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Abstract 

When confronted with changing environments, animals can generally adjust their 

behavior to optimize reward and minimize punishment. The process of modifying one’s 

behavior based on its consequences is referred to as operant or instrumental learning. 

Operant learning makes specific demands on the animal. The animal must exhibit some 

flexibility in its behavior, switching from unsuccessful motor responses to potentially 

successful ones. The animal must represent the consequence of its actions. Finally, the 

animal must select the correct response based on its past history of reinforcement. 

Studies in mammalian systems have found competing and complementary circuits in 

the cortex and striatum that mediate different aspects of this learning process. The 

larval zebrafish is an ideal system to extend the study of operant learning due to its 

genetic and optical properties. We have developed a behavioral paradigm and imaging 

system that have allowed us to comprehensively image neural activity throughout the 

zebrafish brain during the process of operant conditioning. Our analysis of the neural 

network activity underlying this learning process reveals several classes of neurons 

whose activity correlates with learning and decision making. The distribution of these 

learning-related neurons was highly localized to regions of the habenula and forebrain. 

We describe, in particular, a lateralized habenula circuit that may encode prediction and 

relief prediction error.  
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Introduction 

There have been few demonstrations of associative learning in larval zebrafish, and no 

description of operant conditioning. To put our behavioral paradigm and imaging efforts 

in context, we will take a broad overview of operant learning paradigms in vertebrate 

systems, the brain regions implicated in learning based mostly on electrophysiological 

studies, the recent advances in calcium imaging, and the development of learning and 

memory circuits over time.  

Defining operant conditioning 

Operant conditioning and classical conditioning are two of the oldest and most well 

studied associative learning paradigms1-5. In classical conditioning, a neutral 

conditioned stimulus (CS) is paired with an unconditioned stimulus (US), which 

activates an unconditioned response (UR). In an ideal paradigm, the CS does not elicit 

a response before learning. As learning progresses, the CS becomes sufficient to drive 

a conditioned response (CR) that is often similar to the UR. Pavlov first demonstrated 

classical conditioning in dogs4. A bell (CS) was paired with food (US). Before training, 

food elicits salivation (UR) but the bell does not. After repeated pairing of the bell and 

food, the sound of the bell alone can then induce salivation (CR). In operant 

conditioning, the experimenter selects a response to reinforce with punishment or 

reward. This training generally occurs in a specific context or is associated with an 

explicit cue. If the response is rewarded, then its rate of occurrence increases. If the 

response is punished, then its rate of occurrence declines.  Thorndike first 

demonstrated this in an experimental setting by placing a cat in a puzzle box, which can 
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only be opened by pushing a specific set of levers5. The correct sequence of action that 

opens the box allows the cat to escape and obtain a food reward. After training, the cat 

quickly and reliably performs the correct action sequence whenever it is introduced into 

the box.  

Procedurally, classical conditioning is easily distinguishable from operant conditioning. 

In classical conditioning, the experimenter has control over all relevant stimulus events. 

The rate of occurrence and duration of both the CS and US are predetermined and do 

not depend on the animal’s behavior. In Pavlov’s experiment, the timing of the bell and 

food is consistent from trial to trial. In contrast, in operant conditioning, the experimenter 

sets the relationship between an animal’s behavior and external stimuli. The animal’s 

behavior dictates the occurrence of stimulus events. In Thorndike’s experiment, the cat 

must perform the correct sequence of action in order to escape. The duration of time the 

cat spends in the puzzle box varies from trial to trial depending on the cat’s actions.  

With regards to the underlying learning processes, the differences between classical 

and operant conditioning have been the subject of long-standing debates, and the exact 

nature of operant learning has been continually subject to revisions and refinements1-3, 

6-7. We will take a quick overview of the difference between operant and classical 

conditioning and the existing frameworks from which to view operant conditioning.   

Operant and classical conditioning can produce differences in what an animal ultimately 

learns, and place different constraints on what an animal can be trained to learn1-2,6. In 

the simplest view, classical conditioning teaches animals stimulus-stimulus (S-S) 

relationships between the CS and US, meaning that the CS takes on some of the 
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qualities of the US and therefore activates similar behavioral responses.  For example, 

in Pavlov’s experiment, the dog learns to associate food with the bell. In contrast, 

operant conditioning is believed to teach animals stimulus-response (S-R) relationships, 

in which an animal learns by trial and error which behavioral response is most favorable 

in response to a given stimulus. If a given response is positively reinforced, then that S-

R relationship is strengthened. If the response is negatively reinforced, then the S-R 

relationship is inhibited. In the Thorndike experiment, the cat initially performs many 

erroneous actions that do not open the puzzle box (e.g. trying to squeeze its head 

through the bars) and only sporadically performs the action sequence that allows it to 

escape. As training progresses, introduction to the puzzle box immediately drives the 

correct action sequence, while the erroneous actions are suppressed.  

Historically, the debate over the boundaries of classical and operant conditioning 

appears to have been centered on two main questions1-2,6. Are there behaviors and 

reinforcers that are unique to classical or operant conditioning? Does S-R learning play 

a role in classical conditioning? With regard to the first question, a wide range of 

behavioral differences have been proposed -- autonomic vs. skeletal, voluntary vs. 

involuntary, elicited vs. spontaneous, diffuse and emotional vs. precise and adaptive. 

Though none of these criteria have been shown to consistently distinguish the learning 

paradigms, the overall trend does suggest that the behaviors that can be modified by 

operant conditioning are more varied and flexible, whereas the behaviors that lend 

themselves to classical conditioning are generally more reflexive and specialized6. For 

example, salivation in the Pavlov experiment is a specialized glandular response to 

food. In contrast, the lever pressing and pulling actions in the Thorndike operant 
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conditioning paradigm are motor responses that the animal can continuously adjust.  

With regard to the second question, it appears that S-R learning is not necessary for 

classical conditioning. In paralyzed animals that cannot perform the UR, an animal can 

still learn S-S relationships in some classical conditioning assays. The debate does 

however highlight the fact that many conditioning paradigms may contain both classical 

and operant conditioning elements. In many conditioning paradigms, an animal learns 

both S-S and S-R relationships. Recent studies of the neural basis of operant learning 

have generally framed behavior in terms of S-R learning.  

Habit vs. goal directed learning 

Since the initial characterization of operant conditioning as a process of S-R learning, 

an important distinction has been made in mammalian systems between habitual 

learning and goal directed learning7-12. The key difference between these two learning 

processes is the existence of an intermediate stage between stimulus and response. In 

goal directed behavior, the stimulus does not directly evoke a response. Instead, the 

animal evaluates the potential outcomes associated with possible responses before an 

action is ultimately selected. The most convincing evidence in support of a two stage 

process of outcome evaluation and action selection comes from experiments 

demonstrating the effects of outcome devaluation and contingency devaluation7,10-12. In 

outcome devaluation experiments, an animal is first subject to training trials in which an 

action (e.g. lever pressing) is associated with a reward (e.g. sucrose). After the animal 

reliably performs the action, the reward is devalued (e.g. sucrose is made noxious). 

After exposure to the devalued reward alone, the animal now suppresses the learned 

behavior. Outcome devaluation experiments were the first line of evidence 
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demonstrating that animals can represent the consequences of their actions. The 

learned relationships are referred to as response-outcome (R-O) associations. 

Outcome devaluation experiments also demonstrate a distinction between the 

associations that form early during the learning process and associations that form after 

extensive training. Goal directed behaviors are generally observed early in the learning 

process. As the number of training trials increases, behavior becomes less sensitive to 

outcome devaluation. Holland convincingly demonstrated this phenomenon with a 

series of rat lever press experiments10-11. The animals were trained for 2, 5, or 20 

sessions. After 2 or 5 sessions, devaluing the reward with an aversive chemical (LiCl) 

decreased lever pressing, but after 20 sessions, outcome devaluation no longer had 

any effect on the rate of lever pressing. This change in sensitivity is thought to be the 

result of a transition from goal directed behavior to habitual behavior. Unlike in goal 

directed behavior, habitual responses involve direct S-R associations. The animal no 

longer evaluates potential outcomes of possible behavior, but rather the stimulus 

directly elicits the response. In the Holland experiment, after 2-5 sessions, the rat 

evaluates whether the food reward is desirable before pressing the lever, but after 20 

sessions, the presence of the lever directly drives the lever pressing action regardless 

of the desirability of the outcome.  

Evidence for a distinction between goal directed behavior and habitual behavior is 

mostly restricted to mammalian systems. There is little evidence for this distinction 

outside of mammalian and avian systems13. In fish, operant learning has not been well 

studied and no conclusive statements can be made based on the paucity of behavioral 

data.  
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Motor exploration and switching 

In addition to elucidating the differences between goal directed learning vs. habit 

learning, recent studies have begun to explore a distinct aspect of operant learning – 

motor exploration and switching14-16. While the UR and CR in classical conditioning are 

constrained by the US selected by the experimenter, operant conditioning paradigms 

may require animals to explore a range of behaviors to determine their respective R-O 

relationships. For example, in the Thorndike experiments, the cat initially makes many 

erroneous movements. As the cat learns the outcomes associated with correct and 

error movements, the correct movement increases in frequency and the error 

movements are suppressed.  

In some operant conditioning paradigms, the animal is first rewarded for one behavior, 

and then rewarded for an alternate behavior during a reversal training block. For 

example, a monkey learns to associate left eye saccades with reward during the first 

training block. At the beginning of the second training block, the experimenter reverses 

the reward contingency such that the right saccade is now associated with reward. The 

monkey is unaware of this reversal of the reward contingency, and will inevitably first 

saccade to the left during the first trial of the reversal block. After the left saccade is 

unsuccessful, the animal can either continue to obstinately perform the behavior out of 

habit or switch its motor response to right saccades. In other words, the animal must 

overcome habitual responses and switch to a novel behavior. In primates there is some 

evidence that the anterior cingulate cortex is involved in switching behavior14-16. This 

region is activated during block reversal, and its inactivation disrupts the type of 

behavioral switching described above.  



8 
 

Brain regions implicated in operant learning 

The neural basis of operant learning has been most extensively studied in mammalian 

systems. Based predominantly on electrophysiological and lesion studies, corticostriatal 

circuitry mediates many important aspects of the learning process. Electrophysiological 

recordings in primates and rodents have found signals that correlate with many different 

aspects of the learning process, such as action selection, outcome evaluation, and 

reward prediction error (RPE)17-31. Action selection and outcome evaluation are believed 

to be mediated by corticostriatal circuitry23-31, while RPE is believed to be encoded by 

the midbrain dopaminergic system17-22. Recent studies have also begun to demonstrate 

the existence of competing corticostriatal circuitry to mediate goal directed vs. habit 

learning32-35. For example, Yin et al. has shown that lesion of the dorsolateral striatum 

specifically disrupts habit learning but preserves goal directed learning32. In fact, if the 

animal has been previously trained to habitually perform an action, and the dorsolateral 

striatum is subsequently inactivated, then the animal reverts back to goal directed 

behavior. This suggests habit learning is mediated by a distinct circuit that competitively 

suppresses the goal directed learning circuitry.  

Though there is a general understanding of the brain regions and cell types involved in 

operant learning, the exact role of individual regions and neuronal types and their 

connections to one another is still far from clear. New roles are actively being 

discovered among cell types that were previously thought to be relatively homogenous. 

For example, the midbrain dopaminergic system was once thought to predominantly 

relay reward prediction error signals17-22. The view of the dopaminergic system has 

grown considerably more complex due to a number studies that have found alternative 
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and more complex roles for dopaminergic neurons36-46. Most notably, subsets of 

dopaminergic neurons have been found to be activated by aversive rather than 

appetitive stimuli39-40. Others have been found to represent stimulus saliency, novelty, 

and uncertainty36,38,43-44. Furthermore, dopaminergic signals can be modulated by past 

outcomes at different timescales46. For example, in a primate reward-biased saccade 

task, dopaminergic signals can correlate with either the outcome of the immediately 

preceding trial or with the outcomes of three or more preceding trials.  

New roles and connections are also being discovered for individual brain regions. 

Recent studies of the habenula have suggested a key role in learning47,59-67. The 

habenula is an epithalamic structure that is conserved across many vertebrate 

species48. Structurally, the habenula can be subdivided into lateral and medial 

habenula, and both parts show significant asymmetry across the left-right axis48. The 

habenula receives inputs from the limbic system and the basal ganglia, and sends 

projections to inhibit midbrain dopaminergic neurons and activate midbrain serotonergic 

neurons48-58. Interactions with the dopaminergic systems have strongly implicated the 

habenula in learning47,58-65. The lateral habenula in particular has been found to contain 

neurons that are activated by negative outcomes, and inhibited by positive 

outcomes47,49-62.  For example, in monkey eye saccade experiments, the lateral 

habenula is activated by stimuli that predict a small reward and inhibited by stimuli that 

predict a large reward60-61. Inhibitory projections from the habenula to dopaminergic 

neurons then shape the response properties of dopaminergic neurons. The discovery of 

error signals in the habenula and its interaction with the dopaminergic system has 
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significantly advanced our understanding of the circuitry underlying reinforcement during 

learning. 

 

Learning systems in teleost fish 

The brain regions that contribute to learning are much less understood in fish than in 

mammals. One key difference in brain development has made it difficult to map brain 

regions from mammals onto teleost fish. The fish brain undergoes eversion during 

development, whereas the mammalian brain undergoes evagination. Consequently, 

brain regions such as the hippocampus, amygdala, and striatum occupy very different 

positions in the teleost brain68-70.  

Instead of relying on structural similarity, studies using transcription factor expression 

and lesion experiments have been more successful in coarsely defining some 

correspondence between fish and mammalian brain regions. Based on gene expression 

in adult teleost animals, it is believed that the dorsal lateral pallium is homologous to the 

hippocampus, the dorsal medial pallium is homologous to the amygdala, and the 

subpallium is homologous to the striatum68-70. Other regions are more easily defined, 

such as the habenula, which is structurally similar between fish and mammals48,71-72. 

Gene expression indicates that the fish habenula can also be divided into medial and 

lateral habenula, though the relative position of these cells within the habenula differs 

from mammals72. Key catecholinergic systems are also beginning to be mapped in 

greater detail in zebrafish, and structures such as the midbrain dopaminergic system, 

raphe nucleus, and locus coeruleus have been described73-77. The problem of homology 

becomes even more difficult to address at larval stages. In larvae, the location of most 
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telencephalic structures such as the hippocampus, amygdala, and striatum are not well 

understood. Outside of the telecephalon, some prominent structures can be identified 

by anatomy even in larval zebrafish, such as the habenula in the epithalamus and the 

cerebellum in the rhombencephalon71-72,78. Catecholinergic centers such as the raphe 

and midbrain dopaminergic cluster can also be identified by gene expression, but they 

are not easily identifiable by anatomy alone73-75. 

Beyond establishing basic homology using gene expression, the teleost field has 

employed lesion experiments in an attempt to demonstrate that different brain regions 

underlie different learning processes. In goldfish, lesions in the lateral pallium 

(homologous to the hippocampus) impair spatial learning and trace conditioning, but 

leave classical conditioning and fear conditioning intact80-81. This is consistent with the 

evidence from mammals that the hippocampus encodes relational memory. In contrast, 

lesions of the goldfish medial pallium impair avoidance learning but do not affect spatial 

learning82-83. Lesioning the cerebellum appears to broadly affect learning, causing 

defects in classical conditioning, spatial learning, and fear conditioning84-86. More 

recently, the habenula has been implicated in anxiety-mediated behavior and 

learning72,87. For example, Agetsuma et al recently inactivated the dorsolateral habenula 

in adult zebrafish. The ablated animals show a bias towards freezing rather than escape 

during avoidance learning87.  This suggests that the dorsolateral habenula is involved in 

the selection of fear or stress responses in zebrafish.  

Overall, these studies represent fairly crude efforts to isolate the neural circuitry that 

underlies learning. Lesion studies disrupt entire brain regions, despite the fact that each 

region contains a mixed population of neurons. Lesion studies cannot assess how these 
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neurons interact as a network.  There has yet to be any conclusive evidence for error 

signals, salience signals, or action selection signals in teleost systems. Studies of 

learning in fish have also been limited in several ways. One, compared to mammals, 

relatively few learning paradigms have been developed for fish. In adult zebrafish, visual 

association tasks and spatial learning have been demonstrated in a plus maze 

paradigm89, and operant learning has been shown in one study using a shuttle box96. 

Two, there have been no successful applications of tetrode recordings to fish during 

learning. Three, while the larval zebrafish has been shown to be a particularly amenable 

system for monitoring network activity during behavior, learning assays have been 

particularly difficult to develop for this system95-96. In the next chapter, we will introduce 

an operant learning paradigm in larval zebrafish that takes advantage of the potential for 

whole brain calcium imaging in this system.  

Calcium imaging 

Recent advances in genetically encoded calcium indicators have allowed experimenters 

to record an order of magnitude more neurons at single cell resolution than was 

possible with electrophysiological techniques97-101. Though still somewhat limited in 

temporal resolution, calcium imaging is a non-invasive technique that gives us an 

unprecedentedly comprehensive view of neural networks.   

Application of calcium imaging to studies of behavior requires the development of 

techniques and assays that permit animals to behave while physically restrained under 

a microscope. Recently, this has been successfully implemented in several model 

systems. Most notably, brain regions such as the hippocampus, parietal and motor 
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cortex have been successfully imaged in head-restrained mice during spatial and motor 

learning102-106. These groundbreaking studies are based on a combination of virtual 

reality, two photon imaging, and GCaMP3. In Drosophila, techniques have been 

developed to image the brains of head-fixed flies while they walk on an air-supported 

ball106. Head-restrained flies in a flight simulator have been successfully trained using 

both classical and operant conditioning paradigms107-108. In zebrafish, fictive motor 

recordings in paralyzed animals have been used to image whole brain activity during 

motor adaptation109. In this preparation, recordings from the motor nerves of paralyzed 

larval zebrafish are used to decode motor activity. This setup was combined with 

calcium imaging to uncover signals related to motor adaption. While this setup 

minimizes motion artifacts, it is limited by an incomplete readout of motor activity as well 

as by drug-induced suppression of acetycholinergic activity throughout the brain.  

We have developed an operant learning paradigm in awake behaving larval zebrafish 

that is amenable to simultaneous calcium imaging. After generating a transgenic line 

that expresses GCaMP5 under a pan-neuronal promoter, we imaged neural activity 

across the entire brain during learning. We were then able to ask several fundamental 

questions about the circuit activity that mediates operant learning in zebrafish. 1) Can 

we identify neuronal signals that correlate with learning? In mammals, prediction and 

prediction error signals have been identified for both reward punishment. These signals 

are not sensitive to reward contingency, but are highly sensitive to the past performance 

of the animal (i.e. whether the previous trials were correct or incorrect). 2) Can we 

identify signals that correlated with decision making? Unlike prediction related signals, 

signals encoding action selection or R-O associations should show sensitivity to reward 
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contingency, and discriminate between alternate courses of actions. 3) How are 

learning-related signals distributed throughout the brain? Are they homogeneously 

distributed across the entire brain, or are there discrete learning centers? Are all 

learning signals bilaterally symmetric or are there left-right differences in the distribution 

of learning-related signals? 4) Does the presence or absence of specific functional 

clusters correlate with learning ability? Specifically, we ask whether we can isolate the 

class of neural activity that is absent or disrupted in animals with impairments in 

learning. 5) How does the global network activity change during learning? Is there a 

continual shift in activity across successive trials, or are there abrupt shifts in activity 

during learning? Can we identify the neurons that underlie the changes in network 

activity? 
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Abstract  

When confronted with changing environments, animals generally adjust their behavior 

to optimize reward and minimize punishment. The process of modifying one’s behavior 

based on observed consequences is referred to as operant or instrumental learning. 

Work in mammalian systems has uncovered some fundamental rules that govern the 

process of operant learning, and has begun to elucidate the underlying neural circuits 

that govern different aspects of this complex learning process. Larval zebrafish, with its 

genetic and optical properties, is an ideal system to extend and complement the work 

on operant learning in mammalian systems. However, demonstration of learning has 

been sparse in larval zebrafish, and demonstration of operant learning non-existent. We 

have developed a simple operant learning paradigm in larval zebrafish that is amenable 

to simultaneous calcium imaging. We show that this behavior is rapidly acquired, stably 

retained, and readily reversible. Furthermore, we characterize the emergence of 

learning ability across larval development, as well as two naturally occurring failure 

modes of the learning circuit. 

Introduction 

Operant learning is a process by which an animal modifies its behavior based on the 

consequences of its actions1-2,5-7. Unlike typical forms of classical conditioning, the 

response is not reflexively driven by an external stimulus. Instead, the animal must go 

through a process of trial and error until the correct response is discovered.  

In mammalian systems, operant learning proceeds through two distinct phases6-7. In the 

early trials of a training block, animals are often required to explore multiple behaviors. 
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This often requires overcoming innate or habitual responses. The animal must 

represent the outcome of possible responses, as well as the value of each outcome7-12. 

If an outcome is favorable, then the R-O association that led to the outcome is 

reinforced. In this initial phase, if an outcome becomes devalued, the response 

associated with that outcome is immediately suppressed. As training progresses, the 

correct response becomes habitual10. At this stage, the animal no longer evaluates the 

outcomes of possible responses. Instead, external sensory cues directly drive the 

correct response. 

In zebrafish, learning has not been well studied. In adult zebrafish, the learning 

paradigms that have been developed have mainly centered on fear learning, spatial 

learning, or classical conditioning89-96. At the larval stages, there have been virtually no 

demonstrations of learning, with the exception of one study on classical conditioning95. 

The authors use a classical conditioning approach using a visual stimulus as the CS 

and touch as the US. Ten paired CS + US trials separated by 6 min were followed by 

three test trials after various delays. The authors demonstrate that the pairing protocol 

potentiates behavioral responses to the CS 6-fold, while unpaired controls were 

relatively less potentiated. The effect is strongest within 30 min of the pairing and 

becomes significantly reduced by 60 min. Using calcium imaging with synthetic dyes, 

the authors claim that the pairing protocol non-specifically increases cerebellar activity. 

Optical ablations of the entire brain region also show deficits in the behavior. While we 

have been unable to replicate the behavioral results of this study, we believe the main 

limitation in any case is that it treats an entire brain region as a homogeneous structure 

instead of attempting to identify distinct functional types. The advantage of establishing 
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a zebrafish learning paradigm at the larval stage is the unprecedented access to 

individual neurons throughout the circuit. To advance our understanding of learning 

beyond the adult literature, the nascent larval learning field needs to identify distinct 

functional roles played by individual neurons in the context of a complete learning 

circuit. 

To take advantage of the expanding array of tools of imaging and manipulate neural 

activity in larval zebrafish, we have developed an operant learning paradigm that is 

amenable to simultaneous calcium imaging throughout the brain. We have 

demonstrated that larval zebrafish are capable of rapid acquisition and stable retention 

of the learned response. We have shown that larval zebrafish can also overcome this 

learned response and switch their motor responses when the R-O contingency is 

reversed. Finally, we have traced the emergence of this learning ability across larval 

development.  

Operant Learning Paradigm 

In order to eventually image neural activity throughout the brain during learning, we 

sought a learning task that could be performed by head-restrained animals under a 

microscope. We have succeeded in conditioning head-restrained animals to bias their 

turn direction in response to noxious heat. In this learning task, we tether a larval 

zebrafish by embedding its head in agarose, while its tail is allowed to move freely. Tail 

movements are tracked at 200 frames per second and then decoded into turns and 

swims. An IR laser is aimed at the head and body of the animal to deliver heat pulses at 

32 C.  
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The learning task is divided into two blocks, with 25-30 trials in each block (Fig. 1a). At 

the start of each trial, the laser is turned on, which typically elicits turns within 5 s. If the 

first turn is in the correct direction, the laser is turned off and the trial is scored as a 

correct trial. If the first turn is in the incorrect direction, the trial is scored as an error trial 

and the laser stays on until a subsequent turn is in the correct direction. All training trials 

in the first block have the same R-O contingency, which is chosen to oppose any 

preexisting turn direction preference the animal might have (see methods). In the 

second block, the correct turn direction is reversed (e.g. if the first block rewards left 

turns, then the second block rewards right turns). In order to minimize noxious heat 

exposure, animals must learn to bias their turn direction in response to heat onset, and 

must learn to reverse this bias during the second block. 

Turn direction bias is rapidly acquired 

We find that larval zebrafish rapidly learn to adjust their turn direction in response to 

noxious heat (Fig. 1a-b). Several performance metrics demonstrate that learning is 

occurring over time. 1) The most direct measure of learning is the correctness of the 

first turn direction after heat onset. We score each trial as correct if the first turn is in the 

direction of the heat off contingency. This is a stringent metric because trials are only 

scored as correct based on the first motor event, even if the animal is able to 

subsequently turn off the heat after the initial error turn. Across the entire population of 

animals, the percentage of correct trials increases rapidly during training. On average, 

only 6 trials are necessary to entrain a significant bias in the correct turn direction (Fig. 

1c). 2) Another performance metric is the duration of heat exposure in each trial. If an 

animal successfully learned to bias turns in the correct direction, then the animal would 
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succeed in reducing the duration of the laser exposure in successive trials. We find that 

the duration of laser exposure decreases quickly across trials (Fig. 1d). The largest 

reduction in exposure time occurs after the first training trial. 3) We can define another 

learning measure based on primate learning paradigms, where it has been shown that 

higher certainty can lead to reduced reaction times after stimulus presentation. We 

measured the time of the first turn after heat onset, and find a negative correlation of 

response latency to past performance (defined as the fraction of the past five trials that 

were correct) (Fig. 1e). These three metrics collectively indicate that larval zebrafish 

can rapidly learn to adjust their turn direction in response to noxious heat.  

The learned turn direction bias is also readily reversible. The percentage of correct trials 

reaches a similar plateau in both training blocks (Fig. 1c). This result indicates that, in 

the reversal block, animals can override the learned response, and switch to a new 

motor program.  
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Figure 1 | An operant learning paradigm for larval zebrafish. a, Schematic of the learning 

paradigm. In each trial, larvae are heated with an invisible infrared laser until they perform a 

tail flick in the rewarded direction. After a block of 25-30 trials with the same reward 

contingency, the rewarded direction is reversed without notice and another 25-30 trials are 

conducted with the reversed reward contingency. The rewarded direction in the first block is 

chosen to oppose to any innate turn direction bias in a given animal (see Methods). b, 

Example of a 7 dpf larval zebrafish performing operant learning in the paradigm. In early 

trials of the first block, the first tail flick is incorrect but a correct tail flick occurs later in the 

trial and terminates the heat. After five error trials, the first tail flick is correct for the most of 

the remaining trials of the block. In the first trial of the reversal block, the first tail flick is in the 

rewarded direction of the first block, which is now incorrect. A correct tail flick later in the trial 

terminates the heat. In the remaining trials, the first tail flick is almost always correct. c, 

Learning performance averaged across all 7-8 dpf zebrafish (black lines, n = 191), as well as 

the subpopulations we classify as learners (red lines, n = 134) and non-learners (blue lines, n 

= 57, see Methods). A trial is scored as correct if the first tail flick was in the rewarded 

direction. d, Latency to the first correct turn decreases across trials within each block. e, 

Latency to the first turn depends on past performance, defined as the fraction of correct trials 

in the last five trials. All error bars represent s.e.m. 
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Turn direction bias is retained for one hour and is stimulus dependent 

To test whether larval zebrafish can retain the learned turn direction bias, we trained 

animals for one block (30 trials), followed by a rest period of one hour (Fig. 2a). We 

then determined the percentage of correct trials immediately following the rest period 

across a population of trained animals. If the animal retained the learned turn direction 

bias, then performance in the first trial following the rest period should be significantly 

above chance. We find that the percentage of correct trials following the rest period is 

>85%, indicating that the animal retained the bias that it learned during the training 

block (Fig. 2b).  

The rest period also allows us to test whether the turn direction bias we observed in 

response to heat onset is stimulus dependent. There are two possible outcomes that 

can be distinguished. One possibility is that animals simply learn to bias all turns toward 

the correct direction regardless of context. Alternatively, animals could learn to bias 

turns toward the correct direction only in response to noxious heat. In the first case, we 

would expect all turns, spontaneous or heat driven, to be biased toward the correct turn 

direction. In the second case, we would only expect heat driven but not spontaneous 

turns to be biased. We find that spontaneous turns generated during the rest period are 

not biased toward the previously trained turn direction (Fig. 2c), indicating that the 

learned response is context dependent. This result establishes that our learning assay 

falls under the category of S-R learning as expected for an operant conditioning 

paradigm (reviewed in Chapter 1).  
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A subset of animals show distinct types of learning impairment 

The learning curve indicates that performance after 25 training trials is not one hundred 

percent correct. The learning curve plateaus at around 75%. This could arise in multiple 

ways. At one extreme, it could be that all animals learn, but learn imperfectly, peaking at 

75% correct. At the other extreme, a subset of animals might perform perfectly after 

 

Figure 2 | Learned response is retained for 1 hour and is stimulus dependent 

a, Behavioral response during a retention protocol consisting of a block of 30 training trials, 

followed by a 1 h retention period, after which we administer test trials with the same R-O 

contingency. b, Initial tail movements in first test trial after retention block. c, Average 

performance during test trials after retention block. 
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training, while smaller subset of animals do not exhibit any learning after training. 

Alternatively, an intermediate explanation is also possible, in which a subset of animals 

learn perfectly, a subset learn imperfectly, and a subset do not learn at all.   

To distinguish between these possibilities, we fit the learning performance of the 

animals to a sigmoidal curve. This allows us to determine the asymptotic performance 

of the animal. An animal that learns perfectly would have an asymptotic performance 

index of 1. An animal that fails to learn would have an asymptotic performance index ≤ 

0. We find that the distribution of asymptotic performance index across the population is 

bimodal (Fig. 3a). A subset of animals show clear learning, with an average asymptotic 

performance index of around 0.85, while another subset of animals show no learning, 

with an average asymptotic performance index of around 0.5.  

We further examined the subset of non-learners, and found that they fall into two distinct 

categories based on their behavior during error trials. In an error trial, animals make a 

series of error turns, before eventually switching their turn direction and terminating the 

heat exposure. We find that the duration of heat exposure in error trials also exhibits a 

bimodal distribution (Fig. 3b). Most animals turn off the laser within one minute, with a 

mean duration around 15s. However, a subset of animals fails to switch from error turns 

to correct turns for an extended period of time, resulting in a mean duration around 

110s. We propose two different types of non-learners with distinct behavioral defects.  
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Figure 3 | Switching-impaired and retention-impaired animals 

a, Relative distributions of performance across fish in early (trial 1), middle (trial 12) and late 

(trial 24) trials of a training block. Mode near 0 reflects innate turn bias that we train against 

in the first block (see Methods). Mode near 0.5 reflects chance performance. Mode near 1 

indicates learning. With increasing trial number, learners transition through all three modes. 

Note that by trial 24, a subset of fish remain distributed around 0.5, which we define as 

retention-impaired animals. b, Distribution of exposure times to noxious heat in error trials. 

We define animals as switching-impaired if their average exposure time exceeds 60 s. c-e, 

typical examples of four sequential trials in a learner (c), a retention-impaired animal (d), and 

a switching impaired animal (e). 
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Switching-impaired animals 

After an animal generates one or more error turns near the beginning of an error trial, 

the animal typically switches to a turn in the correct direction within 20s. However, some 

animals fail to switch their turn direction for over 1 minute in error trials (Fig. 3b,d). We 

define this group of poor learners as switching-impaired animals. This difference is not 

likely to be the result of a sensory deficit (i.e. failure to detect laser) because the latency 

of the first movement after heat onset is not significantly different from that of learners. 

Instead, we propose that a switching signal is lacking in the learning circuit of this class 

of animals. We note that the asymptotic performance of these animals can be as good 

as learners. This result suggests that switching-impaired animals do not necessarily 

have impaired retention of R-O relationships once they ultimately try the correct turn 

direction. To avoid this ambiguity, switching-impaired non-learners were excluded from 

our comparison of neural activity between learners and non-learners (see chapter 3).  

Retention-impaired animals 

Some animals never learn the task within the finite number of trials in our assay. We 

refer to this group as retention-impaired animals, defined by asymptotic performance ≤ 

0.5. This phenomenon occurs despite the fact that some of these animals show robust 

switching between turn directions during error trials (Fig. 3a,e). We propose that a 

retention signal is lacking in this class of animals. 

We note that our definition of these two impairments are not mutually exclusive. Our 

findings suggest that there are separable signals in the learning circuit such as 



27 
 

switching signals and retention signals. We will explore both types of signals in the next 

chapter.  

Ability to learn develops over time 

Our learning assays are generally performed at 6-7 days post fertilization (dpf). To 

determine when larval zebrafish become capable of performing this learning task, we 

assayed learning performance from 3 dpf to 7 dpf. We find that asymptotic learning 

performance improves dramatically from 3 dpf to 6 dpf, with little change between 6 dpf 

and 7 dpf (Fig. 4).  We find both types of learning impairments from 3-7 dpf, though a 

greater proportion of these animals tend to be retention-impaired from 3-5 dpf. Our 

results suggest that the ability of larval zebrafish to learn matures quickly over the 

course of 3 days from 3dpf to 6dpf. 

 

 

Figure 4 | Learning curves across larval development 

Larval learning at 3dpf, 4dpf, 5dpf, and 6-7 dpf. Performance metric is probability that the first 

turn of a given trial is in the correct direction. 
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Open loop control  

In an operant learning task, correlation between behavioral output and 

reward/punishment is essential to learning. To test whether this principle is true in our 

task, we used an open loop assay to demonstrate that learning only occurs when the 

behavioral output is correlated with reward/punishment. In the open loop assay, we 

randomized the duration of heat exposure for each trial. Consequently, heat offset is no 

longer contingent on the animal making the correct turn.  

After 25 trials in an open loop block, animals either retain the turn direction bias from 

before the trials begin, or the turn direction becomes random from trial to trial (Fig. 5a). 

Since no turn direction is rewarded, we cannot score trials as correct or incorrect. 

Nevertheless our results demonstrate that exposure to heat alone cannot change the 

turn direction bias of an animal, but that feedback is necessary to entrain an animal to 

make the correct turn in response to noxious heat.  

Our open loop results also demonstrate that the reaction time of the animal to heat 

onset becomes longer (Fig. 5b). This is consistent with our observation that as learning 

progresses, animals respond more quickly to heat onset. In the open loop block, as 

number of trials increases, the relationship between motor movement and sensory 

feedback weakens. There is increased uncertainty regarding the effect of each 

movement, and reaction time slows.  
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Conclusion and discussion 

Our results demonstrate that larval zebrafish are capable of modifying their behavior 

based on the consequences of their actions. More specifically, we show that zebrafish 

can learn to bias their turn direction in response to noxious heat to minimize heat 

exposure. We find this learned response to be rapidly acquired and stably retained for 

at least one hour. Using a reversal training block, we also show that larval zebrafish can 

overcome a learned response to switch to a new behavioral response during reversal 

training. Finally, we find that the ability to learn this task emerges between 3-6 dpf.  

Our results suggest that the ability of larval zebrafish to learn matures quickly over the 

course of 3 days from 3-6 dpf. This raises several questions that we will explore in 

Chapter 4. Are there circuit elements that emerge between 3-6 dpf which are correlated 

with learning performance? For example, is there a retention signal that is absent at 3 

dpf but present at 6 dpf? Is there a difference in the maturation rate of different brain 

 

Figure 5 | Open loop control after block training 

a, Probability of left turn during 25 trials of an open loop protocol performed immediately after 

the second block of operant conditioning, if the R-O contingency of the second block 

rewarded left turns (black) or right turns (gray). In each trial, the duration of heat exposure 

was randomly sampled from a uniform distribution between 0 and 1 min, effectively 

uncoupling thermal experience from the motor output of the animal. b, Time until first motor 

event after start of each open loop trial. 
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regions with respect to learning? Finally, is there any similarity in neural activity between 

learning impairments at 7 dpf and learning impairments at 3 dpf? In other words, can 

the failure to learn at 7 dpf be attributed to delayed maturation of certain circuit 

elements? 

Methods 

Head-restrained behavior 

Zebrafish larvae between 3-8 dpf were embedded in 3% intermediate melting point 

agarose and then freed caudal to the swim bladder so that the tail could move freely. 

After mounting, animals were maintained at room temperature for 10 hours (overnight) 

and then subjected to experiments the following day. After overnight incubation, animals 

were inspected for damage due to the mounting procedure. 

Thermal stimulus delivery 

To rapidly deliver noxious heat to head-restrained animals, we used a 1 W 980 nm 

fiber-coupled laser (Roithner Lasertechnik) that was collimated to a beam size of 

roughly 0.5 mm (Aistana). After loading a previously mounted larval zebrafish under the 

microscope, we manually positioned the laser to illuminate the front of the head from 4 

mm in front of the fish while carefully centering the left/right axis to ensure symmetry 

across the midline. Thermal waveforms were generated in real time using a data 

acquisition board (National Instruments) and a 2 A laser driver (Thorlabs). 

Real-time tail tracking 
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To monitor motor output, we illuminated from the side with a 950 nm LED while imaging 

at 200 Hz (Point Grey). To avoid cross-talk from the thermal stimulus laser, we used a 

950 nm short pass filter at the camera entrance. Starting from a manually defined 

anchor point on the trunk of the animal, the software performed a series of line searches 

at a fixed segment radius to obtain a skeletal representation of the midline of the tail. 

We defined the tail angle as the angle made by the tip of the tail with respect to the 

anchor point, defining tail straight as 0°. 

Motor decoding 

To decode tail movements into swims and turns, we employed a virtual trajectory 

simulator that we recently developed to study head-restrained navigation (Robson and 

Li, unpublished). The simulator uses a finite state machine that detects extrema in the 

tail angle in real time. When a new extremum    is identified at time   , the simulator 

estimates of the power  ̅  (       )   and asymmetry             of the tail 

movement from      to   . After processing each camera frame, the simulator updates a 

model of the virtual linear velocity according to 

  

  
 ∑ ( ̅     ) (    )    

 

 

and the virtual heading according to 

  

  
 ∑ ( ̅     ) (    )    

 

 

Transfer functions     and decay rate   were manually determined based on free 

swimming data. 
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Forward swim events are characterized by very low asymmetry and predominantly drive 

linear velocity. Turn events consisting of individual tail flicks predominantly drive angular 

velocity. Turn events that are followed by counterturns or forward swim movements 

contribute to angular velocity and linear velocity. In this study, we detected turn events 

when the angular velocity exceeded a threshold. We scored only the initial turn 

direction, after which the detector was disabled until the tail was inactive for at least 2 s. 

Operant conditioning protocol 

Operant conditioning was performed in blocks of 25-30 trials. Trials had a fixed length of 

2 min. At the start of each trial, we turned on the thermal stimulus laser. We used a 

laser power of 150 mW, which was calibrated to raise the temperature of the animal to 

approximately 32 °C. In each block, we monitored the motor output of the animal and 

turned the heat off the first time that the animal initiated a turn to the direction of the 

reward contingency. When the animal performed multiple tail deflections in close 

succession (<100 ms), we specifically scored the direction of the first deflection to 

prevent the animal from spuriously inactivating the laser by counterturns or struggles. 

Prior to the first block, we performed a single probe trial to determine the naïve turn 

direction preference of each animal. We set the reward contingency direction of the first 

block to be against this naïve turn direction preference. The entire training protocol took 

approximately 2 hours. 
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Chapter Three 

Circuit dynamics and functional classes that underlie operant learning in larval 

zebrafish 
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Abstract 

Operant learning is a process by which an animal updates its predictions about the 

external world and biases its actions to optimize reward and minimize punishment. In 

mammalian systems, the basal ganglia have been firmly established as an essential site 

of reward prediction and decision making. However, the diversity of learning-related 

signals and their interactions across brain regions are still being continually refined. By 

combining operant learning and brain wide imaging in larval zebrafish, we take an 

unbiased approach to uncovering learning-related activity throughout the entire brain. 

Using this approach, we were able to identify both a novel habenula network that 

encodes relief prediction and prediction error, as well as a collection of action selection 

neurons that implement the learned responses. Activation and suppression of these 

neurons correlates with learning induced changes in behavior, and the depletion of 

specific functional classes is correlated with naturally occurring learning deficits. Based 

on these results, we propose a provisional forebrain circuit for operant learning in a 

simple vertebrate system.  

Introduction 

The neural basis of operant learning has been most extensively studied in mammalian 

systems. One of the most significant developments over the past several decades has 

been the characterization of two canonical learning-related signals – reward prediction 

(RP) and reward prediction error (RPE)17-22. Reward prediction signals are activated by 

reward predicting cues, and are positively modulated by past performance, meaning 

that these signals are higher when the preceding five trials were mostly correct but 
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lower if the preceding five trials were mostly incorrect. Reward prediction error neurons 

shift from responding to actual reward to responding to reward predicting cues. The 

reward triggered activity is negatively modulated by past performance, while the cue-

triggered activity is positively modulated by past performance.  

Though significant progress has been made toward identifying and characterizing RP 

and RPE neurons in mammals, a number of important questions remain to be fully 

resolved. 1) What are the types and properties of prediction and prediction error signals 

in non-canonical paradigms such as relief from noxious stimulus?136-140 2) Are there 

distinct neuronal populations that encode the presence and absence of relief prediction? 

3) To what extent are prediction and prediction error signals conserved in non-

mammalian systems? Prediction error signals have been found in Drosophila but 

remain relatively uncharacterized other non-mammalian systems141.  

We introduce for the first time a learning paradigm in larval zebrafish that allows for 

simultaneous brain wide imaging of neural activity during operant learning. Using this 

system, we identify a functionally asymmetric habenula circuit that encodes the 

predictability of relief. We find three main components to this system: neurons that 

encode relief prediction, neurons that encode the absence of relief prediction, and 

neurons that encode relief prediction error. By comparing zebrafish that learn to a 

subset of animals that fail to learn, we find that disruption of prediction-related signals 

and action selection signals is correlated with failure to learn new reward contingencies. 

We propose that the habenula relief prediction circuit acts in concert with action 

selection neurons to bias turn direction and modulate response latency during operant 

learning. These results represent the first characterization of relief prediction and action 
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selection signals in a non-mammalian vertebrate brain, and suggest a possible 

functional lateralization in the habenula that remains to be explored in other systems.  

Single cell analysis reveals relief prediction-related signals  

To identify neuronal subpopulations that are active during learning, we have developed 

an imaging pipeline that automatically identifies task-related neural activity (Fig 6). 1) 

We employ both online and offline image registration to stably monitor neural activity at 

single cell resolution while tethered animals perform the operant learning task. 2) We 

record both the thermosensory stimulus and locomotor output in order to update the 

behavioral paradigm as well as correlate sensory and motor events with neural activity. 

3) We automatically identify cell centroids, extract an activity trace for each cell, and 

perform linear regression to identify heat on, heat off, inter-trial interval (ITI), and motor-

related components of each activity trace. From a pooled data set of 208 animals, we 

identified 16079 task-related neurons in the forebrain, 4519 task-related neurons in the 

midbrain, and 3948 task-related neurons in the hindbrain. 
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In order to identify neurons with learning-related activities, we constructed a response 

vector for each neuron that summarizes its correlation to the learning curve, its 

correlation to past performance (i.e. fraction of correct trials in the past five trials), and 

its peak activity in correct and error trials of each block (Fig. 7). For heat on-related 

activity, we find that 33% of neurons show >0.1 correlation to past performance, and 

17% show <-0.1 correlation to past performance (Fig. 8c). For heat off-related activity, 

16 % of neurons show >0.1 correlation to past performance, and 13 % show <-0.1 

 
Figure 6 | Brain-wide functional imaging during learning. a, Two photon laser scanning 

microscopy during closed loop tail-free behavior. b, After online and offline image 

registration, an automated image analysis pipeline generates anatomically-defined cell 

centroids and activity-defined cellular masks (left). Calcium activity traces are extracted at 

single cell resolution and provide stable recordings for hours (right).  
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correlation to past performance (Fig. 8d). A majority of neurons (71%) also show 

differential activity between error and correct trials for both heat on and heat off related 

activity (Fig. 8g-h). 

 

 

Figure 7 | Schematic of a response vector for a given cell. The response vector provides 

a summary of the peak activity and correlation metrics for a given neuron. 
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Figure 8 | Distribution of activity and correlation values for scrambled (red) and un-

scrambled datasets (black). a, Distribution of ITI and stimulus specific activity for the 

original dataset (black), and circularly permutated dataset (scramble method 1, red). Each 

neuron is scored on a specificity index from -1 to 1. A score of -1 means that all activity 

occurs during the ITI period, a score of one indicates that all activity occurs around a 

stimulus triggers. Scrambling by circular permutation significantly reduces the number of 

neurons with stimulus specific activity (score of > 0). P-value is shown at the top (two sample 

t-test). b, The same comparison of activity specificity as in a but against a dataset scrambled 

by trial order (method 2). Scrambling by trial order does not change activity specificity since 

all relationships with sensory and motor trigger points are maintained. c-d, Distribution of 

correlations to past performance for heat on activity (c) and heat off activity (d). Original 

dataset is in black, scrambled dataset (by trial order) is in red. Scrambling by trial order 

reduces the number of cells that are most highly correlated or anti-correlated with past 

performance. P-values for the positive and negative tail of the distribution are shown at the 

top (2 sample variance test). e-f, distributions of correlation to learning curve for heat on (e) 

and heat off (f) activity. Original dataset is shown in black, scrambled dataset (by trial order) 

is shown in red. Scrambling by trial order reduces number of cells with strong correlation or 

anti-correlation to the learning curve for heat on activity, but only reduces the number 

negatively correlated heat off cells. Consequently, heat off signal with positive correlation to 

the learning curve and past performance were not analyzed. P-values for the positive and 

negative tail of the distribution are shown at the top (2 sample variance test). g-h, distribution 

of error/correct trial specific heat on activity (g) and heat off activity (h). Each neuron is 

scored between -1 and 1. A score of -1 means that all activity occurred within error trials, and 

a score of 1 means that all activity occurred within correct trials. Scrambling by trial order 

(red) decreases the number of neuron with error trial specific activity. P-values for the 

positive and negative tail of the distribution are shown at the top (2 sample variance test). 
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To determine whether the observed correlations to past performance and differential 

error/correct trial activity could be explained by random fluctuations in neuronal activity 

across a large population of neurons, we used two scrambling approaches to determine 

whether our data contain statistically significant signals. In the first scrambling 

approach, we circularly permuted our signal relative to sensory and motor event 

triggers. This scrambling approach decreases the number of cells with stimulus specific 

and no ITI activity by 5.3 fold (1-ANOVA, p < 0.0001) (Fig. 8a). 

To more finely test whether the correlation to learning and past performance could be 

the result of random sensory and motor event-related activity, we performed a more 

conservative scramble, in which we maintain the relationship of each neuron to its 

sensory and motor triggers, but randomize the trial order to abolish the relationship 

between any learning-related signals and the learning process. This scramble does not 

change the distribution of stimulus specific activity (Fig. 8b), but significantly reduces 

correlation to past performance and differential activity between correct/error trials (Fig. 

8c-h). The scrambled dataset shows an increased number of cells with no correlation to 

learning, and truncates the tails of the correlation coefficient distributions representing 

strong positive and negative correlation to learning. Correspondingly, the scrambled 

dataset shows a greater number of cells with indistinguishable error/correct trial activity 

and fewer cells with error or correct trial-specific activity.  

We then designed a set of mutually exclusive classifiers to identify cells that encode 

sensory, motor, and learning-related activity (see methods). We define learning related 

activity as activity that is modulated by past performance. Past performance is defined 

as the fraction of previous trials that are correct (Fig. 9). This metric is closely related to 
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correlations to the fitted learning curve, but makes fewer assumptions about the rate of 

learning and stability of the learned response. For each type, we test our classifier 

against both scrambling methods to determine the statistical significance of the 

identified classes. All sensory, motor and learning-related classes should be 

significantly reduced by the first scrambling method, while only learning-related activity 

should be disrupted by the second scrambling method. We will limit our discussions to 

functional types that have been shown to be statistically significant based on the 

relevant scrambling methods (1-way ANOVA, p < 0.0001), and have a false discovery 

rate of under 0.3. 

 

We find three neuronal classes that are modulated by past performance in both training 

blocks (Fig. 9). The activity of these three groups of neurons suggests that they may 

encode relief prediction error (RPE), heat onset with relief prediction (RP+), and heat 

onset without relief prediction (RP-). RP+ and RP- neurons are positively (0.36  0.12, 

s.d.) and negatively (-0.26  0.11, s.d) modulated by past performance, respectively. 

Activity of the RPE neuron contains both heat on and heat off components. The heat on 

 

Figure 9 | Neuronal classes modulated by past performance. Heat onset and offset 

activity in four classes of neurons. RPE, RP+, and RP- classes show modulated activity as a 

function of the fraction of trials that were correct out of the last five trials, whereas the 

sensory heat on neurons are relatively insensitive to past performance. Error bars represent 

s.e.m. 
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component of RPE neurons are positively (0.29  0.17, s.d.) modulated by past 

performance, while the heat off component is negatively (-0.18  0.14, s.d.) modulated.  

Over the course of the first training block, RPE neurons are initially activated by heat 

offset, but shift its activity toward heat onset as learning progresses (Fig 10a-b). By 

fitting the behavior to a sigmoidal learning curve, we can define a transition point that 

divides the block into pre-learning trials and post-learning trials. By the end of the first 

training block, the post-learning heat on response of an RPE neuron is significantly 

higher than its pre-learning heat on response, while the response to heat offset has 

undergone the opposite pattern. During the first trial of the reversal block, we observe 

that the initial response to heat onset remains high, since the expectations of the animal 

have not yet updated even though the reward contingency has changed. By the second 

trial of the reversal block, we begin to observe a decrease in response to heat onset. 

This decrease in activity is reversed as the animal begins to learn the new reward 

contingency. In contrast to heat onset activity, we observe strong heat offset activity in 

the first reversal trial, as the heat terminates unexpectedly following a previously 

incorrect turn. As the animal begins to learn the new reward contingency, activity again 

shifts from heat offset to heat onset. This shift in activity from relief (heat offset) to a 

sensory event that consistently precedes relief (i.e. heat onset) is a signature of 

prediction error signals. 
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Figure 10 | Prediction-related signals in the habenula and pallium. a,d,g, Single-cell 

analysis reveals three classes learning-related activity that may encode relief prediction error 

(a, RPE), heat onset with relief prediction (d, RP+), and heat onset without relief prediction 

(g, RP-). Activity rasters (left) show activity of a representative neuron in each class following 

heat onset and offset (arrows and dotted white lines) across trials in block 1 and block 2. 

Example traces (middle) show the activity of the same neuron in the first trial of each block 

(black lines), averaged in trials before the learning transition (blue lines), and averaged in 

trials after the learning transition (red lines). Population summary traces (right) show the 

same signals, averaged across all neurons identified by our classifiers (see Methods). Error 

bars represent s.e.m. b,e,h, Anatomical locations of the prediction-related classes defined in 

a,d,g. Insets summarize the distribution of each class across the left/right axis of the animal. 



44 
 

 

In the context of reward learning, the temporal difference model proposes a link 

between neurons that encode reward prediction error and neurons that neurons that 

encode reward prediction following a neutral reward-predicting cue. It is unknown 

whether similar processes govern relief prediction following the presentation of an 

aversive cue. Our results suggest relief prediction error and RP+ neurons are in fact 

linked in an analogous fashion (Fig. 10d-e). RP+ neurons are only activated by heat 

onset and are positively modulated by past experience (Fig. 9). Over the course of the 

first training block, these cells increase their activity as learning progresses. During the 

first reversal trial, the activity in response to heat onset remain highs, since the animal 

continues to expect relief.  As error trials accumulate during the pre-learning phase of 

the reversal block, RP+ activity is suppressed. As the animal learns the new reward 

contingency, RP+ activity is reinstated. The changes in activity of the RP+ neuron mirror 

the corresponding changes in response latency during learning. As past performance 

improves, RP+ neurons become increasingly active, while motor response latency 

becomes diminished.  

In contrast to both RP+ and RPE neurons, we observe a third class of neurons that are 

activated by heat onset, but whose activity is negatively modulated by past performance 

Figure 10 | Prediction-related signals in the habenula and pallium (continued). c,f,i, 

The effect of two scrambling methods on classification of RPE (c), RP+ (f), RP- (i). For each 

type, the number of cells found from the original data (data), scrambled dataset by circular 

permutation (S1), and scrambled dataset by randomizing trial order (S2) are shown from left 

to right. Standard deviation is shown for each scrambling method. P-values (1-way ANOVA) 

for the reduction of cell number by S1 and S2 are shown at the top of the bar plot, 

respectively. Distribution of found cells from S1 and S2 are shown beside the bar plot from 

left to right, respectively. 



45 
 

(RP-). These neurons increase both their peak activity and slope of response as a 

function of the fraction of previous trials that were error trials (Fig. 10g-h, Fig. 9). 

Initially, these neurons respond to heat onset, but as the learning progresses and the 

number of error trials decreases, these neurons suppress their activity in response to 

heat onset. During the first reversal trial, the activity is initially low, and then increases 

rapidly after the first error movement. As error trials accumulate during the pre-learning 

phase of the reversal block, RP- neurons begin to respond more strongly and rapidly to 

heat onset. As the animal learns the new reward contingency, the activity of these 

neurons again becomes suppressed. The RP- neurons appear to encode noxious heat 

in the absence of relief prediction. These neurons may be related to cells that show 

increased activation during uncontrollable stress or inescapable shock paradigms. To 

our knowledge, it has not been previously shown for these paradigms whether 

uncontrollable stress related signals are active during normal learning or whether their 

activity is specific to a relief prediction context.  

To further test whether these three classes of cells reflect prediction-related activity, we 

surveyed their activity in an open loop block. During open loop, the heat terminates after 

a random interval (5-30s) for each trial, rendering relief unpredictable. Behaviorally, the 

open loop condition leads to loss of turn direction bias and increased response latency 

Fig. 5). Consistent with this change in response latency, we find that RP+ neuron 

decrease in activity over successive trials while RP- neurons increase in activity over 

successive trials. RPE neurons show increased heat off activity and decreased heat on 

activity (Fig. 11).  
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Lastly, we examine the activity pattern of these three cell types in response to the first 

error movement of the reversal trial (trial 1, block 2) (Fig. 12). This trial effectively 

serves as an omission trial, in which expected relief is unexpectedly withheld. In a 

subset of RPE neurons (26%), we observe a clear inhibition of response after the first 

movement (see discussion). For RP+ neurons, the peak response occurs around the 

time of the first movement and then decays, while for RP- neurons, the peak response 

occurs after the first movement.  

 

Figure 11 | Activity of RPE (a), RP+ (b) and RP- (c) neurons in open loop. Mean heat on and off 

activity from the first five trials of open loop are shown in blue. Mean heat on and off activity from 

the trial 6-25 of open loop are shown in red 
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Anatomical distribution of prediction-related signals  

RPE, RP+, and RP- signals are all highly enriched in the habenula, and show a striking 

lateralization (Fig 10b,e,h). RPE and RP+ occupy the right habenula, with a 2-fold and 

1.4-fold enrichment over the left habenula respectively. In contrast, the RP- signal is 

tightly localized to the left habenula (3.8-fold enrichment over the right habenula). 

Datasets generated by either scrambling methods do not show a similar pattern of 

localization (Fig. 10c,f,i). The segregation of functional types suggests a lateralization 

of habenula function in learning that has not been previous described. Though the 

habenula has been shown to be anatomically and genetically asymmetric across the 

left-right axis 48, 72, 130-133, electrophysiological studies of habenula function in mammals 

have not routinely compared activity across the left and right axis47-67.  

In contrast to the relief prediction signals described above, heat on and heat off signals 

that have low (<0.1) absolute correlation to past performance show a much wider 

 

Figure 12 | Reversal trial activity triggered around the first error turn. a, Average of a subset of RPE 

neurons (26%) that show inhibition after the first error movement (red dotted line) in reversal trials. 

b, Average of all RP+ neuron activity around the first error movement. c, Average of RP- activity 

around the first error movement. (A reversal  trial is defined as the first trial of the reversal block.) 
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anatomical distribution across the forebrain, midbrain, and hindbrain (Fig. 13). These 

signals appear to simply relay the thermosensory stimulus, and show no significant 

lateralization across each brain region.  

Of all the functional classes we examined, we do find another class that shows 

significant lateralization across the left and right habenula – a reversal signal14-16. Cells 

of this type are most active during the first several trials following block reversal, and 

then as learning progresses, their activity is suppressed (Fig. 14). These signals may 

represent a variant of the RP- signal that is activated specifically when a previously 

predictive cue becomes unpredictable. Consistent with this view, these signals also 

show greater enrichment in the left habenula.  
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Figure 13 | Heat onset-related and heat offset-related sensory classes. a,d, Single-cell 

analysis reveals heat onset-related (a) and heat offset related (d) classes that are relatively 

insensitive to learning progression. Activity rasters (left) show activity of a representative 

neuron in each class following heat onset and offset (arrows and dotted white lines) across 

trials in block 1 and block 2. Example traces (middle) show the activity of the same neuron in 

the first trial of each block (black lines), averaged in trials before the learning transition (blue 

lines), and averaged in trials after the learning transition (red lines). Population summary 

traces (right) show the same signals, averaged across all neurons identified by our classifiers 

(see Methods). b,e, Anatomical locations of the classes defined in a,d. Insets summarize the 

distribution of each class across the left/right axis of the animal. Error bars represent s.e.m. 

c,f, The effect of two scrambling methods on classification of heat on neurons (c) and heat 

off neurons (f). For each type, the number of cells found from the original data (data), 

scrambled dataset by circular permutation (S1), and scrambled dataset by randomizing trial 

order (S2) are shown from left to right. Standard deviation is shown for each scrambling 

method (3X scramble). P-values (1-way ANOVA) for the reduction of cell number by S1 and 

S2 are shown at the top of the bar plot, respectively. Distribution of found cells from S1 and 

S2 are shown beside the bar plot from left to right, respectively. 
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Figure 14 | Heat on decay and reversal-related classes. a,d, Single-cell analysis reveals 

heat onset-related neurons that decay across trials throughout the paradigm (a) and heat 

onset-related neurons that are differentially more active during reversal (d). Activity rasters 

(left) show activity of a representative neuron in each class following heat onset and offset 

(arrows and dotted white lines) across trials in block 1 and block 2. Example traces (middle) 

show the activity of the same neuron in the first trial of each block (black lines), averaged in 

trials before the learning transition (blue lines), and averaged in trials after the learning 

transition (red lines). Population summary traces (right) show the same signals, averaged 

across all neurons identified by our classifiers (see Methods). b,e, Anatomical locations of 

the classes defined in a,d. Insets summarize the distribution of each class across the 

left/right axis of the animal. Error bars represent s.e.m. c,f, The effect of two scrambling 

methods on classification of heat on decay neurons (c) and heat off decay neurons (f). For 

each type, the number of cells found from the original data (data), scrambled dataset by 

circular permutation (S1), and scrambled dataset by randomizing trial order (S2) are shown 

from left to right. Standard deviation is shown for each scrambling method (3X scramble). P-

values (1-way ANOVA) for the reduction of cell number by S1 and S2 are shown at the top of 

the bar plot, respectively. Distribution of found cells from S1 and S2 are shown beside the 

bar plot from left to right, respectively. 
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Single fish analysis of relief prediction-related signals  

If the RPE, RP+, and RP- signals participate in a circuit that exhibit opponency across 

the left and right habenula, we would expect to find all three signals co-existing in a 

single animal. Alternatively, it could be that individual animals only possess a subset of 

the three signals, and the functional asymmetry that we observe in the population data 

are not representative of the neural circuit in an individual animal. To address this 

potential caveat, we analyzed activity across a single habenula that contained all three 

prediction related signals (Fig. 15).  

Since these three types of signal show distinct patterns of activity across trials, we 

hypothesized that we would be able to independently recover these three types based 

on an unbiased cross correlation analysis across all cells (Fig 15a-b). We find that out 

of 359 of neurons, 72 neurons shown a >0.5 correlation in activity with at least one other 

cell. PCA analysis of this subset of neurons reveals three distinct clusters, with 33, 23, 

11 cells in each cluster (Fig. 15c). These clusters can also be identified by hierarchical 

clustering. (6 neurons did not cluster with the three largest clusters by hierarchical 

clustering, and were not included the subsequent analysis.) When we averaged the 

activity of each cluster, we find that the activity of the three clusters correspond to RP+, 

RP-, and RPE (Fig. 15f-h). 
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Figure 15 | Single-fish analysis of relief prediction-related signals. a, Activity correlation matrix for 

all neurons in a dataset of 359 neurons imaged simultaneously in the habenula of a single fish. Rows 

and columns are sorted by hierarchical clustering to reveal 72 neurons with strong correlation to at 

least one other neuron. b, Zoom of the three clusters of neurons with strong correlation to other 

neurons in the dataset. c, PCA analysis of the correlation vectors for these 72 neurons confirms that 

the three clusters identified by hierarchical clustering are distinct. d-e, Activity correlation matrix of 

these 72 neurons using only their heat on-related (d) or heat off-related (e) activity shows that all 

three clusters are correlated or anticorrelated during the heat on period. The smallest cluster is 

positively correlated during the heat off period. f-h, Average activity traces of each cluster in 

response to heat onset and heat offset in trials before learning (blue) and after learning (red). The 

three clusters correspond to RP+ (f), RP- (g), and RPE (h) neurons. i, Anatomical locations of the RP+, 

RP-, and RPE clusters. RP- neurons are located in the left habenula, while RPE- and RPE neurons are 

located in the right habenula. j-o, Analysis of correlation between RP+ and RPE neurons (top), 

between RP+ and RP- neurons (middle), and between RP- and RPE neurons (bottom). Plots show the 

distribution of correlation coefficients across all such pairs, using activity recorded during the 

learning paradigm (left) or spontaneous activity recorded during 2 min before the paradigm (right). 

Red vertical lines mark correlation coefficient of 0.  
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We then separated each activity trace by its heat on and heat off component, and 

repeated the cross correlation analysis for the three clusters (Fig. 15d-e). For the heat 

on component, we find strong positive correlation (0.43  0.012, s.e.m.) between RP+ 

and RPE neurons, and negative correlation (-0.15  0.012, -0.08  0.009, s.e.m.) 

between RP+/RPE and RP- neurons (Fig. 15j-l). For the heat off component, we find 

the highest correlation (0.52  0.027, s.e.m.) within the RPE cluster. These results are 

consistent with our view that RP+ and RP- represent opposing prediction-related states. 

We also find a small but consistent positive correlation in spontaneous activity across all 

three clusters (Fig. 15m-o), which may suggest some shared input (i.e. sensory heat 

on) to all three clusters.  

Finally, we examined the anatomical localization of all three clusters, and find a clear 

segregation across the left and right habenula (Fig. 15i). All RP+/RPE neurons are 

localized to the right medial habenula, while all RP- neurons are localized to the left 

medial habenula. This segregation recapitulates the pattern of lateralization observed 

across all RP+, RPE, and RP- neurons.  

Implementation of the learned response: action selection  

Both the sensory and prediction-related cells described above are not selective for 

reward contingency. In order to bias motor output toward the block-specific correct 

response, there must be neurons that discriminate between the reward contingencies of 

the two blocks. These neurons could be involved in representing or driving the correct 

action in a given block, and so we refer to them as action-related neurons23-35. We will 

show that these action-related neurons can be distinguished from motor-related 
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neurons that are tightly associated with the execution of individual turn events 

independent of context or reward contingency. To identify action-related and motor-

related neurons, we use a combination of peak activity and ROC analysis for each 

neuron (see methods).  

Action-related neurons are distinct from motor-related neurons in several ways (Fig. 

16). 1) Motor-related neurons are active during both spontaneous turns and turns 

evoked during the heat on period. Left motor-related neurons are active before both 

spontaneous and heat- driven left turns, and right motor-related neurons are active 

before both spontaneous and heat-driven right turns (Fig. 16c-d). In contrast, left 

action-related neurons are most strongly activated before heat-driven left turns (Fig. 

16a), and right action-related neurons are most strongly activated before heat- driven 

right turns (Fig 16b). Action-related neurons show little activation before or after 

spontaneous movements. 2). Motor-related neurons are active immediately before the 

actual turn (< 1s), whereas action-related neurons can show significant activity >10s 

before the actual turn. An action-related neuron can predict the direction of the next 

heat driven turn many seconds before motor-related neurons. 3) The anatomical 

distribution of action-related and motor-related neurons are clearly distinct. Motor-

related neurons are found throughout the forebrain, midbrain and hindbrain (Fig. 16g). 

Right motor-related neurons are enriched in the right medial hindbrain and midbrain, 

while left motor-related neurons are enriched along the left medial hindbrain and 

midbrain. In contrast, action-related neurons are found predominantly in the forebrain, in 

both the habenula and pallium (Fig. 16e-f). 
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Figure 16 | Action selection neurons and motor-related neurons. a-d, Classifiers based 

on peak activity and ROC analysis identify classes corresponding to left action selection (a), 

right action selection (b), left turns (c), and right turns (d). Plots show average activity after 

aligning traces to the time of turn events, computed separately for heat-evoked left turns (red 

lines), heat-evoked right turns (blue lines), spontaneous left turns (pink lines), or 

spontaneous right turns (purple lines). e-f, Anatomical locations of left action selection 

neurons (e), right action selection neurons (f), left turn neurons (g), and right turn neurons 

(h). Error bars represent s.e.m. 
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Consistent with the hypothesis that action-related neurons bias the animal toward the 

learned turn direction, we find that left action-related neurons are differentially 

suppressed in right turn rewarded blocks, and differentially active in left turn rewarded 

blocks, while the opposite pattern holds for right action-related neurons. On average, 

left action-related neurons show positive correlation with learning (0.06  0.01, s.e.m.) in 

left rewarded blocks, and a negative correlation with learning (-0.13  0.1, s.e.m.) in 

right rewarded blocks. In contrast, right action-related neurons show a negative 

correlation with learning (-0.12  0.02, s.e.m.) in left rewarded blocks, and a positive 

correlation with learning (0.03  0.02, s.e.m.) in right reward blocks.  

For the action-related neurons described above, we found that if the reward contingency 

of the first training block is against the preferred direction of an action-related neuron, 

then the neuron’s activity is suppressed during the first block and reactivated during the 

second block. We then asked whether all cells that are suppressed in the first training 

block are reactivated in the second training block. We find instead a large subset of heat 

activated neurons that decay in activity over the first training block and are not 

reactivated in the subsequent block (Fig. 14a). This class of neurons is particularly 

enriched in the medial pallium.  

Figure 16 | Action selection neurons and motor-related neurons (continued). i-l, The 

effect of two scrambling methods on classification of left action selection (i), right action 

selection (j), left turn motor-related  (k), and right turn motor-related (l) neurons. For each 

type, the number of cells found from the original data (data), scrambled dataset by circular 

permutation (S1), and scrambled dataset by randomizing trial order (S2) are shown from left 

to right. Standard deviation is shown for each scrambling method (3X scramble). P-values 

(1-way ANOVA) for the reduction of cell number by S1 and S2 are shown at the top of the 

bar plot, respectively. Distribution of found cells from S1 and S2 are shown beside the bar 

plot from left to right, respectively. 
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Non learners lack RP- and action selection signals  

Are the neurons that encode prediction and action selection in fact necessary for 

learning? We use the natural variability in behavior to address this question. At 6-7dpf, 

28% of animals fail to learn at least one of the two reward contingencies. We classify 

these animals as non-learners. Network activity in non-learners lacks the stereotyped 

pattern of rapid transition and decay to steady state observed in learners (Fig 17a). We 

then ask whether specific functional types are significantly disrupted in non-learners. 

We find that the most severely disrupted classes are RP-, action selection, and reversal 

signals (Fig. 17b). These three classes were reduced by 75% (p < 6.7e-08), 77% (p < 

1.1e-26), and 43% (p < 4.1e-05), respectively. Both RP- and reversal signal are 

activated by heat onset when relief is uncertain. One possible function for this type of 

signal is to inform the animal that the current behavior is no longer adaptive, and 

facilitate switching to new behavior programs (e.g. by recruiting previously inactive 

action selection neurons). In the absence of these signals, the animal would be unable 

to adapt to new reward contingencies. The absence of action selection neurons due to 

either lack of recruitment or reinforcement by the RPE signal could then account for the 

lack of correct turn bias.  

The total number of sensory-related, RP+, RPE neurons show only modest decreases 

in non-learners by 22% (p < 1.3e-05), 37% (p < 1.1e-05), and 29% (p < 0.0045), 

respectively. The relative distributions of these signals are also preserved in the non-

learners. Both RP+ and RPE signals show enrichment in the right habenula in both 

learners and non-learners. In contrast, any remaining RP- and action selection cells in 

non-learners show no apparent asymmetric distribution in the habenula. We also 
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observe an increase in the number of heat on-related decay neurons, which may also 

reflect the lack of reactivation during the reversal block in non-learners. 

 

 
 

Figure 17 | Non-learners lack RP- and action selection neurons. a, Sample PCA 

trajectory and average PCA trajectory velocity of all Habenula neurons from learners and 

non-learners. b, Ratio of the number of forebrain neurons found in non-learner over learners 

for each functional class. Ratios were normalized by the total number of active neurons 

found in learners (10383) and non-learners (5805) at 6-7 dpf. Animals with switching deficit 

were excluded from the analysis. c, Distribution of RPE, RP+, RP-, and action selection 

neurons in the forebrain for learners and non-learners.  
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Global analysis of network activity reveals learning-related changes 

We first take a global approach to determine whether learning generates detectable 

changes in network activity. For each brain region, we used principal component 

analysis to construct a trajectory representing the evolution of population activity state 

across trials (Fig. 18a-c). We analyzed the velocity of a given circuit trajectory as an 

approximation of the rate of activity changes across a given brain region (Fig. 18d-f). 

We find that the circuit trajectories of regions such as the habenula, pallium, subpallium, 

and hindbrain show the largest changes in neuronal activity across successive trials 

within each training block. In contrast, midbrain structures such as the optic tectum do 

not show consistent rates of activity change across both blocks.  

 

 
Figure 18 | PCA trajectory and velocity c-e, Representative trajectories showing the 

evolution of network activity state across trials in block 1 (blue) and block 2 (red), using 

randomly sampled subpopulations of 500 neurons in the habenula (a), pallium (b), and 

midbrain (c). Network activity state was projected onto the first three components (PC) 

obtained by PCA. d-f, Average rate of change of population state across trials in each block, 

using randomly sampled subpopulations of 500 neurons in the same brain regions as in a-c. 

The habenula and pallium undergo rapid state changes in the early trials of both blocks, 

whereas the midbrain does not show consistent changes across both blocks. Error bars 

represent s.e.m. based on 100 replicates of randomly sampling subpopulations of 500 

neurons from each brain region. The entire dataset consists of 24,546 task-related neurons. 
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Of all brain regions, the habenula shows the largest rate of activity change across both 

training blocks. The rate of change is highest between the first and second trials of each 

block, and exponentially decays toward a steady state within the first five trials. This 

indicates that the largest shift in neural activity occurs during the early trials of each 

training block. The rate of activity change is highly correlated with the latency to correct 

response (Fig. 1d), which also shows the largest decrease between the first two trials of 

training and exponentially decays to a steady state after 6 trials.  

To further test whether the rate of activity change is related to learning, we repeated the 

PCA analysis for single animals. We find that an animal that required more error trials to 

learn also required more trials to enter the steady state phase of the circuit trajectory 

(Fig. 19). Overall, there is a positive correlation between the learning curve of an animal 

and the rate of neuronal activity change (0.11). This suggests that the steady state 

phase of the circuit trajectory represents a post-learning network state, while the initial 

transitional phase reflects the learning process.  
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To determine whether the changes in activity state can be observed for either reward 

contingency, we repeated the PCA analysis, except that we grouped trials across fish 

according to the reward contingency of the trial rather than the order in which the blocks 

were collected (Fig. 20). We find a similar rate of activity change for both reward 

contingencies. We also note that the two circuit trajectories occupy separate state 

space, which may reflect the presence of reward contingency-specific activity (see next 

section). 

 

Figure 19 | Examples showing the correspondence between learning curve (gray) and trajectory 

velocity (black). For each fish, the learning curve was obtained by fitting a sigmoid function to 

sequence of correct and incorrect trials. 
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To control for the potential caveat that the changes in network activity simply reflect 

changes in sensory experience and motor output, we excluded all motor-related 

neurons and restricted our analysis to only a small time window around the start of heat 

onset (Fig. 21). We used 10 s before heat onset and 5 s after heat onset, excluding 

activity that occurred after the first movement. This restricted time window precludes 

contribution from activity that occurred only in response to error movements and activity 

that is sensitive to the duration of heat exposure. We wanted to avoid these types of 

activity because although they would increase the variance between correct and error 

trials, these signals might simply reflect sensory rather than learning-related changes 

 

Figure 20 | PCA trajectory and trajectory velocity for the habenula (a-c) and pallium (d-e) by 

reward contingency. Trajectories from left rewarded blocks are shown in blue, and trajectories from 

right reward blocks are shown in red.  
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across trials. Performing PCA on this restricted dataset, we still find that the habenula 

shows rapid shifts in activity state in the early trials of each training block. In contrast, 

the hindbrain now no longer shows consistent shifts in network activity for both blocks. 

Interestingly, the pallium shows a much larger shift in activity during the first training 

block than the reversal training block. This difference between the habenula and pallium 

is reflective of the relative proportion of block 1 and block 2-specific signals found in 

these two regions. We found that the medial pallium contains a large number of heat 

activated neurons that decay in activity over the first training block and are not 

reactivated in the subsequent block. This class may account for the large changes in 

network state observed in block 1 of PCA trajectory analysis for this region. 
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Figure 21 | PCA trajectory and trajectory velocity for habenula (a-c), pallium (d-f), and hindbrain (g-

i) with restricted activity window. For all three brain regions, motor neurons were not included in 

the analysis and PCA was performed on a restricted window of activity for each trial (-10s before 

heat onset and 5s after heat onset). All activity occurring after the first movement was excluded. 

Block1 is shown is blue and block2 is shown in red.  
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Conclusion and Discussion  

We have developed a novel paradigm to assay operant avoidance learning in larval 

zebrafish while exploiting its unique advantages for functional imaging at single cell 

resolution throughout the brain. Our analysis of the brain activity of more than 200 

animals during learning reveals a diverse array of functional types, ranging from simple 

sensory and motor signals to action-related signals and a variety of prediction-related 

signals that may encode relief prediction error (RPE), as well as heat with or without 

predicted relief (RP+ and RP-, respectively). In addition, our analysis of the anatomical 

distributions of these functional classes has revealed that most learning-related activity 

in our operant task is localized to the habenula and forebrain, and that some classes 

show intriguing functional lateralization. 

Examination of individual neurons with correlations to past performance reveals a highly 

lateralized relief prediction circuit in the habenula. Neurons that encode relief prediction 

and relief prediction error appear to be localized to the right medial habenula, while 

neurons that encode the absence of relief prediction are localized to the left medial 

habenula. Although the habenula has been shown to be high asymmetric both 

anatomically and in terms of gene expression48, learning-related asymmetry has not 

been described. Our results suggest that the left and right habenula represent opponent 

processes in relief prediction, and it remains to be seen whether this functional 

asymmetry is conserved in other vertebrates.  

In mammals, dopaminergic RPE neurons mediate operating learning by interacting with 

action control neurons in the striatum23-35. We find a number of neurons that may 



66 
 

mediate action selection in our behavior paradigms. These neurons are selectively 

active before heat-evoked left or right turns. As a population, action selection cells can 

predict the direction of the next heat-evoked movement more than 10 s in advance of 

the actual movement. In non-learners that fail to learn the correct response for a given 

reward contingency, significantly fewer action selection neurons are observed for the 

rewarded turn direction. This disruption is also observed for RP- but not RP+ and RPE 

cells. In the future, ablation experiments will be necessary to determine whether RP- 

neurons are necessary to recruit action selection neurons, or whether the non-learners 

lack direct synaptic connection between RPE and action selection neurons.  

The absence of left habenula signals (RP- and reversal signal), may be also point to 

developmental delays as a contributing factor to the inability to learn in a subset of 

animals. Left habenula develops more slowly than the right habenula by anatomy, gene 

expression, and functional activity (see next chapter). Though the size of the left 

habenula is not significant different between learners and non-learners at 6-7 dpf, more 

subtle delays in synaptic connectivity may give rise to the observed behavioral and 

functional phenotypes. Viral tracing and/or EM reconstruction will help to address this 

question in the future.  

We note that only a subset of our RPE neurons show inhibition after the first error 

movement in reversal trials (block 2, trial 1). There are several possible explanations. 

Inhibition is difficult to detect in calcium imaging unless the baseline firing rate is 

relatively high. Otherwise, slight decreases in calcium activity are not likely to rise above 

random fluctuation in baseline fluorescence. Furthermore, the long decay constant of 

the calcium signal can also serve to mask small inhibitory responses that follow an initial 
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increase in activity. These issues may be addressed with faster and brighter calcium 

indicators (e.g. GCaMP6f), voltage indicators, or electrophysiological recordings. 

However, all three methods are still under active development for the larval zebrafish 

system.  

Another fascinating complexity is that a subset of RPE neurons appears to respond 

before each error movement in the reversal trial. In an operant learning paradigm, the 

cue for reward/relief can be either a sensory stimulus or activity of action selection 

neurons137. In other words, it is possible for an animal to predict reward based on an 

upcoming behavioral choice. This type of RPE neuron would fire before each error 

movement in the reversal trial, though the peak response would decrease as the animal 

updates the prediction value of the action. If this were the case, then inhibition would 

again be difficult to observe, since our paradigm does not control how many error turns 

an animal makes or the duration between error trials. In future experiments, we could 

introduce a delay between the movement and the eventual outcome to more clearly 

assay the activity of RPE neurons in omission or reversal trials. 

Methods 

Whole-brain calcium imaging by two-photon microscopy 

To monitor neural activity throughout the zebrafish brain, we used Tol2-mediated 

transgenesis to generate a stable line expressing GCaMP5G25 under the control of the 

HuC promoter. To noninvasively image throughout the brain, we constructed a custom 

two-photon microscope. Microscope hardware was controlled by custom software 

written in C# (Microsoft), except photon counting, which was implemented in C++ to 
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perform peak detection on PMT signals digitized at 200 MHz (Spectrum). Upon 

acquiring an image from the behavioral camera, we recorded the index of the image 

currently being scanned to allow synchronization of calcium activity and behavioral 

events. 

Motion-stabilized calcium imaging during behavior 

Our imaging strategy was based on selecting a single focal plane and then stably 

monitoring the same focal plane for the duration of the behavioral paradigm, roughly two 

hours. To mitigate the effects of motor-induced and thermal stimulus-induced motion 

artifacts, we performed online focal plane correction and offline lateral correction. Prior 

to starting the behavioral paradigm, we first collected an anatomical reference stack 40 

µm above and below the chosen focal plane. We then collected images continuously 

throughout the experimental paradigm. Each newly scanned image was cross 

correlated in three dimensions with the reference stack using Intel Performance 

Primitives IPP) and C#. The lateral search size was +/-10 µm and the axial search size 

was +/-5 µm (11 image slices of the reference stack). The depth of the best z slice was 

low pass filtered and kept within 1 µm of the original focal plane by adjusting the 

objective height in 1 µm increments. Lateral image registration was performed offline 

using Matlab and IPP to fully take advantage of the entire time series. 

Image analysis pipeline 

After offline lateral image registration, we calculated a morphology image by averaging 

each pixel across the entire time series. We exploited the fact that GCaMP5 is excluded 

from the nucleus to identify cell centroids by searching for local minima that were also 
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below an absolute intensity threshold. We defined the final mask of pixels belonging to 

the cell based on the intersection of a morphologically defined mask and a functionally 

defined mask. To obtain the functionally defined mask, we first obtained a preliminary 

activity trace using a circular mask with a conservatively chosen radius of 1 µm. For 

each neighboring pixel up to a radius of 4.5 µm, we calculated its correlation coefficient 

with this preliminary activity trace. We obtained the final mask of pixels belonging to the 

cell by adaptively lowering a threshold until the resulting thresholded mask covered at 

least 30 µm2. The final mask, obtained by intersecting the morphologically and 

functionally defined masks, was used to extract a final activity trace for each neuron. To 

isolate heat on, heat on, ITI, motor components of each active trace, we perform linear 

unmixing using the impulse response function of each component as the kernel for 

linear regression. 

Circuit trajectories 

To analyze changes in circuit state across trials, we performed principal component 

analysis (PCA) in Matlab. In our approach, we used the trials of both blocks as the 

observations. For the variables, we used the activity of every neuron in a given brain 

region at every time point within the trial. To visualize the circuit trajectories of individual 

brain regions across trials, we projected the population activity data of each brain region 

onto the first three principal components. 

Response classification 

For all stimulus related classes of neurons, we first filter out cells with non-specific 

activity, where ITI activity accounts for most of variance in the data. A neuron is 
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classified as a motor neuron if most of the variance in its activity is accounted for by the 

motor related signals. We remove motor-related neurons from classification of sensory 

and learning related classes. Sensory neurons are defined as neurons with < 0.1 

correlation with past performance, and differential activity between error and correct 

trials of < 0.5. RP+, RP- neurons are neurons with > 0.2 and <-0.2 correlation with past 

performance. RPE neurons are neurons with > 0 correlation with past performance for 

the heat on component of its activity and < 0 correlation with past performance for the 

heat off component of its activity. We additionally constrain the classification by setting 

limits on the ratio of correct trial to error trial peak activity for each given class. RP+ and 

RPE neurons were constrained to a ratio >0.9, and RP- neurons were constrained to a 

ratio of < 1 for the heat on component of the activity. Turning-related neurons and action 

selection neurons are identified by ROC analysis. Action selection neurons were 

required to be differentially active before heat-evoked and spontaneous turns, as well as 

differentially active before left or right heat-evoked turns.   
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Chapter Four 

Discussions and future directions  
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Abstract 

We have developed the first zebrafish operant learning paradigm and shown that larval 

zebrafish are capable of rapid and stable operant learning. In this section, we will place 

our paradigm in the larger context of the many operant learning paradigms that have 

been established in the mammalian literature. We will discuss the interpretation of 

learning impairments that we observe across the larval population and consider the 

possible advantages of exploiting natural learning deficits instead of artificially inducing 

them. We will also discuss possible future directions for our behavioral work. 

We have also performed the first functional analysis of learning circuitry across the 

larval zebrafish brain. We have analyzed the types of signals present during learning, as 

well as the distribution of these signals across the brain and across the left-right axis. 

We have specifically uncovered a functionally asymmetric habenula circuit that may 

encode relief prediction and relief prediction error, as well as neuronal activity that 

anticipates the direction of heat evokes turns. We will discuss possible future directions 

to more fully characterize these learning related signals as well as variations to the 

learning paradigm that will improve our ability to dissect the learning circuitry.  

Conclusions and discussion 

We demonstrate that larval zebrafish are capable of operant learning. Our learning 

paradigm is able to quickly and reliably entrain a turning bias in response to heat onset. 

This bias is stimulus dependent and retained for at least one hour.  This is the first 

report of operant learning in larval zebrafish, and one of only two reports of associative 

learning at the larval stage. Though larval zebrafish have a uniquely accessible brain 
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and many available genetic tools, the general lack of robust associative learning 

paradigms in larval zebrafish has hindered investigations of learning in this animal. In 

contrast, the long history and proliferation of increasingly sophisticated learning 

paradigms in mammals have yielded a number of important insights into operant 

learning behavior and the neural circuitry that underlies learning. Our learning paradigm 

could serve as an entry point for studying learning behavior and circuitry in larval 

zebrafish,  

Operant learning behavior 

How does our learning paradigm compare with operant learning in mammalian 

systems?  

Four canonical categories of operant learning have being defined for mammals2. These 

paradigms can be divided along two axes – whether the reinforcer is appetitive or 

aversive, and whether the response promotes or suppresses the reinforcer.  Our 

learning paradigm fits well into the category of escape learning, in which the correct 

response (e.g. left turn) can terminate an aversive stimulus (e.g. noxious heat).  

Beyond these four basic categories, a diverse array of more sophisticated operant 

learning paradigms has emerged over the years in various mammalian systems. One of 

the most significant developments in our current understanding of operant learning is 

the idea that the R-O association is not the only association that can be formed during 

operant learning2. Another association can be formed between contextual sensory cues 

and the response. In other words, the response is context specific. For example, a 

pigeon trained to peck a red dot for food, does not begin to peck randomly at all objects. 
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The pecking response is modulated by the presence of the red dot. The actual 

relationship learned during operant learning is S (R-O). In our learning paradigm, S is 

heat onset, R is directional turning, and O is the laser state after the first turn. 

Consistent with most operant learning paradigms in mammals, we find that performance 

of R is dependent on the presence of S, while spontaneous turns are unbiased.  

More recent studies of operant learning have introduced a further distinction in operant 

learning between goal directed learning and habit learning. The distinction rests on 

which relationships are formed between S, R. and O during training and performance of 

the behavior. In goal directed behavior, it is hypothesized that the animals internally 

represent the desired outcome and its relationship to the response (O  R). The 

overall relationship in a goal directed behavior can be represented as S  (O  R).  

After extensive training, numerous experiments have shown that the intermediate state 

in which the outcome is internally represented is no longer accessible. The animal now 

operates out of habit, and the stimulus directly activates the learned response, S  R. 

Outcome devaluation and contingency degradation experiments have demonstrated the 

existence of the O  R relationship, and verified that this relationship no longer governs 

the behavior after overtraining. In our learning paradigm, we have demonstrated that 

after 25-30 trials, the response can be extinguished in open loop experiments as well as 

reversed in a reversal training block. This suggests that within the time frame of our 

experiment, the behavior is still dependent on R-O relationships.  

Population analysis of learning behavior 
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Though more complex variations of our learning paradigm are needed to assay the 

learning process in greater depth, there is an advantage to the simplicity and speed of 

our assay. For example, we have assayed learning in over 200 animals. At a population 

level, we can ask not only questions about the speed of acquisition or the duration of 

retention, but also whether there are systematic patterns to learning behavior or ability.  

We find that zebrafish exhibit two specific learning impairments that occur 

independently – switching impairment and retention impairment. Switching-impaired 

animals strongly prefer to turn in one direction in response to heat. These animals 

switch turn direction at a much lower rate and often fail to terminate the heat during 

error trials. Spontaneous turning is generally unaffected, and the animal is capable of 

turning in both directions in response to heat onset.  

We also find animals that are retention-impaired. These animals have normal switching 

behavior, and can successfully terminate all error trials. However, these animals do not 

retain a preference for the rewarded turn. The asymptotic performance of these animals 

is on average around 50%, indicating a lack of preference for either turn direction. 

Furthermore, we can show that this impairment is dependent on developmental stage. 

Almost all animals exhibit impaired retention at 3-4 dpf, while less than a quarter of 

animals exhibit impaired retention at 6-7 dpf.  

We believe that there is a distinct advantage to looking at natural variation in learning 

ability and its development over time. Our data indicates that the brain appears to have 

two stereotyped failure modes. How does this happen? Is there a reason why some 

circuits are more susceptible to disruption than others? Which factors determine why 
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some circuits are more prone to developmental delays or mis-wiring? Mutant and drug 

analysis can create an artificial problem that the brain is not designed to solve. 

Analyzing naturally occurring impairments can potentially yield insights into the 

robustness of different circuit components and the question of why some neurological 

disorders are more prevalent than others.  

Future Directions 

There are several extensions of our experiments that could yield valuable insight into 

the learning process.  

1) How specific is the stimulus in our learning paradigm? We were able to show that 

the learned response was context dependent. Spontaneous turns were unbiased 

after training, while heat driven turns were biased in the rewarded turn direction. 

However, our experiments do not distinguish whether the bias is associated 

specifically with noxious heat or with any noxious sensory stimulus. To distinguish 

between these possibilities, we will train animals with the heat stimulus and then test 

turn direction bias in response to other noxious stimuli (i.e. chemical stimuli such as 

mustard oil).  

2) Is larval zebrafish capable of goal directed learning? Our current experiments cannot 

conclusively distinguish between habit learning and goal directed learning. Outcome 

devaluation experiments are most amenable to studies that involve some form of 

appetitive conditioning. However, we can assay whether extinction becomes 

progressively more difficult as training progresses and whether a point can be 

reached when the animal is no longer sensitive to any changes in outcome. This 
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would not definitively show that the larval zebrafish has an internal representation of 

outcome, but would determine whether the learning becomes increasingly habitual 

(S  R) as training progresses.   

3) We were able to use noxious heat as a reinforcement signal in larval zebrafish. 

Previous efforts within the lab using electrical shock and touch have failed to 

consistently reinforce learning behavior. However, these experiments used a 

different set of parameters and are not directly comparable to our paradigm. We will 

address whether at 7 dpf, larval zebrafish can only use noxious heat as a 

reinforcement signal or whether other stimuli can be used in operant learning. To 

this end, we will attempt to train larvae with other noxious stimuli (i.e. chemical) or 

appetitive stimuli (i.e. food odorant).  

4) We have some evidence that animals can be trained to reverse their motor response 

over multiple training blocks. The difficulty in extending training past two blocks is 

the increased fraction of animals that experience physical damage and undergo 

seizure events. However, in the fraction of animals that can be trained to undergo 

multiple reversal blocks, one can ask whether the process of meta-learning can be 

observed. We would do this by alternating the rewarded turn direction for each 

block. To control for innate biases in turn direction, we would then compare 

performance across the blocks that reward the same turn direction, and determine 

whether the rate of learning changes over successive blocks.  
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Learning Circuitry 

Our imaging and analysis of neural activity across the entire larval brain has yielded 

insights both into the types of signals present during learning but also the relative 

distribution of these signals across brain regions and across the left-right axis.  

Learning related signals in the habenula  

We find most learning related signals to be concentrated in the forebrain including the 

habenula, pallium, and subpallium, while motor signals dominate the hindbrain. This is 

consistent with the evolutionary view that the pallium is homologous to many of the 

learning-related structures in mammals (i.e. amygdala, hippocampus, and striatum), and 

the habenula is conserved across most vertebrates and mediates aversive learning. 

The lateral habenula (LHb) in particular has been implicated in avoidance learning in 

both mammals and fish47-67, 87. LHb is believed to encode negative motivational value 

and interact closely with the midbrain dopamine system to form the reward prediction 

error signal47, 60-67. Our analysis suggests that the habenula contains not only negative 

prediction error, but also signals that encode relief prediction error, as well as heat 

onset in the presence or absence of relief prediction. Our results suggests that 1) a 

noxious events such as heat onset can act as a cue for relief prediction, 2) the habenula 

contains a broader range of prediction and prediction error signals than previously 

believed, and 3) the prediction-related signals in the habenula are asymmetrically 

distributed across the left and right axis.  

Anatomical and genetically specified lateralization of the habenula is well known in both 

mammals and fish. In zebrafish, the left habenula is specified by nodal signaling during 
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early development, and can be differentiated from the right habenula both by anatomy 

and connectivity130-133. The right habenula receives inputs from left and right pallium, 

while the left habenula receives inputs from the left pallium. Both sides of the habenula 

receive inputs from the eminentia thalamus (EMT). The right habenula projects to the 

ventral IPN and raphe, while the left habenula projects to the dorsal IPN and raphe. The 

left habenula is also 20% larger than the right habenula by adulthood.  

Surprisingly, little is known about functional lateralization in the habenula. Very few 

studies have shown that any behavior can be correlated with habenula lateralization133. 

Furthermore, the intermediate and crucially important step of characterizing which 

functional signals are lateralized in the habenula is nonexistent.  Our analysis 

demonstrates that prediction related clusters are asymmetrically distributed across the 

left and right habenula. In contrast, functional modules in the hindbrain, midbrain, 

pallium, and subpallium tend to be symmetric across the left-right axis. It remains to be 

seen whether the distribution of these relief prediction signals in the habenula is specific 

to zebrafish, or is conserved across vertebrates.  

Future Directions 

1) We characterize a number of relief prediction related neuron in the forebrain. The 

presence of these signals are consistent with the interpretation that heat onset can act 

as a cue/predictor for relief. Though canonical learning paradigms generally use a 

neutral cue as a predictor for reward, punishment, or relief, there is no reason to believe 

that a noxious event cannot also act as a predictor. To determine whether the relief 

prediction signals we find are particular to this learning paradigm, we will implement a 
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variant of our learning paradigm to include neutral predictive cues. In this version, the 

duration of heat onset is randomized per trial, but a neutral cue precedes heat offset 

with a predictable delay.  

4) For canonical reward based learning paradigms, the temporal difference (TD) model 

suggests that inhibitory connections must exist between reward prediction and reward 

prediction error neurons. It is unclear whether the same model applies to the relief 

prediction signals we find. We can take several approaches to determine whether the 

RPE neurons are inhibited by RP+ neurons in the habenula. At the most basic level, we 

will use co-expression analysis to determine the neurotransmitters type for each relief 

prediction signal. If the interaction between RPE and RP+ follow the TD model, then we 

expect to find at least a subset of RP+ neurons to be inhibitory. To most rigorously 

address the more difficult question of connectivity, we would need to use dual patching 

electrophysiology, viral tracing, or EM reconstruction. None of these technologies fully 

established for larval zebrafish, and not currently feasible for addressing the 

connectivity between relief prediction signals in the habenula. Targeted 

Channelrhodopsin excitation may be also allow us to address connectivity, though this 

method cannot distinguish between monosynaptic and polysynaptic connections without 

simultaneous electrophysiological recordings. However, single cell targeting of 

functionally identified cells by ChR2 has yet to be done in larval zebrafish.  

3) We find block-specific activity in a number of neurons. A subset of these neurons 

may mediate action selection while another subset may encode response outcome. 

However, it is an open question whether the same set of neurons are activated during 

all training blocks with the same reward contingency. Specifically, if we alternate reward 
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contingency in each training block, is the network activity in the first block the same as 

the network activity in the third block? If the same stereotyped network is activated 

whenever animals learn to turn in a particular direction, then we would expect the same 

network activity in the first and third blocks. However, though the reward contingency is 

the same in these two blocks, they are also different in terms of learning history. In the 

first block, the brain must transition from a naïve state, while in the third block, the brain 

must inhibit a previously learned response and switch its behavioral output. This 

difference may be reflected in the network activity. It would be interesting to image the 

brain through three alternating training blocks to distinguish between these two 

possibilities.  

However, there are some definite limitations to extending the number of training blocks. 

In the small subset of animals that we have imaged for more than two training blocks, 

there are higher instances of physical damage and seizure-like events in the brain. 

These are generally not observed through the first two training blocks. If we were to 

image more than two training blocks, animals that show seizure-like events and animals 

that fail to learn in the third training block would have to be excluded.  

4) As we have mentioned in the previous chapter, it would be interesting to train with 

other noxious stimuli to determine whether the learning-related signals we observe are 

specific to the sensory modality of the reinforcement, or if the same network is activated 

by all noxious stimuli. We know based on imaging in the peripheral sensory ganglion 

that different subsets of sensory cells mediate different sensory modalities (i.e. noxious 

heat is distinct from harsh touch). However, do all noxious stimulus modalities converge 

in the downstream circuitry to form a generalized pain signal that then interacts with 
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error signals in the habenula and dopaminergic system, or is each stimulus modality 

separately encoded even in the habenula? For example, are the neurons activated by 

heat in error trials generalized error signals across all modalities or are they modality 

specific? To address this question we must reinforce animals with two different sensory 

modalities, and determine which active neurons are common to both modalities and 

which are distinct.  

5) We would ideally like to more finely map the network activity across brain regions. 

Using anatomical landmarks, the resolution is limited. Prominent structures such as 

habenula and cerebellum can be easily defined, pallium can be separated from the 

subpallium, and the boundary between midbrain and hindbrain is clear. However, there 

are many structures that may require co-labeling with genetic markers to visualize. For 

example, the lateral and medial habenula are not distinguishable anatomically in larvae, 

but there are transgenic lines that specifically label the lateral habenula. The same is 

true for the catecholinergic system. Dopaminergic neurons reside in the ventral midbrain 

and are difficult to isolate anatomically, but there are now several transgenic lines that 

label at least a subset of the dopaminergic neurons. 
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