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Abstract

The theory of local newforms has been studied for the group of PGLn and re-

cently PGSp4 and some other groups of small ranks. In this dissertation, we de-

velop a newform theory for generic supercuspidal representations of SO2n+1 over

non-Archimedean local fields with odd characteristic by defining a family of open

compact subgroup K(pm), m ≥ 0 (up to conjugacy) which are analogous to the

groups Γ0(pm) in the classical theory of modular forms. We give lower bounds on the

dimension of the fixed subspaces of K(pm) in terms of the conductor of the generic

representation, and give a conjectural description of the space of old forms. These

results generalize the known cases for n = 1, 2 by Casselman [4] and Roberts and

Schmidt [23].
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CHAPTER 1

Introduction

1.1. Historical background

The theory of newforms is a central topic in the classical theory of holomor-

phic modular forms. The Fourier coefficients of a newform encode a great deal of

arithmetic information and the local theory of newforms gives a dictionary from the

classical theory of modular forms to the modern theory of automorphic forms on

GL(2). The local Langlands correspondence predicts that the invariants of local Ga-

lois representations, such as L-function and ε-factor, should match the corresponding

analytic invariants of a local representation π of p-adic algebraic groups. The ε-factor

determines the conductor aπ ≥ 0 and the root number επ, which for representations

of PGL(2) is equal to ±1.

The theory of local newforms was developed for PGL(2) by Casselman [4] in 1970s

and was generalized to PGL(n) by Jacquet, Piatetski-Shapiro and Shalika [14] in

1980. Recently a local newform theory has been established for PGSp(4) by Roberts

and Schmidt [23], for U(1, 1) by Lansky and Raghuram [16], and for unramified

U(2, 1) by Miyauchi [20] [18] [19]. In a letter to Serre in 2010, Gross conjectured

that it holds in general for SO(2n + 1). The goal of this work is to establish a local

newform theory for generic representations of SO(2n+1) over non-Archimedean fields.

1.2. Statement of the main results

Assume that k is a non-Archimedean local field and the characteristic of k is not

equal to 2. Let V be a split quadratic space of dimension 2n + 1 over k with even
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1.2. Statement of the main results

quadratic form q and discriminant 2. Let SO2n+1 = SO(V ) be the special orthogonal

group of V . Denote by 〈 , 〉 the associated bilinear form 〈v, w〉 = 1
2
[q(v+w)− q(v)−

q(w)] on V . We fix a canonical basis of V in Section 2.2

{e1, e2, ..., en, v0, fn, ..., f2, f1}

under which the Gram matrix of 〈 , 〉 is equal to
1

...
1

2
1

...
1

 .

Let H be the subgroup of G = SO(V ) which fixes the anisotropic vector v0. Then H

is isomorphic to the special even orthogonal group SO2n and is reductive.

Following a suggestion of A. Brumer, we define the open compact subgroups

K(pm) of G(k) as follows:

For m ≥ 0, let Lm be the quadratic lattice

(
n⊕
i=1

oei ⊕ pmfi)⊕ pmv0

with associated bilinear form $−m〈 , 〉, where $ is a uniformizer of o. The Gram

matrix for Lm is 
1

...
1

2$m
1

...
1

 .

This endows a quadratic form on Lm/pLm over the residue field f, which is nonde-

generate for m = 0 and degenerate for m ≥ 1. The reductive quotient SO(Lm/pLm)

is hence SO2n+1(f) for m = 0 and O2n(f) for m ≥ 1.

Definition 1.2.1. For m ≥ 0, let J(pm) denote the subgroup SO(Lm)(k) of G(k).

Define K(o) = J(o) which is the hyperspecial maximal compact subgroup G(o). For

2



1.2. Statement of the main results

m ≥ 1, define the open compact subgroup K(pm) as the kernel of the composite map

SO(Lm)(k)
mod p−−−→ O2n(f)

det−→ {±1}.

Then K(pm) is a normal subgroup of J(pm) of index 2.

An important property of the open compact subgroups K(pm) is that Hxm :=

K(pm)∩H(k) is a hyperspecial maximal compact subgroup of H. When n = 1, these

are the subgroups Γ0(pm) in PGL2(k) and Hxm is GL1(o).

Assume π is an irreducible generic supercuspidal representation of G. We in-

troduce the local zeta integral of π in Chapter 4 and defined the conductor aπ

and the root number επ by the functional equation of the zeta integrals in Section

4.2. Note that K(pm) contains Hxm . We discuss the Rankin-Selberg convolutions

for SO2n+1(k) × GLn(k) in Section 4.4. By using the Rankin-Selberg convolutions

for SO2n+1×GLn with unramified second factor, we then study properties of vec-

tors in the subspaces V
Hxm
π which later play the central role in studying vectors in

the fixed spaces of K(pm). The spherical Hecke algebra of GLn(k) is isomorphic to

C[T1, T2, ..., Tn, T
−1
n ] under the Satake isomorphism where Ti is the ith elementary

symmetric polynomial in variables X1, X2,...,Xn. This leads to the following propo-

sition in Section 5.4:

Proposition 1.2.2. There is an injective C-linear map Ω from the subspace πHxm to

the ring C[T1, T2, ..., Tn, T
−1
n ]. Moreover, we can put a H(H(k),Hxm)-module structure

on the fixed subspace πHxm such that Ω is also aH(H(k),Hxm)-module homomorphism.

Here ωm is a certain lift of a special Weyl element of O2n(f) to J(pm). This

proposition will give us a nice way to distinguish different K(pm)-fixed vectors and

puts conditions on the dimension of the fixed spaces. Moreover, it also proves us the

existence of nonzero vectors that are fixed by K(pm) for some m.

3



1.2. Statement of the main results

Definition 1.2.3. A nonzero vector in πK(pm) is called a fixed vector of level m. In

particular, a fixed vector v level aπ is called a new vector of π.

Our main theorem is that the open compact subgroups K(pm) determine the local

invariants aπ and επ. This is implied by the following Main Theorems.

Theorem 1.2.4. The fixed subspace of π of the open compact subgroup K(pm) is

nonzero if and only if m ≥ aπ.

Theorem 1.2.5. The subspace πK(paπ ) is a line generated by the new vectors and

the group J(paπ)/K(paπ) of order 2 acts on this line by the quadratic character επ.

Moreover, the Whittaker functional `θ with respect to the given generic data (B,T, θ)

is nontrivial on this line.

In other words, the conductor aπ is the minimal level for which a fixed vector

exist and such a fixed vector, called a new vector, of level aπ is unique up to scaling.

Moreover, the root number επ can be read off form the action of J(paπ) on the new

vectors.

To prove the two main theorems above, we use Hecke eigenvalues and Fourier

coefficients. This idea follows the method in classical theory of modular forms and

Roberts-Schmidt’s proof in the case n = 2. To do so, we make use of the zeta integrals

of π and work out the Hecke eigenvalues in Chapter 8. Although we believe that the

arguments in this thesis can be completed to provide a full proof, at the moment the

proof of the multiplicity one statement is heuristic.

Similar to classical holomorphic form we have the level raising operators and can

talk about oldforms. The level raising operators θ0, θ∗0 and ηλ are defined in Section

8.1. Moreover, combining with the result from Ω in Section 5.4 we can also obtain a

lower bound on the dimension of fixed spaces of higher levels. We expect that this

4



1.2. Statement of the main results

is the exact dimension. When the equality holds, we can obtain an oldform theory

which says all fixed vectors are old vectors.

Definition 1.2.6. A nonzero fixed vector is an old vector if it is the image of the

new vector under a composition of some of the level raising operators θλ and ηλ.

Theorem 1.2.7. dimπK(pm) ≥

n+ bm−aπ
2
c

n

+

n+ bm−aπ+1
2
c − 1

n

.

Conjecture 1.2.8. The lower bound of dimπK(pm) is the exact dimension and all

nonzero fixed vectors of level greater than aπ are old vectors.

We give some backgrounds on p-adic groups and generic representations in Chap-

ter 2 and 3 of Part 1. In Chapter 4, we write down the local factors and the Rankin-

Selberg convolutions for SO2n+1(k)×GLn(k). Most of the tools used in proving the

main theorems will be given in Chapter 5 of Part 1 where we discuss the invariant

subspace πHxm that contains πK(pm). Starting from Part 2, we start to talk about

the fixed vectors of K(pm) from various aspects. We first briefly review the lower

rank case with n = 1, 2 in Chapter 6 which are proved by Casselman and Roberts-

Schmidt but now in the form of SO3(k) and SO5(k). Then we introduce the open

compact subgroup K(pm) for general rank n in Chapter 7. Chapter 8 is devoted to

the Hecke actions and the proof of Theorem 1.2.4. Finally in Chapter 9, we prove all

the theorems stated above.

Notation 1.2.9. We warm that in this thesis, the notations denoted in roman font

are fixed through out the whole thesis while the italic ones are floating and depend

on the local content.

5
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CHAPTER 2

Structure theory

Let k be a non-Archimedean local field of residue characteristic p with ring of

integers o. Let p = ($) denote the unique maximal ideal p where $ is some fixed

uniformizer. Let | · | : k → R be the valuation on k normalized such that |$| = q

where q is the cardinality of the residue field f = o/p. Fix a unitary additive character

ψ : k+ → S1, S1 = (C×) with norm 1, with conductor o. Assume char(k) 6= 2.

2.1. Notations

Let G be a reductive group scheme and let G denote its generic fiber. We abuse

the notation and denote the R-points G(R) of G by G(R). We assume that G is

split over k. There exits a k-rational Borel subgroup, say B, of G and a k-split

maximal torus, say T , contained in it. Assume we fix T ⊂ B ⊂ G defined over o.

Denote by X•(T ) = Homk(T,Gm) and X•(T ) = Homk(Gm, T ) the character group

and co-character group of T respectively. Let 〈 , 〉 denote the natural perfect pairing

X•(T )⊗Z X•(T )→ Z = Hom(Gm,Gm).

The root system of G is denoted by ΦG ⊂ X•(T ). We shall sometimes denote by $λ

the image of $ in T (k) under some co-character λ ∈ X•(T ).

The Bruhat-Tits building of G over k is denoted by B(G). The (affine) apartment

of T in B(G), which is the underlying affine space of E = X•(T ) ⊗Z R, is denoted

by A(G). For convenience, we shall identify A(G) with E using 0 ∈ A(G) as a base

point. The root system ΦG gives a hyperplane structure by the affine hyperplanes

7



2.1. Notations

{Hα+n}α∈Φ,n∈Z of A(G) by the affine linear functionals α + n : x 7→ 〈x, α〉 + n. The

group G acts on the Bruhat-Tits building B(G) and the stabilizer of a building point

x is a parahoric subgroup of G, which we shall denote by Gx.

Let Ψ(G,B, T ) = (X•(T ),Φ+
G,X•(T ), Φ̌+

G) be the based root datum of G, where

Φ+
G ⊂ ΦG is the set of positive roots of G determined by the Borel subgroup B and

Φ̌+
G is the corresponding set of co-roots. Denote by ∆G the set of simple roots in Φ+

G,

by Λ(G) the co-weight lattice and by Λ(G)r the co-root lattice in E. Let n = dimE

denote the rank of G and write ∆G = {α1, α2, ..., αn}. Let βG be the highest root in

the set of positive roots Φ+
G. Then the n+ 1 basic affine roots are

{ψ0 = −β + 1, ψ1 = α1, ..., ψn = αn}.

The region C = {x ∈ A(G) | ψi(x) ≥ 0, i = 0, 1, ..., n} is the closure of the fundamen-

tal alcove and the region P+ = {x ∈ A(G) | ψi(x) ≥ 0, i = 1, 2, ..., n} is the closure

of the fundamental Weyl chamber with respect to the polarization Φ+
G in A(G).

Denote by (WG)aff the affine Weyl group of G, which is the Coxeter group gen-

erated by reflection maps sα+n on the apartment A(G) with respect to the affine

hyperplanes Hα+n respectively. It acts transitively on the set of alcoves in A(G) and

C is a fundamental domain of its action on A(G). The Weyl group WG of G is the

Coxeter group generated by the reflections sα with α ∈ ΦG and P+ is a fundamental

domain of its action on A(G). (WG)aff can be viewed as a semi-direct product of WG

with the co-root lattice Λ(G)r. The groups WG, (WG)aff preserve the affine apartment

of T and can be lifted to the subgroup NG(T ) of normalizers of T in G. The group

NG(T )/T (o) ' WGnX•(T ) is the extended affine Weyl group, denoted W̃G. We have

WG = NG(T )/T and (WG)aff ⊂ W̃G. There exists a cyclic abelian group ΩG such that

W̃G = (WG)aff o ΩG. (WG)aff are Coxeter groups and admit a Bruhat order ≥ and a

length function ` with respect to the generators {sαi}i=1,2,...,n and {sψi}i=0,1,...,n. These

8



2.1. Notations

extends to a partial order≥ on W̃G such that for σ1 = s1·τ1, σ2 = s2·τ2 ∈ (WG)affoΩG,

σ1 ≥ σ2 ⇐⇒ s1 ≥ s2, `(s1) = `(s2) and τ1 = τ2, and a length function ` such that

`(σ) = `(s) for σ = s · τ ∈ (WG)aff o ΩG.

Let x ∈ A(G) be a building point and let Wx be the subgroup of Waff generated

by reflections sα+n which fix x. In other words, x lies on the hyperplanes Hα+n, for

sα+n ∈ Wx. The action of G on B(G) depends only on the hyperplane structure hence

we only care about the facet containing x. Let Cx be an alcove whose closure contains

x. Let Bx be the subgroup of G that stabilizes Cx. Then the subgroup stabilizing x

is the set Gx = ts∈WxBxwsBx where ws is a lift of the affine Weyl element s ∈ Wx.

These are the parahoric subgroups of G and Bx is called an Iwahori subgroup. The

definition of Gx is independent of the choice of Cx. Let G+
x be the stabilizer of all

such alcoves Cx. Then Gx normalizes G+
x and the quotient Gx/G

+
x is a reductive

group Gx. Let Φx be the set of α such that sα+n ∈ Wx for some n ∈ Z. Then Φx

forms a root system of Gx. In particular, Bx/B
+
x is toral. Furthermore, since Gx are

stabilizers, we indeed have G = ts∈Wx\W̃G/Wx
GxwsGx. In general, one can do

(2.1.1) G = ts∈Wx1\W̃G/Wx2
Gx1wsGx2

as long as x1, x2 are contained in the closure of a same alcove. A point x is a special

vertex if Φx ' ΦG. Any building point in the co-weight lattice is a special vertex. A

parahoric subgroup Gx stabilizing a special vertex x is hyperspecial and Gx ' G(f).

Let U be the unipotent radical of B. The adjoint action of T on U (resp. its

opposite U) decomposes U (resp. U) into root subgroups Uα (resp. U−α), where

α ∈ Φ+
G. For any α ∈ ΦG, fix xα : Ga

∼−→ Uα a 1-parameter subgroup of G which

satisfies

txα(a) = xα(α(t)a), ∀a ∈ k, t ∈ T,

9



2.2. Compatible good basis

and let Gα be the Chevalley group generated by Uα and U−α. Denote by Tα the

connected component of kerα in T . There exists nα ∈ NGα(Tα) − Tα, such that

n2
α ∈ Tα and

(2.1.2) x−α(c−1) = xα(c)α̌(c)nαxα(c), c ∈ k×.

The element nα ∈ Gα normalizes T and is a lift of the reflection sα ∈ WG to NG(T ).

The equation (2.1.2) in SL2 is famous identity: [ 1
x 1 ] =

[
1 x−1

1

][
x−1

x

]
[ −1

1 ]
[

1 x−1

1

]
.

A rational character θ : U → k+ of U is said to be generic if the stabilizer under

the adjoint action of a maximal torus T lies in the center of G; equivalently, the

restriction θα of θ to each of simple root subgroups Uα, α ∈ ∆G, of U is nontrivial.

If G is of adjoint type, any two generic characters are T (k)-conjugate.

A triple (B, T, θ) with a k-rational Borel B of G, a maximal k-split torus T of

G contained in B and a generic rational character θ of the unipotent radical U of B

is called a generic data of G. We shall abuse the notation and denote also by θ the

composition U
θ−→ k+ ψ−→ S1.

2.2. Compatible good basis

We are interested in the orthogonal groups over k. To set up our groups, we

introduce the quadratic space over k that defines the groups which is the standard

representation of the orthogonal group.

Let n be a nonnegative integer. Let V be the split quadratic space over k of

dimension 2n + 1 and discriminant 2 with even quadratic form q : V → k. Let 〈 , 〉

be the associated bilinear form defined by 〈v, w〉 = 1
2
[q(v + w) − q(v) − q(w)]. For

any operator A on V , denote by ∗A the adjoint operator of A on V with respect to

〈 , 〉. We fix G to be the split special odd orthogonal group SO(V ) of degree 2n+ 1,

10



2.2. Compatible good basis

more precisely

G = {A ∈ GL(V ) | ∗AA = 1, detA = 1}.

We say an ordered basis {e1, e2, ..., en, en+1 = v0, fn, ..., f2, f1} of V is a good basis

if it satisfies 〈ei, ej〉 = 〈fi, fj〉 = 0, 〈ei, fj〉 = δij and 〈v0, v0〉 = 2, for 1 ≤ i, j ≤ n. For

a given good basis, a group scheme SO(L) over o is chosen such that G is its generic

fiber, where L is the o-lattice in V generated by the good basis. Moreover, we choose

a Borel subgroup B of G stabilizing the isotropic flag

0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X,

with Xi = ke1⊕ ke2⊕ · · · ⊕ kei for 1 ≤ i ≤ n, and a maximal split torus T contained

in B that stabilizes the lines ke1, ke2, ..., ken, kv0, kfn, ..., kf2, kf1. The groups T ⊂

B ⊂ G are defined over o.

The character group X•(T) has a canonical basis ε1, ε2, ..., εn which are the restric-

tions of the actions to the lines ke1, ke2, ..., ken respectively. Denote the dual basis of

εi also by εi and these form a basis of the dual group X•(T). The root system ΦG of

G has a base

∆G = {α1 = ε1 − ε2, α2 = ε2 − ε3, ..., αn−1 = εn−1 − εn, αn = εn}.

Following the convention in [14], for a chosen good basis we fix a generic character

θ : U→ k+ of U which satisfies the following condition:

θ−1
αi

(o)ei+1 = oei, 1 ≤ i ≤ n (∗)

That is, every good basis determines a generic data (B,T, θ). Conversely, given any

generic data (B,T, θ) of G the condition (∗) fixes a good basis {e1, e2, ..., en, v0, fn, ..., f2, f1}

up to scaling by o×. We have the following definition.

11



2.3. The groups SO2n+1, SO2n, and GLn

Definition 2.2.1. A good basis {e1, e2, ..., en, v0, fn, ..., f2, f1} is said to be compatible

with a generic data (B,T, θ) if the following three conditions hold: (1) kei is an

eigenspace of T; (2) the orbit of ei+1 under the action of B is contained in ⊕i+1
j=1kej;

(3) θ−1
αi

(o)ei+1 = oei, for 1 ≤ i ≤ n.

Remark 2.2.2. A generic data (B,T, θ) determines a integral model of G from a

good basis and the apartment A(G) with an assigned origin and hyperplane structure

on it and the generic character θ : U→ S1 is trivial on U(o) = U∩G(o).

From a generic data, a compatible good basis of a standard representation of

SO2n+1(k) can be assigned. In part 2 of this thesis, we will use this good basis to

define a family of open compact subgroup of SO2n+1(k) whose fixed space in the

generic representation will encode important invariants such as the conductor and

the local factors.

From now on, we shall fix a good basis

{e1, e2, ..., en, v0, fn, ..., f2, f1},

of V , up to scaling in o×, or equivalently a generic data (B,T, θ) of G.

2.3. The groups SO2n+1, SO2n, and GLn

Recall that V is a split quadratic space over k of dimension 2n + 1 with an

associated bilinear form 〈 , 〉 whose Gram matrix under given fixed good basis is
1

...
1

2
1

...
1


and L is the o-lattice generated by the good basis of V . The n-plane X = ⊕ni=1kei is a

maximal isotropic subspace of V and v0 is an anisotropic vector of V with 〈v0, v0〉 = 2.

12



2.3. The groups SO2n+1, SO2n, and GLn

The isotropic subspace X∨ = ⊕ni=1kfi is isomorphic to the dual space of X under

the perfect pairing 〈 , 〉 : X ×X∨ → k. Let

W = X ⊕X∨

be the split quadratic space of dimension 2n over k which is the orthogonal compli-

ment of the anisotropic vector v0 in V .

We have G = SO(V ) ' SO2n+1 with integral model SO(L). Define H = SO(W ) '

SO2n to be the subgroup of G fixing v0 and M = GL(X) ' GLn to be the subgroup

stabilizing X and X∨ fixing v0, embedded in H (and hence G) with action on X∨ by

the adjoint operator ∗ via 〈 , 〉. Denote by det : M → k× the determinant map on

GL(X).

The subgroups H and M are split reductive groups with Borel subgroups BH =

H∩B and BM = M∩B defined over o both containing T as a maximal split torus.

Let us denote by V and Nn the subgroups H∩U and M∩U of G which are maximal

unipotent subgroups of H and M respectively.

The bases of the root systems ΦM, ΦH and ΦG of M, H and G respectively are

∆M = {ε1 − ε2, ε2 − ε3, ..., εn−1 − εn} (highest root ε1 − εn),

∆H = {ε1 − ε2, ε2 − ε3, ..., εn−1 − εn, εn−1 + εn} (highest root 2ε1),

∆G = {ε1 − ε2, ε2 − ε3, ..., εn−1 − εn, εn} (highest root βG = ε1 + ε2).

The corresponding bases of the co-roots of G and H are

∆∨G = {ε1 − ε2, ε2 − ε3, ..., εn−1 − εn, 2εn}

∆∨H = {ε1 − ε2, ε2 − ε3, ..., εn−1 − εn, εn−1 + εn}.
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2.3. The groups SO2n+1, SO2n, and GLn

The sets of the fundamental co-weights of G and H are

∆∗G = {ε1, ε1 + ε2, ..., ε1 + ε2 + ...+ εn}

∆∗H = {ε1, ε1 + ε2, ..., ε1 + ...+ εn−1,
ε1 + ...+ εn−1 − εn

2
,
ε1 + ε2 + ...+ εn

2
}.

We have Λ(G) = X•(T) ⊃ Λr(G) and the co-root lattice Λr(G) is contained in the

co-weight lattice Λ(G) with index 2. Similarly, we have Λ(H) ⊃ X•(T) ⊃ Λr(H) and

the co-root lattice Λr(H) is contained in Λ(H) with index 4.

The apartments A(M), A(H) and A(G) of the maximal torus T have the same

underlying affine space E, but different hyperplane structures. Set the following

points

x0 = 0 and xm = m
ε1 + ε2 + ...+ εn

2

on E for m ∈ Z. The corresponding building points of xi’s are vertices (0-facets)

of A(G) and are special vertices of A(H). These points play a crucial role in the

rest of the thesis to express our target family of open compact subgroups. We shall

denote by xi’s the building points in both A(G) and A(H) when the content is clear.

The reductive group M is not semisimple and has center generated by the image of

λM = ε1 + ε2 + ...+ εn ∈ A(M). We focus on A(M)/〈λM〉 instead.

The Weyl groups WM, WH and WG acts on E preserving the hyperplane structure

of the affine apartment A(M), A(H) and A(G) respectively. The Weyl group WM

is isomorphic to the permutation group Sn on n letters. The Weyl group WH is

isomorphic to the semi-direct product of WM and the group generated by composition

of even number of reflections sεi ’s. Let us call the simple reflections sεi the sign

changes in the later context. The Weyl group WG is isomorphic to the semi-direct

product of WM and the group generated by composition of all sign changes sεi ’s. We

have WM ' Sn, WH ' Sn n (Z/2Z)n−1 and WG ' Sn n (Z/2Z)n.
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2.4. Parabolic subgroups Q, P

2.4. Parabolic subgroups Q, P

Among all parabolic subgroups of H and G, the ones that stabilizes the isotropic

flag 0 ⊂ X are of special importance, for it serves as a good first stab when one wants

to investigate the parahoric subgroups Hxi and Gxi . These have a close relation with

the open compact subgroups K(pm) which will be defined in Part 2 of this thesis.

Let Q (resp. P) denote the parabolic subgroup of G (resp. H) that stabilizes the

isotropic flag 0 ⊂ X. Then the subgroup M is a Levi factor of both Q and P. Denote

by Y (resp. Z) the unipotent radical of Q (resp. P) which M acts by conjugation. We

have Levi decompositions

Q = MnY P = MnZ .

The subgroup Y is a two-step unipotent group which fits into the exact sequence of

M-modules

0→ ∧2X → Y
α−→ X → 0

where the map α is given by y 7→ y(v0) − v0. The subgroup Z is a commutative

unipotent group isomorphic to ∧2X and is normal in Y. We have the isomorphism

Y /Z ' ⊕ni=1 Uεi . The roots in Lie(Z) under action of T are εi + εj, 1 ≤ i < j ≤ n.

We write down these groups in the case when n = 2 as 5 by 5 matrices under the

fixed good basis in the following example.

Example 2.4.1. When G = SO5, the subgroups H, M, T, Q, P, Y and Z are as

follows.

H =

[ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

1
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

]
∩G, M =

[ ∗ ∗
∗ ∗

1
∗ ∗
∗ ∗

]
∩G, T =

[ ∗
∗

1
∗
∗

]
∩G

Q =

[ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗

]
∩G, P =

[ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

1
∗ ∗
∗ ∗

]
∩G, Y =

[
1 ∗ ∗ ∗

1 ∗ ∗ ∗
1 ∗ ∗

1
1

]
∩G, Z =

[
1 ∗ ∗

1 ∗ ∗
1

1
1

]
∩G .
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2.4. Parabolic subgroups Q, P

The Bruhat decompostion shows that the double coset representatives of B \G /B

can be chosen from BNG(T) B and hence

G = ts Bws B = ts Uws B

where ws is a lift of s to NG(T) and the above union is taken over the Weyl group

element in WG. If Q1 and Q2 are two parabolic subgroups containing B with Levi

factor M1 (resp. M2) containing T, then we have the following commutative diagram

(2.4.1) B \G /B //

��

WG

��

Q1\G /Q2
// WM1\WG/WM2

where the horizontal maps are bijections and the vertical maps are quotient maps.

One would argue this by looking at (Q1∩NG(T))\NG(T)/(Q2∩NG(T)) and it follows

from the definition of WM1 and WM2 . This diagram holds after taking o points and

reduction modulo p while the group WG is lifted to the hyperspecial subgroup G(o).

Similarly we can argue with H.

Let us apply it to our parabolic groups Q and P of G and H respectively. We

notice that WM = Sn. Denote by I ⊂ WG the set of all sign changes and by I0 ⊂ WH

the set of all even sign changes. Then we have Bruhat decompositions (over k and

over o/p)

G = ts∈I Bws Q = ts∈I Uws Q , H = ts∈I0 BH ws P = ts∈I0 Vws P .

Here again ws represents any lift of the Weyl group element s to NG(T).
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2.5. Parahoric subgroups Gxi , Hxi

2.5. Parahoric subgroups Gxi, Hxi

Recall that xt = t
ε1 + ε2 + ...+ εn

2
is a building point inA(G) (andA(H) by abuse

of notation) defined for t ∈ Z. We define xt by the above formula for t ∈ R. For any

i ∈ Z, let xi+ = x(i+1)− be any point in the edge (1-facet) {xt | i < t < i + 1} whose

closure contains the vertices xi and xi+1.

The open compact subgroups defined by

Gxt = 〈T(o),Uα(pn) | (α + n)(xt) ≥ 0, α ∈ ΦG, n ∈ Z〉,

Hxt = 〈T(o),Uα(pn) | (α + n)(xt) ≥ 0, α ∈ ΦH, n ∈ Z〉

are parahoric subgroups of G and H respectively. The groups Gxt and Hxt have

pro-unipotent subgroups, namely, the open compact subgroups

G+
xt = 〈T(1 + p),Uα(pn) | (α + n)(xt) > 0, α ∈ ΦG, n ∈ Z〉, and

H+
xt = 〈T(1 + p),Uα(pn) | (α + n)(xt) > 0, α ∈ ΦH, n ∈ Z〉,

which are normal in Gxt and Hxt respectively.

Suppose i is an integer. The parahoric subgroups Gxi and Hxi are maximal and

admit reductive quotients

Gxi /G+
xi
'

 G(f), i : even

H(f), i : odd
, Hxi /H+

xi
' H(f)

and moreover,

Gxi+
/G+

xi+
' Hxi+

/H+
xi+
' M(f).

The non-maximal parahoric subgroup Hxi+
and Hxi−

are contained in Hxi . Their

images in the reductive quotient H(f) of Hxi equal to the parabolic subgroup P(f)
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2.5. Parahoric subgroups Gxi , Hxi

and P(f), respectively. The Iwahori factorization of Hxi+
gives

Hxi+
= Z(pi+1) M(o) Z(p−i) = Z(p−i) M(o)Z(pi+1).

The Bruhat decomposition of H(f) can be lifted to the parahoric subgroup Hxi of H

and give a decomposition

Hxi = ∪s∈I0(V∩Hxi)ws,i Hxi+
,

where ws,i represents any lift of the Weyl element s to Hxi .

Consider the maximal parahoric subgroups Gx0 and Gx1 of G. Denote by

Kx = NG(Gx)

the normalizer of Gx in G for any building point x. Then Kx0 = Gx0 is a hyperspecial

maximal open compact subgroup and Kx1 is a maximal open compact subgroup

contains Gx1 with index 2. The intersection of the groups Gx0 and Gx1 is the parahoric

subgroup Gx0+
, whose image in the reductive quotient G(f) of Gx0 is the parabolic

subgroup Q(f). We have a Iwahori factorization

Gx0+
= Y(o) M(o)Y(p) = Y(p) M(o) Y(o).

The Bruhat decomposition for G(f) can be lifted to Gx0 and give a decomposition

Gx0 = ∪s∈I(U∩Gx0)ws,0 Gxi+
,

where ws,i represents any lift of Weyl element s to Kxi .

The smooth map G → B to the flag variety B = G /B of the split group G is

separable and is thus a quotient map. We have G(k)/B(k) = G(o)/B(o) and hence
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2.5. Parahoric subgroups Gxi , Hxi

we also have the Iwasawa decomposition

G = B G(o) = U T G(o).

Since Gx0 is hyperspecial and any lift ws,0 of a Weyl element s is contained in T Kx1 ,

s ∈ I, we also have the decompositions G = B Kx0 = B Kx1 . A similar argument can

be applied to conclude that the decomposition

G = B Kxi

holds for any integer i.

Before we end this chapter and move on to discussion on representations of p-adic

groups, we fix the following convention. For any subgroup C of G, we will write C(m)

for the pullback of C(o/pm) in G(o/pm) under the reduction modulo pm map on G(o).

For example,

Q(m) = Y(pm) M(o) Y(o) = Y(pm) Q(o)

is a subgroup of G(o) contained in Gx0+
. Let I denote the identity element in G,

then the set of subgroups {I(m)}m≥0 forms a system of open compact neighborhood

of identity I in the locally pro-finite group G.
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CHAPTER 3

Generic representations

We begin with a general theory of smooth representations. In this chapter, G is

a general reductive group over k for most of the sections.

3.1. Admissible representations

Let G be a locally compact and totally disconnected topological group. A repre-

sentation of G is a homomorphism π from G to the linear automorphism group of

a complex vector space Vπ. The dimension of complex vector space Vπ is called the

dimension of the representation π. We will sometimes denote a representation as a

pair (π, Vπ) indicating G acts on Vπ by π. A representation is said to be smooth if

every vector in Vπ is invariant under elements of an open compact subgroup. For any

compact subgroup K of G, we write

V K
π = {v ∈ Vπ | π(k)v = v ∀k ∈ K}.

Then π is smooth if and only if Vπ = ∪KV K
π where K runs over all open compact

subgroup of G. A representation π is admissible if the fixed subspace of any open

compact subgroup K is finite dimensional, i.e. dimV K
π < ∞. A character of G is a

one dimensional smooth representation, which is clearly admissible.

Let π be any representation of G on a vector space Vπ, define the smooth part

V ∞π of π as the subspace ∪KV K
π , where K runs through all open compact subgroups

of G. Then V ∞π is an invariant subspace and the action π of G on V ∞π is a smooth
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3.1. Admissible representations

representation. For a smooth representation π of G on the space Vπ, the contragradi-

ent π̃ is defined as the dual action π∗ on the smooth part of the dual representation

of G on V ∗π given by 〈π∗(g)v∗1, v2〉 = 〈v∗1, π(g−1)v2〉, ∀v∗1 ∈ V ∗π , v2 ∈ Vπ, g ∈ G with

〈 , 〉 the perfect duality on V ∗π × Vπ.

In general we have an action of G on the space of complex-valued functions f by

right translation Rg, (Rgf)(x) = f(xg) ∀g, x ∈ G. This action again preserves the

subspace of locally constant functions, denoted C∞(G), and the subspace of locally

constant functions of compact support, denoted C∞c (G). C∞c (G) is analogous to

the regular representation of G when G is a finite group. Any G-invariant space is

naturally a C[G]-module.

Let dg be a left Haar measure on G, which is unique up to scalar. We have a

distribution C∞c (G) → C of G by f 7→
∫
G
f(g)dg. The modulus character δG :

G 7→ R+ of G is defined as the character of G satisfying d(gx−1) = δG(x)dg. When

G is compact or reductive, this character is trivial and the Haar measure is bi-

invariant. Let P = MN be a parabolic subgroup of a reductive group G with

Levi factor M and unipotent radical N . Since M normalizes P , the character δP is

determined by the adjoint action of M on the Lie algebra of N . To be more precise,

δP (m) = | det Ad(m)|Lie(N)|, ∀m ∈ M . In particular, let B be the Borel subgroup of

a reductive group G containing a maximal torus T of G.

For any closed subgroup H of G and any smooth representation σ of H on the

vector space Wσ, G acts on the vector space

IndGHWσ = {f : G→ Wσ locally constant | f(hg) = σ(h)f(g), ∀h ∈ H}

by right translation Rg, Rgf(x) = f(xg). This representation is smooth and is called

the inducted representation, denoted IndGH σ. The space IndGHWσ has an invariant

subspace indGHWσ of functions compactly supported modulo H. This representation
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3.1. Admissible representations

of G is called the compact induction, denoted by indGH σ. When H is an open sub-

group, the compact induction indGHWσ is can be identified with C[G] ⊗C[H] Wσ as a

C[G]-module. In particular, IndGI C = C∞(G) and indGI C = C∞c (G).

Let Rep(G) denote the category of smooth representations of G. The inductions

define functors from Rep(H) to Rep(G). We list some properties of the inductions.

Proposition 3.1.1. Let H be closed subgroup of G, and (σ,Wσ) a smooth represen-

tation of H.

(i) The functors IndGH − and indGH − are exact.

(ii) Assume J ⊃ H be a closed subgroup of G, then IndGH σ = IndGJ (IndJH σ).

(iii) Assume G is reductive. Then ĩndGH σ ' IndGH σ̃δH .

(iv) If (π, Vπ) is a smooth representation of G, then indGH π|H ⊗ σ ' π ⊗ indGH σ.

(v) If σ is unitary, then IndGH σδ
1/2
H is unitarizable.

We will prove the following reciprocity which will be used very often later.

Proposition 3.1.2 (Frobenius reciprocity). Let H be a closed subgroup of G. Let

(π, Vπ) be a smooth representation of G and (σ,Wσ) be a smooth representation of

H. Then there are canonical isomorphisms:

(i) HomG(π, IndGH σ) ' HomH(π|H , σ).

(ii) HomG(indGH σ, π̃) ' HomH(σδ−1
H , π̃|H).

(iii) Assume H is open. HomG(indGH σ, π) ' HomH(σ, π|H).

Proof. On the induced representation IndGH σ, we have a H-invariant map

(3.1.1) ασ : IndGHWσ → Wσ, f 7→ f(I).

This map induces a homomorphism from HomG(π, IndGH σ) to HomH(π|H , σ) by com-

position. Given such a H-invariant map T : Vπ → Wσ, we can recover f by the

function T (π(g)v). This gives an inverse of the homomorphism, which is hence an
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3.1. Admissible representations

isomorphism. This proves (i). Applying Proposition 3.1.1 (iii) and part (i) we get

HomG(indGH σ, π̃) ' HomG(π, IndGH σ̃δH) ' HomH(π|H , σ̃δH) ' HomH(σδ−1
H , π̃|H)

and hence prove (ii). If H is open, then indGHWσ ' C[G] ⊗CH Wσ. There is a

natural map Wσ → indGHWσ which is H-invariant and induces a homomorphism

from HomG(indGH σ, π) to HomH(σ, π|H) by pullback. Since any H-invariant map

from Wσ to Vπ can be extended to a G-invariant map from C[G]⊗C[H] Wσ to Vπ,

Wπ → Vπ  indGHWσ ' C[G]⊗C[H] Wσ → Vπ.

It defines an inverse of the homomorphism. (iii) is thus proved. �

On the other hand, we also have an analog of the restriction map as in the

representation theory of finite groups.

Let H be a closed subgroup of G and ξ be a character on H. The normalizer

NormG(H, ξ) is the set of elements g in G such that g ∈ NG(H) and ξ(ghg−1) = ξ(h)

for h ∈ H. For any representation (π, Vπ) of G, set

Vπ(H, ξ) = 〈π(h)v − ξ(h)v; v ∈ Vπ, h ∈ H〉,

which is an invariant space of NormG(ξ). The ξ-localization of π is the quotient space

(Vπ)H,ξ = Vπ/Vπ(H, ξ)

on which NormG(H, ξ) acts by restricting π on the cosets. This is the maximal

quotient of Vπ such that H acts by ξ. The ξ-localization defines a functor, called a

(modified) Jacquet functor, denoted

JH,ξ : Rep(G)→ Rep(NormG(H, ξ))

(π, Vπ) 7→ (πH,ξ, (Vπ)H,ξ).
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3.1. Admissible representations

We omit the subscript ξ when it is trivial. JH : Rep(G) → Rep(NG(H)) is the

ordinary Jacquet functor, and JH(π) is called the Jacquet module of π at H, which

is exactly the H-covariants πH of π.

We list some of its properties and omit the proofs.

Proposition 3.1.3. Let H be a closed subgroup of G exhausted by its compact sub-

groups, and (π, Vπ) a smooth representation of G.

(i) The functors JH− is exact.

(ii) Assume H = H1H2 and H2 normalizes H1, then ((Vπ)H1,ξ|H1
)H2,ξ|H2

= (Vπ)H,ξ.

(iii) Vπ(H, ξ) = Vξ−1π(H) and (Vπ)H,ξ = (Vξ−1π)H .

(iv) v ∈ Vπ(H, ξ) if and only if there exists a compact subgroup U ⊂ H such that

(3.1.2)

∫
U
ξ−1(h)π(h)v dv = 0.

Let M,N be closed subgroups, M normalizes N and P = MN is closed. (For

example, P = MN is a parabolic subgroup of a reductive group G with Levi factor

M and unipotent radical N .) Let ξ be a character of N and M ⊂ NormG(N, ξ). For

any smooth representation (τ,Wτ ) of M , define

IN,ξ(τ) = IndGP (τ ⊗ ξ)δ1/2
P , iN,ξ(τ) = indGP (τ ⊗ ξ)δ1/2

P ;

for any smooth representation (π, Vπ) of G, define

rN,ξ(π) = πN,ξδ
−1/2
P .

We obtained functors

IN,ξ, iN,ξ : Rep(M)→ Rep(G), rN,ξ : Rep(G)→ Rep(M).

When ξ = 1, IG,M = IN,1 (resp. iG,M = iN,ξ) is called a normalized induction (resp.

normalized compact induction) and rM,G = rN,1 is called the normalized Jacquet
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3.2. Whittaker linear forms

functor at N . When G/P is compact, these functors preserve admissibility and the

property of being unitary and IN,ξ coincides with iN,ξ.

Using the properties of the induction and the ξ-localization (see Proposition

3.1.1, 3.1.3), it is clear that the functors IN,ξ, iN,ξ and rN,ξ are exact. Since for

π ∈ Rep(G), τ ∈ Rep(M), the Frobenius reciprocity implies that HomG(π, IndGP τ ⊗

ξ) ' HomP (π|P , τ ⊗ ξ) ' HomM(πN,ξ, τ ⊗ ξ) for any character ξ of N normalized by

M . The functor rN,ξ is left adjoint to IN,ξ. We have another form of the Frobenius

reciprocity:

HomG(π, IN,ξ(τ)) ' HomM(rN,ξ(π), τ).

When G is a reductive group. Suppose P = MN is a proper parabolic subgroup

of G with Levi factor M . A parabolically induced representation, called a parabolic

induction, of G is of the form IndGP τ where τ is a smooth representation of M in-

flated to P by assuming trivial on N . An irreducible representation is said to be

supercuspidal if it can not be realized as any subrepresentation of a parabolically

induced representation of G. The Frobenius reciprocity now shows an irreducible

representation π of G is supercuspidal if and only if rN,1(π) = 0 for any unipotent

radical N of a proper parabolic subgroup of G. Conversely, if a nontrivial irreducible

representation τ of M occurs in rN,ξ(π) for some P = MN and ξ, then π can be

embedded into a parabolic induction IN,ξ(τ).

Most of the result in this section can be found in [1], [2].

3.2. Whittaker linear forms

Let G be a connected split reductive group over k and let (B, T, θ) be a generic

data of G. Recall that this means that B = TU is a k-rational Borel subgroup, T is

a k-split torus contained in B and θ : U → S1 is a generic character of the unipotent

radical U of B such that the stabilizer of θ under action of T is in the center of G.

25



3.2. Whittaker linear forms

Denote by Cθ the one dimensional space on which U acts by θ. Then we can consider

the induced representation IndGU θ, acting on the space IndGU Cθ of locally constant

functions f on G such that

f(ug) = θ(u)f(g), ∀u ∈ U, g ∈ G,

on which G acts by right translation Rg.

Theorem 3.2.1 (Gelfand-Kazhdan [10], Rodier [24], Shalika [27]). The representa-

tion IndGU θ is multiplicity free. That is, for any irreducible smooth representation π

of G, the complex vector space HomG(π, IndGU θ) is of dimension at most 1.

We say an irreducible smooth representation (π, Vπ) of G is θ-generic if

HomG(π, IndGU θ) = C.

A Whittaker model of π with respect to the generic character θ is an invariant

subspace W (π, θ) of IndGU Cθ on which the action of G is isomorphic to π. A θ-generic

representation π admits a Whittaker model and Theorem 3.2.1 shows such model is

unique when exists. By the Frobenius reciprocity,

HomG(π, IndGU θ) ' HomU(π|U , θ).

Therefore, when π is θ-generic, there is also a nontrivial linear functional `θ on Vπ,

unique up to scalar, such that `θ(π(u)v) = θ(u)`θ(v). Such a linear form `θ is called

a Whittaker functional on Vπ. Given a Whittaker functional `θ ∈ HomU(Vπ,Cθ), the

Whittaker model of (π, Vπ) with respect to θ is the space

(3.2.1) W (π, θ) = {Wv : G→ C | Wv(g) = `θ(π(g)v), ∀v ∈ Vπ},

with G acting by right translation Rg.
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The following lemma reduces the question of the uniqueness of the Whittaker

model W (π, θ) to the case when π is a supercuspidal representation of G.

Lemma 3.2.2 (Casselman-Shalika [6], Shahidi [25]). Let wG be any lift of the longest

Weyl element of G, meaning B∩wGBw−1
G = T , then U ′M = M∩wGUw−1

G is a maximal

unipotent subgroup of M and θ′M = θ◦Ad(wG) is a generic character on U ′M . Assume

(τ,Wτ ) is a θ′M -generic representation of M . Then

HomG(IndGP τ, IndGU θ) ' HomM(τ, IndMU ′M θ
′
M).

In particular, if the parabolic induction IndGP τ is irreducible, then it is θ-generic.

Remark 3.2.3. Following the notation as in Lemma 3.2.2, assume τ is θ′M -generic,

and `θ ∈ HomG(IndGP τ, IndGU θ). If π is a θ-generic subrepresentation of IndGP τ then

the space of the Whittaker model W (π, θ) is as defined in equation (3.2.1). Indeed,

assuming τ is supercuspidal, such θ-generic subquotient is unique. This can be done

by analyzing the Jordan composite series of (IndGP τ)|M . (See [2] Section 2.)

3.3. Modules of the mirabolic group Pn+1

We review theory of Bernstein and Zelevinsky on the modules of mirabolic groups.

Assume n ≥ 0 is an integer. Let Xn+1 be an n + 1-dimensional k-vector space.

Set Mn+1 = GL(Xn+1). Fix a complete flag 0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ Xn+1 and

hence a Borel subgroup Bn+1 and a maximal unipotent subgroup Nn+1 of Mn+1. For

1 ≤ i ≤ j ≤ n, let Qi,j+1 be the parabolic subgroup of Mj+1 stabilizing the flag 0 ⊂

Xi ⊂ Xi+1 ⊂ · · · ⊂ Xj+1 and Ui,j+1 be its unipotent radical. Then Ui,j ' Ui,j−1 nXj,

and Nj+1 = NjUj,j+1. Let ξ = ξn+1 be a generic character on Nn+1. Set ξj = ξ|Nj
and ξj = ξj+1|Uj,j+1

. Then ξj+1 = ξjξj and ξ = ξ1ξ2 · · · ξn.
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The mirabolic subgroup of Mj+1 is defined as the subgroup

Pj+1 = Mj Uj,j+1.

It satisfies the inductive properties that

Pj = NormMj
(Uj,j+1, ξj), NormPj+1

(Uj,j+1, ξj) = Pj Uj,j+1.

There are only two orbits of characters of Uj,j+1 under action of Pj, one is the closed

orbit consists of the trivial character, the other is an open orbit containing ξj. Notice

that NormPj+1
(Uj,j+1, 1) = Pj+1 = Mj Uj,j+1. We have exact functors

Φ− = rUj,j+1,ξj : Rep(Pj+1)→ Rep(Pj), Φ+ = iUj,j+1,ξj : Rep(Pj)→ Rep(Pj+1),

Ψ− = rUj,j+1,1 : Rep(Pj+1)→ Rep(Mj), Ψ+ = iUj,j+1,1 : Rep(Mj)→ Rep(Pj+1).

It is immediate that Φ−Ψ+ = 0, Ψ−Φ+ = 0 and Ψ− is left adjoint to Φ+.

The representations of these mirabolic groups have been well-studied by Bernstein

and Zelevinsky in late 70s. (See [1].) By arguing about the l-sheaves on l-groups ([1]

§5), they proved that Φ−Φ+ ' id, Φ−Φ+ ' id, and

(3.3.1) 0→ Φ+Φ− → id→ Ψ−Ψ+ → 0

forms a short exact sequence. Indeed, it is not hard to check that for (σ,Wσ) ∈

Rep(Pj+1), Φ+Φ−(Wσ) = Wσ(Uj,j+1) and Ψ+Ψ−(Wσ) ' (Wσ)Uj,j+1
as Pj+1-modules.

As a quick result, Φ− is left adjoint to Φ+ and Φ+,Ψ+ preserve irreducibility.

The exact sequence 3.3.1 shows an irreducible representation σ is either from an

irreducible representation of Mn (ie. of the form Ψ+Ψ−(σ)) or is from a smaller

mirabolic subgroup Pn (ie. of the form Φ+Φ−(σ)). Applying induction on n we

conclude the following lemma.
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3.3. Modules of the mirabolic group Pn+1

Lemma 3.3.1. Assume σ ∈ Rep(Pn+1) is irreducible. There exists a unique k ∈ N

such that the representation σ(k) = Ψ−(Φ−)k−1(σ) ∈ Rep(Mn+1−k), called the kth

derivative of σ, is nonzero. For such an integer k, σ(k) is irreducible and

σ ' (Φ+)k−1Ψ+(σ(k)).

The (n + 1)th derivative σ(n+1) of σ ∈ Rep(Pn+1) is a representation of M0 = I

and hence a vector space. Since Nn+1 =
∏n

j=1 Uj,j+1 and ξ =
∏n

j=1 ξj, the (n + 1)th

derivative is

σ(n+1) = Ψ−(Φ−)n(σ) = σNn+1,ξ.

It is either 0 or one dimensional if σ is irreducible. When it is the latter, σ is

isomorphic to the induced representation ind
Pn+1

Nn+1
ξ, called the (irreducible) standard

representation of Gelfand-Graev. In general,

(Φ+)nΨ+(σ(n+1)) = ind
Pn+1

Nn+1
ξ ⊗ σNn+1,ξ = ind

Pn+1

Nn+1
ξ⊕ dimσ(n+1)

is called the nondegenerate part of σ, denoted σ(nd). If σ(nd) = 0, we say σ is degen-

erate, otherwise σ is nondegenerate. It is clear that σ is nondegenerate if and only if

σNn+1,ξ 6= 0, hence σ/σ(nd) is always degenerate.

Further examining the exact sequence (3.3.1) and applying it inductively leads to

the the following structure theorem of Pn+1-modules.

Theorem 3.3.2 (Bernstein-Zelevinsky [1]). Suppose σ ∈ Rep(Pn+1), then σ is glue

from (Φ+)k−1Ψ+(σ(k)). More precisely, there is a natural filtration 0 ⊂ σn+1 ⊂ · · · ⊂

σ2 ⊂ σ1 = σ such that σk = (Φ+)k−1(Φ−)k−1(σ), and the successive quotients are

σk/σk+1 = (Φ+)k−1Ψ+(σ(k))

In particular, σn+1 = σ(nd) and σ/σ(nd) is degenerate.
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Let (τ,Wτ ) ∈ Rep(Mj), and denote the restriction of ξ to Nj also be ξ. Define the

kth derivative τ (k) of τ as the kth derivative of τ |Pj , i.e. (τ |Pj)(k), and τ (0) = τ |Pj . Then

by uniqueness of the Whittaker functional, τ (nd) = τNn,ξ is either 0 or of dimension 1.

When it is the latter, the representation τ is ξ-generic and admits a unique realization

in the space Ind
Mj

Nj
ξ. Bernstein and Zelevinsky shows in this case, if τ is irreducible

admissible then the map from Ind
Mj

Nj
ξ to Ind

Pj
Nj
ξ by restricting the function to Pn

is injective on the realization of τ . Clearly, the kernel in τ is degenerate. When τ

is supercuspidal, then τ (k) = 0 for 1 ≤ k < j and hence τ = τ (nd) as a Pj-module.

Hence the restricting map is an injection on the Whittaker model of τ . This turns it

into a Pj-module and is called a Kirillov model.

We can do this similarly for a representation of SO2n+1(k).

From now on, the notations are as in Chapter 2. Let Xn+1 be the k-vector space

X ⊕ kv0, then 0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ Xn+1 forms a complete flag in Xn+1.

Define as above the unipotent subgroups Ui,j+1 and maximal unipotent subgroup

Nj+1 of Mj+1, for 1 ≤ i ≤ j ≤ n, corresponding to this flag. Then Y/Z ' Un,n+1 and

we have an exact sequence

1→ Z→ Q→ Pn+1 → 1.

The generic character θ of U is trivial on Z and factors through a generic character

on Nn+1, denoted also by θ. Assume (π, Vπ) is a smooth representation of G. The

representation πZ of Q is naturally a Pn+1-module. We can thus talk about the

derivative and nondegenerate part of πZ as we defined and discussed above. Then if

π is supercuspidal, then πZ = π
(nd)
Z is a multiple of ind

Pn+1

Nn+1
θ ' indQ

U θ. When π is θ-

generic, the natural map from the realization of π in IndG
U θ to IndQ

U θ by restricting to

Q is never injective. It has at least a kernel containing π(Z). When π is supercuspidal,

the kernel is exactly π(Z). We land at the following useful proposition.
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Proposition 3.3.3. Assume (π, Vπ) is an irreducible θ-generic and supercuspidal

representation of G. Then πZ ' indQ
U θ and if v ∈ Vπ is realized as the Whittaker

function Wv ∈ W (π, θ) in IndG
U θ and Wv ≡ 0 on Q, then v ∈ Vπ(Z), or equivalently,

JZ(v) = 0. If π is supercuspidal but not generic, then πZ = 0.

We note that the proposition says assuming supercuspidality, π
(nd)
Z is only one

copy of indQ
U θ as a Pn+1-module if it is generic, and is zero if it is not. This is

because that the multiplicity of indQ
U θ in πZ is the same as the multiplicity of θ in

π|U by Frobenius reciprocity, which is 1 when π is irreducible θ-generic and 0 when

π is not generic. This result was used by Gelbart and Piatetski-Shapiro to prove

the existence and uniqueness of a Rankin-Selberg L-function for G×M when the

representations on both factors are generic. (See [9] §8, §9.)

3.4. A Lemma

We have seen when a representation (π, Vπ) of G is irreducible θ-generic and

supercuspidal, then its Jacquet module πZ is isomorphic to the irreducible Q-module

indQ
U θ. Before we end this chapter, we introduce a lemma of Moy and Prasad.

Together with Proposition 3.3.3 it will play a crucial role in understanding the fixed

vectors of K(pm), which is at the heart of the study of newforms and will be introduced

in Part 2. We shall see later that such vectors are always fixed by Hxm for some m.

Lemma 3.4.1 (Moy-Prasad [21]). Assume m ≥ 0 is an integer. Suppose that (ρ,W )

is a smooth representation of H. Then the natural projection map under the Jacquet

functor JZ

JZ : WHxm+ → W
M(o)
Z

is an injection.
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Proof. Let i be an integer. Recall that we have a Iwahori factorization on non-

maximal parahoric subgroup Hxi+
of H

Hxi+
= Z(p−i) M(o)Z(pi+1).

Suppose u0 ∈ WHxm+ is nonzero and JZ(u0) = 0. By Proposition 3.1.3 (iv) there

exists a minimal integer i ≥ m such that∫
Z(p−j)

ρ(n)u0 dn = 0, ∀j ≥ i, and

∫
Z(p−(i−1))

ρ(n)u0 dn 6= 0.

If i = m, then u0 = 0, a contradiction. Assume i ≥ m + 1. Then u0 is invariant

under M(o) and Z(pi). The vector

w1 =

∫
Hxi+−1

ρ(n)u0 dn 6= 0

is invariant under the Hxi+−1
= Z(p−(i−1)) M(o)Z(pi). The image of Hxi+−1

in the re-

ductive quotient H(f) of Hxi by the pro-unipotent radical H+
xi

is the opposite parabolic

subgroup P (f).

Consider the representation (τ,W) of the finite reductive group H(f) by restricting

π to Hxi on the space WH+
xi . Then w1 ∈ WP(f). The theory of representations of finite

group of Lie type shows (c.f. [21, Proposition 6.1]) summing over Z(f) forms an iso-

morphism from WZ(f) to WZ(f) for any W of finite dimension. Since any representation

of H(f) is a direct sum of irreducible (and hence finite dimensional) representations

of H(f) by Zorn’s Lemma, it is an isomorphism for any representation of H(f). We

get a nonzero vector

w′1 =

∫
Z(f)

τ(n)w1 dn.

in WP(f).
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3.4. A Lemma

We construct another nonzero vector w2 in W by

0 6= w2 =

∫
M(f)

τ(m)w′1 dm =

∫
P(f)

τ(p)w1 dp =

∫
Hxi+

ρ(h)w1 dh

=

∫
Z(p−i) M(o)Z(pi+1)

ρ(h)w1 dh

= (const)

∫
Z(p−i)

ρ(h)w1 dh

= (const)

∫
Z(p−(i))

∫
Z(p−(i−1))

ρ(h2h1)u0 dh1dh2

= (const)

∫
Z(p−i)

ρ(h)u0 dh = 0, a contradiction.

The last equality is by changing the order of the integration and fact that Z is

commutative. Therefore, u0 must be 0. The map is injective. �

The original proof in [21] deals with irreducible admissible representations of H

in which case the map is an isomorphism. The surjectivity fails when removing the

admissible condition because of the use of Jacquet’s Lemma, while injectivity stays

valid by passing through the Zorn’s Lemma. I thank Jiu-Kang Yu for his discussion

with me on removing the admissibility condition.

Corollary 3.4.2. Assume (π, Vπ) ∈ Rep(G) is irreducible and supercuspidal. If π

is θ-generic and v ∈ V
Hxm
π for some integer m ≥ 0, then the associated Whittaker

function Wv in W (π, θ) is determined by its restriction to Q which lies in indQ
U θ. If

π is non-generic, then V
Hxm
π = 0 for all m ∈ Z.

Proof. π|H is a smooth representation of H. If π is θ-generic, then by Proposition

3.3.3 and Lemma 3.4.1 Wv(Q) = 0 ⇒ JZ(v) = 0 ⇒ v = 0. If π is not generic,

then Proposition 3.3.3 implies (Vπ)Z = 0 and Lemma 3.4.1 implies V
Hxm
π = 0 for all

m ≥ 0. �
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3.5. Hecke algebras

3.5. Hecke algebras

Let G be a connected k-split reductive group over o and fix a generic data

(B, T, θ : U → S1) of G. The Hecke algebra H(G) is the algebra of smooth compactly

supported functions on G with multiplication given by convolution ∗. Suppose K is

an open compact subgroup of G. Denote byH(G,K) the subalgebra of bi-K-invariant

functions in H(G). The algebra H(G) is generated by characteristic functions chK

on each open compact subset K of G. Denote by eK the function vol(K)−1 chK in

H(G) for K an open compact subgroup of G. Then eK is an idempotent of H(G)

and H(G,K) = eK ∗ H(G) ∗ eK , which contains eK as a unit. Since f ∈ H(G) is

smooth and has compact support, there exists an open compact subgroup K such that

f ∈ H(G,K). Hence H(G) = ∪KH(G,K) with K running through open compact

subgroups of G. We say a H(G)-module V is smooth if for all v ∈ V , v ∈ H(G,K)V

for some K, or, equivalently, H(G)V = V .

Fix (π, Vπ) ∈ Rep(G) and fix a Haar measure dg on G. Any function f in the

Hecke algebra induces an operator π(f) on the space of the representation. We have

H(G)→ EndC(Vπ) and H(G,K)→ EndC(V K
π ) = EndC(Vπ)K given by

f 7→ π(f) =

∫
G

f(g)π(g) dg.

Since naturally the operator π(f2) ◦ π(f1) is given by the convolution π(f2 ∗ f1) for

f1, f2 ∈ H(G). The space Vπ is endowed the structure of a smooth H(G)-module.

Here the smoothness is given by the facts V K
π = π(eK)Vπ and Vπ = ∪KV K

π . Suppose

(π1, V1) and (π2, V2) are two smooth representations of G and T : V1 → V2 is a G-

homomorphism, then it is also a H(G)-module map. On the other hand, any smooth

H(G)-module endows a smooth action of G on it as follows.

Proposition 3.5.1. Suppose V is a smooth H(G)-module, then there is a unique

smooth representation π : G→ AutC(V) such that π(f)v = fv for f ∈ H(G), v ∈ V.
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3.5. Hecke algebras

Proof. Let us claim that we have canonical isomorphism H(G) ⊗H(G) V ' V by

multiplication which hence induces a canonical action of G on V via the action of

left translation on the first factor. The multiplication is surjective by smoothness,

and injective since it is injective on H(G,K)⊗H(G,K) eKV = eKV . The action can be

given explicitly by π(g)v = vol(K)−1 chgK v for open compact subgroup K such that

v ∈ eKV . �

As a result, the category of smooth H(G)-module is equivalent to the category of

smooth representation of G. In particular, a representation (π, Vπ) is irreducible if

and only if it is a simple smooth H(G)-module.

Proposition 3.5.2. Assume (πi, Vi) ∈ Rep(G) are irreducible for i = 1, 2. Suppose

T : V K
1 → V K

2 is a H(G,K)-module map. Then it extends to a H(G)-module map

T̃ : V1 → V2 uniquely.

Proof. We have seen that H(G) ⊗H(G) Vi = Vi and V K
i = π(eK)Vi. Let us claim

that H(G) ⊗H(G,K) V
K
i ' Vi. Clearly H(G)V K

i is a smooth H(G)-submodule of the

simple smooth H(G)-module Vi. To show injectivity, assume that
∑d

j=1 π(fj)vj = 0.

Let K ′ be an open compact subgroup contained in K as a normal subgroup such

that fj ∈ H(G,K ′) for all j. Then since H(G) ⊗H(G,K) V
K
i ' H(G) ⊗H(G,K′)

(H(K ′, K) ⊗H(K′,K) V
K
i ) ' H(G) ⊗H(G,K′) V

K′
i , the element

∑d
j=1 fj ⊗ vj = eK′ ⊗∑d

j=1 π(fj)vj ∈ H(G) ⊗H(G,K′) V
K′
i is 0. Hence the kernel is trivial. By tensor-

ing H(G) the H(G,K)-module map T thus extend canonically to a H(G)-module

map, hence a G-homomorphism, T̃ : V1 ' H(G) ⊗H(G) V1 → V2 ' H(G) ⊗H(G) V2.

The uniqueness is by the Schur Lemma which says that G-homomorphism between

irreducible representations is unique up to scaling. �

Corollary 3.5.3. For (π, Vπ) ∈ Rep(G), assuming V K
π 6= 0 then π is irreducible if

and only if V K
π is a simple H(G,K)-module.
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In particular, we get the following:

Corollary 3.5.4. If (π, Vπ) ∈ Rep(G) is irreducible and the Hecke algebra H(G,K)

is commutative on V K
π . Then dimV K

π ≤ 1.

We will show that this applies to hyperspecial open compact subgroup K of G by

proving H(G,K) commutative using the Satake isomorphism.

Let ρ ∈ 1
2

X•(T ) be half of the sum of the positive roots of G, i.e. ρ = 1
2

∑
α∈Φ+

G
α.

One note that if λ ≥ µ then 〈λ− µ, ρ〉 ≥ 0. Notice that δB|T = 2ρ. The following

proof is based on [12].

Definition 3.5.5. Assume K is an open compact subgroup of G such that G = BK

and T (o) = T ∩K. The Satake transform S : H(G,K)→ H(T, T (o)) is defined by

f 7→ Sf(t) = δ
1/2
B (t)

∫
U

f(tu) du.

Let us show that the Satake transform is well-defined. Since T (o) = T ∩K, so

Sf(t) = δ
1/2
B (t)

∫
U

f(tu) du = δ
−1/2
B (t)

∫
U

f(ut) du

is a bi-T (o)-invariant function on T . For f1, f2 ∈ H(G,K) and t ∈ T ,

S(f1 ∗ f2)(t) = δB(t)−1/2

∫
U

∫
G

f1(g)f2(g−1u2t) dg du2

= δB(t)−1/2

∫
U

∫
BG(o)

f1(g)f2(g−1u2t) dg du2

= δB(t)−1/2

∫
U

∫
B

f1(b)f2(b−1u2t) db du2

= δB(t)−1/2

∫
U

∫
T

∫
U

f1(t′u1)f2(u−1
1 t′−1u2t) du1 dt

′ du2

= δB(t)−1/2

∫
T

∫
U

∫
U

f1(t′u1)f2(t′−1u2t) du2 du1 dt
′

=

∫
T

Sf1(t′)Sf2(t′−1t) dt′ = (Sf1 ∗ Sf2)(t).
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Proposition 3.5.6. The Satake transform is an algebra homomorphism.

Assume K is the hyperspecial maximal compact subgroup G(o). It satisfies the

properties G = BK and T ∩ K = T (o) with T/(T ∩ K) ' X•(T ). Furthermore,

G = tλ∈P+K$λK. Let b ∈ A(G) be the barycenter of the fundamental alcove C,

then the parahoric subgroup Gb is a Iwahori subgroup and

K = ts∈WG
GbwsGb, (ws: any lift of s in K).

Recall there is a partial order ≥ on X•(T ) ⊂ (WG)aff defined by λ ≥ µ if and only

if λ − µ is a sum of positive co-roots, α̌ ∈ Φ̌+
G. Then λ ≥ s(λ) for all s ∈ WG given

λ ∈ P+. We have the following property for λ, µ ∈ P+

(3.5.1) K$λK ∩ U$µK 6= ∅ ⇒ µ ≤ λ

which will be prove at the end of the section.

Using these property we can show the following famous result.

Theorem 3.5.7 (Cartier [3]). Assume K is the hyperspecial maximal compact sub-

group of G. Then the Satake transform S induces an algebra isomorphism onto its

image H(T, T (o))WG.

Proof. Let K be G(o). The Weyl group WG ' NG(T )/T acts on T by conjugation

and induces an action on H(T, T (o)). The hyperspecial subgroup G(o) contains a lift

of WG. Hence the image of S is bi-WG-invariant and sits in the WG-invariants. Let

us further show that S is indeed an isomorphism onto H(T, T (o))WG . Let

ch′T (o)$λT (o) =
1

|WG|
∑
s∈WG

chT (o)$w(λ)T (o) .

Then {chK$λK}λ∈P+ forms a basis of the C-vector spaceH(G,K) and {ch′T (o)$λT (o)}λ∈P+

is a basis of the C-vector space H(T, T (o))WG . For λ ∈ P+, there are constants
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cλ(µ) ∈ C, for µ ∈ P+, such that

S(chK$λK) =
∑
µ∈P+

cλ(µ) ch′T (o)$µT (o) .

By direct computation, for λ, µ ∈ P+ the coefficient cλ(µ) is equal to

S(chK$λK)($µ) = δ
−1/2
B ($µ)

∫
U

chK$λK(u$µ) du

= q〈µ,ρ〉 vol(U$µK ∩K$λK)

which is nonzero only if λ ≥ µ. In particular, cλ(λ) = q〈λ,ρ〉 vol($λK) = q〈λ,ρ〉 is

nonzero. Hence

(3.5.2) S(chK$λK) = q〈λ,ρ〉 ch′T (o)$λT (o) +
∑

µ∈P+,λ>µ

cλ(µ) ch′T (o)$µT (o) .

Since ≥ is a partial order on P+, this implies S is bijective onto H(T, T (o))WG . �

Corollary 3.5.8. The spherical Hecke algebra H(G,G(o)) is commutative and iso-

morphic to the coordinate ring C[T̂ ]WG of T̂ /WG.

Proof. Since T is commutative, it is clear that H(T, T (o)) is commutative. Moreover,

the algebra structure of H(T, T (o)) is isomorphic to X•(T )⊗Z C. By duality, this is

X•(T̂ ) ⊗Z C which is the C-algebra of the coordinate ring of the variety T̂ . This is

compatible with the actions of WG on T and T̂ . �

Let us now give a proof for the property (3.5.1). We shall apply the following

facts regarding an Iwahori subgroup Gb compatible with Φ+
G.

(i) Gb admits a Iwahori decomposition Gb = (Gb ∩ U)(Gb ∩ T )(Gb ∩ U).

(ii) Assume K an open compact subgroup containing Gb, then K = ∪w∈IKGbwGb for

some subset IK of W̃G.

(iii) For w,w′ ∈ W̃G, GbwGbw
′Gb ⊂

⊔
w′′≤w′ Gbww

′′Gb.
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The following proof is due to Haines and Rostami [13].

Proof of (3.5.1). Assume K ⊃ Gb is an open compact subgroup such that G =

∪µU$µK and K = ts∈WG
GbwsGb with ws a lift of s in K. Assume λ ∈ P+, then

since Gb$
λGbwsGb = Gb$

λws2Gb, we get

K$λK =
⋃

s1,s2∈WG

Gbws1Gb$
λGbws2Gb =

⋃
s1,s2∈WG

Gbws1Gb$
λws2Gb

Assume U$µK ∩ Gbws1Gb$
λws2Gb 6= ∅. Since U$µK =

⋃
s∈WG

U$µwsGb, there

exist u ∈ U , s, s1, s2 ∈ WG such that

u$µws ∈ Gbws1ws′2Gb

for some s′2 ∈ W̃G, s′2 ≤ λs2. Take a co-character γ such that u = $−γu′$γ for some

u ∈ Gb. Then

Gb$
γ$µwsGb ⊂ Gb$

γGbws1ws′2Gb.

This implies µs ≤ s1s
′
2 ≤ s1λs2 and ≤ λ since λ ∈ P+ and s1, s2 ∈ WG. Hence we

can find a minimal µ′ such that $µ′K = $µK and µ′ ≤ λ. �

In the case G = SO(V ), other than the hyperspecial open compact subgroups

Kxi , i: even, the rest of the family Kxi for i odd are also subgroups that sat-

isfy the properties used to prove (3.5.1) for the Satake isomorphism. Consider the

Iwahori subgroup Gxi+b where b is the barycenter of the alcove C. Then Kxi =⊔
w∈NKxi

(T )/T (o) Gxi+bwGxi+b and NKxi
(T )/T (o) ' WG. We have G = B Kxi and

Kxi ∩T = T(o). The open compact groups Kxi admit the property (3.5.1) and

(3.5.3) Kxi $
λ Kxi ⊂

⋃
µ≤λ

U$µ Kxi , ∀λ ∈ P+.

Following the same line as the proof of Theorem 3.5.7 we can also get:
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Proposition 3.5.9. The Satake transform S : H(G,Kxi) → H(T,T(o)) is an iso-

morphism onto H(T,T(o))WG. Hence the Hecke algebra H(G,Kxi) is commutative.

As a result, we obtain the following Corollary.

Corollary 3.5.10. Let π be any irreducible smooth representation of G. Then the

Kxi-invariants πKxi in π has dimension at most 1.
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CHAPTER 4

Local factors of generic representations

For a generic representation of SO2n+1(k), the Langlands functorial lifting to

GL2n(k) has been established by Soudry and Jiang and hence the local Langlands

correspondence from generic representations π of SO2n+1(k) to 2n-dimensional sym-

plectic Weil-Deligne representations (ρ, Sp(M), N) of the Weil group of k, called the

Langlands parameter M of π, is valid. The standard L-functions L(π, std, s) of the

Langlands parameters have then an integral representation, the zeta integrals, which

by Soudry is the Rankin-Selberg L-functions L(π, s) for SO2n+1(k)×GL1(k). The so

defined ε-factors ε(π, s, ψ), conductors aπ and root numbers επ of the representations

are equal to the ones defined for the Langlands parameters. We shall introduce the

construction of these local factors in this chapter. The notation follow Chapter 2 and

3 as before and G = SO2n+1. A generic data (B,T, θ) of G is fixed.

In this chapter, (π, Vπ) ∈ Rep(G) is always an irreducible θ-generic supercuspidal

representation of G. Fix a Whittaker functional `θ on Vπ with respect to θ and hence

a realization of π to the Whittaker model W (π, θ) by v 7→ Wv(g) = `θ(π(g).v) for

v ∈ Vπ. Recall that by Corollary 3.4.2, Wv is uniquely determined by its restriction

to Q which is a function in indQ
U θ of compact support modulo U. The restriction of

Wv to T is slowly increasing by smoothness of π.

4.1. Standard L-function for SO2n+1(k)

In this section, we will construct a zeta integral by Rankin-Selberg convolution for

G×GL1(k) which interpolate the standard L-function. It was first constructed by
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4.1. Standard L-function for SO2n+1(k)

Novodvorsky and studied systematically by Ginzburg [11] (global case) and Soudry

[28] (local case) for general SO2n+1(k)×GLr(k). These Rankin-Selberg L-functions

are known to agree with the tensor product L-functions, up to a normalization. We

review the general idea of this construction before we introduce the special cases

r = 1. We will also treat the case r = n in later sections.

Assume 1 ≤ i ≤ j ≤ n and 1 ≤ r ≤ n are integers. Let Mj+1, Nj+1 and Ui,j+1 be

as defined in Section 3.3. Define the subgroup Y′(r,n) as the unipotent radical of the

parabolic subgroup preserving the isotropic flag

0 ⊂ ker+1 ⊂ ker+1 ⊕ ker+2 ⊂ · · · ⊂ ker+1 ⊕ ker+2 ⊕ · · · ⊕ ken.

Y′(r,n) normalizes the intersection U∩Y′(r,n) and the character θ(r) = θ|U∩Y′(r,n)
. Then

θ(r) is a character of U∩Y′(r,n). Let X′(r,n) be the subgroup such that Y′(r,n) =

(U∩Y′(r,n)) o X′(r,n). Then

X′(1,n) =
n∏
i=2

Uεi−ε1

is abelian and isomorphic to kn−1.

Definition 4.1.1. For v ∈ Vπ, define the zeta integral attached to v as

(4.1.1) I(v, s) =

∫
k×

∫
X′(1,n)

Wv(~x ε1(a))|a|s−
1
2 d~x da, s ∈ C.

By a change of variables, the zeta integral I(v, s) can also be written as

(4.1.2) I(v, s) =

∫
k×

∫
X′(1,n)

Wv(ε1(a) ~x)|a|s−(n− 1
2

) d~x da.

Since π is smooth, every vector is fixed by some open compact subgroup. The zeta

integral I(v, s) is a finite sum of functions of the form∫
a∈k×

Wv′(ε1(a))|a|s−(n− 1
2

) da =
∑
m∈Z

qm(n− 1
2

)(

∫
pm−pm+1

Wv′(ε1(a)) da) q−ms.
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4.1. Standard L-function for SO2n+1(k)

Since Wv|T is a slowly increasing function on T ' Gn
m. For <(s) � 0, the function

I(v, s) converges absolutely to a rational function in X = q−s and therefore has a

meromorphic continuation to all s ∈ C.

Proposition 4.1.2. For v ∈ Vπ, the zeta integral I(v, s) converges absolutely on a

right half plane to a rational function in X = q−s and has a meromorphic continuation

to the whole complex plane.

For vectors in Vπ that is invariant under elements in Q(o), the zeta integral at-

tached to them can be rewritten into a simpler form.

Lemma 4.1.3 (Simpler formula for I(v, s)). If v is fixed by Q(o), then

I(v, s) =

∫
k×
Wv(ε1(a))|a|s−(n− 1

2
) da.

Proof. For α = εi − ε1, i = 1, 2, ..., n, Gα ' SL2(k). For ci 6= 0, i = 2, 3, ..., n,

xεi−ε1(ci)xε1−εi+1
(yi) = xαi(−ciyi)xε1−εi+1

(yi)xεi−ε1(ci).

Assume ~x =
∏n

i=2 xεi−ε1(ci) with cj ∈ o for j > i and ci /∈ o. Suppose v is invariant

under elements in Q(o). For all y2, y3, ..., yi ∈ o,

~x v =
n∏
j=2

xεj−ε1(cj) v =
i∏

j=2

xεj−ε1(cj) v

=

(
i−1∏
j=2

xεj−ε1(cj)

)
xεi−ε1(ci)xε1−εi+1

(yi) v

=

(
i−1∏
j=2

xεj−ε1(cj)

)
xαi(−ciyi) v

= xαi(−ciyi)

(
i−1∏
j=2

xεj−ε1(cj)

)
v

= xαi(−ciyi) · · ·xα3(−c3y3)xα2(−c2y2) v.
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4.1. Standard L-function for SO2n+1(k)

Choose yi with close to 0 enough such that cjyj ∈ o. Using the other expression

(4.1.2) of I(v, s), one can get

I(v, s) =

∫
k×

∫
X′(1,n)

Wv(ε1(a) ~x)|a|s−(n− 1
2

) d~x da

=

∫
k×

∫
o

· · ·
∫
o

`θ(ε1(a)
n∏
i=2

xεi−ε1(ci) v)|a|s−(n− 1
2

) dcn · · · dc2 da

=

∫
k×
`θ(ε1(a) v)|a|s−(n− 1

2
) da,

which proves the assertion. �

Remark 4.1.4. In the proof of the simpler formula, we see that to obtain the simpler

formula, it is enough to require v to be invariant under elements in X′(1,n)(o), Uε1(o),

Uε1−εi(o) for i = 3, ..., n and Uαi(p) for i = 1, ..., n− 1.

Using this simpler formula, we can argue that the complex valued function I(v, s)

can achieve any constant function for some v ∈ Vπ. This is done by the fact that the

linear form I(v, s) on Vπ passes through a linear form on (Vπ)Z, which contains the

whole space indQ
U θ by genericity assumption. We look at the function W0 in indQ

U θ

which is Q(o)-invariant on the right, supported on U Q(o) and takes 1 on the identity.

Then W0 is well-defined since θ is trivial on U∩Q(o). Any preimage of W0 in Vπ

under JZ is fixed by Q(o) since JZ is a Q-homorphism. Applying the simpler formula,

it is clear that the zeta integral attached to such a preimage is a constant function.

By rescaling we get any constant function.

Let the set

I(π) = {I(v, s) | v ∈ Vπ}

be the vector space of zeta integrals attached to the representation space Vπ. We have

seen that C ⊂ I(π). Since I(v, s) has meromorphic continuation to a rational function

in X = q−s, we can view I(π) ⊂ C(q−s). Since I(ε1($m)v, s) = q−m(s− 1
2

)I(v, s), so
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4.1. Standard L-function for SO2n+1(k)

multiplying by q−ms for any m ∈ Z preserves the space. It is indeed a sub-C[q−s, qs]-

module of C(q−s) hence a fractional ideal. Since the polynomial ring C[X,X−1] is

a principal ideal domain. The fractional ideal I(π) is hence principal and admits a

generator. This is how the L-function of π is defined.

Proposition 4.1.5. For an irreducible generic representation π of G, the set

I(π) = {I(v, s) | v ∈ Vπ} ⊂ C(q−s)

is a fractional ideal of the principal ideal domain C[q−s, qs]. The L-function of π is

defined as the generator of the fractional ideal which is of the form

L(π, s) =
1

Pπ(q−s)
, Pπ(X) ∈ C[X], Pπ(0) = 1.

In particular, if π is supercuspidal, then L(π, s) = 1, or equivalently, Pπ(X) = 1.

Proof. We have seen that I(π) is a fraction ideal. Suppose 1/Pπ(q−s) ∈ C(q−s) is a

generator. Since C[X,X−1]× = 〈cXm ; c ∈ C,m ∈ Z〉. The generator 1/Pπ(X) can

be chosen to be of the form A(X)/B(X) for some polynomials A,B ∈ C[X] relatively

prime in C[X,X−1]. Since 1 ∈ I(π), there exist a polynomial R(X) ∈ C[X] such that

A(X)R(X) equals B(X) up to a unit in C[X,X−1]. Since A,B are coprime, A = 1

and Pπ(X) ∈ C[X].

To show last assertion in the proposition, we need to show that I(π) = C[q−s, qs].

The inclusion is clear. To show I(π) ⊃ C[q−s, qs] we use the fact that πZ = indQ
U θ.

Then for every v ∈ Vπ, the function Wv|T is compactly supported. Since the zeta

integral is a finite sum of functions of the form

∑
m∈Z

qm(n− 1
2

)(

∫
pm−pm+1

Wv(ε1(a)) da) q−ms

=
∑

M≤m≤N

qm(n− 1
2

)(

∫
pm−pm+1

Wv(ε1(a)) da) q−ms ∈ C[q−s, qs]
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4.1. Standard L-function for SO2n+1(k)

for some M,N ∈ Z, it must be in C[q−s, qs].

Remark 4.1.6. If the representation π ∈ Rep(G) is not supercuspidal, it is a sub-

representation of an prarabolically induced representation by an irreducible super-

cuspidal generic representation of a Levi. By Lemma 3.2.2, we can still work with

the Whittaker functional on the parabolic induction. The discussion in this section

works as well and the local factors can be defined for any generic representation in

the same way. (See [28] for detail of the general case.)

Let us do an example with the unramified representations of G.

Example 4.1.7. Let χ =
∏n

i=1 | · |si be a character of T ' Gn
m with si ∈ C. Let πχ

be the unique irreducible generic subrepresentation of IU(χ) = IndG
B χδ

1/2

B
. Assume

π is the whole space IndG
B χδ

1/2
B . Let yi = q−si and let (y1, y2, ..., yn) ∈ (C×)n be the

Satake parameter of π in the Langlands dual group T̂ of T which gives a semisimple

elment

tχ = diag(y1, y2, ..., yn, y
−1
n , ..., y−1

2 , y−1
1 )

in the Langlands dual group Sp2n(C) of G. Then it is expected that the standard

L-function L(πχ, std, s) of π is

det(I−tχq−s)−1 =
∑
m≥0

tr Symm(tχ)q−ms.

Let χλ be the character of T̂ on the irreducible finite dimensional representation

of Sp2n(C) of highest weight λ ∈ P+ ⊂ X•(T̂). Denote by Wχ ∈ W (πχ, θ) the

normalized (spherical) Whittaker function that is invariant under elements in G(o)

attached to a (spherical) function fχ in IU(χ)G(o). This Whittaker function Wχ is

determined by its value on T because of the Iwasawa decomposition G = U T G(o).

46



4.2. ε-factor and conductor

The Casselman-Shalika formula [6] shows that on T the function Wχ satisfies

Wχ($λ) = δ
1/2
B ($λ)χλ(tχ)

for any co-character λ ∈ P+ and 0 otherwise. Since G(o) contains Q(o), we can apply

the simpler formula for I(fχ, s). We get

I(fχ, s) =

∫
k×
Wχ(ε1(a))|a|s−(n− 1

2
) da = vol(o×)

∑
m≥0

qm(n− 1
2

)Wχ($mε1)q−ms

= vol(o×)
∑
m≥0

χmε1(tχ)q−ms.

The irreducible representation of Sp2n(C) with highest weight ε1 is the 2n dimensional

standard representation and the one with highest weight mε1 is its m-th symmetric

power. The zeta integral I(fχ, s) becomes vol(o×)
∑

m≥0 tr Symm(tχ)q−ms which is a

scalar multiple of the standard L-function L(π, std, s).

4.2. ε-factor and conductor

In this section we develop a functional equation for the zeta integrals.

It is clear that the linear form I(v, s) depends only on Wv|Q and hence only on

JZ(v). We are allowed to focus on the Pn+1-module (Vπ)Z. Indeed, the linear form

factor through the Jacquet module (Vπ)Y′(1,n),θ(1)
. That is, it satisfies

(4.2.1) I(π(y)v, s) = θ(1)(y) I(v, s), ∀y ∈ Y′(1,n) .

The space of linear forms satisfying (4.2.1) turns out to be one dimensional for s ∈ C

where it is defined. It leads to a functional equation for the zeta integrals I(v, s).

Let ωs denote the character | · |s of M1 ' k×. The subgroup M1 X′(1,n) normalizes

the character θ(1) of Y(1,n).

Lemma 4.2.1. HomM1(JY′(1,n),θ(1)
(π)⊗ ωs′ ,C) ' C.
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4.2. ε-factor and conductor

This is a special case of [28, Theorem 8.2], which shows in general for 1 ≤ r ≤ n

the space HomMr(JY′(r,n),θ(r)
(π)⊗ τ | det |s′ ,C) is one dimensional, where τ ∈ Rep(Mr)

is irreducible generic and supercuspidal. If π is non supercuspidal, the lemma is

still valid also arguing a case by case argument using the Schur’s lemma and the

Mackey’s formula using the fact that πZ is glued from the induced representations

(Φ+)k−1Ψ+(π(k)), 1 ≤ k ≤ n+ 1.

Proof. Since π is generic supercuspidal, the Pn+1-module πZ is ind
Pn+1

Nn+1
θ. Note

that NormG(Y′(1,n), θ(1)) = M1 Y′(1,n) and δM1 Y(1,n)
|M1 = ω−1

n−1 on M1. By Frobenius

reciprocity and Proposition 3.1.1 (iii), (s′ = s− 1
2
)

HomM1(JY′(1,n),θ(1)
(π)⊗ ωs′ ,C) ' HomPn+1(πZ, IY′(1,n),θ

−1
(1)

(ω−s′ω
1/2
n−1))

' HomPn+1(ind
Pn+1

Nn+1
θ ⊗ iY′(1,n),θ(1)

(ωs′ω
−1/2
n−1 ),C).

Applying Proposition 3.1.1 (iii) again, this space is equal to

HomPn+1(iY′(1,n),θ(1)
(ωs′ω

−1/2
n−1 ), δ−1

Pn+1
Ind

Pn+1

Nn+1
θ−1) ' HomM1(ωs′ω

1/2
n−1, ω−1 IndM1

N1
θ|−1

N1
)

= Homk×(| · |s+
n
2 , C∞(k×)) = C. �

Set an element

u0 =

 1
−1

. . .
−1

1

 ∈ G

which lifts an odd sign change Weyl element sε1 of G.

The element u0 is in G, but not in Q. It stabilizes the group Y′(1,n) and the

character θ(1). Let Ĩ(v, s) be the linear form I(u0v, 1− s) for s ∈ C, v ∈ Vπ. Then

Ĩ(ε1(a)v, s) = |a|−(s− 1
2

)Ĩ(v, s)
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4.2. ε-factor and conductor

and factors through a linear form in HomM1(JY′(1,n),θ(1)
(π) ⊗ ωs′ ,C) for all s ∈ C

where it is defined. It has been shown in Lemma 4.2.1 that this vector space is one

dimensional. Therefore for all s ∈ C with finite exceptions of values of q−s, there

exists a complex number γ(π, s, ψ) independent of v such that the functional equation

I(u0v, 1− s) = γ(π, ψ, s)I(v, s)

holds. Since I(v, s) ∈ C(q−s) for all v, the function γ(π, s, ψ) in s lies in C(q−s) and

is called the γ-factor of π.

Notice that I(v, s)/L(π, s) ∈ C[q−s, qs]. Let us define the local invariants, the

conductor aπ, and the root number επ, of the representation π.

Knowing L(π, s) agrees with the standard L-function L(π, std, s), these invariants

agree with the Artin conductor and the root number of the corresponding Langlands

parameter (ρ, Sp(M), N) of π.

Theorem/Definition 4.2.2. The ε-factor of π is the rational function ε(π, s, ψ) in

X = q−s satisfies the functional equation

(4.2.2)
I(u0v, 1− s)
L(π, 1− s)

= ε(π, s, ψ)
I(v, s)

L(π, s)
.

It is a unit in C[q−s, qs] and has the form

ε(π, s, ψ) = επq
−aπ(s− 1

2
)

for some number επ ∈ {±1}, the root number of π, and some integer aπ, the con-

ductor of π.

Proof. Since the definition of ε(π, s, ψ) does not depend on the choice of v in Equation

(4.2.2), choose v∗ such that I(v∗, s) = L(π, s). Then

ε(π, s, ψ) =
I(u0v∗, 1− s)
L(π, 1− s)

∈ C[q−s, qs].
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4.3. Rankin-Selberg convolutions for SO2n+1(k)×GLn(k)

By applying the functional equation (4.2.2) twice, one sees ε(π, 1− s, ψ)ε(π, s, ψ) =

1. We conclude that the ε-factor ε(π, s, ψ) ∈ C[q−s, qs]× = 〈cq−ms ; c ∈ C,m ∈ Z〉.

Take επ = ε(π, 1
2
, ψ), then for some integer aπ ∈ Z, ε(π, s, ψ) = επq

−aπ(s− 1
2

). Since

ε(π, 1
2
, ψ)2 = 1, the number επ = ±1. �

We will show in Part 2 that the conductor aπ defined above must be nonnegative.

4.3. Rankin-Selberg convolutions for SO2n+1(k)×GLn(k)

In this section, we review the construction of the Rankin-Selberg convolutions for

G×Mr with r = n. Notations are as in Section 4.1. The group Mn equals to the

Levi subgroup M of Q and P. We land at the simplest case with Y′(n,n) = X′(n,n) = I,

and θ(n) = 1. Write s′ = s − 1
2

for s ∈ C. Any unramified character of Mn is of the

form ωs′ ◦ det for some s ∈ C.

For τ ∈ Rep(M), set τs = τ | det |s− 1
2 as an unramified twist of τ for s ∈ C.

Consider the normalized induction

ρτ,s = IH,M(τs) ∈ Rep(H)

for s ∈ C. Then (ρτ,s, Vρτ,s) is irreducible for all but a finite set of values of q−s.

Assume ρτ,s is irreducible. Note that δPn+1|Mn = | det | and δP|Mn = | det |n−1. Using

the theory of mirabolic group Pn+1 in §2.3, the space of H-invariant bilinear forms

HomH(π|H ⊗ ρτ,s,C) is canonically isomorphic to

HomMn(πZ ⊗ τs| det |−
n−1

2 ,C) ' HomPn+1(ind
Pn+1

Nn+1
θ ⊗Ψ+(τs−n

2
),C)

' HomPn+1(Ψ+(τs−n
2
), δ−1

Pn+1
Ind

Pn+1

Nn+1
θ−1) ' HomMn(τs| det |−

n−1
2 , IndMn

Nn
θ|−1

Nn
)

' HomNn(τ |Nn , θ|−1
Nn

),

which is one dimensional if τ is θ|−1
Nn

-generic, and is zero otherwise.
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4.3. Rankin-Selberg convolutions for SO2n+1(k)×GLn(k)

On the other hand, by Frobenius reciprocity this space of H-invariant bilinear

forms is canonically isomorphic to the space of H-embeddings

ρτ,s ↪→ IH,M IndM
Nn θ|

−1
Nn

= IndH
V θ
−1

which by dimension one gives a unique realization of ρτ,s in the space of functions

f(h, s) ∈ IndH
V θ
−1 such that f(nzh, s) = θ(n)−1f(h, s) for n ∈ Nn, z ∈ Z, h ∈ H.

One should be aware that θ|V is not a generic character of the maximal unipotent

subgroup V of H.

By abusing the notation, let us also denote by θ the character θ|Nn of Nn when

the content is clear. Assume (τ,Wτ ) ∈ Rep(M) is irreducible θ−1-generic. Let `θ be

a θ−1-Whittaker functional on the space Wτ of τ , and W (τs, θ
−1) be the Whittaker

model of τs. The map

Vρτ,s ↪→ IndH
V θ
−1, ξ(h, s) 7→ fξ(h, s) = `θ(ξ(h, s))

gives the unique realization of ρτ,s in the space IndH
V θ
−1 into IH,M W (τs, θ

−1). For

ξ ∈ Vρτ,s , the function fξ satisfies

fξ(nmzh, s) = θ(n)−1`θ(τs(m)ξ(h, s)),

for n ∈ Nn,m ∈ M, z ∈ Z, h ∈ H. We warm that fξ is not a Whittaker function

attached to ξ since θ−1|V is a not a generic character of V.

Theorem/Definition 4.3.1. For v ∈ Vπ, ξ ∈ Vρτ,s, the zeta integral attached to

v ⊗ ξ is a complex-valued function

ζ(v ⊗ ξ, s) =

∫
V \H

Wv(h)fξ(h, s) dh.

It defines a H-invariant bilinear form in HomH(π ⊗ ρτ,s,C) for all but a finite set of

values of q−s, which is unique up to a scaling.
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4.3. Rankin-Selberg convolutions for SO2n+1(k)×GLn(k)

Again since the representations π|H and ρτ,s of H are smooth, and by Cartan

decomposition V T \H is compact, we get for v ⊗ ξ ∈ Vπ ⊗ Vρτ,s the zeta integral

ζ(v ⊗ ξ, s) is a finite sum of functions in q−s of the form∫
T

Wv′(t)fξ′(t, s) dt

for some v′, ξ′. Wv|T has compact support on T and the function fξ′ on T agrees with

the Whittaker function Wξ′(1,s) attached to ξ′(1, s) ∈ Wτ restricted to T. Since the

Whittaker functions on T is slowly increasing in q−s. We again conclude

Proposition 4.3.2. The zeta integrals converge absolutely to a rational function in

q−s for <(s)� 0 and admit meromorphic continuations to the whole complex plane.

Let wH, and wM be lifts of the longest Weyl elements of H and M in Hx0 respec-

tively, such that wH V ∩ V = I and wM Nn ∩ Nn = 1. (Notice that wGg = ∗g = g−1,

wMm = tm .)

Set wP = wMwH and ω = w−1
G wH. Then the parabolic subgroup Pω = MωnZω

is associated to P = MnZ in H by wP such that wP(Mω ∩V) = wMNn ⊂ V and

(M∩V)wP = Nn
wH ⊂ V. Conjugating by the element ω defines an outer automor-

phism of H which preserving V. Set ω0 = wPω
−1 = wMwG, which lifts the Weyl

element sε1 · · · sεn of G in Gx0 and set ωm = $−m(ε1+···εn)ωm which lifts it in Kxm .

For ξ ∈ IM,H τs, the function

(A(w−1
P , s)ξ)(h) =

∫
Z

ξ(ω0zhω) dz

satisfies the property that

(A(w−1
P , s)ξ)(mzh) = δP(m)| det(m)|−1/2τs(

tm−1 )(A(w−1
P , s)ξ)(h)

= δ
1/2
P (m)τ̃1−s(m)(A(w−1

P , s)ξ)(h), m ∈ M, z ∈ Z, h ∈ H
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4.3. Rankin-Selberg convolutions for SO2n+1(k)×GLn(k)

and defines an intertwining operator A(w−1
P , s) : IH,M(τs)→ IH,M(τ̃1−s). It induces an

operator, also denoted by A(wP, s),

A(w−1
P , s) : IH,M W (τs, θ

−1)→ IH,M W (τ̃1−s, θ
−1)

on subspaces of functions in IndH
V θ
−1 by

fξ 7→ (A(w−1
P , s)fξ)(h) =

∫
Z

fξ(dMω0zhω) dz, dM ∈ T, s.t. α(dM) = −1 ∀α ∈ ∆M.

(Note that dM is to ensure dMθ−1(n−1) = θ−1 (n), for n ∈ Nn.) The normalized inter-

twining operator is the operator

A∗(w−1
P , s) = γ(τ,∧2, 2s− 1, ψ)A(w−1

P , s)

where γ(τ,∧2, s, ψ) = ε(τ,∧2, s, ψ)
L(τ̃ ,∧2, 1− s)
L(τ,∧2, s)

, the γ-factor associated to the ex-

terior square L-function of τ , is the local coefficient of Shahidi such that A∗(w−1
P , s)

has no zero. ([28] [29])

Let us similarly consider the zeta integrals on Vπ ⊗ Vρτ̃ ,1−s for π × τ̃ . Then for all

but a finite set of values of q−s, the bilinear form

ζ(ωv ⊗ A∗(w−1
P , s)ξ, 1− s) =

∫
V \H

Wv(hω)(A∗(w−1
P , s)fξ)(h, 1− s) dh,

for v ∈ Vπ, ξ ∈ Vρτ,s , is again H-invariant and defines an element in the one di-

mensional vector space HomH(π ⊗ ρτ,s,C). By uniqueness, it is a scalar multiple of

ζ(v ⊗ ξ, s) on which s it is defined.

Theorem/Definition 4.3.3. For all but a finite set of values of q−s, there is a

number γ(π × τ, s, ψ), independent of v and ξ, such that for v ∈ Vπ, ξ ∈ Vρτ,s, the

functional equation

ζ(ωv ⊗ A∗(w−1
P , s)ξ, 1− s) = γ(π × τ, s, ψ)ζ(v ⊗ ξ, s)
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4.4. Rankin-Selberg L-function of π × τ

holds whenever it is defined. This is called the γ-factor associate with π and τ .

Remark 4.3.4. Soudry [28] [29] further showed this γ-factor is multiplicative in π

and τ . It agrees with the gamma factor defined by the Langlands-Shahidi method

[26]. The thus defined L-factor shall agree with the L-factor defined by the Langlands-

Shahidi method and agree with the tensor product L-function of the Langlands pa-

rameter of π × τ on the Galois side. We define this L-factor in the next section.

4.4. Rankin-Selberg L-function of π × τ

Consider ρτ,s = IH,M τs as space of sections with s a parameter, taking values on

Wτ -valued functions ξ(·, s) on H, such that

ξ(mzh, s) = | detm|s+
n−2

2 τ(m)ξ(h, s)

for m ∈ M, z ∈ Z, h ∈ H. We say a section ξ(h, s) ∈ IH,M τs is standard if it satisfies

one of the following condition

i τ is unramified and fξ(k, s) = L(τ,∧2, 2s) for all k in the hyperspecial open

compact subgroup Hxm of H for some m.

ii. The restriction of ξ to Hxm is independent of s for some m.

iii. fξ = A∗(wP, 1− s)fξ′ for some ξ′ satisfied condition (ii) in IH,M τ̃1−s.

Lemma 4.4.1. The set of poles and zeros of the zeta integral ζ(v⊗ξ, s) is independent

of the choice of the generic character θ of U.

Proof. Let θ′ be another generic character of U. Since the orbit of generic character

of U under adjoint action of T is unique, θ′ = θt for some t ∈ T. The complex-valued
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4.4. Rankin-Selberg L-function of π × τ

function constructed via θt is

ζt(v ⊗ ξ, s) =

∫
V \H

`θt(π(h)v)`θt(ξ(h, s)) dh

=

∫
V \H

`θ(π(t)π(h)v)`θ(τs(t)ξ(h, s)) dh

=

∫
V \H

`θ(π(th)v)`θ(ξ(th, s)| det t|−(s+n−2
2

)) dh

= | det t|−(s+n−2
2

)

∫
V \H

`θ(π(h)v)`θ(ξ(h, s)) dh

= | det t|−(s+n−2
2

) ζ(v ⊗ ξ, s).

Since | det t|−(s+n−2
2

) is an entire function, the new zeta integral ζt(v ⊗ ξ, s) has the

same set of poles and zeros as original zeta integral ζ(v ⊗ ξ, s). �

Proposition 4.4.2. Define I(π × τ) ⊂ C(q−s) as the set

I(π × τ) =
{
ζt(v ⊗ ξ, s) | v ∈ π, ξ: standard section in IndH

P τs, t ∈ T
}
.

Then I(π×τ) contains C, the constant function, and is a fractional ideal of C[q−s, qs].

Proof. Since πZ|Q ' indQ
U θ, there exists v∗ ∈ V

Q(m)
π for some m ≥ 0 such that

Wv∗ |Q ∈ indQ
U θ is supported on V Q(o) and Wv∗(I) = 1. Choose ξ∗(h, s) ∈ Vρτ,s such

that it supports on PK ∩ H with K ⊂ Q(m) an open compact subgroup of G small

enough such that ξ∗ is fixed by K and fξ∗(1, s) = 1. The choice of K can be chosen

to be independent of s since τs is a twist of τ by a unramified character for all s.

Therefore ξ∗(h, s) is a standard section and ζ(v∗⊗ ξ∗, s) ∈ I(π× τ). The zeta integral

becomes

ζ(v∗ ⊗ ξ∗, s) =

∫
V \PK∩H

Wv∗(h)fξ∗(h, s) dh

=

∫
V \P

Wv∗(p)fξ∗(p, s) dp = Wv∗(I)fξ∗(I, s) = 1
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4.4. Rankin-Selberg L-function of π × τ

a constant function in q−s with suitable choices of Haar measures on H and P.

We have seen from the proof of Lemma 4.4.1 that

ζt(v ⊗ ξ, s) = | det t|−(s+n−2
2

) ζ(v ⊗ ξ, s).

Take t = $ε1 , then q±sI(π × τ) ⊂ I(π × τ). The set is then a C-algebra contained

in the fraction field of C[q−s, qs] containing C and closed under multiplying by q±s.

The assertion follows. �

We do an example with π being supercuspidal. Recall that such π has the property

that πZ|Q ' indQ
U θ as a representation of Q.

Example 4.4.3. Assume π is irreducible, generic and supercuspidal. Recall that

the zeta integrals are in the space of bilinear forms HomH(π|H ⊗ ρτ,s,C), which is

isomorphic to HomNn(τ |Nn , θ−1). The space HomNn(τ |Nn , θ−1) is nonzero for all s.

Hence the zeta integrals are indeed well-defined for all s ∈ C and hence are entire

functions. In particular, for v ⊗ ξ ∈ Vπ ⊗ Vρτ,s , the Laurent series ζ(v ⊗ ξ, s) in

determinant X = q−s is in C[X,X−1].

Another way to look at this is that the zeta integral is a finite sum of functions

of the form
∫

T
Wv′(t)Wξ′(I)(t)| det t|s−n2 dt while Wv′|T is of compact support. Hence

such function is a finite sum of the form ciWvi($
ai)Wξi(I)($

ai)qbis for some vi ⊗ ξi ∈

Vπ ⊗ Vρτ,s , ai, bi ∈ Z and ci ∈ C. Therefore, the zeta integral must sits in C[q−s, qs].

We are ready to define the L-factor of π × τ for G×M as the g.c.d of the set

I(π×τ), which can be normalized to be 1/P (q−s) for some polynomial P (X) ∈ C[X].

Definition 4.4.4. The L-factor L(π × τ, s) associate with π and τ is defined as the

generator of the fractional ideal I(π × τ) of C[q−s, qs] such that

L(π × τ, s) =
1

Pπ×τ (q−s)
, Pπ×τ (X) ∈ C[X], and Pπ×τ (0) = 1.
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4.4. Rankin-Selberg L-function of π × τ

In particular, when π is irreducible generic and supercuspidal, L(π × τ, s) = 1.

By the definition of the L(π×τ, s) and Lemma 4.4.1, there exist vi⊗ξi ∈ Vπ⊗Vρτ,s
and some ai ∈ Z, i = 1, 2, ..., d such that

L(π × τ, s) =
d∑
i=1

qaisζ(vi ⊗ ξi, s) ∈ C(q−s).

Moreover, since L(π × τ, s) is the generator of the fractional ideal I(π × τ), for all

ζ(v ⊗ ξ, s) we shall have
ζ(v ⊗ ξ, s)
L(π × τ, s)

∈ C[q−s, qs]. Then we have following.

Theorem/Definition 4.4.5. The ε-factor ε(π × τ, s) associate with π and τ is an

entire function

ε(π × τ, s, ψ) = γ(π × τ, s, ψ)
L(π × τ, s)

L(π × τ̃ , 1− s)

satisfies ε(π × τ̃ , 1− s, ψ)ε(π × τ, s, ψ) = 1. We have the functional equation

ζ(ωv ⊗ A∗(w−1
P , s)ξ, 1− s)

L(π × τ̃ , 1− s)
= ε(π × τ, s, ψ)

ζ(v ⊗ ξ, s)
L(π × τ, s)

and the ε-factor ε(π × τ, s) is a unit in C[q−s, qs]×.

Proof. For simplicity, we will only prove the case when π is irreducible generic

and supercuspidal. Notice that it implies I(π × τ, s) = I(π × τ̃) = C[q−s, qs] and

L(π × τ, s) = L(π × τ̃ , s) = 1. For ξ ∈ Vρτ,s , there is an open compact subset K ′ of

H such that ξ is supported on PK ′ and Z ∩ PK ′ ⊂ K ′. Since H = (Z M Z)K ′ and

commutators of Z and Z are in M, the function

(A(wP, 1− s)A(w−1
P , s)ξ)(h) =

∫
Z

∫
Z

ξ(ω0z1ω0z2h) dz1 dz2 =

∫
Z

∫
Z

ξ(z1z2h) dz1 dz2

gotten by applying intertwining operator twice is supported on PK ′ as well. Take

v∗ ⊗ ξ∗ as defined in the proof of Proposition 4.4.2, then

ζ(v∗ ⊗ ξ∗, s) = ζ(v∗ ⊗ A(wP, 1− s)A(w−1
P , s)ξ∗, s) = 1,

57



4.4. Rankin-Selberg L-function of π × τ

up to a normalization of the Haar measure on Z. Since A∗(w−1
P , s)ξ∗ is a standard

section and γ(τ̃ ,∧2, 2− 2s, ψ)γ(τ,∧2, 2s− 1, ψ) = 1. We show that

ε(π × τ, s, ψ) = ζ(ωv∗ ⊗ A∗(w−1
P , s)ξ∗, 1− s) ∈ C[q−s, qs]

and by applying the functional equation twice that

ζ(v∗ ⊗ A(wP, 1− s)A(w−1
P , s)ξ∗, s) = ε(π × τ̃ , 1− s, ψ)ε(π × τ, s, ψ)ζ(v∗ ⊗ ξ∗, s).

It follows that ε(π× τ̃ , 1− s, ψ)ε(π× τ, s, ψ) = 1 and ε(π× τ, s, ψ) ∈ C[q−s, qs]×. �

When π is supercuspidal, the L-function is trivial and the ε-factor equals to the

γ-factor. We quote the main theorem [29, Theorem 3] of Soudry in his work, Full

multiplicativity of gamma factors for SO2l+1×GLn, to end this chapter.

Theorem 4.4.6 (Soudry [29]). The γ-factor γ(π × τ, s, ψ) attached to π and τ is

multiplicative in both the first and the second factor.
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CHAPTER 5

The Fourier transform Ψ(v,X;X1, X2, ..., Xn)

The notation of this chapter follows those in Chapter 4 as well as in Chapter

2 and Chapter 3. A generic data (B,T, θ) of G is fixed, and (π, Vπ) shall be an

irreducible θ-generic supercuspidal representation of G. The restriction of θ to the

maximal unipotent subgroups V and Nn of H and M respectively is still denoted by

θ. Notice that θ|V is not a generic character of V but θ|Nn is a generic character of

Nn. Fix a Whittaker functional `θ on Vπ and hence an embedding, v 7→ Wv, of Vπ to

the realization, the Whittaker model W (π, θ), of π in the space IndG
V θ of Whittaker

functions.

The k-split torus T ' Gn
m has complex dual group T̂ a complex torus of rank

n contained in the complex dual group Ĝ ' Sp2n(C) of G. The action of the Weyl

group WM (resp. WH, WG) on T̂ is induced from its action on X•(T) = X•(T̂). Its

coordinate ring C[T̂] is the C-algebra of the group X•(T̂) = X•(T) which is identified

to C[X1, X
−1
1 , X2, X

−1
2 , ..., Xn, X

−1
n ] by εi 7→ Xi and WM ' Sn acts on by permuting

the subindices of Xi’s. Notice that the group algebra C[X•(T)] are the complex-

valued functions on T /T(o) with finite support which is the set H(T,T(o)). Let

i ≥ 0 be an integer. We recall we have Satake transforms from spherical Hecke

algebras H(M,M(o)), H(H,Hxi) and H(G,G(o)) to C[T̂ ] onto the invariants of the

Weyl groups of M, H, and G respectively. Denote by ςM, ςH,i and ςG the inverse of

the Satake isomorphisms of M, H and G respectively.

Notation 5.0.7. The coordinate of a complex dual torus element x is the n-tuple

(x1, x2, ..., xn) with xi = εi(x). Under this notation, x is the diagonal element
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5.1. Spherical Whittaker functions on GLn(k)

diag(x1, x2, ..., xn, x
−1
1 , x−1

2 , ..., x−1
n ) ∈ Sp2n(C). However, in this thesis q−sx repre-

sents scalar multiplication by q−s in M, that is, multiplying q−s on each of the coor-

dinates of x. This convention does matter when one wants to deal with the trace of x

acting on a finite dimensional representation of each of the dual groups T̂ ⊂ M̂ ⊂ Ĝ.

Let us denote by p the map x 7→ p(x) = diag(x1, x2, ..., xn) ∈ GLn(C).

5.1. Spherical Whittaker functions on GLn(k)

Assume (τ,Wτ ) is an irreducible generic unramified representation of M. Let Kn

be the hyperspecial maximal open compact subgroup M(o) of M. Then τ admits a

nonzero vector fixed by Kn, a spherical vector, and a nonzero Whittaker functional

`M ∈ HomNn(τ |Nn , θ−1) with a unique Whitaker model W (τ, θ−1) in IndM
Nn θ

−1. On

the other hand, the spherical vectors, meaning Kn-invariants, in IndMn
Nn

θ−1 collects

spherical Whittaker functions with respect to θ−1 of all irreducible generic unramified

representations of M.

Let us consider the space (IndM
Nn θ

−1)Kn as aH(M,Kn)-module. SinceH(M,Kn) '

C[T̂]WM is commutative, it decomposes any H(M,Kn)-module into eigenspaces. Each

eigenvalue is a linear form on C[T̂//WM] respecting the ring structures. An eigenvalue

is hence the the evaluation map at a point x, called the Satake parameter, on the

complex variety T̂//WM composing the Satake isomorphism. To be more explicit,

supposeWx ∈ (IndM
Nn θ

−1)Kn is the an eigenvector ofH(M,Kn) with Satake parameter

x ∈ T̂ normalized such that Wx(I) = 1, then for P ∈ C[T̂]WM one has

ςM(P )Wx(m) =

∫
M

ςM(P )(m′)Wx(mm
′) dm′ = P (x)Wx(m).

The smooth H(M)-module generated by Wx is simple and gives an irreducible un-

ramified smooth representation τx of M with Satake parameter x. By uniqueness of

the Whittaker model, Wx is uniquely determined.
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5.1. Spherical Whittaker functions on GLn(k)

Casselman and Shalika [5, Proposition 2.6] showed any irreducible unramified

representation can be embedded into the unramified principal series IM,T χ for some

unramified character χ of T. In particular, τx is isomorphic to the principal series

IM,T χx with χx the unramified character such that χx($
λ) = λ(x) for all λ ∈ X•(T).

This can be check easily since HomM(τx, IM,T χ) 6= 0 by Frobenius reciprocity if and

only if the space HomT(τx|T, δ1/2
BM
χ) is nonzero. Hence we may take χ = χx or any

of its WM-orbits. Conversely, Jacquet and Shalika [15] showed that for any x ∈ T̂

the representation IM,T χx can be embedded into the space of Whittaker functions

IndM
Nn θ

−1. Hence all x can appear as an eigenvalue.

By Casselman-Shalika’s formula [6], for each x ∈ T̂ the unique eigenvector Wx ∈

(IndM
Nn θ

−1)Kn has the formula: if m = n$λk, n ∈ Nn, λ ∈ X•(T), k ∈ Kn,

(5.1.1) Wx(m) = θ−1(n)q−〈λ,ρM〉χM
λ (x), if λ ∈ P+

M; = 0, if otherwise.

Here χM
λ is the Weyl character which equals to the trace of the irreducible represen-

tation of the complex dual group M̂ with highest weight λ, P+
M is the fundamental

Weyl chamber of M and ρM ∈ X•(T) is half of the sum of positive roots in Φ+
M.

It is known that χM
λ agrees with the degree n Schur polynomial with indetermini-

nat ε1, ε2, ..., εn. Then for each given m ∈ M, there exists W(m) ∈ C[T̂]WM such that

Wx(m) is a specialization.

Proposition 5.1.1. Define W as a function on M×T̂ satisfying ∀n ∈ Nn, k ∈ Kn,

W(n$λk; ·) = θ−1(n)q−〈λ,ρM〉χM
λ in C[T̂]WM , ∀λ ∈ P+

M,

with the first factor supported on
⊔
λ∈P+

M
Nn$

λ Kn. It has the properties

W(dMwM
tm−1 ;x) =W(m;x−1), W(m; q−sx) =W(m;x)| detm|s, ∀m ∈ M .
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5.1. Spherical Whittaker functions on GLn(k)

Proof. Let us show the first property. We note that wM is a lift of the longest Weyl

element in Kn whose action on the root system Φ+
M reverses the polarization Φ+

M,

outer : m 7→ tm−1 is an outer automorphism whose induced action on ΦM switches

Φ+
M and Φ−M and acts as (−1) on X•(T) = X•(T̂), and dM ∈ T∩Kn is a torus element

such that dMθ|−1
Nn

= θ|−1
Nn

. The operator Ad(wM) ◦ outer then preserves N and P+
M.

We get for m = n$λk, n ∈ Nn, λ ∈ P+
M, k ∈ Kn,

W(dMwM
tm−1 ;x) = θ−1(n)W($wM(−λ);x)

= θ−1(n)q−〈−λ,−ρM〉χM
λ (wMx) =W(m;x−1).

The second equality is because wM(ρM) = −ρM and 〈 , 〉 and Weyl character are

invariant under action of Weyl elements.

To see the second property, we use the Weyl character formula: for a regular

semisimple element t ∈ T,

χM
λ (t) =

∑
s∈WM

sign(s)ts(λ+ρM)∑
s∈WM

sign(s)ts(ρM)

where ρM = 1
2

∑
λ∈Φ̌+

M
λ and tλ = λ(t) for t ∈ T̂. Denote by deg(λ) the degree

map on the free Z-module X•(T) with respect to the basis ε1, ε2, ..., εn. One sees

det$λ = $degλ. Since WM acts by permuting εi’s, it preserves the degree map on

X•(T). We then get

χM
λ (q−sx) = q(degλ)sχM

λ (x) = | det$λ|sχM
λ (x).

The assertion follows easily by applying the formula. �

Corollary 5.1.2. Let τx denote the unique irreducible unramified subrepresentation

of IndM
Nn θ

−1 with Satake parameter x ∈ T̂. Then LdM
τ̃x = τx−1 and (τx)s = τq−sx.

Here LdM
denotes the left translation by dM which intertwines IndM

Nn θ and IndM
Nn θ

−1.
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There is one more interesting property of the function W . One notices that the

Weyl invariants X•(T)WM in the co-character lattice is generated by

λM = ε1 + ε2 + · · · εn

and 〈λM, γ〉 = degγ for any character γ ∈ X•(T). (Again, the deg is the degree

map on X•(T) with respect to the basis ε1, ε2, ..., εn.) Notice that all roots in ΦM has

degree zero, so 〈λM, ρM〉 = 0 and $λM
centralizes M. By using the Weyl character

formula, we have

(5.1.2) W($λM

m;x) = λM(x)W(m;x), ∀m ∈ M .

A consequence of (5.1.2) is the support
⊔
λ∈Ix Nn$

λ Kn, Ix ⊂ P+
M, of an eigenvector

Wx is invariant under shifting the set Ix by λM. In particular, these are not in the

subspace indMn
Nn

θ−1 of functions of compact support modulo Nn.

If we write the complex dual torus point x in the coordinate (x1, x2, ..., xn), xi =

εi(x), then (5.1.2) reads

W($λM

m;X1, X2, ..., Xn) = (
n∏
i=1

Xi)W(m;X1, X2, ..., Xn), ∀m ∈ M .

The two properties can also be rewritten in terms of the coordinates by

W(dMwM
tm−1 ;X1, X2, ..., Xn) =W(m;X−1

1 , X−1
2 , ..., X−1

n ) ∀m ∈ M,

W(m; q−sX1, q
−sX2, ..., q

−sXn) =W(m;X1, X2, ..., Xn) | detm|s ∀m ∈ M .

and the property of being an eigenvector becomes

ςM(P )W(m;X1, X2, ..., Xn) = P (X1, X2, ..., Xn)W(m;X1, X2, ..., Xn)

for all P ∈ C[X±1 , X
±
2 , ..., X

±
n ]Sn .
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5.2. Fourier transforms of Whittaker functions

Suppose a function f on M lies in (indM
Nn θ)

Kn . We have f(nmk) = θ(n)f(m) for

n ∈ Nn,m ∈ M, k ∈ Kn and

f(m) 6= 0 only if C1 < | detm| < C2 for some positive numbers C1, C2.

Under action of C[T̂]WM , the space (indM
Nn θ)

Kn decomposes into direct sum of lines

indexed by the Satake parameters appearing in it. We then have a Fourier expansion

of f as the well-defined function with a complex variable q−s introduced

Ψf (q
−s) =

∫
Nn \M

f(m)W(m; q−sx) dm ∈ (C[T̂]WM)[q−s, qs],

which is an expansion into
∑

r∈Z ar(x)q−rs with coefficient

ar(x) =

∫
Nn \M

f(m)W(m;x) ch$ro×(detm) dm

6= 0 for c1 ≤ r ≤ c2, and c1, c2 are some integers depending on C1, C2. We shall call

this the Fourier transform of f .

In their work on conductors for the GLn case Jacquet, Piatetski-Shapiro, and

Shalika proved that this Fourier transform Ψf (q
−s) uniquely determines f .

The idea goes as follows. We are focusing on the representation indM
Nn θ, whose

contragradient is IndM
Nn θ

−1. The pairing

(W, f) =

∫
Nn \M

f(m)W (m) dm

on IndM
Nn θ

−1⊗indM
Nn θ defines the M-equivarient perfect duality. All continuous linear

forms on indM
Nn θ can be realized by taking (W, ·) on indM

Nn θ for some W ∈ IndM
Nn θ

−1.

For f ∈ (indM
Nn θ)

Kn , its dual W in IndM
Nn θ

−1 must also be Kn-invariant which has

Wx as a basis. Hence Φf (q
−s) ≡ 0 forces f = 0.
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Proposition 5.2.1 ([14] Lemma 3.5). Assume f ∈ (indM
Nn θ)

Kn. If the Fourier

transform Ψf (q
−s) = 0, then f = 0.

Proof. Consider the regular representation (Σ, C∞(M)) of M, which decomposes

continuously to irreducible representations σx: Σ =
∫
x
σx dµ(x). (µ a distribution

of M.) The representation indM
Nn θ is an invariant subspace of Σ with countable

dimension. We thus has for almost all σx, there is an intertwining operator Tx that

maps indM
Nn θ to σx such that the unitary structure is compatible, namely

〈f1, f2〉 =

∫
x

〈Axf1, Axf2〉 dµ(x), f1, f2 ∈ indM
Nn θ,

and f = 0 if Axf = 0 for all x. When f is Kn-invariant, Txf 6= 0 only if σx is

unramified. On the other hand, since IndM
Nn θ

−1 is its contragradient, for every x, there

exists some Wx in the Kn-invariants of IndM
Nn θ

−1 such that 〈f ′,Wx〉 = 〈Axf ′, Axf〉

for all f ′ ∈ indM
Nn θ. Take f ′ = f . Since Wx is a linear combination of Wx, by

assumption 〈Axf, Axf〉 =
∫

M
f(m)Wx(m) dm = 0. Hence Axf = 0 for all x, which

implies f = 0. �

This proof can be weaken and works on f ∈ (IndM
Nn θ)

Kn with the weaker property

that f(m) 6= 0 only if C1 < | detm| for some C1 > 0. Then the Fourier transform

Ψf (q
−s) is a Laurent series in q−s with coefficients in C[T̂]WM .

The idea introduced by Jacquet, Piatetski-Shapiro, and Shalika in 1979 is to

consider the restriction of functions in (Ind
Pn+1

Nn+1
θ)M(o) to M, which hence lies in

(IndM
Nn θ)

Kn , as source of f to show properties of new vectors for GLn+1. We will

define new vectors for SO2n+1 in the Part 2. To prepare our discussion in Part 2, we

will make the Fourier transforms with the restriction of functions in (IndQ
U θ)

M(o) to

M as a source of f . Let us define it below.

Assume π is an irreducible generic and supercuspidal representation of G. Recall

π → πZ|Q ' indQ
U θ by v 7→ Wv|Q. Define Ψ(v, q−s;x) ∈ C[T̂]WM as the Fourier
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5.2. Fourier transforms of Whittaker functions

transform Ψ
Wvδ

−1/2
P

(q−s
′
), s′ = s− 1

2
, of Wvδ

−1/2
P |M for v ∈ V M(o)

π . Namely,

(5.2.1) Ψ(v, q−s;x) =

∫
Nn \M

δ
−1/2
P (m)Wv(m)W(m; q−s

′
x) dm.

Suppose τx is the Whittaker model of a generic unramified representation of M

with Satake parameter x. The contragradient of τx has Satake parameter x−1 and

has Whittaker model τx−1 . Not so surprisingly, the zeta integrals on spherical vectors

can be unwound to the Fourier transforms of the Whittaker functions. Let us give

this computation below.

Take ξ0
m(h, s) ∈ ρτx,s to be the unique Hxm-spherical standard section such that

fξ0
m

(m, s) = L(τx,∧2, 2s)W(m; q−s
′
x)δ

1/2
P (m),

where as always s′ = s− 1
2
. Recall that τ̃x = τx−1 . As well take ξ̃0

m(h, 1−s) ∈ ρτx−1 ,1−s

to be the unique Hxm-spherical standard section such that

fξ̃0
m

(m, 1− s) = L(τx−1 ,∧2, 2(1− s))W(m; qs
′
x−1)δ

1/2
P (m).

Note that this is L(τx−1 ,∧2, 2(1− s))W(dMwM
tm−1 ; q−s

′
x)δ

1/2
P (m).

Then

(A(w−1
P , s)fξ0

m
)(I, 1− s)

=

∫
Z

fξ0
m

(dMω0zω) dz =

∫
Z

fξ0
m

(dM$
mλM

ωmzω) dz

=

∫
Z

(mλM)(x)fξ0
m

(dM
ωmz ) dz

= λM(x)mL(τx,∧2, 2s)
L(LdM

τωm(x),∧2, 1− (1− 2s))

L(τx,∧2, 2s)

= λM(x)mL(τx,∧2, 2s− 1)

= λM(x)mγ(τx,∧2, 2s− 1)−1L(τx−1 ,∧2, 2(1− s)).
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5.2. Fourier transforms of Whittaker functions

We observe that

(A∗(w−1
P , s)fξ0

m
)(I, 1− s) = λM(x)mfξ̃0

m
(I, 1− s).

Since we know that the image of fξ0
m

must be ω Hxm -spherical and hence a multiple

of f(ωω−1
m )ξ̃0

m
, we get the multiple is λM(x)m, and

A∗(w−1
P , s)fξ0

m
= λM(x)mf(ωω−1

m )ξ̃0
m
.

(One note the element ωm normalizes Hxm and ωω−1
m ∈ H.)

Now for any given Satake parameter x ∈ T̂ of M, consider the Rankin-Selberg

zeta integral for π × τx on vm ⊗ ξ0
m ∈ V

Hxm
π ⊗ ρHxm

τx,s .

ζ(vm ⊗ ξ0
m, s) =

∫
V \H

Wvm(h)fξ0
m

(h, s) dh =

∫
V \P

Wvm(p)fξ0
m

(p, s) dp

=

∫
Nn \M

δ−1
P (m)Wvm(m)fξ0

m
(m, s) dm

= L(τx,∧2, 2s)

∫
Nn \M

δ
−1/2
P (m)Wvm(m)W(m; q−s

′
x) dm.

This is equal to the Fourier transform multiplying a factor L(τx,∧2, 2s).

We obtain the following new interpretation for Rankin-Selberg zeta integral at

Hxm-fixed vectors vm ⊗ ξ0
m interms of the Fourier transform.

Lemma 5.2.2. ∀vm ∈ V Hxm
π , ζ(vm ⊗ ξ0

m, s) = L(τx,∧2, 2s)Ψ(vm, q
−s;x) ∈ C[q−s, qs].

Here the equation lives in C[q−s, qs] under the assumption that π is supercuspidal

and L(π × τx, s) = 1 with all zeta integrals live in the principal ideal ring.

Similarly we get the following new interpretation for Rankin-Selberg zeta integral

on the other side of the functional equation at ω Hxm -fixed vectors ωvm⊗A∗(w−1
P , s)ξ0

m

interms of the Fourier transform.
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5.2. Fourier transforms of Whittaker functions

Lemma 5.2.3. ∀vm ∈ V Hxm
π , ζ(ωvm ⊗ A∗(w−1

P , s)ξ0
m, s) =

λM(x)mL(τx−1 ,∧2, 2(1− s))Ψ(ωmvm, q
−(1−s);x−1) ∈ C[q−s, qs].

Let us compute this below.

ζ(ωvm ⊗ A∗(w−1
P , s)ξ0

m, s)

= λM(x)m
∫

V \H

Wvm(hω)fξ̃0
m

(hωω−1
m , s) dh

= λM(x)m
∫

V \H

Wvm(hωm)fξ̃0
m

(h, s) dh

= λM(x)m
∫

Nn \M

δ−1
P (m)Wωmvm(m)fξ̃0

m
(m, s) dm

= λM(x)mL(τx−1 ,∧2, 2(1− s))
∫

Nn \M

δ
−1/2
P (m)Wωmvm(m)W(m; qs

′
x−1) dm

= λM(x)mL(τx−1 ,∧2, 2(1− s))Ψ(ωmvm, q
−(1−s);x−1) ∈ C[q−s, qs].

Since ε(π × τx, s, ψ) = γ(π × τx, s, ψ) and it is known in [29] that γ(π × τx, s, ψ)

is multiplicative. By the fact that τx ' IM,T χx with χx($
λ) = λ(x). One has

ε(π × τx, s, ψ) =
n∏
i=1

ε(π ⊗ (χx ◦ εi), s, ψ) = λM(x)aπεnπq
−naπs′ .

The functional equation for π × τx

ζ(ωvm ⊗ A∗(w−1
P , s)ξ0

m, s) = ε(π × τx, s, ψ)ζ(vm ⊗ ξ0
m, s)

hence can be translated into relations of the Fourier transforms and local invariants:

Proposition 5.2.4. ∀vm ∈ V Hxm
π , ∀x ∈ T̂,

L(τx−1 ,∧2, 2(1− s))Ψ(ωmvm, q
−(1−s);x−1)

= λM(x)aπ−mεnπq
−naπs′L(τx,∧2, 2s)Ψ(vm, q

−s;x) ∈ C[q−s, qs].
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5.3. Actions of Hecke operators

Let us first show the existence of vectors fixed by Hxm for each m ∈ Z.

Lemma 5.3.1. For any given x ∈ T̂, there exists a vector vm ∈ V Hxm
π for each m ∈ Z

such that the complex variable function Ψ(vm, q
−s;x) is not identically zero.

Proof. Since L(π × τx) 6= 0, there exists v(i) ∈ Vπ, ξ(i) ∈ Vρτx,s , and a(i) ∈ Z for

i = 1, 2, ..., r such that L(π× τx, s) =
∑r

i=1 q
a(i)sζ(v(i)⊗ ξ(i), s). Since ξ0

m ∈ V
Hxm
ρτx,s 6= 0,

the spherical standard section defined in the previous section, Vρτx,s = H(H)ξ0
m.

Since the zeta integral is a H-invariant bilinear form, one can to take ξ(i) = ξ0
m.

However, by the same fact, one can replace v(i) by its average over Hxm , i.e. its

image under eHxm ∈ H(H). Since
∑r

i=1 q
a(i)sζ(v(i) ⊗ ξ0

m, s) is nonzero, there exists

an i such that vi ∈ V
Hxm
π is nonzero with ζ(v(i) ⊗ ξ0

m, s) 6= 0. By Lemma 5.2.2,

ζ(v(i) ⊗ ξ0
m, s) = L(τx,∧2, 2s)Ψ(v(i), q

−s;x) 6= 0, which implies Ψ(v(i), q
−s;x) 6= 0. �

Recall by definition, for v ∈ V Kn
π the function Ψ(v, q−s;x) in C[T̂]WM [q−s, qs] is

defined as the Fourier transform∫
Nn \Mn

δ
−1/2
P (m)Wv(m)W(m; q−s

′
x) dm, s′ = s− 1

2
.

Suppose P ∈ C[T̂]WM . Since P (q−s
′
x)W(m; q−sx) = ςM(P )W(m; q−sx), we have

P (q−s
′
x)Ψ(v, q−s;x)

=

∫
Nn \Mn

δ
−1/2
P (m)Wv(m)(ςM(P )W)(m; q−s

′
x) dm

=

∫
Nn \Mn

δ
−1/2
P (m)Wv(m)

(∫
M

ςM(P )(m′)W(mm′; q−s
′
x) dm′

)
dm

=

∫
M

∫
Nn \Mn

δ
−1/2
P (mm′−1)ςM(P )(m′)Wv(mm

′−1)W(m; q−s
′
x) dm′ dm

=

∫
Nn \Mn

δ
−1/2
P (m)

(∫
M

δ
1/2
P (m′)ςM(P )(m′)Wv(mm

′−1) dm′
)
W(m; q−s

′
x) dm
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5.3. Actions of Hecke operators

(We note that Fubini’s Theorem applies since ςM(P ) is compactly supported on M.)

Following the ideas in [14] and [22], we define an action of H(M,Kn) on Vπ by

(5.3.1) f ∗ v =

∫
M

δ
1/2
P (m′)f(m′)π(m′−1)v dm′, ∀f ∈ H(M,Kn).

It is clear that this action preserves the subspace V Kn
π . Then from above we obtain

(5.3.2) P (q−s
′
x)Ψ(v, q−s;x) = Ψ(ςM(P ) ∗ v, q−s;x)

for all P ∈ C[M̂]WM and v ∈ V Kn
π .

Since Ψ(v, q−s;x) lies in C[M̂]WM [q−s, qs]. Evaluating at s = 1/2 (or equivalently,

s′ = 0) defines a C-linear map Ξ : V Kn
π → C[M̂]WM which by (5.3.2) satisfies the

identity

(5.3.3) P · Ξ(v) = Ξ(ςM(P ) ∗ v), ∀P ∈ C[M̂]WM .

Lemma 5.3.2. Ξ : V Kn
π → C[M̂]WM is a C[M̂]WM-module homomorphism, with

C[M̂]WM acting on V Kn
π by the action of H(M,Kn) defined above composing the Satake

transform ςM and on C[M̂]WM by multiplication. It is surjective and has kernel

ker Ξ = {v ∈ V Kn
π | Wv|T = 0}.

Proof. We have seen it commutes with the action of C[M̂]WM . To show the kernel,

for π irreducible generic supercuspidal the map v 7→ Wv|Q induces a surjective Q-

homomorphism from Vπ to IndQ
U θ. There exists v ∈ V Kn

π such that Wv|M supports

on Nn Kn. Then Ξ(v) = Ψ(v, q−1/2;x) = vol(o×)n is a unit in C[M̂]WM . Hence the

C[M̂]WM-module homomorphism is surjective.

By Iwasawa decomposition of M, the kernel is contained in the given set. To

prove the other inclusion, we recall Ψ(v, q−s;x) = Ψ(v, q−1/2; q−sx). Hence Ξ(v) ≡ 0
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5.3. Actions of Hecke operators

implies that Wv|M has trivial Fourier transform. By Proposition 5.2.1, Wv|M = 0 and

in particular Wv|T = 0.

Recall that Lemma 3.4.1 and Corollary 3.4.2 show that {v ∈ V Hxm
π | Wv|Q = 0} =

0 for each integer m. We would like to focus on the subspaces V
Hxm
π , m ∈ Z, on

which many good properties are valid.

In order to preserve the subspace V
Hxm
π , we consider the intermediate Satake

transform. The map m : H(H,Hxm)→ H(M,Kn) for m ∈ Z defined by

(5.3.4) φ 7→ m(φ)(m) = δ
1/2
P (m)

∫
Z

φ(mz) dz

fits into the commutative diagram

C[T̂]WH
∼

ςH,m

//

incl
��

H(H,Hxm)

m

��

C[T̂]WM
∼

ςM

// H(M,Kn)

and is an injective algebra homomorphism. Therefore

m(φ) ∗ v =

∫
M

δP(m′)

(∫
Z

φ(m′z′) dz′
)
π(m′−1)v dm′, ∀φ ∈ H(H,Hxm).

Let us similarly define the action of H(H,Hxm) on Vπ by

(5.3.5) φ ∗ v =

∫
H

φ(h′)π(h′−1)v dh′, ∀φ ∈ H(H,Hxm),

which preserves V
Hxm
π . By taking an inverse, the Iwasawa decomposition H = P Hxm

can also be written as H = Hxm P. For vm ∈ V Hxm
π and φ ∈ H(H,Hxm), the vector

φ ∗ v becomes ∫
P

δP(p′)φ(p′)π(p′−1)v dp′.

71



5.3. Actions of Hecke operators

One observes that the Whittaker function associated to φ ∗ v restricted to M is

Wφ∗v(m) =

∫
P

δP(p′)φ(p′)Wv(mp
′−1) dp′

=

∫
M

∫
Z

δP(m′)φ(m′z′)Wv(mz
′−1m′−1) dz′ dm′

=

∫
M

δP(m′)

(∫
Z

φ(m′z′) dz′
)
Wv(mm

′−1) dm′, ∀m ∈ M,

which equals to the Whittaker function associated to m(φ) ∗ v restricted to M.

Since the Fourier transform depends only on the restriction of the Whittaker

function to M, we conclude

P (q−s
′
x)Ψ(vm, q

−s;x) = Ψ(ςH,m(P ) ∗ vm, q−s;x)(5.3.6)

or equivalently,

P · Ξ(vm) = Ξ(ςH,m(P ) ∗ vm) in C[T̂]WM

for all P ∈ C[T̂]WH and vm ∈ V Hm
π .

We obtain the following modified version of Lemma 5.3.2.

Lemma 5.3.3. For integer m ≥ 0, the C-linear map Ξ : V
Hxm
π → C[T̂]WM gotten

from restriction is an injective C[T̂]WH-module homomorphism, with C[T̂]WH acting

on V Kn
π by the action of H(H,Hxm) defined above composing the Satake transform

ςH,m and on C[T̂]WM by multiplication.

The following Corollary is immediate from the injectivity of Ξ on V
Hxm
π .

Corollary 5.3.4. Assume m ∈ Z. For any nonzero vector vm ∈ V Hxm
π , the Hxm-fixed

vectors ςH,m(P ) ∗ vm for all P ∈ C[T̂]WH are distint and nonzero.

This result will be used in computing the dimension of subspaces of fixed vectors

in Part 2.
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5.4. Fourier transform Ψ and Jacquet’s polynomial Ω

Let us write the results into coordinates X1 = ε1, X2 = ε2,...,Xn = εn and discuss

them in the ring C[X1, X
−1
1 , X2, X

−1
2 , ..., Xn, X

−1
n ]Sn , which we shall denote by Sn.

Under Satake isomorphism for each 1 ≤ i ≤ n the generator [M(o)$λ M(o)], the

characteristic function of the double coset M(o)$λ M(o), for λ = ε1 + ε2 + ... +

εi, in the Hecke algebra H(M,M(o)) maps to the sum of characteristic functions∑
s∈WM

ch$s(λ) T(o) and has corresponding element in the ring Sn as

Ti :=
∑
s∈Sn

Xs(1)Xs(2) · · ·Xs(i)

which is the elementary symmetric polynomial. Hence Sn = C[T1, T2, ..., Tn, T
−1
n ]

and Tn gives a Z-grading on the ring Sn = ⊕d∈ZSn,d by the degree of Tn.

Recall that we have the Sn-module map Ξ : V Kn
π → Sn defined by Ξ(v) =

Ψ(v, q−1/2;x) whose restriction to the subset V
Hxm
π is injective. (See Lemma 5.3.3.)

Lemma 5.4.1. For v ∈ V Kn
π , if v is invariant under xεn(pk) then degTn Ξ(v) ≥ −k.

As a result image of V
Q(o)
π under Ξ is contained in ⊕d≥0Sn,d = C[T1, T2, ..., Tn].

Proof. Since if v is also invariant under xεn(pk) then the Whittaker function Wv|M

has support contained in ∪〈µ,εn〉≥−k M(o)$µ M(o) on which degTnW(·;x) ≥ −k. �

Note that for v ∈ V
Hxm
π , m ≥ 0 integer, we have L(τx,∧2, 2s)Ψ(v, q−s;x) in

Sn[q−s, qs] and hence is entire in s. We take s = 1
2

and obtain that

(5.4.1) Ω(v;X1, X2, ..., Xn) := Ξ(v)/
∏

1≤i<j≤n

(1− q−1XiXj) ∈ Sn

which gives a factorization in Sn as

Ξ(v) =

( ∏
1≤i<j≤n

(1− q−1XiXj)

)
Ω(v;X1, X2, ..., Xn).
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5.4. Fourier transform Ψ and Jacquet’s polynomial Ω

We note that again Ω(v) = 0 implies v = 0 provided that v ∈ V Hxm
π .

By Proposition 5.2.4 the functional equation for v ∈ V
Hxm
π gives the following

important relation.

Proposition 5.4.2. For v ∈ V Hxm
π , we have the following identity in Sn.

(5.4.2) Ω(ωmv;X−1
1 , X−1

2 , ..., X−1
n ) = εnπ T

aπ−m
n Ω(v;X1, X2, ..., Xn).

Note that the factor
(∏

1≤i<j≤n(1− q−1XiXj)
)

is a prime in Sn and lives in the

zeroth graded piece Sn,0. Now combining Lemma 5.4.1 and Proposition 5.4.2 we

obtain the following observation.

Proposition 5.4.3. For v ∈ V
Hxm
π nonzero, if v is invariant under xεn(pk) and

x−ε1(pl) then

Ω(v;X1, X2, ..., Xn) ∈ ⊕−k≤d≤l−aπSn,d.

Proof. In Lemma 5.4.1 we have seen that Ω(v;X1, X2, ..., Xn) ∈ ⊕−k≤dSn,d. How-

ever, since ωmv is invariant under xεn(pl−m), we also have Ω(ωmv;X1, X2, ..., Xn) ∈

⊕m−l≤dSn,d and hence Ω(ωmv;X−1
1 , X−1

2 , ..., X−1
n ) ∈ C[Tn−1T

−1
n , ..., T1T

−1
n , T−1

n , Tn]

so has degree in Tn less than or equal to m− l. Then apply the identity (5.4.2). �

Remark 5.4.4. The results in this section hold for general irreducible generic repre-

sentations as well in which case the Fourier transform Ψ(v, q−s;x) is a Laurent series

in X = q−s by smoothness of v and converges for <(s) large enough by the slowly

increasing property of the Whittaker function Wv, and the definition of Ω(v) is mul-

tiplied by an extra factor
∏n

i=1 Pπ(q−1/2Xi) ∈ Sn which was 1 in the supercuspidal

case. Since
∏n

i=1 Pπ(q−1/2Xi) contains a constant term the result regarding the degree

is still valid.
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CHAPTER 6

Review for cases of lower rank

In this chapter, we summarize the known results for the lower rank case. When

n = 1, this is the classical theory for PGL2 proved by Casselman [4]. When n = 2,

this is studied by the recent work of Roberts and Schmidt on PGSp4 [23].

6.1. Rank 1: SO3(k) ' PGL2(k)

Let V1 be the set of traceless 2 by 2 matrices over k which is the Lie algebra sl2.

The group GL2 acts on V1 by taking conjugate on every matrix in V1. The center of

GL2 acts trivially and V1 becomes the 3 dimensional adjoint representation of PGL2.

This action preserves a volume form

ϕ : A =

a1 a2

a3 −a1

 7→ −2 detA = 2a2
1 + 2a2a3

on V1. ϕ : V1 → k is a quadratic form on V1 of discriminant −2 and it makes V1 a

split quadratic space with a good basise =

0 1

0 0

, v0 =

1 0

0 −1

, f =

0 0

1 0

 .

We thus obtain an isomorphism from PGL2 to SO(V1). Or more explicitly,

a b

c d

 7→ (ad− bc)−1


a2 −2ab −b2

−ac ad+ bc bd

−c2 2cd d2

.
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6.1. Rank 1: SO3(k) ' PGL2(k)

Set G = SO(V1). Set G = SO(V1) and let (B,T, θ) be a generic data compatible with

the good basis.

Assume m ≥ 0 is an integer. The congruence subgroup Γ0(pm) of GL2(k) is

defined as the open compact subgroup

Γ0(pm) =


a b

c d

 ∈ GL2(o) | c ≡ 0(mod pm), a, d ∈ o×

 .

The normalizer of Γ0(pm) in PGL2(k) is generated by Γ0(pm) and

 1

$m

, called

the Atkin-Lehner element of level pm. The Atkin-Lehner element has order 2 in the

adjoint group PGL2(k) and its image in SO(V1) is

um =


$−m

−1

$m

.
The normalizer of Γ0(pm) contains it with index 2 for m ≥ 1 and equals to itself for

m = 0. Let K(pm) denotes the image of Γ0(pm) in SO(V1). The subgroups

T(o),Uε1(o),U−ε1(pm)

are contained in K(pm). Together with um these subgroups generate the stabilizer of

the lattices

Lm = oe⊕ pmv0 ⊕ pmf and L∨m = p−me⊕ p−mv0 ⊕ of

in SO(V1). Therefore, K(pm) is equal to Stab(Lm) for m = 0 and is a normal subgroup

of index two in StabG(Lm) for m ≥ 1.
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Let π be a generic irreducible representation of G = SO(V1). Then there exists

some vector v∗ ∈ π such that I(v, s) = L(π, s). Recall that

I(v, s) =

∫
k×
Wv(ε1(a))|a|s−

1
2 da, ∀v ∈ π.

We are allowed to assume that v∗ is fixed by T(o) and Uε1(o) by taking an average.

Let aπ denote the conductor of π. We recall that we have a functional equation

I(u0v∗, 1− s)
L(π, 1− s)

= ε(π, s, ψ)
I(v∗, s)

L(π, s)

whose right hand side simply equals to επq
−aπ(s− 1

2
). Using the property that

I(u0ε1($aπ)v∗, 1− s) = qaπ(s− 1
2

)I(u0v∗, 1− s),

the equation becomes

I(uaπv∗, 1− s)
L(π, 1− s)

= επ ⇒ I(ε−1
π uaπv∗, s) = L(π, s).

Therefore the Whittaker functions Wv∗ and Wε−1
π uaπv∗

agree on Q = Uε ε1(k) and

are fixed by Hxaπ = T(o). We get v∗ and ε−1
π uaπv∗ have the same image under the

Jacquet functor JZ, which is the identity map since Z = I, and hence are the same.

We get v∗ = ε−1
π uaπv∗ is fixed by the subgroups

T(o),Uε1(o), and U−ε1(paπ) = uaπ Uε1(o)u−1
aπ

and is hence fixed by the subgroup K(paπ).

For each vector v ∈ V K(paπ )
π , uaπv is fixed by K(paπ) as well. Hence we have

(∗) I(uaπv, 1− s)
L(π, 1− s)

= επ
I(v, s)

L(π, s)

Since v and uaπv are Uε1(o)-fixed, the right hand side of (∗) is in C[q−s] = C[q−s, qs]∩

C[[q−s]]. Similarly, the left hand side of (∗) is in C[q1−s] and hence in C. Therefore
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every vector v ∈ V K(paπ )
π has I(v, s) = cL(π, s) for some c ∈ C. Again v and cv∗ are

fixed by Hxaπ = T(o) and have the same image under the Jacquet functor JZ, which

is the identity map. Therefore, v = cv∗. We can conclude the following.

Theorem 6.1.1 (Casselman). The fixed subspace V
K(paπ )
π is one dimensional. There

is a unique vector v∗ on this line such that I(v∗, s) = L(π, s) and hence Wv∗(I) = 1.

Moreover, v∗ is an eigenvector of uaπ with eigenvalue επ.

The line V
K(paπ )
π encodes all of the local invariants of the generic representation

π of SO3(k). The vector v∗ can be used as a test vector of π. Since V
K(paπ )
π is one

dimensional, the Hecke operators in H(G,K(paπ)) acts on it by a character. v∗ is thus

a Hecke eigenform. Casselman in his paper [4] showed that aπ is the lowest exponent

one can/will get to obtain a nontrivial fixed subspace. Such vector is called a new

form of the representation.

6.2. Rank 2: SO5(k) ' PGSp4(k)

There is a analogous theory of new forms for GSp4(k) studied by Roberts and

Schmidt [23] in 2006 which works for generic representations with trivial central

character.

Let D be a 4 dimensional vector space equipped with a skew-symmetric bilinear

form. Fix a basis {d1, d2, d3, d4} of D such that the skew-symmetric bilinear form has

Gram matrix

J =

[
1

1
−1

−1

]
.

The symplectic similitude group GSp(D) is the subgroup of the automorphism group

GL(D) of D conformal with respect to the bilinear form. The vector space D is a

standard representation of GSp(D).

79



6.2. Rank 2: SO5(k) ' PGSp4(k)

Consider the exterior square representation W1 = (∧2D)∗ ' ∧2D of GSp(D). The

skew-symmetric form induces a linear functional on ∧2D and hence a vector

w = d1 ∧ d4 + d2 ∧ d3

on W1. The similitude group GSp(D) preserves the line ` = kw and acts on the 5

dimensional vector space V = W1/`. The Grassmannian G(2, 4) = {planes ⊂ D}

is embedded as a quadratic hypersurface (an isotropic space of a quadratic form) in

W1 and is stable under action of GSp(D). Therefore the action of GSp(D) on W1/`

preserves a quadratic form ϕ which is nondegenerate of discriminant 2. This induces

a map

j : PGSp(D)→ SO(V ).

The set

{e1 = d1 ∧ d2, e2 = d1 ∧ d3, v0 = d2 ∧ d3, f2 = −d2 ∧ d4, f1 = d3 ∧ d4}

forms a good basis of V and the Gram matrix of ϕ is[
1

1
2

1
1

]
.

Let G = SO(V ) and notations such as H, Q and Z are as in Part 1.

Denote by GSp(D)0 the set of elements in GSp(D) with determinant in o×. As-

sume m ≥ 0 is a nonnegative integer. Roberts and Schmidt in [23] consider the open

compact subgroup of GSp(D), called the paramodular subgroup of level pm, which is

the intersection of the stabilizer of the lattice

Mm = p−md1 ⊕ od2 ⊕ od3 ⊕ od4
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and the subgroup GSp(D)0. Explicitly, it consists of matrices in the set
o o o p−m

pm o o o

pm o o o

pm pm pm o


∩GSp(D)0.

The element

[
1
−1

$m
−$m

]
in GSp(D) normalizes the paramodular subgroup of level

pm whose square lies in the center. It is an analog of the Atkin-Lehner element of

level pm for GL2(k).

Denote by K(pm) the image of the paramodular subgroup of level pm under j.

Then K(pm) is an open compact subgroup of SO(V ) stabilizing the lattice

Lm = oe1 ⊕ oe2 ⊕ pmv0 ⊕ pmf2 ⊕ pmf1 = (∧2Mm)∨.

The group K(pm) contains the subgroup Q(m) and the affine Weyl element ws,m for

s ∈ I0. Let us denote wsε1+ε2 ,m
by tm. We note that in this case the set of even

number of sign changes I0 consists only one element sε1+ε2 which lifts to tm in K(pm).

The Atkin-Lehner element

[
1
−1

$m
−$m

]
maps to

um =

[
$−m

−1
−1
−1

$m

]

in G under j and also stabilizes Lm. um is a lift of the odd sign change sε1 and

I = {sε1 , sε1+ε2}. One can then check the following properties: um normalizes K(pm);

K(pm) is generated by Q(m) and um Q(m) u
−1
m ; StabG(Lm) is generated by K(pm)

and um and contains K(pm) with index 2. Let t′m = tmwε1−ε2,0. We will use a

decomposition

(6.2.1) K(pm) = Z(p−m) Q(m) ∪Z(p−m)t′m Z(p−m+1) Q(m) .
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Our goal is to obtain a theory of test vectors for generic representations of G.

Let (π, Vπ) be an irreducible generic representation of G. Assume aπ is the con-

ductor of π and ε(π, s, ψ) = επq
−aπ(s− 1

2
).

Theorem 6.2.1 (Roberts-Schmidt). The fixed subspace V
K(paπ )
π is one dimensional.

There is a unique vector v∗ on this line such that I(v∗, s) = L(π, s) and hence

Wv∗(I) = 1. Moreover, v∗ is an eigenvector of uaπ with eigenvalue επ.

We will summarize the proof in [23] of this theorem in the case when π is generic

and supercuspidal. We note that in this case, the L-function L(π, s) = 1 and the

Jacquet module πZ is an irreducible P3-module and is isomorphic to indQ
U θ via the

restriction of the Whittaker functions v 7→ Wv|Q to Q, which factors through the

Jacquet functor JZ.

Let us denote by [K2hK1] the characteristic function of the double coset K2hK1

on G which lies in the Hecke algebra H(G) and induces an operator V K1
π → V K2

π . The

Hecke algebra H(G,K(pm)) is generated by [K(pm)hK(pm)] and induces operators on

the K(pm)-fixed subspace of Vπ. The operators [K(pm)hK(pm)] and [K(pm)h−1 K(pm)]

on V
K(pm)
π are adjoint to each other. For a fixed level pm, set

Tλ = [K(pm)$λ K(pm)] ∈ End(V K(pm)
π )

for λ ∈ X•(T). Since wsε1+ε2 ,m
lies in K(pm), one can easily see the Hecke operators

Tε1(= T−ε1), Tε1+ε2(= T−(ε1+ε2))

at level pm are self-adjoint and hence diagonalizable. Here we note that$ε1 = um−1um

and $ε1+ε2 = tm−1tm.
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Define operators θλ, δλ between the fixed subspaces V
K(pm)
π and V

K(pm−1)
π for λ ∈

X•(T) as

θλ = [K(pm)$−λ K(pm−1)] : V K(pm−1)
π → V K(pm)

π ,

δλ = [K(pm−1)$λ K(pm)] : V K(pm)
π → V K(pm−1)

π .

We have the following observation

θε1 = umθ0um−1, θε1+ε2 = θ0, δε1 = um−1δ0um, δε1+ε2 = δ0.

Roberts and Schmidt proves the following relation.

Lemma 6.2.2 ([23], Proposition 6.1). For m ≥ 2, on V
K(pm)
π the operators satisfy

Tε1 ◦ Tε1+ε2 − Tε1+ε2 ◦ Tε1 = θε1 ◦ δε1+ε2 − θε1+ε2 ◦ δε1

= (umθ0um−1) ◦ δ0 − θ0 ◦ (um−1δ0um)

Denote by c(π) the maximal ideal such that V
K(c(π))
π is nonzero. In particular, the

operator δλ is the zero map on V
K(c(π))
π for any λ ∈ X•(T). One can immediately get:

Lemma 6.2.3. Assume c(π) ⊂ p2. The Hecke operators Tε1 and Tε1+ε2 at level c(π)

commute and can be simultaneously diagonalized on V
K(c(π))
π .

Just like for the classical modular forms, we study the eigenvectors of the Hecke

operators Tε1 and Tε1+ε2 on the subspace V
K(c(π)
π and called them the Hecke eigenforms

of π. These Hecke eigenforms form a basis of V
K(c(π))
π . It has been shown that the

zeta integral

I(v, s) =

∫
a∈k×

`θ(ε1(a) v)|a|s−
1
2 da

of a Hecke eigenform v can be expressed by its Hecke eigenvalues.
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Proposition 6.2.4 ([23], Lemma 7.4.4). Assume c(π) ⊂ p2. Let v ∈ V K(c(π))
π be a

Hecke eigenform and for λ = ε1, ε1 + ε2 let µλ ∈ C be the constant such that

Tλv = µλv.

Assume

c(a,b) = `θ($
aε1+bε2 v)

for a, b ∈ Z, then

µε1c(a,0) = q3c(a+1,0) + q2c(a,1) + c(a−1,0), a ≥ 0

µε1+ε2c(a,0) = q4c(a+1,1), a ∈ Z

which combine together to the recurrence relation

q3c(a+1,0) − µε1c(a,0) + (1 + q−2µε1+ε2)c(a−1,0) = 0, a ≥ 0.

Proof. Using the decomposition (6.2.1), we can write K(pm)$λ K(pm) into left cosets.

Assume m ≥ 2. We have

K(pm)$ε1 K(pm)

= ∪s∈I0 Z(p−m)ws,m Z(p−m+1) Q(m) $
ε1 K(pm)

= ∪s∈I0 Z(p−m)ws,m M(o)xε1(o)$ε1 K(pm)

= Z(p−m) M(o)xε1(o)$ε1 K(pm) ∪ Z(p−m)t′m M(o)xε1(o)$ε1 K(pm).

Since the Bruhat decomposition of M over f implies

M(o) = BM(o) Nn(p) ∪ BM(o)wε1−ε2,0BM(o) Nn(p),
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the decomposition becomes

K(pm)$ε1 K(pm)

= Z(p−m)xε1−ε2(o)xε1(o)$ε1 K(pm) ∪ Z(p−m)wε1−ε2,0xε1(o)$ε1 K(pm) ∪

Z(p−m)t′mxε1−ε2(o)xε1(o)$ε1 K(pm) ∪ Z(p−m)t′mwε1−ε2,0xε1(o)$ε1 K(pm)

= Z(p−m)xε1−ε2(o)xε1(o)$ε1 K(pm) ∪ Z(p−m)xε2(o)$ε2 K(pm) ∪

Z(p−m)t′mxε1−ε2(o)xε1(o)$ε1 K(pm) ∪ t′mxε2(o)$ε2 K(pm).

Since v is fixed by x−ε1(pm), whose commuter with xε1(p−1) lies in K(pm), we get

`θ($
aε1g v) = `θ($

aε1xε2(c)g v) = ψ(c)`θ($
aε1g v), ∀c ∈ p−1

and hence `θ($
aε1g v) = 0 for g ∈ Z(p−m)t′mxε1−ε2(o)xε1(o)$ε1 K(pm). The definition

Tε1v =
∫

K(pm)$ε1 K(pm)
g v dg results in for integer a ≥ 0

µε1c(a,0) = q3c(a+1,0) + q2c(a,1) + `θ((a− 1)$ε1

∫
o

x−ε1(y$m−1) v dy).

We use the following trick

I(

∫
o

x−ε1(y$m−1) v dy, s) = γ(π, s, ψ)−1qm(s− 1
2

)I(um

∫
o

x−ε1(y$m−1) v dy, 1− s)

= γ(π, s, ψ)−1qm(s− 1
2

) vol(o)I(umv, 1− s) = I(v, s)

gotten by applying the functional equation twice. Here we used the simpler formula

by the fact that the vector um
∫
o
x−ε1(y$m−1) v is fixed by Q(o). Then comparing

the coefficients of q−s on this equation, one can get

`θ($
(a−1)ε1

∫
o

x−ε1(y$m−1) v dy) = c(a−1,0).
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Let us do the other Hecke operator Tε1+ε2 . Similarly we can get

K(pm)$ε1+ε2 K(pm)

= ∪s∈I0 Z(p−m)ws,m Z(p−m+1) Q(m) $
ε1+ε2 K(pm)

= ∪s∈I0 Z(p−m)ws,m Z(p−m+1)xε1(o)xε2(o)$ε1+ε2 K(pm)

= Z(p−m)xε1(o)xε2(o)$ε1+ε2 K(pm) ∪ t′m Z(p−m+1)xε1(o)xε2(o)$ε1+ε2 K(pm)

It follows v is fixed by x−ε1(pm) that

`θ($
aε1g v) = 0

for g ∈ Z(p−m)t′m Z(p−m+1)xε1(o)xε2(o)$ε1+ε2 K(pm). (We again omit some detail of

computation here.) Since Tε1+ε2v =
∫

K(pm)$ε1+ε2 K(pm)
g v dg, this results in

µε1+ε2c(a,0) = q4c(a+1,1).

The last assertion follows by some easy algebra. �

Remark 6.2.5. There are two parts which we omitted in the proof for showing

that on some cosets gK(pm). The result `θ(ε1(a)g v) = 0 uses highly the fact that

xεn(p−1)ws,m sits in Q(m−1) for s ∈ I0, s 6= 1. However, this can not be achieved for

n > 2. The recurrence relation currently can not be obtained for n > 2.

Since the zeta integral I(v, s) on any fixed vector is a generating function of

vol(o×)c(a,0)q
3a/2, a ≥ 0, the recurrence relation on eigenforms shows the following:

Lemma 6.2.6 ([23], Proposition 7.4.5). Assume c(π) ⊂ p2. Then if v ∈ V K(c(π))
π is

an eigenform and Tλv = µλv, then

(1− q−3/2µε1q
−s + (1 + q−2µε1+ε2)q−2s)I(v, s) = (1− q−1)c(0,0).
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Equivalently,

I(v, s) =
(1− q−1)`θ(v)

1− q−3/2µε1q
−s + (1 + q−2µε1+ε2)q−2s

.

We recall that K(pm)$ε1+ε2 K(pm) has a decomposition

Z(p−m)xε1(o)xε2(o)$ε1+ε2 K(pm) ∪ t′m Z(p−m+1)xε1(o)xε2(o)$ε1+ε2 K(pm)

and hence equals to

Z(p−m)xε1(o)xε2(o)$ε1+ε2 K(pm) ∪ (ε1 + ε2)($−1) Q(m−1) K(pm).

On the other hand, K(pm−1) = (Z(p−m+1) ∪ t′m−1 Z(p−m+2)) Q(m−1). The next step

is to make sure at the level c(π), a Hecke eigenform v satisfies I(v, s) 6= 0 which is

equivalent to the condition `θ(v) 6= 0.

Suppose c(π) = pm and m ≥ 2. For v ∈ K(pm), δ0v ∈ πK(pm−1) = 0 implies for all

λ ∈ X•(T) and all integers a, b ≥ 0

qm−1

∫
Q(m−1)

`θ($
λg v) dg + `θ(

∫
Z(p−m+2) Q(m−1)

$λtm−1g v dg) = 0.

Then ∫
Q(m−1)

`θ($
(a−1)ε1+(b−1)ε2g v) dg

= −q−1`θ(

∫
Q(m−1)

$aε1+bε2t′mg v dg)

= −q−1q3`θ($
aε1+bε2 v)

= −q2c(a,b)

Using this result, the Hecke operator Tε1+ε2 acts on v as

(6.2.2) µε1+ε2c(a,b) = q4c(a+1,b+1) − q2c(a,b).
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We hence get a relation (µε1+ε2 + q2)c(a,b) = q4c(a+1,b+1) for integers a, b ≥ 0. Using

this relation and the relations from Proposition 6.2.4, since by the fact that v is fixed

by xε2(o) we have c(a,b) = 0 for b < 0, we get c(0,0) = 0 ⇒ c(a,b) = 0 for a, b ∈ Z ⇒

`θ(T v) = 0.

Let us assume π is generic and supercuspidal. In this case, the Jacquet module

πZ is non-degenerate and isomorphic to indQ
U θ as a Q-module. We shall prove the

assertion that `θ(v) 6= 0 and Theorem 6.2.1.

Knowing that Q = U T Q(o), `θ(T v) = 0 results in `θ(Q v) = 0 and hence

JZ(v) = 0. Since v is fixed by Hxm , thus JZ(v) = 0 implies v = 0. We conclude the

following for a generic supercuspidal representation π.

Lemma 6.2.7 (n = 2). Assume c(π) ⊂ p2. For any eigenform v ∈ V K(c(π))
π , `θ(v) = 0

if and only if v = 0.

Since we assume π is supercuspidal, we have L(π, s) = 1 and aπ ≥ 2. For any

paramodular vector v of level pm, v is fixed by Q(o) and Hm. This gives Ω(v;X1, X2) ∈

C[X1, X2] and

Ω(ωmv;X−1
1 , X−1

2 ) = ε2
π(X1X2)aπ−mΩ(v;X1, X2).

Recall that v 6= 0 if and only if Ω(v;X1, X2) 6= 0. This forces v 6= 0 ⇒ m ≥ aπ. In

particular, c(π) ⊂ paπ ⊂ p2. Suppose v is a Hecke eigenform at level c(π). Then by

Lemma 6.2.6 I(v, s) ∈ C[q−s, qs] implies µε1 = 0 and µε1+ε2 = −q2. In particular,

every eigenform has same set of eigenvalues and the values c(a,b) for a, b ∈ Z are

uniquely determines by c(0,0) by the recurrence relations in Proposition 6.2.4 and

(6.2.2). The Whittaker functions of all Hecke eigenforms with fixed c(0,0) agrees on

Q. These Hecke eigenforms hence have the same image in indQ
U θ under JZ, which is
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injective on K(c(π)), and are thus the same. We then conclude that V
K(c(π))
π is one

dimensional.

Let v∗ be the unique Hecke eigenform at level c(π) = pm with `θ(v∗) = c(0,0) =

(1 − q−1)−1 and I(v∗, s) = 1. Then umv∗ = εv∗ for some ε ∈ C. The functional

equation

vol(o)I(umv∗, 1− s) = επq
(aπ−m)(s− 1

2
)I(v∗, s)

then can be written as ε = επq
(aπ−m)(s− 1

2
) which implies

ε = επ, aπ = m.

Moreover, computing c(a,b) we get c(a,b) = 0 unless (a, b) = (0, 0), (1, 1) and

Ψ(v∗, X;X1, X2) = 1−X1X2X
2, Ω(v∗;X1, X2) = 1.

�
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CHAPTER 7

Open compact subgroups and their fixed vectors

In this chapter we define the open compact subgroups K(pm) of our group G =

SO(V ). These subgroups play the central role in our study of generic representations

of G. We recall that V is a split quadratic space of dimension 2n+ 1 over k, (B,T, θ)

is a generic data of G and {e1, ..., en, v0, fn, ..., f1} is a compatible good basis of V .

7.1. Definition of K(pm), m ≥ 0

To define the family of subgroups of G, we first define a family of quadratic lattices

over o in the quadratic space V that defines G.

Definition 7.1.1. For integer m ≥ 0, let Lm be the quadratic lattice

(
n⊕
i=1

oei ⊕ pmfi)⊕ pmv0

with associated bilinear form 〈 , 〉m := $−m〈 , 〉 : Lm × Lm → o.

The Gram matrix for the quadratic lattice Lm is
1

...
1

2$m
1

...
1

, m ≥ 0.

The quadratic lattice Lm/pLm over the residue field f is nondegenerate for m = 0

and degenerate for m ≥ 1. The special fiber of the smoothen of the group scheme

SO(Lm) is SO2n+1 for m = 0 and O2n for m ≥ 1. The smoothen process is as defined

in [8] by Gan and Yu.
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For m ≥ 0, let J(pm) denote the subgroup SO(Lm) of G(k). Namely,

J(pm) = {g ∈ G | gLm ⊂ Lm},

while the condition that g preserves 〈 , 〉m on Lm is automatic by g ∈ G. In

particular, L0 = L and J(o) = G(o) is the hyperspecial maximal subgroup Gx0 of G.

Furthermore, J(p) is the normalizer Kx1 of the parahoric subgroup Gx1 .

We shall now define the open compact subgroup K(pm). It is a normal subgroup

of J(pm) and admits a smooth integral model. The definitions of J(pm) and K(pm)

depend only on the generic data (B,T, θ) and are independent of the choice of com-

patible basis.

Definition 7.1.2. Define K(o) = J(o). For m ≥ 1, define the open compact subgroup

K(pm) as the kernel of the composite map

SO(Lm)
mod p−−−→ SO(Lm/$Lm)→ O2n(f)

det−→ {±1}.

By definition, K(pm) is a normal subgroup of J(pm) with index 2 for m ≥ 1. Let

us follow the convention for n = 2 in [23] and denote by

um =

 $−m
−1

. . .
−1

$m

 ∈ J(pm)−K(pm)

a lift of the Weyl group element sε1 to NG(T) in J(pm) that represents the nontrivial

coset in J(pm)/K(pm). The element um normalizes K(pm) and is an analog of the

Atkin-Lehner element [ 1
−$m ] of PGL2. The element ωm also normalizes K(pm).

One should further notice that the hyperspecial maximal open compact subgroup

Hxm = SO(
n⊕
i=1

oei ⊕ pmfi)

of H is contained in K(pm). The following is a useful way to decompose K(pm).
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7.1. Definition of K(pm), m ≥ 0

Proposition 7.1.3. Assume m ≥ 1 is an integer.

K(pm) =

(
n∏
i=1

x−εi(p
m)

)(
n∏
i=1

xεi(o)

)
Hxm(7.1.1)

=

(
n∏
i=1

xεi(o)

)(
n∏
i=1

x−εi(p
m)

)
Hxm .(7.1.2)

Proof. The subgroup H is the fixer of the anisotropic vector v0 in G and hence is

the fixer of v0 ∈ $−mLm. By definition K(pm) is the stabilizer of Lm (resp. its dual

L∗mm under 〈 , 〉m) which fixes $mv0 (resp. v0) modulo pLm (resp. pL∗mm ). Therefore,

we can identify the orbit space K(pm)v0, which equals L∗mm , with the left coset space

K(pm)/(K(pm)∩H), which equals K(pm)/Hxm . We claim we can use some operation

x−εi(p
m)’s and then some operations xεi(o)’s to bring any vector in L∗mm back to v0.

This is a tedious routine work. Assume v =
∑n

i=1 aiei + cv0 +
∑n

j=1 bi$
mfi for some

ai, bi ∈ o, i = 1, 2, ..., n and c ∈ 1 + p ⊂ o×. Then by Hensel’s lemma there exists

cn ∈ o such that xε1(−c1)v = v− (cc1 +c2
1b1$

m)e1 +c1b1$
mv0 and cc1 +c2

1b1$
m = a1.

Then continuing this process there exists c1, c2, ..., cn ∈ o such that one sees v′ =∏n
i=1 xεn+1−i(−cn+1−i)v is a vector v′ of the form v′ = (c+ c′$m)v0 +

∑n
j=1 bi$

mfi for

some c′ ∈ o. Write c′′ = c + c′$m ∈ 1 + p ⊂ o×. Then this orbit of v0 under K(pm)

becomes v′′ =
∏n

i=1 x−εn+1−i(−bn+1−ic
′′−1)v′ ∈ (1+p)v0. Since G preserve a quadratic

form, and v0 is anisotropic, this scalar in 1 + p must be 1. Hence v′′ = v0 and the

claim follows. This shows the containment ⊂ side of (7.1.1) while the containing ⊃

side is clear. A similar argument with the lattice Lm shows (7.1.2). �

As well we have:

Corollary 7.1.4. Assume m ≥ 1 is an integer. The subgroup K(pm) is equal to

Hxm

(
n∏
i=1

x−εi(p
m)

)(
n∏
i=1

xεi(o)

)
and Hxm

(
n∏
i=1

xεi(o)

)(
n∏
i=1

x−εi(p
m)

)
.

Proof. This is gotten by taking an inverse of (7.1.1) and (7.1.2). �
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7.1. Definition of K(pm), m ≥ 0

The open compact subgroups is really only defined up to conjugacy. The ones

we defined form two descending filtrations each with the same parity on m in the

sense that for each m there is one member in the conjugacy class of K(pm) in G such

that we have the descending chains of subgroups with the same parity on m. Let us

describe them in a more explicit way below.

Let C be the fundamental alcove in the affine apartment A(G) of T with respect

to the polarization Φ+
G. The closure C of C is a fundamental domain under the action

of the affine Weyl group. For m ∈ Z, the building points xm are congruent to either x0

or x1, depending on the parity of m. J(pm) = SO(Lm) is an open compact subgroup

of G and is contained in the (unique) maximal open compact subgroup Kxm of G.

Definition 7.1.5. For integer m ≥ 0, the congruence subgroup K0(pm) is the unique

open compact subgroup contained in either Kx0 or Kx1 that is conjugate to K(pm).

More precisely, if m = 2m′+ e, e ∈ {0, 1}, then K0(pm) is a subgroup of SO(L′m),

which is the kernel of the composite map

SO(L′m)
mod p−−−→ SO(L′m/$L′m)→ O2n(f)

det−→ {±1},

where

L′m = (
n⊕
i=1

oei ⊕ pefi)⊕ pm
′+ev0

is the quadratic lattice in V . The quadratic lattices (L′m, 〈 , 〉) and (Lm, 〈 , 〉m)

are isomorphic. The open compact subgroups K0(pm) and K(pm) are conjugate by

$m′(ε1+ε2+...+εn) in T and Hxe is contained in K0(pm).

This family forms two descending chains by the parity of m. One sees

K(o) = K0(o) ⊃ K0(p2) ⊃ K0(p4) ⊃ · · · ⊃ Hx0 ,

K(p) = K0(p) ⊃ K0(p3) ⊃ K0(p5) ⊃ · · · ⊃ Hx1 .
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7.2. K(pm) with m = 0, 1

Moreover, any open compact subgroup K of G containing either Hx0 or Hx1 contains

K0(pm) for some m ≥ 0. Namely, we have

(7.1.3) Hx0 = ∩m:even K(pm), and Hx1 = ∩m:odd K(pm).

7.2. K(pm) with m = 0, 1

Recall that J(o) is the special orthogonal group of the quadratic lattice L and is

hence equal to G(o). We thus have

K(o) = J(o) = G(o) = Kx0 = Gx0 .

On the other hand, one can check that the parahoric subgroup Gx1 stabilizes the

quadratic lattice L1 and is hence contained in J(p) = SO(L1). Since J(p) is its

normalizer, and Kx1 is a maximal open compact subgroup of G. We obtain

J(p) = Kx1 and Gx1 = K(p)

while the second equality is gotten from the fact that the group in the first equality

contains Gx1 ⊂ K(p) with same index.

We conclude that when m = 0, the open compact group K(o) is the hyperspecial

maximal open compact subgroup Gx0 of G; when m = 1, K(p) is equal to the maximal

parahoric subgroup Gx1 of G.

Recall that in Chapter 2 of Part 1 we have many good property with these two

maximal open compact subgroups Kxi , for i ≥ 0 integers.

The Iwasawa factorization G = B Kxi can then be rewritten as

G = B J(o) = B J(p)
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7.2. K(pm) with m = 0, 1

and by the Cartan decomposition the double cosets of J(o)\G / J(o) have represen-

tatives {$λ}λ∈P+ , or equivalently,

G = tλ∈P+ K(o)$λ K(o).

More generally, for any parahoric subgroup Gx, denote by Wx by the subgroup

NGx(T)/T(o) of the extended affine Weyl group W̃G. Assume x, x′ lie in the closed

fundamental alcove C. Then G = tσ Gx σGx′ where σ runs through a set of represen-

tatives for the double cosets Wx\W̃G/Wx′ . (See [17] Proposition 3.1). In particular,

Wx1 ' WH and let u1 be a representative of K(p)\ J(p) then

G =
(
tλ∈P+

H
K(p)$λ K(p)

)
t
(
tλ∈P+

H
K(p)u1$

λ K(p)
)
,

where P+
H denotes the closure of the fundamental Weyl chamber for H. It is then

clear that since P+ t u1P
+ = P+

H so

(7.2.1) G = tλ∈P+
G

J(p)$λ J(p).

Another way to view this is to see that Kxi contains a Iwahori subgroup for all integers

i. In particular, Kxi = ∪s∈W ′xi Gb+xi ws,i Gb+xi with W ′
xi

= WG for all integers i ≥ 0.

The result (7.2.1) follows W ′
xi
\W̃G/W

′
xi

= (T /T(o))WG .

As we have discussed in Section 3.5, these properties leads to the following facts

regarding the Satake transform on the Hecke algebras.

Lemma 7.2.1. The Satake transform S : H(G,Kxi) → H(T, T (o)), f 7→ Sf(t) =

δ
1/2
B (t)

∫
U
f(tu) du induces an isomorphism to H(T,T(o))W

′
xi and is hence a commu-

tative algebra. Any simple H(G,Kxi)-module is of dimension at most 1.

Proof. This is a recall of Theorem 3.5.7 and Proposition 3.5.9. The last statement

uses Proposition 3.5.2 to prove dimension at most one. �
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7.3. Existence of Fix vectors

Lemma 7.2.2. Any simple H(G,K(o))-module is of dimension at most 1 and simple

module of H(G,K(p) is of dimension at most 2.

Proof. Since K(o) = J(o) so the first assertion is just a repetition of the previous

lemma. Since H(G,K(p)) = H(G, J(p)) + Ru1H(G, J(p)) as a subalgebra of H(G),

where Ru1f(g) = f(gu1), and any H(G,K(p))-module map T : V1 → V2 extends

uniquely to a H(G)-module map between H(G)V1 and H(G)V2. Hence we cannot

have a simpleH(G,K(p)-module of dimension more than 2 which is against the unique

extension property since H(G, J(p)) is commutative by the previous lemma. �

In general, we have:

Lemma 7.2.3. The commutative algebra H(G,Kxm) is a subalgebra of H(G,K(pm))

and there is a C-linear map from H(H,Hxm) to H(G,K(pm)).

7.3. Existence of Fix vectors

Assume (π, Vπ) is an irreducible admissible generic representation of G. Let Gc

denote the group generated by the root subgroups Uα, α ∈ ΦG. Assume π has no

subspace fixed by Gc. We are interested in the fixed subspace V
K(pm)
π , or equivalently

V
K0(pm)
π , of the open compact subgroups K(pm), or equivalently K0(pm), defined in

the previous sections.

The two families K(pm) and K0(pm) both have their advantages so we will switch

them back and forth. For example, (7.1.3) implies that

(7.3.1) V
Hx0
π = ∪m:evenV

K(pm)
π , and V

Hx1
π = ∪m:oddV

K(pm)
π ,

while the containment between the subgroups K0(pm) with the same parity implies

the contained between the fixed subspaces, namely

V K0(o)
π ⊂ V K0(p2)

π ⊂ V K0(p4)
π ⊂ · · · ⊂ V

Hx0
π ,
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7.3. Existence of Fix vectors

V K0(p)
π ⊂ V K0(p3)

π ⊂ V K0(p5)
π ⊂ · · · ⊂ V

Hx1
π .

As a result of these properties, showing existence of fixed vectors of Hxi shall implies

fixed vectors of K(pN) for certain N ≥ 0 and hence existence of fixed vectors of K(pm)

for all N ≥ m with same parity as m.

This leads to a existence and non-exsitence theorem of the fixed vectors.

Theorem 7.3.1 (Existence 1). Assume π is irreducible generic and supercuspidal,

then there exists a nonzero fixed vector of K(pm) for some m with both parities and

hence for all K(pm) with m sufficiently large integers. On the other hand, any irre-

ducible supercuspidal representation of G that is not generic contains no fixed vector

of K(pm) for any integer m.

Proof. By Lemma 5.3.1, V
Hxi
π for both i = 0, 1 is nonzero when π is irreducible

generic and supercuspidal. By Corollary 3.4.2, V
Hxi
π is zero for i = 0, 1 when π is

irreducible supercuspidal but non-generic. �

On the other hand, we have nice properties with the fixed vectors of K(pm) which

separates vector of different “level” m, and the term level is hence well-defined.

Proposition 7.3.2. n > 2. Let v1, v2, ..., vr be nonzero vectors in Vπ and vi is

invariant under K(pmi) for 1 ≤ i ≤ r with distinct mi ≥ 0, then they are linearly

independent.

Proof. Without lost of generality suppose m1 > m2 > ... > mr ≥ 0, and v1 + v2 +

...+ vr = 0. Let Σ be the group generated by K(pm1) and K(pm2) ∩ ... ∩K(pmr) and

fixes the vector

v1 = −(v2 + ...+ vr).

We claim that Σ contains Gc and hence v1 must be zero which leads to a contradiction.
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7.3. Existence of Fix vectors

For γ ∈ ΦG with root subgroup Uγ contained in Z, one sees

xγ(p
−m1), x−γ(p

m1) ⊂ K(pm1) ⊂ Σ, and

x−γ(p
m2), xγ(p

−mr) ⊂ K(pm2) ∩ ... ∩K(pmr) ⊂ Σ.

The group Σ therefore contains xγ(p
m2−2m1) = wsγ,m1x−γ(p

m2) . On the other hand,

x−γ(p
2m1−m2) ⊂ x−γ(p

m2) ⊂ Σ ⇒ wsγ ,2m1−m2 ∈ Σ. Then the element γ̌($m1−m2) =

w−1
sγ ,m1

wsγ ,2m1−m2 is also contained in Σ. Conjugating xγ(p
−mr) and x−γ(p

m1) by

arbitrary power of γ̌($m1−m2) we get U±γ(k) ⊂ Σ for γ ∈ ΦG.

One can conjugate xαi(o) ⊂ K(pm1) ⊂ Σ by arbitrary power of γ̌($m1−m2) for all

such γ. Then one sees all simple root subgroups are contained in the group Σ and

so are all positive root subgroups. By a similar method all negative root subgroups

are in Σ as well. T(o) is contained in K(pm1) and hence in Σ. The group Σ therefore

contains the Chevalley group Gc.

By assumption, there is no nonzero vector invariant under Gc hence under Σ.

This is contradict to v1 6= 0. �

Definition 7.3.3. Every nonzero vector in πK(pm) is called a fixed vector of level m.

Proposition 7.3.4. dimV
K(o)
π ≤ 1 and dimV

K(p)
π ≤ 2.

Proof. Since V
K(pm)
π is a simpleH(G,K(pm))-module so it follows by Lemma 7.2.2. �

Proposition 7.3.5. If π has conductor aπ = 0, then dimV
K(o)
π = 1.

Proof. If aπ = 0 then the representation is unramified and V
G(o)
π 6= 0. Since K(o) =

G(o) and by Proposition 7.3.4 dimV
K(fo)
π ≤ 1, so the dimension must be 1. �

In general, we have the following theorem regarding the fixed subspace at level

smaller or equal to the conductor aπ of the representation.
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7.3. Existence of Fix vectors

Theorem 7.3.6 (Existence 2). Assume π is irreducible and supercuspidal, then

dimV
K(paπ )
π ≤ 1 and dimV

K(pm)
π = 0 for m less than the conductor aπ. Moreover,

Ω(v) is a constant for v ∈ V K(paπ )
π .

Since V
K(pm)
π ⊂ V

Hxm
π for each integer m ≥ 0, we shall prove Main Theorem

7.3.6 by the C-linear map Ω : V
Hxm
π → Sn constructed in Section 5.4. Recall that

Sn = C[T̂]WM with a grading ⊕d∈ZSn,d. Let us first prove a lemma on the image of

V
K(pm)
π under Ω.

Lemma 7.3.7. Assume v ∈ V K(pm)
π is a fixed vector of level m ≥ 0. Then

Ω(v;X1, X2, ..., Xn) ∈ ⊕0≤d≤m−aπSn,d.

Proof. This is by the facts that xεn(o), x−ε1(pm) ⊂ K(pm) and Proposition 5.4.3. �

Let us prove the second Existence Theorem.

Proof of Theorem 7.3.6. If π is not generic, then the Existence Theorem has

shown dimV
K(pm)
π = 0. Assume π is generic and assume there exists a nonzero fixed

vector v ∈ V K(pm)
π of some level m. Then by Lemma 7.3.7 and the degree of Ω(v),

we get m − aπ ≥ 0 and if m = aπ then we claim Ω(v) lies in C. If Ω(v) /∈ C for

some v ∈ V K(paπ )
π , then the image of Ω(v;X−1

1 , X−1
2 , ..., X−1

n ) in ⊕d<0Sn,d is nonzero.

However, the functional equation (5.4.2)

Ω(v;X−1
1 , X−1

2 , ..., X−1
n ) = εnπΩ(ωaπv;X1, X2, ..., Xn)

, the vector ωaπv ∈ V
K(paπ )
π is nonzero but Ω(ωaπv;X1, X2, ..., Xn) /∈ Sn,0, which is a

contradiction. The claim follows. Since Ω is injective on each V
Hxm
π so the dimension

of V
K(paπ )
π is less than or equal to 1. �

Remark 7.3.8. We have remark at the end of Chapter 5 in Remark 5.4.4 that the

results we have used to prove the second Existence Theorem still hold after relaxing
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7.4. Fixed vectors at the level equal to the conductor

the condition that π is supercuspidal. Hence the second Existence Theorem is also

true for non-supercuspidal representations.

7.4. Fixed vectors at the level equal to the conductor

By the Existence Theorem 2, the conductor is the minimal possible level of a

nonzero fixed vector. We have seen the uniqueness of such vector. In this section, we

shall investigate more property of vectors at this level.

For simplicity we shall still assume π is irreducible generic and supercuspidal,

which implies the L-factors are trivial.

Recall that the conductor is defined by the ε-factor, or equivalently the functional

equation. We have two useful functional equations:

I(umv, 1− s) = επq
(m−aπ)(s− 1

2
)I(v, s), ∀v ∈ Vπ,

Ω(ωmv;X−1
1 , X−1

2 , ..., X−1
n ) = εnπ T

aπ−m
n Ω(v;X1, X2, ..., Xn), ∀v ∈ V Hxm

π .

In particular, for v ∈ V K(paπ )
π we have

I(uaπv, 1− s) = επI(v, s) and Ω(ωaπv) = εnπΩ(v)

and both are equal to some constant functions.

Assume there exists v∗ which is a nonzero vector in V
K(paπ )
π . We obtain the

following properties.

Lemma 7.4.1. I(v∗, s) = vol(o×)`θ(v∗) 6= 0 and uaπv∗ = επv∗.

Proof. Since v∗ is nonzero so Ω(v∗) is a nonzero constant by Theorem 7.3.6, which

let us normalize to 1. Therefore Ξ(v∗) =
∏

1≤i<j≤n(1 − q−1XiXj), and hence has

nonzero constant term 1 in Sn. On the other hand, the constant term of Ξ(v∗)

equals vol(T(o))Wv(I) = vol(o×)n`θ(v∗). Hence `θ(v∗) is nonzero. By using this, since
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7.4. Fixed vectors at the level equal to the conductor

uaπv∗ = εv∗ for some ε ∈ C by dimension one and εI(v∗, 1 − s) = I(uaπv∗, 1 − s) =

επI(v∗, s) 6= 0 is independent of s, so we get ε = επ. �

Proposition 7.4.2. The Whittaker functional `θ is nonzero on v∗ and the order two

group J(paπ)/K(paπ) acts on the subspace V
K(paπ )
π by a quadratic character which

equals to the root number επ.

Proof. Since uaπ represents the nontrivial element of J(paπ)/K(paπ), so the assertion

follows the previous lemma. �

Proposition 7.4.3. The C[T̂]WH-submodule Ω(V
Haπ
π ) of Sn contains C[T̂]WH.

Proof. Ξ is a C[T̂]WH-module map on V
Haπ
π hence so is Ω. Since the image contains

a unit 1 because Ω(v∗) = 1 for a vector v∗ in V
Hxm
π , so the assertion follows. �

To end this discussion, let us give some examples of supercuspidal representations

with a nonzero fixed vector at the level equal to the conductor.

Example 7.4.4. Let τ be an inflation of an irreducible cuspidal representation τ of

G(f) ' Gx0 /G+
x0

to Gx0 . Assume τ is generic in the sense that the Z(f)-covariants

τZ(f) is the standard representation ind
Pn+1

Nn+1
ψ of Gelfand and Kazhdan of the mirabolic

group Pn+1. The compactly induced representation

π = indG
Gx0

τ

of G has a nonzero subspace of G+
x0

-invariants which is isomorphic to τ as a Gx0-space.

Hence π is a generic depth zero supercuspidal representation of conductor aπ = 2n.1

By Mackey’s restriction formula we have

π|K0(p2n) = indG
Gx0

τ |K0(p2n) =
∑

g∈Gx0 \G /K0(p2n)

ind
K0(p2n)

Ggx0
∩K0(p2n)

τ g|Ggx0
∩K(p2n).

1In [7], DeBaker and Reeder conjecture that all generic depth zero supercuspidal representations of
G are arisen in this way.
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7.4. Fixed vectors at the level equal to the conductor

There exists g = $−
∑n
i=1(i−1)εi ∈ T such that the intersection C of Gx0 with the

group K0(p2n)g−1 has image wP BH(f) in the reductive quotient G(f). Then since

τ |BH(f)wM = ind
BH(f)wM

I 1 contains a trivial representation of BH(f)wM , so the represen-

tation π|K0(p2n) contains a trivial representation of K0(p2n). Hence the fixed subspace

πK0(p2n) is nonzero.

The example above was modeled by Mark Reeder and is the supercuspidal rep-

resentation of G with the smallest conductor. The next smallest conductor is 2n+ 1

and occurs as the conductor of the simple supercuspidal representations of minimal

positive depth 1/2n.

Example 7.4.5. Let G++
b be the prop-p-Sylow subgroup of G+

b , the pro-unipotent

radical of the Iwahori subgroup Gb, occurs as the next Moy-Prasad subgroup of Gb

in the filtration Gb ⊃ G+ ⊃ G++
b ⊃ ... and we have G+

b /G++
b ' ⊕ni=0 Uψi(f). Set

K+
b = Kb ∩G+

b . Let

π = indG
K+
b
χ

be a simple supercuspidal representation for some affine generic character χ, which

is the inflation of a character on G+
b /G++

b to K+
b and is generic in the sense that it

is nontrivial on Uψi(f) for 0 ≤ i ≤ n. By Mackey’s restriction formula we have

π|K0(p2n+1) = indG
K+
b
τ |K0(p2n+1) =

∑
g∈K+

b \G /K0(p2n+1)

ind
K0(p2n+1)

(K+
b )g∩K0(p2n+1)

χg|(K+
b )g∩K(p2n).

There exists g = $−
∑n
i=1(i−1)εi ∈ T such that the intersection C of K+

b with the group

K0(p2n+1)g−1 has trivial image in the quotient G+
b /G++

b ' ⊕ni=0 Uψi(f). Then since

χ|K+
b ∩K(p2n)g−1 is trivial, so the representation π|K0(p2n+1) contains a trivial represen-

tation of K0(p2n+1) and the fixed subspace πK0(p2n+1) is nonzero.

102



CHAPTER 8

Action of the Hecke operators

In the previous chapter, we defined the open compact subgroups K(pm) for G(k)

and have discussed many properties for the groups and the subspaces fixed by them.

It is natural for us to look at the action of the Hecke operators given by bi-K(pm)-

invariant functions on the fixed subspaces K(pm). Since the subgroups contains the

hyperspecial open compact subgroups Hxm of the smaller orthogonal group H(k), the

action will be very close to how the spherical Hecke algebra act. We hence will be

able to see many nice properties carried by such operators.

In this chapter, we will define the level raising operators, which sends fixed vectors

of smaller level to the larger ones, by using the spherical Hecke algebra for H(k). Then

we put our attention on the Hecke actions of K(pm)-double cosets. Some of these,

which we shall call T1, T2,..., T ′n can be simultaneously diagonalized and make the fixed

subspace V
K(pm)
π decompose into common eigenspaces. From this observation, we then

argue about the vectors at the minimal level and shall prove that this subspace must

be of dimension one.

We will fixed the notation as defined in Part 1 and denote by b the barycenter of

the fundamental alcove C. The alcoves containing xm±b contains both xm and xm±1.

The parahoric subgroup Hxm±b is a Iwahori subgroup of H with Iwahori factorizations

Hxm±b = (Hxm±b ∩V)(Hxm±b ∩T)(Hxm±b ∩V)

= (Hxm±b ∩ω0 V)(Hxm±b ∩T)(Hxm±b ∩ω0V)
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8.1. Level raising operators

and contained in the parahoric subgroups Hxm and Hxm±1 with Hxm+b /H+
xm ' BH(f),

Hxm+b /H+
xm+1

' ωm+1 BH (f) (or Hxm−b /H+
xm ' BH(f), Hxm−b /H+

xm−1
' ωm−1BH (f)).

We have decompositions

Hxm =
⋃
s∈WH

Hxm+bws,m Hxm+b, and Hxm±1 =
⋃
s∈WH

Hxm±bws,m±1 Hxm±b

where again ws,m (resp. ws,m±1) denotes any lift of s to Hxm (resp. Hxm±1).

8.1. Level raising operators

Since the union of the fixed vectors under K0(pm) is equal to the union of the

fixed subspaces of Hx0 and Hx1 . That is, we have

∪m≥0V
K0(pm)
π = V

Hx0
π ∪ V Hx1

π .

To produce a fixed vector from another, we consider the action

(8.1.1) φ ∗ v =

∫
H

φ(h′)π(h′−1)v dh′, ∀φ ∈ H(H,Hxm), ∀v ∈ V Hxm
π

for integers m defined in Section 5.3.

Recall that we have an injective C[T̂]WH-module homomorphism

Ξ : V
Hxi
π → C[T̂]WM

satisfying that for P ∈ C[T̂]WH , v ∈ V Hxi
π

P · Ξ(v) = Ξ(ςH,i(P ) ∗ v) in C[T̂]WM .(8.1.2)

For v ∈ K0(pm) and nonzero φ ∈ H(H,Hxi), the vector φ ∗ v is then a nonzero fixed

vector in V
K0(pl)
π for some level l with same parity as m. Note that the vector space

H(H,Hxi) is generated by the characteristic functions of the double cosets Hxi $
λ Hxi ,
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λ ∈ P+
H . We introduce the following notion1: the norm of a co-character λ is the

map ‖ · ‖ : X•(T)→ Z such that

(8.1.3) ‖λ‖ = max
1≤i≤n

|mi|, if λ =
n∑
i=1

miεi.

This integer-valued function satisfies the triangle inequality and ‖λ‖ = 0 if and only

if λ = 0. Moreover, it is preserved under action of the Weyl group.

Proposition 8.1.1. Define φλ ∈ H(H,Hxi) as the characteristic function of the

double coset Hxi $
λ Hxi. Then φλ : V

K0(pm)
π → V

K0(pm+2l)
π for m ≡ i ( mod 2) and

‖λ‖ ≤ l.

Proof. This is implied by the fact that

$λ

(
n∏
i=1

xεi(p
m′+l)

)(
n∏
i=1

x−εi(p
m′+l+i)

)
$−λ ⊂

(
n∏
i=1

xεi(p
m′)

)(
n∏
i=1

x−εi(p
m′+i)

)
.

�

There is an isomorphism between the fixed subspace of K(pm) and the one of

K0(pm) by translating by $−m
′λM ∈ G:

V K0(p2m′+i)
π → V K(p2m′+i)

π , v′ 7→ v = π($−m
′λM

)v′,

for integer m′ ≥ 0 and i ∈ {0, 1}. (Recall λM = ε1 + ε2 + ...+ εn ∈ X•(T).) We define

for λ ∈ P+
H the level raising operators ηλ as follows:

ηλ(v) =

∫
Hxi $

λ Hxi

π($−(m′+‖λ‖)λM

h−1$m′λM

)v dh(8.1.4)

which is equal to

ηλ(v) =

∫
Hx2(m′+‖λ‖)+i $

−(λ+‖λ‖λM) Hx2m′+i

π(h)v dh.(8.1.5)

1The definition is credit to Cheng-Chiang Tsai and the action is inspired by [22] in the PGL(n)
case.
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Then this operator induces an injective map from fixed space of lower level 2m′ + i

to fixed space of higher level 2(m′ + ‖λ‖) + i.

In addition to ηλ, to go to level with different parity, we define θλ to be the

operator

θλ(v) =

∫
K(pm+1)$−λ K(pm)

π(g)v dg, v ∈ V K(pm)
π

by the Hecke action. This gives us an operator which raises the level by one. Similarly

the Hecke action gives operators

δλ(v) =

∫
K(pm−1)$λ K(pm)

π(g)v dg, v ∈ V K(pm)
π

which lowers the level by one. That is,

θλ = [K(pm+1)$−λ K(pm)] : V K(pm)
π → V K(pm+1)

π

δλ = [K(pm−1)$λ K(pm)] : V K(pm)
π → V K(pm−1)

π .

We also define the companion operators

θ̃λ = ωm+1 ◦ θλ ◦ ωm and δ̃λ = ωm−1 ◦ δλ ◦ ωm.

We remark that when λ is minuscule, the level raising (resp. level lowering) oper-

ators θλ (resp. δλ) only give two distinct operators. This is because for each s ∈ WH,

one has

K(pm±1)$∓λ K(pm) = K(pm±1)ws,m±1$
∓λws,m K(pm),

while ws,m±1ws,m exhaust $∓λ for λ minuscule co-characters listed above. We follow

Roberts and Schmidt [23] and define the dual operators

θ∗λ = um+1 ◦ θλ ◦ um and δ∗λ = um−1 ◦ δλ ◦ um.

Then these level raising operators θλ (resp. level lowering operators δλ) for minuscule

λ are equal to either of the operators θ0 and θ∗0 (resp. the operators δ0 and δ∗0).
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Definition 8.1.2. The level raising operators on the fixed subspace V
K(pm)
π of level

m are the injective linear maps ηλ, λ ∈ P+
H , and the operators θ0 and θ∗0.

Let us now show that θ0 is also an injective linear map. This implies that θε1 = θ∗0

is injective as well. (However, in general the level lowering operators are not injective

unlike θ0 and θ∗0.)

Proposition 8.1.3. θ0(v) =
∫

K(pm+1) K(pm)
π(k)v dk 6= 0 for nonzero v ∈ V K(pm)

π .

Proof. Using the decomposition K(pm) = Hxm (
∏n

i=1 xεi(o)) (
∏n

i=1 x−εi(p
m)) we can

get K(pm+1) K(pm) = Hxm+1 K(pm) =
⋃
s∈WH

Hb+xm ws,m+1 K(pm). One also sees

Hb+xm ws,m+1 Hxm = (Hb+xm ∩ω0 V)ws,m+1ws−1,m Hxm which implies

K(pm+1) K(pm) =
⋃
s∈WH

Z(pm+1) Nn(o)ws,m+1ws−1,m K(pm).

Here ws,m+1ws−1,m lies in T and equals to $µ for some µ ∈ P+
H such that 〈µ, εi〉 ∈

{0,−1} for 1 ≤ i ≤ n and deg µ is even.

Assume θ0(v) = 0 then it implies Wωmθ0(v)($
λ) = 0 for all λ ∈ P+. Notice that

ωm(Z(pm+1) Nn(o)) = N(o) Z(p−m+1). Since ωmθ0(v) is a positive sum of

∑
z∈Z(p−m+1/p−m+2)

∑
n∈Nn(o/p)

π(zn$µ′)(ωmv)

with 〈µ′, εi〉 ∈ {0, 1} for 1 ≤ i ≤ n and deg µ even. For λ ∈ P+, we get Wωmθ0(v)($
λ)

is a positive sum of Wωmv($
λ+µ′).

Since ωmv ∈ V K(pm)
π is nonzero, so Wωmv|T 6= 0. Take λ to be the maximal element

in P+ under the Bruhat order ≥ such that Wωmv($
λ) 6= 0. (This is feasible since

Ξ(ωmv) is in C[T̂].) Then since for µ′ 6= 0, λ + µ′ ≥ 0, we get that 0 = Wωmθ0(v) is a

multiple of Wωmv($
λ) 6= 0, a contradiction. Hence θ0(v) must be nonzero. �

Corollary 8.1.4. If V
K(pc)
π 6= 0, then V

K(pm)
π is nonzero for all m ≥ c.

107



8.2. Hecke operators

Proof. This is immediate by injectivity of the level raising operators ηλ and θ0. �

Before we end this section, we give an early version of the dimension count.

Proposition 8.1.5. Suppose c(π) = pc(π) is the maximal ideal such that the fixed

space V
K(c(π))
π is nonzero, then

dimV K(pm)
π = dimV K0(pm)

π ≥ #

{
λ ∈ P+

H | ‖λ‖ ≤
⌊
m− c(π)

2

⌋}
where P+

H denotes the fundamental Weyl chamber of H.

Proof. We recall that φλ, λ ∈ P+
H , forms a basis of H(H,Hxi) and the linear map Ξ on

πHxi is a H(H,Hxi)-module homomorphism. Take any nonzero vector v in V
K0(pc(π))
π

(or θ0(v) ∈ V K0(pc(π)+1)
π if the parity does not match) then v ∈ V Hxi

π and Ξ(v) 6= 0, we

get Ξ(φλ ∗ v), λ ∈ P+
H are linearly independent. The statement follows the fact that

φλ ∗ v sits in V
K0(pc(π)+2‖λ‖)
π ⊂ V

K0(pm)
π for c(π) + 2‖λ‖ ≤ m. �

8.2. Hecke operators

The decomposition

K(pm) =

(
n∏
i=1

x−εi(p
m)

)(
n∏
i=1

xεi(o)

)
Hxm = Hxm

(
n∏
i=1

xεi(o)

)(
n∏
i=1

x−εi(p
m)

)

provides some advantages in working with the double coset of K(pm), especially those

ones whose double coset representatives are in the maximal torus. The computation

can then be reduced to computing the double cosets in Hxm T Hxm on which one has

the Cartan decomposition and where the Iwasawa decomposition can also be useful.

In this section, we will first work on the composition of two Hecke actions of double

cosets. In the next section, we will look at how the values of the Whittaker functions

varies after applying the Hecke action.

From now on, we assume that the rank n ≥ 2 and the level m ≥ 2.
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We consider λ to be the minuscule co-weights

λ1 = ε1, λ2 = ε1 + ε2, ..., λn−1 = ε1 + ε2 + ...+ εn−1, and

λn = ε1 + ε2 + ...+ εn−1 + εn, λ
∗
n = ε1 + ε2 + ...+ εn−1 − εn

in P+
H . Denote by Ti the Hecke operator chK(pm)$λi K(pm) and T ∗i its dual um ◦Ti ◦um.

Then T ∗n is equal to the operator chK(pm)$λ
∗
n K(pm). Assume π is a supercuspidal

representation of G. Then π is unitary and has a G-invariant Hermitian form on the

space Vπ.

For open compact subgroup K and h ∈ G, let us denote the Hecke operator on

the V K
π given the characteristic function of the double coset KhK by Th and write

Tλ for T$λ . Then one has 〈Thv, w〉 = 〈v, Th−1w〉 for v, w ∈ V K
π . That is, Th and

Th−1 are adjoint. Then on the fixed subspace V
K(pm)
π , one sees T1, T2, ..., Tn−1 and

T ′n = Tn + T ∗n are self-adjoint. A self-adjoint operator on a finite dimensional vector

space is diagonalizable. We shall show that the operators T1, T2, ..., Tn−1 and T ′n

commute and hence can be diagonalized simultaneously.

Lemma 8.2.1. Hxm $
λ Hxm = ∪s∈WH

Hxm+b$
s(λ) Hxm, if λ ∈ P+

H minuscule.

Proof. For 1 ≤ i ≤ n − 1, one has wH(λi) = −λ. On one hand, λ ∈ P+
H implies

$λ(Hxm+b ∩V)$−λ ⊂ (Hxm+b ∩V). On the other hand, (Hxm+b ∩V)ws,m ⊂ Hxm+b.

Therefore since wH can be lifted to Hxm , by using the Bruhat decomposition we get

Hxm $
λ Hxm = Hxm $

−λ Hxm

= ∪s∈WH
Hxm+bws,m Hxm+b$

−λ Hxm

= ∪s∈WH
Hxm+bws,m(Hxm+b ∩V) T(o)(Hxm+b ∩V)$−λ Hxm

= ∪s∈WH
Hxm+bws,m$

−λ Hxm

= ∪s′∈WH
Hxm+b$

s′(λ) Hxm .
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For λ = λn or λ∗n, one can check $−wH(λ)(Hxm+b ∩V)$wH(λ) ⊂ (Hxm+b ∩V) so a

simliar computation as above leads to same conclusion. �

Using the decomposition of K(pm) we have

K(pm)$λ K(pm)$µ K(pm)

=
⋃
s∈WH

K(pm)$λ

n∏
i=1

xεi(o)
n∏
i=1

x−εi(p
m) Hxm+b$

s(µ) K(pm)

=
⋃
s∈WH

K(pm)$λ

n∏
i=1

xεi(o)
n∏
i=1

x−εi(p
m)(Hb+xm ∩P)(Hxm+b ∩Z)$s(µ) K(pm)

=
⋃
s∈WH

K(pm)$λ

n∏
i=1

xεi(o/p)
n∏
i=1

x−εi(p
m/pm+1)Z(pm+1/pm+2)$s(µ) K(pm)

In the computation we use the fact that $λ(Hxm+b ∩P) ⊂ K(pm), and

n∏
i=1

xεi(o)
n∏
i=1

x−εi(p
m)(Hxm+b ∩P)Z(pm+1) ⊂ (Hxm+b ∩P)

n∏
i=1

xεi(o)
n∏
i=1

x−εi(p
m)Z(pm+1).

For λ = λj, 1 ≤ j ≤ n, or λ = λ∗n, the decomposition is equal to

K(pm)$λ K(pm)$µ K(pm)

=
⋃
s∈WH

K(pm)$λxεn(o)
n∏
i=1

x−εi(p
m/pm+1)Z(pm+1/pm+2)$s(µ) K(pm).

For each root α of Lie(Z), if 〈λ,−α〉 = 〈s(µ), α〉 = −2, then for bα ∈ o×,

$λx−α(bα$
m+1)$s(µ) = xα(b−1

α $−m+1)$λwsα,m+1$
s(µ)xα(b−1

α $−m+1).

Since wsα,mxα(b−1
α $−m+1) ∈ K(pm), wsα,m+1ws−1

α ,m = $−α and sα(s(µ))−α = s(µ) +

α, we obtain that

$λx−α(bα$
m+1)$s(µ) K(pm) = xα(b−1

α $−m+1)$λ$s(µ)+α K(pm).
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Otherwise, we get

K(pm)$λx−α(bα$
m+1)$s(µ) K(pm) = K(pm)$λ$s(µ) K(pm)

and the factor xα(bα$
m+1) can be eliminated from the representative of the double

coset since x−α(pm+1) commutes with Z and
∏n

i=1 x−εi(p
m). We obtain

K(pm)$λ K(pm)$µ K(pm)

=
⋃

s∈WH,ν≥Z0
〈s(µ)+ν,ν〉=0
〈λ−ν,ν〉=0

K(pm)$λxεn(o)
n∏
i=1

x−εi(p
m/pm+1)$ν+s(µ) K(pm).

Here ≥Z represents the Bruhat order on X•(T) with respect to roots in Lie(Z).

Then we have for (ci)1≤i≤n ∈ (o/p)n, and ci, cj ∈ (o/p)×,

x−εi(ci$
m)x−εj(cj$

m) = xεi−εj(c
−1
i cj)x−εi(ci$

m)xεi−εj(−c−1
i cj).

Then if 〈λ,−εi〉 = 〈λ,−εj〉 = 〈ν + s(µ), εi〉 = 〈ν + s(µ), εj〉 = −1, we get

K(pm)$λx−εi(ci$
m)x−εj(cj$

m) K(pm) = K(pm)$λx−εi(ci$
m)$ν K(pm).

Since Uεi−εj commutes with U−εi′ for i′ 6= i, j, we conclude that

K(pm)$λ K(pm)$µ K(pm)

=
⋃

s∈WH,ν≥Z0
〈s(µ)+ν,ν〉=〈λ−ν,ν〉=0

K(pm)$λxεjs,ν (o/p)x−εis,ν (pm/pm+1)$ν+s(µ) K(pm)

=
⋃

s∈WH,ν≥Z0
〈s(µ)+ν,ν〉=〈λ−ν,ν〉=0

K(pm)$λ+ν+s(µ)xεjs,ν (p−1/o)x−εis,ν (pm−1/pm) K(pm)

where is,ν is any index i such that 〈λ,−εi〉 = 〈ν + s(µ), εi〉 = −1 and the factor

x−εis,ν (pm/pm+1) is eliminated if there is no such i; while js,ν is any index j such that
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〈λ, εj〉 = 〈ν + s(µ),−εj〉 = −1 and the factor xεjs,ν (pm/pm+1) is eliminated if there is

no such j. We note that 〈s(λ) + γs − µ− ν, is,ν〉 = 〈s(λ) + γs − µ− ν, js,ν〉 = 0.

Proposition 8.2.2. (m ≥ 2) The operators T1, T2, ..., Tn−1 and T ′n commute with

each other on the subspace V
K(pm)
π .

Proof. We note that Tλ ◦ Tµ(v) =
∫

K(pm)$λ K(pm)$µ K(pm)
π(g)v dg for some suitable

choice of Haar measure dg. This statement is trivial for n = 1. We assume n ≥ 2.

Assume λ and µ are minuscule co-weights in P+
H . Recall that we have shown

K(pm)$λ K(pm)$µ K(pm)

=
⋃

s∈WH,ν≥Z0
〈s(µ)+ν,ν〉=〈λ−ν,ν〉=0

K(pm)$λ+ν+s(µ)xεjs,ν (p−1/o)x−εis,ν (pm−1/pm) K(pm)

where is,ν is any index i such that 〈λ,−εi〉 = 〈ν + s(µ), εi〉 = −1 and js,ν is any index

j such that 〈λ, εj〉 = 〈ν + s(µ),−εj〉 = −1.

On the other hand,

K(pm)$µ K(pm)$λ K(pm)

=
⋃

s∈WH,ν≥Z0
〈s(λ)+ν,ν〉=〈µ−ν,ν〉=0

K(pm)$µ+ν+s(λ)xεj′s,ν
(p−1/o)x−εi′s,ν

(pm−1/pm) K(pm)

=
⋃

s′∈WH,ν≥Z0
〈λ−ν,ν〉=〈s′(µ)+ν,ν〉=0

K(pm)$s′(µ)−ν+λx−εjs′,ν
(pm−1/pm)xεis′,ν

(p−1/o) K(pm)

=
⋃

s′∈WH,ν≥Z0
〈λ−ν,ν〉=〈s′(µ)+ν,ν〉=0

K(pm)$λ+ν+s′(µ)x−εjs′,ν
(pm−1/pm)xεis′,ν

(p−1/o) K(pm)

where i′s,ν is any index i such that 〈µ,−εi〉 = 〈ν + s(λ), εi〉 = −1 which implies

〈s′(µ), εs′(i)〉 = 〈−ν + λ,−εs′(i)〉 = −1 and hence equivalent to 〈s′(µ) + ν, εs′(i)〉 =

〈λ,−εs′(i)〉 = −1, similar for j′s,ν . The second equality is by conjugating by ws′,m ∈
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K(pm) such that s′(s(λ)) = λ and the third equality is by conjugating by ws,m such

that γs = $ν provided that 〈λ+ s′(µ), ν〉 = 0.

Note that 〈λ+ ν + s(µ), εjs,ν 〉 = 〈λ+ ν + s(µ), εis,ν 〉 = 0. If either is,ν and js,ν

both exist or 〈λ+ ν + s(µ), εi〉 = 0 for some k not equal to either is,ν , js,ν , then since

w ∈ {(wsεk ,mwsεis,ν ,m), (wsεk ,mwsεjs,ν ,m), (wsεis,ν ,mwsεjs,ν ,m)} ⊂ K(pm),

one has (w chosen depending on existence of is,ν , js,ν and k)

K(pm)$λ+ν+s(µ)xεjs,ν (p−1/o)x−εis,ν (pm−1/pm) K(pm)

= K(pm)w
(
$λ+ν+s(µ)xεjs,ν (p−1/o)x−εis,ν (pm−1/pm)

)
w−1 K(pm)

= K(pm)$λ+ν+s(µ)x−εjs,ν (pm−1/pm)xεis,ν (p−1/o) K(pm).

In particular, any k such that 〈ν, εk〉 6= 0 satisfies 〈λ+ ν + s(µ), εi〉 = 0 and k 6=

is,ν , js,ν . Therefore to compare Tλ ◦ Tµ and Tµ ◦ Tλ, we only need to compare the set

⋃
s∈WH, 〈λ+s(µ),εi〉6=0,∀i 6=is,0,js,0

λ+s(µ)+εis,0+εjs,0∈P
+
H

K(pm)$λ+s(µ)xεjs,0 (p−1/o)x−εis,0 (pm−1/pm) K(pm)

with the set

⋃
s∈WH, 〈λ+s(µ),εi〉6=0,∀i 6=is,0,js,0

λ+s(µ)+εis,0+εjs,0∈P
+
H

K(pm)$λ+s(µ)x−εjs,0 (pm−1/pm)xεis,0 (p−1/o) K(pm),

with ν taken to be 0 and 〈λ+ s(µ), εi〉 6= 0,∀i 6= is,0, js,0, while s is taken to satisfies

λ+ s(µ) + εis,0 + εjs,0 ∈ P+
H since K(pm) contains lift of the Weyl group WH of H.

We first note that if i + j ≤ n, then for λ = λi and µ = λj, these two sets are

empty by looking at the degree of λ+ s(µ). Hence Ti ◦ Tj = Tj ◦ Ti if i+ j ≤ n.
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Assume λ = λi and µ = λj and i, j 6= n, i + j > n. Then is,0 ≤ i < n

and there exists no js,0. In the subindex set {s ∈ WH | 〈λ+ s(µ), εi〉 6= 0,∀i 6=

is,0, λ+ s(µ) + εis,0 ∈ P+
H }, the co-characters λ+ s(µ) + εis,0 take

λn + λ(i+j−n) and λ∗n + λ(i+j−n) with i+ j − n ≤ is,0 ≤ i.

For each i+ j − n ≤ is,0 ≤ i, since 〈λn + λ(i+j−n−1) − εis,0 , εis,0〉 = 0, the set

K(pm)$λn+λ(i+j−n−1)−εis,0x−εis,0 (pm−1/pm) K(pm)

∪ K(pm)$λ∗n+λ(i+j−n−1)−εis,0x−εis,0 (pm−1/pm) K(pm)

by conjugating by wsεn ,mwsεis,0 ,m ∈ K(pm) is equal to the set

K(pm)$λn+λ(i+j−n)−εis,0xεis,0 (p−1/o) K(pm)

∪ K(pm)$λ∗n+λ(i+j−n)−εis,0xεis,0 (p−1/o) K(pm).

Therefore comparing K(pm)$λi K(pm)$λj K(pm) and K(pm)$λj K(pm)$λi K(pm) we

again obtain Ti ◦ Tj = Tj ◦ Ti.

We claim that (Tn+T ∗n)◦Tj = Tj◦(Tn+T ∗n) also holds for all 1 ≤ j < n. Recall that

we only care about either is,0 or js,0 exists. Note that in K(pm)$λ∗n K(pm)$λj K(pm)

and K(pm)$λnj K(pm)$λ∗n K(pm) we have for j ≤ is,0 < n

K(pm)$λn−1+λj−1xεn(p−1/o) K(pm) = K(pm)$λn+λj−1−εis,0x−εis,0 (pm−1/pm) K(pm),

K(pm)$λn−1+λj−1x−εn(pm−1/pm) K(pm) = K(pm)$λ∗n+λj−1−εis,0xεis,0 (p−1/o) K(pm)

by conjugating by (wsεis,0+εn ,m) ∈ K(pm). We only have to compare the sets

K(pm)$λn+λj−1−εis,0x−εis,0 (pm−1/pm) K(pm),

K(pm)$λ∗n+λj−1−εis,0x−εis,0 (pm−1/pm) K(pm)
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with the sets

K(pm)$λn+λj−1−εis,0xεis,0 (p−1/o) K(pm),

K(pm)$λ∗n+λj−1−εis,0xεis,0 (p−1/o) K(pm)

for s ∈ WH, j ≤ is,0 < n. We see they are the same by conjugating by wsεis,0+εn ,m. �

As a result, we see that for m ≥ 2 the subspace V
K(pm)
π decomposes into orthogonal

direct sum of common eigenspaces of the Hecke operators T1, T2, ..., Tn−1, T ′n.

8.3. Hecke eigenvectors

We call a vector in V
K(pm)
π a Hecke eigenvector if it is a common eigenvector of

T1, T2, ..., Tn−1 and T ′n. Let v ∈ V K(pm)
π be such a Hecke eigenvector. Denote by µi

the Hecke eigenvalue of Tλi , 1 ≤ i < n and by µn the Hecke eigenvalue of T ′n of v.

Let cν(v) the value of its Whittaker function at $ν , namely cν(v) = Wv($
ν) In this

section, we obtain a relationship among these numbers attached to v for all ν ∈ P+.
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We begin with the computation of the double coset K(pm)$λ K(pm) for λ minus-

cule co-characters in P+
H .

K(pm)$λ K(pm)

=

(
n∏
i=1

xεi(o)

)(
n∏
i=1

x−εi(p
m)

)
Hxm $

λ K(pm)

=
⋃
s∈WH

(
n∏
i=1

xεi(o)

)(
n∏
i=1

x−εi(p
m)

)
Hb+xm $

s(λ) K(pm)

=
⋃
s∈WH

(
n∏
i=1

xεi(o)

)(
n∏
i=1

x−εi(p
m)

)
(Nn(o) Z(p−m))(Hb+xm ∩V)$s(λ) K(pm)

=
⋃
s∈WH

(
n∏
i=1

xεi(o)

)
Nn(o)

(
n∏
i=1

x−εi(p
m)

)
Z(p−m)(Hb+xm ∩V)$s(λ) K(pm)

=
⋃
s∈WH

Nn(o)

(
n∏
i=1

xεi(o)

)
Z(p−m)

(
n∏
i=1

x−εi(p
m)

)
(Hb+xm ∩V)$s(λ) K(pm)

=
⋃
s∈WH

(K(pm) ∩ U)

(
n∏
i=1

x−εi(p
m)

)
(Hb+xm ∩V)$s(λ) K(pm).

We shall do some algorithms to best replace negative roots by positive roots. Since

Hxm $
λ Hxm ⊂ ∪µ≤Hλ V$µ Hxm where ≤H is the Bruhat order with respect to Φ+

H,

it is expected to be contained in ∪µ≤Hλ (
∏n

i=1 x−εi(p
m)) U$µ K(pm). For notation

convenience, we will also denote by ≤Z the Bruhat order on X•(T) with respect to

roots in Lie Z and ≤M to be the Bruhat order on X•(T) with respect to Φ+
M.

We use the following nice tricks to do the job.

Lemma 8.3.1. Assume for some 1 ≤ i < j ≤ n, 〈γ, εi + εj〉 = −2. Then

x−εi−εj(p
m+1)$γ K(pm) = $γ K(pm) ∪ xεi+εj($−m−1o×)$γ+εi+εj K(pm).
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8.3. Hecke eigenvectors

Proof. Let c ∈ o×. Then x−εi−εj(c$
m+1)$γ K(pm) equals

$γx−εi−εj(c$
m−1) K(pm)

= $γxεi+εj(c
−1$−m+1)wsεi+εj ,m−1xεi+εj(c

−1$−m+1) K(pm)

= $γxεi+εj(c
−1$−m+1)$εi+εj K(pm)

= xεi+εj(c
−1$−m−1)$γ+εi+εj K(pm).

On the other hand, x−εi−εj(p
m+2)$γ K(pm) = $γ K(pm) by the assumption. �

Lemma 8.3.2. Assume 1 ≤ i < j ≤ n.

(i) If 〈γ, εi − εj〉 = −2, then

xεj−εi(p)$γ Kn(pm) = $γ K(pm) ∪ xεi−εj($−1o×)wγ+εi−εj K(pm).

(ii) If 〈γ, εi − εj〉 = −1, then

xεj−εi(o)$γ Kn(pm) = $γ K(pm) ∪ xεi−εj($−1o×)wγ+εi−εj K(pm).

Proof. This is a very similar argument as the previous lemma. We omit it here. �

Let us write each s(λ) as a sum

(8.3.1) s(λ) = s(λ)+ − s(λ)−

such that ‖s(λ)±‖ ≤ 1 and 〈s(λ)+, εi〉 ≥ 0 for 1 ≤ i ≤ n and define s̃(λ) as

(8.3.2) s̃(λ) =

 s(λ)+ if deg s(λ)− is even

s(λ)+ − εis if deg s(λ)− is odd and is = maxi 〈s(λ), εi〉 < 0

and the numbers 1 ≤ i1 < i2 < ... < id+
s
≤ n and 1 ≤ j1 < j2 < ... < jd−s ≤ n as

s(λ) = (εj1 + εj2 + ...+ εj
d+s

)− (εi1 + εi2 + ...+ εi
d−s

),

117



8.3. Hecke eigenvectors

where d±s are the degrees of s(λ)±.

Algorithm 1. Assume we can take i < j to be the smallest two indices such that

〈s(λ), εi + εj〉 = −2. One notice that

∏
1≤l<k≤n

x−εl−εk(p
m+1)$s(λ) K(pm) =

∏
1≤k,l≤d+

s , jk,jl>i,j

x−εjk−εjl (p
m+1)$s(λ) K(pm).

The commutator of xεi+εj(p
−m−1) with

∏
jk,jl>i,j

x−εjk−εjl (p
m+1) is

∏
jl>i,j

xεi−εjl (o)xεj−εjl (o).

Hence by Lemma and 〈s(λ) + εi + εj, εi + εj〉 = 0 we have

∏
1≤l<k≤n

x−εl−εk(p
m+1)$s(λ) K(pm) =

∏
(l,k)6=(i,j)

x−εl−εk(p
m+1)$s(λ) K(pm)

∪
∏
jl>i,j

xεi−εjl (o)xεj−εjl (o)xεi+εj($
−m−1o×)

∏
l,k 6=i,j

x−εl−εk(p
m+1)$s(λ)+εi+εj K(pm).

Repeating Algorithm 1 we obtain that

∏
1≤l<k≤n

x−εl−εk(p
m+1)$s(λ) K(pm) =

⋃
µ≥Zs(λ), 〈µ,µ−s(λ)〉=0

∏
β∈Jµ−s(λ)

∏
εi+εj=β, jl>i,j

xεi−εjl (o)xβ($−m−1o×)$µ K(pm)

where the notation µ ≥Z s(λ) means µ− s(λ) is a sum β1 + β2 + ... + βk of roots βi

in Lie(Z) uniquely determined such that βi − βj ≥ 0 for i < j and Jµ−s(λ) = {βi}ki=1.

The commutators of xεi+εj(p
−m−1) with Nn(p) lie in Z(p−m). Hence we see that

for ~c = (c1, c2, ..., cn) ∈ (op)n, (bβ)β ∈ (o/p)β,

(K(pm) ∩ U)

(
n∏
i=1

x−εi(ci$
m)

)
Nn(p) Nn(o)

∏
β∈Jµ−s(λ)

xβ(bβ$
−m−1) T(o) =

(K(pm)∩U)
∏

β∈Jµ−s(λ)

εi+εj=β

xεi(bβci$
−1)xεj(bβcj$

−1)xβ(bβ$
−m−1)

(
n∏
i=1

x−εi(ci$
m)

)
Nn(p) T(o).
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Algoritm 2. Assume we take i < j so that i is the smallest number and j is the

largest number such that 〈µ, εi − εj〉 = −2, µ ≥Z s(λ) and 〈µ, µ− s(λ)〉 = 0. By a

similar argument as in Algorithm 1 since

∏
1≤k<l≤n

xεl−εk(p)$µ K(pm) =

 ∏
1≤k≤d−s

∏
1≤l≤d+

s , jl>ik

xεjl−εik (p)

$µ K(pm)

by Lemma we have

∏
1≤k<l≤n

xεl−εk(p)$µ K(pm) =
∏

1≤k<l≤n, (k,l)6=(i,j)

xεl−εk(p)$µ K(pm)∪

( ∏
i<jl, ik<j

xεjl−εj(o)xεi−εik (o)

)
xεi−εj($

−1o×)
∏

1≤k<l≤n, k,l 6=i,j

xεl−εk(p)$µ+εi−εj K(pm).

Repeating Algorithm 2 we obtain

∏
1≤k<l≤n

xεl−εk(p)$µ K(pm)

=
⋃
ν≥Mµ

〈ν,ν−µ〉=0

∏
β∈Iν−µ

∏
i<jl, ik<j
εi−εj=β

xεjl−εj(o)xεi−εik (o)xβ($−1o×)$ν K(pm)

where the notation ν ≥M µ means ν−µ is a sum β1 +γ2 + ...+γk of roots in Lie(Nn)

such that βi − βj ≥ 0 for i < j and Iν−µ = {βi}ki=1.
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Hence together with a computation of the communicator with x−εi(p
m) we can

conclude the following. For ~c = (c1, c2, ..., cn) ∈ (o/p)n, ~b = (bβ)β ∈ (o/p)β

(K(pm) ∩ U)

(
n∏
i=1

x−εi(p
m)

)
(Hb+xm ∩V)$s(λ) K(pm)

=
⋃

µ≥Zs(λ), ν≥Mµ
〈µ,µ−s(λ)〉=〈ν,ν−µ〉=0

(K(pm) ∩ U)
∏

β∈Jµ−s(λ)

εi+εj=β

xεi(bβci$
−1)xεj(bβcj$

−1)xβ(bβ$
−m−1)

(
n∏
i=1

x−εi(ci$
m)

) ∏
β∈Iν−µ

xβ(bβ$
−1)$ν K(pm)

=
⋃

µ≥Zs(λ), ν≥Mµ
〈µ,µ−s(λ)〉=〈ν,ν−µ〉=0

(K(pm) ∩ U)
∏

β∈Jµ−s(λ)

εi+εj=β

xεi(bβci$
−1)xεj(bβcj$

−1)xβ(bβ$
−m−1)

∏
β∈Iν−µ

∏
εi′−εj=β

x−εj(bβci′$
m−1)xβ(bβ$

−1)

(
n∏
i=1

x−εi(ci$
m)

)
$ν K(pm)

For µ, ν in the index set above, let us denote by Es,µ,ν(~c,~b) the set

Es,µ,ν(~c,~b) := (K(pm) ∩ U)
∏

β∈Jµ−s(λ)

εi+εj=β

xεi(bβci$
−1)xεj(bβcj$

−1)xβ(bβ$
−m−1)

∏
β∈Iν−µ

∏
εi′−εj=β

x−εj(bβci′$
m−1)xβ(bβ$

−1)
n∏
i=1

x−εi(ci$
m)$ν K(pm).

Then

K(pm)$λ K(pm) = ∪s∈WH
∪ µ≥Zs(λ), ν≥Mµ
〈µ,µ−s(λ)〉=〈ν,ν−µ〉=0

∪~c∈(o/p)n,~b∈(o/p)
β∈Φ+

H

Es,µ,ν(~c,~b).

We note that if g ∈ Es,µ,ν(~c,~b), for all t ∈ T and v ∈ πK(pm) the value Wπ(g)v(t) is

a multiple of

Wv(t
∏

β∈Iν−µ

∏
εi′−εj=β

x−εj(bβci′$
m−1)

∏
〈ν,εi〉=−1

x−εi(ci$
m)$ν),

by the property of the Whittaker function that U acts on the left by character θ.
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One observes that for c, d ∈ o× and a, b ∈ Z,

x−εi(c$
m−a)x−εk(d$

m−b)

= xεk−εi(cd
−1$b−a)x−εk(d$

m−b)xεk−εi(−cd−1$b−a)

= xεk−εi(cd
−1$b−a)x−εk(d$

m−b)x−εk+εi(−dc−1$a−b)$(a−b)(εi−εk)wsεk−εi ,mx−εk+εi(−dc−1$a−b)

for some lift wsεk−εi ,m of the Weyl element sεk−εi to K(pm).

We have ∏
β∈Iν−µ

∏
εi′−εj=β

x−εj(bβci′$
m−1)

∏
〈ν,εi〉=−1

x−εi(ci$
m)$ν K(pm)

=
∏

β∈Iν−µ

∏
εi′−εj=β, j 6=j0

xεj0−εj(b
−1
εi′0
−εj0

c−1
i′0
ci′bβ)

∏
〈ν,εi〉=−1, i 6=i0

xεi0−εi(c
−1
i0
ci)

x−εj0 (bεi′0−εj0
ci′0$

m−1)x−εi0 (ci0$
m)$ν K(pm)

where j0 is the smallest j such that β = εi′0 − εj0 and bβ 6= 0 for some β ∈ Iν−µ (note

j > 1), and i0 is the smallest i such that 〈ν, εi〉 = −1 and ci 6= 0.

If i0 < j0, then

x−εj0 (bβci′0$
m−1)x−εi0 (ci0$

m)$ν K(pm)

= xεi0−εj0 (bβci′0c
−1
i0
$−1)x−εi0 (ci0$

m)xεi0−εj0 (−bβci′0c
−1
i0
$−1)$ν K(pm)

= xεi0−εj0 (bβci′0c
−1
i0
$−1)x−εi0 (ci0$

m)$ν K(pm)

This is nice if i0 = 1 and 〈ν, ε1〉 = −1. We continue if i0 > 1 and 〈ν, ε1〉 ≥ 0.

= xεi0−εj0 (bβci′0c
−1
i0
$−1)x−εi0 (ci0$

m)x−ε1($m−〈ν,ε1〉)$ν K(pm)

= xεi0−εj0 (bβci′0c
−1
i0
$−1)xε1−εi0 (ci0$

〈ν,ε1〉)x−ε1($m−〈ν,ε1〉)x−ε1+εi0
(−c−1

i0
$−〈ν,ε1〉)

$
sε1−εi0

(ν)+〈ν,ε1〉(ε1−εi0 )
K(pm) (while sε1−εi0 (ν) + 〈ν, ε1〉(ε1 − εi0) = ν − ε1 + εi0).

Hence if g ∈ Es,µ,ν(~c,~b), for t ∈ T, v ∈ πK(pm) the value Wπ(g)v(t) is a multiple of

Wv(t x−ε1($m−〈ν,ε1〉)x−ε1+εi0
(−c−1

i0
$−〈ν,ε1〉)$ν−ε1+εi0 ). Note ν ≥H ν − ε1 + εi0 .
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If i0 > j0 > 1, then 〈ν, ε1〉 = a ≥ 0 and (noting 〈ν, εi0〉 = −1 and 〈ν, εj0〉 = 0)

x−εj0 (bβci′0$
m−1)x−εi0 (ci0$

m)$ν K(pm)

= x−εj0 (bβci′0$
m−1)x−εi0 (ci0$

m)x−ε1($m−a)$ν K(pm)

= x−εj0 (bβci′0$
m−1)xε1−εi0 (ci0$

a)x−ε1($m−a)x−ε1+εi0
(−c−1

i0
$−a)$

sε1−εi0
(ν)+a(ε1−εi0 )

K(pm)

= xε1−εi0 (ci0$
a)xε1−εj0 (bβci′0$

a−1)x−ε1($m−a)xε1−εj0 (−bβci′0$
a−1)x−ε1+εi0

(−c−1
i0
$−a)

$
sε1−εi0

(ν)+a(ε1−εi0 )
K(pm) (while sε1−εi0 (ν) + a(ε1 − εi0) = ν − ε1 + εi0)

= xε1−εi0 (ci0$
a)xε1−εj0 (bβci′0$

a−1)x−ε1($m−a)x−ε1+εi0
(−c−1

i0
$−a)xε1−εj0 (−bβci′0$

a−1)

x−εj0+εi0
(−bβci′0c

−1
i0
$−1)$ν−ε1+εi0 K(pm) (noting 〈ν − ε1 + εi0 , ε1 − εj0〉 = a− 1)

= xε1−εi0 (ci0)xε1−εj0 (bβci′0$
−1)x−ε1($m)x−ε1+εi0

(−c−1
i0

)xεj0−εi0 (−b−1
β c−1

i′0
ci0$)

$
sεj0−εi0

(ν−ε1+εi0 )+εj0−εi0 K(pm) (while sεj0−εi0 (ν − ε1 + εi0) + εj0 − εi0 = ν − ε1 + εj0)

= xε1−εi0 (ci0)xε1−εj0 (bβci′0$
−1)xεj0−εi0 (−b−1

β c−1
i′0
ci0$)

x−ε1($m)x−ε1+εi0
(−c−1

i0
)x−ε1+εj0

(b−1
β c−1

i′0
$)$ν−ε1+εj0 K(pm).

Hence if g ∈ Es,µ,ν(~c,~b), for t ∈ T, v ∈ πK(pm) the value Wπ(g)v(t) is a multiple of

Wv(t x−ε1($m)x−ε1+εi0
(−c−1

i0
)x−ε1+εj0

(b−1
β c−1

i′0
$)$ν−ε1+εj0 ). Note ν ≥H ν − ε1 + εj0 .

Lemma 8.3.3. (Assume n ≥ 2.) For c, ci, cj ∈ k and ν ∈ X•(T),

Wπ(x−ε1 (c)x−ε1+εi (ci)x−ε1+εj (cj)$ν)v($
aε1) = Wπ($ν)v($

aε1).

Proof. By functional equation

I(π(x−ε1(c)x−ε1+εi(ci)x−ε1+εj(cj)$
ν)v, s)

= γ(π, s, ψ)−1I(π(u0x−ε1(c)x−ε1+εi(ci)x−ε1+εj(cj)$
ν)v, 1− s)

= γ(π, s, ψ)−1I(π(xε1(c)xε1+εi(ci)xε1+εj(cj)u0$
ν)v, 1− s)

= γ(π, s, ψ)−1I(π(u0$
ν)v, 1− s) = I(π($ν)v, s).
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Since I(π(x−ε1(c)x−ε1+εi(ci)x−ε1+εj(cj)$
ν)v, s) and I(π($ν)v, s) are the generating

functions of the two Whittaker values for a ∈ Z, comparing the coefficients of q−as

the assertion follows. �

We have enough information for computing caε1(Tλ(v)) by summing it over Es,µ,ν(~c,~b).

Let us list the values caε1(

∫
∪
~c,~b

Es,µ,ν(~c,~b)

π(h)v dh) for some easy cases.

Proposition 8.3.4. If µ = ν = s̃(λ) and 〈ν, αi〉 ≥ 0 for i > 1. Then ν =
∑d+

s

i=1 εi,∑d+
s +1
i=2 εi or −ε1 +

∑d+
s +1
i=2 εi, and for a ≥ 0

(i) caε1(

∫
∪
~c,~b

Es,µ,ν(~c,~b)

π(h)v dh) = q(2n−d+
s )d+

s + 3
2
d−s caε1+ν(v), if ν =

∑d+
s

i=1 εi;

(ii) caε1(

∫
∪
~c,~b

Es,µ,ν(~c,~b)

π(h)v dh) = q(2n−d+
s −1)d+

s + 3
2
d−s caε1+ν(v), if ν =

∑d+
s +1
i=2 εi;

(iii) caε1(

∫
∪
~c,~b

Es,µ,ν(~c,~b)

π(h)v dh) = q(2(n−1)−d+
s )d+

s + 3
2

(d−s −1) caε1+ν(v), if ν = −ε1+
∑d+

s +1
i=2 εi.

Definition 8.3.5. For each ν ∈ X•(T) with 〈ν, εn〉 = 0 set ν ! as the shift of

the coordinate under basis (ε1, ε2, ..., εn−1, εn) by one to the right. More explicitly,

(
∑n−1

i=1 aiεi)
! =
∑n−1

i=1 aiεi+1.

Then we conclude the following proposition.

Proposition 8.3.6. Assume λ = λi for some i < n and v ∈ V K(pm)
π , then

caε1(Ti(v)) =
∑
ν≤Hλi

aaε1+νcaε1+ν(v) +
∑
ν≤Hλi

aaε1+ν!caε1+ν!(v) +
∑

ν+2ε1≤Hλi

aaε1+νcaε1+ν(v)

for some aν ∈ R, ν ∈ P+. Moreover, aaεi+λi, aaε1+λ!
i

are positive numbers for a ≥ 0.

If λ = λn or λ∗n, then

caε1(Ti(v)) =
∑
ν≤Hλ

aaε1+νcaε1+ν(v) +
∑

ν+2ε1≤Hλ

aaε1+νcaε1+ν(v)

and aaε1+λ is positive for a ≥ 0.
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For example, one has

caε1(T1(v)) = a(a+1)ε1c(a+1)ε1(v) + aaε1+ε2caε1+ε2(v) + a(a−1)ε1c(a−1)ε1(v)

with a(a+1)ε1 = q2n−1, aaε1+ε2 = 1, a(a−1)ε1 = q2n−2.

We wish to get a relation of caε1(v) for a ∈ Z. To get rid of caε1+ε2(v) in the

expression, we can go one more step and use

c(a−1)ε1(T2(v)) = aaε1+ε2caε1+ε2(v) + a(a−1)ε1+ε2+ε3c(a−1)ε1+ε2+ε3(v)

+a(a−1)ε1c(a−1)ε1(v) + a(a−2)ε1+ε2c(a−2)ε1+ε2(v).

Then by replacing the terms with aε1 + ε2, (a − 2)ε1 + ε2 by the previous relation,

there is only one term which is not of the desired form, namely c(a−1)ε1+λ!
2
. Since

c(a−i+1)+λ!
i

always has nonzero coefficient in the expression of c(a−i+1)ε1(Tλ!
i
(v)), we

continue this process till we meet the expression for c(a−n+1)ε1((Tn + T ∗n)(v)), which

involves no more shifted terms but only those ν ≤ λn, λ
∗
n terms. In other words, the

relation for c(a−n+1)ε1(Tn(v)) and c(a−n+1)ε1(T ∗n(v)) can be totally reduced to terms

with only c(a+1)ε1(v), caε1(v), c(a−1)ε1(v),...,c(a−n+1)ε1(v) and these of Tλ(v) involved.

Corollary 8.3.7. Assume a fixed vector v is a simultaneous eigenvector of the Hecke

operators T1, T2, ..., Tn−1 and Tn + T ∗n . There exist linearly independent combinations

of the eigenvalues c0, c1..., cn−1 and cn = q2n−1 such that the relation

cnc(a+n)ε1(v) + cn−1c(a+n−1)ε1 + ...+ c1c(a+1)ε1(v) + c0caε1(v) = 0 holds for a ≥ 0.

Recall I(v, s) = vol(o×)
∑
a≥0

qa(n− 1
2

)caε1(v)q−as. The recurrence relation leads to

(8.3.3) (q−n(n− 1
2

)cn + ...+ q−(n− 1
2

)c1q
−(n−1)s + c0q

−ns)I(v, s) = vol(o×)c0(v).
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8.4. Minimal level

Corollary 8.3.8. Assume a fixed vector v is a simultaneous eigenvector of the Hecke

operators T1, T2, ..., Tn−1 and Tn + T ∗n . Then if `θ(v) 6= 0, then I(v, s) is a nonzero

constant and the eigenvalues are unique. As a result, the values caε1+λi(v) for a ≥ 0,

0 ≤ i ≤ n are uniquely determined by `θ(v). On the other hand, if `θ = 0, then

caε1+λi(v) = 0 for a ≥ 0, 0 ≤ i ≤ n.

Proof. Since we assume π is generic and supercuspidal so I(v, s) ∈ C[q−s, qs]. Hence

by the expression of I(v, s) in (8.3.3) it must be a constant and we have ci = 0 for

i = 0, 1, ..., n− 1 which determines a nonsingular system of n linear equations of the

n eigenvalues. Therefore the eigenvalues are uniquely determined. Solving back we

get all other Whittaker values in the expression of caε1(Ti(v)), ∀a,∀i. �

8.4. Minimal level

In this section we investigate the Hecke eigenvectors at the minimal level. Assume

c(π) = pc(π) is the maximal idea of o such that the fixed space V
K(c(π))
π is nonzero and

thus there exists nonzero fixed vectors of level c(π), minimal among all. By definition

the fixed space V
K(pc(π)−1)
π of level smaller than c(π) must be zero. We have discussed

the fixed vector of level 0 or 1 in Chapter 7. Let us assume c(π) ≥ 2. Indeed, since

by Theorem 7.3.6 c(π) ≥ aπ, and aπ ≥ 2n ≥ 2 for π generic supercuspidal, this

assumption always holds.

Recall that we have seen for m ≥ 2,

K(pm)$λ K(pm) = ∪s∈WH, µ≥Zs(λ), ν≥Mµ
〈µ,µ−s(λ)〉=〈ν,ν−µ〉=0

∪~c∈(o/p)n,~b∈(o/p)
β∈Φ+

H

Es,µ,ν(~c,~b)

with

Es,µ,ν(~c,~b) = (K(pm) ∩ U)
∏

β∈Jµ−s(λ)

εi+εj=β

xεi(bβci$
−1)xεj(bβcj$

−1)xβ(bβ$
−m−1)
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8.4. Minimal level∏
β∈Iν−µ

∏
εi′−εj=β

x−εj(bβci′$
m−1)xβ(bβ$

−1)
n∏
i=1

x−εi(ci$
m)$ν K(pm)

which equals to

(K(pm) ∩ U)
∏

β∈Jµ−s(λ)

εi+εj=β

xεi(bβci$
−1)xεj(bβcj$

−1)xβ(bβ$
−m−1)

∏
β∈Iν−µ
εi′−εj=β

xβ(bβ$
−1) ·

∏
β∈Iν−µ, j 6=j0
εi′−εj=β

xεj0−εj(b
−1
εi′0
−εj0

c−1
i′0
ci′bβ)

∏
〈ν,εi〉=−1
i 6=i0

xεi0−εi(c
−1
i0
ci)
(
$νx−εj0 (bεi′0−εj0

ci′0$
m−1)x−εi0 (ci0$

m−1)
)

K(pm)

where j0 is the smallest j such that β = εi′0 − εj0 and bβ 6= 0 for β ∈ Iν−µ, and

i0 is the smallest i such that 〈ν, εi〉 = −1 and ci 6= 0. Define aν,m as the size

|(K(pm) ∩ U)$
ν
/(K(pm) ∩ U)$

ν ∩K(pm)| for any given ν ∈ X•(T), m ∈ N.

We similarly get for λ ∈ {0, ε1},

K(pm−1)$λ K(pm)

= ∪ s∈WH,µ
′≥Z0,ν′≥M0

〈µ′,s(λ)+γs〉=0
〈ν′,2(s(λ)+γs+µ′)+ν′〉=0

∪~c∈(o/p)n,~b∈(o/p)β

n∏
i=1

xεi(o/p)
∏
β∈Jµ′
εi+εj=β

xεi(bβci)xεj(bβcj)xβ(bβ$
−m+1)

∏
β∈I′

ν′ , j 6=j̃0
εi′−εj=β

xεj̃0−εj
(b−1
εi′0
−εj̃0

c−1
i′0
ci′bβ)

∏
〈s(λ)+γs+µ′+ν′,εi〉=0

i 6=ĩ0

xεĩ0−εi
(c−1
ĩ0
ci)
(
$s(λ)+γs+µ′+ν′

x−εj̃0
(bεi′0−εj̃0

ci′0$
m−1)x−εĩ0

(cĩ0$
m−1)

)
K(pm)

where j̃0 is the smallest j such that β = εi′0 − εj0 and ĩ0 is the smallest i such that

〈s(λ) + γs + µ′ + ν ′, εi〉 = 0 and ci 6= 0 and $γs = ws,m−1ws−1,m as before.

For λ′ ∈ P+, λ ∈ P+
H minuscule and v ∈ V K(pc(π))

π , we have

cλ′(Tλ(v)) =
∑
s,µ,ν

aν,mq
3|Jµ−s(λ)|+|Iν−µ|

∑
ci0 ,c

′
i′0
∈o/p

cλ′+ν(π(x−εj0 (c′i′0$
c(π)−1)x−εi0 (ci0$

c(π)−1))v).
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8.4. Minimal level

And for λ′′ ∈ P+, λ ∈ {0, ε1} and v ∈ V K(pc(π))
π , by δλ(v) = 0 we have

∑
s,µ′,ν′

a′ν,mq
3|Jµ′ |+|I′ν′ |

∑
cĩ0
,c′
i′0
∈o/p

cλ′′+ν(π(x−εj̃0
(c′i′0$

c(π)−1)x−εĩ0
(cĩ0$

c(π)−1))v) = 0

with 0 ≤H ν = s(λ) + γs + µ′ + ν ′ ≤H λ and a′ν,m = qdeg(ν). Then we can solve for∑
cĩ0
,c′
i′0
∈o/p cλ′′+ν(π(x−εj̃0

(c′i′0
$c(π)−1)x−εĩ0

(cĩ0$
c(π)−1))v), 0 ≤H ν ≤H λ, by cλ′′+ν′′(v)

by choosing λ′′ = λ′− (λn−λi), i = 0, 1, 2, ..., n, for all λ′ ∈ P+ in lexicographic order

for each λ′′. This implies for 1 ≤ j < n there exists bj,ν,m such that

µjv = cλ′(Tj(v)) =
∑

s∈WH,ν≥Hs(λj)
〈ν,ν−s(λj)〉=0

bj,ν,mcλ′+ν(v)

and there exists bn,ν,m, b
∗
n,ν,m such that

µnv = cλ′((Tn + T ∗n)(v)) =
∑

s∈WH,ν≥Hs(λn)
〈ν,ν−s(λn)〉=0

bn,ν,mcλ′+ν(v) +
∑

s∈WH,ν≥Hs(λ
∗
n)

〈ν,ν−s(λ∗n)〉=0

b∗n,ν,mcλ′+ν(v)

if v ∈ V K(pc(π))
π is a Hecke eigenvector with Hecke eigenvalues µ1, µ2, ..., µn.

By Corollary 8.3.8, if v is a Hecke eigenvector, then the values caε1+λi(v) for a ≥ 0,

0 ≤ i ≤ n are uniquely determined by `θ(v) = c0(v). With the relation above, since

`θ(v) determines caε1+λi(v) so it determines the values caε1+bε2+λi(v) for a, b ≥ 0,

0 ≤ i ≤ n, as well. Continue a similar process we can argue that `θ(v) determines

cλ′′(v) for all λ ∈ P+. As a result if `θ(v) = 0, then v must be equal to 0, and

once `θ(v) is determined, then Wv|T /T(o) is determined. This implies Ξ(v) is uniquely

determined by `θ(v). However, we know that the C-linear map Ξ is injective on fixed

vectors of fixed level by Lemma 5.3.3, so this implies such eigenvector is unique up

to scaling. This leads to the following Multiplicity One Theorem.

Theorem 8.4.1 (Multiplicity One). dimV
K(c(π))
π = 1 and if v is a nonzero fixed

vector of minimal level c(π), then `θ(v) must be nonzero.
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8.4. Minimal level

Proof. Since the Hecke operators T1, T2, ..., Tn−1 and Tn + T ∗n are self-adjoint and

commute with each other. The K(pm)-fixed subspace V
K(pm)
π decomposes into com-

mon eigenspaces of T1, T2, ..., Tn−1 and Tn + T ∗n for all m. When m = c(π), for

each set of eigenvalues µ1, µ2, ..., µn, if `θ(v) = 0, then we have seen eigenvectors of

this eigenspace must be 0, hence we may assume nonzero common eigenvectors take

nonzero value under the Whittaker functional `θ, and hence by Corollary 8.3.8, are

uniquely determined by the value under `θ. Hence V
K(c(π))
π is of dimension 1 unless

`θ is trivial on this subspace. However, this implies that every eigenvector is zero,

which leads to V
K(c(π))
π = 0 and contradicts with the existence of fixed vectors. �

The Multiplicity One Theorem implies the following theorem regarding the con-

ductor, which together with our discussion in Section 7.4 gives a result on all local

invariants attached to π.

Theorem 8.4.2 (Conductor Theorem). The minimal level c(π) is the conductor a(π)

and the order two group J(pc(π))/K(pc(π)) acts on the subspace V
K(pc(π))
π by a quadratic

character which equals to the root number επ.

Proof. By Corollary 8.3.8 and Theorem 8.4.1, I(v, s) is a nonzero constant for

any nonzero v ∈ V
K(pc(π))
π . Since uc(π)v ∈ V

K(pc(π))
π is also nonzero, by Multiplic-

ity One there exists a nonzero constant ε such that uc(π)v = εv. Rescale v and

assume I(v, s) = 1. Then by the functional equation we have I(uc(π)v, 1 − s) =

επq
(c(π)−aπ)s′I(v, s) which implies ε = επq

(c(π)−aπ)s′ . Hence we get ε = επ and

c(π) = aπ. �
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CHAPTER 9

Main Theorems

We shall finally put all pieces together and get the main results on newforms and

oldforms. In this chapter, we give the definition of the new vector for a generic rep-

resentation of SO2n+1(k) for a non-Archimedean local field k and prove the theory of

newforms for the case when the representation is supercuspidal. We give a conjecture

on oldforms at the end, which predicts that all fixed vectors are obtained by applying

level raising operators on the new vector.

9.1. New vectors and old vectors

Assume (π, Vπ) is a smooth irreducible generic representation of G with local

invariants conductor aπ and root number επ.

Definition 9.1.1. A nonzero vector v of π is a new vector of π if v is fixed by K(paπ).

Main Theorem 1. Assume π is supercuspidal. Then the fixed subspace of Vπ of the

open compact subgroup K(pm) is nonzero if and only if m ≥ aπ.

Proof. This is a combination of Theorem 7.3.6 and Corollary 8.1.4.

Main Theorem 2. The subspace πK(paπ ) is a line generated by the new vectors and

the order group group J(paπ)/K(paπ) acts on this line by quadratic character επ.

Moreover, the Whittaker functional `θ is nontrivial on this line.

Proof. The existence and uniqueness of the new vector is by Theorem 8.4.1 and

Theorem 8.4.2. The last assertion is Theorem 8.4.1. � �
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9.1. New vectors and old vectors

Proposition 9.1.2. Assume v is a new vector, then I(v, s) is a nonzero constant

function and Ω(v) is a nonzero constant in Sn = C[T̂]WM. Moreover, ωaπv = εnπv.

Proof. By Corollary 8.3.8, since v 6= 0 is a Hecke eigenvector so I(v, s) is a nonzero

constant. By Lemma 7.3.6 Ω(v) ∈ C. Since v is nonzero, so Ω(v) is a nonzero

constant. By the functional equation (5.4.2), we get Ω(ωaπv) = εnπΩ(v). Hence by

injectivity of the C-linear map Ω, we get ωaπv = εnπv. �

Proposition 9.1.3. Assume v is a new vector. The fixed vectors θ0(v) and θ∗0(v) of

level aπ + 1 are linearly independent. As a result, dimπK(paπ+1) ≥ 2.

Proof. Notice ωm K(pm) is K(pm) if n is even and is um K(pm) if n is odd. Recall

that K(pm+1) K(pm) = ∪s∈WH
(Hxm+b ∩ω0 V)ws,m+1ws−1,m K(pm). One observes that

ωm+1(Hxm+b ∩ω0 V) ⊂ V and $aε1ωm+1ws,m+1ws−1,mωm is a torus element and is

dominant only if it is $aε1 or $(a−1)ε1 . Hence if n is even, then Wθ0(v) = Wθ̃0(v)($
aε1)

is nonzero scalar times of Wv($
aε1) since uaπ+1θ0uaπ(v) is K(paπ+1)-fixed; if n is odd,

then Wuaπ+1θ0uaπ (v) = Wθ̃0(v)($
aε1) is nonzero scalar times of Wv($

(a−1)ε1) since θ0v is

K(paπ+1)-fixed. Hence I(θ̃0(v), s) is a nonzero scalar time of I(v, s) if n is even, and

a nonzero scalar times of q−s
′
I(v, s) if n is odd.

By the functional equation, we have

I(uaπ+1θ̃0uaπ(v), 1− s) = επq
s′I(θ̃0(επv), s).

We get I(θ∗0(v), 1 − s) = qs
′
I(θ0(v), s) is a nonzero scalar times of qs

′
I(v, s) if n is

even and I(θ0(v), 1 − s) = qs
′
I(θ∗0(v), s) is a nonzero scalar times of I(v, s) if n is

odd. Sine 1 and qs
′

are linearly independent so θ∗0(v) and θ0(v) must be linearly

independent. �

From the proof above we also obtain the following.
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9.1. New vectors and old vectors

Corollary 9.1.4. Assume v is a new vector, then I(θ0(v), s) is a scalar times of

I(v, s) and I(θ∗0(v), s) is a scalar times of q−s
′
I(v, s).

Lemma 9.1.5. Assume v is a fixed vector, namely v ∈ πK(pm) for some m, and

Ω(v) ∈ ⊕d≥0Sn,d then vol(o×)n−1I(v, s) = Ω(v; q−s
′
, 0, 0, ..., 0).

Proposition 9.1.6. If m ≡ aπ( mod 2), dim πK(pm) ≥

 n + m−aπ
2

n

+

n + m−aπ
2 − 1

n

.

Proof. Note that if m < aπ, then this lower bound is 0. Assume m ≥ aπ. By

Proposition 8.1.5 and c(π) = aπ, this is a matter of counting number of λ ∈ P+
H such

that ‖λ‖ ≤ k for k = m−aπ
2

. Since λ = a1ε1 + a2ε2 + ... + anεn is in P+
H if and only

if a1 ≥ a2 ≥ ... ≥ |an|. Then assume an ≥ 0, this is two times the number of the

tuple (a1 − a2, a2 − a3, ..., an−1 − an, an) with nonnegative integer entries with sum

≤ k. There are

 n + k

n

 of them. Assume an < 0, then this is the number of the

tuple (a1 − a2, a2 − a3, ..., an−1 − |an|, |an| − 1) with nonnegative integer entries with

sum ≤ k − 1. There are

 n + k − 1

n

 of them. �

Proposition 9.1.7. If m ≡ aπ + 1( mod 2), dimπK(pm) ≥ 2

n + m−1−aπ
2

n

.

Proof. Note that if m < aπ + 1, then this lower bound is 0. Assume m ≥ aπ + 1

Let v1 = θ0(v0) ∈ K(paπ+1) be a nonzero fixed vector of level aπ + 1 for v0 a new

vector. By Proposition 9.1.3, the vector v′1 = uaπ+1v1 = θ∗0(uaπv0) = επθ
∗
0(v) is

linearly independent to v1. Set H′xaπ+1
= 〈Hxaπ+1, uaπ+1〉 whose reductive quotient is

isomorphic to O2n(f). We get two independent vectors v1 +v′1 and v1−v′1 which are in

the +1 and −1 space of J(paπ+1) respectively. Then since H′xaπ+1
contains ws,aπ+1 for

s ∈ WG so H′xaπ+1
T H′xaπ+1

= tλ∈P+ H′xaπ+1
$λ H′xaπ+1

and the characteristic functions

[H′xaπ+1
$λ H′xaπ+1

], λ ∈ P+, are independent. Notice that Ω(v1 + v′1) and Ω(v1 −

v′1) are also independent and moreover not in C[T̂]WH , since they are contained in
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⊕d≥0Sn,d by Proposition 5.4.3 but not in C by Lemma 9.1.5 and Corollary 9.1.4.

Hence Ω(ηλ(v1 + v′1)), λ ∈ P+, and Ω(ηλ(v1−v′1)), λ ∈ P+, are linearly independent.

Therefore we obtain that the dimension of dim πK(pm) is two times the number of

λ ∈ P+ such that ‖λ‖ ≤ m−(aπ+1)
2

. Then since λ = a1ε1 + a2ε2 + ... + anεn is in P+

if and only if a1 ≥ a2 ≥ ... ≥ an. Same computation as in the previous lemma gives

the assertion. �

Combining the two Propositions above, we can write down the lower bound of

the dimension of the two cases in one formula.

Main Theorem 3. dimπK(pm) ≥

n+ bm−aπ
2
c

n

+

n+ bm−aπ+1
2
c − 1

n

.

Definition 9.1.8. A nonzero fixed vector is an old vector if it is obtained by level

raising operators θλ and ηλ from the new vectors.

We conjecture that all fixed vectors are obtained in this way, that is they are all

old vectors. This conjecture is partially implied by Ω(πHaπ ) = C[T̂]WH , which we

have known ⊃, or knowing the C[T̂]WH-module πHaπ is of rank one.

Conjecture 9.1.9. All nonzero fixed vectors of level greater than aπ are old vectors.

As a corollary to the old form conjecture:

Conjecture 9.1.10. The lower bound of the dimension given in Main Theorem 3 is

the exact dimension.

When n = 2 this is a theorem by Roberts and Schmidt [23].

Remark 9.1.11. It is expected that the theories of newforms and oldforms hold

for general generic representations of G including non-supercuspidal representations.

This is a work in progress.
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