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University Technology Transfer and Research Portfolio Management 

Abstract 

 

University technology transfer is of critical importance to the U.S. innovation economy. 

Understanding the drivers of technology transfer efficiency will shed light on University research 

portfolio management. In this dissertation, survey data from The Association of University 

Technology Managers is analyzed in various aspects to offer a overall understanding of the 

technology transfer industry, which include University research fund composition, technology 

transfer office staffing, licenses executed to start-ups, small companies, and large companies, 

license income composition, legal fee expenditures, new patents applications, provisional patents, 

utility patents, and non USA patents, invention disclosures, U.S. patents issued, start-ups 

initiated, and annual averages of U.S. University technology transfer offices.  

 

Then, a two-stage technology transfer model based on Data Envelopment Analysis is proposed to 

address the limitation of the single-stage model. The two-stage model provides the capacity to 

evaluate the efficiencies of university research and technology transfer office separately and also 

as a whole, offering better insights for university technology transfer management. Year to year 

productivity changes are also measured using Malmquist Index. It is found the productivity 

growth has stemmed primarily from a growth in commercialization by all universities rather than 

a catching up by the inefficient universities. Finally, technology transfer efficiency and academic 

reputation is studied for the first time. Counter intuitively, they are not correlated.  
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To further understand University research portfolio management, Modern Portfolio Theory is 

applied for the first time in this field. University disciplines are categorized into three major 

disciplines: engineering, physical and mathematical sciences, and biological and life sciences. 

The risk and return of technology transfer are defined and research portfolio risk-return curve are 

solved. Then correlation between portfolio balance and technology transfer efficiency are studied. 

It is found that a balanced portfolio is correlated to technology transfer efficiency, which means 

Universities can structure its research portfolio to increase technology transfer efficiency.  
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Chapter 1 Introduction 

1.1 University Technology Transfer 

In general, technology transfer may be defined as the transfer of the research results from 

research institutions to the public (Bremer 1998). It may also be narrowly defined as the process 

of transferring the results of academic research from research institutions to other organizations 

in ways of licensing for the purpose of further development and commercialization (Carlsson and 

Fridh 2002) (Bauer and Flagg 2010). Technology transfer can occur in many different forms, 

including the publication of research results in scientific journals, dissemination of knowledge 

and research results in conferences and seminars to the public, and licensing technology to firms. 

In this dissertation, we are only studying the narrowly defined concept of technology transfer, i.e. 

the transfer from research institutions to the industry for commercialization.  

 

1.2 The Bayh-Dole Act 

It has been 33 years since the introduction of the Bayh-Dole Act of 1980, which gave 

universities the authority to commercialize discoveries made using federal funds (J. G. Thursby 

and Thursby 2003). The Bayh–Dole Act is United States legislation dealing with intellectual 

property arising from federal government-funded research. The Act was adopted in 1980. The 

Bayh-Dole Act changed the ownership of inventions made with federal funding from the federal 

government to universities, small businesses, or non-profit institutions (Stevens 2004). 
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In 1970s, the U.S. economy was plagued by the combination of soaring prices, the high 

unemployment, and low economic growth. The Congress took efforts to respond to the economy. 

One of Congress’ efforts was on how to commercialize the inventions created from government 

sponsored research which has an annual funding of over $75 billion. These patents had 

accumulated because the government under President Roosevelt decided to continue and even 

ramp up its spending on research and development after World War II. It’s based on Vannevar 

Bush's famous report "Science The Endless Frontier", which stated: "Scientific progress is one 

essential key to our security as a nation, to our better health, to more jobs, to a higher standard of 

living, and to our cultural progress."(Bush 1945). However, the government did not have a 

unified patent policy governing all the agencies that funded research. The general policy was that 

government would retain title to inventions and would license them only nonexclusively. (Bayh–

Dole Act Wikipedia 2013) "Those seeking to use government-owned technology found a maze 

of rules and regulations set out by the agencies in question because there was no uniform federal 

policy on patents for government-sponsored inventions or on the transfer of technology from the 

government to the private sector." (United States General Accounting Office 1998). 

 

Then Federal agencies started to use "Institutional Patent Agreements" to allow grantee 

companies or institutions to retain rights to inventions made with federal funding, but such 

agreements were not regularly used (Stevens 2004). In the 1970s, faculty at Purdue University in 

Indiana had made important discoveries under grants from the Department of Energy, which did 

not issue Institutional Patent Agreements (Stevens 2004). Officials at the university complained 

to their Senator, Birch Bayh. At the same time, Senator Robert Dole was thinking about similar 

issues, and the two senators collaborated on a bill later known as the Bayh-Dole Act (Stevens 
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2004). The legislation decentralized control of federally-funded inventions, vesting the 

responsibility and authority to commercialize inventions with the institution or company 

receiving a grant, with certain responsibilities to the government, the inventor, and the public, 

such as granting a royalty-free non-exclusive license to U.S. government for its own use (Bayh–

Dole Act Wikipedia 2013).  

 

Prior to the enactment of Bayh-Dole, the U.S. government had accumulated 28,000 patents but 

fewer than 5% of those patents were commercially license (United States General Accounting 

Office 1998). Shortly after the Bayh-Dole Act, there was a sharp increase in U.S. university 

patenting and licensing activity. There were 177 patents awarded to U.S. Academic Institutions 

in 1974 and 196 awarded in 1979 while There were 408 awarded in 1984, 1004 awarded in 1989, 

and 4700 awarded in 2011 (Mowery et al. 1999). In tandem with increased patenting, U.S. 

universities expanded their efforts to license these patents. The Association of University 

Technology Managers (AUTM) reported that the number of universities with technology 

licensing and transfer offices increased from 25 in 1980 to 200 in 1990, and licensing revenues 

of the AUTM universities increased from $183 million in 1991 to $3.44 billion in 2008. 

Moreover, the share of all U.S. patents accounted for by universities grew from less than 1% in 

1975 to almost 2.5% in 1990 (Henderson, Jaffe, and Trajtenberg 1994). According to the AUTM 

2010 Better World Report, in 30 years of Bayh-Dole Act, more than 6,000 new U.S. companies 

were formed from university inventions; 4,350 new university licensed products are in the 

market; 5,000 active university-industry licenses are in effect; more than 153 new drugs, 

vaccines or in vitro devices have been commercialized from federally funded research since 

enactment of Bayh-Dole. Between 1996 and 2007, university patent licensing made a $187 
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billion impact on the U.S. gross domestic product and a $457 billion impact on U.S. gross 

industrial output; and created 279,000 new jobs in the United States (Association of University 

Technology Managers 2010). 

 

Bayh-Dole Act has been helping universities generate revenue by commercializing technology. 

The revenue is then re-invested in academic research (Grimaldi et al. 2011). This looks like a 

perfect cycle. However, there has been some concerns, such as publication delays and material 

transfer (Blumenthal et al. 1997; Louis et al. 2001; Mowery 2004; Perkmann and Walsh 2008), a 

deterioration of the open culture of academic research, and that universities are performing less 

basic research and are becoming capitalized (Welsh et al. 2008; J. Thursby and Thursby 2010). 

 

1.3 The technology transfer process 

The process starts with the inventor submitting an invention disclosure form to the University 

Technology Transfer Office (TTO). After reviewing the disclosure, investigating the potential 

market, and estimating whether or not the expected return exceeds the cost of seeking intellectual 

property protection (patent, copyright, trademark, or other form of protection), the TTO initiates 

the requisite application. The patenting cost about $20,000. Once intellectual property rights 

have been obtained, technology licenses are typically developed in several stages as shown in the 

following figure. 
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Figure 1.1: Road map for typical U.S. patent prosecution (Harvard University Office of Technology Development 
2009). 

 

1.4 Organization of This Study 

In this dissertation, I first analyzed the 1998-2011 survey data from The Association of 

University Technology Managers (AUTM) in Chapter 2. I studied University research fund 

composition, technology transfer office staffing, licenses executed to start-ups, small companies, 

and large companies, license income composition, legal fee expenditures, new patents 

applications, provisional patents, utility patents, and non USA patents, invention disclosures, U.S. 

patents issued, start-ups initiated, and annual averages of U.S. University technology transfer 

offices. 

 

In Chapter 3 first outlines the theoretical background of Data Envelopment Analysis that is used 

to assess the efficiencies of university technology transfer. A two-stage model is proposed and 

efficiencies of the 100 Universities in our sample pool are assessed for both stages. Then 

Malmquist Index is used to measure year to year productivity change. In the end, the correlation 

between technology transfer and academic reputation is studied. 
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Chapter 4 applied Modern Portfolio Theory to University research portfolio management. 

University disciplines are categorized into three major disciplines: engineering, physical and 

mathematical sciences, and biological and life sciences. The risk and return of technology 

transfer are defined and research portfolio risk-return curve are solved. Then correlation between 

portfolio balance and technology transfer efficiency are studied.  

 

Chapter 5 goes into a summarization of the findings, contributions, managerial implications, and 

also proposes areas for future research.  
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Chapter 2 University Technology Transfer 

Activity Analysis 

 

The analysis in this Chapter is based on the data from the annual survey conducted by The 

Association of University Technology Managers (AUTM). The analysis gives us an overall 

understanding of the industry. AUTM is an organization devoted to promoting technology 

transfer between universities and the industry. The association was founded in 1974 and now has 

over 3,500 members worldwide. 

 

2.1 University Research Funds 

University research funds come from three major sources: Federal Funding, Industrial Funding, 

and other sources. Figure 2.1 shows U.S. Universities research funding of all the respondents 

from AUTM survey. Total research funding reached a historical high of $61.4 Billion in 2011 

with a Compound Annual Growth Rate (CAGR) of 7.72% from 1998 to 2011. Federal funding is 

the major source for University research and accounts for about 65.5% in 2011 with a CAGR of 

7.99% from 1998-2011. It enjoyed a 17.5% increase from 2009 to 2010 due to the economic 

stimulus package. Industrial funding accounts for 6.6% of total funding in 2011. It has a CAGR 

of 4.8% from 1998 to 2011, which is lower than both Federal funding and other sources.  
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Figure 2.1: U.S. Universities research funding source (data source: Association of University Technology Managers 
Licensing Surveys). 

 

2.2 Technology Transfer Office Staffing 

There are two types of staff in a typical University Technology Transfer Office: the licensing 

employees and supporting employees. We use the number of licensing employees to measure the 

size of a Technology Transfer office. The total number enjoyed a steady growth with a CAGR of 

6.56% from 1998 to 2009 as shown in the figure below. Even in during the Dot-com bubble, it 

didn’t decline. From 2009 to 2011, the total number declined from 1050 to 1033. The average 

number of full-time licensing employees per University declined from 5.9 people in 2009 to 5.7 

people in 2011. This is due to layoff during the financial crisis. 
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Figure 2.2: Universities technology transfer office full-time licensing employees (data source: Association of 
University Technology Managers Licensing Surveys). 
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Figure 2.3: Licenses executed to start-ups, small companies, and large companies (data source: Association of 
University Technology Managers Licensing Surveys). 
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because of the Dot-com bubble. It dropped by 30% in 2009 and then grew slowly till 2011 as 

shown in the figure below. The significant drop is caused by the financial crisis. So it is observed 

that total income is significantly correlated with the economy. The overall CAGR is 8.21% from 
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income in 2011. The increase in running royalties is an indication that university discoveries are 
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under options, termination payments, and annual minimums) have a CAGR of 11.91%. Not 

characterized income is the difference between total income received minus running royalties, 

cashed-in equity, and other sources of income. It needs to be studied further because it grew 

rapidly with a CAGR of 10.8% in the past 13 years and now accounts for 20% of the total 

income in 2011. 

 

Figure 2.4: Gross income received by income type (data source: Association of University Technology Managers 
Licensing Surveys). 
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license or University, we will find that license income distribution is highly skewed (Scherer and 
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Administration (FDA) for the treatment of ovarian, breast, lung, and testicular cancer. In 2000- 

2001, the royalty paid to FSU by Bristol-Myers Squibb was about $67 million. Table 2.1 shows 

the distribution of full-term U.S. patent values (Harhoff, Scherer, and Vopel 2003). The 225 

patents in the table have a 1977 priority date, leading to patents expiring at full term during 1995. 

It is observed that less than 10% of the patents generated more than 70% of the total value.  

Table 2.1: Distribution of full-term U.S. patent values (Harhoff, Scherer, and Vopel 2003). 
 

 

 

2.4 Legal Fee Expenditures and Legal Fees Reimbursed 

Legal fees expenditures include the amount spent by a University in external legal fees for 

intellectual property protection. Legal fees reimbursements is paid via lump sum payments of 

costs incurred in prior years when a new license is signed and regular reimbursements of new 

costs incurred after the license is signed. The percentage of legal fees out of total licensing 

income remains pretty constant around 13% in the past 13 years. 

The percentage of legal fees reimbursement increased from 41% in 1998 to its peak of 49% in 

2009. Then it declined a little bit to 47% in 2011, indicating Universities’ reluctance to increase 

their resource commitment to technology transfer because of the financial crisis, which is also 

Estimated Value Range   Number Number Percent Value Percent
More than $100 million   22 9.8 70.42
$50‐100 million  6 2.7 9.60
$20‐50 million   10 4.4 7.47
$5‐20 million   34 15.1 9.07
$1‐5 million   41 18.2 2.62
$500,000 to $1 million   30 13.3 0.48
$100,000 to $499,999 45 20 0.29
Less than $100,000   37 16.4 0.04
Total   225 100 100
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reflected in the declining technology transfer office employment from 2009 to 2011 as shown in 

Figure 2.5. 

 

Figure 2.5: Legal fees expended and legal fees reimbursed (data source: Association of University Technology 
Managers Licensing Surveys). 
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In the United States, besides new patent applications to protect new inventions, there are several 

other types of patent applications to cover new improvements to their inventions or to cover 

different aspects of their inventions. These types of patent applications include continuation, 

divisional, continuation in part, and reissue. We compare the total patents filed with newly filed 

in Figure 2.6. Total filed has a CAGR of 7.98% while newly filed has a CAGR of 8.48%. The 

ratio has remained fairly stable around 65% from 1998 to 2011. 
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Figure 2.6: New U.S. patent applications filed and total patent application filed (data source: Association of 
University Technology Managers Licensing Surveys). 
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applications filed in patent offices other than the USPTO and provisional applications filed 

outside of the United States such as UK or New Zealand provisional applications and incomplete 

applications in Canada. 

Provisional filings represent the most common form of new patent application. In 2011, 

Provisional patents accounts for 76.3% of total new patents applications, new Utility patent 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

0

5000

10000

15000

20000

25000

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

New U.S. Patent Applications Filed and Total Patent Applications Filed (All US 
Respondents)

Patent Applications Total Filed Patent Applications Newly Filed  % Newly Filed

Patent Applications Total Filed CAGR=7.98%
Patent Applications Newly Filed CAGR=8.48%



 
 

15 
 

accounts for 9.6%, and Non USA patents accounts for 14.1%. There was an increase in almost 

every category of patent application. Provisional patent increased by 9% compared to 2010. It is 

probably too early to tell if this is a direct result of the America Invents Act.  

The Leahy-Smith America Invents Act (AIA) is United States federal legislation that was passed 

by Congress and was signed into law by President Barack Obama on September 16, 2011. The 

law represents the most significant change to the U.S. patent system since 1952. The law 

switched U.S. rights to a patent from the present "first-to-invent" system to a "first inventor-to-

file" system for patent applications filed on or after March 16, 2013. In part for this reason, the 

U.S. Patent and Trademark Office is likely to see increased numbers of provisional applications, 

which if done properly can be a cost-effective way to obtain an early priority date for a patent 

application. 

 

Figure 2.7: U.S. universities types of new patent applications filed (data source: Association of University 
Technology Managers Licensing Surveys). 
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2.7 Invention Disclosures, New Patents Application, and U.S. 

Patents Issued 

Invention disclosure is a direct measurement of discoveries, which has a CAGR of 5.43% from 

1998 to 2011. Patent Application Newly Filed has a CAGR of 8.48%, and U.S. Patents issued 

has a CAGR of 3.15% from 1998 to 2011. In Figure 2.8, it is observed that the percentage to 

pursue patents out of invention disclosure increased from 42% in 1998 to 61% in 2011, 

indicating Universities’ tendency to pursue intellectual protection increased. However, the 

approval percentage of newly filed patents dropped from 68% to 35%, yielding a drop in U.S. 

patents issued out of invention disclosure from 29% in 1998 to 22% in 2011. We assume United 

States Patent and Trademark Office’s patents reviewing system didn’t change over the years, or 

in other words, didn’t become stricter. Then the quality of inventions disclosures dropped in the 

past 13 years. 
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Figure 2.8: Universities invention disclosures received and new patents issued (data source: Association of 
University Technology Managers Licensing Surveys). 
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mentioned in Section 2.3. However, it does not. Universities prefer to execute a license to start-

ups but don’t like to take equity.  

 

Figure 2.9: U.S. universities start-ups initiated and start-ups university hold equity (data source: Association of 
University Technology Managers Licensing Surveys). 
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Chapter 3 Assessing University Technology 

Transfer Efficiency 

3.1 A Two-stage Model of Technology Transfer 

Siegel and et al (Siegel, Waldman, and Link 2003) used Stochastic Frontier Analysis (SFA) 

(Battese and Coelli 1995) to assess the impact of organizational practices on the relative 

productivity of university technology transfer offices (TTO). However, SFA can only handle one 

output, or a priori weighted average of multiple outputs. SFA allows for statistical inference, but 

requires restrictive functional form and distribution assumptions.  

 

Thursby and Kemp (J. G. Thursby and Kemp 2002) used Data Envelopment Analysis (DEA) 

(Cooper, Seiford, and Zhu 2011) (Charnes, Cooper, and Rhodes 1978) to assess the growth and 

productive efficiency of university intellectual property licensing. However, only 1991-1996 data 

from the Association of University Technology Managers (AUTM) licensing survey was 

available. As we know, AUTM starts its licensing survey in 1991 and there are not many 

participating universities until 1995. In addition, the model Thursby and Kemp (J. G. Thursby 

and Kemp 2002) used is a single stage model. It doesn’t evaluate the efficiencies of university 

research and technology transfer office separately.  

 

The above research didn’t address the question whether inefficiency is from university research 

or from the technology transfer office. Therefore, we propose a two-stage model, the university 

research module and university technology transfer module. We will assess their efficiencies 
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separately and then as a whole. Some universities focus more on basic research which produce 

less patents and commercially rewarding inventions. If we model the university research and 

technology transfer office as a whole, then it is inefficient. However, if we model it in a two-

stage model, we can find that the same amount of federal funding produce less invention 

disclosure because of the basic research tendency. Its overall efficiency is low is not caused by 

TTO inefficiency but by its basic research tendency and hence less invention disclosures. If we 

don’t use a two-stage model, we will undervalue its TTO efficiency. By modeling university 

technology transfer in a two-stage model, it offers better insights for university technology 

transfer management. 

 

The dashed rectangle M1 is the research part of a university, which has one input: federal funding and one output: 
invention disclosure. The dashed rectangle M2 is the technology transfer office of a university, which has three 
inputs: number of full-time employees, legal expenditure, and invention disclosure and four outputs: number of 
license executed, number of startups initiated, number of patents granted, and license revenue received. The dashed 
rectangle M3 denotes university as a whole which include both the research part and technology transfer office. It 
has three inputs: federal funding, number of full-time employees, and legal expenditure and four outputs: number of 
license executed, number of startups initiated, number of patents granted, and license revenue received. 
 

Figure 3.1: Two-stage model of university technology transfer. 
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3.2 Technical Efficiency, Allocative Efficiency, and Economic 

Efficiency 

Before assessing university technology transfer efficiency, we have to distinguish three different 

efficiencies: technical efficiency, allocative efficiency, and economic efficiency (Bhagavath 

2006). The most common efficiency concept is technical efficiency. A producing unit is 

“technically inefficient” if it is possible to produce more output with the current level of inputs or, 

equivalently, it is possible to produce the same output with fewer inputs. In other words, given 

current technology, there is no wastage of inputs in producing the given quantity of output. An 

organization is 100% technically efficient if it operates at best practice. If it operates below best 

practice, then the organization’s technical efficiency is expressed as a percentage of best practice. 

Managerial practices and the scale of operations affect technical efficiency.  

 

Technical efficiency doesn’t factor in the prices of input. Assuming an organization is already 

100% technical efficient, which means there are no way we could produce more output for a 

given level of input. However, it doesn’t mean we cannot allocate inputs proportions differently, 

given relative input prices, to minimize the input cost without sacrificing the level of output. This 

is the concept of allocative efficiency. It is also expressed as a percentage score, with a score of 

100% indicating that the organization is using its inputs in the proportions that would minimize 

costs.  

 

Finally, economic efficiency refers to the combination of technical and allocative efficiency. 

Economic efficiency is calculated as the product of the technical and allocative efficiency scores, 
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so an organization can only be 100% economic efficient if it is both 100% technical efficient and 

allocative efficient.  

 

These concepts are best depicted graphically in Figure 3.2 (Farrell 1957). There are two-input 

(labor and capital) and one output. The isoquant curve (efficient frontier) is a smooth contour 

line representing theoretical best engineering practice. All the points on the isoquant curve have 

the same quantity of output with the minimum amounts of the two inputs required to produce 

that amount of output. Producers can change input combinations along the isoquant curve 

without changing the output quantity. Any organization operating on the isoquant curve is 

technically efficient.  

 

The budget line draw through a set of points that have the same total input cost. The slope of the 

budget line is the negative ratio of the capital price to the labor price. Budget lines closer to the 

origin represent a lower total cost. Therefore, the cost of producing a given output quantity is 

minimized at the point where the budget line is tangent to the isoquant, i.e. point C in the figure. 

Both technical and allocative efficiencies are achieved at point C. Point B is also technically 

efficient but its input combination cost more because it’s on a budget line further away from the 

origin than point C. 

 

Suppose an organization is operating at point A, producing the same output as point A’ then A 

would be technically inefficient because more inputs are used than are needed to produce the 
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given amount of output. So its technical efficiency can be calculated as 'OA
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Figure 3.2: Technical efficiency, allocative efficiency, and Economic Efficiency. 
 
The technology transfer efficiency we study in this research is technical efficiency because cost 

of inputs is not included. 

 

3.3 Data Envelopment Analysis  

Data Envelopment Analysis (DEA) is developed by Charnes et al. (Charnes, Cooper, and Rhodes 

1978) and further developed by Banker et al. (Banker, Charnes, and Cooper 1984). It is a non-

parametric method used for the measurement of efficiency in cases where multiple input and 

output factors are observed and when it is not possible to turn these into one aggregate input or 

output factor. Unlike parametric methods, DEA makes no assumptions about the form of the 

production function and doesn’t specify a predefined function to measure its efficiency. The 
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actual inputs and outputs observed are used to estimate a benchmark production frontier. DEA 

measures the comparative efficiency of the units to be evaluated. These units are called Decision 

Making Units (DMU). The relative efficiency of a DMU is defined as the ratio of the total 

weighted output to the total weighted input (Ray 2004).  

3.3.1 Efficiency Frontier 

Given the strengths of DEA, we use it to find the efficiency frontier and assess university 

technology transfer efficiency. The basic idea of how to use DEA to find the efficiency frontier 

and assess efficiency can be illustrated graphically with the simple single input two-output 

example below (Anderson 2013). Suppose there are three Farms A, B, and C with the same 

number of workers but different outputs as shown in Table 3.1. 

Table 3.1 Input and output of three farms A, B, and C. 
 

 

Figure 3.3 shows the three farms graphically. It is assumed that convex combinations of farms 

are allowed, then the line segment connecting farms A and C shows the possibilities of virtual 

outputs that can be formed from these two farms. Similar segments can be drawn between A and 

B along with B and C. Since the segment AC lies beyond the segments AB and BC, this means 

that a convex combination of A and C will create the most outputs for a given set of inputs. 

Please note C is connected to the vertical axis using a horizontal line. It’s because a farm can 

always produce less apples with the same amount of input as C. But we have no knowledge of 

whether producing less apples would allow it to raise its oranges production so we have to 

assume that it remains constant. Therefore, the blue line is called the efficiency frontier, which 

Input  Output  Output
Farm A  10 workers  40 apples  0 oranges
Farm B  10 workers  20 apples  5 oranges 
Farm C  10 workers  10 apples  20 oranges 
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defines the maximum combinations of outputs that can be produced for a given set of inputs. 

Farm B lies below the efficiency frontier, which means it is inefficient. Its efficiency can be 

determined by comparing it to a virtual farm formed from a combination of farm A and C. The 

virtual farm, called V, is approximately 64% of farm C and 36% of farm A. (This can be 

determined by the lengths of AV, CV, and AC. specifically, Farm V=(Farm C)*(CV/AC) + 

(Farm A)*(AV/AC). 

 

Figure 3.3: Efficiency frontier of three Farms A, B, and C. 
 
The efficiency of farm B is calculated by finding the fraction of inputs that farm V would need to 

produce as many outputs as farm B. This is easily calculated by looking at the line OV. The 

efficiency of farm B is OB/OV which is approximately 68%. This figure also shows that farms A 

and C are efficient since they lie on the efficiency frontier. Therefore the efficiency of farms A 

and C are 100%. 

The graphical method is useful in this simple example but gets much harder in higher dimensions. 

We will then use Linear Program formulation of DEA.  
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3.3.2 Returns to Scale 

Since this problem uses a constant input value of 10 for all of the farms, it doesn’t have the 

complications of different returns to scale. Returns to scale refers to increasing or decreasing 

efficiency based on size. Constant Returns to Scale (CRS) means that output linearly increase or 

decrease with the increase or decrease of input without increasing or decreasing efficiency. 

Increasing Return to Scale (IRS) means a producer can achieve certain economies of scale by 

producing more. Decreasing Return to Scale (DRS) means a producer find it more and more 

difficult to keep the output proportionally with the increase of input. Variable returns to scale 

(VRS) is having both IRS and DRS in certain ranges of production. The assumption of CRS may 

be valid over limited ranges but its use must be justified. In general, CRS tends to lower the 

efficiency scores while VRS tends to raise efficiency scores. 

In the following figure, it shows different returns to scale by moving a producer from operation 

point A’ to A’’. In Figure 3.4 (a). CA’/CA=BA/BA’’, so it is constant return to scale. In Figure 

3.4 (b), CA’/CA<BA/BA’’, so it is decreasing return to scale. In Figure 3.4 (c),  

CA’/CA>BA/BA’’, so it is increasing return to scale. 

 

Figure 3.4: Return to scale. 
 
In Figure 3.4 (b), we have decreasing returns to scale represented by y=f(x), and an inefficient 

firm operating at the point A. The input-orientated measure of Technical Efficiency would be 
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CA’/CA because it measures how much the input can be proportionally reduced without 

changing the output. On the other hand, the output-orientated measure of Technical Efficiency 

would be BA/BA’’ because it measures how much the output can be proportionally increased 

without changing the input. When constant return to scale, the input and output oriented 

Technical Efficiency would be the same, but will be unequal when increasing or decreasing 

returns to scale are present (Fare and Lovell 1978). The constant returns to scale case is depicted 

in Figure 3.4 (a) where CA’/CA= BA/BA’’. It is easy to observe from the curves that in the case 

of DRS, input oriented Technical Efficiency is tend to be smaller than output oriented Technical 

Efficiency while in the case of IRS, input oriented Technical Efficiency is tend to be larger than 

output oriented Technical Efficiency. 

3.3.3 Input-Oriented and Output-Orientated Measures 

The difference between the output- and input-orientated measures can further in a two-input and 

single output case as shown in Figure 3.5 (a). Assume an inefficient organization is operating at 

point A with the same output as point A’. It is easily observed that we can reduce its input by 

OA’/OA without decrease the output, so its technical efficiency TE= OA’/OA. If we have input 

price information then we can draw the iso-cost line A’’C. It is seen from the figure that we can 

reduce the total input cost by OA’’/OA’ if we move from point A’ to point C without decreasing 

output. So its allocative efficiency AE= OA’’/OA’. Therefore its economic efficiency EE = 

TE*AE = (OA’/OA) * (OA’’/OA’) = OA’’/OA.  

Similarly, we can consider the output-oriented measure further by considering a single input and 

two-output case as shown in Figure 3.5 (b). Assume an inefficient organization is operating at 

point A with the same output as point A’. Please note, inefficient operation point lies outside of 

the iso-output curve in the case of input-oriented while it lies inside of the iso-input curve.  
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It is easily observed that we can increase its output by OA/OA’ without increase the input, so its 

technical efficiency TE= OA/OA’. If we have output price information then we can draw the iso-

revenue line A’’C. It is seen from the figure that we can increase the total output revenue by 

OA’/OA’’ if we move from point A’ to point C without increasing input. So its allocative 

efficiency AE= OA’/OA’’. Therefore its economic efficiency EE = TE*AE = (OA/OA’) * 

(OA’/OA’’) = OA/OA’’.  

  

Figure 3.5: Input and output orientated measures. 
 
These efficiency measures assume the production function of the fully efficient firm is known. In 

practice this is not the case, and the efficient isoquant must be estimated from the sample data.  
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3.4 Measure University Technology Transfer Efficiency 

The above analysis of DEA can be formulated as follows  

( ) , :
( )

;

( )

i i

i

j i

j i

j i

i

j i

j i

If decision making unit DMU i uses x and produce y then
I if j uses x then
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x x i is ineffi

< ⇒

> ⇒

= ⇒

> ⇒
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;j i

cient

x x no evidence that i or j is inefficient= ⇒

 

In order to determine the relative efficiency scores, a linear program (LP) (Vanderbei 2001) must 

be run for each DMU. Performance Improvement Management (PIM) Software 3.0 is used in my 

research (Emrouznejad and Thanassoulis 2011). By using a linear objective function, the 

assumption is made that the efficient frontier is piecewise linear. We consider an output 

orientation Variable Return to Scale (VRS) model.  
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We took a sample of 100 universities/institutions from the Association of University Technology 

Managers (AUTM) survey 1996-2011. The survey starts from 1991 but we didn’t use the data in 



 
 

31 
 

the first five years because there were not many participating universities and some data, like 

number of startups initiated, are missing in the early years. In addition, the AUTM survey itself 

developed in the first five years until its current standardized format. So we believe the data from 

1996 to 2011 are better for our analysis and will lead to better insights for university technology 

transfer practice.  

 

The 100 universities/institutions are selected based on data availability and data significance. Not 

every university participated each year. If a university/institution failed to participate in the 

survey for a consecutive 5 years, its data will not be used. If a university/institution’s data is not 

significant enough to be ranked top 100, its data will not be used. Please note there is a lag 

between some input and output. For instance, license revenue received is from patents awarded 

in the past. Therefore, we use a 16-year average of the data to reduce error from time lags. We 

will further study the time lag effect in Chapter 4. It turned out that time lag doesn’t affect the 

overall trend much. Following is a table of the data statistics. LICFTE denotes Number of Full-

time Employees in Technology Licensing Office; FEDEXP denotes Federal Funding; LCEXEC 

denotes Licenses Executed; LIRECD denotes Licenses Income Received; EXPLGF denotes 

Legal Fee Expenditure; INVDIS denotes Invention Disclosure; USPTIS denotes Number of US 

Patents Awarded; STRTUP denotes Number of Start-ups Initiated.  

Table 3.2: Input and output statistics. 
 

  

Mean Std. Dev. Min Max
LICFTE 5.45 6.7 0.94 60.89
FEDEXP $202,846,644 $239,776,080 $9,002,594 $1,862,061,210
LCEXEC 34.43 36.27 1.45 230.38
LIRECD $11,845,837 $23,753,720 $56,073 $123,335,332
EXPLGF $1,680,625 $2,737,702 $125,359 $23,167,584
INVDIS 120.52 138.04 12.75 1132
USPTIS 27.17 35.32 2.46 276.38
STRTUP 3.61 4.05 0.21 30.5
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We use the above data in three models: M1 (university research), M2 (technology transfer office), 

and M3 (university as a whole which include both the research part and technology transfer 

office). Please see Figure 3.1 for reference of M1, M2, and M3. Input and output of the three 

models are shown in the following table. 

Table 3.3: Input and output of M1, M2, and M3. 
 

 

By using data envelopment analysis, we assessed the efficiencies of 100 universities as shown in 

the following table. Note that M1 Efficiency times M2 Efficiency doesn’t necessarily equal to 

M3 Efficiency because they are relative efficiencies rather than absolute efficiencies. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input Output Input Output Input Output
FEDEXP × ×
INVDIS × ×
LICFTE × ×
EXPLGF × ×
LCEXEC × ×
LIRECD × ×
STRTUP × ×
USPTIS × ×

M1 M2 M3
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Table 3.4: University technology transfer efficiency 1996-2011. 
 

 

 

Let’s further study this problem by drawing efficiency frontiers. Figure 3.6 is the efficiency 

frontier of M1. M1 has one input federal funding (FEDEXP) and one output invention disclosure 

(INVDIS). Every red dot is a decision making unit (DMU), which is the research part of a 

DMU University M1 M2 M3 DMU University M1 M2 M3
U01 Arizona State University 45.11% 54.79% 65.09% U51 Tulane University 17.09% 97.37% 84.15%
U02 Auburn University 33.92% 31.92% 34.02% U52 Univ. of Akron 100.00% 76.80% 100.00%
U03 Baylor College of Medicine 32.05% 57.28% 61.77% U53 Univ. of Arizona 29.89% 77.20% 77.20%
U04 Boston University 22.55% 92.44% 66.77% U54 Univ. of Arkansas 33.84% 52.95% 59.76%
U05 Brigham Young University 83.71% 100.00% 100.00% U55 Univ. of California System 100.00% 100.00% 100.00%
U06 California Institute of Technology 100.00% 100.00% 100.00% U56 Univ. of Cincinnati 30.49% 58.12% 51.22%
U07 Carnegie Mellon University 27.27% 64.60% 64.60% U57 Univ. of Colorado 26.73% 77.42% 77.02%
U08 Case Western Reserve University 13.88% 56.15% 37.36% U58 Univ. of Connecticut 31.89% 51.89% 48.26%
U09 Clemson University 31.14% 100.00% 100.00% U59 Univ. of Dayton Research Institute 22.64% 68.61% 55.35%
U10 Colorado State University 18.98% 54.27% 52.71% U60 Univ. of Delaware 21.10% 74.92% 71.16%
U11 Columbia University 36.89% 100.00% 100.00% U61 Univ. of Florida 35.97% 100.00% 100.00%
U12 Cornell University 53.44% 100.00% 100.00% U62 Univ. of Georgia 32.56% 100.00% 100.00%
U13 Dartmouth College 11.29% 94.28% 77.47% U63 Univ. of Hawaii 9.91% 48.83% 22.72%
U14 Duke University 33.86% 75.38% 68.69% U64 Univ. of Idaho 39.91% 39.84% 42.16%
U15 East Carolina University 100.00% 37.13% 100.00% U65 Univ. of Illinois Urbana Champaign 26.52% 100.00% 100.00%
U16 Emory University 22.41% 53.48% 40.66% U66 Univ. of Iowa 25.84% 60.46% 50.52%
U17 Florida State University 12.26% 100.00% 100.00% U67 Univ. of Kansas 39.60% 71.85% 68.61%
U18 Georgetown University 22.82% 41.72% 31.24% U68 Univ. of Kentucky 34.30% 69.69% 67.22%
U19 Georgia Institute of Technology 46.21% 67.90% 67.38% U69 Univ. of Louisville 31.42% 100.00% 100.00%
U20 Harvard University 31.43% 69.82% 52.95% U70 Univ. of Maryland Baltimore 33.77% 35.66% 32.07%
U21 Indiana University 22.44% 59.76% 50.14% U71 Univ. of Maryland College Park 34.88% 95.96% 100.00%
U22 Iowa State University 70.66% 100.00% 100.00% U72 Univ. of Massachusetts 30.36% 100.00% 100.00%
U23 Johns Hopkins University 35.05% 71.70% 71.70% U73 Univ. of Miami 14.29% 75.07% 53.14%
U24 Kansas State University 45.73% 76.91% 86.23% U74 Univ. of Michigan 35.00% 74.28% 67.89%
U25 Kent State University 35.26% 42.72% 52.22% U75 Univ. of Minnesota 45.00% 99.38% 99.14%
U26 Massachusetts Inst. of Technology 69.66% 100.00% 100.00% U76 Univ. of Nebraska 41.55% 78.25% 89.63%
U27 Michigan State University 39.29% 100.00% 100.00% U77 Univ. of New Hampshire 7.05% 100.00% 100.00%
U28 Michigan Technological University 44.50% 45.88% 47.13% U78 Univ. of New Mexico 25.31% 65.39% 50.69%
U29 Mississippi State University 23.22% 75.76% 73.63% U79 Univ. of North Carolina 26.94% 78.99% 72.66%
U30 Montana State University 13.10% 62.56% 37.55% U80 Univ. of Oklahoma 28.36% 76.41% 82.00%
U31 New Jersey Institute of Technology 51.27% 37.72% 57.23% U81 Univ. of Oregon 11.54% 100.00% 95.07%
U32 New Mexico State University 8.74% 35.08% 27.67% U82 Univ. of Pennsylvania 42.09% 76.74% 67.59%
U33 New York University 23.18% 84.24% 66.04% U83 Univ. of Pittsburgh 14.77% 62.98% 37.98%
U34 North Carolina State University 44.60% 86.02% 90.22% U84 Univ. of Rhode Island 15.09% 60.40% 51.87%
U35 North Dakota State University 45.36% 69.78% 100.00% U85 Univ. of Rochester 17.36% 64.50% 64.50%
U36 Northwestern University 27.64% 71.17% 61.08% U86 Univ. of South Alabama 31.68% 30.84% 32.63%
U37 Ohio State University 24.56% 76.81% 64.25% U87 Univ. of South Carolina 19.73% 31.79% 24.75%
U38 Ohio University 48.73% 61.52% 100.00% U88 Univ. of South Florida 36.73% 73.57% 79.40%
U39 Oklahoma State University 16.71% 54.67% 34.00% U89 Univ. of Southern California 26.93% 73.13% 72.56%
U40 Oregon Health Sciences University 22.64% 72.85% 61.70% U90 Univ. of Tennessee 36.81% 43.66% 41.59%
U41 Oregon State University 14.30% 65.30% 41.15% U91 Univ. of Utah 56.80% 92.47% 93.38%
U42 Penn State University 44.84% 100.00% 100.00% U92 Univ. of Virginia 26.19% 56.89% 54.32%
U43 Purdue University 54.36% 84.17% 94.40% U93 Univ. of Washington 50.41% 100.00% 100.00%
U44 Rice University 8.42% 100.00% 100.00% U94 Univ. of Wisconsin‐Madison 50.79% 100.00% 100.00%
U45 Rutgers 46.09% 64.72% 74.40% U95 Vanderbilt University 22.71% 80.84% 80.84%
U46 Stanford University 50.58% 100.00% 100.00% U96 Virginia Tech 41.01% 100.00% 100.00%
U47 State University of New York 48.10% 85.14% 85.14% U97 Wake Forest University 24.07% 46.79% 37.11%
U48 Temple University 37.98% 56.73% 58.86% U98 Washington State University 26.74% 63.41% 63.19%
U49 Texas A&M University System 35.97% 78.89% 79.73% U99 Washington University 9.01% 100.00% 66.94%
U50 Tufts University 24.16% 48.43% 36.44% U100 Wayne State University 26.48% 71.52% 58.06%
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red dot is a decision making unit (DMU), which is the technology transfer office of a university 

in this model. The dot highlighted by yellow is Harvard University. Figure 3.10 illustrates the 

efficiency frontier of one input: number of full-time technology transfer office employees 

(LICFTE) and two outputs: number of US patents awarded (USPTIS) and number of start-ups 

initiated (STRTUP). Every red dot is a decision making unit (DMU), which is the technology 

transfer office of a university in this model. The dot highlighted by yellow is Harvard University. 

Figure 3.11 illustrates the efficiency frontier of one input: legal fee expenditure (EXPLGF) and 

two outputs: number of US patents awarded (USPTIS) and number of start-ups initiated 

(STRTUP). Every red dot is a decision making unit (DMU), which is the technology transfer 

office of a university in this model. The dot highlighted by yellow is Harvard University.  

 

Figure 3.9: Efficiency frontier of M2 (LICFTE, LCEXEC, LIRECD) 1996-2011. 
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The above figure is an intuitive way to show the year to year efficiency change. Malmquist index 

will be used to quantitatively measure year to year efficiency changes at DMU level. The 

Malmquist Index (MI) is a bilateral index that can be used to compare the production technology 

of two organizations (Caves, Christensen and Diewert, 1982). Suppose there are two 

organizations A with the production function ( )Af i  and B with the production function ( )Bf i . In 

order to compare the productivity difference between A and B, we calculate the Malmquist Index 

(MI).  Specifically, we substitute the inputs of economy A into the production function of B, and 

vice versa. The Malmquist index of A with respect to B is the geometric mean of ( )
( )

A

A

f A
f B

 and 

( )
( )

B

B

f A
f B

,  

/
( ) ( )*
( ) ( )

A B
A B

A B

f A f AMI
f B f B

= , where 

( )Af A  is the production function of A with input A 

( )Af B  is the production function of A with input B 

( )Bf A  is the production function of B with input A 

( )Bf B  is the production function of B with input B 

Note that the MI of A with respect to B is the reciprocal of the MI of B with respect to A. If the 

MI of A with respect to B is greater than 1, the productivity of A is superior to that of B. Then in 

our research, the technology transfer efficiency MI of 1997 with respect to 1996 is 
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1997 1997 1996 1997
1997 /1996

1997 1996 1996 1996

( ) ( )*
( ) ( )

f Input f InputMI
f Input f Input

=  

To better understand the efficiency change, we not only calculate MI but also decompose MI into 

Technical Change (TC) and Efficiency Catching-up (EC) to see which element the changes are 

attributed to.  

 

Figure 3.14: Malmquist index decomposition (Färe et al. 1994).  
 

Figure 3.14 shows the decomposition of Malmquist index for constant return to scale. tf  and 

1tf +  are the production functions of time t and time t+1, respectively.  

1 1 1 1 1
1 1

1

1 1 1 1 1

1 1 1 1

( , ) ( , )( , , , )
( , ) ( , )

( , ) ( , ) ( , )
( , ) ( , ) ( , )

t t t t t t
t t t t

t t t t t t

t t t t t t t t t

t t t t t t t t t

f x y f x yMI x y x y
f x y f x y

f x y f x y f x y
f x y f x y f x y

+ + + + +
+ +

+

+ + + + +

+ + + +

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= × ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 



 
 

42 
 

1 1 1

1 1

1 1 1 1

( , )efficiency change = 
( , )

( , ) ( , )technical change = 
( , ) ( , )

t t t
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In terms of distances in the figure,  
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Then we use data from AUTM survey 1996-2011 to calculate the Malmquist Index 

decomposition from year to year: 1997/1996, 1998/1997, 1999/1998, 2000/1999, 2001/2000, 

2002/2001, 2003/2002, 2004/2003, 2005/2004, 2006/2005, 2007/2006, 2008/2007, 2009/2008, 

2010/2009, 2011/2010. The result is shown in the figure below. It is observed that Total Factor 

Productivity Growth (TFPG) in 2011 is about 2.7 times that of 1996 with a Compound Annual 

Growth Rate (CAGR) of 6.7%. Efficiency Catching-up has a Compound Annual Growth Rate of 

1.8% and Technical Change (TC) has a Compound Annual Growth Rate of 4.7%. Therefore, the 

productivity growth has stemmed primarily from a growth in commercialization by all 

universities rather than a catching up by the inefficient universities.  
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TC: Technical Change; EC: Efficiency Catching-up; TFPG (MI): Total Factor Productivity Growth 

Figure 3.15: Malmquist index decomposition 1996-2011 (M3).  

 

3.6 Technology Transfer and Academic Reputation 

Universities have many other goals besides transferring their academic discoveries to the 

economy. Then are academic reputation and technology transfer efficiency correlated? We 

studied the technology transfer efficiency score 2006-2011 (M3 score) and academic score data 

from US News National University Rankings 2012. Both of the scores are between 0 and 1. 

University academic score doesn’t change much within a period of several years so it’s still valid 

to use it with technology transfer efficiency scores from a different year. As is shown in the 

following figure, blue dots denote academic scores of the 100 Universities in ascending order 

and red dots denote their corresponding efficiency scores. It is observed that the red dots are all 
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over the place, meaning there is no obvious correlation between the academic score and 

efficiency score.  

 

Figure 3.16: Technology transfer efficiency score and academic reputation score. 
 

We further study the relationship between them by running regression for both academic score 

and efficiency score as shown in Table 3.4 and Table 3.5. In either case, the regression 

coefficient is not significant as we can see from the T test for the regression coefficient. Usually 

in a T test, if P value is less than 0.05 (and sometimes 0.01), we say regression coefficient is 

significant, meaning the two variables have significant correlation. However, in Table 3.4 and 

Table 3.5, both the P values are 0.11. So we cannot say the two variables have significant 

correlation. It doesn’t mean the two absolutely don’t have any correlation. It means they don’t 

have significant correlation. 
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Table 3.5: Regression of Efficiency Score and T test for regression coefficient 
 

 

 

Table 3.6: Regression of Academic Score and T test for regression coefficient 
 

 

Insights to university policy makers and people: a university with lower technology transfer 

efficiency is not an evidence of academic inferior to other universities with higher technology 

transfer efficiency. A university with higher technology transfer efficiency is not superior to 

other university with lower technology transfer efficiency.  

 

 

 

 

Source SS df MS Number of obs = 100
F( 1 , 98 ) = 2.61

Model 0.1087353 1 0.1087353 Prob > F = 0.1097
Residual 4.0903397 98 0.0417382 R‐squared = 0.0259

Adj R‐squared = 0.0160
Total 4.199075 99 0.0424149 Root MSE = 0.2043

Aca Score Coef. Std. Err. t P>|t|
Eff Score 0.1393375 0.0863275 1.61 0.11
Intercept 0.4493479 0.0647385 6.94 0

[95% Conf. Interval]
‐.0319767    .3106516
.3208764    .5778194

Source SS df MS Number of obs = 100
F( 1 , 98 ) = 2.61

Model 0.1450279 1 0.1450279 Prob > F = 0.1097
Residual 5.4555735 98 0.0556691 R‐squared = 0.0259

Adj R‐squared = 0.0160
Total 4.199075 99 0.0424149 Root MSE = 0.2359

Eff Score Coef. Std. Err. t P>|t|
Aca Score 0.1858442 0.1151411 1.61 0.11
Intercept 0.6096615 0.0674183 9.04 0

[95% Conf. Interval]
‐.0426496    .4143379

.475872     .743451
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Chapter 4 University Research Portfolio 

Management 

4. 1 Modern Portfolio Theory 

Modern portfolio theory (MPT) (Elton 2010) (Modern portfolio theory Wikipedia 2013) is a 

theory in finance that attempts to reduce portfolio risk by carefully choosing the proportions of 

various assets. Modern Portfolio Theory was introduced in 1952 by Harry Markowitz 

(Markowitz 1952), who received a Nobel Prize in economics in 1990. MPT was considered an 

important advance in the mathematical modeling of finance. In the 1970s, concepts from Modern 

Portfolio Theory were used by Michael Conroy to model the labor force in the economy in the 

field of regional science (Conroy 1975). Recently, modern portfolio theory has been used to 

model the self-concept in social psychology (Chandra and Shadel 2007). More recently, modern 

portfolio theory has been applied to modeling the uncertainty and correlation between documents 

in information retrieval (Wang and Zhu 2009) or even has been applied to the analysis of 

terrorism (Phillips 2009). In our research, MPT was applied to modeling the uncertainty and 

return in university research portfolio management and technology transfer for the first time. 

 

Like any other theory in economics or even natural sciences, MPT got theoretical and practical 

criticisms over the years. These include the fact that financial returns do not follow a Gaussian 

distribution, and that correlations between asset classes are not fixed but can vary depending on 

external events (Kat 2002). Further, MPT assumes that investors are rational and markets are 
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efficient but there is growing evidence that they are not (Shleifer 2003). That said, MPT is still 

the best tool to model uncertainty and return for a utility maximizing agent but cautions must be 

used when making assumptions and conclusions.  

 

Basically, MPT is a mathematical formulation of the concept of diversification in investing, with 

the goal of structuring a portfolio of assets that has collectively lower risk than any individual 

asset. Intuitively speaking, by combining different assets that change in value in opposite ways, 

we can reduce the portfolio overall risk. Even if returns of the assets are positively correlated, 

proper diversification can lower the overall risk. MPT uses a Gaussian distribution function to 

model the return of an asset, and use the standard deviation of the return to model its risk. A 

portfolio is a weighted combination of the assets. So the return of a portfolio is the weighted 

combination of the assets' returns. By combining different assets whose returns are not perfectly 

positively correlated, MPT seeks to reduce the total variance of the portfolio return.  

Mathematically, utility-maximizing economic agents attempt to maximize the utility function 

( , )R RU f E σ=  

The larger the return the higher the utility and the larger the risk the lower the utility, so we have

0
R

dU
dE

>  

0
R

dU
dσ

<  

Where U the agent’s total utility, RE  is the expected return of a portfolio and Rσ  is the standard 

deviation of the possible divergence of actual returns from expected returns (Sharpe 1964). 

Markowitz (Markowitz 1952) was among the first to realize that agents do not care solely about 

the return of a portfolio. Risk averse agents also care about the risk of the portfolio. Markowitz’s 
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definition of risk as the variability of returns (measured by variance or standard deviation) has 

long been accepted in financial economics. Geometrically, the indifference curves that derive 

from this particular configuration of risk averse individual’s utility are concave-upwards in the 

expected return-risk plane as displayed in Figure 4.1.   

Like most parts of economic theory, modern portfolio theory involves economic agents 

attempting to maximize utility by making choices. In the context of modern portfolio theory, a 

utility maximizing agent has to make a choice of its portfolio composition. For every possible 

portfolio we compute the expected return and variance. 

Formally, the expected return on a portfolio is given by  

1

( ) ( )
n

P i i
i

E R w E R
=

=∑  

where iw is the proportion of total investment in asset i , ( )iE R is the expected return on asset i , 

and 
1

1
n

i
i

w
=

=∑ . The mean historic return is usually used as a proxy for the return that is expected 

in the future.  

The risk (variance) of a portfolio is  

2 2 2

1 1 1 1 1 1 1

n n n n n n n

P i j ij i j ij i j i i i j ij i j
i j i j i i j

i j

w w Cov w w w w wσ ρ σ σ σ ρ σ σ
= = = = = = =

≠

= = = +∑∑ ∑∑ ∑ ∑∑  

where ijCov is the covariance between assets i  and j  

ijρ  is the correlation coefficient that measures the correlation between assets i and j .  

ij ij i jCov ρ σ σ=  

By computing the return and risk for all the possible portfolios, we get the following figure. The 

dashed lines are indifference curves with utility 0 1 2 3 4U U U U U< < < < , every point on the same 
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curve has the same utility so it’s indifferent in terms of utility. Under the assumption of risk 

aversion, the indifference curves are concave-up facing northwest because we don’t like risk and 

higher risk has to be compensated by higher return. The solid curve is the efficient frontier, 

which is the set of all possible portfolios. Obviously, a utility-maximizing agent should choose 

point P, which has the highest utility among all possible portfolios.  

 

Figure 4.1: Indifference curve and efficient frontier. 

 

4.2 Modeling University Research Portfolio 

4.2.1 Assumptions and Definitions 

As we know, a University has research in many disciplines that produce scientific discovery and 

inventions. Every discipline is an asset a university can invest in. University research portfolio 

management is all about allocating university resource, funding, faculty, space, and etc. in 

different disciplines. University management makes decisions to structure research disciplines, 

for instance, to expand or downsize a discipline, to support or not to support a department, to 

recruit more professors in a discipline or not. The decisions are made based on many factors like 

school tradition, endowment, federal and private funding, students and employers’ demand, and 
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etc.  It’s a decision under uncertainty because we don’t know the exact output of a discipline in 

the future although we could predict from the past. But there are uncertainties so there is a risk 

involved. This is the reason we need to use Modern Portfolio Theory. It will provide insights for 

university management when making decisions on research structure and will also address the 

question in the beginning of this thesis if we can increase technology transfer output by properly 

structure university research portfolio. 

 

Conceivably, technology transfer efficiency is correlated to university research portfolio. Some 

universities have more engineering and applied sciences research and will produce more 

inventions with commercial value while some universities have more basic scientific research 

that result in less inventions with commercial value. To provide insights for university 

management, we have to quantitatively study the relationship between technology transfer 

efficiency and research portfolio. Therefore, we use Modern Portfolio Theory. It is the first time 

Modern Portfolio Theory is applied in modeling university research portfolio.  

 

First of all, some assumptions and definitions are made. 

Assumption 1 

The axioms of expected utility or rational choice apply to University research and technology 

transfer. 

Assumption 2 

The economic good is solely a function of the expected return and risk (variance) associated with 

particular combinations (portfolios) of research disciplines. 

Definition 1 
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The expected return of federal funding research is the number of patents. (This is discussed in 

detail in section 4.3) 

Definition 2 

The risk of federal funding research is the standard deviation of the possible divergence of actual 

returns from expected returns.  

 

4.2.2 A Two-disciplines Case 

Let’s start with a simple two-disciplines case. 

Discipline A with return AR and 2( ) ( ) ARISK A Var A σ= =  

Discipline B with return BR  and 2( ) ( ) BRISK B Var B σ= =  

A research portfolio P is a combination of A and B with weights Aw  and Bw , 0 , 1A Bw w≤ ≤ , 

then the return of the portfolio is P A A B BR w R w R= + , and risk is 

2 2 2 2 2 2 2 2( ) ( ) 2 ( , ) 2A A B B A B A A B B A B AB A BRISK P Var P w w w w Cov A B w w w wσ σ σ σ ρ σ σ= = + + = + +  

ABρ  measures the correlation (linear dependence) between discipline A and B, 1 1ABρ− ≤ ≤ . 

1ABρ = implies that a linear equation describes the relationship between A and B perfectly, with 

all data points lying on a line for which B increases as A increases. 1ABρ = −  implies that all data 

points lie on a line for which B decreases as A increases. 0ABρ =  implies that there is no linear 

correlation between the variables. 1 0ABρ− < < and 0 1ABρ< <  imply that the positive or 

negative linear dependence is not perfect. All the above cases are illustrated in Figure 4.2. 
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Figure 4.2: Correlation coefficient. 
 
Let’s see an example with 2 20.2, 0.2 ; 0.8, 0.5 ; 0.3A A B B ABR Rσ σ ρ= = = = = − . We vary the 

combination of A and B by varying the weights of A and B 0 , 1 1A B A Bw w and w w≤ ≤ + = . The 

risk and return curve is shown in Figure 4.3. At point A, 1, 0A Bw w= = , which means the 

portfolio has only discipline A and no discipline B, so naturally risk=0.2 and return=0.2. 

Meanwhile at point B, 0, 1A Bw w= = , which means the portfolio has only discipline B and no 

discipline A, so naturally risk=0.5 and return=0.8. At point X, 0.8, 0.2A Bw w= = , which means 

the portfolio consists of 80% discipline A and 20% discipline B. So the portfolio return and risk 

are: 

0.8*0.2 0.2*0.8 0.32P A A B BR w R w R= + = + =  

2 2 2 2 2 2 2 2( ) ( ) 2 ( , ) 2 0.16A A B B A B A A B B A B AB A BRISK P Var P w w w w Cov A B w w w wσ σ σ σ ρ σ σ= = + + = + + =   

Please note point X has larger return and lower risk than point A, which means by adding some 

discipline B, we not only increased return but also reduced risk. This result sounds very exciting. 



 
 

53 
 

 

Figure 4.3: Research portfolio risk-return curve for a 2-disciplines case. 
 

For an extreme case, when 1ρ = − , point X will be on the vertical axis so we can attain a return 

higher than point X with risk=0, which is shown in the figure below.  

 

Figure 4.4: Risk-return curve of portfolios with two hypothetical disciplines.   
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We learned from the above case that diversification helps to reduce the overall portfolio risk. It’s 

based on imperfect correlation among different disciplines.  

4.2.3 A Three-disciplines Case 

For a three-disciplines case, suppose we have three disciplines A, B, and C. Their return, risk, 

and correlation matrix are shown in the tables below. 

Table 4.1: Three disciplines A, B, and C. 
 

  

Table 4.2: Correlation matrix of three disciplines. 
 

 

Then its portfolio return and risk are calculated as: 

P A A B B C CR w R w R w R= + +  

2 2 2 2 2 2 2

2 2 2 2 2 2

2 ( , ) 2 ( , ) 2 ( , )

2 2 2
P A A B B C C A B B C A C

A A B B C C A B AB A B B C BC B C A C AC A C

w w w w w Cov A B w w Cov B C w w Cov A C

w w w w w w w w w

σ σ σ σ

σ σ σ ρ σ σ ρ σ σ ρ σ σ

= + + + + +

= + + + + +
 

1 , , 1
0 , , 1

1

AB BC AC

A B C

A B C

w w w
w w w

ρ ρ ρ− ≤ ≤⎧
⎪ ≤ ≤⎨
⎪ + + =⎩

 

By varying , ,A B Cw w w while keeping one of them 0, we get the following frontier. Any possible 

portfolio constructed by A, B, and C should be within the triangle curve.  

Return Risk Weight

Discipline A

Discipline B

Discipline C

Portfolio
2
Pσ

Aw

Bw

Cw

0.3BR =

0.8CR =

0.1AR =

2 0.6Cσ =

2 0.5Bσ =

2 0.2Aσ =

PR

Discipline A Discipline B Discipline C
Discipline A 1 0.5 0.4
Discipline B 0.5 1 0.6
Discipline C 0.4 0.6 1
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Figure 4.5: Research portfolio risk-return curve. 
 

Once we have the model ready, we use the data from National Research Council’s A Data-Based 

Assessment of Research-Doctorate Programs in the United States. It has data from 5,004 

doctoral programs at 212 universities for the academic year 2005-2006. We categorize these 

programs into three major disciplines: Engineering, Physical and Mathematical Sciences, and 

Biological and Life Sciences as shown in the following table. 
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Table 4.3: Three major disciplines: Engineering, Physical and Mathematical Sciences, and Biological and Life 
Science 

 

  

 

 

Engineering Aerospace Engineering

Biomedical Engineering and Bioengineering

Chemical Engineering

Civil and Environmental Engineering

Computer Engineering

Electrical and Computer Engineering

Engineering Science and Materials

Materials Science and Engineering

Mechanical Engineering

Operations Research, Systems Engineering and Industrial Engineering

Physical and Mathemetical Sciences Applied Mathematics

Astrophysics and Astronomy

Chemistry

Computer Sciences

Earth Sciences

Mathematics

Oceanography, Atmospheric Sciences and Meteorology

Physics

Statistics and Probability

Biological and Life Science Biochemistry, Biophysics, and Structural Biology

Biology, Integrated Biology, Integrated Biomedical Sciences

Cell and Developmental Biology

Ecology and Evolutionary Biology

Genetics and Genomics

Immunology and Infectious Disease

Kinesiology

Microbiology

Neuroscience and Neurobiology

Nursing

Pharmacology, Toxicology and Environmental Health

Physiology

Public Health

Animal Sciences

Entomology

Food Science

Forestry and Forest Sciences

Nutrition

Plant Sciences
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4.3 The Risk and Return of Technology Transfer 

We discussed a lot about risk and return of technology transfer in the above section but we 

haven’t formulated them yet. Basically the return is the output divided by input: 

,i n
outputR
input

=  

discipline:Engineering, Physical and Mathematical Sciences, Biological and Life Sciences
year:1988,...,2008

i
n
−
−

 

In M3 (please see Figure 3.1), we have three inputs: federal funding, number of full-time 

employees in technology licensing office, and legal fee expenditure, and four outputs: number of 

licenses executed, licenses income received, number of start-ups initiated, or number of US 

patents awarded. So we could have many combinations of R . Or we could weigh all the inputs 

into a single input and weigh all the outputs into a single output. While these ideas are fairly 

intuitive, constructing a satisfactory measure of return poses an empirical challenge for a couple 

of reasons. First, it’s very hard to determine the weights. For instance, it’s hard to determine if 

licenses income received or the number of startups initiated is more important and by how much. 

It’s like comparing apples with oranges. Second, the data break down by disciplines of all input 

and output for all universities in all years are not available. Third, the return distribution has to 

be Gaussian, which we will discuss further in Section 4.4. Considering all the above constraints, 

we use the following definition for technology transfer return, which is a mathematical 

formulation of Definition 1 in section 4.2.1. 

,

,
,

. i n
all Universities

i n
i n

all Universities

No patents
R

Federal funding
=

∑
∑

 

discipline:Engineering, Physical and Mathematical Sciences, Biological and Life Sciences
year:1988,...,2008

i
n
−
−

 



 
 

58 
 

,( )i nRisk Variance R=  

We get the patents data from the U.S. Patent and Trademark Office and get the federal funding 

data from the National Science Foundation Integrated Science and Engineering Resources Data 

System as shown in Figure 4.6 and Figure 4.7. 

 

 

Figure 4.6: Federal funding. 
 

 

Figure 4.7: University patents generated by federal funding research. 
 
We then categories the raw data by universities, years, and three major disciplines. These data 

are used to compute the time-series of the return as shown in Figure 4.8.  Mean and standard 
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deviation of return is shown in Table 4.4 and correlation matrix of three major disciplines is 

shown in Table 4.5. We don't see any negative correlation between these three disciplines. 

However, it doesn’t mean we won’t be able to carefully structure our research portfolio to 

increase return and reduce risk.  

  

Figure 4.8: Returns in patens generated by federal research funding. 
 
 

Table 4.4: Mean and standard deviation of return (0 years lag). 
 

 

 

Table 4.5: Correlation matrix of three major disciplines (0 years lag). 
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Engineering Physical and Mathematical Sciences Biological and Life Sciences

Mean Standard Deviation 
Engineering 0.18878 0.02452
Physical and Mathematical Sciences 0.09013 0.01697
Biological and Life Sciences 0.05968 0.02161

Engineering Physical and Mathematical Sciences Biological and Life Sciences
Engineering 1.000000 0.858900 0.761300
Physical and Mathematical Sciences 0.858900 1.000000 0.871200
Biological and Life Sciences 0.761300 0.871200 1.000000
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4. 4 Normality Test and Time Lag  

One of the most important assumptions of Modern Portfolio Theory is that the return has normal 

distribution. So we did normality tests for the returns of Engineering, Physical and Mathematical 

Sciences, and Biology and Life Sciences, respectively. The results are shown in Table 4.6, Table 

4.7, and Table 4.8. Engineering return follows a Normal distribution and so does physical 

sciences. However, biological and life sciences has a P value of 0.022 and didn’t pass the 

normality test. Q-Q plots are drawn in Figure 4.9. It compares the theoretical normal distribution 

with our data distribution by plotting their quantiles against each other. The horizontal axis is the 

theoretical normal distribution and the vertical axis is our data. If the theoretical and real data 

distributions are similar, the points in the Q–Q plot will approximately lie on the line y = x. If the 

distributions are linearly related, the points in the Q–Q plot will approximately lie on a line, but 

not necessarily on the line y = x. It is seen from the figure that engineering and physical sciences 

Q-Q plots approximately lie on the line y = x, which indicates the data follows normal 

distribution. As expected, biological sciences Q-Q plot is not as beautiful as that of engineering 

and physical sciences because it failed the normality test.  

Table 4.6: Shapiro-Wilk test of engineering (0 years lag) 
 

 

 

 

Shapiro‐Wilk test (Engineering 0 years lag)

Test interpretation:
H0: The variable from which the sample was extracted follows a Normal distribution.
Ha: The variable from which the sample was extracted does not follow a Normal distribution.
As the computed p‐value is greater than the significance level alpha=0.05, one cannot reject the null hypothesis H0.
The risk to reject the null hypothesis H0 while it is true is 83.54%.

W
p‐value
alpha

0.975
0.835
0.05
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Table 4.7: Shapiro-Wilk test of physical and mathematical sciences (0 years lag) 
 

 

Table 4.8: Shapiro-Wilk test of biological and life sciences (0 years lag) 
 

 

 

 

Figure 4.9: Q-Q plot of returns of engineering, physical and mathematical sciences, and biology and life sciences. 
 
 
As we know, the output of technology transfer is not all generated within the year of input. There 

is a time lag between the federal research funding and patents generated. The range could be as 

short as 1 year or as long as 5 or 10 years. Some studies suggest an average of 3.5 years (Scherer 

and Harhoff 2000). In our research, a controlled test is performed to determine if the time lag is 

Shapiro‐Wilk test (Physical 0 years lag)

Test interpretation:
H0: The variable from which the sample was extracted follows a Normal distribution.
Ha: The variable from which the sample was extracted does not follow a Normal distribution.
As the computed p‐value is greater than the significance level alpha=0.05, one cannot reject the null hypothesis H0.
The risk to reject the null hypothesis H0 while it is true is 88.14%.

W 0.977
p‐value 0.881
alpha 0.05

Shapiro‐Wilk test (Biological 0 years lag)

Test interpretation:
H0: The variable from which the sample was extracted follows a Normal distribution.
Ha: The variable from which the sample was extracted does not follow a Normal distribution.
As the computed p‐value is lower than the significance level alpha=0.05, one should reject the null hypothesis H0, and accept the alternative hypothesis Ha.
The risk to reject the null hypothesis H0 while it is true is lower than 2.16%.

W 0.889
p‐value 0.022
alpha 0.05
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significant. First, we use a time lag of 3 years. The results are summarized as the following. 

Normality test was also performed.  

 

Figure 4.10: Returns in patens generated by federal research funding (3 years lag). 
 
 

Table 4.9: Mean and standard deviation of return (3 years lag). 
 

 

 

Table 4.10: Correlation matrix of three major disciplines (3 years lag). 
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Mean Standard Deviation 
Engineering 0.233137 0.025906
Physical and Mathematical Sciences 0.108493 0.018332
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Engineering Physical and Mathematical Sciences Biological and Life Sciences
Engineering 1.000000 0.831859 0.713074
Physical and Mathematical Sciences 0.831859 1.000000 0.823639
Biological and Life Sciences 0.713074 0.823639 1.000000
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Table 4.11: Shapiro-Wilk test of engineering (3 years lag). 
 

 

 

Table 4.12: Shapiro-Wilk test of physical and mathematical sciences (3 years lag). 
 

 

 

 Table 4.13: Shapiro-Wilk test of biological and life sciences (3 years lag). 
 

 

 

Shapiro‐Wilk test (Engineering 3 years lag)

Test interpretation:
H0: The variable from which the sample was extracted follows a Normal distribution.
Ha: The variable from which the sample was extracted does not follow a Normal distribution.
As the computed p‐value is greater than the significance level alpha=0.05, one cannot reject the null hypothesis H0.
The risk to reject the null hypothesis H0 while it is true is 28.56%.

W 0.940
p‐value 0.286
alpha 0.05

Shapiro‐Wilk test (Physical 3 years lag)

Test interpretation:
H0: The variable from which the sample was extracted follows a Normal distribution.
Ha: The variable from which the sample was extracted does not follow a Normal distribution.
As the computed p‐value is greater than the significance level alpha=0.05, one cannot reject the null hypothesis H0.
The risk to reject the null hypothesis H0 while it is true is 65.48%.

W 0.963
p‐value 0.655
alpha 0.05

Shapiro‐Wilk test (Biological 3 years lag)

Test interpretation:
H0: The variable from which the sample was extracted follows a Normal distribution.
Ha: The variable from which the sample was extracted does not follow a Normal distribution.
As the computed p‐value is greater than the significance level alpha=0.05, one cannot reject the null hypothesis H0
The risk to reject the null hypothesis H0 while it is true is 21.37%.

W 0.932
p‐value 0.214
alpha 0.05
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Figure 4.11: Q-Q plot of returns of engineering, physical and mathematical sciences, and biology and life sciences 
(3 years lag). 

 
Then we use a time lag of 5 years to compute the patents return by federal research funding. The 

results are summarized as the following. Normality test was also performed.  

 

Figure 4.12: Mean and standard deviation of return (5 years lag). 
 
 

Table 4.14: Mean and standard deviation of return (5 years lag). 
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Returns in Patents Generated by Federal R&D Funding with 5 years lag
(Number of Patents per $100K )

Engineering Physical and Mathematical Sciences Biological and Life Sciences

Mean Standard Deviation 
Engineering 0.265147 0.030435
Physical and Mathematical Sciences 0.120366 0.018383
Biological and Life Sciences 0.091552 0.031060



 
 

65 
 

Table 4.15: Correlation matrix of three major disciplines (5 years lag). 
 

 

 

Table 4.16: Shapiro-Wilk test of engineering (5 years lag). 
 

 

 
Table 4.17: Shapiro-Wilk test of physical and mathematical sciences (5 years lag). 

 

 

Table 4.18: Shapiro-Wilk test of biological and life sciences (5 years lag). 
 

 

 

Engineering Physical and Mathematical Sciences Biological and Life Sciences
Engineering 1.000000 0.809003 0.555387
Physical and Mathematical Sciences 0.809003 1.000000 0.815497
Biological and Life Sciences 0.555387 0.815497 1.000000

Shapiro‐Wilk test (Engineering 5 years lag)

Test interpretation:
H0: The variable from which the sample was extracted follows a Normal distribution.
Ha: The variable from which the sample was extracted does not follow a Normal distribution.
As the computed p‐value is greater than the significance level alpha=0.05, one cannot reject the null hypothesis H0.
The risk to reject the null hypothesis H0 while it is true is 12.13%.

W 0.911
p‐value 0.121
alpha 0.05

Shapiro‐Wilk test (Physical 5 years lag)

Test interpretation:
H0: The variable from which the sample was extracted follows a Normal distribution.
Ha: The variable from which the sample was extracted does not follow a Normal distribution.
As the computed p‐value is greater than the significance level alpha=0.05, one cannot reject the null hypothesis H0.
The risk to reject the null hypothesis H0 while it is true is 42.88%.

W 0.946
p‐value 0.429
alpha 0.05

Shapiro‐Wilk test (Biological 5 years lag)

Test interpretation:
H0: The variable from which the sample was extracted follows a Normal distribution.
Ha: The variable from which the sample was extracted does not follow a Normal distribution.
As the computed p‐value is greater than the significance level alpha=0.05, one cannot reject the null hypothesis H0
The risk to reject the null hypothesis H0 while it is true is 51.90%.

W 0.952
p‐value 0.519
alpha 0.05
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Figure 4.13: Q-Q plot of returns of engineering, physical and mathematical sciences, and biology and life sciences 
(5 years lag). 

 

4.5 Research Portfolio Risk-Return Curve 

From the above data analysis and normality test, it’s valid to apply Modern Portfolio Theory to 

the return data with 3 years and 5 years lag. Since the data with 3 years lag normality test results 

have a little bit larger P value than that with 5 years lag, we will use the return data with 3 years 

lag in the following study. The risk-return curve is illustrated in the figure below by varying the 

combination of the three disciplines.  

 

Figure 4.14: Research portfolio risk-return frontier. 
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Basically, every university is holding a portfolio of Engineering, Physical and Mathematical 

Sciences, and Biological and Life Sciences. The weight of each discipline is formulated as the 

following. All the universities will be within the triangle. 

Federal funding in Engineering
Total federal funding in Engineering, Physical and Mathematical Sciences, and Biological and Life SciencesEW =  

Federal funding in Physical and Mathematical Sciences
Total federal funding in Engineering, Physical and Mathematical Sciences, and Biological and Life SciencesPW =  

Federal funding in Biological and Life Sciences
Total federal funding in Engineering, Physical and Mathematical Sciences, and Biological and Life SciencesBW =  

1E P BW W W+ + =  

If it’s a pure medical school, like Baylor College of Medicine, then 1BW =  and it will be on 

point B in the above figure because it doesn’t hold any engineering or physical sciences research. 

If it’s a university doesn’t have any engineering research, like New York University, then 

0EW =  and it will be somewhere on the line connecting point P and point B. The more 

biological and life sciences research it has, the closer it will be to point B. Likewise, the more 

physical and mathematical research it has, the closer it will be to point P. For most of the other 

universities, like Harvard, MIT, and Stanford, they have research in all the three major 

disciplines and lies within the triangle. Their exact positions will be determined by their portfolio 

composition. The more engineering they have, the closer they will be to point E. The more 

physical and mathematical sciences they have, the closer they will be to point P. The more 

biological and life sciences they have, the closer they will be to point P. We can find some 

interesting features of the curve. If we move from point B to point X by adding some engineering 

research in the portfolio, we can increase return while reducing risk. If we move from point B to 

point P, anywhere on the line BP has higher return and lower risk than point B. Because point B 
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has higher risk and lower return than point P. From the stand point of risk and return, it looks 

like a university shouldn’t hold any biological and life sciences research in its research portfolio. 

But we cannot come to that conclusion because the risk and return in our model only considers 

the number of patents awarded. As we know from Chapter 2, there are many outputs from 

technology transfer and the number of patents is only one of them. Also as we know, value 

realized by patents is highly skewed so the number of patents only doesn’t mean the value 

captured. A university with a blockbuster patent could result in more license fee than a university 

with many mediocre patents. In addition, the goal of a university is neither to maximize its 

number of patents awarded nor to maximize its license fee. That said, it does offer some insights 

in terms of risk, return and research portfolio management.  

 

Research portfolios of the 100 Universities were computed and summarized in Table 4.18 and 

are illustrated in the figure below. Every dot stands for a university. It is seen that many dots are 

condensed near biological and life sciences, which means many universities hold heavy positions 

in biological and life sciences research.  

 

Figure 4.15: 100 University research portfolio risk-return distribution 2008. 
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4.6 Year to Year Research Portfolio Evolution 

We are also interested in the year to year research portfolio evolution. Portfolio distribution of 

each year is illustrated in the following figures. It is observed that Harvard (the blue star in 

Figure 4.16) holds a heavy position in biological and life sciences but a very light position in 

engineering 1988-2002 because it almost lies on the line connecting physical sciences and 

biological sciences.  Since 2003, it began to move towards engineering. In 2008, its engineering 

weight is 5.3%. Not as heavy as that of MIT and Stanford, but it increased a lot since 2004. The 

trend of MIT (the green circle in the figure) is opposite to Harvard. It holds a light position in 

biological and life sciences research 1988-2002 as it almost lies on the line connecting 

engineering and physical sciences. It began to add more biological and life sciences research to 

its portfolio from 2003 and the green circle began to move towards biological and life sciences. 

Stanford (black triangle in the figure) is almost in the middle of the risk-return triangle curve, 

which means it has a relatively balanced portfolio. It doesn’t change much over the years but 

moved toward biological and life sciences a little bit.  
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Figure 4.16: 100 university research portfolio distribution 1988-2008. 
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Figure 4.16 (Continued) 



 
 

72 
 

  
 

Figure 4.16 (Continued) 
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Figure 4.16 (Continued) 
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4.7 Correlation Between Portfolio Balance and Technology Transfer 

Efficiency 

To address the question in the beginning of this chapter: is technology transfer efficiency 

correlated to university research portfolio. First, we use balance score to measure how balanced a 

portfolio is.  

| | | | | |E E P P B BBalance Score W W Wα α α= − + − + −  

1E P Bα α α+ + =  

Balance Score measures how far away the portfolio is from the most balanced portfolio. The 

most balanced portfolio is defined by the balance coefficients ( , , )E P Bα α α . Obviously its balance 

score is 0. Then we run regressions to study the relationship between Balance Score and 

technology transfer efficiency. The smaller the balance score, the more balanced the portfolio is. 

The larger the technology transfer efficiency, the more efficient so we use inverse efficiency in 

our regression. So we run regressions of balance score with inverse efficiency.  

1/Inverse efficiency Efficiency=  

We use a simple search algorithm to find the balance coefficients ( , , )E P Bα α α .  For the three-

dimension simplex given by 1E P Bα α α+ + = , we discretize the simplex at the precision of 0.01, 

and we first generate the sets of balance scores for each point on the discretized simplex.  At 

each point, we regress the inverse efficiency on the corresponding balance score, and save the t-

statistic for the regression coefficient.  As a higher t-statistic implies a more significant 

correlation between the inverse efficiency and the balance score, we sort all t-statistics and find 

the largest t-statistic, whose associated optimal balance coefficients are optimal. Following this 

algorithm, the global optimal balance coefficients are given by (0.46, 0.42, 0.12).  We also show 
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that the discretization we use is precise enough by considering perturbations at the neighborhood 

of the optimal balance coefficients. Figure 4.17 shows the t stat for different combinations of Eα  

and Pα . Note that 1B E Pα α α= − − , so there are only two dimensions of freedom. The maximum 

t stat is 4.78 when ( , , ) (0.46, 0.42, 0.12)E P Bα α α = . 

 

Figure 4.17: Find the balance coefficients. 
 

Now insert the balance coefficients into the balance score formula, we get 

| 0.46 | | 0.42 | | 0.12 |E P BBalance Score W W W= − + − + −  

Then efficiency scores of the 100 Universities were calculated and the results are summarized in 

the following table.  
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Table 4.19: Technology transfer efficiency and research portfolio balance score. 
 

 

 

Then we did a regression of balance score with inverse efficiency as shown in the following table 

and figure.  

 
 
 
 

University EFF WE WP WB BS University EFF WE WP WB BS
Arizona State University 0.3957 0.3602 0.3588 0.2809 0.3219 Tulane University 0.2507 0.0384 0.0395 0.9221 1.6041
Auburn University 0.5846 0.5036 0.1424 0.3540 0.5552 Univ. of Akron 1.0000 0.4320 0.4070 0.1610 0.0820
Baylor College of Medicine 0.6311 0.0000 0.0000 1.0000 1.7600 Univ. of Arizona 0.8884 0.0897 0.4182 0.4920 0.7441
Boston University 0.8830 0.1152 0.1739 0.7110 1.1820 Univ. of Arkansas 0.3510 0.0896 0.1132 0.7972 1.3544
Brigham Young University 1.0000 0.4017 0.3097 0.2886 0.3371 Univ. of California System 1.0000 0.0805 0.2042 0.7153 1.1906
California Institute of Technology 1.0000 0.1385 0.6928 0.1686 0.6429 Univ. of Cincinnati 0.5962 0.0695 0.0209 0.9096 1.5791
Carnegie Mellon University 0.9635 0.3300 0.6439 0.0261 0.4477 Univ. of Colorado 1.0000 0.0788 0.3487 0.5724 0.9049
Case Western Reserve University 0.2960 0.0952 0.0253 0.8795 1.5191 Univ. of Connecticut 0.9028 0.1094 0.1253 0.7654 1.2907
Clemson University 1.0000 0.4963 0.1816 0.3221 0.4768 Univ. of Dayton Research Institute 0.5262 0.9735 0.0154 0.0111 1.0270
Colorado State University 0.7913 0.0897 0.5140 0.3963 0.7406 Univ. of Delaware 1.0000 0.5041 0.2955 0.2004 0.2491
Columbia University 0.6382 0.0764 0.2156 0.7081 1.1762 Univ. of Florida 0.8542 0.1917 0.1418 0.6666 1.0932
Cornell University 0.6057 0.1398 0.2271 0.6331 1.0262 Univ. of Georgia 1.0000 0.0382 0.1239 0.8379 1.4358
Dartmouth College 0.5608 0.1061 0.0889 0.8050 1.3700 Univ. of Hawaii 0.9552 0.0430 0.5763 0.3808 0.8341
Duke University 0.6681 0.0624 0.0769 0.8607 1.4815 Univ. of Idaho 0.2083 0.2486 0.1394 0.6120 0.9840
East Carolina University 0.6821 0.0152 0.1324 0.8524 1.4649 Univ. of Illinois Urbana Champaign 0.7176 0.3332 0.4111 0.2557 0.2714
Emory University 0.2384 0.0400 0.0265 0.9335 1.6271 Univ. of Iowa 0.3557 0.0867 0.0859 0.8274 1.4148
Florida State University 0.8074 0.2644 0.5492 0.1864 0.3912 Univ. of Kansas 0.2747 0.0824 0.1417 0.7759 1.3118
Georgetown University 0.4709 0.0000 0.0315 0.9685 1.6970 Univ. of Kentucky 1.0000 0.1675 0.0868 0.7458 1.2516
Georgia Institute of Technology 1.0000 0.7235 0.2465 0.0300 0.5271 Univ. of Louisville 0.3889 0.1173 0.0674 0.8153 1.3907
Harvard University 0.6594 0.0529 0.2035 0.7436 1.2472 Univ. of Maryland Baltimore 0.3593 0.0000 0.0000 1.0000 1.7600
Indiana University 0.3011 0.0230 0.1663 0.8107 1.3814 Univ. of Maryland College Park 1.0000 0.3181 0.5144 0.1675 0.2838
Iowa State University 0.8086 0.3097 0.2110 0.4794 0.7187 Univ. of Massachusetts 0.3677 0.1440 0.7602 0.0958 0.6805
Johns Hopkins University 0.8134 0.4260 0.1839 0.3902 0.5403 Univ. of Miami 0.1585 0.0155 0.2693 0.7152 1.1904
Kansas State University 0.7085 0.2070 0.2080 0.5850 0.9301 Univ. of Michigan 0.9838 0.2292 0.0867 0.6841 1.1282
Kent State University 1.0000 0.0006 0.7828 0.2166 0.9188 Univ. of Minnesota 0.6464 0.1052 0.1108 0.7840 1.3280
Massachusetts Inst. of Technology 1.0000 0.3114 0.3316 0.3570 0.4739 Univ. of Nebraska 0.5300 0.1478 0.1679 0.6843 1.1287
Michigan State University 1.0000 0.1084 0.2684 0.6232 1.0064 Univ. of New Hampshire 0.6764 0.1451 0.6851 0.1698 0.6298
Michigan Technological University 0.7382 0.6275 0.3630 0.0095 0.3351 Univ. of New Mexico 0.7495 0.1263 0.2069 0.6669 1.0937
Mississippi State University 1.0000 0.4343 0.1993 0.3663 0.4927 Univ. of North Carolina 0.5586 0.0065 0.1479 0.8456 1.4512
Montana State University 1.0000 0.2156 0.2630 0.5215 0.8029 Univ. of Oklahoma 0.5977 0.0849 0.2441 0.6709 1.1019
New Jersey Institute of Technology 1.0000 0.6416 0.3549 0.0035 0.3631 Univ. of Oregon 0.4614 0.0026 0.4358 0.5616 0.9148
New Mexico State University 1.0000 0.7172 0.1310 0.1517 0.5779 Univ. of Pennsylvania 0.4791 0.0497 0.0710 0.8794 1.5187
New York University 0.7597 0.0000 0.1209 0.8791 1.5181 Univ. of Pittsburgh 0.5456 0.0337 0.0536 0.9128 1.5856
North Carolina State University 0.8349 0.3178 0.2489 0.4333 0.6266 Univ. of Rhode Island 1.0000 0.1083 0.4993 0.3924 0.7033
North Dakota State University 1.0000 0.2424 0.4385 0.3190 0.4351 Univ. of Rochester 0.4790 0.2601 0.0502 0.6897 1.1394
Northwestern University 1.0000 0.1819 0.0946 0.7235 1.2071 Univ. of South Alabama 1.0000 0.0877 0.2005 0.7118 1.1837
Ohio State University 0.4229 0.1607 0.1593 0.6799 1.1199 Univ. of South Carolina 0.8018 0.2208 0.4043 0.3749 0.5098
Ohio University 1.0000 0.4981 0.2351 0.2668 0.3697 Univ. of South Florida 1.0000 0.0973 0.1141 0.7886 1.3373
Oklahoma State University 0.4782 0.3705 0.1396 0.4899 0.7398 Univ. of Southern California 0.7648 0.0936 0.2923 0.6142 0.9883
Oregon Health Sciences Universit 0.5074 0.0000 0.0813 0.9187 1.5973 Univ. of Tennessee 0.4934 0.2423 0.2080 0.5497 0.8593
Oregon State University 0.4501 0.1389 0.3762 0.4849 0.7298 Univ. of Utah 1.0000 0.1035 0.1794 0.7170 1.1941
Penn State University 0.9284 0.4526 0.2779 0.2694 0.2989 Univ. of Virginia 0.4574 0.1488 0.1192 0.7319 1.2238
Purdue University 0.8460 0.3782 0.2198 0.4020 0.5640 Univ. of Washington 1.0000 0.1009 0.2055 0.6937 1.1473
Rice University 1.0000 0.3864 0.5075 0.1062 0.1750 Univ. of Wisconsin-Madison 0.7483 0.1224 0.2571 0.6204 1.0009
Rutgers 1.0000 0.1364 0.3682 0.4954 0.7507 Vanderbilt University 0.4638 0.0993 0.0562 0.8445 1.4490
Stanford University 1.0000 0.2159 0.1639 0.6202 1.0004 Virginia Tech 1.0000 0.4694 0.1285 0.4022 0.5831
State University of New York 0.7928 0.0745 0.2021 0.7235 1.2069 Wake Forest University 0.4304 0.0000 0.0171 0.9829 1.7259
Temple University 0.3273 0.0441 0.1231 0.8328 1.4257 Washington State University 0.4787 0.1635 0.1847 0.6518 1.0636
Texas A&M University System 0.5978 0.2146 0.4311 0.3544 0.4909 Washington University 1.0000 0.0294 0.0513 0.9193 1.5986
Tufts University 0.2837 0.0877 0.0804 0.8319 1.4237 Wayne State University 0.2955 0.0000 0.0000 1.0000 1.7600
Note:
EFF: M3 Technology Transfer Efficiency
WE: Weight of Engineering
WP: Weight of Physical and Mathematical Sciences
WB: Weight of Biological and Life Sciences
BS: Balance Score
2008 Data
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Table 4.20: Regression of balance score and inverse efficiency. 
 

 

 

 

Figure 4.18: Technology transfer efficiency and research portfolio balance score (2008). 
 
Then 100 universities portfolios are drawn in Figure 4.18. The virtual optimal portfolio is also 

drawn. It is observed that MIT is closer to the optimal portfolio than Stanford and Harvard. 

 

 

 

Regression Statistics Analysis of variance
Multiple R 0.434571409 df SS MS F Significance F
R Square 0.188852309 Regression 1 16.92583603 16.92583603 22.81646918 6.25238E‐06
Adjusted R Square 0.180575292 Residual 98 72.69888771 0.741825385
Standard Error 0.861292857 Total 99 89.62472375
Observations 100

T test
Coefficients t Stat Lower 95% Upper 95%

Intercept 0.776003777 3.631432362 0.351941301 1.200066254
Coeff 0.938949603 4.776658789 0.548862104 1.329037102

Standard Error P‐value
0.213690825
0.196570374

0.00045052
6.25238E‐06
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Figure 4.19: The optimal portfolio. 
 
From the above study, we conclude that a balanced research portfolio is correlated to technology 

transfer efficiency. The more balanced a University’s research portfolio, statistically the more 

efficient is its technology transfer.  
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Chapter 5 Conclusions 

5.1 Summary of Contributions 

My dissertation makes a number of contributions. Chapter 2 offers a better understanding of the 

industry by providing detailed analysis of U.S. Universities licensing activities. It contributes to the 

empirical literature in this subject.  

 

In Chapter 3, a two-stage technology transfer model based on Data Envelopment Analysis is 

proposed to address limitation of a single-stage model (Thursby and Kemp 2002). The two-stage 

model can evaluate the efficiencies of university research and technology transfer office separately 

and also as a whole, offering better insights for university technology transfer management. Year to 

year productivity changes are also measured using Malmquist Index. It is found the productivity 

growth has stemmed primarily from a growth in commercialization by all universities rather than a 

catching up by the inefficient universities. Finally, technology transfer efficiency and academic 

reputation is studied for the first time. Counter intuitively, they are not correlated.  

 

Chapter 4 opens the possibility of University research portfolio management and offers a new 

perspective for University management by creatively applying Modern Portfolio Theory to 

University research portfolio management and technology transfer for the first time. Modern 

Portfolio Theory makes its way in the literature of technology transfer. Three disciplines model and 

risk-return curves were derived. It is found a balanced portfolio is correlated to technology transfer 

efficiency.  
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5.2 Future Research  

There are several ways to extend this research. In Chapter 2, there are actually more than 8 inputs 

and outputs in the two-stage university technology transfer model. The model can be further 

extended to include industrial funding. Chapter 4 shed light on a whole new direction of research, i.e. 

using Modern Portfolio Theory to study University research portfolio management. I only studied the 

number of patents and federal funding. There are actually more inputs and outputs and the model can 

be further developed to include more variables. It will offer a whole new perspective in University 

research portfolio management. 
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