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On Newforms for Split Special Odd Orthogonal Groups

Abstract

The theory of local newforms has been studied for the group of PGL,, and re-
cently PGSp, and some other groups of small ranks. In this dissertation, we de-
velop a newform theory for generic supercuspidal representations of SO, over
non-Archimedean local fields with odd characteristic by defining a family of open
compact subgroup K(p™), m > 0 (up to conjugacy) which are analogous to the
groups L'g(p™) in the classical theory of modular forms. We give lower bounds on the
dimension of the fixed subspaces of K(p™) in terms of the conductor of the generic
representation, and give a conjectural description of the space of old forms. These
results generalize the known cases for n = 1,2 by Casselman [4] and Roberts and

Schmidt [23].
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CHAPTER 1

Introduction

1.1. Historical background

The theory of newforms is a central topic in the classical theory of holomor-
phic modular forms. The Fourier coefficients of a newform encode a great deal of
arithmetic information and the local theory of newforms gives a dictionary from the
classical theory of modular forms to the modern theory of automorphic forms on
GL(2). The local Langlands correspondence predicts that the invariants of local Ga-
lois representations, such as L-function and e-factor, should match the corresponding
analytic invariants of a local representation 7 of p-adic algebraic groups. The e-factor
determines the conductor a, > 0 and the root number ,, which for representations

of PGL(2) is equal to +1.

The theory of local newforms was developed for PGL(2) by Casselman [4] in 1970s
and was generalized to PGL(n) by Jacquet, Piatetski-Shapiro and Shalika [14] in
1980. Recently a local newform theory has been established for PGSp(4) by Roberts
and Schmidt [23], for U(1,1) by Lansky and Raghuram [16], and for unramified
U(2,1) by Miyauchi [20] [18] [19]. In a letter to Serre in 2010, Gross conjectured
that it holds in general for SO(2n + 1). The goal of this work is to establish a local

newform theory for generic representations of SO(2n+1) over non-Archimedean fields.

1.2. Statement of the main results

Assume that k is a non-Archimedean local field and the characteristic of & is not

equal to 2. Let V be a split quadratic space of dimension 2n + 1 over k with even

1



1.2. Statement of the main results
quadratic form ¢ and discriminant 2. Let SOg,,1 = SO(V') be the special orthogonal
group of V. Denote by ( , ) the associated bilinear form (v, w) = 1[g(v+w)—gq(v) —

q(w)] on V. We fix a canonical basis of V' in Section 2.2

{ela €2, ..., €n, Vo, fn7 s f27f1}

under which the Gram matrix of ( , ) is equal to

1

1
Let H be the subgroup of G = SO(V') which fixes the anisotropic vector vg. Then H

is isomorphic to the special even orthogonal group SO,, and is reductive.

Following a suggestion of A. Brumer, we define the open compact subgroups

K(p™) of G(k) as follows:

For m > 0, let IL,,, be the quadratic lattice
(@ oe; ©p" fi) ® p"vg
i=1
with associated bilinear form w™"™( , ), where w is a uniformizer of 0. The Gram

matrix for L,, is
1

This endows a quadratic form on L,,/pL,, over the residue field f, which is nonde-
generate for m = 0 and degenerate for m > 1. The reductive quotient SO(L,,/pL,,)
is hence SOq;,11(f) for m = 0 and Oa,(f) for m > 1.

Definition 1.2.1. For m > 0, let J(p™) denote the subgroup SO(L,,)(k) of G(k).

Define K(0) = J(0) which is the hyperspecial maximal compact subgroup G(o). For
2



1.2. Statement of the main results

m > 1, define the open compact subgroup K(p™) as the kernel of the composite map
mod p det
SO(L,,) (k) — Os,(f) — {£1}.

Then K(p™) is a normal subgroup of J(p™) of index 2.

An important property of the open compact subgroups K(p™) is that H,,  :=
K(p™) NH(k) is a hyperspecial maximal compact subgroup of H. When n = 1, these
are the subgroups I'g(p™) in PGLy(k) and H,,, is GL (o).

Assume 7 is an irreducible generic supercuspidal representation of G. We in-
troduce the local zeta integral of 7 in Chapter 4 and defined the conductor a,
and the root number ¢, by the functional equation of the zeta integrals in Section
4.2. Note that K(p™) contains H, . We discuss the Rankin-Selberg convolutions
for SO, 41(k) x GL, (k) in Section 4.4. By using the Rankin-Selberg convolutions
for SOy, 11 x GL,, with unramified second factor, we then study properties of vec-
tors in the subspaces Vatm which later play the central role in studying vectors in
the fixed spaces of K(p™). The spherical Hecke algebra of GL, (k) is isomorphic to
C[T\, T, ...,T,, T; '] under the Satake isomorphism where T; is the " elementary
symmetric polynomial in variables Xi, Xs,...,X,,. This leads to the following propo-

sition in Section 5.4:

Proposition 1.2.2. There is an injective C-linear map 0 from the subspace m=m to
the ring C[Ty, Ty, ..., T,,, T,"']. Moreover, we can put a H(H(k), H,, )-module structure

on the fized subspace mem such that Q is also a H(H(k), H,,,)-module homomorphism.

Here w,, is a certain lift of a special Weyl element of Os,(f) to J(p™). This
proposition will give us a nice way to distinguish different K(p™)-fixed vectors and
puts conditions on the dimension of the fixed spaces. Moreover, it also proves us the

existence of nonzero vectors that are fixed by K(p™) for some m.

3



1.2. Statement of the main results
Definition 1.2.3. A nonzero vector in 75#™) is called a fized vector of level m. In

particular, a fixed vector v level a, is called a new vector of .

Our main theorem is that the open compact subgroups K(p™) determine the local

invariants a, and ¢,. This is implied by the following Main Theorems.

Theorem 1.2.4. The fized subspace of m of the open compact subgroup K(p™) is

nonzero if and only if m > a,.

Theorem 1.2.5. The subspace 75®“) is a line generated by the new vectors and
the group J(p®)/ K(p®) of order 2 acts on this line by the quadratic character e,.
Moreover, the Whittaker functional €y with respect to the given generic data (B,T, )

18 nontrivial on this line.

In other words, the conductor a, is the minimal level for which a fixed vector
exist and such a fixed vector, called a new vector, of level a, is unique up to scaling.
Moreover, the root number €, can be read off form the action of J(p®~) on the new

vectors.

To prove the two main theorems above, we use Hecke eigenvalues and Fourier
coefficients. This idea follows the method in classical theory of modular forms and
Roberts-Schmidt’s proof in the case n = 2. To do so, we make use of the zeta integrals
of m and work out the Hecke eigenvalues in Chapter 8. Although we believe that the
arguments in this thesis can be completed to provide a full proof, at the moment the

proof of the multiplicity one statement is heuristic.

Similar to classical holomorphic form we have the level raising operators and can
talk about oldforms. The level raising operators 6, 65 and 7, are defined in Section
8.1. Moreover, combining with the result from €2 in Section 5.4 we can also obtain a

lower bound on the dimension of fixed spaces of higher levels. We expect that this

4



1.2. Statement of the main results
is the exact dimension. When the equality holds, we can obtain an oldform theory

which says all fixed vectors are old vectors.

Definition 1.2.6. A nonzero fixed vector is an old vector if it is the image of the

new vector under a composition of some of the level raising operators 6, and 7).

- n 4+ m—ax n+ m—ar+1 -1
Theorem 1.2.7. dim 7X¢™) > 5 + =]

n n

Conjecture 1.2.8. The lower bound of dim 7%®™) is the exact dimension and all

nonzero fived vectors of level greater than a, are old vectors.

We give some backgrounds on p-adic groups and generic representations in Chap-
ter 2 and 3 of Part 1. In Chapter 4, we write down the local factors and the Rankin-
Selberg convolutions for SOs,,1(k) X GL, (k). Most of the tools used in proving the
main theorems will be given in Chapter 5 of Part 1 where we discuss the invariant
subspace 7#m that contains 75¢™). Starting from Part 2, we start to talk about
the fixed vectors of K(p™) from various aspects. We first briefly review the lower
rank case with n = 1,2 in Chapter 6 which are proved by Casselman and Roberts-
Schmidt but now in the form of SO3(k) and SO5(k). Then we introduce the open
compact subgroup K(p™) for general rank n in Chapter 7. Chapter 8 is devoted to
the Hecke actions and the proof of Theorem [I.2.4] Finally in Chapter 9, we prove all

the theorems stated above.

Notation 1.2.9. We warm that in this thesis, the notations denoted in roman font
are fixed through out the whole thesis while the italic ones are floating and depend

on the local content.



Part 1

p-adic groups



CHAPTER 2

Structure theory

Let k be a non-Archimedean local field of residue characteristic p with ring of
integers 0. Let p = (w) denote the unique maximal ideal p where w is some fixed
uniformizer. Let |- | : kK — R be the valuation on k normalized such that |w| = ¢
where ¢ is the cardinality of the residue field §f = o/p. Fix a unitary additive character

Y kT — St S = (C¥) with norm 1, with conductor 0. Assume char(k) # 2.

2.1. Notations

Let G be a reductive group scheme and let GG denote its generic fiber. We abuse
the notation and denote the R-points G(R) of G by G(R). We assume that G is
split over k. There exits a k-rational Borel subgroup, say B, of G and a k-split
maximal torus, say T, contained in it. Assume we fix " C B C G defined over o.
Denote by X*(T') = Hom (7, G,,) and X¢(7T) = Homy(G,,,T") the character group

and co-character group of T respectively. Let ( , ) denote the natural perfect pairing
Xo(T) ®z X*(T) — Z = Hom(G,,,, G,,).

The root system of G is denoted by &5 C X*(T'). We shall sometimes denote by @

the image of @ in 7T'(k) under some co-character A € X,(7').

The Bruhat-Tits building of G over k is denoted by B(G). The (affine) apartment
of T'in B(G), which is the underlying affine space of £ = X,(T) ®z R, is denoted
by A(G). For convenience, we shall identify A(G) with E using 0 € A(G) as a base

point. The root system &y gives a hyperplane structure by the affine hyperplanes
7



2.1. Notations
{Hotn}aconez of A(G) by the affine linear functionals a +n : x — (x,a) +n. The
group G acts on the Bruhat-Tits building B(G) and the stabilizer of a building point

x is a parahoric subgroup of G, which we shall denote by G,.

Let U(G, B,T) = (X*(T), ®5, Xo(T), ®%) be the based root datum of G, where
dL C P is the set of positive roots of G determined by the Borel subgroup B and
(fé is the corresponding set of co-roots. Denote by A the set of simple roots in ®f,
by A(G) the co-weight lattice and by A(G), the co-root lattice in E. Let n = dim £
denote the rank of G and write Ag = {aq, ag, ..., a, }. Let Sg be the highest root in

the set of positive roots ®f. Then the n + 1 basic affine roots are

{o==B+ 1,01 =0a1,...., 0, = ay}.

The region C' = {z € A(G) | ¥;(z) > 0,9 = 0,1, ...,n} is the closure of the fundamen-
tal alcove and the region P+ = {z € A(G) | ¢;(z) > 0,7 = 1,2, ...,n} is the closure

of the fundamental Weyl chamber with respect to the polarization ®f, in A(G).

Denote by (Wg)ag the affine Weyl group of G, which is the Coxeter group gen-
erated by reflection maps $,4, on the apartment A(G) with respect to the affine
hyperplanes H, ., respectively. It acts transitively on the set of alcoves in A(G) and
C' is a fundamental domain of its action on A(G). The Weyl group W of G is the
Coxeter group generated by the reflections s, with a € & and P* is a fundamental
domain of its action on A(G). (Wg)as can be viewed as a semi-direct product of We
with the co-root lattice A(G),. The groups Wg, (Wg)ag preserve the affine apartment
of T and can be lifted to the subgroup N (7T') of normalizers of 7' in G. The group
Ne(T)/T(0) ~ We x Xo(T) is the extended affine Weyl group, denoted Weg. We have
Wa = Na(T)/T and (Wg)ag € We. There exists a cyclic abelian group Q¢ such that
Wq = (Wa)agt X Qg. (Wg)ag are Coxeter groups and admit a Bruhat order > and a

length function ¢ with respect to the generators {s,, }i=12...» and {sy, }i—o1,..n. These



2.1. Notations
extends to a partial order > on W such that for oy = $1°T1, 09 = So-Ty € (We)ar XQq,
01 > 09 <= 51 > $9,l(s1) = £(s2) and 7y = 73, and a length function ¢ such that

lo)=1L(s) for o =s-7 € (Wg)ag X Q.

Let z € A(G) be a building point and let W, be the subgroup of W,g generated
by reflections s,., which fix x. In other words, x lies on the hyperplanes H,,, for
Satrn € W,. The action of G on B(G) depends only on the hyperplane structure hence
we only care about the facet containing x. Let C,, be an alcove whose closure contains
x. Let B, be the subgroup of G that stabilizes C,. Then the subgroup stabilizing x
is the set G, = Usew, BowsB, where w; is a lift of the affine Weyl element s € W,.
These are the parahoric subgroups of G and B, is called an [wahori subgroup. The
definition of G, is independent of the choice of C,. Let G be the stabilizer of all
such alcoves C,. Then G, normalizes G} and the quotient G,/G} is a reductive
group G,. Let @, be the set of a such that s,., € W, for some n € Z. Then P,
forms a root system of G,. In particular, B,/B; is toral. Furthermore, since G, are

stabilizers, we indeed have G = Usew, \we/w, G,w;G,. In general, one can do
(2.1.1) G — usewwl\WG/WxQ Gl’leG(L’Q

as long as w1, x5 are contained in the closure of a same alcove. A point z is a special
vertex if &, ~ ®5. Any building point in the co-weight lattice is a special vertex. A

parahoric subgroup G, stabilizing a special vertex z is hyperspecial and G, ~ G(f).

Let U be the unipotent radical of B. The adjoint action of 7" on U (resp. its
opposite U) decomposes U (resp. U) into root subgroups U, (resp. U_,), where
a € ®f. For any a € D¢, fix z, : G, = U, a l-parameter subgroup of G which
satisfies

fro(a) = zo(a(t)a), Vae€kteT,



2.2. Compatible good basis
and let GG, be the Chevalley group generated by U, and U_,. Denote by T, the
connected component of kera in 7. There exists n, € Ng,(Tn) — Ta, such that

n? € T, and
(2.1.2) 1_o(ch) = zo(c)d(c)nazalc), ¢ € kX,

The element n,, € G, normalizes T" and is a lift of the reflection s, € Wg to Ng(T).

The equation (2.1.2) in SL, is famous identity: [},] = [t=7"][="" ][, 7'][*=]"]

A rational character 6 : U — kT of U is said to be generic if the stabilizer under
the adjoint action of a maximal torus T lies in the center of (G; equivalently, the
restriction 6, of 6 to each of simple root subgroups U,, a € Ag, of U is nontrivial.

If G is of adjoint type, any two generic characters are T'(k)-conjugate.

A triple (B,T,0) with a k-rational Borel B of G, a maximal k-split torus 7" of
G contained in B and a generic rational character 6 of the unipotent radical U of B
is called a generic data of G. We shall abuse the notation and denote also by 6 the

composition U LNy T

2.2. Compatible good basis

We are interested in the orthogonal groups over k. To set up our groups, we
introduce the quadratic space over k that defines the groups which is the standard

representation of the orthogonal group.

Let n be a nonnegative integer. Let V be the split quadratic space over k of
dimension 2n + 1 and discriminant 2 with even quadratic form ¢ : V' — k. Let ( , )
be the associated bilinear form defined by (v, w) = $[g(v + w) — q(v) — g(w)]. For
any operator A on V', denote by *A the adjoint operator of A on V' with respect to

( , ). We fix G to be the split special odd orthogonal group SO(V') of degree 2n + 1,
10



2.2. Compatible good basis
more precisely

G={AecCGL(V)|"AA=1,det A= 1}.

We say an ordered basis {eq, €, ..., €n, €n11 = Vo, fu, -, f2, f1} of V is a good basis
if it satisfies (e;, e;) = (fi, f;) =0, (e;, f;) = ;j and (vg, vg) =2, for 1 < ,j < n. For
a given good basis, a group scheme SO(IL) over o is chosen such that G is its generic
fiber, where L is the o-lattice in V' generated by the good basis. Moreover, we choose

a Borel subgroup B of G stabilizing the isotropic flag
OCX1CX2C"'CXn:X,

with X; = key @ kes @ --- D ke; for 1 < i < n, and a maximal split torus T contained
in B that stabilizes the lines keq, kes, ..., ke,, kv, kfn, ...,k fao, kfi. The groups T C

B C G are defined over o.

The character group X*(T) has a canonical basis €1, €, ..., €, which are the restric-
tions of the actions to the lines key, kes, ..., ke, respectively. Denote the dual basis of
€; also by €; and these form a basis of the dual group X,(T). The root system ®¢ of
G has a base

Ag = {041 =€ — €2, = €2 —€3,...,0p1 = €1 — €y, QUp = En}-

Following the convention in [14], for a chosen good basis we fix a generic character

0 : U — kT of U which satisfies the following condition:

9;7;1(0)6“'1 =v0e,1<1<n (*)
That is, every good basis determines a generic data (B, T,#). Conversely, given any
generic data (B, T, #) of G the condition (x) fixes a good basis {e1, €a, ..., €n, Vo, fu, -, f2, f1}

up to scaling by 0. We have the following definition.
11



2.3. The groups SOg,+1, SOg,, and GL,
Definition 2.2.1. A good basis {ey, s, ..., €4, Vo, fun, ..., f2, f1} is said to be compatible
with a generic data (B, T,#) if the following three conditions hold: (1) ke; is an
eigenspace of T; (2) the orbit of e;,; under the action of B is contained in @;illkej;

(3) 0,1 (0)eiy1 = oe;, for 1 < i < n.

Remark 2.2.2. A generic data (B, T, ) determines a integral model of G from a
good basis and the apartment A(G) with an assigned origin and hyperplane structure

on it and the generic character 6 : U — S! is trivial on U(o) = UNG(o).

From a generic data, a compatible good basis of a standard representation of
SO2,41(k) can be assigned. In part 2 of this thesis, we will use this good basis to
define a family of open compact subgroup of SOg,.1(k) whose fixed space in the
generic representation will encode important invariants such as the conductor and

the local factors.

From now on, we shall fix a good basis

{617627 «vvy Ep,y Vo, f’m ceey f27 fl}a

of V', up to scaling in 0*, or equivalently a generic data (B, T,#) of G.

2.3. The groups SOs,.1, SO9,, and GL,

Recall that V' is a split quadratic space over k of dimension 2n + 1 with an
associated bilinear form ( , ) whose Gram matrix under given fixed good basis is

1

o
and L is the o-lattice generated by the good basis of V. The n-plane X = @] ,ke; is a

maximal isotropic subspace of V' and vy is an anisotropic vector of V' with (v, vg) = 2.

12



2.3. The groups SOg,+1, SOg,, and GL,
The isotropic subspace XY = @ |k f; is isomorphic to the dual space of X under

the perfect pairing ( , ): X x XV — k. Let
W=XoX"

be the split quadratic space of dimension 2n over k£ which is the orthogonal compli-

ment of the anisotropic vector vy in V.

We have G = SO(V') ~ SO,,,,1 with integral model SO(IL). Define H = SO(W) ~
SOy, to be the subgroup of G fixing vy and M = GL(X) ~ GL,, to be the subgroup
stabilizing X and XV fixing vy, embedded in H (and hence G) with action on XV by

the adjoint operator

GL(X).

via ( , ). Denote by det : M — k* the determinant map on

The subgroups H and M are split reductive groups with Borel subgroups By =
HNB and Byy = MNB defined over o both containing T as a maximal split torus.
Let us denote by V and N,, the subgroups HN'U and M NU of G which are maximal

unipotent subgroups of H and M respectively.

The bases of the root systems @, Py and g of M, H and G respectively are

Ay = {6 —e€,60—€3,..., 6,1 — €, (highest root € — ¢,),
Ay = {e1 —€g, 60 —€3,.0,6,1 — €y, €n1 + €, (highest root 2¢;),
Ag = {61 —€,60—€3,...,6,1 — €n, 6,1 (highest root g = € + €3).

The corresponding bases of the co-roots of G and H are
Aé = {61 — €2,€ —€3,...,€n1 — €n, 2671}

Vv
Af={e1 — €6 —€3,...,€6n1 — €n,€n1 + €1}

13



2.3. The groups SOg,+1, SOg,, and GL,

The sets of the fundamental co-weights of G and H are

AE = {Ela €1+ €2,...,60 + €2+ ...+ en}

61+...+€n_1—€n 61—|—€2—|—...—|—6n}
2 ’ 2 '
We have A(G) = X.(T) D A.(G) and the co-root lattice A,.(G) is contained in the

*
AH = {61,61 + €9,...,€1 —+ ...+ €n—1,

co-weight lattice A(G) with index 2. Similarly, we have A(H) D X.(T) D A,(H) and

the co-root lattice A, (H) is contained in A(H) with index 4.

The apartments A(M), A(H) and A(G) of the maximal torus T have the same
underlying affine space E, but different hyperplane structures. Set the following

points
€1+ €+ ...+ €,
2

zo=0 and z,,=m

on E for m € Z. The corresponding building points of z;’s are vertices (0-facets)
of A(G) and are special vertices of A(H). These points play a crucial role in the
rest of the thesis to express our target family of open compact subgroups. We shall
denote by x;’s the building points in both A(G) and A(H) when the content is clear.
The reductive group M is not semisimple and has center generated by the image of

M=¢ +e+..+6 € AM). We focus on A(M)/{AM) instead.

The Weyl groups Wy, Wy and W acts on E preserving the hyperplane structure
of the affine apartment A(M), A(H) and A(G) respectively. The Weyl group Wy
is isomorphic to the permutation group S, on n letters. The Weyl group Wy is
isomorphic to the semi-direct product of W)y and the group generated by composition
of even number of reflections s.,’s. Let us call the simple reflections s, the sign
changes in the later context. The Weyl group W is isomorphic to the semi-direct
product of Wy and the group generated by composition of all sign changes s,,’s. We

have Wy =~ S,,, Wy =~ S,, X (Z/2Z)"' and Wg ~ S, X (Z/27)".
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2.4. Parabolic subgroups Q, P
2.4. Parabolic subgroups Q, P

Among all parabolic subgroups of H and G, the ones that stabilizes the isotropic
flag 0 C X are of special importance, for it serves as a good first stab when one wants
to investigate the parahoric subgroups H,, and G,,. These have a close relation with

the open compact subgroups K(p™) which will be defined in Part 2 of this thesis.

Let Q (resp. P) denote the parabolic subgroup of G (resp. H) that stabilizes the
isotropic flag 0 C X. Then the subgroup M is a Levi factor of both Q and P. Denote
by Y (resp. Z) the unipotent radical of Q (resp. P) which M acts by conjugation. We

have Levi decompositions
Q=MxY P=MxZ.

The subgroup Y is a two-step unipotent group which fits into the exact sequence of
M-modules

0> AN X >5Y3S X >0

where the map « is given by y — y(vg) — vo. The subgroup Z is a commutative
unipotent group isomorphic to A2X and is normal in Y. We have the isomorphism

Y /Z~ @, U,. The roots in Lie(Z) under action of T are ¢; +¢;, 1 <i < j <n.
We write down these groups in the case when n = 2 as 5 by 5 matrices under the

fixed good basis in the following example.

Example 2.4.1. When G = SOs;, the subgroups H, M, T, Q, P, Y and Z are as

follows.




2.4. Parabolic subgroups Q, P
The Bruhat decompostion shows that the double coset representatives of B\ G /B
can be chosen from B Ng(T) B and hence

G=U,Bw;B=U,Uw,B

where w; is a lift of s to Ng(T) and the above union is taken over the Weyl group
element in Wq. If Q1 and () are two parabolic subgroups containing B with Levi

factor M, (resp. My) containing T, then we have the following commutative diagram

(2.4.1) B\G/B We

| |

O\ G/Qy — Wi, \We /Wy,

where the horizontal maps are bijections and the vertical maps are quotient maps.
One would argue this by looking at (Q1NNg(T))\Na(T)/(Q2NNg(T)) and it follows
from the definition of W), and Wj,,. This diagram holds after taking o points and
reduction modulo p while the group Wy is lifted to the hyperspecial subgroup G(o).

Similarly we can argue with H.

Let us apply it to our parabolic groups Q and P of G and H respectively. We
notice that Wy = S,,. Denote by I C W the set of all sign changes and by Iy C Wy
the set of all even sign changes. Then we have Bruhat decompositions (over k and

over 0/p)
G= |—|sEIBwsC2 = l—'sEIUst 5 H= l—'sGIO BstP = l—'selovwsP-

Here again w; represents any lift of the Weyl group element s to Ng(T).

16



2.5. Parahoric subgroups G,,, Hy,
2.5. Parahoric subgroups G,,, H,,

Recall that a, = ¢ o _|2— s building point in A(G) (and A(H) by abuse

of notation) defined for ¢t € Z. We define z; by the above formula for ¢t € R. For any
i € Z, let x;, = x(11)_ be any point in the edge (1-facet) {x; | i <t < i+ 1} whose

closure contains the vertices z; and x;14.

The open compact subgroups defined by

(T(0),Ua(p™) | (¢ + n)(zy) > 0,0 € P, € Z),

H,, = (T(0), Ua(p™) | (o + n)(z;) > 0,0 € B, n € 7)

are parahoric subgroups of G and H respectively. The groups G,, and H,, have
pro-unipotent subgroups, namely, the open compact subgroups

G;’t =(T(1+p),Us(p") | (¢ +n)(x;) >0, € D, n € Z), and

+ _
H,

(T(L+p), Uap™) | (a +n)(z) > 0,0 € Py, m € Z),

which are normal in G,, and H,, respectively.

Suppose ¢ is an integer. The parahoric subgroups G,, and H,, are maximal and

admit reductive quotients

G, /QF ~ G(f), i:even

~ , H,, /HI ~H()
H(f), i:odd

and moreover,

+ o~ + o~
Gi, /Gl ~H, [Hi =~M().

l?i+

The non-maximal parahoric subgroup H,, and H,, are contained in Hg,. Their

images in the reductive quotient H(f) of H,, equal to the parabolic subgroup P(f)

17



2.5. Parahoric subgroups G,,, Hy,

and P(f), respectively. The Twahori factorization of H,, gives

Hy, = Z(p™™) M(o) Z(p™") = Z(p~") M(0)Z(p"*").

.’Ei+

The Bruhat decomposition of H(f) can be lifted to the parahoric subgroup H,, of H

and give a decomposition

H,,

k3

== USGIQ (V N Hx¢>ws,i H:E¢+ )

where w;; represents any lift of the Weyl element s to H,,.

Consider the maximal parahoric subgroups G,, and G,, of G. Denote by

the normalizer of G, in G for any building point #. Then K,, = G, is a hyperspecial
maximal open compact subgroup and K,, is a maximal open compact subgroup
contains G,, with index 2. The intersection of the groups G, and G, is the parahoric
subgroup G$O+, whose image in the reductive quotient G(f) of G,, is the parabolic

subgroup Q(f). We have a Iwahori factorization

Gay, = Y(0) M(0)Y(p) = Y(p) M(0) Y(0).

zo,

The Bruhat decomposition for G(f) can be lifted to G,, and give a decomposition

Gay = User(UN Gy, )ws o G

Tiy o
where w;; represents any lift of Weyl element s to K,,.

The smooth map G — B to the flag variety 8 = G /B of the split group G is
separable and is thus a quotient map. We have G(k)/B(k) = G(0)/B(0) and hence

18



2.5. Parahoric subgroups G,,, Hy,

we also have the Iwasawa decomposition
G =BG(o) = UT G(o).

Since G, is hyperspecial and any lift w; o of a Weyl element s is contained in T K, ,
s € I, we also have the decompositions G = BK,, = BK,,. A similar argument can

be applied to conclude that the decomposition
G =BK,,

holds for any integer 7.

Before we end this chapter and move on to discussion on representations of p-adic
groups, we fix the following convention. For any subgroup C of G, we will write C,,)
for the pullback of C(0/p™) in G(o/p™) under the reduction modulo p™ map on G(o).

For example,
Qmy = Y(p™) M(0) Y(0) = Y(p™) Q(0)

is a subgroup of G(o) contained in Gy, - Let I denote the identity element in G,
then the set of subgroups {I;)}m>0 forms a system of open compact neighborhood

of identity I in the locally pro-finite group G.
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CHAPTER 3

Generic representations

We begin with a general theory of smooth representations. In this chapter, G is

a general reductive group over k for most of the sections.

3.1. Admissible representations

Let G be a locally compact and totally disconnected topological group. A repre-
sentation of G is a homomorphism 7 from G to the linear automorphism group of
a complex vector space V;. The dimension of complex vector space V is called the
dimension of the representation . We will sometimes denote a representation as a
pair (m, V,) indicating G acts on V, by m. A representation is said to be smooth if
every vector in V. is invariant under elements of an open compact subgroup. For any

compact subgroup K of G, we write
VE={veV,|nklv=vVkec K}

Then 7 is smooth if and only if V; = Ug VX where K runs over all open compact
subgroup of GG. A representation 7 is admissible if the fixed subspace of any open
compact subgroup K is finite dimensional, i.e. dim VX < co. A character of G is a

one dimensional smooth representation, which is clearly admissible.

Let m be any representation of G on a vector space V., define the smooth part
V> of 1 as the subspace Ug VXX, where K runs through all open compact subgroups

of G. Then V® is an invariant subspace and the action 7 of G on V> is a smooth
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3.1.  Admissible representations
representation. For a smooth representation 7 of G on the space V;, the contragradi-
ent 7 is defined as the dual action 7* on the smooth part of the dual representation
of G on V¥ given by (7*(g)vi,va) = (v, m(g 1 a), Yoi € V¥ vy € Vi,g € G with

( , ) the perfect duality on V* x V.

In general we have an action of GG on the space of complex-valued functions f by
right translation R,, (R,f)(z) = f(xg) Vg,x € G. This action again preserves the
subspace of locally constant functions, denoted C*°(G), and the subspace of locally
constant functions of compact support, denoted C°(G). C°(G) is analogous to
the regular representation of G when G is a finite group. Any G-invariant space is

naturally a C[G]-module.

Let dg be a left Haar measure on G, which is unique up to scalar. We have a
distribution C°(G) — C of G by f — [, f(g)dg. The modulus character d¢ :
G — RT of G is defined as the character of G satisfying d(gz™!) = dg(x)dg. When
G is compact or reductive, this character is trivial and the Haar measure is bi-
invariant. Let P = MN be a parabolic subgroup of a reductive group G with
Levi factor M and unipotent radical N. Since M normalizes P, the character dp is
determined by the adjoint action of M on the Lie algebra of N. To be more precise,
dp(m) = | det Ad(m)|vie(n)|, Ym € M. In particular, let B be the Borel subgroup of

a reductive group G containing a maximal torus T of G.

For any closed subgroup H of G and any smooth representation o of H on the

vector space W, G acts on the vector space
Ind% W, = {f : G — W, locally constant | f(hg) = o(h)f(g), Vh € H}

by right translation R,, R,f(z) = f(xg). This representation is smooth and is called
the inducted representation, denoted Ind$ o. The space Ind% W, has an invariant

subspace indg W, of functions compactly supported modulo H. This representation
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3.1.  Admissible representations
of G is called the compact induction, denoted by indg o. When H is an open sub-
group, the compact induction indg W, is can be identified with C[G] ®cim Wo as a
C[G]-module. In particular, Ind¥ C = C*°(G) and ind¥ C = C®(G).

Let Rep(G) denote the category of smooth representations of G. The inductions

define functors from Rep(H) to Rep(G). We list some properties of the inductions.

Proposition 3.1.1. Let H be closed subgroup of G, and (o, W,) a smooth represen-
tation of H.
(i) The functors Ind% — and ind$ — are ezact.

(ii) Assume J D H be a closed subgroup of G, then Ind$ o = Ind§ (Ind; o).

(i1i) Assume G is reductive. Then ind% o ~ Ind$ 56y
() If (r,Vy) is a smooth representation of G, then indG 7|y ® 0 ~ 7 ® ind% 0.

(v) If o is unitary, then Ind$ 06;1/2 is unitarizable.

We will prove the following reciprocity which will be used very often later.

Proposition 3.1.2 (Frobenius reciprocity). Let H be a closed subgroup of G. Let
(7, Vi) be a smooth representation of G and (o, W,) be a smooth representation of
H. Then there are canonical isomorphisms:

(i) Homg (7w, Ind$ o) ~ Hompy (7|g, o).

(ii) Homg(ind% o, 7) ~ Homp (0dy", %E)

(iii) Assume H is open. Homg(ind% o, 7) ~ Hompy (o, 7|g).
Proof. On the induced representation Indg o, we have a H-invariant map
(3.1.1) o, IndG W, — W, s f(I).

This map induces a homomorphism from Homg (7, Ind$; o) to Hompy (7| g, o) by com-
position. Given such a H-invariant map T : V, — W,, we can recover f by the

function T'(w(g)v). This gives an inverse of the homomorphism, which is hence an
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3.1.  Admissible representations

isomorphism. This proves (i). Applying Proposition [3.1.1] (iii) and part (i) we get
Homg(ind$ o, 7) ~ Homg(w, Ind$ 56) ~ Hompy (7|g, 50y) ~ Hompy (00", 7/7'\|;)

and hence prove (ii). If H is open, then ind§ W, ~ C[G] ®cy W,. There is a
natural map W, — indfl W, which is H-invariant and induces a homomorphism
from Homg(ind% o, 7) to Homy (o, 7|x) by pullback. Since any H-invariant map

from W, to V; can be extended to a G-invariant map from C[G| ®c(u We to Vz,
W, = Vi ~ ind§ W, ~ C[G] @cim) Wy — Vi
It defines an inverse of the homomorphism. (iii) is thus proved. O

On the other hand, we also have an analog of the restriction map as in the

representation theory of finite groups.

Let H be a closed subgroup of G and ¢ be a character on H. The normalizer
Normg(H, €) is the set of elements ¢ in G such that g € Ng(H) and £(ghg™') = £(h)

for h € H. For any representation (m, V) of G, set
Va(H,§) = (w(h)v — {(h)viv € Vi, h € H),
which is an invariant space of Normg (). The &-localization of 7 is the quotient space

(Va)me = Vo /Va(H,$)

on which Normg(H, &) acts by restricting = on the cosets. This is the maximal
quotient of V, such that H acts by £&. The &-localization defines a functor, called a

(modified) Jacquet functor, denoted

Jrue: Rep(G) — Rep(Normg(H,€))

(7, V) = (7me, (Vi) me)-
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3.1.  Admissible representations
We omit the subscript £ when it is trivial. Jg : Rep(G) — Rep(Ng(H)) is the
ordinary Jacquet functor, and Jy(m) is called the Jacquet module of m at H, which

is exactly the H-covariants mgy of 7.

We list some of its properties and omit the proofs.

Proposition 3.1.3. Let H be a closed subgroup of G exhausted by its compact sub-
groups, and (w, V) a smooth representation of G.

(i) The functors Jy— is exact.

(i1) Assume H = HyHy and Hy normalizes Hy, then ((VW)H1,£IH1)H2,£IH2 = (Vi)me.
(1ii) Va(H,§) = Ve-1n(H) and (Vi)ng = (Vein)u-

(iv) v € Vo(H,&) if and only if there exists a compact subgroup U C H such that

(3.1.2) /ug—l(h)w(h)u dv = 0.

Let M, N be closed subgroups, M normalizes N and P = MN is closed. (For
example, P = M N is a parabolic subgroup of a reductive group GG with Levi factor
M and unipotent radical N.) Let £ be a character of N and M C Normg(N, ). For

any smooth representation (7, W) of M, define
Ing(r) = Indg(r @ )05, ing(r) = ind(7 © )35

for any smooth representation (m, V;) of G, define

’I"N7§(7T) = 7TN7§51;1/2.

We obtained functors
Ing,ine : Rep(M) — Rep(G), rne: Rep(G) — Rep(M).

When § =1, gy = Iy (resp. igm = ing) is called a normalized induction (resp.

normalized compact induction) and ry e = rn1 is called the normalized Jacquet
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3.2. Whittaker linear forms
functor at N. When G/P is compact, these functors preserve admissibility and the

property of being unitary and Iy ¢ coincides with iy .

Using the properties of the induction and the &-localization (see Proposition
, it is clear that the functors Iyg¢, in¢ and ry¢ are exact. Since for
7 € Rep(G), T € Rep(M), the Frobenius reciprocity implies that Home (7, Ind$ 7 ®
¢) ~ Homp(7|p, 7 ® &) >~ Homp (mne, 7 @ ) for any character £ of N normalized by
M. The functor 7y, is left adjoint to Iy . We have another form of the Frobenius
reciprocity:

Homeg(m, Ine(7)) =~ Homp (ryve(m), 7).

When G is a reductive group. Suppose P = M N is a proper parabolic subgroup
of G with Levi factor M. A parabolically induced representation, called a parabolic
induction, of G is of the form Ind% 7 where 7 is a smooth representation of M in-
flated to P by assuming trivial on N. An irreducible representation is said to be
supercuspidal if it can not be realized as any subrepresentation of a parabolically
induced representation of G. The Frobenius reciprocity now shows an irreducible
representation m of G is supercuspidal if and only if 7y 1(7) = 0 for any unipotent
radical IV of a proper parabolic subgroup of GG. Conversely, if a nontrivial irreducible
representation 7 of M occurs in ry¢(m) for some P = MN and &, then m can be

embedded into a parabolic induction I ¢(7).

Most of the result in this section can be found in [1], [2].

3.2. Whittaker linear forms

Let G be a connected split reductive group over k and let (B, T, ) be a generic
data of GG. Recall that this means that B = T'U is a k-rational Borel subgroup, 7T is
a k-split torus contained in B and 6 : U — S' is a generic character of the unipotent

radical U of B such that the stabilizer of 0 under action of T is in the center of G.
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3.2. Whittaker linear forms
Denote by Cy the one dimensional space on which U acts by 6. Then we can consider
the induced representation Indg 0, acting on the space Indg Cy of locally constant

functions f on G such that

flug) =0(u)f(g), Vue U,g € G,

on which G acts by right translation R,.

Theorem 3.2.1 (Gelfand-Kazhdan [10], Rodier [24], Shalika [27]). The representa-
tion Indg 0 is multiplicity free. That is, for any irreducible smooth representation w

of G, the complex vector space Homg(m, Indg 0) is of dimension at most 1.

We say an irreducible smooth representation (m, V;) of G is 0-generic if

Homg(m, Ind§ §) = C.

A Whittaker model of m with respect to the generic character # is an invariant
subspace # (r,6) of Ind$ Cy on which the action of G is isomorphic to 7. A f-generic
representation 7w admits a Whittaker model and Theorem shows such model is

unique when exists. By the Frobenius reciprocity,
Homg (7, Ind§; 6) ~ Homy (7|y, 0).

Therefore, when 7 is #-generic, there is also a nontrivial linear functional ¢y on V,
unique up to scalar, such that ly(m(u)v) = 0(u)ls(v). Such a linear form ¢y is called
a Whittaker functional on V. Given a Whittaker functional ¢y € Homy (V;, Cy), the

Whittaker model of (7, V}) with respect to 6 is the space
(3.2.1) W (r,0) ={W,:G— C|W,(g) =Lly(n(g)v), Yv € V. },

with G acting by right translation R,.
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The following lemma reduces the question of the uniqueness of the Whittaker

model # (r, ) to the case when 7 is a supercuspidal representation of G.

Lemma 3.2.2 (Casselman-Shalika [6], Shahidi [25]). Let wg be any lift of the longest
Weyl element of G, meaning BﬂwGngl =T, thenUy), = ]\/[ﬂwGUwa1 s @ maximal
unipotent subgroup of M and 0y, = 6o Ad(w¢) is a generic character on U},. Assume

(1, W) is a 0),-generic representation of M. Then
Homg(Ind$ 7, Ind§ 6) ~ Hom, (7, Ind](\]{/w 0)-

In particular, if the parabolic induction Ind}GD T 1s irreducible, then it s 0-generic.

Remark 3.2.3. Following the notation as in Lemma [3.2.2] assume 7 is 6},-generic,
and ¢y € Homg(Ind% 7,Ind$ 6). If 7 is a f-generic subrepresentation of Ind% 7 then
the space of the Whittaker model # (7, 6) is as defined in equation (3.2.1]). Indeed,
assuming 7 is supercuspidal, such #-generic subquotient is unique. This can be done

by analyzing the Jordan composite series of (Ind% 7)[ss. (See [2] Section 2.)

3.3. Modules of the mirabolic group P,

We review theory of Bernstein and Zelevinsky on the modules of mirabolic groups.

Assume n > 0 is an integer. Let X, ;1 be an n + 1-dimensional k-vector space.
Set M,,+1 = GL(X,,41). Fix a complete flag 0 C X; € Xy C --- C X,, C X,,41 and
hence a Borel subgroup B,,;; and a maximal unipotent subgroup N,,.; of M,, ;. For
1 <i<j<n,let Q;;41 be the parabolic subgroup of M, stabilizing the flag 0 C
X; C Xjp1 C--- C X4 and U j41 be its unipotent radical. Then U; ; ~ U; ;1 x X,
and Nj1 = N;Ujj41. Let £ = £ be a generic character on N, 1. Set & = 37

and 5] = €j+1|Uj7j+1' Then €j+1 = 5]5_7 a’nd 5 = 5152 o gn
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3.3. Modules of the mirabolic group P11

The mirabolic subgroup of M;.; is defined as the subgroup
Py = M; Ujjp.
It satisfies the inductive properties that
P; = Norm; (Ujj+1,§;),  Normp,,, (Ujj41,§5) = P U jpa.

There are only two orbits of characters of U; ;1 under action of P, one is the closed
orbit consists of the trivial character, the other is an open orbit containing ;. Notice

that Normp,,, (Uj 41,1) = Pj1 = M; U ;1. We have exact functors
QT =1y Rep(P;+1) = Rep(P;), ot = (N Rep(P;) — Rep(P;11),

U™ = TU]-,]-_H,I : Rep(Pj+1) — Rep(M]‘), \I]+ = in7j+1,1 : Rep(Mj) — Rep(Pj+1).
It is immediate that ®~¥T =0, =& =0 and ¥~ is left adjoint to ®T.

The representations of these mirabolic groups have been well-studied by Bernstein
and Zelevinsky in late 70s. (See [1].) By arguing about the [-sheaves on [-groups ([1]
§5), they proved that ®~®* ~id, -+ ~ id, and

(3.3.1) 0—=®"®" —»id—> ¥ ¥t -0

forms a short exact sequence. Indeed, it is not hard to check that for (o, W,) €

Rep(Pjt1), @70~ (W,) = Wo(Ujj41) and WU~ (W,) ~ (W,)y, .., as P -modules.

As a quick result, @~ is left adjoint to ®* and &, U™ preserve irreducibility.

The exact sequence shows an irreducible representation o is either from an
irreducible representation of M, (ie. of the form ¥TW¥~(¢)) or is from a smaller
mirabolic subgroup P, (ie. of the form ®*®~(0)). Applying induction on n we

conclude the following lemma.
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3.3. Modules of the mirabolic group P11
Lemma 3.3.1. Assume o € Rep(P,,11) is irreducible. There exists a unique k € N
such that the representation o) = U= (") 1(g) € Rep(Myy1-x), called the k'

derivative of o, is nonzero. For such an integer k, o) is irreducible and

o~ (1wt (o).

The (n 4 1) derivative 0™+ of o € Rep(P,41) is a representation of My = I
and hence a vector space. Since Ny = [[;_, Ujj1 and § = [[7_, &, the (n + 1)th
derivative is

ot — U (®7)"(0) = Onyy e

It is either 0 or one dimensional if ¢ is irreducible. When it is the latter, o is
isomorphic to the induced representation indi,’:rll &, called the (irreducible) standard

representation of Gelfand-Graev. In general,
(@) Ut (o)) = ind 't € @ oy, ,, ¢ = indjyt] ¢EmeHY

is called the nondegenerate part of o, denoted ™. If ¢ = 0, we say o is degen-
erate, otherwise o is nondegenerate. It is clear that o is nondegenerate if and only if

ON,.1,e 7 0, hence o/ o™ is always degenerate.

Further examining the exact sequence (3.3.1) and applying it inductively leads to

the the following structure theorem of P, -modules.

Theorem 3.3.2 (Bernstein-Zelevinsky [1]). Suppose o € Rep(P,41), then o is glue
from (@)= U+ (). More precisely, there is a natural filtration 0 C gy C -+ C

oy C 01 = 0 such that o, = (D)"Y D7)* (o), and the successive quotients are
o/ok = (@)1 (o)

In particular, 0,11 = 0™ and o/c " is degenerate.
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3.3. Modules of the mirabolic group P11

Let (7,W;) € Rep(M,), and denote the restriction of £ to N; also be €. Define the
k" derivative 7 of  as the k™ derivative of 7[p,, i.e. (7]p,)*), and 7(¥) = 7|p,. Then
by uniqueness of the Whittaker functional, 7(*% = T, ¢ is either 0 or of dimension 1.
When it is the latter, the representation 7 is é-generic and admits a unique realization
in the space Ind%jf &. Bernstein and Zelevinsky shows in this case, if 7 is irreducible
admissible then the map from Ind]héj ¢ to Indl;i_f by restricting the function to P,
is injective on the realization of 7. Clearly, the kernel in 7 is degenerate. When 7

is supercuspidal, then 7B =0 for1 < k< j and hence 7 = 7(nd)

as a Pj-module.
Hence the restricting map is an injection on the Whittaker model of 7. This turns it

into a P;-module and is called a Kirillov model.
We can do this similarly for a representation of SOg,41(k).

From now on, the notations are as in Chapter 2. Let X, 1 be the k-vector space
X @ kvg, then 0 C X7 C Xy C --- C X,, C X, 41 forms a complete flag in X, ;.
Define as above the unipotent subgroups U; ;11 and maximal unipotent subgroup
Njiy of M4, for 1 <4 < j <n, corresponding to this flag. Then Y/Z ~ U, 11 and

we have an exact sequence
1-72—-Q—P,, 1 — 1.

The generic character 8 of U is trivial on Z and factors through a generic character
on N1, denoted also by 6. Assume (m, V) is a smooth representation of G. The
representation mz of Q is naturally a P, ;-module. We can thus talk about the
derivative and nondegenerate part of 77 as we defined and discussed above. Then if
7 is supercuspidal, then 7wz = Wénd) is a multiple of indi,’;ill 0~ ind% 0. When 7 is 60-
generic, the natural map from the realization of 7 in Ind% 0 to Ind8 0 by restricting to
Q is never injective. It has at least a kernel containing 7(Z). When 7 is supercuspidal,

the kernel is exactly 7(Z). We land at the following useful proposition.
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3.4. A Lemma
Proposition 3.3.3. Assume (mw,V,) is an irreducible 0-generic and supercuspidal
representation of G. Then my ~ ind%G and if v € Vi s realized as the Whittaker
function W, € # (7,0) in Ind$ 0 and W, =0 on Q, then v € V4(Z), or equivalently,
Jz(v) = 0. If  is supercuspidal but not generic, then mz = 0.

We note that the proposition says assuming supercuspidality, Wémo is only one
copy of ind%@ as a P,i1-module if it is generic, and is zero if it is not. This is
because that the multiplicity of ind% f in 7y is the same as the multiplicity of # in
7|y by Frobenius reciprocity, which is 1 when 7 is irreducible §-generic and 0 when
7 is not generic. This result was used by Gelbart and Piatetski-Shapiro to prove
the existence and uniqueness of a Rankin-Selberg L-function for G x M when the

representations on both factors are generic. (See [9] §8, §9.)

3.4. A Lemma

We have seen when a representation (m,V;) of G is irreducible #-generic and
supercuspidal, then its Jacquet module 7y is isomorphic to the irreducible Q-module
ind8 0. Before we end this chapter, we introduce a lemma of Moy and Prasad.
Together with Proposition [3.3.3] it will play a crucial role in understanding the fixed
vectors of K(p™), which is at the heart of the study of newforms and will be introduced

in Part 2. We shall see later that such vectors are always fixed by H,,, for some m.

Lemma 3.4.1 (Moy-Prasad [21]). Assume m > 0 is an integer. Suppose that (p, W)
is a smooth representation of H. Then the natural projection map under the Jacquet

functor Jy

Ty Wheme 5 w1

18 an injection.
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3.4. A Lemma
Proof. Let i be an integer. Recall that we have a Iwahori factorization on non-

maximal parahoric subgroup Ha,i+ of H
Ho, =Z(p™") M(0)Z(p"").

Suppose 1y € W+ is nonzero and Jy(ug) = 0. By Proposition m (iv) there

exists a minimal integer ¢ > m such that
/ p(n)ug dn =0, ¥j > i, and / p(n)uy dn # 0.
Z(p=9) Z(p—(-1)

If ¢ = m, then uy = 0, a contradiction. Assume ¢ > m + 1. Then uq is invariant

under M(o) and Z(p?). The vector

wy = /H p(n)uy dn # 0

Jc7.'+—1

is invariant under the H,, _, = Z(p~=V)M(0)Z(p?). The image of Hy, _, in the re-

ductive quotient H(f) of H,, by the pro-unipotent radical H;: is the opposite parabolic
subgroup P(§).

Consider the representation (7, W) of the finite reductive group H(f) by restricting
7 to H,, on the space Wi Then wy € WP, The theory of representations of finite
group of Lie type shows (c.f. [21], Proposition 6.1]) summing over Z(f) forms an iso-
morphism from WZD to WZD for any W of finite dimension. Since any representation
of H(f) is a direct sum of irreducible (and hence finite dimensional) representations
of H(f) by Zorn’s Lemma, it is an isomorphism for any representation of H(f). We

get a nonzero vector

wy :/ 7(n)w; dn.
Z(f)
in WFO),
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3.4. A Lemma

We construct another nonzero vector wy in W by

0Fus = [ st dn= [ dp= [ phyu dn
M(f) P(f) H

= / p(h)w;y dh
Z(p=") M(0)Z(p**1)

= (const)/ p(h)w, dh
Z(p—")

= (const)/ / p(hahi)ug dhydhy
Z(p=®) JZ(p=(=D)

= (const) / p(h)ug dh =0,  a contradiction.
Z(p")

The last equality is by changing the order of the integration and fact that Z is

commutative. Therefore, uy must be 0. The map is injective. 0

The original proof in [21] deals with irreducible admissible representations of H
in which case the map is an isomorphism. The surjectivity fails when removing the
admissible condition because of the use of Jacquet’s Lemma, while injectivity stays
valid by passing through the Zorn’s Lemma. I thank Jiu-Kang Yu for his discussion

with me on removing the admissibility condition.

Corollary 3.4.2. Assume (7, V;) € Rep(G) is irreducible and supercuspidal. If
is O-generic and v € Ve for some integer m > 0, then the associated Whittaker
function W, in # (m,0) is determined by its restriction to Q which lies in ind% 0. If

T 1s non-generic, then Valem — () for allm € Z.

Proof. m|y is a smooth representation of H. If 7 is #-generic, then by Proposition

and Lemma Wy(Q) =0 = Jz(v) = 0= v = 0. If 7 is not generic,
then Proposition implies (V;)z = 0 and Lemma implies V4" = 0 for all

m > 0. O
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3.5. Hecke algebras
3.5. Hecke algebras

Let G be a connected k-split reductive group over o and fix a generic data
(B,T,0:U — S") of G. The Hecke algebra H((G) is the algebra of smooth compactly
supported functions on G with multiplication given by convolution *. Suppose K is
an open compact subgroup of G. Denote by H (G, K) the subalgebra of bi- K-invariant
functions in H(G). The algebra H(G) is generated by characteristic functions chy
on each open compact subset K of G. Denote by e the function vol(K)™!chg in
H(G) for K an open compact subgroup of G. Then ef is an idempotent of H(G)
and H(G, K) = ex * H(G) * ex, which contains ex as a unit. Since f € H(G) is
smooth and has compact support, there exists an open compact subgroup K such that
f € H(G,K). Hence H(G) = UgH(G, K) with K running through open compact
subgroups of G. We say a ‘H(G)-module V is smooth if for all v € V, v € H(G, K)V
for some K, or, equivalently, H(G)V = V.

Fix (7, V;) € Rep(G) and fix a Haar measure dg on G. Any function f in the

Hecke algebra induces an operator m(f) on the space of the representation. We have

H(G) — Endc (V) and H(G, K) — Endc(V.E) = Ende(V,)X given by

f s a(f) = /G f(g)m(g) dg.

Since naturally the operator m(fy) o w(/f1) is given by the convolution 7(fy % f;) for
f1, f2 € H(G). The space V; is endowed the structure of a smooth H(G)-module.
Here the smoothness is given by the facts VX = w(ex)V, and V; = UxV.E. Suppose
(71, V1) and (mo, V5) are two smooth representations of G and 7' : V; — V5 is a G-
homomorphism, then it is also a H(G)-module map. On the other hand, any smooth

H(G)-module endows a smooth action of G on it as follows.

Proposition 3.5.1. Suppose V is a smooth H(G)-module, then there is a unique

smooth representation 7 : G — Autc(V) such that 7(f)v = fv for f € H(G), v e V.
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3.5. Hecke algebras
Proof. Let us claim that we have canonical isomorphism H(G) @@ V ~ V by
multiplication which hence induces a canonical action of G on V via the action of
left translation on the first factor. The multiplication is surjective by smoothness,
and injective since it is injective on H(G, K) ®c,x) exV = exV. The action can be
given explicitly by m(g)v = vol(K) ™! chyx v for open compact subgroup K such that

v E exV. O

As a result, the category of smooth H(G)-module is equivalent to the category of
smooth representation of G. In particular, a representation (7, V;) is irreducible if

and only if it is a simple smooth H(G)-module.

Proposition 3.5.2. Assume (m;,V;) € Rep(G) are irreducible for i = 1,2. Suppose
T :VE = VE is a H(G, K)-module map. Then it extends to a H(G)-module map

T : Vi — Vs uniquely.

Proof. We have seen that H(G) ®yu@) V; = V; and VE = m(ek)Vi. Let us claim
that H(G) @wex) Vi ~ V. Clearly H(G)V;® is a smooth H(G)-submodule of the
simple smooth H(G)-module V;. To show injectivity, assume that Z?Zl 7(f;)v; = 0.
Let K’ be an open compact subgroup contained in K as a normal subgroup such
that f; € H(G,K’) for all j. Then since H(G) @u@,rx) V¥ =~ H(G) @u.K
(H(K', K) @ueer i) Vi) ~ H(G) @yaxry VX', the element Z;lzl [i®u =ep ®
ijl m(fj)v; € H(G) @yaxy VX is 0. Hence the kernel is trivial. By tensor-
ing H(G) the H(G, K)-module map T thus extend canonically to a H(G)-module
map, hence a G-homomorphism, 7 : Vi ~ H(G) Quc) Vi = Vo = H(G) @) Vo
The uniqueness is by the Schur Lemma which says that G-homomorphism between

irreducible representations is unique up to scaling. O

Corollary 3.5.3. For (7,V,) € Rep(GQ), assuming V.X £ 0 then 7 is irreducible if

and only if VX is a simple H(G, K)-module.
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3.5. Hecke algebras

In particular, we get the following:
Corollary 3.5.4. If (m,V;) € Rep(G) is irreducible and the Hecke algebra H(G, K)
is commutative on VX. Then dim VE < 1.

We will show that this applies to hyperspecial open compact subgroup K of G by

proving H(G, K) commutative using the Satake isomorphism.

Let p € 3 X*(T') be half of the sum of the positive roots of G, i.e. p =1 Za@g a.
One note that if A > p then (A — p, p) > 0. Notice that dg|7 = 2p. The following

proof is based on [12].

Definition 3.5.5. Assume K is an open compact subgroup of G such that G = BK
and T'(0) =T N K. The Satake transform S : H(G, K) — H(T,T(0)) is defined by

[ SEt) = 642(1) / £(tw) du

Let us show that the Satake transform is well-defined. Since T'(0) =7 N K, so

0= 65%0) [ riew du= 550 | fur) du

is a bi-T'(0)-invariant function on 7. For fi, fo € H(G,K) and t € T,

S(fix f)(t) = Gp(t) 2 / / F1(9)folg ™ uat) dg dus

_ ~1/2 / /B L B0 “ust) dg dus

= Sp(t)? /U /B F1(b) fo (b~ M ust) dbdus

= 5B(t)_1/2/U/T/Ufl(t’ul)fg(ul_lt'_luﬂ) duy dt’ dus
= op(t)"V/? /T /U /U F1(t'uy) fo(t " ugt) dus duy dt’

- /TSJa( NSF(UT) dt' = (Sfix Sf)(1).
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3.5. Hecke algebras

Proposition 3.5.6. The Satake transform is an algebra homomorphism.

Assume K is the hyperspecial maximal compact subgroup G(o). It satisfies the
properties G = BK and TN K = T(o) with T/(T' N K) ~ X,(T). Furthermore,
G = Uyepr K* K. Let b € A(G) be the barycenter of the fundamental alcove C,

then the parahoric subgroup Gy is a Iwahori subgroup and
K = Usew,.GrwsGp, (ws: any lift of s in K).

Recall there is a partial order > on X¢(7") C (Weg)ag defined by A > pu if and only
if A\ — 1 is a sum of positive co-roots, & € ®F. Then A > s()\) for all s € Wi given

A € Pt. We have the following property for A\, u € P
(3.5.1) K*KNU"K # 0 = pu < A

which will be prove at the end of the section.

Using these property we can show the following famous result.

Theorem 3.5.7 (Cartier [3]). Assume K is the hyperspecial mazimal compact sub-
group of G. Then the Satake transform S induces an algebra isomorphism onto its

image H(T,T(0))"e.

Proof. Let K be G(0). The Weyl group W ~ N¢(T')/T acts on T by conjugation
and induces an action on H (7, T(0)). The hyperspecial subgroup G(o0) contains a lift
of Wg. Hence the image of S is bi-Wg-invariant and sits in the Wg-invariants. Let

us further show that S is indeed an isomorphism onto H(T,T(0))"V¢. Let

1
Ch,T(a)wAT(u) = W Z ChT(o)ww(*)T(o)'

seWg

Then {chr g facp+ forms a basis of the C-vector space H(G, K) and {chp gy ar) bacp+

is a basis of the C-vector space H(T,T(0))"¢. For A € PT, there are constants
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3.5. Hecke algebras
ca(p) € C, for p € P*, such that

S(CthAK) = Z C/\(:u) Ch’fl“(o)w“T(o) :

neP+

By direct computation, for A\, u € Pt the coefficient ¢ (i) is equal to

S(ehari)(@) = 557" [ cheorrlum") du
U

= " vol(UwhK N Ko K)

which is nonzero only if A\ > p. In particular, cy(\) = ¢™ vol(z*K) = ¢ is

nonzero. Hence

(3.5.2) S(chgmr i) = ¢M chlpgyorre) + Z (1) e (o) (o) -

HEPT A>p

Since > is a partial order on P*, this implies S is bijective onto H(T,T(0))"e. O

Corollary 3.5.8. The spherical Hecke algebra H(G,G(0)) is commutative and iso-
morphic to the coordinate ring C[T]Ve of T /We.

Proof. Since T is commutative, it is clear that (7", T(0)) is commutative. Moreover,
the algebra structure of H (7,7 (0)) is isomorphic to X4(7") ®z C. By duality, this is
X'(T ) ®z C which is the C-algebra of the coordinate ring of the variety T. This is

compatible with the actions of W¢g on 1" and T. 0

Let us now give a proof for the property (3.5.1). We shall apply the following
facts regarding an Iwahori subgroup G, compatible with ®f..
(i) Gy admits a Iwahori decomposition Gy, = (G, NU)(G, N T) (G, N U).
(ii) Assume K an open compact subgroup containing Gy, then K = Uy, GywG, for

some subset I of We.

(iii) For w,w" € We, GuuwGyw'Gy, C |_|w,,§w, Gruww" G,
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3.5. Hecke algebras

The following proof is due to Haines and Rostami [13].

Proof of . Assume K D G} is an open compact subgroup such that G =
U UK and K = Usew,GowsGp, with wg a lift of s in K. Assume A € P*, then

since Gy Guw,Gy = beAwSQGb, we get

Kw’\K = U beslew’\be32Gb = U be81 be)\IUSQGb

s1,82€Wga s1,52€EWg

Assume Uw# K N beslew/\wSQGb # ). Since Uw*K = | Uwtw,Gy, there

seWa

exist u € U, s, 1,89 € Wg such that
uwwhw, € beslwngb

for some s, € We, s, < Asy. Take a co-character v such that u = w™u'w” for some
u € Gy. Then

be7w“w5Gb C bewawslwsé Gb'

This implies pus < s185, < s1As9 and < A since A € Pt and s1, 85 € Wg. Hence we

can find a minimal ' such that @* K = w"K and i/ < . O

In the case G = SO(V), other than the hyperspecial open compact subgroups
K,,, i1 even, the rest of the family K,, for i odd are also subgroups that sat-
isfy the properties used to prove for the Satake isomorphism. Consider the
Iwahori subgroup G, i, where b is the barycenter of the alcove C. Then K,, =
UwGNKIi(T)/T(U) Gurow Gyyqp and Ny, (T)/T(0) =~ Wg. We have G = BK,, and
K,,NT =T(o0). The open compact groups K,, admit the property and
(3.5.3) K, @K, C | JU="K,,, VAe P

H<A

Following the same line as the proof of Theorem |3.5.7] we can also get:
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3.5. Hecke algebras
Proposition 3.5.9. The Satake transform S : H(G,K,,) — H(T,T (o)) is an iso-

morphism onto H(T,T(0))Ve. Hence the Hecke algebra H(G,Ky,,) is commutative.

As a result, we obtain the following Corollary.

Corollary 3.5.10. Let m be any irreducible smooth representation of G. Then the

K., -invariants 7= in 7w has dimension at most 1.
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CHAPTER 4

Local factors of generic representations

For a generic representation of SOs,1(k), the Langlands functorial lifting to
GLa, (k) has been established by Soudry and Jiang and hence the local Langlands
correspondence from generic representations m of SOs,1(k) to 2n-dimensional sym-
plectic Weil-Deligne representations (p, Sp(M), N) of the Weil group of &, called the
Langlands parameter M of 7, is valid. The standard L-functions L(m, std, s) of the
Langlands parameters have then an integral representation, the zeta integrals, which
by Soudry is the Rankin-Selberg L-functions L(m, s) for SOg,41(k) x GLi(k). The so
defined e-factors e(m, s, 1), conductors a, and root numbers &, of the representations
are equal to the ones defined for the Langlands parameters. We shall introduce the
construction of these local factors in this chapter. The notation follow Chapter 2 and

3 as before and G = SOy,,+1. A generic data (B, T, 0) of G is fixed.

In this chapter, (7, V) € Rep(G) is always an irreducible §-generic supercuspidal
representation of G. Fix a Whittaker functional ¢4 on V, with respect to # and hence
a realization of 7 to the Whittaker model # (m,0) by v — W,(g) = lo(mw(g).v) for
v € V. Recall that by Corollary [3.4.2 W, is uniquely determined by its restriction
to Q which is a function in ind% 0 of compact support modulo U. The restriction of

W, to T is slowly increasing by smoothness of 7.

4.1. Standard L-function for SOy, (k)

In this section, we will construct a zeta integral by Rankin-Selberg convolution for

G x GL; (k) which interpolate the standard L-function. It was first constructed by
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4.1. Standard L-function for SOy, 1 (k)

Novodvorsky and studied systematically by Ginzburg [11] (global case) and Soudry
[28] (local case) for general SOg,11(k) X GL, (k). These Rankin-Selberg L-functions
are known to agree with the tensor product L-functions, up to a normalization. We
review the general idea of this construction before we introduce the special cases
r = 1. We will also treat the case r = n in later sections.

Assume 1 <7 < j<nand1l<r <n are integers. Let M;_;, N;;; and U, ;11 be

/

as defined in Section 3.3. Define the subgroup Y, , as the unipotent radical of the

parabolic subgroup preserving the isotropic flag
0cC k€q~+1 C keTJrl D k€r+2 c---C k@»,qu ) k€r+2 ©---D ken.

Y'(m) normalizes the intersection U ﬂY'(Tn and the character 0,y = QIUQYE oy Then
0@y is a character of UNYY, . Let X{,, be the subgroup such that Y{,, =
(U ﬂY/T,n)) X X/T,TL)' Then

1 (I,m) — H Uez €1

is abelian and isomorphic to k™.

Definition 4.1.1. For v € V,, define the zeta integral attached to v as

(4.1.1) I(v,s) :/ / Wv(fel(a))\als_% dZda, s € C.
kx X

By a change of variables, the zeta integral (v, s) can also be written as

(4.1.2) I(v,s) / / Wy(er(a) ©)|al*~""2) dZ da.

Since 7 is smooth, every vector is fixed by some open compact subgroup. The zeta

integral I (v, s) is a finite sum of functions of the form

War(er(@)lal*~" "2 da =3 ¢ /  Woler(a) da) g™,
pm—pm 1

meZ
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4.1. Standard L-function for SOg, (k)
Since W, |t is a slowly increasing function on T ~ GI,. For R(s) > 0, the function

S

I(v,s) converges absolutely to a rational function in X = ¢~° and therefore has a

meromorphic continuation to all s € C.

Proposition 4.1.2. For v € V,, the zeta integral I1(v,s) converges absolutely on a
right half plane to a rational function in X = q—° and has a meromorphic continuation

to the whole complex plane.

For vectors in V, that is invariant under elements in Q(0), the zeta integral at-

tached to them can be rewritten into a simpler form.

Lemma 4.1.3 (Simpler formula for I(v,s)). If v is fizred by Q(o), then
I(v,s) = o Wo(er(a))]al*~""2) da.

Proof. Fora =¢; —e€1,i=1,2,...,n, G, ~ SLy(k). For ¢; #0,i=2,3,...,n,

Te;—e4 (Ci)xfl_EiJrl (yl) = Ty, (_Ciyi)xfl—fiJrl (yi)in—q (CZ)

Assume @ =[], x,—¢, (¢;) with ¢; € o for j > ¢ and ¢; ¢ 0. Suppose v is invariant

under elements in Q(0). For all ys,y3, ..., y; € 0,

7o = [og-ae)v=T[r ul) v
7j=2 7j=2

i—1

= (H Lej—e (Cj)> Te;j—eq (Ci>$61*6¢+1 (yl) v
=2
i—1

= (H xej_q(cj)> To,(—Ciyi) v
=2

= Ta,(—Ci%) (Hmfj—ﬂ(%)) v

= xai(_ciyi) e ‘xas(—03y3)%2(—czy2) v.
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4.1. Standard L-function for SOg, (k)

Choose y; with close to 0 enough such that c;y; € 0. Using the other expression

(4.1.2)) of I(v,s), one can get

I(v,s) = /k /X W (e1(a) @)|al*~""2) d da
(1m)

= / / --/ﬁg(el(a)quq(ci) v)]a\‘g’(”’%) dey -+ - degy da
kX* 0 0 i=2

N / lo(er(a) v)]al""""2) da,
kX

which proves the assertion. 0

Remark 4.1.4. In the proof of the simpler formula, we see that to obtain the simpler
formula, it is enough to require v to be invariant under elements in X{; ,,,(0), U, (0),

Ue,—¢,;(0) for i = 3,...,n and U,,(p) fori =1,...,n — 1.

Using this simpler formula, we can argue that the complex valued function I (v, s)
can achieve any constant function for some v € V,.. This is done by the fact that the
linear form I (v, s) on V; passes through a linear form on (V;)z, which contains the
whole space ind% 0 by genericity assumption. We look at the function W} in ind% 0
which is Q(o)-invariant on the right, supported on U Q(o0) and takes 1 on the identity.
Then Wy is well-defined since 6 is trivial on UNQ(o0). Any preimage of Wy in V;
under Jz is fixed by Q(0) since Jy is a Q-homorphism. Applying the simpler formula,
it is clear that the zeta integral attached to such a preimage is a constant function.

By rescaling we get any constant function.

Let the set
I(m) ={I(v,s) | v eV}

be the vector space of zeta integrals attached to the representation space V. We have
seen that C C I(m). Since I(v, s) has meromorphic continuation to a rational function

in X = ¢~*, we can view I(m) C C(q™*). Since I(e(@™)v,s) = ¢ ™21 (v, ), so
44



4.1. Standard L-function for SOg, (k)
multiplying by ¢~ for any m € Z preserves the space. It is indeed a sub-Clq™*, ¢°]-
module of C(¢~*) hence a fractional ideal. Since the polynomial ring C[X, X 1] is
a principal ideal domain. The fractional ideal I() is hence principal and admits a

generator. This is how the L-function of 7 is defined.
Proposition 4.1.5. For an irreducible generic representation m of G, the set
I(m) ={I(v,s) |veVz} CC(q)

is a fractional ideal of the principal ideal domain Clq=*,¢°]. The L-function of 7 is

defined as the generator of the fractional ideal which is of the form

Lms) = sy B € CIX], Pr(0) =1

In particular, if © is supercuspidal, then L(m,s) =1, or equivalently, P.(X) = 1.

Proof. We have seen that I(m) is a fraction ideal. Suppose 1/P;(¢~*) € C(¢™*) is a
generator. Since C[X, X '|* = (¢cX™; ¢ € C,m € Z). The generator 1/P,(X) can
be chosen to be of the form A(X)/B(X) for some polynomials A, B € C[X] relatively
prime in C[X, X~ !]. Since 1 € I(r), there exist a polynomial R(X) € C[X] such that
A(X)R(X) equals B(X) up to a unit in C[X, X!|. Since A, B are coprime, A = 1
and P,(X) € C[X].

—S

To show last assertion in the proposition, we need to show that I(7) = Clg~*, ¢°].
The inclusion is clear. To show I(7) D Clg~*,¢*] we use the fact that m; = ind2 6.
Then for every v € V,, the function W, |t is compactly supported. Since the zeta

integral is a finite sum of functions of the form



4.1. Standard L-function for SOg, (k)
for some M, N € Z, it must be in Clg~*, ¢°].

Remark 4.1.6. If the representation = € Rep(G) is not supercuspidal, it is a sub-
representation of an prarabolically induced representation by an irreducible super-
cuspidal generic representation of a Levi. By Lemma [3.2.2] we can still work with
the Whittaker functional on the parabolic induction. The discussion in this section
works as well and the local factors can be defined for any generic representation in

the same way. (See [28] for detail of the general case.)

Let us do an example with the unramified representations of G.

Example 4.1.7. Let x = [, | - |* be a character of T ~ G}, with s; € C. Let 7,

be the unique irreducible generic subrepresentation of Iy(y) = Ind§ Xf%/ ?. Assume
7 is the whole space Ind§ X&éﬂ. Let y; = ¢~* and let (y1,y2, ..., yn) € (C*)" be the
Satake parameter of 7 in the Langlands dual group T of T which gives a semisimple

elment
s -1 -1 -1
tX_dlag(ybva“'uyn?yn v Yo Y )

in the Langlands dual group Sp,,,(C) of G. Then it is expected that the standard

L-function L(m,, std, s) of m is

det(I—t, g *)"' = Z tr Sym™ (¢, )g~ ™.

m>0

Let v be the character of T on the irreducible finite dimensional representation
of Sp,,(C) of highest weight A € P* < X*(T). Denote by W, € #(m,6) the
normalized (spherical) Whittaker function that is invariant under elements in G(o)
attached to a (spherical) function f, in Iy(x)®®). This Whittaker function W, is

determined by its value on T because of the Iwasawa decomposition G = UT G(o).
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4.2. e-factor and conductor

The Casselman-Shalika formula [6] shows that on T the function W, satisfies

W(@) = 65 (@) xa(ty)

for any co-character A € P* and 0 otherwise. Since G(o0) contains Q(0), we can apply

the simpler formula for I(f,,s). We get

Ihes) = [ Wil@)lal™ 4 da = vol(e*) 3= g VW, (")
m>0
= vol(o ZXWI Jg e
m>0

The irreducible representation of Sp,,(C) with highest weight ¢ is the 2n dimensional
standard representation and the one with highest weight me; is its m-th symmetric
power. The zeta integral I(fy, s) becomes vol(0™) >~ -, trSym™(t,)g~™* which is a

scalar multiple of the standard L-function L(r, std, s).

4.2. e-factor and conductor

In this section we develop a functional equation for the zeta integrals.

It is clear that the linear form (v, s) depends only on W,|q and hence only on
Jz(v). We are allowed to focus on the P, j-module (V;)z. Indeed, the linear form

factor through the Jacquet module (V. )y That is, it satisfies

1m0
(4.2.1) I(m(y)v,s) = 0q)(y) I(v,s), Vye Y’(Ln) )

The space of linear forms satisfying (4.2.1]) turns out to be one dimensional for s € C

where it is defined. It leads to a functional equation for the zeta integrals I(v, s).

Let w, denote the character | - |* of My ~ k*. The subgroup M; X{ normalizes

(1,n)

the character 61y of Y (1.

Lemma 4.2.1. Homy, (Jy (1) @ wy, C) ~ C.
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4.2. e-factor and conductor
This is a special case of [28] Theorem 8.2, which shows in general for 1 <r <n

the space Homyy, (Jy-

oy B0 (m)® 7| det|*, C) is one dimensional, where 7 € Rep(M,)

is irreducible generic and supercuspidal. If 7 is non supercuspidal, the lemma is
still valid also arguing a case by case argument using the Schur’s lemma and the

Mackey’s formula using the fact that 7y is glued from the induced representations

(@)1t () 1<k <n+ 1.

Proof. Since 7 is generic supercuspidal, the P, ;-module 7y is indg’;i 6. Note
that Normg(Y{,,,),0q)) = My Y{,,,y and u, v, I, = w, 'y on My. By Frobenius

reciprocity and Proposition m (iii), (&' =5 — 1)

() ® wy, €) = Homp, ., (12, Iy, gt (w-v0,)

Homyy, (Jy ¥

,m P
. Pn : ~1/2

~ Homp, , (mdNnﬁ 0 ® iyt 0 (wyw, 1), C).
Applying Proposition m (iii) again, this space is equal to

—1/2) 571

. Pot1 p—1y\ 1/2 M1 p|—1
Hompn+1(lyl(lﬁn)’9(l)(ws/wn71 ,0p, Indy" 677) =~ Homyy, (wyw, ", w1 Indy) 0]y,)

n—1

= Homy< (| - |*72,C®(k*)) =C. O

Set an element

Uy = GG
-1
1

which lifts an odd sign change Weyl element s, of G.

The element ug is in G, but not in Q. It stabilizes the group Y'(Ln) and the

character 0. Let I(v, s) be the linear form I(ugv,1 —s) for s € C, v € V;. Then

I(e1(a)v, s) = |a|_($_%)]~(v, s)
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4.2. e-factor and conductor
and factors through a linear form in Holi(Jyzl’")’gm(w) ® wy,C) for all s € C
where it is defined. It has been shown in Lemma that this vector space is one
dimensional. Therefore for all s € C with finite exceptions of values of ¢~*, there

exists a complex number (7, s,) independent of v such that the functional equation
I(ugv, 1 — 8) = ~y(m, v, s)I(v, s)

holds. Since I(v,s) € C(¢~*) for all v, the function v(m,s,®) in s lies in C(¢~*) and

is called the v-factor of .

Notice that I(v,s)/L(w,s) € Clg~®,¢°]. Let us define the local invariants, the

conductor a,, and the root number ¢, of the representation .

Knowing L(m, s) agrees with the standard L-function L(, std, s), these invariants
agree with the Artin conductor and the root number of the corresponding Langlands

parameter (p, Sp(M), N) of .
Theorem /Definition 4.2.2. The e-factor of 7 is the rational function e(m, s, ) in
X = q7° satisfies the functional equation

I(ugv,1 —s)
L(m,1—s)

I(v, s)
L(m,s

(4.2.2) = &(m,5,¢)

~—

It is a unit in Clq=%, ¢°] and has the form
o, 5,1) = £qq~or o

for some number e, € {£1}, the root number of w, and some integer a., the con-

ductor of 7.

Proof. Since the definition of e(7, s, 1) does not depend on the choice of v in Equation
(4.2.2), choose v, such that I(v,,s) = L(m,s). Then
~ I(ugvs, 1 —s)

L(m,1—s)
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4.3. Rankin-Selberg convolutions for SOy, 1 (k) x GL,, (k)
By applying the functional equation (4.2.2)) twice, one sees e(m, 1 — s,¢)e(m, s,9) =

1. We conclude that the e-factor e(m, s,v) € Clg*%,¢°]* = (c¢g™ ; c € C,m € Z).

1

Take e, = &(m, 3,%), then for some integer a. € Z, e(m,s,7) = £xq =2 Since

e(m, 3,1)? = 1, the number &, = +1. O

We will show in Part 2 that the conductor a, defined above must be nonnegative.

4.3. Rankin-Selberg convolutions for SO, (k) x GL, (k)

In this section, we review the construction of the Rankin-Selberg convolutions for
G x M, with r = n. Notations are as in Section 4.1. The group M,, equals to the
Levi subgroup M of (Q and P. We land at the simplest case with Y’(n’n) = X'(WL) =1

and 0(,) = 1. Write s’ = s — % for s € C. Any unramified character of M,, is of the

form wy o det for some s € C.

For 7 € Rep(M), set 7, = 7|det |*"2 as an unramified twist of 7 for s € C.

Consider the normalized induction
pr.s = Inn(7s) € Rep(H)

for s € C. Then (p,,V,

»..) is irreducible for all but a finite set of values of ¢~*.

Assume p, , is irreducible. Note that dp, ., |, = |det| and dp|y, = |det |"~*. Using
the theory of mirabolic group P, 1 in §2.3, the space of H-invariant bilinear forms

Hompy (7| ® prs, C) is canonically isomorphic to
Homyy, (77 ® 75| det |_HT_1, C) ~ Homp,, (imdg’:f1 0 ® U+ (r,_n),C)

(TF(7y-n), 05" Indy™*! 071) = Homy, (7| det 172, Ind¥" 0]3)

= HOmP Nn+1

n+1

= HomNn <T|Nn7 0';1711)7

which is one dimensional if 7 is 6| ﬁi—generic, and is zero otherwise.
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4.3. Rankin-Selberg convolutions for SOy, 1 (k) x GL,, (k)
On the other hand, by Frobenius reciprocity this space of H-invariant bilinear

forms is canonically isomorphic to the space of H-embeddings
prs = IpnIndy, 05! = Indy 6"

which by dimension one gives a unique realization of p,, in the space of functions
f(h,s) € Indy @' such that f(nzh,s) = 0(n)"'f(h,s) for n € N,z € Z,h € H.
One should be aware that 6]y is not a generic character of the maximal unipotent

subgroup V of H.

By abusing the notation, let us also denote by 6 the character 6|y, of N,, when
the content is clear. Assume (7,W,) € Rep(M) is irreducible §~'-generic. Let ¢7 be
a §~1-Whittaker functional on the space W, of 7, and # (7,,0~!) be the Whittaker

model of 7,. The map

V.= Indyo", &(h,s)— fe(h,s) = (4(h, s))

gives the unique realization of p;, in the space Indg 6! into Iy # (75,6071). For

§ €V, ., the function f¢ satisfies

T,5

fe(nmzh, s) = 0(n) " f5(rs(m)&(h, 5)),

forn € N,,m € M,z € Z,h € H. We warm that f; is not a Whittaker function

attached to £ since §71|y is a not a generic character of V.

Theorem/Definition 4.3.1. For v € V,, £ € V, _, the zeta integral attached to

T,87

v ® & is a complex-valued function
(v®§ s) = Wy (h) fe(h, s) dh.
V\H
It defines a H-invariant bilinear form in Homy (7 ® p. s, C) for all but a finite set of

values of q~°, which is unique up to a scaling.
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4.3. Rankin-Selberg convolutions for SOy, 1 (k) x GL,, (k)
Again since the representations 7|y and p,, of H are smooth, and by Cartan
decomposition VT \ H is compact, we get for v ® £ € V; ® V,,_ the zeta integral

C(v®¢&,s) is a finite sum of functions in ¢~* of the form

[ Wottisete.s) a

for some v/, £’. W, |1 has compact support on T and the function fe on T agrees with
the Whittaker function Wy 5 attached to £'(1,s) € W restricted to T. Since the

Whittaker functions on T is slowly increasing in ¢~°. We again conclude

Proposition 4.3.2. The zeta integrals converge absolutely to a rational function in

q—* for R(s) > 0 and admit meromorphic continuations to the whole complex plane.

Let wy, and wy; be lifts of the longest Weyl elements of H and M in H,, respec-
tively, such that “# V. NV =T and “M N, NN,, = 1. (Notice that “¢g = *g = g1,

UMm, = 'm.)

Set wp = wywg and w = wale. Then the parabolic subgroup P = M* x Z¥
is associated to P = M x Z in H by wp such that “»(M“NV) = “MN, C V and
(MNV)wr = N,“™ ¢ V. Conjugating by the element w defines an outer automor-
phism of H which preserving V. Set wy = wpw™! = wywg, which lifts the Weyl

element s, --- s, of G in G,, and set w,, = et ey which lifts it in K.,

n

For £ € Iy u 75, the function
(Al 5)6) 1) = [ elonsh) dz
z
satisfies the property that
(A(wp?, 5)6)(mzh) = 6p(m)| det(m)| " ?ry('m™" ) (A(wp", 5)€) (h)

= 682 (m)F_s(m)(A(wp?, $)E)(h), meM,z€Z heH



4.3. Rankin-Selberg convolutions for SOy, 1 (k) x GL,, (k)
and defines an intertwining operator A(wp',s) : Iyam(7s) — Ium(F1_s). It induces an

operator, also denoted by A(we, s),
A(U)I:_,l, 8) : IH,M W(Ts, 9_1) — IH,M W(%l_s, 6_1)
on subspaces of functions in Indi} §~' by

fe s (Alws", ) fe) () = /Z Feldywozhw) dz,  dy € T, s, a(dy) = —1 Yo € Au.

(Note that dy; is to ensure ™~ (n=1) = 0=1(n), for n € N,,.) The normalized inter-

twining operator is the operator

A (wit, 5) = A(r, A2, 25 — 1, 1) Alwg?, s)

L(7,A%,1—s)
L(r, 1%, 5)
terior square L-function of 7, is the local coefficient of Shahidi such that A*(wp?, s)

where (1, A%, 5,9) = &(1, A2, 5,1) , the y-factor associated to the ex-

has no zero. ([28] [29])

Let us similarly consider the zeta integrals on V; ® V,, for m x 7. Then for all

T, l—s

but a finite set of values of ¢, the bilinear form

((wv @ A"(wp',5)€,1 —5) = W, (hw)(A*(wp', 5) fe) (h, 1 — s) dh,
V\H

for v € V;,& € V, ., is again H-invariant and defines an element in the one di-

7,87

mensional vector space Homy (7 ® p;, C). By uniqueness, it is a scalar multiple of

((v®¢&,s) on which s it is defined.

Theorem /Definition 4.3.3. For all but a finite set of values of q=%, there is a

number y(m X T,s,v), independent of v and £, such that forv € Vi, £ € V,__, the

7,87

functional equation

Clwo® A™(wp', 5)€,1 = 5) = (7 x 7,5,9)C(VDE, )
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4.4. Rankin-Selberg L-function of © x 7

holds whenever it is defined. This is called the ~-factor associate with 7 and 7.

Remark 4.3.4. Soudry [28] [29] further showed this y-factor is multiplicative in 7
and 7. It agrees with the gamma factor defined by the Langlands-Shahidi method
[26]. The thus defined L-factor shall agree with the L-factor defined by the Langlands-
Shahidi method and agree with the tensor product L-function of the Langlands pa-

rameter of m X 7 on the Galois side. We define this L-factor in the next section.

4.4. Rankin-Selberg L-function of 7 x 7

Consider p; s = Iy nm 75 as space of sections with s a parameter, taking values on

W,-valued functions £(+, s) on H, such that
E(mzh, s) = | det m|*** T 7(m)& (h, )

for m € M,z € Z,h € H. We say a section {(h,s) € Iy 7s is standard if it satisfies

one of the following condition

i 7 is unramified and f¢(k, s) = L(7,A?,2s) for all k in the hyperspecial open
compact subgroup H, of H for some m.
ii. The restriction of £ to H,, is independent of s for some m.

iii. fe = A*(wp,1 — s)fe for some & satisfied condition (ii) in Iy v 71—s.

Lemma 4.4.1. The set of poles and zeros of the zeta integral ((vRE, s) is independent

of the choice of the generic character 0 of U.

Proof. Let 0" be another generic character of U. Since the orbit of generic character

of U under adjoint action of T is unique, # = ' for some ¢t € T. The complex-valued
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4.4. Rankin-Selberg L-function of © x 7

function constructed via 6, is
o ®E,s) :(/ o (m(R)0) 6 (R, ) b
V\H
- / Lo (87 (h)0) (o (D)E(h, 5)) dh
V\H
_ / (o (th)0) 0o (€ (th, 5)| det £/ ~+752)) dh
V\H

- maﬂ*”%”LMXAMmm&@mﬁ»dh

= [dett|+2) (@ €, 5).

Since |det ¢|~¢T"2%) is an entire function, the new zeta integral (;(v ® &, s) has the

same set of poles and zeros as original zeta integral ((v ® &, s). O

Proposition 4.4.2. Define I(rm x 7) C C(q™*) as the set
I(mx7)={Gw®Es)|vemr & standard section in Indp 75, t € T}.

Then I(mxT) contains C, the constant function, and is a fractional ideal of Clq~*, ¢°].

Proof. Since myz|q =~ ind% 0, there exists v, € VWQ(T") for some m > 0 such that

W,.|q € ind2 8 is supported on V Q(0) and W, (I) = 1. Choose &,(h, s) € V... such

*

that it supports on P K N H with K C Q,,) an open compact subgroup of G small
enough such that &, is fixed by K and fe, (1,s) = 1. The choice of K can be chosen
to be independent of s since 7, is a twist of 7 by a unramified character for all s.
Therefore . (h, s) is a standard section and (v, ®&,, s) € I(m x 7). The zeta integral

becomes

dm®&ﬁ)=‘AWMWW%Mﬁdhﬂdh

=mewmmﬂwzmﬂm@$:1
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4.4. Rankin-Selberg L-function of © x 7

a constant function in ¢—° with suitable choices of Haar measures on H and P.

We have seen from the proof of Lemma that
Glo @& s) = |dett] CHT) (v @&, s).

Take t = @, then ¢**I(m x 7) C I(m x 7). The set is then a C-algebra contained
in the fraction field of C[g~*,¢°] containing C and closed under multiplying by ¢*°.

The assertion follows. O

We do an example with 7 being supercuspidal. Recall that such 7 has the property

that mz|q ~ ind% f as a representation of Q.

Example 4.4.3. Assume 7 is irreducible, generic and supercuspidal. Recall that
the zeta integrals are in the space of bilinear forms Hompy(7w|g ® p;s, C), which is
isomorphic to Homy, (7]x,,07"). The space Homy, (7|x,,07!) is nonzero for all s.
Hence the zeta integrals are indeed well-defined for all s € C and hence are entire

functions. In particular, for v ® £ € V; ® V,__, the Laurent series ((v ® &, s) in

7,57

determinant X = ¢~* is in C[X, X !].

Another way to look at this is that the zeta integral is a finite sum of functions
of the form [, W/ (t)We ) (t)|det t|*"2 dt while W,|r is of compact support. Hence
such function is a finite sum of the form ¢;W,, (@) We, (% )q"* for some v; @ &; €

Ve®V, ., a;,b € Z and ¢; € C. Therefore, the zeta integral must sits in Clg™*, ¢°|.

We are ready to define the L-factor of m x 7 for G x M as the g.c.d of the set

I(mx7), which can be normalized to be 1/P(¢~®) for some polynomial P(X) € C[.X].

Definition 4.4.4. The L-factor L(m x 7,s) associate with m and 7 is defined as the

generator of the fractional ideal I(m x 7) of C[g™*, ¢®] such that

1

L(m x7,s) = ()’
TXT

Py (X) € C[X], and Pry,(0) = 1.
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4.4. Rankin-Selberg L-function of © x 7

In particular, when 7 is irreducible generic and supercuspidal, L(m x 7,s) = 1.

By the definition of the L(7 x 7, s) and Lemma there exist v; ®&; € VX ®V,_|
and some a; € Z, 1 =1,2,...,d such that

d

L(m x 7,8) = Y _q"*((v; ® &, s) € Clg™).

i=1

Moreover, since L(m x 7, s) is the generator of the fractional ideal I(m x 7), for all

(v®¢,s)

C(U ® 5, S) we Shall have m

€ Clg*,¢°]. Then we have following,.

Theorem /Definition 4.4.5. The e-factor e(m X 7, s) associate with 7 and 7 is an

entire function
L(m x T,5)
L(mrx 7,1 —35)

satisfies e(m X 7,1 — s,¢)e(m x 7,8,1¢) = 1. We have the functional equation

C(wo @ A*(wp?, 8)E,1 — s)
Lirx 7,1 —s)

(w®E,s)

L(m x 1,s)

=e(m xT1,8,9)

and the e-factor e(m X 7,s) is a unit in Clqg=*%, ¢°]*.

Proof. For simplicity, we will only prove the case when m is irreducible generic
and supercuspidal. Notice that it implies I(7 x 7,5) = I(m x 7) = Clg~*,¢°] and
L(m x1,8) = L(r x 7,5) = 1. For £ € V,__, there is an open compact subset K’ of

H such that ¢ is supported on P K’ and ZNP K’ C K’'. Since H = (ZMZ)K’ and

commutators of Z and Z are in M, the function

(Afwp, 1 — ) A(w5", $)€)(h) = / / E(wozrwinah) d2 dzy — / / E(zrmah) dzi dos

gotten by applying intertwining operator twice is supported on P K’ as well. Take

v, ® &, as defined in the proof of Proposition .4.2] then

C(U* ® &, S) = C(U* ® A(wP’ 1 - S)A(wlgla 3)5*? S) =1,
o7



4.4. Rankin-Selberg L-function of © x 7
up to a normalization of the Haar measure on Z. Since A*(wp',s)&, is a standard

section and (7, A%, 2 — 2s,9)y(7, A%, 25 — 1,7) = 1. We show that
e(m x 7,8,9) = ((wu, @ A (wp', )&, 1 — 8) € Clg %, ¢°]
and by applying the functional equation twice that
C(v, ® Alwp, 1 — 8)A(wp', 8)&,, 8) = e(mr x 7,1 — 5,9)e(m X T,5,1)C(va ® &4, 8).
It follows that e(m X 7,1 — s, ¢)e(m X 7,5,%) = 1 and e(w X 7, 5,v¢) € Clg*%,¢°]*. O

When 7 is supercuspidal, the L-function is trivial and the e-factor equals to the
v-factor. We quote the main theorem [29, Theorem 3] of Soudry in his work, Full

multiplicativity of gamma factors for SOq 41 X GL,,, to end this chapter.

Theorem 4.4.6 (Soudry [29]). The y-factor v(m X 7,s,%) attached to m and T is

multiplicative in both the first and the second factor.
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CHAPTER 5

The Fourier transform V¥ (v, X; X1, Xo, ..., X))

The notation of this chapter follows those in Chapter 4 as well as in Chapter
2 and Chapter 3. A generic data (B, T, ) of G is fixed, and (m,V;) shall be an
irreducible #-generic supercuspidal representation of G. The restriction of 8 to the
maximal unipotent subgroups V and N,, of H and M respectively is still denoted by
6. Notice that 0|y is not a generic character of V but 0|y, is a generic character of
N,,. Fix a Whittaker functional ¢y on V, and hence an embedding, v — W, of V to
the realization, the Whittaker model # (m,#), of 7 in the space Ind$ 6 of Whittaker

functions.

The k-split torus T ~ G7', has complex dual group T a complex torus of rank
n contained in the complex dual group G ~ Spy, (C) of G. The action of the Weyl
group Wiy (resp. Wi, We) on T is induced from its action on X,(T) = X*(T). Its
coordinate ring C[T] is the C-algebra of the group X*(T) = X,(T) which is identified
to C[X1, X; 1 Xo, X5 o, X0, X1 by 6 — X; and Wy ~ S, acts on by permuting
the subindices of X;’s. Notice that the group algebra C[X,(T)] are the complex-
valued functions on T /T(0) with finite support which is the set H(T, T(0)). Let
¢ > 0 be an integer. We recall we have Satake transforms from spherical Hecke
algebras H (M, M(0)), H(H, H,,) and H(G,G(0)) to C[T] onto the invariants of the
Weyl groups of M, H, and G respectively. Denote by qu, su; and ¢g the inverse of

the Satake isomorphisms of M, H and G respectively.

Notation 5.0.7. The coordinate of a complex dual torus element z is the n-tuple

(1,2, ..., ;) with z; = €(x). Under this notation, z is the diagonal element
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5.1. Spherical Whittaker functions on GL,, (k)
diag(z1, To, ..., Tny 7 5, 251, 27 ) € Spy,(C). However, in this thesis ¢~*z repre-
sents scalar multiplication by ¢~* in M, that is, multiplying ¢~* on each of the coor-
dinates of z. This convention does matter when one wants to deal with the trace of z
acting on a finite dimensional representation of each of the dual groups TcMcG.

Let us denote by p the map z — p(z) = diag(x1, o, ..., z,,) € GL,(C).

5.1. Spherical Whittaker functions on GL, (k)

Assume (7, W) is an irreducible generic unramified representation of M. Let K,
be the hyperspecial maximal open compact subgroup M(o) of M. Then 7 admits a
nonzero vector fixed by K,,, a spherical vector, and a nonzero Whittaker functional
{n € Homy,, (7]x,,07") with a unique Whitaker model #/(7,67!) in Indy, 6~'. On
the other hand, the spherical vectors, meaning K,-invariants, in Ind%: 0= collects
spherical Whittaker functions with respect to 8~! of all irreducible generic unramified

representations of M.

Let us consider the space (Indy 071)%" as a H (M, K,,)-module. Since H(M, K,,) ~
C[T]"™ is commutative, it decomposes any H (M, K, )-module into eigenspaces. Each
eigenvalue is a linear form on C[T //Wh] respecting the ring structures. An eigenvalue
is hence the the evaluation map at a point x, called the Satake parameter, on the
complex variety T// Wy composing the Satake isomorphism. To be more explicit,
suppose W, € (Indy #71)%» is the an eigenvector of H(M, K,,) with Satake parameter

z € T normalized such that W, (I) = 1, then for P € C[T]"™ one has

v (PYW,(m) = /M et (P) (! YW, (man') dm’ = P(z)Wy(m).

The smooth H(M)-module generated by W, is simple and gives an irreducible un-
ramified smooth representation 7, of M with Satake parameter z. By uniqueness of

the Whittaker model, W, is uniquely determined.
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5.1. Spherical Whittaker functions on GL,, (k)

Casselman and Shalika [5, Proposition 2.6] showed any irreducible unramified
representation can be embedded into the unramified principal series Iyt x for some
unramified character y of T. In particular, 7, is isomorphic to the principal series
Iyt Xz With x, the unramified character such that y, (@) = A\(z) for all A € X,(T).
This can be check easily since Homy(7,, Iy, X) # 0 by Frobenius reciprocity if and
only if the space Homr(7,|T, 6:31 fx) is nonzero. Hence we may take x = x, or any
of its Wy-orbits. Conversely, Jacquet and Shalika [15] showed that for any z € T
the representation Iy x, can be embedded into the space of Whittaker functions

Indl\N/In 6~1. Hence all  can appear as an eigenvalue.
By Casselman-Shalika’s formula [6], for each z € T the unique eigenvector W, €

(Indy 0~1)%» has the formula: if m = nwk, n € N,,, A € Xo(T), k € K,,

(5.1.1) We(m) = 0~ (n)g~ P\ M(z), if A € Pij; = 0, if otherwise.

Here X} is the Weyl character which equals to the trace of the irreducible represen-
tation of the complex dual group M with highest weight \, Py is the fundamental

Weyl chamber of M and py; € X*(T) is half of the sum of positive roots in ®y;.

It is known that x}! agrees with the degree n Schur polynomial with indetermini-
nat €, €, ..., €,. Then for each given m € M, there exists W(m) € C[T]"™ such that

W;(m) is a specialization.

Proposition 5.1.1. Define W as a function on M xT satisfying Vn € N,,, k € K,
W(nw k; ) = 071 (n)g~ MM in C[T)"™, VA e P,
with the first factor supported on |_|A€Pﬁ N,, @@* K,,. It has the properties

W(dywy'm™ 5 x) = W(msz™h),  W(m;q °z) = W(m;z)|detm|*, ¥Ym € M.
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5.1. Spherical Whittaker functions on GL,, (k)
Proof. Let us show the first property. We note that wy is a lift of the longest Weyl
element in K, whose action on the root system @) reverses the polarization @y,

1'is an outer automorphism whose induced action on ®y; switches

outer : m +— 'm”
®7; and @y and acts as (—1) on X,(T) = X*(T), and dy; € TNK,, is a torus element
such that ™|g" = 6|5'. The operator Ad(wy) o outer then preserves N and Py

We get for m = nw*k, n € N,,, A € P, k € K,,,

W(dywy'm™"z) = 07 (n)W (™Y, )

= 07 (n)g” TN (M) = Wmsz ).

The second equality is because wy(py) = —pu and ( , ) and Weyl character are

invariant under action of Weyl elements.

To see the second property, we use the Weyl character formula: for a regular
semisimple element ¢t € T,

ZSEWM Sign(s)ts()‘+plvl)

M
1) =
X (1) ZsEWM sign (s)ts(em)

where py = %ZA@%)‘ and t* = A(t) for t € T. Denote by deg(\) the degree
map on the free Z-module X (T) with respect to the basis €y, €, ..., €,. One sees

deg

det @ = w9, Since Wy acts by permuting ¢;’s, it preserves the degree map on

Xo(T). We then get
XX (a7°z) = ¢V 8 (2) = | det "\ (2).
The assertion follows easily by applying the formula. 0

Corollary 5.1.2. Let 7, denote the unique irreducible unramified subrepresentation

of IndY 0~ with Satake parameter x € T. Then LgyTy = Ty1 and (Ty)s = Ty-sa-

Here L, denotes the left translation by dy; which intertwines Ind%[n f and Ind%ln o1
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5.1. Spherical Whittaker functions on GL,, (k)
There is one more interesting property of the function V. One notices that the

Weyl invariants X,(T)"™ in the co-character lattice is generated by
)\M:El+62+"'€n

and (\M,4) = degy for any character v € X*(T). (Again, the deg is the degree
map on X*(T) with respect to the basis €y, €, ..., €,.) Notice that all roots in ¢y has
degree zero, so (A\M, py) = 0 and @ centralizes M. By using the Weyl character

formula, we have
(5.1.2) W@ 'm;z) = M(@)W(m:z), ¥Ym e M.

A consequence of 1) is the support | |,.; N, @w* K, I, C Py, of an eigenvector
W, is invariant under shifting the set I, by AM. In particular, these are not in the

subspace ind%ﬁj 0~ of functions of compact support modulo N,,.

If we write the complex dual torus point z in the coordinate (x1, zs, ..., z,), ; =

€(x), then (5.12) reads

W(@ m; X1, Xo, ..., Xo) = ([ X)) Wm: X1, Xo, .., X)), Vm € M.

i=1
The two properties can also be rewritten in terms of the coordinates by

W(dywn'm™ 5 X1, Xo, oo, Xo) = W X7 X5 0 X YVme M,

Wim; ¢ °X1,q¢ °Xo, ..., ¢ ° X)) = W(m; X1, Xo, ..., X)) |detm|* Vm e M.

and the property of being an eigenvector becomes
gM(P)W(m, Xl, XQ, ceey Xn) = P(Xl, XQ, ceny Xn)W(m, X17 XQ, PN Xn)

for all P € C[Xi, X5, ..., X5
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5.2. Fourier transforms of Whittaker functions

5.2. Fourier transforms of Whittaker functions

Suppose a function f on M lies in (indy 6)X». We have f(nmk) = 0(n)f(m) for

neN,,meMkeK, and
f(m) # 0 only if C; < |detm| < Cy for some positive numbers C, Cs.

Under action of C[T]"™, the space (indy. 6)% decomposes into direct sum of lines
indexed by the Satake parameters appearing in it. We then have a Fourier expansion

of f as the well-defined function with a complex variable ¢~* introduced

V(g = / W) dm e ("l ')

which is an expansion into ) ., a,(z)q™" with coefficient

a,(x) = / F(m)W(m; z) chyrox (det m) dm
N, \ M
# 0 for ¢; < r < ¢o, and ¢1, o are some integers depending on Cy, Cy. We shall call

this the Fourier transform of f.

In their work on conductors for the GL, case Jacquet, Piatetski-Shapiro, and

Shalika proved that this Fourier transform W;(¢~*) uniquely determines f.
The idea goes as follows. We are focusing on the representation ind%ﬂ 0, whose

contragradient is Indy 6~'. The pairing

(W, f) = / )

on Indlﬁfn o1 ®indl\N/[n 0 defines the M-equivarient perfect duality. All continuous linear
forms on indl\N/In 0 can be realized by taking (W, -) on indl\N/[n 6 for some W € Indl\N/[n o1
For f € (indy 0)%», its dual W in IndY 6~! must also be K,-invariant which has

W, as a basis. Hence ®¢(¢°) =0 forces f = 0.
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5.2. Fourier transforms of Whittaker functions
Proposition 5.2.1 ([I4] Lemma 3.5). Assume f € (indy ). If the Fourier
transform W;(q~°) =0, then f = 0.

Proof. Consider the regular representation (3,C°°(M)) of M, which decomposes
continuously to irreducible representations o,: ¥ = [ o, du(x). (1 a distribution
of M.) The representation indlﬁfn 0 is an invariant subspace of X with countable
dimension. We thus has for almost all o,, there is an intertwining operator 7, that
maps ind%[n 0 to o, such that the unitary structure is compatible, namely

(f1, f2) = /<Axflanf2> du(z),  fi, f2 € indy, 6,

and f = 0if A,f = 0 for all z. When f is K,-invariant, T,.f # 0 only if o, is
unramified. On the other hand, since Indl\N/In 6! is its contragradient, for every z, there
exists some W, in the K,-invariants of Ind%fn 0=! such that (f',W,) = (A.f", A.f)
for all [ € ind%ln §. Take f' = f. Since W, is a linear combination of W,, by
assumption (A, f, A, f) = [y f(m)Wy(m) dm = 0. Hence A, f = 0 for all x, which
implies f = 0. U

This proof can be weaken and works on f € (Indl\N/[n 0)K» with the weaker property
that f(m) # 0 only if C7 < |detm| for some C; > 0. Then the Fourier transform

~

W,(q*%) is a Laurent series in ¢~* with coefficients in C[T]".

The idea introduced by Jacquet, Piatetski-Shapiro, and Shalika in 1979 is to
consider the restriction of functions in (Indgﬁl1 0)MC) to M, which hence lies in
(Indl\N/[n 0)Kn as source of f to show properties of new vectors for GL,,;. We will
define new vectors for SOg, 11 in the Part 2. To prepare our discussion in Part 2, we
will make the Fourier transforms with the restriction of functions in (Ind& )M to

M as a source of f. Let us define it below.

Assume 7 is an irreducible generic and supercuspidal representation of G. Recall

T = Tzlq ~ ind20 by v — W,|g. Define ¥(v,q*%;z) € C[T]"™ as the Fourier
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5.2. Fourier transforms of Whittaker functions

transform W, 5_1/2(q73/), s'=s—1,of Wv51§1/2|M for v € V2" Namely,
vOp

(5.2.1) ‘If(v,qs;z)z/N \M5p1/2(m)Wv(m)W(m;qS'z) dm.

Suppose T, is the Whittaker model of a generic unramified representation of M

1

with Satake parameter z. The contragradient of 7, has Satake parameter z=" and

has Whittaker model 7,-1. Not so surprisingly, the zeta integrals on spherical vectors
can be unwound to the Fourier transforms of the Whittaker functions. Let us give

this computation below.

Take £ (h,s) € pr,s t0 be the unique H,, -spherical standard section such that
Jeg, (m. 8) = L(7, A2, 25)W(ms ¢ )33/ (m),

where as always s’ = s — 1. Recall that 7, = 7,-1. As well take €0 (h,1—s) € Pr,11-s

to be the unique H,, -spherical standard section such that
Jag, (mi 1= 8) = L(ry1, A%, 2(1 = )W (m; "z )3 (m).

Note that this is L(7,-1, A2, 2(1 — s))W(dywn'm ;¢ 2)8* (m).

Then

(A(wgl, s)feo )(I, 1 — )

= /fggn(deozw) dz = /fg% (dem’\Mwmzw) dz
7z Z

= [N (e s ) ds

z
L(Lgy T (), N2 1 — (1 — 25))
L(T£7 /\27 23)

= )\M(g)mL(Tg,/\Q,Qs)
= )\M(g)mL(TE /\2,23—1)

= (@)™ (74, A%, 25 — 1) (7,1, A%, 2(1 — 5)).
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5.2. Fourier transforms of Whittaker functions

We observe that

(A"(wp', 5) feo )T, 1 = 5) = X¥(2)™ [ (I, 1 — 5).

Since we know that the image of feo must be “H,, -spherical and hence a multiple

of fiuztyé » we get the multiple is AM(z)™, and

A (wp', ) feo, = N@)™

(One note the element w,, normalizes H,,, and ww_ ' € H.)

Tm

Now for any given Satake parameter x € T of M, consider the Rankin-Selberg

zeta integral for m X 7, on v, ® £, € Vi @ p%fg".

0 g 0 0
o © €%, 5) /V\H B) feo (1) dh = /V\P (9)feo (9, ) dp
- / 55 ()W, (m) feo (m, ) dm
N, \ M
= L(Tm,/\2,28)/ 6;1/2(m)va(m)W(m;q_sx
Np \ M

This is equal to the Fourier transform multiplying a factor L(7,, A%, 2s).

We obtain the following new interpretation for Rankin-Selberg zeta integral at

H,, -fixed vectors v, ® £2 interms of the Fourier transform.

Lemma 5.2.2. Vu,, € Vi, (v ® €2, 5) = L7y, A2, 28) W (v, ¢ %; ) € Clq*, ¢°).

Here the equation lives in C[¢™*, ¢°] under the assumption that 7 is supercuspidal

and L(m x 7,,s) = 1 with all zeta integrals live in the principal ideal ring.

Similarly we get the following new interpretation for Rankin-Selberg zeta integral
on the other side of the functional equation at “ H,, -fixed vectors wuv,, @ A*(wp", 5)€%

interms of the Fourier transform.
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5.2. Fourier transforms of Whittaker functions

Lemma 5.2.3. Vo, € Vi, ((wom @ A*(wp', )0 s) =

m?

M) L(1y1, A% 2(1 — 8)) T (Wi, ¢ 271 € Clg™*, ¢f).

Let us compute this below.

C(wvm ®A*<w1;178) 2175)
= / m (hw) fao (hwwt,s) dh
V\H

= M@ [ W, (hww) fa (b s) dh
V\H

= )\M(g)m/ 5gl(m)mevm(m)f£~%(m, s) dm
N, \M

= M(@)"L(ry1,A%2(1 = 9)) / 35 2 (M) Wiy (M)W (s ¢¥ ™) dm

N, \M

= MN(@)"L(7-1, A%, 2(1 = 8)) ¥ (Wintm, ¢ 527) € Clg 7, ¢°].

Since e(m X 7, 8,¢) = y(7m X 7, 5,9) and it is known in [29] that y(7m X 7, s,7)
is multiplicative. By the fact that 7, ~ Iy X, with x,(@*) = A(z). One has

n

5(77- X Tg, 5,%0) = Hg(ﬂ- ® (X;O Ei)787¢) = )‘M( ) 7rq nans’

i=1

The functional equation for m x 7,
C(wom ® A*(wp', 8)&,, 8) = e(T X 7, 8, )( (U @ &, 5)
hence can be translated into relations of the Fourier transforms and local invariants:
Proposition 5.2.4. Vv, € VWH””’", VzeT,
L(1y—1, A2 2(1 = 8) U (WU, q_(l_s);g_l)

_ )\M(£>aw—m€nq—naws’L(T£’ /\2’ 28)\1,(077“(]—5;&) e (C[q_s,qs].
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5.3. Actions of Hecke operators

5.3. Actions of Hecke operators

Let us first show the existence of vectors fixed by H,, for each m € Z.

Lemma 5.3.1. For any gwen x € T, there exists a vector v, € Valom for eachm € Z

such that the complex variable function V(v,,,q % x) is not identically zero.

Proof. Since L(m x 7,) # 0, there exists vy € Vi, o) €V, and a;) € Z for

i=1,2,...,rsuch that L(m X 75, 8) = > _._, ¢“@°C(v4) @&, §). Since &), € V,E;T #0,
the spherical standard section defined in the previous section, V, . = H(H)EL,.
Since the zeta integral is a H-invariant bilinear form, one can to take &4 = &J.
However, by the same fact, one can replace v by its average over H,,  , ie. its
image under ey, € H(H). Since >.'_, ¢“®*C(vy) ® &), s) is nonzero, there exists
an i such that v* € Va* is nonzero with Clogy ® &, s) # 0. By Lemma ,
Clogy ® &Y, 8) = L1y, N, 28)¥ (v, ¢ % 2) # 0, which implies W(vgy, ¢ % 2) # 0. O

Recall by definition, for v € VE» the function W(v,q *;z) in C[T]"[¢g~*, ¢*] is

defined as the Fourier transform
/ 35 )W, (m)W(m; ¢~ 'z) dm, s =s— .
N \ Mp
Suppose P € C[T]"™. Since P(¢~*z)W(m;q *z) = su(P)W(m; ¢ °z), we have
P(q"z)¥(v,q % z)
- / 55 ()W, (m) (sm (PYW) (m; ¢~ z) dm
Np \ My,
- / (5;1/2(m)Wv(m) (/ om(P)(m" YW (mm/; q_slg) dm’) dm
N \ My, M

- / / 0p 2 (man' Yo (P) (m )W, (mam/~ )W (m; ¢~ z) dm’ dm
M JN, \ M,

/

= [ (P W ) ) W)
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5.3. Actions of Hecke operators

(We note that Fubini’s Theorem applies since ¢\ (P) is compactly supported on M.)

Following the ideas in [14] and [22], we define an action of H(M, K,,) on V. by
(531)  fro— / SY2 () f(m e (/Yo !, Vf € H(M,K,).
M

It is clear that this action preserves the subspace VX». Then from above we obtain

/

(5.3.2) Plqg?z)V(v,q % z) = V(em(P) *xv,q % x)

for all P € C[M]" and v € VXr.

Since U(v, g% z) lies in C[M]"M[g~*, ¢*]. Evaluating at s = 1/2 (or equivalently,
s’ = 0) defines a C-linear map = : VX» — C[M]"™ which by (5.3.2) satisfies the

identity
(5.3.3) P-Z(v) = E(eu(P) *v), VP e C[M]",
Lemma 5.3.2. 2 : VE» — CIM|"™ is o C[M]"™-module homomorphism, with

C[M]"™ acting on VX by the action of H(M, K,,) defined above composing the Satake

~

transform <y and on C[M]"™

by multiplication. It is surjective and has kernel
ker= = {v € VX | W,|r = 0}.

Proof. We have seen it commutes with the action of C[M]"™. To show the kernel,
for 7 irreducible generic supercuspidal the map v — W,|q induces a surjective Q-
homomorphism from V, to Ind8 6. There exists v € VE» such that W,|y supports
on N, K,. Then Z(v) = ¥(v,q /% z) = vol(0*)" is a unit in C[M]"™. Hence the

C[M]"¥-module homomorphism is surjective.

By Iwasawa decomposition of M, the kernel is contained in the given set. To

prove the other inclusion, we recall ¥(v,q~%;z) = ¥(v,q "/?;¢ ). Hence Z(v) =0
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5.3. Actions of Hecke operators
implies that W, |y has trivial Fourier transform. By Proposition [5.2.1) W, |y = 0 and

in particular W, |t = 0.

Recall that Lemma and Corollary [3.4.2show that {v € Vi | W,|q = 0} =
0 for each integer m. We would like to focus on the subspaces VﬂHM, m € Z, on

which many good properties are valid.

In order to preserve the subspace VWHZ’”, we consider the intermediate Satake

transform. The map 3, : H(H, H,,,) — H(M, K,,) for m € Z defined by

(5.3.4) 6> im(@)(m) = 5§(m) [ 9(me) d:

fits into the commutative diagram

=)

C[T]"n —— H(H,H,,)

SH,m
ljm

W —— H(M,K,)

SM

inc

=
-

=Y

Cl

and is an injective algebra homomorphism. Therefore
¢)xv = /M5p(m/) (/z d(m'2") dz') a(m v dm/, V¢ € H(H H,,).
Let us similarly define the action of H(H,H,, ) on V, by
(5.3.5) Hxv= / d(R)m(hW Y dn', V¢ € H(H,H,,),

which preserves Vilem By taking an inverse, the Iwasawa decomposition H =P H,
can also be written as H = H,, P. For v, € Vilem and ¢ € H(H,H,,), the vector

¢ * v becomes

/P b0 (1)) (/Yo dp
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5.3. Actions of Hecke operators

One observes that the Whittaker function associated to ¢ * v restricted to M is

Wino(m) = / o ()0 Wo(mp' ) dyf

_ / / 5p(m W, (m2'"m/™Y) d2' dm
— /M(SP( (/¢mz ) L(mm/™h) dm/,  Ym e M,

which equals to the Whittaker function associated to 7, (¢) * v restricted to M.

Since the Fourier transform depends only on the restriction of the Whittaker

function to M, we conclude

!

(5.3.6) Plq ™ 2)¥(Um, ¢ % 2) = Y (SHm(P) * Uy q 5 2)
or equivalently,

P - Z(vm) = Z(sm(P) * vy) in C[T ]WM
for all P € C[T]" and v,, € V.

We obtain the following modified version of Lemma [5.3.2]

Lemma 5.3.3. For integer m > 0, the C-linear map = : Valem C[T ]WM gotten
from restriction is an injective C[T]"¥-module homomorphism, with C[T]"¥ acting
on VEn by the action of H(H,H,, ) defined above composing the Satake transform

Sum and on C[T T by multiplication.

The following Corollary is immediate from the injectivity of = on Valom,

Corollary 5.3.4. Assume m € Z. For any nonzero vector v,, € VﬂHw’”, the H,,, -fized

vectors S m(P) * vy, for all P € C[T ]WH are distint and nonzero.

This result will be used in computing the dimension of subspaces of fixed vectors

in Part 2.
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5.4. Fourier transform ¥ and Jacquet’s polynomial (2

5.4. Fourier transform ¥ and Jacquet’s polynomial (2

Let us write the results into coordinates X; = €1, Xy = €9,...,X,, = €, and discuss
them in the ring C[X1, X7, X2, X5 !, ..., X, X71]%", which we shall denote by .7,.
Under Satake isomorphism for each 1 < i < n the generator [M(o)w* M(0)], the
characteristic function of the double coset M(o)ww* M(0), for X = €; + €3 + ... +
€;, in the Hecke algebra H(M, M(o)) maps to the sum of characteristic functions

> sety N0 (o) and has corresponding element in the ring .77, as
T; = Z Xy Xs2) - X
SESn

which is the elementary symmetric polynomial. Hence .#, = C[T},T5,..., T, T, ']

and 7), gives a Z-grading on the ring .7, = ®g4ez-7p 4 by the degree of T,,.

Recall that we have the .#,-module map = : VE» — ., defined by Z(v) =

U (v, ¢~ Y/2; z) whose restriction to the subset Vo™ is injective. (See Lemma [5.3.3
J

Lemma 5.4.1. For v € VEr if v is invariant under z., (p*) then deg, E(v) > —k.

As a result image of VWQ(U) under Z is contained in ®g>0-Sna = C[T1, Ty, ..., T,].

Proof. Since if v is also invariant under z., (p*) then the Whittaker function W, |y

has support contained in Uy, y>_r M(0)w* M(0) on which degp, W(;2) > —k. O

Note that for v € VWHZm, m > 0 integer, we have L(7,, A% 2s)¥(v,q %;z) in

Znla*, ¢°] and hence is entire in s. We take s = % and obtain that

(5.4.1) Qv; X1, Xa, .., Xn) = E(0)/ [[ 1-¢'XiX;) e S
1<i<j<n
which gives a factorization in .7, as

E(v) = ( IT @ —q_lXin)> Q(v; X1, Xo, .., Xon).

1<i<j<n

73



5.4. Fourier transform ¥ and Jacquet’s polynomial (2

We note that again Q(v) = 0 implies v = 0 provided that v € V, "

By Proposition m the functional equation for v € Valom gives the following

important relation.
Proposition 5.4.2. For v € VWHI’”, we have the following identity in 7.

(5.4.2) Qwnv; X7 X5 X)) = T Q(v; Xy, Xa, oo, Xo).
Note that the factor <H1§i<j§n(1 — q_lXin)> is a prime in ., and lives in the
zeroth graded piece .7, . Now combining Lemma and Proposition we

obtain the following observation.

Proposition 5.4.3. For v € Vi nonzero, if v is invariant under z., (p*) and
T_e, (p!) then
Qv; X1, Xo, ..., Xp) € @_p<d<i—arTn.d-

Proof. In Lemma we have seen that Q(v; Xy, X, ..., X)) € ®_g<aSna. How-
ever, since w,,v is invariant under z., (p'~™), we also have Q(w,v; X1, Xo, ..., X,,) €
DOm_i<a-Fna and hence Qwy,v; X771 Xy XY € C[T, T, .., VT T8 T

n

so has degree in T), less than or equal to m — [. Then apply the identity (5.4.2). O

Remark 5.4.4. The results in this section hold for general irreducible generic repre-
sentations as well in which case the Fourier transform W(v,¢~*; x) is a Laurent series
in X = ¢~* by smoothness of v and converges for R(s) large enough by the slowly
increasing property of the Whittaker function W, and the definition of (v) is mul-
tiplied by an extra factor [[_, Pr(¢7"/%X;) € ., which was 1 in the supercuspidal
case. Since [[ | Pr (¢~'/2X;) contains a constant term the result regarding the degree

is still valid.
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CHAPTER 6

Review for cases of lower rank

In this chapter, we summarize the known results for the lower rank case. When
n = 1, this is the classical theory for PGLy proved by Casselman [4]. When n = 2,

this is studied by the recent work of Roberts and Schmidt on PGSp, [23].

6.1. Rank 1: SO3(k) ~ PGLy(k)

Let V; be the set of traceless 2 by 2 matrices over k which is the Lie algebra sl,.
The group GLs acts on V; by taking conjugate on every matrix in Vj. The center of
GLs acts trivially and V; becomes the 3 dimensional adjoint representation of PGLs.

This action preserves a volume form

ap Qaz 9
p: A= — —2det A = 2a] + 2asa3

az —ag
on Vi. ¢ : Vi — k is a quadratic form on Vj of discriminant —2 and it makes V; a

split quadratic space with a good basis

We thus obtain an isomorphism from PGLs to SO(V;). Or more explicitly,

a>  —2ab —b?
a
— (ad — bC)_l —ac ad+bc bd
c d
—c? 2cd d?
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6.1. Rank 1: SO3(k) ~ PGLy(k)
Set G = SO(V}). Set G = SO(V;) and let (B, T, ) be a generic data compatible with

the good basis.

Assume m > 0 is an integer. The congruence subgroup Iy(p™) of GLy(k) is

defined as the open compact subgroup

a b
Lo(p™) = € GLy(0) | ¢ =0(modp™),a,d € o
c d
1
The normalizer of I'(p™) in PGLy(k) is generated by I'o(p™) and , called
wm

the Atkin-Lehner element of level p™. The Atkin-Lehner element has order 2 in the

adjoint group PGLy(k) and its image in SO(V}) is

The normalizer of I'g(p™) contains it with index 2 for m > 1 and equals to itself for

m = 0. Let K(p™) denotes the image of I'g(p"™) in SO(V;). The subgroups

T(0), U, (0), U-cy (p™)

are contained in K(p™). Together with w,, these subgroups generate the stabilizer of

the lattices
Ln,=o0e®p vy®p"fand L), =p "edp "voDof

in SO(V4). Therefore, K(p™) is equal to Stab(LL,,) for m = 0 and is a normal subgroup

of index two in Stabg(L,,) for m > 1.
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6.1. Rank 1: SO3(k) ~ PGLy(k)
Let 7 be a generic irreducible representation of G = SO(V}). Then there exists
some vector v, € 7 such that I(v,s) = L(m, s). Recall that
I(v,s) = [ Wylei(a))|al” 2 da, Vo € 7.
kX
We are allowed to assume that v, is fixed by T(0) and U, (0) by taking an average.

Let a, denote the conductor of . We recall that we have a functional equation

I(vy, s
L(m,s)

~—

I(ugvs, 1 — s)

Limi—s) —cms¥)

whose right hand side simply equals to 57rq_“"(5_%). Using the property that
Iuper (@ vy, 1 — 8) = q“’f(s’%)l(uov*, 1—s),

the equation becomes

I(ug, v, 1 —5)

L(r1—5) =er = I(e; g, vs, 8) = L(7, 5).

Therefore the Whittaker functions W, and W1, . agree on Q = Uce (k) and
are fixed by H,, = T(0). We get v, and e, 'u,, v, have the same image under the
Jacquet functor Jz, which is the identity map since Z = I, and hence are the same.

We get v, = &, 'u,, v, is fixed by the subgroups

T(0), U, (0), and U_, (p°") = uy, U, (0)u,*

ar

and is hence fixed by the subgroup K(p®~).

For each vector v € VWK(paW), uq, v is fixed by K(p®*) as well. Hence we have

I(ug,v,1—s) I(v,s)

() L(m,1—s) a ng(ﬂ', s)

Since v and u,, v are U, (0)-fixed, the right hand side of (x) is in C[¢g~*] = C[qg™*, ¢°]N
Cl[g*]]. Similarly, the left hand side of (x) is in C[¢'~*] and hence in C. Therefore
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6.2. Rank 2: SO5(k) ~ PGSp,(k)
every vector v € VA" has I(v,s) = cL(m,s) for some ¢ € C. Again v and cv, are
fixed by H,, = T(0) and have the same image under the Jacquet functor Jz, which

is the identity map. Therefore, v = cv,. We can conclude the following.

Theorem 6.1.1 (Casselman). The fized subspace Va®") s one dimensional. There
is a unique vector v, on this line such that I(v,,s) = L(m,s) and hence W, (I) = 1.

Moreover, v, is an eigenvector of u,_ with eigenvalue .

The line VWK(*’%) encodes all of the local invariants of the generic representation

) 1S one

7 of SO3(k). The vector v, can be used as a test vector of m. Since v
dimensional, the Hecke operators in H (G, K(p®")) acts on it by a character. v, is thus
a Hecke eigenform. Casselman in his paper [4] showed that a, is the lowest exponent

one can/will get to obtain a nontrivial fixed subspace. Such vector is called a new

form of the representation.

6.2. Rank 2: SO5(k) ~ PGSp,(k)

There is a analogous theory of new forms for GSp,(k) studied by Roberts and
Schmidt [23] in 2006 which works for generic representations with trivial central

character.

Let D be a 4 dimensional vector space equipped with a skew-symmetric bilinear

form. Fix a basis {d1, ds, ds, ds} of D such that the skew-symmetric bilinear form has

[

The symplectic similitude group GSp(D) is the subgroup of the automorphism group

Gram matrix

GL(D) of D conformal with respect to the bilinear form. The vector space D is a

standard representation of GSp(D).
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6.2. Rank 2: SO5(k) ~ PGSp,(k)
Consider the exterior square representation Wy = (A2D)* ~ A2D of GSp(D). The

skew-symmetric form induces a linear functional on A?D and hence a vector
w:dl/\d4+d2/\d3

on Wj. The similitude group GSp(D) preserves the line ¢ = kw and acts on the 5
dimensional vector space V = W;/¢. The Grassmannian G(2,4) = {planes C D}
is embedded as a quadratic hypersurface (an isotropic space of a quadratic form) in
W, and is stable under action of GSp(D). Therefore the action of GSp(D) on W /¢
preserves a quadratic form ¢ which is nondegenerate of discriminant 2. This induces
a map

j : PGSp(D) — SO(V).

The set
{er=di ANdy,ea = dy Ndz,v9 = da Ndy, fo = —dy N dy, f1 = d3 N ds}
forms a good basis of V' and the Gram matrix of ¢ is

o

Let G = SO(V) and notations such as H, Q and Z are as in Part 1.

Denote by GSp(D)y the set of elements in GSp(D) with determinant in 0*. As-
sume m > 0 is a nonnegative integer. Roberts and Schmidt in [23] consider the open
compact subgroup of GSp(D), called the paramodular subgroup of level p™, which is

the intersection of the stabilizer of the lattice

Mm = p_mdl D Odg D 0d3 D 0d4
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6.2. Rank 2: SO5(k) ~ PGSp,(k)
and the subgroup GSp(D),. Explicitly, it consists of matrices in the set

1
The element [wm _1} in GSp(D) normalizes the paramodular subgroup of level
p™ whose square lies in the center. It is an analog of the Atkin-Lehner element of

level p™ for GLa (k).

Denote by K(p™) the image of the paramodular subgroup of level p™ under j.

Then K(p™) is an open compact subgroup of SO(V') stabilizing the lattice
Lo, = 0e1 @ 0eg & p™vg & p" fo & p™ fr = (A°M,,)".

The group K(p™) contains the subgroup Q,,, and the affine Weyl element wy, for
s € Iy. Let us denote Wse, peyim by t,,. We note that in this case the set of even
number of sign changes [ consists only one element s, ., which lifts to t,, in K(p™).

1
The Atkin-Lehner element [wm 1] maps to

w—m
-1
Uy = -1
-1
wm

in G under j and also stabilizes L,,. wu,, is a lift of the odd sign change s., and
I = {5¢, S¢,+¢, ;- One can then check the following properties: w,, normalizes K(p™);
K(p™) is generated by Q) and u, Q(, u,,'; Staba(Ly,) is generated by K(p™)
and u,, and contains K(p™) with index 2. Let ¢/, = t,We—e,0. We will use a

decomposition

(6.2.1) K(p™) = Z(p™™) Quuy UZ(0™ ™)1, Z(0™™ 1) Qpy -
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Our goal is to obtain a theory of test vectors for generic representations of G.

Let (m, V) be an irreducible generic representation of G. Assume a, is the con-

ductor of 7 and e(, s,1)) = e,q % (572).

Theorem 6.2.1 (Roberts-Schmidt). The fized subspace VWK(paﬁ) 1s one dimensional.
There is a unique vector v, on this line such that I(v.,s) = L(m,s) and hence

W,.(I) = 1. Moreover, v, is an eigenvector of u,, with eigenvalue &,.

We will summarize the proof in [23] of this theorem in the case when 7 is generic
and supercuspidal. We note that in this case, the L-function L(7,s) = 1 and the
Jacquet module 77 is an irreducible P3-module and is isomorphic to ind8 0 via the
restriction of the Whittaker functions v +— W,|q to Q, which factors through the

Jacquet functor Jz.

Let us denote by [Kyh K] the characteristic function of the double coset KyhK;
on G which lies in the Hecke algebra H(G) and induces an operator VX1 — VX2, The
Hecke algebra H (G, K(p™)) is generated by [K(p™)h K(p™)] and induces operators on
the K(p™)-fixed subspace of V.. The operators [K(p™)h K(p™)] and [K(p™)h 1 K(p™)]

on VE®™) are adjoint to each other. For a fixed level p™, set
Ty = [K(p™)@* K(p™)] € End (V™)
for A € Xo(T). Since w;, . m lies in K(p™), one can easily see the Hecke operators

T61 (: T—61)7 T61+62 (: T—(61+62))

at level p™ are self-adjoint and hence diagonalizable. Here we note that @ = w,,_1u,

and w2 = t,,_1t,,.
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6.2. Rank 2: SO5(k) ~ PGSp,(k)

Define operators 65, §, between the fixed subspaces VEC™ and VWK(pmil) for A €
Xo(T) as

Oy = [K(p™)w K(p™ )] : VEE") _ yKe™),
6)\ = [K(pm—l)w)\ K(pm)] : VK(pm) N VWK(pmfl)'

™

We have the following observation

‘961 == um‘goum—la 961+62 = 907 561 = um—léouma 561+62 = 50-

Roberts and Schmidt proves the following relation.

Lemma 6.2.2 (|23], Proposition 6.1). For m > 2, on VEC™) the operators satisfy
Ty 0Tty res — Teyter © Tey = 0cy 006y ey — Oeyer © 0y

= (umﬁoum_l) @) 50 - 00 ¢) (Um_léoum)

Denote by ¢(7) the maximal ideal such that VA is nonzero. In particular, the

operator 0, is the zero map on VWK(C(ﬂ)) for any A € X¢(T). One can immediately get:

Lemma 6.2.3. Assume c(m) C p%. The Hecke operators T., and T, ., at level ¢(m)

commute and can be simultaneously diagonalized on yR(Em),

Just like for the classical modular forms, we study the eigenvectors of the Hecke

(

operators T¢, and 7¢, ;., on the subspace V™ and called them the Hecke eigenforms

of m. These Hecke eigenforms form a basis of VEE™) Tt has been shown that the

zeta integral
I(v, s) :/ lo(er(a) v)|al*" 7 da
ack>
of a Hecke eigenform v can be expressed by its Hecke eigenvalues.
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6.2. Rank 2: SO5(k) ~ PGSp,(k)
Proposition 6.2.4 ([23], Lemma 7.4.4). Assume ¢(r) C p2. Let v € VL™ pe g

Hecke eigenform and for A = €1, €1 + €3 let puy € C be the constant such that
Thv = pyv.

Assume

C(a,b) _ gg(wael-‘rbm U)

for a,b € Z, then
ey C(a,0) = QSC(aH,o) + QQC(a,l) + ¢a-1,0, a =0
Hey+e2Ca,0) = q4C(a+1,1), a € Z
which combine together to the recurrence relation
q3c(a+170) — e, Cla0) + (1 + q_2u61+62)c(a_170) =0, a>0.

Proof. Using the decomposition (6.2.1]), we can write K(p™)w? K(p™) into left cosets.
Assume m > 2. We have
K(p™)" K(p™)
= User, Z(p™™)wsm Z(p_m+1) Q(m) @™ K(p™)
= User, Z(p~ " )wsm M(0)z, (0)w™ K(p™)

= Z(p™") M(0)xe, (o) K(p™) U Z(p~ ™)1, M(0) 2, (0) K(p™).

Since the Bruhat decomposition of M over § implies

M(o) = Bui(o) Ny, (p) U BM(O)wq—EQ,Om(U) N, (p),
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6.2. Rank 2: SOs(k) ~ PGSp, (k)
the decomposition becomes
K(p™)w" K(p™)
= Z(p")Te—es (0)76 (0)m™ K(p™) U Z(p™ ™) We, —e 0% (0)w™ K(p™) U
Z(p™" )t Ter—ex (0)e, (0)m™ K(p™) U Z(p™ ™ )t ey — e 02, (0) K(p™)
= Z(p7")Te—er(0)2e, (0) T K(p™) UZ(p™™)2e, (0)™ K(p™) U

Z(p™ " )T —er (0) T, (0) ™ K(p™) Ut e, (0) K(p™).
Since v is fixed by x_., (p™), whose commuter with z., (p~!) lies in K(p™), we get
lo(w™ g ) = lg(w™ z,(c)gv) = V(c)lg(w™ gv), Ve € p~?

and hence fp(w™gv) =0 for g € Z(p™™)t] T, —e,(0)ze, (0)w K(p™). The definition

T.,v= A dg results in for integer a > 0

fK(Pm)wel K(pm

[e,C(a,0) = 4°Clat1,0) + € Cla,1) + lo((a — 1) / T_e (y@™ v dy).

0

We use the following trick

[ oy ) v dy,s) = 3(m,,0) " D [y Y0 dy1 =)

Y
= (m,s, ¢)_1qm(s_%) vol(o)I(umv,1 —s) = 1I(v,s)

gotten by applying the functional equation twice. Here we used the simpler formula
by the fact that the vector unm, [, z_ (y@™ ') v is fixed by Q(0). Then comparing

the coefficients of ¢7° on this equation, one can get

(@ [ (=)0 dy) = conr
0
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6.2. Rank 2: SO5(k) ~ PGSp,(k)
Let us do the other Hecke operator 7, ,.,. Similarly we can get
K(p™)w™ T K(p™)
— Uselo Z(P_m)ws,m Z<p—m+1) Q(m) weﬁ-ez K(pm)
= User, Z(p™ " )wsm Z(p™" )z, (0)2, (0)w T2 K (p™)

= Zp ") (0)ae (0)T T K(p™) Ut Z(p ) (0)7,(0)@ T K(p™)
It follows v is fixed by x_, (p™) that
ly(w™gv) =0

for g € Z(p™™)t., Z(p7™ ), (0)we, (0)w T2 K(p™). (We again omit some detail of

computation here.) Since T, v = fK(pm)weﬁq K(pmy 9V dg, this results in

Hey+e2C(a,0) = Q4C(a+1,1) .

The last assertion follows by some easy algebra. U

Remark 6.2.5. There are two parts which we omitted in the proof for showing
that on some cosets g K(p™). The result ly(e1(a)gv) = 0 uses highly the fact that
Te, (p~1) e sits in Q,,_y) for s € Iy, s # 1. However, this can not be achieved for

n > 2. The recurrence relation currently can not be obtained for n > 2.

Since the zeta integral I(v,s) on any fixed vector is a generating function of

Vol(ox)c(a,o)qga/ 2 a > 0, the recurrence relation on eigenforms shows the following:

Lemma 6.2.6 ([23], Proposition 7.4.5). Assume ¢(w) C p®. Then if v € Vo ™) jg

an eigenform and Thv = pyv, then

(1= peq* + (14 ¢ peyre)q ) (v,8) = (1 — ¢ Hego).
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Equivalently,
(1 =g ")ls(v)

I(v,s) = :
L= g7 Ppe g™ + (1+ ¢ peve)g %

We recall that K(p™)w ™2 K(p™) has a decomposition
Z(p™")ae, (0)ae, (0)m T2 K(p™) Uty Z(p™" )z, (0)2, (0)a™ T2 K (p™)
and hence equals to

Z(p™")xe, (0)zey (0)m F 2 K(p™) U (€1 + €2)(@ ™) Qo) K(p™)-

On the other hand, K(p™") = (Z(p~"*") Ut,, 1 Z(p~"*%)) Qu_1)- The next step
is to make sure at the level ¢(m), a Hecke eigenform v satisfies (v, s) # 0 which is

equivalent to the condition y(v) # 0.

Suppose ¢(7) = p™ and m > 2. For v € K(p™), dov € 75F" ) = 0 implies for all

A € X (T) and all integers a,b >0

qul /
Q

lo(w*gv) dg + 59(/ wMp_1gv dg) = 0.

(m—-1) Z(p=™+2) Q(m—-1)

Then
/ fy(@ D12 g ) 1o
Qm—1)

— —qlég(/ wrrthed gu dg)
Q

(m—1)

— _q—1q3£6(wa51+b62 U)

= _qzc(a,b)

Using this result, the Hecke operator T, ., acts on v as

(6.2.2) ey +exClah) = C]4C(a+17b+1) - q20(a7b)‘
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We hence get a relation (fie, 1, + qz)c(mb) = q4c(a+1,b+1) for integers a,b > 0. Using
this relation and the relations from Proposition [6.2.4] since by the fact that v is fixed
by z.,(0) we have ¢ = 0 for b < 0, we get c0) = 0 = ¢(ap) = 0 for a,b € Z =
ly(T v) = 0.

Let us assume 7 is generic and supercuspidal. In this case, the Jacquet module
7y is non-degenerate and isomorphic to ind8 0 as a Q-module. We shall prove the

assertion that £4(v) # 0 and Theorem [6.2.1]

Knowing that Q = UTQ(o0), (T v) = 0 results in ¢4(Q v) = 0 and hence
Jz(v) = 0. Since v is fixed by H,,, thus Jz(v) = 0 implies v = 0. We conclude the

following for a generic supercuspidal representation .

Lemma 6.2.7 (n = 2). Assume ¢(7) C p2. For any eigenformv € Vi "™, ly(v) =0

if and only if v = 0.

Since we assume 7 is supercuspidal, we have L(w,s) = 1 and a, > 2. For any
paramodular vector v of level p™, v is fixed by Q(0) and H,,. This gives Q(v; X1, X5) €
C[Xl, XQ] and

Qwnv; X771 X5 = 2( X1 X)" ™ Q(v; X1, Xy).

Recall that v # 0 if and only if Q(v; Xy, X3) # 0. This forces v # 0 = m > a,. In
particular, ¢(7) C p% C p> Suppose v is a Hecke eigenform at level ¢(m). Then by
Lemma I(v,s) € Clg™%,¢°] implies p, = 0 and pi, 4, = —q?. In particular,
every eigenform has same set of eigenvalues and the values c(qp) for a,b € Z are
uniquely determines by c(,0) by the recurrence relations in Proposition and
(6.2.2)). The Whittaker functions of all Hecke eigenforms with fixed c( ) agrees on

Q. These Hecke eigenforms hence have the same image in ind%2 6 under Jz, which is
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injective on K(c(7)), and are thus the same. We then conclude that V™) s one

dimensional.

Let v, be the unique Hecke eigenform at level ¢(m) = p™ with ly(v,) = co0) =
(1—¢ Y™t and I(vs,s) = 1. Then u,,v, = ev, for some ¢ € C. The functional
equation

vol(0)I (upmvse, 1 —s) = swq(“”_m)(s_%)](v*, s)

then can be written as € = 5ﬂq(“”_m)(3_%) which implies
£=Er, Qp=m.
Moreover, computing c¢(q Wwe get ¢qp = 0 unless (a,b) = (0,0), (1,1) and

U(v,, X; X1, Xo) =1 — X1 X0 X2, Qv,; X1, Xp) = 1.
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CHAPTER 7

Open compact subgroups and their fixed vectors

In this chapter we define the open compact subgroups K(p™) of our group G =
SO(V'). These subgroups play the central role in our study of generic representations
of G. We recall that V' is a split quadratic space of dimension 2n + 1 over k, (B, T, )

is a generic data of G and {ey, ..., e,, Vo, fu, ..., f1} 18 @ compatible good basis of V.

7.1. Definition of K(p™), m >0

To define the family of subgroups of G, we first define a family of quadratic lattices

over o in the quadratic space V' that defines G.

Definition 7.1.1. For integer m > 0, let L,, be the quadratic lattice
(@ oe; D p™ fi) @ pug
i=1

with associated bilinear form ( | ), :=w™( , ) :L,, x L,, = o.

The Gram matrix for the quadratic lattice L, is

1

o
The quadratic lattice L,,/pL,, over the residue field f is nondegenerate for m = 0
and degenerate for m > 1. The special fiber of the smoothen of the group scheme
SO(L,,) is SOg,41 for m = 0 and O, for m > 1. The smoothen process is as defined

in [8] by Gan and Yu.
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For m > 0, let J(p™) denote the subgroup SO(L,,) of G(k). Namely,

Jp™) ={9 € G| gL,, C Ly},

while the condition that g preserves ( , ),, on L,, is automatic by ¢ € G. In
particular, Lo = L and J(0) = G(o) is the hyperspecial maximal subgroup G,, of G.

Furthermore, J(p) is the normalizer K., of the parahoric subgroup G,,.

We shall now define the open compact subgroup K(p™). It is a normal subgroup
of J(p™) and admits a smooth integral model. The definitions of J(p™) and K(p™)
depend only on the generic data (B, T, #) and are independent of the choice of com-

patible basis.

Definition 7.1.2. Define K(0) = J(0). For m > 1, define the open compact subgroup

K(p™) as the kernel of the composite map

det

SO(Ly) 2% SO(L,, /@Lin) — Oan(f) 25 {1},

By definition, K(p™) is a normal subgroup of J(p™) with index 2 for m > 1. Let
us follow the convention for n = 2 in [23] and denote by

wfm

Upy = € J(p™) — K(»™)

wm

a lift of the Weyl group element s., to Ng(T) in J(p™) that represents the nontrivial
coset in J(p™)/ K(p™). The element u,, normalizes K(p™) and is an analog of the

Atkin-Lehner element [ __» '] of PGLy. The element w,, also normalizes K(p™).

One should further notice that the hyperspecial maximal open compact subgroup
me = SO(@ oe; D pmf,)
i=1

of H is contained in K(p™). The following is a useful way to decompose K(p™).
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Proposition 7.1.3. Assume m > 1 is an integer.

(711) K(p™) = (Haz-exm) (H%“’)) H.,
(712) - (Hmw) (Hx_gxpm)) H,, .

Proof. The subgroup H is the fixer of the anisotropic vector vy in G and hence is
the fixer of vy € w™™L,,. By definition K(p™) is the stabilizer of L,,, (resp. its dual
L¥m under ( , ),,) which fixes @w™vy (resp. vg) modulo pL,, (resp. pLL}™). Therefore,
we can identify the orbit space K(p™)vg, which equals L, with the left coset space
K(p™)/(K(p™) N H), which equals K(p™)/H,,,. We claim we can use some operation
ZT_e,(p™)’s and then some operations z,(0)’s to bring any vector in L™ back to .
This is a tedious routine work. Assume v = Z?Zl a;e; + cvg + Z?Zl b;w™ f; for some
a;j,b; €0,9=1,2 ..., nand ¢c € 1 +p C 0*. Then by Hensel’s lemma there exists
¢, € o such that z, (—c;)v = v — (cc; +Ebyw™)e; +c1byw™ vy and cey + by w™ = ay.
Then continuing this process there exists ¢y, o, ...,c, € 0 such that one sees v/ =
[Ty enyr i (—Casr-i)v is a vector v’ of the form o' = (c+c'@™)vg+ 37, biw™ f; for

some ¢ € 0. Write ¢’ = ¢+ dw™ € 14+ p C 0*. Then this orbit of vy under K(p™)

n

becomes v = [[I_, x_ (—bpy1-ic" 1)V € (14 p)vy. Since G preserve a quadratic

€En4+1—i

form, and v is anisotropic, this scalar in 1 + p must be 1. Hence v = vy and the
claim follows. This shows the containment C side of (7.1.1)) while the containing D
side is clear. A similar argument with the lattice L,, shows (7.1.2)). O

As well we have:
Corollary 7.1.4. Assume m > 1 is an integer. The subgroup K(p™) is equal to

H,,, (H x_fi(pm)> (H in(0)> and Hg,, (H xq(°)> (H x_fi(pm)> :

Proof. This is gotten by taking an inverse of (7.1.1)) and (7.1.2)). O
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The open compact subgroups is really only defined up to conjugacy. The ones
we defined form two descending filtrations each with the same parity on m in the
sense that for each m there is one member in the conjugacy class of K(p™) in G such
that we have the descending chains of subgroups with the same parity on m. Let us

describe them in a more explicit way below.

Let C be the fundamental alcove in the affine apartment A(G) of T with respect
to the polarization ®,. The closure C of C is a fundamental domain under the action
of the affine Weyl group. For m € Z, the building points z,, are congruent to either z
or z1, depending on the parity of m. J(p™) = SO(L,,) is an open compact subgroup

of G and is contained in the (unique) maximal open compact subgroup K,, of G.

Definition 7.1.5. For integer m > 0, the congruence subgroup Ko(p™) is the unique

open compact subgroup contained in either K,, or K,, that is conjugate to K(p™).

More precisely, if m = 2m’ + e, e € {0, 1}, then Ky(p™) is a subgroup of SO(L! ),

which is the kernel of the composite map

det

SO(LY,) ™% SO(L), /wLy,) — Oan(f) &% {£1},
where
L, = (EDoe; @ p°fi) @ p™ v
=1

is the quadratic lattice in V. The quadratic lattices (L ,( , )) and (L,,,{ , )m)
are isomorphic. The open compact subgroups Kq(p™) and K(p™) are conjugate by

™ (erteetten) in T and H,, is contained in Ko(p™).

This family forms two descending chains by the parity of m. One sees
K(0) = Ko(0) D Ko(p*) D Ko(p*) D -+ D Hyy,

K(p) = Ko(p) D Ko(p?) D Ko(p®) D -+ D Hy, .
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7.2. K(p™) with m = 0,1
Moreover, any open compact subgroup K of G containing either H,, or H,, contains

Ko(p™) for some m > 0. Namely, we have

(713) on = ﬂm:evenK(pm)a and Hll = ﬂmIOddK(pm)‘

7.2. K(p™) with m =0,1

Recall that J(o0) is the special orthogonal group of the quadratic lattice L and is

hence equal to G(0). We thus have
K(o) = J(0) = G(o) = K,, = G, .

On the other hand, one can check that the parahoric subgroup G, stabilizes the
quadratic lattice I; and is hence contained in J(p) = SO(L,). Since J(p) is its

normalizer, and K,, is a maximal open compact subgroup of G. We obtain
J(p) =K, and Gwl = K(p)
while the second equality is gotten from the fact that the group in the first equality

contains G,, C K(p) with same index.

We conclude that when m = 0, the open compact group K(o) is the hyperspecial
maximal open compact subgroup G, of G; when m = 1, K(p) is equal to the maximal

parahoric subgroup G, of G.

Recall that in Chapter 2 of Part 1 we have many good property with these two

maximal open compact subgroups K,,, for ¢« > 0 integers.

The Iwasawa factorization G = B K, can then be rewritten as

G =BJ(o)=BJp)
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7.2. K(p™) with m = 0,1
and by the Cartan decomposition the double cosets of J(0)\ G/ J(0) have represen-

tatives {w’} \ep+, or equivalently,
G = Uyept K(0)@* K(o).

More generally, for any parahoric subgroup G,, denote by W, by the subgroup
Ne, (T)/ T(0) of the extended affine Weyl group We. Assume z, 2’ lie in the closed
fundamental alcove C'. Then G = U, G, 0 G, where ¢ runs through a set of represen-
tatives for the double cosets W,\Wq/W,. (See [17] Proposition 3.1). In particular,

W,, ~ Wy and let u; be a representative of K(p)\ J(p) then

G= (l_l)\epg K(p)oo K(p)) U (ukepg K (p)u o K(p)) ,

where P denotes the closure of the fundamental Weyl chamber for H. It is then

clear that since PT U u; PT = P so
(7.2.1) G = Uyepr J(p)&* J(p)-

Another way to view this is to see that K, contains a Iwahori subgroup for all integers
i. In particular, K;, = Usew: Giyo, Wi Gy, with W = W for all integers i > 0.

The result 1} follows W;q\Wg/W;Z = (T /T(0))"e.

As we have discussed in Section 3.5, these properties leads to the following facts

regarding the Satake transform on the Hecke algebras.

Lemma 7.2.1. The Satake transform S : H(G,K,,) = H(T,T (o)), f — Sf(t) =
(5}3/2@) Jo f(tw) du induces an isomorphism to H(T, T(0))"*: and is hence a commu-

tative algebra. Any simple H(G, K, )-module is of dimension at most 1.

Proof. This is a recall of Theorem [3.5.7] and Proposition [3.5.9, The last statement

uses Proposition to prove dimension at most one. O

95



7.3. Existence of Fix vectors
Lemma 7.2.2. Any simple H(G,K(0))-module is of dimension at most 1 and simple
module of H(G,K(p) is of dimension at most 2.

Proof. Since K(o) = J(0) so the first assertion is just a repetition of the previous
lemma. Since H(G,K(p)) = H(G,J(p)) + R, H(G, J(p)) as a subalgebra of H(G),
where R,, f(9) = f(gu1), and any H(G,K(p))-module map 7" : V; — Vs extends
uniquely to a H(G)-module map between H(G)V; and H(G)V,. Hence we cannot
have a simple H (G, K(p)-module of dimension more than 2 which is against the unique

extension property since H(G, J(p)) is commutative by the previous lemma. O

In general, we have:

Lemma 7.2.3. The commutative algebra H(G, K,,,) is a subalgebra of H(G,K(p™))
and there is a C-linear map from H(H,H,,,) to H(G,K(p™)).

7.3. Existence of Fix vectors

Assume (7, V;) is an irreducible admissible generic representation of G. Let G°
denote the group generated by the root subgroups U,, a € ®g. Assume 7 has no
subspace fixed by G°. We are interested in the fixed subspace VWK(pm), or equivalently
VﬂKO(pm), of the open compact subgroups K(p™), or equivalently Kq(p™), defined in

the previous sections.

The two families K(p™) and Kq(p™) both have their advantages so we will switch
them back and forth. For example, (7.1.3) implies that

(731) VTerO - Um:eveanK(pM)a and VTerl = Um:oddVWK(pM)7

while the containment between the subgroups Kg(p™) with the same parity implies

the contained between the fixed subspaces, namely

VKO(U) C VKO(p2) C VKO(p4) Cc---C VWHZO’
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7.3. Existence of Fix vectors

VKo — Ko(?) — Ko ... VWHM.

As a result of these properties, showing existence of fixed vectors of H,, shall implies
fixed vectors of K(p?) for certain N > 0 and hence existence of fixed vectors of K(p™)

for all N > m with same parity as m.

This leads to a existence and non-exsitence theorem of the fixed vectors.

Theorem 7.3.1 (Existence 1). Assume 7 is irreducible generic and supercuspidal,
then there exists a nonzero fixved vector of K(p™) for some m with both parities and
hence for all K(p™) with m sufficiently large integers. On the other hand, any irre-
ducible supercuspidal representation of G that is not generic contains no fixed vector

of K(p™) for any integer m.

Proof. By Lemma , VWHI" for both ¢« = 0,1 is nonzero when m is irreducible

generic and supercuspidal. By Corollary , VWH” is zero for ¢ = 0,1 when 7 is

irreducible supercuspidal but non-generic. U

On the other hand, we have nice properties with the fixed vectors of K(p™) which

separates vector of different “level” m, and the term level is hence well-defined.

Proposition 7.3.2. n > 2. Let vi,vs,...,v,. be nonzero vectors in V, and v; is
invariant under K(p™) for 1 < i < r with distinct m; > 0, then they are linearly

independent.

Proof. Without lost of generality suppose m; > mg > ... > m, > 0, and v; + vo +
... + v, = 0. Let X be the group generated by K(p™) and K(p”2) N ...N K(p™") and
fixes the vector

v = —(va+ ... + ;).

We claim that ¥ contains G and hence v; must be zero which leads to a contradiction.
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7.3. Existence of Fix vectors

For v € ®¢ with root subgroup U, contained in Z, one sees
zy(p7™), 2 (p™) C K(p™) C X, and

T_(p™), x,(p7™) C K(p™?) N...NK(p™) C X.

The group ¥ therefore contains z., (p™2~2™) = “s»mg__ (p™2). On the other hand,
T (p*™M72) C 2 (p™) C X = Wy 2my—me € X. Then the element 5(ww™ ~™2) =
Wy W, 2my —msy, 15 also contained in ¥, Conjugating 2,(p~"") and z_,(p™) by

arbitrary power of §(w™ ~™?) we get Uy, (k) C X for v € Og.

One can conjugate z,,(0) C K(p™!) C 3 by arbitrary power of ¥(ww™~™2) for all
such 7. Then one sees all simple root subgroups are contained in the group ¥ and
so are all positive root subgroups. By a similar method all negative root subgroups
are in ¥ as well. T(o) is contained in K(p™*) and hence in ¥. The group X therefore

contains the Chevalley group G°.

By assumption, there is no nonzero vector invariant under G¢ hence under 3.

This is contradict to vy # 0. 0

Definition 7.3.3. Every nonzero vector in 75®™) is called a fized vector of level m.

Proposition 7.3.4. dim VX < 1 and dim VA® < 2.

Proof. Since Va-®") is a simple (G, K(p™))-module so it follows by Lemmal7.2.2, [

Proposition 7.3.5. If m has conductor a, = 0, then dim vEe — 1,

Proof. If a, = 0 then the representation is unramified and /A58 # 0. Since K(o0) =

G(o) and by Proposition m dim ViV < 1, so the dimension must be 1. O

In general, we have the following theorem regarding the fixed subspace at level

smaller or equal to the conductor a, of the representation.
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7.3. Existence of Fix vectors
Theorem 7.3.6 (Existence 2). Assume 7 is irreducible and supercuspidal, then
dim VWK(paW) < 1 and dim VWK(pm) = 0 for m less than the conductor a,. Moreover,

Q(v) is a constant for v € yRem),

Since VWKOJM) C Vi for each integer m > 0, we shall prove Main Theorem
by the C-linear map (2 : Valem <, constructed in Section 5.4. Recall that
S = C[T]WM with a grading @g4ez- 4. Let us first prove a lemma on the image of

VﬂK(pm) under {2.

Lemma 7.3.7. Assume v € VA" s q fized vector of level m > 0. Then
Qv; X1, X, ..., Xy) € Bo<d<m—arTnd-
Proof. This is by the facts that z, (0),z_c, (p™) C K(p™) and Proposition [5.4.3, O

Let us prove the second Existence Theorem.

Proof of Theorem [7.3.6. If m is not generic, then the Existence Theorem has
shown dim VEP™) = 0. Assume 7 is generic and assume there exists a nonzero fixed
vector v € V&®") of some level m. Then by Lemma [7.3.7| and the degree of Q(v),
we get m — a, > 0 and if m = a, then we claim Q(v) lies in C. If Q(v) ¢ C for
some v € VWK(”%), then the image of Q(v; X7 1, X5, ..., X1 in ©40-p.q is nonzero.

However, the functional equation (5.4.2)

Qu; X771 X5 X = Qw03 X1, Xo, oy X))

? n

, the vector w, v € VEE") is nonzero but Qwa,v; X1, Xo, ..., Xp) ¢ S0, which is a
contradiction. The claim follows. Since ) is injective on each Val*m 50 the dimension

of VEP) ig less than or equal to 1. O

Remark 7.3.8. We have remark at the end of Chapter 5 in Remark that the

results we have used to prove the second Existence Theorem still hold after relaxing
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7.4. Fixed vectors at the level equal to the conductor
the condition that 7 is supercuspidal. Hence the second Existence Theorem is also

true for non-supercuspidal representations.

7.4. Fixed vectors at the level equal to the conductor

By the Existence Theorem 2, the conductor is the minimal possible level of a
nonzero fixed vector. We have seen the uniqueness of such vector. In this section, we

shall investigate more property of vectors at this level.

For simplicity we shall still assume 7 is irreducible generic and supercuspidal,

which implies the L-factors are trivial.

Recall that the conductor is defined by the e-factor, or equivalently the functional

equation. We have two useful functional equations:
I(upv, 1 —5s) = 5ﬁq(m*a’*)(s*%)1(v, s), Yv eV,

Qwmv; X4 X5 X = e T ™ Qs X, Xoy ooy X)), Yo € Ve,

)

In particular, for v € VEP) e have

I(ug,v,1 —5) =¢e I(v,s) and Qw,, v) = erQ(v)

and both are equal to some constant functions.

. . . . K(par .
Assume there exists v, which is a nonzero vector in Vi (). We obtain the

following properties.
Lemma 7.4.1. I(v,,s) = vol(0*)lp(vs) # 0 and u,, v, = €,0,.

Proof. Since v, is nonzero so §2(v,) is a nonzero constant by Theorem which
let us normalize to 1. Therefore Z(v.) = [],<;.;<,(1 — ¢7'X;Xj), and hence has
nonzero constant term 1 in .#,. On the other hand, the constant term of Z=(v,)

equals vol(T(0))W,(I) = vol(0™)"y(v,). Hence £p(v,) is nonzero. By using this, since
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7.4. Fixed vectors at the level equal to the conductor
Uq, Vs = €V, for some € € C by dimension one and €l (v,,1 — s) = [(uy v, 1 — s) =

exl(vs,s) # 0 is independent of s, so we get € = &,. O

Proposition 7.4.2. The Whittaker functional €y is nonzero on v, and the order two
group J(p®~)/ K(p®~) acts on the subspace VT by a quadratic character which

equals to the root number .

Proof. Since u,, represents the nontrivial element of J(p®~)/ K(p®~), so the assertion

follows the previous lemma. O

Proposition 7.4.3. The C[T]"u-submodule Q(Vy'*") of .7, contains C[T]Ws.

Proof. Z is a C[T]"#-module map on V4= hence so is . Since the image contains

a unit 1 because Q(v,) =1 for a vector v, in Vi so the assertion follows. O

To end this discussion, let us give some examples of supercuspidal representations

with a nonzero fixed vector at the level equal to the conductor.

Example 7.4.4. Let 7 be an inflation of an irreducible cuspidal representation 7 of
G(f) ~ Gy / G, to Gg,. Assume 7 is generic in the sense that the Z(f)-covariants
Tz(5) is the standard representation ind?:; 1 of Gelfand and Kazhdan of the mirabolic

group P, 1. The compactly induced representation
— indG
m=indg, T

of G has a nonzero subspace of G‘,jo—invariants which is isomorphic to 7 as a G,-space.
Hence 7 is a generic depth zero supercuspidal representation of conductor a, = ZnD

By Mackey’s restriction formula we have

ETe! _ . 1Ko (p?™) g
Ko (p2n) = 111dGm0 T Ko(p2n) = g 111dG§E0 AKo(p2n) T |Ggo AK(p2n)-
9€Gazy \ G/ Ko(p?")

n [7], DeBaker and Reeder conjecture that all generic depth zero supercuspidal representations of
G are arisen in this way.

101



7.4. Fixed vectors at the level equal to the conductor
There exists g = @~ 2i=10~1% ¢ T such that the intersection € of G,, with the
group Ko(p?*)?~! has image “* By(f) in the reductive quotient G(f). Then since
T|Bu(fem = ind} 1™ 1 contains a trivial representation of Bu(f)“™, so the represen-
tation 7|k, y2n) contains a trivial representation of Ko(p*"). Hence the fixed subspace

2 .
7Ko(r™) is nonzero.

The example above was modeled by Mark Reeder and is the supercuspidal rep-
resentation of G with the smallest conductor. The next smallest conductor is 2n + 1
and occurs as the conductor of the simple supercuspidal representations of minimal

positive depth 1/2n.

Example 7.4.5. Let G/* be the prop-p-Sylow subgroup of G;", the pro-unipotent
radical of the Iwahori subgroup Gy, occurs as the next Moy-Prasad subgroup of G,
in the filtration G, > GT D G/ D ... and we have G} /G ~ &7 Uy, (f). Set
K} =K,NG;. Let

— in ]G
™= 1nde+X

be a simple supercuspidal representation for some affine generic character y, which
is the inflation of a character on G / G} to K; and is generic in the sense that it

is nontrivial on Uy, (f) for 0 < i < n. By Mackey’s restriction formula we have

el . 1Ko(p2nt!
7T|K0(P2"+1) = 1ndKl‘j‘ T|K0(P2n+1) - Z 1nd(I§j)gﬁK())(P2”+l) Xg|(K;)ng(p2n)'

9€Ky \ G/ Ko(p?+1)

There exists g = o~ 2i=10~14 ¢ T such that the intersection € of K, with the group

Ko(p?t1)9=! has trivial image in the quotient G; / G+ ~ @I, Uy, (f). Then since

X+ AK(p2n)o ! is trivial, so the representation 7|k, 2n+1) contains a trivial represen-
b

tation of Ko(p2**') and the fixed subspace 750®*"™) is nonzero.

102



CHAPTER 8

Action of the Hecke operators

In the previous chapter, we defined the open compact subgroups K(p™) for G(k)
and have discussed many properties for the groups and the subspaces fixed by them.
It is natural for us to look at the action of the Hecke operators given by bi-K(p™)-
invariant functions on the fixed subspaces K(p™). Since the subgroups contains the
hyperspecial open compact subgroups H,, of the smaller orthogonal group H(k), the
action will be very close to how the spherical Hecke algebra act. We hence will be

able to see many nice properties carried by such operators.

In this chapter, we will define the level raising operators, which sends fixed vectors
of smaller level to the larger ones, by using the spherical Hecke algebra for H(k). Then
we put our attention on the Hecke actions of K(p™)-double cosets. Some of these,
which we shall call 77, T5,..., T}, can be simultaneously diagonalized and make the fixed
subspace VWK(pm) decompose into common eigenspaces. From this observation, we then
argue about the vectors at the minimal level and shall prove that this subspace must

be of dimension one.

We will fixed the notation as defined in Part 1 and denote by b the barycenter of
the fundamental alcove C'. The alcoves containing x,,, £b contains both x,, and z,,+1.

The parahoric subgroup H,, . is a Iwahori subgroup of H with Iwahori factorizations

Hy oo = (HypooNV)(Hy,,0oNT)(Hy, a0 DV)

= (Ha,+6N*° V) (Hy, 15 NT)(Hy,, 26 N“°V)

103



8.1. Level raising operators
and contained in the parahoric subgroups H,,, and H,, ., with H, 4, /HS =~ By(f),

Ho,so /Hy = “m By (f) (or o, /HY > Bu(f), Hopimo /Hy |~ “m1By ().

Tm+1 Tm—1

We have decompositions

me = U Hmerb Ws,m H$m+b> and Hlmj:l = U meib Ws m+1 meib

seWy seWy

where again wg, (resp. wsm+1) denotes any lift of s to H,,, (resp. Hy, ., ).

8.1. Level raising operators

Since the union of the fixed vectors under Ky(p™) is equal to the union of the

fixed subspaces of H,, and H,,. That is, we have
Uz VO™ = vl gy,
To produce a fixed vector from another, we consider the action

(8.1.1) b= /H S(W)w (WY dN, Ve H(HH,, ), VoeVHen

for integers m defined in Section 5.3.

Recall that we have an injective C[T] Wi_module homomorphism
=: VR - C[T]
satisfying that for P e C[T]"#, v e vy

(8.1.2) P

[1]

(v) = E(su(P) * v) in C[T]"™.

For v € Ko(p™) and nonzero ¢ € H(H, H,,), the vector ¢ * v is then a nonzero fixed
!
vector in VWKO(p ) for some level [ with same parity as m. Note that the vector space

H(H, H,,) is generated by the characteristic functions of the double cosets H,, w* H,,,
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8.1. Level raising operators

A € Pf. We introduce the following notionE]: the norm of a co-character X is the

map || - || : Xe(T) — Z such that
(8.1.3) Al = max i, if A = Zlme

This integer-valued function satisfies the triangle inequality and ||A|| = 0 if and only

if A = 0. Moreover, it is preserved under action of the Weyl group.

Proposition 8.1.1. Define ¢ € H(H,H,,) as the characteristic function of the
double coset Hy, @w*H,,. Then ¢, : Vo™ _, y Kot form =i ( mod 2) and
Al <L

Proof. This is implied by the fact that

il (H %(pmlﬂ)) (H f’f—w@”"”*")) @ C (H %(pm’)) (Hx_6i<pm’+i>) .
l

There is an isomorphism between the fixed subspace of K(p™) and the one of

Ko(p™) by translating by oM e G

2m/+i) 2m/+i) /

Y Kolp — VKOG , Ve ov=mn(w

_m/)\M)UI,

for integer m’ > 0 and ¢ € {0,1}. (Recall \M =€, + €3+ ... + ¢, € Xo(T).) We define

for A € Pﬁ“ the level raising operators 7, as follows:
(8.1.4) na(v) :/H . w(w—(m’JrII)\H))\Mh—lwm’,\M)v dh
which is equal to

(8.1.5) m(v) = mw(h)v dh.

H, o= OFIXIAM) Ho,
m

2(m/+||A|)+i I+

!The definition is credit to Cheng-Chiang Tsai and the action is inspired by [22] in the PGL(n)
case.

105



8.1. Level raising operators
Then this operator induces an injective map from fixed space of lower level 2m’ + i

to fixed space of higher level 2(m/ + || A]|) + 1.

In addition to 7y, to go to level with different parity, we define #, to be the

operator
or) = | r(g)o dg, v € VE®
K(pm+th)w=AK(p™)

by the Hecke action. This gives us an operator which raises the level by one. Similarly

the Hecke action gives operators

Mmzf gy dg, v e VKO
K(pm—1)wr K(p™)

which lowers the level by one. That is,

m+1)

Or = [K(p™ o A K(p™)] : VT = e

on = [K(p™ )@ K(p™)) : VO — Ve,

™

We also define the companion operators
O\ = Wmy1 00\ 0wy, and dy = wy,—1 © Oy © Wy,

We remark that when A is minuscule, the level raising (resp. level lowering) oper-
ators 0, (resp. d,) only give two distinct operators. This is because for each s € Wy,
one has

K(p™ o™ K(p™) = K(p™ ) w, mar @ wgm K(p™),
while wg y11Ws ,, exhaust @™ for A\ minuscule co-characters listed above. We follow
Roberts and Schmidt [23] and define the dual operators

03 = Upmt1 © 0 0 Uy, and 6y = Uyy—1 0 I O Upy,.

Then these level raising operators ) (resp. level lowering operators d,) for minuscule

A are equal to either of the operators 6y and 6 (resp. the operators dy and J;).
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8.1. Level raising operators
Definition 8.1.2. The level raising operators on the fixed subspace VEP™) of level

m are the injective linear maps ny, A € P, and the operators 6, and 6;.

Let us now show that 6 is also an injective linear map. This implies that 0., = 0;
is injective as well. (However, in general the level lowering operators are not injective

unlike 6y and 65.)
Proposition 8.1.3. fy(v) = fK(pm+1)K(pm) m(k)v dk # 0 for nonzero v € VE®™).

Proof. Using the decomposition K(p™) = H,,, (1=, 7 (0)) ([T, z—c, (p™)) we can
get K(p™)K(p™) = Hy,\, K0™) = Usewy, Hotan Wompr K(p™). One also sees

Hyt s, Wsmi1 Hay, = (Hpsw,, N0 V)W 1ws—1,, Hy,o which implies

Tm

K(p™™ K™ = | Z0™™") Na(0)wmsr w1 K(p™).

seWqy

Here wg mi1ws-1,, lies in T and equals to @" for some p € P;{ such that (u,¢;) €

{0,—1} for 1 <i < n and deg u is even.

Assume 6y(v) = 0 then it implies W, g,s)(@”) = 0 for all A € PT. Notice that

“n (Z(p™ )N, (0)) = N(0) Z(p~™*!). Since w,,fy(v) is a positive sum of

Z Z 7(znw™ ) (W)

2€Z(p~mH1/p=m+2) neNy(o/p)

with (i, ¢;) € {0,1} for 1 < i < n and deg u even. For A\ € PT, we get W, g, (™)
is a positive sum of W, (= ).

Since w,,v € Ve s nonzero, so Wy, ,|r # 0. Take A to be the maximal element
in P* under the Bruhat order > such that W, ,(w”) # 0. (This is feasible since
Z(wmv) is in C[T].) Then since for 1/ # 0, A+ i/ > 0, we get that 0 = Weonto(v) 15 @

multiple of W,, (@) # 0, a contradiction. Hence #y(v) must be nonzero. O

Corollary 8.1.4. If VP9 # 0, then VEP™) s nonzero for allm > c.
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8.2. Hecke operators

Proof. This is immediate by injectivity of the level raising operators n) and 6y,. [

Before we end this section, we give an early version of the dimension count.

Proposition 8.1.5. Suppose ¢(m) = p°™) is the mazimal ideal such that the fized

space VﬂK(C(W)) s nonzero, then
dim V") = dim Vot > # {A € Py | IAll < {m_TwJ }

where Pg denotes the fundamental Weyl chamber of H.

Proof. We recall that ¢y, A € Py, forms a basis of H(H, H,,) and the linear map = on
7= is a H(H, H,, )-module homomorphism. Take any nonzero vector v in YRoe™)
(or Bo(v) € VR i the parity does not match) then v € Va'" and E(v) # 0, we
get Z(dy x v), A € P are linearly independent. The statement follows the fact that

e(m)+2]All)

dx % v sits in Vil C Vao® for e(m) + 2| Al < m. u

8.2. Hecke operators

The decomposition

provides some advantages in working with the double coset of K(p™), especially those
ones whose double coset representatives are in the maximal torus. The computation

can then be reduced to computing the double cosets in H,, T H,, on which one has

Tm
the Cartan decomposition and where the Iwasawa decomposition can also be useful.
In this section, we will first work on the composition of two Hecke actions of double

cosets. In the next section, we will look at how the values of the Whittaker functions

varies after applying the Hecke action.

From now on, we assume that the rank n > 2 and the level m > 2.
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8.2. Hecke operators

We consider A to be the minuscule co-weights
)\1 = €1, )\2 = € + €9y uny )\n—l = €1 + €9 + ...+ €n—1, and

Mm=€+eé+..te1+en, A =€1+e+ ... +€1 —€n

in Pﬁr. Denote by T; the Hecke operator ChK(pm)wki K(pm™) and T its dual w,, o T} o uy,.
Then T is equal to the operator ChK(pm)w)\;"L K(pm)- Assume 7 is a supercuspidal
representation of G. Then 7 is unitary and has a G-invariant Hermitian form on the

space V.

For open compact subgroup K and h € G, let us denote the Hecke operator on
the VX given the characteristic function of the double coset KhK by Tj, and write
Ty for T_x. Then one has (Tjv,w) = (v, T-1w) for v,w € VX. That is, T}, and
T}, are adjoint. Then on the fixed subspace VWK(pm), one sees 11,75,....,T,_1 and
T =T, + T are self-adjoint. A self-adjoint operator on a finite dimensional vector
space is diagonalizable. We shall show that the operators 71,75, ...,7,,—1 and T/

commute and hence can be diagonalized simultaneously.
Lemma 8.2.1. H,,, @ H,, = Usewy, Ha, 1o @M H,, , if A € P minuscule.

Proof. For 1 < i < n —1, one has wg(\;) = —X. On one hand, A € P implies
@ (Hy, 15N V)™ C (Hy,,45NV). On the other hand, (H,, ., V)" C H,, 1.

Therefore since wy can be lifted to H, ., by using the Bruhat decomposition we get

Tm

A
Hl'm w me

H, = *H,,
= LJSEVVH me"l‘b ws,m H:L‘m-‘rb w_A me

-
- USGWH Hmm—l-b Wsm™W Hmm

- US’EWH H:vm-l—b wS/(A) H
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8.2. Hecke operators
For A\ = A, or X\, one can check w s (H, ,,NV)z®"N c (H,, ,NV) so a

simliar computation as above leads to same conclusion. O

Using the decomposition of K(p™) we have

K(p™)w* K(p™ )" K(p™)

= U K= [T [T (0 oo = K(07)

seWqy

= U K™= [[ 2 (0 Hm (™) (Hysa, NP)(Hy, 4p NZ) ™ K(p™)
=1

seWy
= U Kopm@* [[2a(o/p) H T (PPN Z( ! ) U K ()
seWy =1 =1

In the computation we use the fact that © (H, ,,NP) c K(p™), and

n n n n

[Tzate) [ o™ Hepso NPYZ(p™ ) € (o, NP) [ T e (0) [ [ e (™) Z (0™ ).

i=1 i=1 =1 =1

For A =X;, 1 <j <n, or A =}, the decomposition is equal to

K(p™) @ K(p™)w" K(p™)
_ U ’{D xen H T m/pm—H ( m+1/pm+2) ws(u) K(pm)
seWqy

For each root «v of Lie(Z), if (A, —a) = (s(u), ) = —2, then for b, € 0%,

7o (bew™ @ W = 2, (b o T w Mg, 1 P (bt ™.

Since Wy, mTa(by '@ ™) € K(p™), Wy mirWyt,, = @ * and sq(s(p)) —a = s(p) +

a, we obtain that

w)\x_a(bawm—&—l)ws(u) K(pm) — xa(b—lw—m—kl)wkws(u)ﬁ—a K(pm)

o
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8.2. Hecke operators

Otherwise, we get
K(p™)o e _a(baww™ e K(p™) = K(p™)o o™ K(p™)

and the factor z,(b,@™ ™) can be eliminated from the representative of the double

coset since x_,(p™*!) commutes with Z and [[_, z_, (p™). We obtain
K(p™)e K(p™) =" K(p™)

= U Ko@) ][ pm e 0K Em).
seWy,v>70 i=1

(s()+ 1) =0

(A=v,v)=0

Here >7 represents the Bruhat order on X,(T) with respect to roots in Lie(Z).
Then we have for (¢;)1<i<n € (0/p)", and ¢;,¢; € (0/p)*,

x—Ei(ciwm>x—€j(Cjwm> = xez‘—ej(Ci_lcj)x—ﬂ(ciwm>x€i—€j(_Ci_lcj)'

Then if (A, —€;) = (A, —€;) = (v + s(p), &) = (v + s(p), ;) = —1, we get
K(p™) @ e, (™), (c;@™) K(p™) = K(p™ )@ e, (™) =" K(p™).
Since U, ., commutes with U_, for i’ # i, j, we conclude that

K(p™)w* K(p™ )" K(p™)

= U K(p™ @z, , (0/p)r—e,, (0" /") K (p™)
seWy,v>70
(5(1)+1,0) = (A} =0

= U K(p™)ya e, (07 o)e e, (0" /p™) K(p™)

seWy,v>70
<S(N)+V7V>:<)‘7V7V>:O

where iy, is any index ¢ such that (\,—¢;) = (v+s(u),e;) = —1 and the factor

T, (p™ /p™ 1) is eliminated if there is no such 4; while j, , is any index j such that
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8.2. Hecke operators
(As€j) = (v +s(n), —¢;) = —1 and the factor x.,  (p™/p™*") is eliminated if there is

no such j. We note that (s(A) +7s — g — v,i5,) = (S(A) +7s —p — 1, js) = 0.

Proposition 8.2.2. (m > 2) The operators Ty, Ts,...,T,_1 and T, commute with

each other on the subspace VﬂK(pm).

Proof. We note that T\ o T,(v) = fK(pm)w/\ K(pm)ot K (p™) m(g)v dg for some suitable

choice of Haar measure dg. This statement is trivial for n = 1. We assume n > 2.

Assume \ and p are minuscule co-weights in Py . Recall that we have shown

K(p™)=* K(p™)w" K(p™)
= U K(pm)a e, (07 o)z, , (0" /p™) K(p™)
seWn,v>70

(s(p)+vv)=(A—v,r)=0
where i, ,, is any index ¢ such that (A, —¢;) = (v + s(u), ;) = —1 and j;, is any index

J such that (\,¢;) = (v +s(p), —¢;) = —1.

On the other hand,

K(p™)=" K(p™)a=" K(p™)
- U K(pm)e W, (p7 fo)e—e, (0™ /P K(p™)
seWy,v>70 ' ’
(SN +10)= (- =0
= U K(pm)e” e (pm T e, (b7 /o) K (p™)
SIEWH,szo ’ 7
(A—vp)=(s'(p)+v,v)=0
- U K& e 0 e, (07 o) K(p™)

s'eWy,v>70
<)‘7V7V>:<Sl(:u‘)+'/»l/>:0

where 7, , is any index i such that (u,—€;) = (v +s()),¢) = —1 which implies
(s'(p), e9)) = (—v+ A, —€g()) = —1 and hence equivalent to (s'(1) + v, €g¢)) =

(A, —€g@)) = —1, similar for j; ,. The second equality is by conjugating by wy ,, €
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8.2. Hecke operators
K(p™) such that s'(s(A\)) = A and the third equality is by conjugating by wj ., such
that v, = w” provided that (A + s'(u),v) = 0.

Note that (A +v +s(u),€j,,) = (A+v+s(p),e,,) = 0. If either iy, and j,,

both exist or (A + v + s(u), €;) = 0 for some k not equal to either i, js,, then since

w e {(wsek,mwseisyy,mx (wsek,mwse-

Js,v

m)s (wseis,u,mwsejsﬁu,m” C K(p™),

one has (w chosen depending on existence of i, js, and k)
K(pma* ™ We  (p7 o)z, , (0" /p™) K(p™)
— K(pm)w <w>\+u+s(ﬂ)x5js,y (p—l/o)z_eis’y (pm—l/pm)> wl K(pm)

= K@M Wa_ (0" e, , (07" /o) K(p™).

In particular, any k such that (v,e;) # 0 satisfies (A + v+ s(u), ;) = 0 and k #

isvs Jsw- Lherefore to compare Ty o T, and T}, o Ty, we only need to compare the set

U K(pm)y@* e, (p7 /o)o (0™ /P K(p™)
s€EWH, (A s(p),€:)#0,Vi#Eis 0,4s,0
As(u)tei, o e, o €L

with the set

U K(pm)y@* e (" fp™)ae, (07 /o) K(p™),

sEWH, (A -s(p),€:)#0,Viis 0,750
)\+S(M)+6is,0 +€js,0 EPI:IF

with v taken to be 0 and (A + s(u), €;) # 0,Vi # 150, js0, while s is taken to satisfies

A+ s(p) + €, + €5, € Py since K(p™) contains lift of the Weyl group Wy of H.

We first note that if 7 + j < n, then for A = \; and p = A;, these two sets are

empty by looking at the degree of A + s(u). Hence T; 0 T; =T; 0o T} if i + j < n.
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8.2. Hecke operators
Assume A = A\, and g = Aj and 4,5 # n, i+ 7 > n. Then ;0 < i < n
and there exists no jso. In the subindex set {s € Wy | (A +s(u),€) # 0,Vi #

is0, A+ 5(p) + €, , € P}, the co-characters A + s(u) + €., take
/\n + /\(i+j—n) and )\;‘; + )\(H-j—n) with ¢ +] —n S is,O S 1.

For each i + j —n < i,9 < 4, since (A, 4+ A(igj—n—1) — €i, 0 €iso) = 0, the set
K(p™)eh om0 =Chog . (p™ ! /p™) K (p™)
U K(pm)@ e o (o7 ™) K(p™)
by conjugating by ws, mws.. m € K(p™) is equal to the set
m An+A(iqj—n)—€ig -1 m
K(pm)a esn oz, (p=! /o) K(p™)
m AL+ A4 j—n) —€ig -1 m
U K(p™)w e or, (p7 /o) K(p™).

Therefore comparing K(p™)ww™ K(p™)wt K(p™) and K(p™)ww K(p™)w? K(p™) we

again obtain 7; o T; = Tj o T;.

We claim that (1,,471,")oT; = Tjo(T,,+1,) also holds for all 1 < j < n. Recall that
we only care about either i, or js exists. Note that in K(p™)w*s K(p™)wwt K(p™)

and K(p™)w* K(p™)ww*» K(p™) we have for j < is0 <N
K(p™)a* 1t (p7" /o) K(p™) = K(p™)y@ Y1 "o (p™ " /p™) K(p™),

K(p™)et =tz (p7 7 /p™) K(p™) = K(p™)yw Yo, (p7" /o) K(p™)

by conjugating by (ws,, 0+6n7m) € K(p™). We only have to compare the sets
K(pm)w)\n+)\jf1*eis’0x_qsyo (pm—l/pm) K(pm)7

K(p™)ao = "oz (p" /™) K (p™)
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8.3. Hecke eigenvectors

with the sets
K(pm)a "o, (p7! /o) K(p™),
K(pm)a "o, (p7! /o) K(p™)

for s € Wy, j <'iso < n. We see they are the same by conjugating by w;,_ m- U

O+en7

As a result, we see that for m > 2 the subspace VWK(pm) decomposes into orthogonal

direct sum of common eigenspaces of the Hecke operators T4, Ty, ..., T,—1, T}.

8.3. Hecke eigenvectors

We call a vector in VEX®™) a Hecke eigenvector if it is a common eigenvector of
T, Ty, ..., and T]. Let v € VEP™ be such a Hecke eigenvector. Denote by p;
the Hecke eigenvalue of T),, 1 < i < n and by p, the Hecke eigenvalue of 7! of v.
Let ¢,(v) the value of its Whittaker function at @, namely ¢, (v) = W, (w") In this

section, we obtain a relationship among these numbers attached to v for all v € PT.
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8.3. Hecke eigenvectors
We begin with the computation of the double coset K(p™)w? K(p™) for A minus-

cule co-characters in Pg .
K(p™)=* K(p™)

_ ELVJV 1j1::1:6i(0) (]j T, (pm)> Hy o, @V K(p™)

-~ ELaJV lexei(O) <lj T (pm)> (Ns(0) Z(p™™)) (Hpa,, V) "V K(p™)
= ELVJV ﬁwez(t’) Ni(0) (ﬁ x—ez(pm)> Z(p™™) (Hp sz, V) N K(p™)
- LVJV N, (o) (H wgl<o>> Z(pm) (H <pm>) (Hyp,, V) "V K (p™)
_ ELVJV (K(p™) N U) (]j xei(p’")> (Hpyz,, NV) * P K (p™).

We shall do some algorithms to best replace negative roots by positive roots. Since

H,, @ H,, C U,<n V@ H,, where <y is the Bruhat order with respect to ®;,
it is expected to be contained in U,<,» ([Ti_; 2—¢ (p™)) Uw* K(p™). For notation
convenience, we will also denote by <y the Bruhat order on X(T) with respect to

roots in LieZ and <y to be the Bruhat order on X,(T) with respect to CIDIJ(/[.

We use the following nice tricks to do the job.

Lemma 8.3.1. Assume for some 1 <i < j<mn, (7,6 +¢€;) = —2. Then

Teie; (0T @TK(P™) = @V K(p™) U e, (7" 0% )" T K (p™).
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8.3. Hecke eigenvectors

Proof. Let ¢ € 0*. Then x_,_ (cw™ )" K(p™) equals

WL (co™ ) K(p™)
= @' Zeite (c_lw_mﬂ)wséﬁej m—1Zete, (¢l T K(p™)
_ w»yinJrej (Cflwferl)weiJrEj K(pm)

— xéﬁ_ﬁj (C—lw—m—l)w’y—i-eﬁ—ej- K<pm)

On the other hand, z_,_, (p"?)w? K(p™) = w” K(p™) by the assumption.

Lemma 8.3.2. Assume 1 <i < j <n.

(1) If (v, €; — €;) = —2, then

Te,—e(P)w Kn(p™) = @ K(p™) U e, (@ o™ Juw? =9 K(p™).
(1) If (y,€; — €j) = —1, then

ey ()5 Kn(p™) = 57 K(p™) U, (5 0" Ju* =5 K (p™).
Proof. This is a very similar argument as the previous lemma. We omit it here.

Let us write each s(\) as a sum

(8.3.1) s(A) = s(A)4 —s(N)-

— s(A) ¢ if deg s(A)_ is even
s(A); — e, if degs(A)_ is odd and is = max; (s(A),€;) <0
and the numbers 1 <14y <ip < ... <igr <nand 1 <ji <ja <. <jg; <nas

8()\) = (6]'1 -+ €jy + ...+ do;_) — (61'1 + €io + ...+ Eids_),
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8.3. Hecke eigenvectors

where dF are the degrees of s(\)..

Algorithm 1. Assume we can take ¢ < j to be the smallest two indices such that

(s(N), € + €j) = —2. One notice that

[T vaa=Vkem = I oo o @)=V KE™).

1<i<k<n 1<k I<dT, ji.gi>0.

The commutator of z, 4, (p~™ ") with H T e, (P i H Te,—e; (0)Te,—c; (0).
JkoJi>1,J Ji>t.3

Hence by Lemma and (s(\) + ¢ + €, € +€;) = 0 we have

I z—a-ea 0™ @VKE™ = [] 2—a-a(@™)amVKEm)

1<l<k<n (L,k)#(4,9)

U H Teme, (0)$€j_€jl (O)xeﬁ_ej (w—m—10><) H T, (pm+1) wS(A)-i-ei-i-ej K(pm)

Ji>i, Lk#i,j
Repeating Algorithm 1 we obtain that

[ vaat™)aVKEm) =

1<i<k<n

U [T I e (@zs@ ™ o) = Kp™)

278N, (pop—5(A)=0 BEJ,_s(n) €ite; =B, J1>%.]
where the notation p >z s(\) means p — s(\) is a sum ) + 52 + ... + 5k of roots S;

in Lie(Z) uniquely determined such that 8; — 8; > 0 for i < j and J,_s) = {8},

The commutators of z, e, (p~™ ") with N, (p) lie in Z(p~™). Hence we see that

for ¢ = (c1,ca, ..., cn) € (0p)™, (bg)s € (0/p)3s,

(K(pm) 1) (Hx_excmm)) S Na(0) [ wslbsm ) (o) =

BeJufs()\)

KpE™MNU) [ 2o pem e (bpejmzp(bgm ™) (H w—a(cz'wm)) N,.(p) T(o).
BGJM—s(A) i=1
eitej=p
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8.3. Hecke eigenvectors
Algoritm 2. Assume we take i < j so that 7 is the smallest number and j is the
largest number such that (u,€e; —€;) = =2, p >z s(\) and (u, pp —s(A)) = 0. By a

similar argument as in Algorithm 1 since

[T ze-am= Ko™ = [T II e )| =" K™

1<k<i<n 1<k<dy 1<I<dy,j;>ij
by Lemma we have

I[ zea®aKem= J]  zealm="KeE™u

1<k<i<n 1<k<i<n, (k,1)#(i,7)
—1_x ptei—€; K(p™
H Lej,—e; (0)1’6176% (0) | Temes (@™ 07) H Te—e,(P) @ (p™).
i<ji, 1k <J 1<k<i<n, k,l#i,j
Repeating Algorithm 2 we obtain

[ aem="Kem)

1<k<I<n

= U II II #e-o©)e, (@zs(w o*) =" Kp™)

v>mp BEL i<y, i<
(v,v—p)=0 € €=

where the notation v >y 1 means v — p is a sum 3 +y2 + ... + 7 of roots in Lie(N,,)

such that 8; — 3; > 0 for i < j and I,_, = {B;}_,.
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8.3. Hecke eigenvectors
Hence together with a computation of the communicator with z_.,(p™) we can

conclude the following. For &= (¢1, ¢y, ..., cn) € (0/p)", b= (bs)s € (0/p)s

(K( <H33 € ) (Hptz,, NV) @V K(p™)

= U KEmnU) [ walbsem Dagbsejmws(bsw ™)
p>z8(N), v>nMp BEJ—s(n)
(,p—s(A))=(v,y—p)=0 €ite;=p
(H fcei(ciwm)) [T #sbs= ) =" K(p™)
i=1 Bel,_,
= U KEmnU) [ walbsem Dz (bsejo)ws(byw ™)
u>z5(\), v>Mmp BEJu—s(x
(popp—5(N))=(v,v—p)=0 €i+ej=p

H H x_ej (bgepw™ N wp(bsro! (H T (c;im™ ) @ K(p™)

Bel, i ey—ej=

-

For p1, v in the index set above, let us denote by &; ., (¢, b) the set

Eupn(@0) = Kp™)NU) [ welbsem)ae, (bpe;m " )zs(bsm ™)
BGJ#—S(E)
€it€j=

H H T_e; (bgcyw™ ) wg(bgo ! HJ;_ (™) " K(p™).

Bel, — w€il —€5=

Then

-

K(p™)@m* K(p™) = Usewn U wzps00on Ysetosorn i &, (ED).
W <u,u’i§6>(>i<u,‘u”_‘ﬁ>:o €(0/9)" BE(0/P) y g O

We note that if g € &,,,(¢b), for all t € T and v € 75" the value Wy(g),(t) is

a multiple of

W, (t H H x_¢;(bgcyw™ H T_e, (™) w"),

Bel,_ ey—ej=p (V€)=

by the property of the Whittaker function that U acts on the left by character 6.
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8.3. Hecke eigenvectors

One observes that for ¢,d € 0 and a,b € 7Z,

e (™ )T (do™)

bfa) mfb) bfa)

= Zg_o(cd D", (do™ )2, o (—cd '@

= Tep—g (Cd_lwb_a)x—ﬁk (dwm_b)x—%-f-ﬁi (_dc—lwa_b)w(a_b)(q_%)wsek761‘ ;ml—ep+e; (_dc_lwa_b)

for some lift w,_ . of the Weyl element s, _, to K(p™).

We have

H H x_ej(bgc,vwm_l) H T (™) @ K(p™)

ﬁellx—p Eilfszﬁ <V7€i>:_1
_ ~1 -1 -1
- H H ajﬁjo*a'(b%g)—%ocia cibs) H Terg—ei(Cig €i)
Bel,—y €1—€;=0, j#jo (v,e)=—1,i#ig

Toe;, (b%,ejO ciéwm’l)x,eio (ciyww™) w” K(p™)

where jo is the smallest j such that 8 = €; — €;, and bg # 0 for some 5 € I, (note

j > 1), and ig is the smallest i such that (v,¢;) = —1 and ¢; # 0.
If ig < Jo, then

z_; (bgciy wm_l)x_% (ciyw™)w” K(p™)

= Teyy—es, (bgciéc;)lw_l)x_gio (ciowm)l'%_gjo(—bgciéci_olw_l)w”K(pm)

= Teiy—ejy (bﬁci{) Ciiolwil)xfﬁo (Ciowm)wy K(pm)

This is nice if ip = 1 and (v, ;) = —1. We continue if i > 1 and (v, ¢;) > 0.

= Teiy—eyy (bﬂcié ci_olw_1>x—€i0 (Cio wm>x—61 (wm—(l/,q))wy K(pm)

= Te, (bﬁcié ci—olw_1>x61—6¢0 (Ciowmeﬁ)x—q (wm_@’q))z—q-&-em (_Ci_olw_weﬁ)

—&jo
s (V) +(vse1) (€1—€5) K(pm) (Whﬂe 8617@0 (V) + <y’ 61>(61 — Eio) =v—€ + 52-0)_

-,

Hence if g € &;,,.,(Cb), for t € T,v € 7KC™) the value Wi(gw(t) is a multiple of

W, (t T—eq (wm_<y’61>)x761+6i0 (_Ci_olw_weﬂ) wy_61+6i0)' Note v >y v — € + €ig-
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8.3. Hecke eigenvectors

If ig > jo > 1, then (v,€;) = @ > 0 and (noting (v, €;,,) = —1 and (v, €;,) = 0)

2oy (b @™ NNy (@ ™) K(p™)

E]O
= T, (bﬁciﬁwm_l)x*qo (Ciowm)x*q (wm_a)wy K(pm)

— x*ﬁjo (bﬁcigwmil)xel e (Ciowa)qu (wmia)x7q+ei0 (_C;Olwfa)wselfeio (¥)+a(e —€ig) K(pm)

1

m_a)xﬁl—ﬁjo (_bﬂciéwa_1>x—€1+€i0 (_Cz‘_g w_a)

= Tei—g, (Ciowa)xel—em (bﬁciéwa_l)x—ﬂ (?IJ

oy (V) +a(e1—eig) K(pm) (Whlle 861_61_0 (l/) + CL(€1 — eio) =v—e€+ eio)

1

ot x—61+6¢0<_cz'_0 w_a)xq—qo(_bﬁcif)wa_l)

)x—q (wm_a)

= Te-g, (ciow“)xq_% (bgey @
T rey (—bpc eyt w10 K(p™)  (noting (v — €1 + €, €1 — €j,) = a — 1)
= Tegy (Cig)Tei—ej, (bpcyw "o, (@) ) 4esy (—c]ol)xejo_eio (—bglci?ciow)
o ~cio VTG0 TG 6 KK (™) (while Sejo—cig (V= €1+ €iy) + € — €1y =V — €1+ €p)
= Te—q (cio)xel_ejo (bgcisw_l)x% —eiy (—bglc;{)lciow)

T—e (wm)quJreiO (_671)1):6761"’6]'0 (bglcz‘_g)lw)wV%le K(pm)

-

Hence if g € &;,,.,(Cb), for t € T,v € 7K™ the value Wi(gw(t) is a multiple of

Wv(t L—eq (wm>$*61+610 (_C;)l)xfe1+€jo (bglc;ﬁlw) wy_eﬁ_ejo)' Note v >p v — € + €jo-
Lemma 8.3.3. (Assumen > 2.) Forc,c;,c; € k and v € Xo(T),

Ww(x,q (c)x,quEi(ci)x,ElJrej (c]-)wl’)u(wael) — Wn(w”)v<waﬂ)-

Proof. By functional equation

H( (- (- cr 1 (s, )0,
= (1, 5,9) T (T (Um -, ()16, (C1) Ty s ()@ v, 1 = 5)
- 7(71-7 5 w)_ll(ﬂ-(‘rﬂ (c)xﬁﬁ-ﬁi (Ci)xéﬁ-ej (Cj)uowy)vv 1- S)

= 5(m, 5,¢) (r(wm”)v,1 - s) = I(r(=")v, s).
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8.3. Hecke eigenvectors
Since I(m(2_¢, ()T ¢, 4¢,(Ci)T 1 1¢,(cj)w”)v, ) and I(m(=”)v,s) are the generating
functions of the two Whittaker values for a € Z, comparing the coefficients of ¢~*°

the assertion follows. O

-,

We have enough information for computing ¢, (7x(v)) by summing it over &, ., (¢, ).

Let us list the values ¢, ( / 7(h)v dh) for some easy cases.

- 7

U 56w (D)

Proposition 8.3.4. If p = v = s(\) and (v,a;) > 0 fori > 1. Then v = Zf; €,
Zﬁ;l € OT —€1 + Zﬁ;l €, and for a >0

, n—dd)dd +2d3 . +
e[ wthg d) = g ), i = T
U

A0

) cua [ ) = O ) i = S
Uqg’)‘gypqy c,

i) cue T ) = P Y ) = T
U 565, (B

Definition 8.3.5. For each v € X (T) with (v,e,) = 0 set ' as the shift of

the coordinate under basis (€1, €a, ..., €,_1,€,) by one to the right. More explicitly,

(Z?z_f a€;) = Z?:_f @;€it1-
Then we conclude the following proposition.

Proposition 8.3.6. Assume A\ = \; for some i <n and v € WK(pm), then
Caq(Ti(U)) = Z aa61+vca61+l/(v) + Z Qaey+v' Caey +1! (U> + Z aa61+vca€1+l/<v)
v<gA; v<gA; v4+2e1 <p;

for some a, € R, v € PT. Moreover, e, +x,, Uge,1n. ar€ poSitive numbers for a > 0.
If X=X\, or X}, then
Caer (T’l(v)) = E a'a61+Vca61+V(U) + E a’a€1+VCa€1+V(U)
v<gA v+2e1<gA

and Qge,+) 15 positive for a > 0.
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8.3. Hecke eigenvectors

For example, one has

Caeq (Tl (U)) = Q(a+1)e1 C(at1)er (U) + Qae; +e3Caey+eo (U) + Q(a—1)e; Cla—1)ey (v)

1

: _ 2n— _ _ 2n—=2
with Aa+1)eg — ¢ " y Qaertea = 17 A(g—1)eg — ¢ T

We wish to get a relation of ¢, (v) for a € Z. To get rid of cue,1e,(v) in the

expression, we can go one more step and use

Cla—1)ey (T2 (U)) = Ogey+e2Caerteo (’U) + A(a—1)e1+eate3Cla—1)er+eates (U)

+0(a—1)e; Cla—1)er (V) + Qla—2)e;+eCla—2)er+ea (V).

Then by replacing the terms with ae; + €2, (a — 2)€; + €5 by the previous relation,
there is only one term which is not of the desired form, namely ¢(,_1)¢,45y. Since
Cla—i+1)+x, always has nonzero coefficient in the expression of c(e—iy1)e, (T (v)), we
continue this process till we meet the expression for c(q—pi1)e, (7 + T;;)(v)), which
involves no more shifted terms but only those v < A,, A} terms. In other words, the
relation for c(g—pni1)e, (70 (v)) and c@—ni1)e, (T5(v)) can be totally reduced to terms

with only cgt1)e, (V), Cae; (V), Cla—1)e; (V) sC(a=n+1)e; (v) and these of Tx(v) involved.

Corollary 8.3.7. Assume a fized vector v is a simultaneous eigenvector of the Hecke

operators Th,Ts, ..., T,—1 and T,, + 1. There exist linearly independent combinations

2n—1

of the eigenvalues ¢y, cy...,¢,—1 and ¢, = q such that the relation

CnClatn)er (V) + Cno1Clatn—1)ey + - F C1Cat1)e, (V) + CoCae, (V) =0 holds for a > 0.
Recall I(v,s) = vol(o Z q“(” ca61 v)q~*. The recurrence relation leads to
a>0

(8.3.3) (q_"(”_%)cn L ey e L coq” ") (v, s) = vol(0™)co(v).
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8.4. Minimal level
Corollary 8.3.8. Assume a fized vector v is a simultaneous eigenvector of the Hecke
operators Ty, Ty, ..., T,_1 and T, + T*. Then if ly(v) # 0, then I(v,s) is a nonzero
constant and the eigenvalues are unique. As a result, the values cqe,+x,(v) for a >0,
0 < i < n are uniquely determined by lp(v). On the other hand, if ly = 0, then

Cacy+); (V) =0 fora>0,0<i<n.

Proof. Since we assume 7 is generic and supercuspidal so I(v, s) € C[g*, ¢°]. Hence
by the expression of I(v,s) in it must be a constant and we have ¢; = 0 for
1=20,1,...,n — 1 which determines a nonsingular system of n linear equations of the
n eigenvalues. Therefore the eigenvalues are uniquely determined. Solving back we

get all other Whittaker values in the expression of ¢, (T;(v)), Va, Vi. O

8.4. Minimal level

In this section we investigate the Hecke eigenvectors at the minimal level. Assume
¢(m) = p°™ is the maximal idea of o such that the fixed space V) is nonzero and
thus there exists nonzero fixed vectors of level ¢(7), minimal among all. By definition
the fixed space VWK(pC“r)_l) of level smaller than ¢(7) must be zero. We have discussed
the fixed vector of level 0 or 1 in Chapter 7. Let us assume ¢(7) > 2. Indeed, since
by Theorem c(r) > ar, and a, > 2n > 2 for 7w generic supercuspidal, this

assumption always holds.

Recall that we have seen for m > 2,

K(p™)@* K(0™) = Usewiy, iz 2500, v2su Yse (o) & (E,D)
(M7M—H§(;;S>Z=(u,u—ﬁ>lg(b) €(e/p) ’be(a/p)ﬁe<1>§ .

with

Eoun(@0) = KE™)NU) [ #a(bseim ) (bpe;)ap(bsm ™)
BEJ—s()
€ite;=p
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8.4. Minimal level

H H x_gj(bﬁci/wm 1 Iﬁ bﬁw H:E_GZ Gw K(p )

BEIU_,L Ei/f€j=ﬁ

which equals to

KpMnU) J[ zalbsem g bseym Nasbsm ™) [ zslbsem™) -
BEJ—s(n) Bel,—p
€ite;=p €y —€;j=p

H Lejo—e; (b;‘;_%oc@?ci/bﬁ) H xeio’ei(0%10i> (wl’$7% (bei(f% Cif)wmil)x*‘fio (Ciowm71)> K(pm)
BEIllfM’j#jO <l/,6i>=71
€ —€;=P i#i0
where jo is the smallest j such that 8 = ¢; — ¢j, and bg # 0 for g € I, ,, and

ip is the smallest ¢ such that (v,¢;) = —1 and ¢ # 0. Define a,,, as the size

(K(p™) N U= /(K(p™) N U)Z" N K(p™)| for any given v € X (T), m € N,

We similarly get for A € {0, ¢},

K(p™ M@ K(p™)

= U seWiw'2200200  Yae(o/m)n fe(ofs)s Hatgl o/p) H e, (bgci)ze, (bges)zg(bgmw ™)
(' ,5(N)+7s)=0 i=1 BE,
(V" 2(s(N)+ys+u/)+v")=0

ei-‘rEj:ﬁ
-1 -1, -1, s(A)+vys+u'+v’
H ) ms;()—q <b5i6_630 c% Czlbﬁ) H xqo_Q(Czo CZ) <w
Ber,, j#io (SO ot 1 se5)=0
E,L‘/—Ejiﬁ i;ﬁ’io

J0

L—e; (bei{)_eio Ci{)wm_l)x—ﬁgo (Cfowm_1)> K(pm)

where 30 is the smallest j such that 8 = ¢; — €, and 1o is the smallest i such that
0
(s(A) +79s+ 1/ +V,e)=0and ¢; # 0 and @ = Wy, 1Ws-1,, as before.

c(r))

For X' € P*, A € P minuscule and v € VECT™) e have

ev(Th(v)) = Z 1y @) o= Z cﬂy(w(a;_%(cgéwc(w)—l)x_%(ciowc(n)—l))v).

S, CigCly €0/p
0
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8.4. Minimal level
And for M € P+, A € {0,e} and v € VE®™) by 6,(v) = 0 we have

ST ST e (e (@™ N, (@™ ))w) =0

Jo
/ / /
s,u’ v c;o,ciéea/p

with 0 <g v = s(A) + 7 + ¢/ + v/ <y A and a],,,, = ¢**#*). Then we can solve for
zczo,cﬁg)eo/p CA”+1/(7T($—€30 (ngwc(w)_l)x—ezo<C%owc(7r)_1))v)a 0 <u v <u A by ey (v)
by choosing A" = X — (A, —\;), i =0,1,2,....n, for all \ € P" in lexicographic order
for each \"”. This implies for 1 < j < n there exists b;,,,, such that
piv=cv(Ti) = > biumeyin(v)
SEWH,VZHS(AJ')

(rw—s(2;))=0

and there exists by, ,m, b;,u,m such that

tv = (T +TH) = 3 buwmovn @)+ D bhmevin(v)
sEWH,v>ms(An) sEWwH v>us(A))
(v,v—5(An))=0 (vv—s(A}))=0

. e(m)y . . . .
if v e VX i a Hecke eigenvector with Hecke eigenvalues i1, o, ..., fin-

By Corollary[8.3.8] if v is a Hecke eigenvector, then the values ¢, 4, (v) for a > 0,
0 < i < n are uniquely determined by ly(v) = ¢o(v). With the relation above, since
ly(v) determines cqe,4a,(v) so it determines the values Cue,tpeyin; (v) for a,b > 0,
0 < i < n, as well. Continue a similar process we can argue that ¢y(v) determines
car(v) for all A € PT. As a result if fp(v) = 0, then v must be equal to 0, and
once lg(v) is determined, then Wy, |1/ 1(o) is determined. This implies Z(v) is uniquely
determined by fy(v). However, we know that the C-linear map Z is injective on fixed
vectors of fixed level by Lemma [5.3.3] so this implies such eigenvector is unique up

to scaling. This leads to the following Multiplicity One Theorem.

Theorem 8.4.1 (Multiplicity One). dim VR — 1 and if v is a nonzero fized

vector of minimal level c¢(m), then {y(v) must be nonzero.
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8.4. Minimal level
Proof. Since the Hecke operators 11,75, ...,T,—1 and T, + T} are self-adjoint and
commute with each other. The K(p™)-fixed subspace Ve decomposes into com-
mon eigenspaces of 11,75, ....,T,_1 and T, + T for all m. When m = c¢(n), for
each set of eigenvalues i, fio, ..., fin, if lo(v) = 0, then we have seen eigenvectors of
this eigenspace must be 0, hence we may assume nonzero common eigenvectors take
nonzero value under the Whittaker functional ¢y, and hence by Corollary are
uniquely determined by the value under ¢y. Hence VEE™) i of dimension 1 unless
ly is trivial on this subspace. However, this implies that every eigenvector is zero,

which leads to V,TK(C(W)) = (0 and contradicts with the existence of fixed vectors. O

The Multiplicity One Theorem implies the following theorem regarding the con-
ductor, which together with our discussion in Section 7.4 gives a result on all local

invariants attached to 7.

Theorem 8.4.2 (Conductor Theorem). The minimal level c() is the conductor a(m)
and the order two group J(p™)/ K(p™) acts on the subspace pREe) by a quadratic

character which equals to the root number e .

Proof. By Corollary and Theorem I(v,s) is a nonzero constant for
any nonzero v € VWK(pcw). Since uUmv € VWK(pC(ﬂ) is also nonzero, by Multiplic-

ity One there exists a nonzero constant ¢ such that wu.rv = cv. Rescale v and

assume I(v,s) = 1. Then by the functional equation we have I(uqmnv,1 —s) =
£xq M=) [ (v, ) which implies ¢ = e,¢*™~)5" Hence we get ¢ = &, and
o(m) = ag. O
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CHAPTER 9

Main Theorems

We shall finally put all pieces together and get the main results on newforms and
oldforms. In this chapter, we give the definition of the new vector for a generic rep-
resentation of SOy, 1(k) for a non-Archimedean local field k£ and prove the theory of
newforms for the case when the representation is supercuspidal. We give a conjecture
on oldforms at the end, which predicts that all fixed vectors are obtained by applying

level raising operators on the new vector.

9.1. New vectors and old vectors

Assume (7,V}) is a smooth irreducible generic representation of G with local

invariants conductor a, and root number &,.
Definition 9.1.1. A nonzero vector v of 7 is a new vector of 7 if v is fixed by K(p®).

Main Theorem 1. Assume 7 is supercuspidal. Then the fixed subspace of V. of the

open compact subgroup K(p™) is nonzero if and only if m > a,.
Proof. This is a combination of Theorem and Corollary 8.1.4]

Main Theorem 2. The subspace 750*") is q line generated by the new vectors and
the order group group J(p°~)/K(p®) acts on this line by quadratic character e,.

Moreover, the Whittaker functional gy is nontrivial on this line.

Proof. The existence and uniqueness of the new vector is by Theorem [8.4.1] and

Theorem [8.4.2] The last assertion is Theorem R.4.1] O 0
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9.1. New vectors and old vectors

Proposition 9.1.2. Assume v is a new vector, then I1(v,s) is a nonzero constant

n

function and (v) is a nonzero constant in ., = C[T|"M. Moreover, w, v ="

V.

Proof. By Corollary since v # 0 is a Hecke eigenvector so I(v, s) is a nonzero
constant. By Lemma Q(v) € C. Since v is nonzero, so (v) is a nonzero
constant. By the functional equation (5.4.2)), we get Q(w,, v) = €Q(v). Hence by
injectivity of the C-linear map (2, we get w, v = €lv. 0
Proposition 9.1.3. Assume v is a new vector. The fized vectors 0y(v) and 05(v) of

level ar + 1 are linearly independent. As a result, dim KE ) > 9,

Proof. Notice w,, K(p™) is K(p™) if n is even and is u,, K(p™) if n is odd. Recall
that K(p™) K(p™) = Usewy (Hep 6 N9 V)W 141, K(p™). One observes that
“mil(Hy, pN°V) C V and @ Wyt1Ws mi1Ws—1 Wi, 1S a torus element and is
dominant only if it is @ or @@ Y. Hence if n is even, then Wy, (,) = Wiy () (@)
is nonzero scalar times of W, (") since uq, 1100uq, (v) is K(p2=)-fixed; if n is odd,

then W, () = Wiy (@) is nonzero scalar times of W, (@ D) since g is

anx+100Uar (v

K(p®t1)-fixed. Hence I(fy(v),s) is a nonzero scalar time of I(v, s) if n is even, and

a nonzero scalar times of ¢~*'I(v, s) if n is odd.

By the functional equation, we have
It +100uq, (V),1 — 5) = e2¢° 1(0p(e4v), 5).

We get 1(05(v),1 —s) = ¢*I(f(v),s) is a nonzero scalar times of ¢* I(v,s) if n is
even and I(fy(v),1 — s) = ¢* I(0;(v), s) is a nonzero scalar times of I(v,s) if n is
odd. Sine 1 and ¢* are linearly independent so #%(v) and fy(v) must be linearly

independent. 0

From the proof above we also obtain the following.
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9.1. New vectors and old vectors
Corollary 9.1.4. Assume v is a new vector, then 1(0y(v),s) is a scalar times of

I(v,s) and I(6%(v), s) is a scalar times of ¢~ I (v, s).

Lemma 9.1.5. Assume v is a fized vector, namely v € 75¢™) for some m, and

Q(v) € By0-Tn.a then vol(0™ )" (v, s) = Qv;¢~*,0,0,...,0).

m n+ m—ax n+ m*aﬂil
Proposition 9.1.6. Ifm = a,(mod 2), dim 7X¢™) > 2 2

n n
Proof. Note that if m < a,, then this lower bound is 0. Assume m > a,. By
Proposition and ¢(7) = a,, this is a matter of counting number of A\ € Py such

that [\ < k for k = 252 Since A = aj€; + agez + ... + ape, is in Py if and only

if ag > ag > ... > |a,|. Then assume a, > 0, this is two times the number of the

tuple (a1 — a9, as — as, ...,a,—1 — ay,a,) with nonnegative integer entries with sum

n+k
< k. There are of them. Assume a, < 0, then this is the number of the

n

tuple (a; — ag,as — ag, ..., an—1 — |ay|, |a,| — 1) with nonnegative integer entries with

n+k—1
sum < k — 1. There are of them. O
n
o . . n 4 Me=t=
Proposition 9.1.7. If m = a, + 1(mod 2), dim 7K¢™) > 2

n

Proof. Note that if m < a, + 1, then this lower bound is 0. Assume m > a, + 1
Let v; = 6(vg) € K(p**!) be a nonzero fixed vector of level a, + 1 for vy a new
vector. By Proposition [9.1.3) the vector v| = w4, 101 = 05(ua,v0) = e.05(v) is

linearly independent to v;. Set H/, = (Hy,_+1,Uq,+1) Whose reductive quotient is

arx+1

isomorphic to Oy, (f). We get two independent vectors v; +v] and v; — v} which are in

the +1 and —1 space of J (pa"+1) respectively. Then since H;aﬁl contains ws 4, 41 for

seWgsoH, | TH,  =Uyp+H, @ 'H,  and the characteristic functions
[H,, . @ H, ., A€ Pt are independent. Notice that Q(v; 4 v}) and Q(v; —

~

v}) are also independent and moreover not in C[T]
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Da>0-n.a by Proposition but not in C by Lemma and Corollary [9.1.4]
Hence Q(na(vy + 7)), A € P*, and Q(naw,—v)), A € PT, are linearly independent.

Therefore we obtain that the dimension of dim 75®™) is two times the number of
A € PT such that ||A|| < w Then since \ = aj€; + ases + ... + aye, is in PT

if and only if a; > ay > ... > a,. Same computation as in the previous lemma gives

the assertion. O

Combining the two Propositions above, we can write down the lower bound of

the dimension of the two cases in one formula.
N n+ m—ar 77,+ m—ax+1| 1
Main Theorem 3. dim 7K™ > =% + (=5
n n

Definition 9.1.8. A nonzero fixed vector is an old vector if it is obtained by level

raising operators 6, and 7, from the new vectors.

We conjecture that all fixed vectors are obtained in this way, that is they are all
old vectors. This conjecture is partially implied by Q(7Hex) = C[T]"#, which we

have known D, or knowing the C[T]"#-module 7'~ is of rank one.

Conjecture 9.1.9. All nonzero fized vectors of level greater than a, are old vectors.

As a corollary to the old form conjecture:

Conjecture 9.1.10. The lower bound of the dimension given in Main Theorem[d is

the exact dimension.

When n = 2 this is a theorem by Roberts and Schmidt [23].

Remark 9.1.11. It is expected that the theories of newforms and oldforms hold
for general generic representations of G including non-supercuspidal representations.

This is a work in progress.
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