivity chromatographs have been offset $(-0.125 \mathrm{~min})$ to account for the delay volume (time) between the diode array detector and the radioactivity detector.

Figure S17. Characterization of $\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{c}$

280 nm UV trace (top) of authentic sample (2c), radioactivity trace of the reaction mixture (middle) containing [$\left.{ }^{18} \mathbf{F}\right] 2 \mathbf{c}$, and 280 nm UV trace (bottom) of the reaction mixture. Note: radioactivity chromatographs have been offset $(-0.125 \mathrm{~min})$ to account for the delay volume (time) between the diode array detector and the radioactivity detector.

Figure S18. Characterization of $\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{~d}$

280 nm UV trace (top) of authentic sample ($\mathbf{2 d}$), radioactivity trace of the reaction mixture (middle) containing [$\left.{ }^{18} \mathbf{F}\right] \mathbf{2 d}$, and 280 nm UV trace (bottom) of the reaction mixture. Note: radioactivity chromatographs have been offset $(-0.125 \mathrm{~min})$ to account for the delay volume (time) between the diode array detector and the radioactivity detector.

Figure S19. Characterization of $\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{e}$

254 nm UV trace (top) of authentic sample ($\mathbf{2 e}$ and cyclohexylbenzene as a $1: 2$ mixture), radioactivity trace of the reaction mixture (middle) containing [$\left.{ }^{18} \mathbf{F}\right] 2 \mathbf{e}$, and 254 nm UV trace (bottom) of the reaction mixture. Note: radioactivity chromatographs have been offset $(-0.125$ min) to account for the delay volume (time) between the diode array detector and the radioactivity detector.

Figure S20. Characterization of $\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{f}$

280 nm UV trace (top) of authentic sample ($\mathbf{2 f}$), radioactivity trace of the reaction mixture (middle) containing [${ }^{18} \mathbf{F}$]2f, and 280 nm UV trace (bottom) of the reaction mixture. Note: radioactivity chromatographs have been offset (-0.125 min) to account for the delay volume (time) between the diode array detector and the radioactivity detector.

Figure S21. Characterization of $\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{~g}$

280 nm UV trace (top) of authentic sample ($\mathbf{2 g}$), radioactivity trace of the reaction mixture (middle) containing [$\left.{ }^{18} \mathbf{F}\right] \mathbf{2 g}$, and 280 nm UV trace (bottom) of the reaction mixture. Note: radioactivity chromatographs have been offset $(-0.125 \mathrm{~min})$ to account for the delay volume (time) between the diode array detector and the radioactivity detector.

Figure S22. Characterization of $\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{~h}$

280 nm UV trace (top) of authentic sample ($\mathbf{2 h}$), radioactivity trace of the reaction mixture (middle) containing [$\left.{ }^{18} \mathbf{F}\right] 2 \mathbf{h}$, and 280 nm UV trace (bottom) of the reaction mixture. Note: radioactivity chromatographs been been offset $(-0.125 \mathrm{~min})$ to account for the delay volume (time) between the diode array detector and the radioactivity detector.

Figure S23. Characterization of $\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{i}$

280 nm UV trace (top) of authentic sample ($\mathbf{2 i}$), radioactivity trace of the reaction mixture (middle) containing [${ }^{18} \mathbf{F}$]2i, and 280 nm UV trace (bottom) of the reaction mixture. Note: radioactivity chromatographs have been offset $(-0.125 \mathrm{~min})$ to account for the delay volume (time) between the diode array detector and the radioactivity detector.

Figure S24. Characterization of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 j}$

280 nm UV trace (top) of authentic sample ($\mathbf{2} \mathbf{j}$), radioactivity trace of the reaction mixture (middle) containing [${ }^{18} \mathbf{F}$] $\mathbf{2}$ j, and 280 nm UV trace (bottom) of the reaction mixture. Note: radioactivity chromatographs have been offset (-0.125 min) to account for the delay volume (time) between the diode array detector and the radioactivity detector.

Figure S25. Characterization of $\left[{ }^{18} \mathbf{F}\right] 2 \mathrm{k}$

280 nm UV trace (top) of authentic sample ($\mathbf{2 k}$), radioactivity trace of the reaction mixture (middle) containing [$\left.{ }^{18} \mathbf{F}\right] 2 \mathbf{k}$, and 280 nm UV trace (bottom) of the reaction mixture. Note: radioactivity chromatographs have been offset $(-0.125 \mathrm{~min})$ to account for the delay volume (time) between the diode array detector and the radioactivity detector.

Figure S26. Characterization of $\left[{ }^{18} \mathrm{~F}\right] 21$

280 nm UV trace (top) of authentic sample (21), radioactivity trace of the reaction mixture (middle) containing [${ }^{18} \mathbf{F}$]2l, and 280 nm UV trace (bottom) of the reaction mixture. Note: radioactivity chromatographs have been offset $(-0.125 \mathrm{~min})$ to account for the delay volume (time) between the diode array detector and the radioactivity detector.

Determination of specific activity of $\left[{ }^{18} \mathrm{~F}\right] 2 \mathrm{~g}$

Specific activity of $\left[{ }^{18} \mathbf{F}\right] \mathbf{2 g}$ was determined by measuring the UV absorbance of a known amount of radioactivity and comparing to a standard curve of UV absorbance vs amount of unlabeled $\mathbf{2 g}$. For $595 \mu \mathrm{Ci}$ of $\left.{ }^{[18} \mathbf{F}\right] 2 \mathrm{~g}$ a UV absorbance of 9.7 was measured corresponding to 0.56 nmol for a specific activity of $1.1 \mathrm{Ci} / \mu \mathrm{mol}(41 \mathrm{GBq} / \mu \mathrm{mol})$ at time of injection (TOI). The standard curve was generated by integration of the UV absorbance signal (at 280 nm) of 4 different known amounts of $\mathbf{2 g}$ (see Tables S1 and Figures S11).

Table S2. Data for standard curve of UV absorbance vs amount of $\mathbf{2 g}$

$\mathrm{nmol} \mathbf{2 g}$	UV Absorbance
0.5	6.6
2.1	35.9
4.2	71.2
8.3	144.6

Figure S27. Standard curve of UV absorbance vs amount of 2g

X-ray Crystallographic Analysis

Experimental (nickel aryl complex 1c) (CCDC 896034)

A crystal mounted on a diffractometer was collected data at 100 K . The intensities of the reflections were collected by means of a Bruker APEX II CCD diffractometer ($\mathrm{Mo}_{\mathrm{K} \alpha}$ radiation, $\lambda=0.71073 \AA$), and equipped with an Oxford Cryosystems nitrogen flow apparatus. The collection method involved 0.5° scans in ω at 28° in 2θ. Data integration down to $0.82 \AA$ resolution was carried out using SAINT V7.46 A (Bruker diffractometer, 2009) with reflection spot size optimization. Absorption corrections were made with the program SADABS (Bruker diffractometer, 2009). The structure was solved by the direct methods procedure and refined by least-squares methods again F^{2} using SHELXS-97 and SHELXL-97 (Sheldrick, 2008) with OLEX 2 interface (Dolomanov, et al., 2009). Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. Crystal data as well as details of data collection and refinement are summarized in Table 2, geometric parameters are shown in Table 3 and hydrogen-bond parameters are listed in Table 4. The Ortep plots produced with SHELXL-97 program, and the other drawings were produced with Accelrys DS Visualizer 2.0 (Accelrys, 2007).

Figure S28. The structure of 1c. The atoms are depicted with $\mathbf{5 0 \%}$ probability ellipsoids.

Table S3. Experimental details

	$\mathbf{1 c}$
Crystal data	$\mathrm{C}_{75} \mathrm{H}_{74} \mathrm{~N}_{10} \mathrm{Ni}_{2} \mathrm{O}_{12} \mathrm{~S}_{2}$
Chemical formula	

M_{r}	1488.98
Crystal system, space group	Monoclinic, $P 2{ }_{1} / c$
Temperature (K)	100
$a, b, c(\AA)$	14.5704 (11), 15.7185 (12), 30.632 (2)
$\beta\left({ }^{\circ}\right)$	96.597 (1)
$V\left(\AA^{3}\right)$	6969.0 (9)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.67
Crystal size (mm)	$0.32 \times 0.26 \times 0.24$
Data collection	
Diffractometer	Bruker D8 goniometer with CCD area detector diffractometer
Absorption correction	Multi-scan SADABS
$T_{\text {min }}, T_{\text {max }}$	0.814, 0.856
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	77361, 13259, 8722
$R_{\text {int }}$	0.107
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.611
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.061, 0.163, 1.01
No. of reflections	13259
No. of parameters	936
No. of restraints	62
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.06, -0.73

Computer programs: APEX2 v2009.3.0 (Bruker-AXS, 2009), SAINT 7.46A (Bruker-AXS, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Bruker SHELXTL (Sheldrick, 2008).

Table S4. Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right.$)

C1P-C2P	1.360 (12)	C92-C93	1.381 (8)
C1P-H1PA	0.9800	C92-H92	0.9500
C1P-H1PB	0.9800	C93-C94	1.375 (8)
C1P-H1PC	0.9800	C93-H93	0.9500
C2P-C3P	1.343 (11)	C94-C95	1.387 (7)
$\mathrm{C} 2 \mathrm{P}-\mathrm{H} 2 \mathrm{PA}$	0.9900	C94-H94	0.9500
$\mathrm{C} 2 \mathrm{P}-\mathrm{H} 2 \mathrm{~PB}$	0.9900	C95-N10	1.345 (6)
C3P-C4P	1.237 (11)	C95-H95	0.9500
C3P-H3PA	0.9900	N6-Ni2	1.911 (4)
C3P-H3PB	0.9900	N7-S2	1.578 (3)
C4P-C5P	1.309 (12)	N7-Ni2	1.963 (3)
C4P-H4PA	0.9900	N8-O9	1.220 (5)
C4P-H4PB	0.9900	N8-O10	1.230 (5)
C5P-H5PA	0.9800	N10-Ni2	1.889 (4)
C5P-H5PB	0.9800	O7-S2	1.442 (3)
C5P-H5PC	0.9800	O8-S2	1.443 (3)
C1S-C2S	1.323 (12)	$\mathrm{C} 1-\mathrm{N} 1$	1.357 (5)
C1S—H1SA	0.9800	$\mathrm{C} 1-\mathrm{C} 2$	1.374 (6)
C1S-H1SB	0.9800	$\mathrm{C} 1-\mathrm{H} 1$	0.9500
C1S-H1SC	0.9800	C2-C3	1.381 (6)
C2S-C3S	1.252 (11)	C2-H2	0.9500
C2S—H2SA	0.9900	C3-C4	1.377 (6)
C2S-H2SB	0.9900	C3-H3	0.9500
C3S-C4S	1.319 (12)	C4-C5	1.393 (6)
C3S-H3SA	0.9900	C4-H4	0.9500
C3S-H3SB	0.9900	C5-N1	1.351 (5)
C4S-C5S	1.345 (12)	C5-C6	1.482 (6)
C4S-H4SA	0.9900	C6-C7	1.391 (6)

C4S-H4SB	0.9900	C6-C11	1.418 (6)
C5S-H5SA	0.9800	C7-C8	1.381 (7)
C5S—H5SB	0.9800	C7-H7	0.9500
C5S-H5SC	0.9800	C8-C9	1.392 (7)
C51-N6	1.351 (6)	C8-H8	0.9500
C51-C52	1.375 (7)	C9-C10	1.383 (6)
C51-H51	0.9500	C9—H9	0.9500
C52-C53	1.378 (7)	C10-C11	1.387 (6)
C52-H52	0.9500	C10-H10	0.9500
C53-C54	1.376 (7)	C11-N2	1.434 (5)
C53-H53	0.9500	C12-C13	1.390 (6)
C54-C55	1.394 (6)	C12-C17	1.396 (6)
C54-H54	0.9500	C12-S1	1.793 (4)
C55-N6	1.352 (6)	C13-C14	1.383 (6)
C55-C56	1.475 (6)	C13-H13	0.9500
C56-C57	1.391 (6)	C14-C15	1.378 (7)
C56-C61	1.416 (6)	C14-H14	0.9500
C57-C58	1.382 (7)	C15-C16	1.386 (7)
C57-H57	0.9500	C15-H15	0.9500
C58-C59	1.386 (7)	C16-C17	1.390 (6)
C58-H58	0.9500	C16-H16	0.9500
C59-C60	1.382 (6)	C17-N3	1.470 (5)
C59-H59	0.9500	C21-C22	1.390 (6)
C60-C61	1.382 (6)	C21-C26	1.408 (6)
C60-H60	0.9500	C21-N4	1.415 (5)
C61-N7	1.437 (5)	C22-C23	1.380 (6)
C62-C67	1.389 (6)	C22-H22	0.9500
C62-C63	1.393 (6)	C23-C24	1.402 (6)
C62-S2	1.790 (4)	C23-H23	0.9500

C63-C64	1.379 (6)	C24-C25	1.390 (6)
C63-H63	0.9500	C24-Ni1	1.894 (4)
C64-C65	1.386 (6)	C25-C26	1.403 (6)
C64-H64	0.9500	C25-H25	0.9500
C65-C66	1.385 (6)	C26-C27	1.450 (6)
C65-H65	0.9500	C27-C28	1.348 (6)
C66-C67	1.377 (6)	C27-H27	0.9500
C66-H66	0.9500	C28-N4	1.399 (5)
C67-N8	1.486 (5)	C28-H28	0.9500
C71-C72	1.393 (6)	C29-06	1.202 (5)
C71-C76	1.405 (6)	C29-05	1.332 (5)
C71-N9	1.419 (5)	C29-N4	1.394 (6)
C72-C73	1.389 (6)	C30-C33	1.487 (7)
C72-H72	0.9500	C30-O5	1.493 (5)
C73-C74	1.413 (6)	C30-C32	1.499 (7)
C73-H73	0.9500	C30-C31	1.504 (7)
C74-C75	1.391 (6)	C31-H31A	0.9800
C74-Ni2	1.901 (4)	C31-H31B	0.9800
C75-C76	1.402 (6)	C31-H31C	0.9800
C75-H75	0.9500	C32-H32A	0.9800
C76-C77	1.454 (6)	C32-H32B	0.9800
C77-C78	1.343 (6)	C32-H32C	0.9800
C77-H77	0.9500	C33-H33A	0.9800
C78-N9	1.401 (5)	C33-H33B	0.9800
C78-H78	0.9500	C33-H33C	0.9800
C79-O12	1.205 (5)	C41-N5	1.351 (5)
C79-O11	1.329 (5)	C41-C42	1.387 (6)
C79-N9	1.392 (5)	C41-H41	0.9500
C80-O11	1.490 (5)	C42-C43	1.379 (7)

C80-C82	1.513 (7)	C42-H42	0.9500
C80-C83	1.525 (7)	C43-C44	1.377 (7)
C80-C81	1.535 (7)	C43-H43	0.9500
C81-H81A	0.9800	C44-C45	1.384 (6)
C81-H81B	0.9800	C44-H44	0.9500
C81-H81C	0.9800	C45-N5	1.341 (6)
C82-H82A	0.9800	C45-H45	0.9500
C82-H82B	0.9800	N1—Ni1	1.921 (3)
C82-H82C	0.9800	N2-S1	1.577 (3)
C83-H83A	0.9800	N2—Ni1	1.962 (3)
C83-H83B	0.9800	N3-O3	1.225 (5)
C83-H83C	0.9800	N3-O4	1.235 (5)
C91-N10	1.356 (6)	N5-Ni1	1.886 (4)
C91-C92	1.383 (7)	O1-S1	1.441 (3)
C91-H91	0.9500	O2-S1	1.439 (3)
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 1 \mathrm{P}-\mathrm{H} 1 \mathrm{PA}$	109.5	C61-N7-Ni2	108.6 (3)
C2P-C1P-H1PB	109.5	S2—N7-Ni2	129.2 (2)
H1PA - C1P- H1PB	109.5	O9-N8-O10	124.1 (4)
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 1 \mathrm{P}-\mathrm{H} 1 \mathrm{PC}$	109.5	O9-N8-C67	119.4 (4)
H1PA - C1P-H1PC	109.5	O10-N8-C67	116.5 (4)
$\mathrm{H} 1 \mathrm{~PB}-\mathrm{C} 1 \mathrm{P}-\mathrm{H} 1 \mathrm{PC}$	109.5	C79-N9-C78	122.0 (4)
C3P-C2P-C1P	147.5 (14)	C79-N9-C71	130.1 (4)
$\mathrm{C} 3 \mathrm{P}-\mathrm{C} 2 \mathrm{P}-\mathrm{H} 2 \mathrm{PA}$	99.9	C78-N9-C71	107.9 (3)
$\mathrm{C} 1 \mathrm{P}-\mathrm{C} 2 \mathrm{P}-\mathrm{H} 2 \mathrm{PA}$	99.9	C95-N10-C91	118.5 (4)
$\mathrm{C} 3 \mathrm{P}-\mathrm{C} 2 \mathrm{P}-\mathrm{H} 2 \mathrm{~PB}$	99.9	C95-N10-Ni2	120.1 (3)
$\mathrm{C} 1 \mathrm{P}-\mathrm{C} 2 \mathrm{P}-\mathrm{H} 2 \mathrm{~PB}$	99.9	C91-N10-Ni2	121.1 (3)
$\mathrm{H} 2 \mathrm{PA}-\mathrm{C} 2 \mathrm{P}-\mathrm{H} 2 \mathrm{~PB}$	104.2	C79-O11-C80	121.0 (3)
$\mathrm{C} 4 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{C} 2 \mathrm{P}$	133.8 (14)	O7-S2-O8	117.58 (19)

$\mathrm{C} 4 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{H} 3 \mathrm{PA}$	103.8	O7-S2-N7	108.85 (18)
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{H} 3 \mathrm{PA}$	103.8	O8-S2-N7	112.83 (19)
$\mathrm{C} 4 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{H} 3 \mathrm{~PB}$	103.8	O7-S2-C62	107.04 (19)
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{H} 3 \mathrm{~PB}$	103.8	O8-S2-C62	104.47 (19)
H3PA $-\mathrm{C} 3 \mathrm{P}-\mathrm{H} 3 \mathrm{~PB}$	105.4	N7-S2-C62	105.08 (19)
C3P-C4P-C5P	163.9 (16)	N10-Ni2-C74	91.06 (17)
C3P-C4P-H4PA	95.0	N10-Ni2-N6	175.21 (16)
$\mathrm{C} 5 \mathrm{P}-\mathrm{C} 4 \mathrm{P}-\mathrm{H} 4 \mathrm{PA}$	95.0	C74-Ni2-N6	91.06 (17)
C3P-C4P-H4PB	95.0	N10-Ni2-N7	89.44 (15)
C5P-C4P-H4PB	95.0	C74-Ni2-N7	167.58 (17)
H4PA - $\mathrm{C} 4 \mathrm{P}-\mathrm{H} 4 \mathrm{~PB}$	103.2	N6-Ni2-N7	89.41 (14)
$\mathrm{C} 4 \mathrm{P}-\mathrm{C} 5 \mathrm{P}-\mathrm{H} 5 \mathrm{PA}$	109.5	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	122.8 (4)
C4P-C5P-H5PB	109.5	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	118.6
H5PA - C5P-H5PB	109.5	C2- $\mathrm{C} 1-\mathrm{H} 1$	118.6
C4P-C5P-H5PC	109.5	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	118.6 (4)
H5PA - $\mathrm{C} 5 \mathrm{P}-\mathrm{H} 5 \mathrm{PC}$	109.5	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.7
H5PB-C5P- H5PC	109.5	C3-C2-H2	120.7
C3S-C2S-C1S	168.7 (17)	C4-C3-C2	119.2 (4)
$\mathrm{C} 3 \mathrm{~S}-\mathrm{C} 2 \mathrm{~S}-\mathrm{H} 2 \mathrm{SA}$	93.5	C4-C3-H3	120.4
$\mathrm{C} 1 \mathrm{~S}-\mathrm{C} 2 \mathrm{~S}-\mathrm{H} 2 \mathrm{SA}$	93.5	C2-C3-H3	120.4
C3S-C2S-H2SB	93.5	C3-C4-C5	120.1 (4)
C1S-C2S-H2SB	93.5	C3-C4-H4	120.0
H2SA-C2S-H2SB	103.1	C5-C4-H4	120.0
$\mathrm{C} 2 \mathrm{~S}-\mathrm{C} 3 \mathrm{~S}-\mathrm{C} 4 \mathrm{~S}$	133.9 (14)	N1-C5-C4	120.6 (4)
C2S-C3S-H3SA	103.7	N1-C5-C6	118.6 (4)
C4S-C3S-H3SA	103.7	C4-C5-C6	120.8 (4)
C2S-C3S-H3SB	103.7	C7-C6- C 11	119.2 (4)
C4S-C3S-H3SB	103.7	C7-C6-C5	120.2 (4)
H3SA-C3S-H3SB	105.4	C11-C6-C5	120.6 (4)

C3S-C4S-C5S	141.1 (15)	C8-C7-C6	121.2 (4)
C3S-C4S-H4SA	101.7	C8- $\mathrm{C} 7-\mathrm{H} 7$	119.4
C5S-C4S-H4SA	101.7	C6-C7-H7	119.4
C3S-C4S-H4SB	101.7	C7-C8-C9	119.2 (4)
C5S-C4S-H4SB	101.7	C7-C8-H8	120.4
H4SA-C4S-H4SB	104.7	C9-C8-H8	120.4
N6-C51-C52	123.4 (5)	C10-C9-C8	120.6 (5)
N6-C51-H51	118.3	C10-C9-H9	119.7
C52-C51-H51	118.3	C8-C9-H9	119.7
C51-C52-C53	118.7 (5)	C9-C10-C11	120.7 (4)
C51-C52-H52	120.7	C9-C10-H10	119.6
C53-C52-H52	120.7	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	119.6
C54-C53-C52	118.9 (5)	C10-C11-C6	119.0 (4)
C54- $\mathrm{C} 53-\mathrm{H} 53$	120.5	C10- $\mathrm{C} 11-\mathrm{N} 2$	120.7 (4)
C52-C53-H53	120.5	C6- $\mathrm{C} 11-\mathrm{N} 2$	120.0 (4)
C53-C54-C55	120.0 (5)	C13-C12-C17	117.4 (4)
C53-C54-H54	120.0	C13-C12-S1	117.8 (3)
C55-C54-H54	120.0	C17-C12-S1	124.8 (3)
N6-C55-C54	121.2 (4)	C14-C13-C12	120.3 (4)
N6-C55-C56	118.3 (4)	C14-C13-H13	119.9
C54-C55-C56	120.5 (4)	C12-C13-H13	119.9
C57-C56-C61	118.3 (4)	C15-C14-C13	121.6 (4)
C57-C56-C55	119.9 (4)	C15-C14-H14	119.2
C61-C56-C55	121.7 (4)	C13-C14-H14	119.2
C58-C57-C56	121.0 (4)	C14-C15-C16	119.5 (4)
C58-C57-H57	119.5	C14-C15-H15	120.2
C56- $\mathrm{C} 57-\mathrm{H} 57$	119.5	C16-C15-H15	120.2
C57-C58-C59	120.2 (5)	C15-C16-C17	118.5 (4)
C57-C58-H58	119.9	C15-C16-H16	120.7

C59-C58-H58	119.9	C17-C16-H16	120.7
C60-C59-C58	119.7 (5)	C16-C17-C12	122.7 (4)
C60-C59-H59	120.1	C16-C17-N3	114.4 (4)
C58-C59-H59	120.1	C12-C17-N3	122.9 (4)
C59-C60-C61	120.7 (4)	C22-C21-C26	120.9 (4)
C59-C60-H60	119.6	C22-C21-N4	132.2 (4)
C61-C60-H60	119.6	C26-C21-N4	106.9 (4)
C60-C61-C56	120.0 (4)	C23-C22-C21	117.6 (4)
C60-C61-N7	121.4 (4)	$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 22$	121.2
C56-C61-N7	118.5 (4)	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$	121.2
C67-C62-C63	116.8 (4)	C22-C23-C24	123.3 (4)
C67-C62-S2	126.1 (3)	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 23$	118.3
C63-C62-S2	117.1 (3)	C24-C23-H23	118.3
C64-C63-C62	121.4 (4)	C25-C24-C23	118.4 (4)
C64-C63-H63	119.3	C25-C24-Ni1	125.7 (3)
C62-C63-H63	119.3	C23-C24-Ni1	115.8 (3)
C63-C64-C65	120.1 (4)	C24-C25-C26	119.8 (4)
C63-C64-H64	120.0	C24-C25-H25	120.1
C65-C64-H64	120.0	C26-C25-H25	120.1
C66-C65-C64	119.9 (4)	C25-C26-C21	119.9 (4)
C66-C65-H65	120.0	C25-C26-C27	132.8 (4)
C64-C65-H65	120.0	C21-C26-C27	107.3 (4)
C67-C66-C65	118.7 (4)	C28-C27-C26	107.7 (4)
C67-C66-H66	120.6	C28-C27-H27	126.2
C65-C66-H66	120.6	C26-C27-H27	126.2
C66- $667-\mathrm{C} 62$	123.0 (4)	C27-C28-N4	109.9 (4)
C66-C67-N8	115.2 (4)	C27-C28-H28	125.0
C62-C67-N8	121.8 (4)	N4-C28-H28	125.0
C72-C71-C76	121.0 (4)	O6-C29-O5	127.8 (4)

C72-C71-N9	131.6 (4)	O6-C29-N4	122.4 (4)
C76-C71-N9	107.3 (3)	O5-C29-N4	109.8 (4)
C73-C72-C71	117.2 (4)	C33-C30-O5	109.0 (4)
C73-C72-H72	121.4	C33-C30-C32	112.2 (5)
C71-C72-H72	121.4	O5-C30-C32	101.1 (4)
C72-C73-C74	123.5 (4)	C33-C30-C31	110.8 (5)
C72-C73-H73	118.3	O5-C30-C31	109.6 (4)
C74-C73-H73	118.3	C32-C30-C31	113.6 (4)
C75-C74-C73	117.8 (4)	C30-C31-H31A	109.5
C75-C74-Ni2	126.3 (3)	C30-C31-H31B	109.5
C73-C74-Ni2	115.9 (3)	H31A-C31-H31B	109.5
C74-C75-C76	120.1 (4)	C30-C31-H31C	109.5
C74-C75-H75	119.9	H31A-C31-H31C	109.5
C76-C75-H75	119.9	H31B-C31-H31C	109.5
C75-C76-C71	120.2 (4)	C30-C32-H32A	109.5
C75-C76-C77	133.0 (4)	C30-C32-H32B	109.5
C71-C76-C77	106.8 (4)	H32A-C32-H32B	109.5
C78-C77-C76	108.2 (4)	C30-C32-H32C	109.5
C78-C77-H77	125.9	H32A-C32-H32C	109.5
C76-C77-H77	125.9	H32B-C32-H32C	109.5
C77-C78-N9	109.9 (4)	C30-C33-H33A	109.5
C77-C78-H78	125.1	C30-C33-H33B	109.5
N9-C78-H78	125.1	H33A-C33-H33B	109.5
O12-C79-O11	127.8 (4)	C30-C33-H33C	109.5
O12-C79-N9	122.5 (4)	H33A-C33-H33C	109.5
O11-C79-N9	109.7 (4)	H33B-C33-H33C	109.5
O11-C80-C82	108.8 (4)	N5-C41-C42	122.4 (4)
O11-C80-C83	110.5 (4)	N5-C41-H41	118.8
C82-C80-C83	112.9 (4)	C42- $\mathrm{C} 41-\mathrm{H} 41$	118.8

O11-C80-C81	101.3 (3)	C43-C42-C41	119.3 (5)
C82-C80-C81	110.7 (4)	C43-C42-H42	120.4
C83-C80-C81	112.0 (4)	C41-C42-H42	120.4
C80-C81-H81A	109.5	C44-C43-C42	118.5 (5)
C80-C81-H81B	109.5	C44-C43-H43	120.7
H81A-C81-H81B	109.5	C42-C43-H43	120.7
C80-C81-H81C	109.5	C43-C44-C45	119.3 (5)
H81A-C81-H81C	109.5	C43-C44-H44	120.3
H81B-C81-H81C	109.5	C45-C44-H44	120.3
C80-C82-H82A	109.5	N5-C45-C44	122.8 (5)
C80-C82-H82B	109.5	N5-C45-H45	118.6
H82A-C82-H82B	109.5	C44-C45-H45	118.6
C80-C82-H82C	109.5	C5-N1-C1	118.7 (4)
H82A-C82-H82C	109.5	C5-N1-Ni1	122.5 (3)
H82B-C82-H82C	109.5	C1—N1—Ni1	118.6 (3)
C80-C83-H83A	109.5	C11-N2-S1	118.5 (3)
C80-C83-H83B	109.5	C11-N2-Ni1	107.8 (3)
H83A-C83-H83B	109.5	S1-N2-Ni1	128.6 (2)
C80-C83-H83C	109.5	O3-N3-O4	124.1 (4)
H83A-C83-H83C	109.5	O3-N3-C17	118.9 (4)
H83B-C83-H83C	109.5	O4-N3-C17	116.9 (4)
N10-C91-C92	121.9 (5)	C29-N4-C28	122.0 (4)
N10-C91-H91	119.1	C29-N4-C21	129.6 (4)
C92-C91-H91	119.1	C28-N4-C21	108.2 (3)
C93-C92-C91	119.5 (5)	C45-N5-C41	117.5 (4)
C93-C92-H92	120.3	C45-N5-Ni1	122.4 (3)
C91-C92-H92	120.3	C41-N5-Ni1	120.1 (3)
C94-C93-C92	118.6 (5)	C29-O5-C30	121.4 (4)
C94-C93-H93	120.7	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	117.78 (19)

C92-C93-H93	120.7	O2-S1-N2	112.58 (19)
C93-C94-C95	120.0 (5)	O1-S1-N2	108.63 (18)
C93-C94-H94	120.0	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 12$	104.50 (19)
C95-C94-H94	120.0	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 12$	106.71 (19)
N10-C95-C94	121.6 (5)	N2-S1-C12	105.72 (19)
N10-C95-H95	119.2	N5-Ni1-C24	90.46 (17)
C94-C95-H95	119.2	N5-Ni1-N1	174.11 (16)
C51-N6-C55	117.7 (4)	C24-Ni1-N1	90.12 (16)
C51-N6-Ni2	119.5 (3)	N5-Ni1-N2	91.33 (15)
C55-N6-Ni2	122.4 (3)	C24-Ni1-N2	165.86 (17)
C61-N7-S2	117.7 (3)	N1-Ni1-N2	89.53 (14)
$\mathrm{C} 1 \mathrm{P}-\mathrm{C} 2 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{C} 4 \mathrm{P}$	17 (3)	C61-N7-Ni2-N6	62.1 (3)
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{C} 4 \mathrm{P}-\mathrm{C} 5 \mathrm{P}$	19 (6)	S2-N7-Ni2-N6	-93.0 (3)
C1S-C2S-C3S-C4S	-25 (8)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.5 (7)
$\mathrm{C} 2 \mathrm{~S}-\mathrm{C} 3 \mathrm{~S}-\mathrm{C} 4 \mathrm{~S}-\mathrm{C} 5 \mathrm{~S}$	21 (3)	C1-C2-C3-C4	-1.2(7)
N6-C51-C52-C53	-1.1(7)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	1.1 (7)
C51-C52-C53-C54	-1.1 (7)	C3-C4-C5-N1	0.5 (6)
C52-C53-C54-C55	1.3 (7)	C3-C4-C5-C6	-177.5 (4)
C53-C54-C55-N6	0.6 (7)	N1-C5-C6-C7	-139.7 (4)
C53-C54-C55-C56	-178.8 (4)	C4-C5-C6-C7	38.4 (6)
N6-C55-C56-C57	-142.2 (4)	N1-C5-C6-C11	38.9 (6)
C54-C55-C56-C57	37.3 (6)	C4-C5-C6-C11	-143.0 (4)
N6-C55-C56-C61	39.5 (6)	C11-C6-C7-C8	-0.7 (7)
C54-C55-C56-C61	-141.0 (4)	C5-C6-C7-C8	177.9 (5)
C61-C56-C57-C58	-1.3 (7)	C6-C7-C8-C9	-1.1 (8)
C55-C56-C57-C58	-179.7 (4)	C7-C8-C9-C10	1.6 (8)
C56-C57-C58-C59	-0.6 (8)	C8-C9-C10-C11	-0.4 (8)
C57-C58-C59-C60	1.8 (8)	C9-C10-C11-C6	-1.4 (7)

C58-C59-C60-C61	-1.1 (7)	C9-C10-C11-N2	-175.8 (4)
C59-C60-C61-C56	-0.9 (7)	C7-C6-C11-C10	2.0 (6)
C59-C60-C61-N7	-176.7 (4)	C5-C6-C11-C10	-176.6 (4)
C57-C56-C61-C60	2.1 (6)	C7-C6- ${ }^{\text {C11-N2 }}$	176.4 (4)
C55-C56-C61-C60	-179.6 (4)	C5-C6-C11-N2	-2.2 (6)
C57-C56-C61-N7	178.0 (4)	C17-C12-C13-C14	0.9 (6)
C55-C56-C61-N7	-3.7 (6)	S $1-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	-178.4 (3)
C67-C62-C63-C64	0.0 (6)	C12-C13-C14-C15	-1.8(7)
S2-C62-C63-C64	-177.7 (3)	C13-C14-C15-C16	0.4 (7)
C62-C63-C64-C65	0.6 (7)	C14-C15-C16-C17	1.7 (7)
C63-C64-C65-C66	-1.6 (7)	C15-C16-C17-C12	-2.6 (7)
C64-C65-C66-C67	1.9 (7)	C15-C16-C17-N3	179.6 (4)
C65-C66-C67-C62	-1.3 (7)	C13-C12-C17-C16	1.3 (6)
C65-C66-C67-N8	-179.2 (4)	S1-C12-C17-C16	-179.4 (4)
C63-C62-C67-C66	0.3 (6)	C13-C12-C17-N3	178.9 (4)
S2-C62-C67-C66	177.8 (3)	$\mathrm{S} 1-\mathrm{C} 12-\mathrm{C} 17-\mathrm{N} 3$	-1.9 (6)
C63-C62-C67-N8	178.1 (4)	C26-C21-C22-C23	2.5 (6)
S2-C62-C67-N8	-4.4 (6)	N4-C21-C22-C23	-177.8 (4)
C76-C71-C72-C73	3.8 (6)	C21-C22-C23-C24	-1.2 (7)
N9-C71-C72-C73	-179.7 (4)	C22-C23-C24-C25	-1.1(7)
C71-C72-C73-C74	-1.5 (7)	C22-C23-C24-Ni1	176.3 (3)
C72-C73-C74-C75	-1.8 (7)	C23-C24-C25-C26	2.1 (6)
C72-C73-C74-Ni2	178.0 (4)	Ni1-C24-C25-C26	-175.1 (3)
C73-C74-C75-C76	2.7 (6)	C24-C25-C26-C21	-0.8 (6)
Ni2-C74-C75-C76	-177.0 (3)	C24-C25-C26-C27	178.9 (4)
C74-C75-C76-C71	-0.4 (6)	C22-C21-C26-C25	-1.6 (6)
C74-C75-C76-C77	-178.2 (4)	N4-C21-C26-C25	178.6 (4)
C72-C71-C76-C75	-3.0 (6)	C22-C21-C26-C27	178.7 (4)
N9-C71-C76-C75	179.8 (4)	N4-C21-C26-C27	-1.1 (4)

C72-C71-C76-C77	175.3 (4)	C25-C26-C27-C28	-179.6 (4)
N9-C71-C76-C77	-2.0 (4)	C21-C26-C27-C28	0.1 (5)
C75-C76-C77-C78	179.4 (4)	C26-C27-C28-N4	1.0 (5)
C71-C76-C77-C78	1.5 (5)	N5-C41-C42-C43	0.9 (7)
C76-C77-C78-N9	-0.4 (5)	C41-C42-C43-C44	-1.7 (7)
N10-C91-C92-C93	0.8 (7)	C42-C43-C44-C45	1.2 (7)
C91-C92-C93-C94	1.2 (8)	C43-C44-C45-N5	0.3 (7)
C92-C93-C94-C95	-1.8(7)	C4-C5-N1-C1	-2.1 (6)
C93-C94-C95-N10	0.5 (7)	C6-C5-N1-C1	175.9 (4)
C52-C51-N6-C55	2.9 (7)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{Ni} 1$	171.7 (3)
C52-C51-N6-Ni2	-170.8 (4)	C6-C5-N1-Ni1	-10.2 (5)
C54-C55-N6-C51	-2.7 (6)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	2.1 (6)
C56-C55-N6-C51	176.8 (4)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1$	-171.9 (3)
C54-C55-N6-Ni2	170.9 (3)	C10- $\mathrm{C} 11-\mathrm{N} 2-\mathrm{S} 1$	-81.1 (5)
C56-C55-N6-Ni2	-9.7 (5)	C6- $\mathrm{C} 11-\mathrm{N} 2-\mathrm{S} 1$	104.6 (4)
C60-C61-N7-S2	-77.2 (5)	C10-C11-N2-Ni1	121.9 (4)
C56-C61-N7-S2	106.9 (4)	C6- $\mathrm{C} 11-\mathrm{N} 2-\mathrm{Ni} 1$	-52.4 (4)
C60-C61-N7-Ni2	124.4 (4)	C16-C17-N3-O3	-118.6 (5)
C56-C61-N7-Ni2	-51.4 (4)	C12-C17-N3-O3	63.7 (6)
C66-C67-N8-O9	-115.6 (5)	C16-C17-N3-O4	58.5 (5)
C62-C67-N8-O9	66.5 (6)	C12-C17-N3-O4	-119.2 (5)
C66-C67-N8-O10	62.4 (5)	O6-C29-N4-C28	3.3 (7)
C62-C67-N8-O10	-115.6 (5)	O5-C29-N4-C28	-177.0 (4)
O12-C79-N9-C78	0.5 (6)	O6-C29-N4-C21	-170.6 (4)
O11-C79-N9-C78	-179.8 (4)	O5-C29-N4-C21	9.2 (6)
O12-C79-N9-C71	-176.3 (4)	C27-C28-N4-C29	-176.7 (4)
O11-C79-N9-C71	3.4 (6)	C27-C28-N4-C21	-1.7 (5)
C77-C78-N9-C79	-178.3 (4)	C22-C21-N4-C29	-3.5 (8)
C77-C78-N9-C71	-0.9 (5)	$\mathrm{C} 26-\mathrm{C} 21-\mathrm{N} 4-\mathrm{C} 29$	176.2 (4)

C72-C71-N9-C79	2.0 (7)	C22-C21-N4-C28	-178.0 (4)
C76-C71-N9-C79	178.9 (4)	C26-C21-N4-C28	1.7 (5)
C72-C71-N9-C78	-175.1 (4)	C44-C45-N5-C41	-1.1 (6)
C76-C71-N9-C78	1.8 (4)	C44-C45-N5-Ni1	-179.3 (3)
C94-C95-N10-C91	1.5 (6)	C42-C41-N5-C45	0.5 (6)
C94-C95-N10-Ni2	174.4 (3)	C42-C41-N5-Ni1	178.7 (3)
C92-C91-N10-C95	-2.2 (7)	O6-C29-O5-C30	0.7 (7)
C92-C91-N10-Ni2	-175.0 (4)	N4-C29-O5-C30	-179.0 (4)
O12-C79-O11-C80	8.2 (7)	C33-C30-O5-C29	-67.3 (6)
N9-C79-O11-C80	-171.5 (3)	C32-C30-O5-C29	174.3 (4)
C82-C80-O11-C79	56.7 (5)	C31-C30-O5-C29	54.2 (6)
C83-C80-O11-C79	-67.8 (5)	C11-N2-S1-O2	35.0 (4)
C81-C80-O11-C79	173.4 (4)	Ni1-N2-S1-O2	-173.4 (2)
C61-N7-S2-O7	171.8 (3)	C11-N2-S1-O1	167.3 (3)
Ni2-N7-S2-O7	-35.0 (3)	Ni1-N2-S1-O1	-41.1 (3)
C61-N7-S2-O8	39.4 (4)	C11-N2-S1-C12	-78.5 (3)
Ni2-N7-S2-O8	-167.4 (2)	Ni1-N2-S1-C12	73.1 (3)
C61-N7-S2-C62	-73.8 (3)	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{S} 1-\mathrm{O} 2$	-28.6 (4)
Ni2-N7-S2-C62	79.4 (3)	$\mathrm{C} 17-\mathrm{C} 12-\mathrm{S} 1-\mathrm{O} 2$	152.2 (4)
C67-C62-S2-O7	25.5 (4)	C13-C12-S1-O1	-154.0 (3)
C63-C62-S2-O7	-157.0 (3)	C17- $\mathrm{C} 12-\mathrm{S} 1-\mathrm{O} 1$	26.7 (4)
C67-C62-S2-O8	150.9 (4)	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{S} 1-\mathrm{N} 2$	90.4 (4)
C63-C62-S2-O8	-31.6 (4)	C17- $\mathrm{C} 12-\mathrm{S} 1-\mathrm{N} 2$	-88.8 (4)
C67-C62-S2-N7	-90.2 (4)	C45-N5-Ni1-C24	-92.6 (4)
C63-C62-S2-N7	87.3 (4)	$\mathrm{C} 41-\mathrm{N} 5-\mathrm{Ni} 1-\mathrm{C} 24$	89.2 (3)
C95-N10-Ni2-C74	91.6 (3)	C45-N5-Ni1-N2	73.4 (3)
C91-N10-Ni2-C74	-95.7 (4)	C41-N5-Ni1-N2	-104.8 (3)
C95-N10-Ni2-N7	-100.8 (3)	C25-C24-Ni1-N5	-58.4 (4)
C91-N10-Ni2-N7	71.9 (3)	C23-C24-Ni1-N5	124.4 (3)

C75-C74-Ni2-N10	-51.7 (4)	C25-C24-Ni1-N1	115.7 (4)
C73-C74-Ni2-N10	128.6 (4)	C23-C24-Ni1-N1	-61.5 (3)
C75-C74-Ni2-N6	124.0 (4)	C25-C24-Ni1-N2	-155.7 (5)
C73-C74-Ni2-N6	-55.7 (4)	$\mathrm{C} 23-\mathrm{C} 24-\mathrm{Ni} 1-\mathrm{N} 2$	27.0 (9)
C75-C74-Ni2-N7	-143.9 (6)	C5-N1-Ni1-C24	132.1 (3)
C73-C74-Ni2-N7	36.3 (10)	C1-N1-Ni1-C24	-54.0 (3)
C51-N6-Ni2-C74	-53.0 (3)	C5-N1-Ni1-N2	-33.7 (3)
C55-N6-Ni2-C74	133.6 (4)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2$	140.1 (3)
C51-N6-Ni2-N7	139.4 (3)	C11-N2-Ni1-N5	-124.1 (3)
C55-N6-Ni2-N7	-34.0 (3)	S1-N2-Ni1-N5	82.0 (3)
C61-N7-Ni2-N10	-122.6 (3)	C11-N2-Ni1-C24	-26.9 (8)
S2-N7-Ni2-N10	82.4 (3)	S1-N2-Ni1-C24	179.2 (6)
C61-N7-Ni2-C74	-30.2 (9)	C11-N2-Ni1-N1	61.7 (3)
S2—N7-Ni2-C74	174.8 (6)	S1-N2-Ni1-N1	-92.2 (3)

Spectroscopic Data

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 23{ }^{\circ} \mathrm{C}\right)$ of 6

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 a}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 a}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 a}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{1 a}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{7 b}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 b}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{1 b}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 b}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 c}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 c}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{1 c}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 c}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 d}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $7 \mathbf{d}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 d}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 d}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 e}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 e}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{1 e}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 e}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{S 3}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{S 3}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $7 \mathbf{f}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 f}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{1 f}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 f}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{S 4}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{S 4}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 g}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 g}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{1 g}$

움

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 g}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 h}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 h}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 h}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 h}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{S 1 1}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{S 1 1}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{7 i}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{7 i}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{1 i}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 i}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7} \mathbf{j}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1} \mathbf{j}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1} \mathbf{j}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{S 1 2}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{S 1 2}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 k}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 k}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 k}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 k}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 23{ }^{\circ} \mathrm{C}\right)$ of 71

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 23{ }^{\circ} \mathrm{C}\right)$ of $7 \mathbf{l}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{1 1}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 1}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{2 f}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 1}$

-90
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{2 f}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{S 1 3}$

$\stackrel{⿷_{0}^{2}}{2}$ $\stackrel{\circ}{\sim}$
9
60
©
100
$\stackrel{\circ}{-}$
$\stackrel{\circ}{\sim}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{S 1 3}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{2 i}$

唇

08T-
-170
-160
-150
-140
-130
-120
-110
-100

운
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{2 f}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$ of $\mathbf{2 1}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of 21

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{2 l}$

References

(1) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2925.
(2) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
(3) Matthews, W. S.; Bares, J. E.; Bartmess, J. E.; Bordwell, F. G.; Cornforth, F. J.; Drucker, G. E.; Margolin, Z.; McCallum, R. J.; McCollum, G. J.; Vanier, N. R. J. Am. Chem. Soc. 1975, 97, 7006.
(4) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.;

Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176.
(5) R. Weiss, J. Seubert, Angew. Chem., Int. Ed. 1994, 33, 891.
(6) Rebstock, A. S.; Mongin, F.; Trecourt, F.; Queguiner, G. Org. Biomol. Chem. 2003, 1, 3064.
(7) Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2008, 130, 10060.
(8) (a) Marshall, W. J.; Grushin, V. V. Can. J. Chem. 2005, 83, 640. (b) Higgs, A. T.; Zinn, P. J.;

Simmons, S. J.; Sanford, M. S. Organometallics 2009, 28, 6142. (c) Higgs, A. T.; Zinn, P. J.;
Sanford, M. S. Organometallics 2010, 29, 5446.
(9) Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.; Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T. Science 2011, 334, 639.
(10) A. B. Charette, H. Juteau, H. Lebel, C. Molinaro, J. Am. Chem. Soc. 1998, 120, 11943.
(11) Kirschbaum, S.; Waldmann, H. J. Org. Chem. 1998, 63, 4936.
(12)Furuya, T.; Kaiser, H. M.; Ritter, T. Angew. Chem. Int. Ed. 2008, 47, 5993.
(13) Sotgiu, G.; Galeotti, M.; Samori, C.; Bongini, A.; Mazzanti, A. Chem. Eur. J. 2011, 17, 7947.
(14) Furuya, T.; Ritter, T. Org. Lett. 2009, 11, 2860.
(15) Tang, P. P.; Wang, W. K.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 11482.
(16) Dissoki, S.; Hagooly, A.; Elmachily, S.; Mishani, E. J. Label. Compd. Radiopharm. 2011, 54, 693.
(17) Noel, T.; Maimone, T. J.; Buchwald, S. L. Angew. Chem. Int. Ed.2011, 50, 8900.
(18) DesMarteau, D. D.; Xu, Z.-Q.;Witz, M. J. Org. Chem. 1992, 57, 629.
(19) Saha, G. B. Basics of PET Imaging: Physics, Chemistry, and Regulations, 2nd ed.; Springer: New York, 2010; pp 5-10.

