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A

Prices in nancial markets are primarily driven by the interaction of risk and time.

e returns to nancial assets over long time horizons are primarily driven by

fundamental news regarding their promised cash ows. In contrast, short-run price

variation is associated with a large degree of predictable, transient investor trading

behavior unrelated to fundamental prospects.

e quantity of long-run risk directly affects economic well-being, and its

magnitude has varied signi cantly over the past century. e theoretical model

presented here shows some success in quantifying the impact of news about future

risks on asset prices. In particular, some investing strategies that appear to offer

anomalously large returns are associated with high exposures to future long-run risks.

e historical returns to these portfolios are partly a result of investors’ distaste for

assets whose worth declines when uncertainty increases.

e nancial sector is tasked with pricing these risks in a way that properly

allocates investment resources. Over the past thirty years, this sector has grown much

more rapidly than the economy as a whole. As a result, asset prices appear to be more

informative. However, the new information relates to short-term uncertainty, not

long-run risk. is type of high-frequency information is unlikely to affect real

investment in a way that would bene t broader economic growth.
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e energies and skills of the professional investor and spec-
ulator...are, in fact, largely concerned, not with making su-
perior long-term forecasts of the probable yield of an invest-
ment over its whole life, but with foreseeing changes in the
conventional basis of valuation a short time ahead of the gen-
eral public.

JohnMaynard Keynes

1
Price Comovement and TimeHorizon:

Fads and Fundamentals

T is closely connected to the comovement of

its components; risk diversi es when price movements are independent but persists

when changes in price are correlated. But what if prices move together over short

time intervals but seem less related over long horizons? It would seem they share

exposure to a fad that is unrelated to fundamental risk or pro tability. In other cases,

closely related assets might have prices that move together over long horizons but not

over shorter intervals. is insufficient comovement masks their shared fundamental



exposures. Analyzing the returns to individual US equities, I nd their correlations

depend signi cantly on the time horizon considered. For each pair of stocks,

measures of shared trading behavior versus measures of shared fundamentals are

highly predictive of excess or insufficient comovement.

My empirical results employ a novel methodology in estimating how much of the

measured differences in short-horizon and long-horizon correlations arise from

estimation noise. is drives the statistical inference, emphasizing that these

differences are too large to be circumstantial. e weekly returns to a typical pair of

US stocks have a correlation of , but I nd the correlation of their -month

returns are frequently higher or lower than their weekly returns would suggest.

Long-horizon correlations predictably decrease for stocks with similar investor

trading pa erns and correlations predictably increase for stocks of rms with closely

related business prospects as measured by their industry affiliation or by past

accounting measures.

In contrast with previous studies studying excess comovement by looking for

special cases where nominal labels change but fundamental risks do not, I take the

broad universe of US stocks and analyze comovement through differences in

short-run and long-run correlations. e methodology could easily be employed

within or across other asset classes.

Correlations are a key ingredient in asset allocation and asset pricing, and these

ndings have practical implications for investors. Estimates of portfolio risk should

depend on the time horizon. Buy-and-hold investors may be misled if their

diversi cation estimates are based on short-term returns. Short-horizon correlations
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Figure . : Correlations for Heinz, Phillip Moris and Harley Davidson

will be much more pertinent to an investor who rebalances frequently. Such an

investor might also take advantage of the associated predictability. A simple

long/short trading strategy based on a measure of fads versus fundamentals generates

risk-adjusted annual excess returns of . and a Sharpe Ratio of . .

As a motivating example, consider the returns to three large US stocks, Heinz,

Philip Morris, and Harley Davidson. During the ’s, all three stocks were actively

traded, and their business lines were relatively stable until the turn of the century,

when Philip Morris began a series of acquisitions and divestitures. Looking at their

weekly returns during this decade, each pairing of the three rms has a correlation of

approximately . is is slightly greater than the average correlation we observe

for most large cap US stocks during this period.

Now consider the long-run fundamentals shared by these stocks. Although



popular culture might lead you to connect the customers of Philip Morris’ tobacco

products with the stereotypical motorcyclist astride a Harley, some of the largest

business lines of Philip Morris included more traditional food staple brands such as

Kra , Oscar Mayer and Jell-O. As you might expect, Philip Morris’ accounting pro ts

correlated with those of Heinz (quarterly ROE correlation of ), another producer

of food staples, yet seem to have no relationship with those of Harley Davidson.

ese relationships become increasingly apparent as the time horizon for returns

lengthens and the estimated correlations differ signi cantly from the one-week

estimates. Figure . shows how the correlation estimates change with the length of

the return interval used within the decade. As the horizon increases, the correlation

of the returns of Philip Morris and Heinz steadily increases to greater than , while

the correlations of each rm’s returns with those of Harley Davidson decrease to

approximately zero.

Admi edly, the examples of Heinz, Philip Morris and Harley Davidson are

selected ex post from an enormous number of pairwise correlations and possible

sample periods. Estimates of long-horizon correlations are noisy and the plots in

Figure . could be coincidental. A more careful analysis of US stock returns between

and con rms pa erns of this sort are pervasive.

A number of researchers have highlighted characteristics that appear to drive

excess comovement in equity returns. Barberis, Shleifer and Wurgler ( ) and

Boyer ( ) consider equity index inclusion and nd that the addition of a stock to

major market indices causes an immediate increase in the correlation of its returns

with other index constituents. Similarly, Brealey, Cooper and Kaplanis ( ) look at



changes in exchange listing due to cross-border mergers and nd a stock’s

comovement immediately increases with securities listed in its new home market.

Controlling evenmore strongly for differences in fundamental risk, Dabora and Froot

( ) look at companies with shares that trade on multiple exchanges and nd that

the prices of otherwise identical claims diverge from each other and move with other

stocks listed on their respective exchanges. e empirical strategy employed in each

of these papers compares comovement in a speci c subset of stocks for which

circumstances suggest there are no differences in fundamental risk, at least on average.

In contrast, my approach examines a broad universe of stock prices and seeks to

measure the aggregate extent to which fads and fundamentals drive comovement.

Instead of comparing correlations immediately before and a er some event, I

compare correlations made over the exact same time period where the only

difference is the return increment. In this respect, there are fewer concerns about

omi ed risks associated with the treatment effect.

e study of excess comovement and fundamentals bears similarity to the work

motivated by Shiller ( ), questioning how the aggregate stock market can be so

volatile compared to the relatively stable pa ern of dividends received by investors.

is led to a large literature testing variance ratios over various time horizons. ere

are two advantages to studying correlations rather than variance ratios. First,

correlations control for volatility and are less affected by time variation in market

discount rates. Second, the rich cross-section of correlations allows for panel analysis,

avoiding many of the econometric shortcomings associated with analyzing

long-horizon returns in a limited time series.



One of the more striking empirical features of equity correlations is the fact that

the historical correlations between most stocks increase as their return horizon

lengthens. is stylized fact has not gone unnoticed. Campbell, Le au, Burton and

Xu ( ) study the volatility of individual equities and note how equity correlations

generally declined during the ’s and ’s and how correlation estimates using

daily returns are, on average, lower than those using monthly returns. Lo and

MacKinlay ( ) study the pro tability of contrarian strategies and a ribute the

success of this strategy to positive cross-autocorrelation. eir conclusions imply that

correlations increase with time horizon. is is historically true, though I show much

of this effect is due to market microstructure and becomes less prominent as trading

costs have decreased.

What sort of labels might be most salient for investors’ fads? Since market

capitalization and relative valuations are common groupings, we might associate fads

with investment styles based on size and value. is is a key prediction of Barberis

and Shleifer ( ), who propose style driven investing accommodates the cognitive

limitations of investors. Veldkamp ( ) derives similar predictions in a rational

se ing where investors generalize costly information across similar rms. My

empirical results show weak evidence that rms of a similar size exhibit excess

comovement, and my results do not show excess comovement in rms with similar

book-to-market ratios.

Others have connected evidence of excess comovement with trading pa erns by

obtaining trade or position data for retail investors (Kumar and Lee, ) and

mutual fund managers (Greenwood and esmar, ; Antón and Polk, ).



Given the increasing importance of index benchmarks, Greenwood ( ) looks at

how index construction can lead to return pa erns induced by index based trading.

In this paper, I a empt to measure shared trading behavior directly by using the

mechanical autocorrelations in returns caused by bid-ask bounce (Roll, ) or the

temporary market impact of trading (Campbell, Grossman and Wang, ).

To measure shared fundamentals, my primary measure is the past correlation of

accounting returns, measured by return on equity (ROE). I also look at common

industry membership as an indicator that rms face similar demand or pro tability

shocks. e a empt to connect stock comovement to fundamentals builds on the

work of Pindyck and Rotemberg ( ), who nd most price comovement is

unrelated to macroeconomic shocks and Cohen, Polk and Vuolteenaho ( ), who

nd the CAPM performs be er when they measure betas using accounting returns

rather than traditional price return betas.

e relationship between return horizon and correlation serves as a valuable

measure of excess comovement in asset prices. It quanti es the economic

signi cance of previous studies that identify an individual phenomenon driving

excess comovement. By introducing measures of trading behavior and fundamentals,

I can further identify the fads associated with excess comovement and the insufficient

comovement associated with shared fundamentals. is is a natural framework to

think about risk and portfolio construction, which yields intuition for portfolio

management and asset prices.



. M M C

To be er understand how correlations might change with time horizon, consider

what happens to the comovement of asset prices if investors are slow in incorporating

new information about fundamental value and if swings in the popularity of

investments affect their demand. We can contrast this with the case of no return

predictability or where return predictability comes through long-term time variation

in discount rates. is simple model of fads and fundamentals also suggests a

prediction regarding which pairs of assets will show correlations increasing with time

horizon and which pairs of assets will show decreasing correlations.

e model could apply to any sort of nancial asset or portfolio of assets. e

effect of time horizon on correlation is likely greatest in cases where markets are

segmented or where the fundamental value is opaque. However, the notation and

presentation of the model will consider the assets to be individual equity securities, in

line with the empirical analysis to be presented.

M

De ne the fundamental value of security i at time t as P∗i,t, entitling its owner to

payoutDi,t+ . Changes in log value, Δp∗i,t+ = ln P∗i,t+ +Di,t+

P∗i,t
will be a combination of

the expected return and the unexpected shock,

Δp∗i,t+ = Et
[
Δp∗i,t+

]
+ ηi,t+ . ( . )



Suppose that themarket pricemay differ from this fundamental value for two reasons:

rst, transitory fads may cause short-run price deviations across certain groups of

securities, and second, changes in fundamental value may be incorporated with a

delay. is can be modeled in a simple way by de ning the log return to security i as

ri,t+ = Δp∗i,t+ − Δdi,t+ + Δfi,t+ ( . )

where the delay in incorporating fundamentals, Δdi,t+ , is governed by δd ∈ [ , ) in

Δdi,t+ = ηi,t+ − ( − δd)
∞∑
k=

δkdηi,t−k+ , ( . )

and the fad component,

Δfi,t+ = εi,t+ −
− δf
δf

∞∑
k=

δkf εi,t−k+ , ( . )

has shocks εi,t+ that decay through δf ∈ [ , ). I will assume that ηi,t and εi,t are

independent martingale difference sequences.

Although this implies predictability in returns, it may not be easy to recognize.

ese two forces have offse ing effects on univariate tests of predictability. For

example, consider an a empt to detect forecastability using the autocovariance. For

simplicity, we’ll assume for now that expected returns change very li le (i.e.

Cov
[
Et
[
Δp∗t+

]
,Et+τ−

[
Δp∗t+τ

]]
≈ )¹. e autocovariance of rt with return rt+τ

¹Note that short-term variation could be driven by behavioral or rational causes, but the label
”fad” will be used to categorized price movement that is transient and over very short horizons. e
empirical impact of time variation in discount rates is speci cally addressed in Section . .



realized τ > periods in the future is

Cov [rt, rt+τ] = δτd
(
Var
[
ηi,t − Δdi,t

])
︸ ︷︷ ︸
momentum in fundamentals

− δτf
(
δ−f Var [Δfi,t − εi,t]

)
︸ ︷︷ ︸

reversal in fads

. ( . )

e delays in incorporating information contribute to momentum in returns

(positive autocorrelation), but the transient nature of fads contribute to return

reversal (negative autocorrelation). ese may offset enough that it is hard for an

autocorrelation or variance ratio test to reject the null hypothesis of no predictability.

Fortunately, we may be able to take advantage of variation in the way fads and

fundamentals affect different assets. In the context of this model, there will be an

asset j for which we can measure the effect of the fad (the correlation of εi,t with εj,t)

or delayed fundamentals (the correlation of ηi,t with ηj,t). A temporary increase in the

popularity of blue chip stocks, for example, may cause the prices of these rms to rise

together even when their future earnings are unchanged and unrelated. Measures of

comovement across assets could offer be er information regarding the extent to

which prices temporarily deviate from fundamentals.

D

To be more precise in de ning comovement, I will generally refer to the short-term

comovement of asset i and asset j as their contemporaneous correlation

ρij ( ) =
Cov

[
ri,t+ , rj,t+

]√
Var [ri,t+ ]Var

[
rj,t+

] . ( . )



e long-horizon return of asset i overH periods will be
∑H

h= ri,t+h, so the long-term

comovement of asset i and asset j is then the correlation associated with their returns

with horizon lengthH ,

ρij (H) =
Cov

[∑H
h= ri,t+h,

∑H
h= rj,t+h

]√
Var
[∑H

h= ri,t+h
]
Var
[∑H

h= rj,t+h
] . ( . )

One advantage of measuring comovement through correlations is that it controls for

changes in the variance of assets i and j in the denominator. In that sense we are

focusing on their joint price behavior as opposed to factors affecting their individual

volatilities. A key result comes from expanding the variance and covariance terms in

the de nition of long-term correlation,

Cov

[
H∑
h=

ri,t+h,
H∑
h=

rj,t+h

]
=

H∑
h=

Cov
[
ri,t+h, rj,t+h

]
+
∑
k̸=h

H∑
h=

Cov
[
ri,t+h, rj,t+k

]
Var

[
H∑
h=

ri,t+h

]
=

H∑
h=

Var [ri,t+h] +
∑
k̸=h

H∑
h=

Cov [ri,t+h, ri,t+k] . ( . )

e assumption of no fads or delayed fundamentals means past returns do not

forecast the future. is implies Cov
[
ri,t+h, rj,t

]
= ∀j and ∀h ̸= , so the double

summations in the equations above must equal zero. In this case

ρij (H) = ρij ( ) ∀H , ( . )

and correlations should be the same regardless of return horizon. We might denote



the difference between long-run and short-run correlations as

Δρij = ρij (H)− ρij ( ). My null hypothesis is Δρ = . As an alternative, I propose

Cov
[
ri,t+h, rj,t

]
̸= and is instead

Cov
[
ri,t+h, rj,t

]
= ρτd

(
Cov

[
ηi,t − Δdi,t,ηj,t − Δdj,t

])
︸ ︷︷ ︸

shared fundamentals

− ρτf
(
ρ−f Cov

[
Δfi,t − εi,t,Δfj,t − εj,t

])︸ ︷︷ ︸
shared fads

. ( . )

is will be positive when the rst term is more important for a pair of rms and

negative when the second term dominates. Correlations will no longer remain

consistent regardless of time horizon. Instead, equation ( . ) shows how rms with

similar fundamentals will have correlations that increase with time horizon and rms

whose prices share exposure to fads will have correlations that decrease with time

horizon.

E

In estimating the relationships of long-horizon returns can be problematic within a

given sample. e sample size effectively gets smaller as the return horizon increases.

For example, with a return horizon of six months, a decade of data allows for only

twenty independent increments. Additionally, the long-horizon returns within a

given sample will depend on the start and end dates chosen. Six month returns

starting in January and June might yield different results than returns starting in April

and October. We can minimize the impact of these limitations by estimating



correlations using every possible overlapping window available.

Within a given sample, a correlation for horizon lengthH is estimated as

ρ̂ij (H) =
∑H

h=−H

(H−h
H

)
ĉij (h)√(∑H

h=−H

(H−h
H

)
ĉii (h)

) (∑H
h=−H

(H−h
H

)
ĉjj (h)

) . ( . )

e empirical cross-autocovariance ĉij (h)measures the relationship between ri and

rj’s realizations of h periods in the future,

ĉij (h) = H− r

∑
(ri,t − r̄i)

(
rj,t+r − r̄i

)
. ( . )

Estimating long-run correlations using ( . ) is equivalent to averaging the

correlation estimates for returns of horizon lengthH using all possible windows.

Suggestively, this is also identical to the correlation resulting from Newey and West’s

( ) estimator of the long-run covariance of a time series. e fundamental risk in

a nancial time series is closely related to the concept of long-run variance, which

continues to be a major topic of research in time series econometrics.

T

To identify the sorts of rms whose prices are driven by shared trading behavior

rather than fundamentals, we could propose characteristics that might be overly

salient to investors and test to see if they predict negative values for Δρij. For example,

if investment styles are indicative of non-fundamental related trading they would

show negative coefficients in a regression.

To capture trading behavior more directly, we can try to measure which assets tend



to be contemporaneously bought and sold. e simple model above would predict

that assets with a greater degree of shared trading behavior will exhibit more values

for Δρij. While it might seem difficult to observe data on who is initiating

transactions, I will show how shared trading behavior can be inferred by looking at

correlations in bid-ask bounce.

Consider Roll’s ( ) model of the effective bid-ask spread. He notes that the

closing price recorded for a security can be affected by whether the last trade was

driven by a purchase or a sale. is price differential can be interpreted as the literal

bid-ask spread paid by buyers and sellers who initiate trades with market makers, or

this could be a more modern concept of temporary price impact as the intensity of

buying or selling pressure affects liquidity provision.

Suppose that an average sized buyer must pay pi,t + bi, and sellers of an average

quantity receive pi,t − bi. Hence bi can be thought of as the temporary market impact

of trading. Any permanent impact from information in trades is captured by updates

in pi,t. e observed return is then a combination of the price change and the

transitory market impact of purchases (indicated by binary variable ηi,t = ) or sales

(when ηi,t = − ). e observed return (̃ri,t+ ) can be expressed as the log return

(ri,t+ = pi,t+ − pi,t) plus the market impact

r̃i,t+ = ri,t+ + bi
(
ηi,t+ − ηi,t

)
. ( . )

Let’s assume that purchases and sales are equally likely and are independent each

period and the null hypothesis that past price changes are not predictive of the future.



e effect of this trading on the autocovariance sequence for returns will be

Cov [̃ri,t, r̃i,t] = Var [pi,t+ − pi,t+ ] + bi

Cov [̃ri,t, r̃i,t+ ] = −bi

Cov [̃ri,t, r̃i,t+k] = ∀k > . ( . )

is is precisely what motivated Roll’s estimate of the effective bid-ask spread:

bi = −
√

Cov [̃ri,t, r̃i,t+ ]. ( . )

And what if the buying pressure is correlated across rms? Suppose that investors

tend to buy and sell asset i and asset j at the same time, so that νij = E
[
ηi,t, ηj,t

]
̸= .

We would observe νij > if the trading behavior is similar and νij < if investors

tend to buy one while selling the other. Intuitively, we can write νij as a simple

function of the probability that securities are both exposed to common trading

behavior,

νij = ×
(
Pr
[
ηi,t = ηj,t

]
− .

)
. ( . )

is is the proposed measure of common trading behavior. Just as we can measure

the effective bid-ask from the autocovariances, we can estimate common trading

behavior from the cross-autocovariances. Under the same assumptions as above, they



will be

Cov
[̃
ri,t, r̃j,t

]
= Cov

[
ri,t+ , rj,t+

]
+ νijbibj

Cov
[̃
ri,t, r̃j,t+

]
= −νijbibj ( . )

Cov
[̃
ri,t, r̃j,t+k

]
= ∀k > .

From this, I empirically estimate this measure νij of how trading behavior connects

two stocks through

νij = −
Cov

[̃
ri,t, r̃j,t+

]
+ Cov

[̃
ri,t+ , r̃j,t

]√
Cov

[̃
ri,t, r̃j,t+

]
Cov

[̃
ri,t, r̃j,t+

] . ( . )
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To estimate the comovement of US equity prices, I use four decades of weekly total

returns from e Center for Research in Security Prices² (CRSP), covering the forty

years from to , and each decade is considered a subsample. To ensure the

analysis focuses on the most liquid securities, I select the , largest issues by

market cap as determined immediately prior to the start of each decade. e weekly

log returns are measured using Tuesday’s closing prices and include any distributions

received. For the most recent decade spanning - , the universe consists of

the largest , rms measured by their market cap on December st, , and

²Center for Research in Security Prices. © Booth School of Business, e University of
Chicago. Used with permission. All rights reserved. www.crsp.chicagobooth.edu



the rst weekly return is measured from January th to January th, . Only

publicly traded common stock of US incorporated rms are considered (CRSP share

codes and ).

Within each decade, short-run and long-run correlations are calculated for every

pair of rms, where the short run is de ned as one week and the long run is de ned as

half of a year. Short-run correlations of weekly returns, ρ̂ ( ) are calculated as in ( . ).

e long-run correlation calculation uses the formula in ( . ) whereH = weeks,

generating ρ̂ ( ). e difference between the two yields Δρ̂.

To minimize any bias related to survivorship, long-run correlations are calculated

whenever possible, even when two rms coexist for only a small portion of the

decade. e minimum possible number of observations to calculate ρ̂ ( ) is

approximately one year. e trade-off for reducing this bias is sampling variance, as

the long-run variance in those cases is exceptionally noisy. In practice, requiring a

longer minimum history decreases the sample size and affects the results very li le, so

I make this criterion as permissive as possible.

We can be reasonably comfortable that the results of the empirical analysis are not

driven by the anomalous behavior of illiquid rms since the universe consists of the

largest , securities by market capitalization and the shortest time interval

considered is one week. e mean difference between short-run and long-run

correlation increases when using smaller rms and shorter time horizons, and there is

also a slight increase in the predictability of this difference, but these results are

excluded as they would be open to criticism that they are affected to a larger extent by



Table . : Data Coverage for Correlation Estimates

is table reports the data availability for the estimated return correlations. e return series con-
sidered are log returns calculated from the CRSP total return data, and the minimum unit of mea-
surement is one week, corresponding to returns from Tuesday to Tuesday. e unique correlation
estimates correspond to the upper triangle of the matrix of correlation coefficients, excluding the di-
agonal.

Decade Total
’s ’s ’s ’s

max possible pairs , , , , , , , , , ,
pairs w/ min returns , , , , , , , , , ,

stale prices or other liquidity related issues.

S

Summary statistics for the correlation estimates are shown in Table . . e sample

size of , rms will generate slightly less than two million unique correlation

estimates each decade. e rst panel shows the effect of a rition on data coverage.

You can see that correlations can be calculated for more than of all possible pairs

of rms except in the most recent decade where the ten-year period begins in the year

, at the peak of the Internet frenzy. Acquisitions and failures cause an atypical

number of rms to disappear during the rst months of this subsample.

For the four decades considered, the short-run correlation, ρ̂ij ( ), averages . ,

with a standard deviation of . . In contrast, long-run correlations are much

higher, with a full sample average of . and standard deviation of . . e

difference between the two, ρ̂ (H)− ρ̂ij ( ), averages . . e difference decreases



Table . : Summary Statistics for Correlation Estimates

is table reports the data availability and summary statistics for the estimated return correlations.
e return series considered are log returns calculated from theCRSP total return data, and themini-

mumunit ofmeasurement is oneweek, corresponding to returns fromTuesday toTuesday. e short
run correlation measures, ρ̂ ( ), are therefore associated with a one week horizon. In the data panel
measuring coverage by unique correlation pairs, the unique correlation estimates correspond to the
upper triangle of the matrix of correlation coefficients, excluding the diagonal.

short-horizon correlation Decade Full Sample
’s ’s ’s ’s

mean . . . . .
std dev . . . . .

ρ̂ij( ) ile . . - . - . .
median . . . . .

ile . . . . .

long-horizon correlation Decade Full Sample
’s ’s ’s ’s

mean . . . . .
std dev . . . . .

ρ̂ij( ) ile . - . - . - . - .
median . . . . .

ile . . . . .

correlation difference Decade Full Sample
’s ’s ’s ’s

mean . . . . .
std dev . . . . .

Δρ̂ij ile - . - . - . - . - .
median . . . . .

ile . . . . .



over time, with an average difference of . in the ’s decreasing to a difference

of only . in the most recent decade.

By de nition, there are upper and lower bounds on the possible observed

correlations. In practice, the estimated short-run correlations are nearly always

positive, with less than of the estimated values being less than zero. However,

there is much more variation in the long horizon correlation estimates. Even though

the average long-run correlation is nearly twice as large, a li le less than a third of the

estimates are less than zero.

While the standard deviations and percentiles shown in Table . make it tempting

to conclude that there is a larger degree of cross-sectional variation in correlations

measured over long horizons, it is important to note that the short-run correlations

are estimated much more precisely. Even under the null hypothesis where the true

correlation does not depend on the time horizon, the empirical long-run correlations

will show more variation due to the fact that they are estimated using far fewer

independent observations. We cannot yet draw conclusions about the distribution of

the true long-run correlations. e full sample standard deviation of . re ects

both the dispersion of correlations in the population as well as the measurement

error. e subsequent section will present a method for quantifying the effect of

measurement error in the long run estimates.
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To test the null hypothesis in ( . ) against the alternative, I propose running a

regression of the difference in long-run and short-run correlation on candidate

explanatory variables for each pair of rms. Negative values for this difference in

correlations correspond to excess comovement, indicating the pair of stocks has a

higher correlation in the short run than can be justi ed by their long-run returns.

Positive values are indicative of insufficient comovement, as the short-run returns do

not seem to capture the comovement observed over longer horizons.

Given explanatory variables corresponding to each pair of rms (i, j) whose shared

characteristics constitute vector Zij (including a constant term), the coefficient vector

β is estimated from the linear regression

Δρ̂ij = βZij + eij. ( . )

Under the null hypothesis, every element of β, including the constant, is equal to zero.

Calculating the standard errors for β̂ requires special a ention, since these errors

are not independent across pairs of rms. e traditional standard errors estimated

using an OLS regression to estimate ( . ) will be far too small. What appears to be a

large cross-sectional sample is effectively smaller since much of the variation in stock

returns is driven by common factors. Even worse, all stocks likely have a positive

loading on a single factor, the market. If none of the residuals are independent,



traditional techniques to handle correlated residuals in a cross-sectional regression,

like clustering standard errors, will offer li le help.

A

e problem would bene t from a new approach. Note that under the null

hypothesis, this error term eij is equal to the estimation error between the true

long-horizon correlation and whatever empirical estimate results from the particular

sample used. We can call this estimation error

εij = Δρ̂ij − Δρij (H) , ( . )

and note that eij = εij, under the null hypothesis.

Fortunately we can take advantage of some properties of the null hypothesis. In

particular, the assumption of no predictability suggests that the error terms in ( . )

result from the purely coincidental estimation noise of past returns appearing to

predict the future.

erefore, the historical ordering of the weekly returns makes no difference. We

just need to preserve the contemporaneous return structure. In fact, if we randomly

reshuffle the historical ordering of the weeks and recalculate the long-run

correlations, we would generate an independent draw of error terms with the same

statistical properties.

is is effectively what I propose as a robust, non-parametric method for

calculating standard errors. With new long-term correlation estimates from each

reshuffling of the weekly returns, we nd the distribution of β under the null by



repeatedly rerunning the regression in ( . ). en we can compare our β̂ estimate

to the distribution of estimates generated from the reshuffled data. We can now test

the hypothesis that β̂ = properly accounting for the strong dependence across our

observations.

e reshuffling technique also makes it possible to revisit the variation in the

estimated long-horizon correlations. e observed differences in long-horizon and

short-horizon correlations are due to both the variation expected from sampling

noise as well as the true dispersion in correlation values. A casual glance at the

magnitudes might lead someone to prematurely reject the null hypothesis based

solely on the large variation in Table . . e two panels in Figure . plot a

histogram of the cross-sectional variation in the estimated Δρ̂ij against the density

function of the sampling error expected under the null hypothesis for the earliest and

the most recent decade.

Figure . also graphically emphasizes the difference between the previously

documented observation that correlations seem to increase with time horizon on

average (Campbell et al., ) and the claim that some correlations increase with

horizon and some decrease. By inspection, the estimated long-horizon correlations

are signi cantly higher than what would be expected under the null hypothesis for

the ’s, though the signi cance of the difference is less obvious in the ’s. is

paper will show empirical analysis suggesting that the earlier difference in mean

correlation differences can be largely a ributed to microstructure noise from the

bid-ask spread.

Se ing aside differences in the mean, the dispersion in the reshuffled values is
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Figure . : Comparing Empirical and Reshuffled Correlation Differences

quite high, suggesting that we cannot immediately rule out the possibility that large

cross-sectional differences in correlation estimates for different time horizons are

simply sampling error. A more careful analysis will show evidence that correlations

will predictably increase or decrease as the return horizon lengthens.
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All of the explanatory variables that form the elements of the Zij vector of explanatory

variables in estimating ( . ) are calculated using data available prior to each decade.

I group them by factors ostensibly related to investment behavior and factors that are

indicative of shared fundamental risks.

I estimate shared trading behavior by calculating the correlations in bid-ask

bounce, νij, as de ned in ( . ). Log weekly returns are used to estimate νij using a

two year window prior to the start of the decade. e effective bid/ask spread, used

in the denominator of the de nition of shared trading behavior is shrunk toward the

median value estimated across all securities, which prevents a negative implied spread

in most cases. To further control for large outliers that may be driven by a very small

denominator, or by estimation error in the numerator, the nal values of νij are all

shrunk toward zero.

Somewhat surprisingly, Table . shows that, on average, rms do not tend to be

bought and sold together for the rst two decades in the sample. is might be

indicative that the trading behavior tended to re ect investors shi ing investments

across stocks rather than a pa ern of broad net in ows or out ows in the equity

market. For the more recent two decades, however, the mean coefficient is much

closer to zero and shows no particular propensity for stocks to be bought or sold

together, though this varies signi cantly across pairs of stocks.



Table . : Summary Statistics for Primary Explanatory Variables

is table reports the data availability and summary statistics for the explanatory variables used in
the regression analysis. e summary of unique correlation pairs represent the upper triangle of the
correlationmatrix, excluding the own correlations on the diagonal. e shared trading behavior is an
estimate of the propensity of buyers and sellers of rms to have correlations in the temporary market
impact they cause, as measured through temporary components in autocorrelations. e primary
variable representing fundamental correlation is the correlation of rms return on equity, as derived
from quarterly accounting data from Compustat. Dummy variables capture shared characteristics
related to primary trading exchange and market cap quintiles, using data from CRSP, and the book
equity (BE) and GICS industry data are obtained from the linked CRSP-Compustat database.

Data Availability

Decade Full Sample
’s ’s ’s ’s

pairs w/ min returns , , , , , , , , , ,
with νi,j values , , , , , , , , ,

with Corr[ROEi,ROEj] , , , , , , ,

Summary Statistics

Decade Full Sample
νij ’s ’s ’s ’s

mean - . - . . - . - .
std dev . . . . .

ile - . - . - . - . - .
median - . - . . - . - .

ile . . . . .

Decade Full Sample
Corr[ROEi,ROEj] ’s ’s ’s ’s

mean . . . . .
std dev . . . . .

ile - . - . - . - . - .
median . . . . .

ile . . . . .



My primary measure to estimate fundamental correlation is the correlation of

rms’ return on equity. ROE values are constructed from Compustat data, de ned as

the ratio of earnings per share (Compustat item: epspiq) divided by common equity

per share (Compustat item: ceqq). is value is censored at - and + and

then converted to a log return. Annual Compustat data is used to supplement where

quarterly data is not available. Correlations in this ROE series are calculated for each

pair of rms over the prior years, excluding the quarter immediately prior to the

beginning of the decade, since this data is typically not released until January or later.

I set a minimum requirement of years of accounting data to estimate a valid

correlation. As can be seen in the coverage statistics in Table , lack of Compustat

data tends to be the most restrictive data requirement, especially near the beginning

of the sample when only a few hundred rms have accounting data available. is

does not have a substantive effect on the regression results, but I will run a regression

speci cation that excludes Corr
[
ROEi,ROEj

]
to take advantage of the larger data set.

Market cap and exchange information all come from CRSP, and the book equity

and GICS industry assignments are all taken from the CRSP-Compustat linked

database. e construction of the book equity / market equity (BE/ME) variable

mirrors that described by Fama and French ( ). Each decade, the rms in

the universe are matched to their assigned to BE/ME quintiles relative to the CRSP

universe of rms. I do not use the CRSP universe for market cap quintile

assignments, since my sample of the , largest rms only represents the largest

quintiles. Instead, I create market cap quintiles speci c to this sample using market

cap data from the December previous to the start of each decade.



is information allows for the construction of the dummy variables shown in

Table . . ey correspond to pairs of rms being listed on the same exchange,

sharing the same size quintile, being assigned the same GICS industry, etc. As usual,

the dummy variables equal for each pairwise observation where the criteria are met.

e classi cations of sharing the same GICS sector, industry or subindustry are not

exclusive of each other, so a pair of rms in the same subindustry will necessarily also

be in the same industry and sector. e occurrence of rms in the same subindustry

is the rarest of the dummy variables, occurring in about . of the unique rm pairs,

but will be shown to have a strong effect even a er controlling for industry and sector.

. . R Δρ̂

Following the methods described in section . , I estimate regression coefficients for

each decade subsample via least squares and use the reshuffling technique to calculate

standard errors. e regression estimates for regressions of Δρ̂ on various

explanatory variables are combined (assuming independent subsamples) and

reported in Table . .

e rst regression speci cation includes no explanatory variables other than

constant terms. While these regression coefficients are going to re ect the simple

means previously noted in the summary statistics, the reshuffling methodology help

us be er understand the signi cance of these results. We can see that even across

almost million observations per decade, the common factors driving returns can

generate standard errors in the average difference in long-run and short-run

correlations of about . e fact that long-horizon correlations average .



Table . : Summary Statistics for Dummy Variables

is table reports the data availability and summary statistics for dummy variables used as explana-
tory variables in the regression analysis. ey characteristics related to primary trading exchange and
market cap quintiles use data from CRSP, and the book equity (BE) and GICS industry data are
obtained from the linked CRSP-Compustat database.

Data Availability

Decade Full Sample
’s ’s ’s ’s

pairs w/ min returns , , , , , , , , , ,
with GICS industry , , , , , , , , ,
with BE/ME values , , , , , , , , , ,

Frequency
Decade Full Sample

’s ’s ’s ’s

same exchange . . . . .
same size quintile . . . . .

same BE/ME quintile . . . . .
same sector . . . . .

same industry . . . . .
same subindustry . . . . .



higher than short-horizon correlations in the most recent decade is well within the

range of differences wemight randomly observe. e differences in earlier decades, as

large as during the ’s, cannot be explained by estimation error.

e second regression speci cation includes the two primary explanatory

variables re ecting shared trading behavior (νij) and shared fundamentals

(Corr
[
ROEi,ROEj

]
). Both of these variables are highly signi cant in explaining the

effect of return horizon on correlations. As expected, common trading behavior is

indicative of temporary price comovement, as indicated by the negative coefficient.

Firms that have a higher probability of being bought or sold together have higher

short-horizon correlations but lower correlations over long horizons. e variable

measuring shared fundamentals generates a positive regression coefficient and the

opposite effect of trading behavior. Firms with highly similar fundamental exposures

tend to have lower short-horizon correlations relative to long horizons, suggesting

insufficient comovement.

e third regression speci cation adds the dummy variables indicating rms are

traded on the same exchange, and in similar size or valuation categories, or belong to

the same GICS industry categories. Trading on the same exchange is indicative of

excess comovement, consistent with the international evidence that exchange listings

ma er. Considering the three principal exchanges on which these stocks are listed

(NYSE, AMEX, and NASDAQ), more than of stock price variation is associated

with temporary comovement with other stocks on the same exchange. As is true with

all the explanatory variables considered, the exchange listing may not be the causal

force driving excess comovement, but it is predictive.



Table . : Cross-Sectional Regressions of Correlation Difference, Δρ̂ij

In the regressions below, the dependent variable is the difference between long run and short run
correlation (Δρ̂ij). All of the explanatory variables are dummy variables except for Shared Trading
Behavior (νxy) and Shared Fundamentals (Corr[ROEi,ROEj]). e reported coefficients are from com-
bining cross-sectional regressions for each decade, and standard errors, reported in parentheses below
the regression coefficients, use the reshuffling methodology described in section . for each cross-
section and assume the subsamples are independent. Statistical signi cance of the coefficient relative
to the null hypothesis of zero is denoted using asterisks, where * indicates signi cance at the level
and ** indicates signi cance at the level.

( ) ( ) ( ) ( )

’s Decade Dummy . ** . ** . ** . **
( . ) ( . ) ( . ) ( . )

’s Decade Dummy . ** . ** . ** . **
( . ) ( . ) ( . ) ( . )

’s Decade Dummy . ** . ** . ** . **
( . ) ( . ) ( . ) ( . )

’s Decade Dummy . . . .
( . ) ( . ) ( . ) ( . )

Shared Trading Behavior (νij) - . ** - . **
( . ) ( . )

Same Exchange - . ** - . **
( . ) ( . )

Same Size Quintile - . * - . **
( . ) ( . )

Same Be/MEDecile . * . **
( . ) ( . )

Shared Fundamentals (Corr[ROEi,ROEj]) . ** . **
( . ) ( . )

Same Sector . ** . **
( . ) ( . )

Same Industry . ** .
( . ) ( . )

Same Subindustry . ** . **
( . ) ( . )

Observations , , , , , , , ,



e dummy variable indicating rms are in the same size quintile also has the

expected sign. Prices of rms with similar market caps seem to move together over

short horizons much more than over longer return horizons. On the other hand, the

same logic would suggest a negative regression coefficient on the dummy variable

indicating rms are in the same BE/ME quintile, but this is not the case. e

coefficient on this variable is positive. A closer examination of excess comovement

across subsamples and controlling for autocorrelations from market microstructure

suggests the value results are not robust and the size effect is primarily driven by

excess comovement in the rms at the smaller range of this sample.

e variables indicating rms share the same sector, industry or subindustry all

show large positive coefficients. As with the measure of shared fundamentals that

looks at correlations in pro tability, these variables seem to indicate rms with

similar factors driving their pro tability show insufficient price comovement over

short horizons. For rms in the same subindustry, the correlation of their -month

returns will, on average, be . higher than the correlation of their weekly returns.

is is one of the strongest statistical results, though it’s not without precedent.

Cohen and Frazzini ( ) and Moskowitz and Grinbla ( ) show evidence of

evidence of positive momentum across connected rms, which would cause their

correlations to increase with the time horizon.

e fourth regression speci cation includes all explanatory variables. is serves

as a check that each makes an independent contribution. ere is a slight decrease in

the coefficients on the main variables measuring shared trading behavior and shared

fundamentals, but they remain highly signi cant.



Interestingly, the coefficients on the other variables intended to capture labels that

might be salient to investors all increase. e coefficient on rms that share the same

size quintile almost doubles, indicating that it might be more prominent conditioned

on the other explanatory variables than it is when measured in isolation.

e variables intended to capture common exposures to fundamental risks all

remain signi cant predictors of insufficient short-run comovement with the

exception of the dummy variable for rms sharing the same industry. is is actually

an artifact of this measure being so similar to the subindustry dummy variable that

the coefficient shi s from one to the other.

e general conclusions from the empirical results are broadly consistent across

regression speci cations. ey provide evidence in favor of the hypothesis that

short-run comovement is different than long-run comovement, and that excess and

insufficient comovement can be predicted by measures of shared trading behavior

and exposures to shared fundamentals.

R

e key results in Table . are robust across a variety of alternative estimation

approaches. However, there are two critiques that deserve special a ention, which I’ll

call the ”micro explanation” and the ”macro explanation.” e micro explanation

would assert that the correlation differences are the result of bid-ask spreads and

similar effects in market microstructure, and the macro explanation would assert that

correlation differences are simply a manifestation of predictability in well-known risk

factors.



Just as the bid-ask bounce can be used to estimate trade-driven price behavior,

serial correlation from market microstructure can also affect correlations. is is clear

from the effects derived in ( . ) and ( . ). In general, long-run correlations will

appear mechanically higher than short-run correlations simply because the

temporary price impact of trading constitutes a much smaller fraction of total price

movement in long-horizon returns relative to short-horizon returns. Since this effect

will be larger for stocks that are less liquid, the regression analysis might mistakenly

associate measures correlated with liquidity as indicators of insufficient comovement.

To show this is not the source of the results in Table . , I construct a measure that

adjusts the difference between long and short-horizon correlations that excludes the

rst order autocorrelation and cross-autocorrelation terms that could be affected by

the impact of trading on closing prices. I label this variable Δρ̇ij. ese excluded rst

order autocorrelations would also contain a large degree of information about excess

comovement, so it is important to recognize that assuming them to be zero may be a

useful robustness check, but it biases all results in favor of the null hypothesis.

Table . reports summary statistics for Δρ̇ij. Comparing these microstructure

adjusted estimates to the original summary statistics reported in Table . . e most

striking difference is that the mean short-run correlation is much closer to the mean

long-run correlation. is suggests that the lower comovement in the short run is

driven, in a large part, by the idiosyncratic price impact from trading that immediately

reverses in the subsequent period. is is in line with the predicted effect of market

microstructure.

Not surprisingly, the microstructure adjustments become less signi cant over



Table . : Microstructure Robust Correlation Differences

is table reports summary statistics for the microstructure-robust correlation differ-
ences, Δρ̇ij, where the autocorrelation terms in de ning the long run correlation are as-
sumed to be zero. e calculations are otherwise identical to those described for Δρij.

Decade Full Sample
’s ’s ’s ’s

mean . . . . .
std dev . . . . .

Δρ̇ij ile - . - . - . - . - .
median . . . . .

ile . . . . .

time, which is likely a result of increased liquidity and tighter bid-ask spreads. e

dispersion of the difference remains high on average and over time, suggesting that

the return horizon may have a large effect on individual correlations, even when the

difference is only slightly positive in the cross-section.

To check the robustness of the regression results directly, I run the previous

regressions on Δρ̇, the difference in long-term and short-term correlations that have

been adjusted for microstructure. ese regression results are shown in Table . .

e most noticeable differences are in the unconditional averages, as seen in the

rst regression speci cation with no other explanatory variables. As was observed in

the summary statistics, the differences all decrease. Looking at the statistical

signi cance only the . average difference in the ’s remains statistically

different from zero at the con dence level. is is consistent with the idea that a

great degree of the insufficient comovement we observed was an artifact of

temporary impact of trades on closing prices.



Table . : Regressions Adjusted for Microstructure Effects, Δρ̇ij
In the regressions shown, the dependent variable is the difference between long run and short run
correlation, a er adjusting for the rst order autocorrelation that is likely caused by bid-ask bounce
andothermicrostructure effects, yielding (Δρ̇ij). All of the explanatory variables are dummyvariables
except for Shared Trading Behavior (νxy) and Shared Fundamentals (Corr[ROEi,ROEj]). e reported
coefficients are from combining cross-sectional regressions for each decade, and standard errors, re-
ported in parentheses below the regression coefficients, use the reshufflingmethodology described in
section . for each cross-section and assume the subsamples are independent. Statistical signi cance
of the coefficient relative to the null hypothesis of zero is denoted using asterisks, where * indicates
signi cance at the level and ** indicates signi cance at the level.

( ) ( ) ( ) ( )

’s Decade Dummy . * . . .
( . ) ( . ) ( . ) ( . )

’s Decade Dummy . . . .
( . ) ( . ) ( . ) ( . )

’s Decade Dummy . . . .
( . ) ( . ) ( . ) ( . )

’s Decade Dummy . . . .
( . ) ( . ) ( . ) ( . )

Shared Trading Behavior (νij) - . - .
( . ) ( . )

Same Exchange - . - .
( . ) ( . )

Same Size Quintile - . - .
( . ) ( . )

Same Be/MEDecile . .
( . ) ( . )

Shared Fundamentals (Corr[ROEi,ROEj]) . ** . *
( . ) ( . )

Same Sector . ** . *
( . ) ( . )

Same Industry . .
( . ) ( . )

Same Subindustry . * .
( . ) ( . )

Observations , , , , , , , ,



Although none of the explanatory variables identi ed as signi cant in the prior

regression change drastically, most of their effects are more muted. For example, in

the second regression speci cation the coefficient on the shared trading behavior

variable previously had a coefficient of - . and a t-statistic of - . , but this now

drops to a coefficient of - . and an associated t-statistic of - . . It might be that

much of the temporary impact captured by this variable corrects itself in the

subsequent week, which is excluded in the calculation of Δρ̇, or it may be that the

shared trading behavior variable also proxies for liquidity.

e other main explanatory variable, measuring correlation in shared

fundamentals, sees a much more moderate decrease in magnitude a er adjusting for

microstructure and also remains highly statistically signi cant. Its coefficient drops

from . to . .

In the fourth regression speci cation on Table . where all explanatory variables

are included, the coefficients are generally smaller than they were in Table . . e

only dummy variable that could be considered statistically different from zero with

greater than con dence is the measure of rms being in the same GICS sector.

e assumption that long-horizon and short-horizon correlations should be

equivalent comes from equation ( . ) where past returns are assumed not to predict

the future. No arbitrage assumptions in asset pricing theory suggest that this should

be true for conditional moments, but not necessarily true for unconditional measures

of volatility and correlation. Cochrane ( ) emphasizes this point, showing how

unconditional return predictability does not reject rational pricing models outright

and are exactly what we could expect to see in macroeconomic models where



discount rates vary over time due to changing growth prospects or risk preferences.

e same principle holds true in our analysis. Our null hypothesis would be

rejected by a broad class of models that generate time variation in the price of equity

risk. Let’s consider what we would expect to see in a standard model of this type. In a

one-factor model where the expected returns to stocks are driven by their exposures

to the aggregate stock market, time variation in expected market returns would imply

that some of the short-horizon price correlation between stocks is driven by their

common exposure to changes in aggregate return expectations. is common

component of comovement becomes less prominent as time horizons increase. We

would then expect that long-horizon correlations across all rms should, on average,

be lower than short-horizon correlations. Instead, the data shows the opposite.

Additionally, we can speculate how aggregate market predictability might explain

cross-sectional variation in Δρ. Pairs of rms with large differences in their betas to

priced risk factors should have lower short-run correlations relative to their long-run

correlations, while rms with similar exposures should less of a difference. If we

include the absolute value of their beta differences in our regressions, we should get a

positive coefficient.

I test this hypothesis by estimating rm betas for the three factor model of Fama

and French ( ) prior to each decade. With rm-level coefficients for the market

portfolio βMKT, for the size spread portfolio, βSMB, and for the value spread portfolio,

βHML. I calculate the absolute value of the difference in their estimated betas. ese

are considered as an additional explanatory variable in the cross sectional regressions

of the differences in long-horizon and short-horizon correlations adjusted for



Table . : Regressions of Δρ̇ij on Differences in Risk Factor Exposures

In the regressions below, the variables labeled as the |βi,XYZ − βj,XYZ| are the absolute value of the
differences in the ex ante estimated beta on risk factorXYZ for the pair of rms. ese are included in
cross-sectional regressions with other explanatory variables found to be predictive of Δρ̇ij. e stan-
dard errors, reported in parentheses below the regression coefficients, use the reshuffling methodol-
ogy described in section . . Statistical signi cance of the coefficient relative to the null hypothesis
of zero is denoted using asterisks, where * indicates signi cance at the level and ** indicates sig-
ni cance at the level.

( ) ( ) ( ) ( )

’s Decade Dummy . * . * . . *
( . ) ( . ) ( . ) ( . )

’s Decade Dummy . . . .
( . ) ( . ) ( . ) ( . )

’s Decade Dummy . ** . * . * . *
( . ) ( . ) ( . ) ( . )

’s Decade Dummy . . . .
( . ) ( . ) ( . ) ( . )

Shared Trading Behavior (νij) - . - . - .
( . ) ( . ) ( . )

Same Exchange - . *
( . )

Shared Fundamentals (Corr[ROEi,ROEj]) . ** . *
( . ) ( . )

Same Sector . **
( . )

Same Industry .
( . )

Same Subindustry .
( . )

|βi,MKT − βj,MKT| - . - . - . - .
( . ) ( . ) ( . ) ( . )

|βi,SMB − βj,SMB| - . ** - . ** - . - .
( . ) ( . ) ( . ) ( . )

|βi,HML − βj,HML| - . * - . * - . - .
( . ) ( . ) ( . ) ( . )

Observations , , , , , , , ,



microstructure effects, Δρ̇.

e regression results are summarized in Table . . e rst speci cation, with the

difference in the betas on risk factors as the only explanatory variables shows the

regression coefficients are negative–the opposite of our prediction. e coefficient

for the difference in βMKT is effectively zero.

In the other three regression speci cations considered, the explanatory variables

previously found to be signi cant are also included. e coefficients on the new

variables measuring differences in risk factor loadings remain negative and hardly

precise enough to distinguish from zero. It appears that time variation in discount

rates in loadings on known risk factors may explain a small portion of the differences

in long-horizon versus short-horizon correlations across this sample of US stocks, but

this is not the sort of mean-reverting behavior commonly modeled and it is primarily

driven by SMB and HML, not the aggregate equity market.

It should also be noted that the regression coefficients on the differences in risk

exposures are certainly underestimated because of estimation error. is a enuation

bias similarly affects the shared trading behavior and ROE correlation variables,

which likely have even more estimation error than the betas on the risk factors.

. I A P I

ere is nothing about the proposed framework analyzing correlation and time

horizon that is speci c to the returns of individual stocks. In a traditional asset

pricing context, we can consider how the time horizon will affect betas on risk

factors, and hence, asset pricing.



As a rst pass, consider how the return horizon affects the volatilities and

correlations of the three factors of the Fama-French model. ese are plo ed in

Figure . using the same time period as in the other empirical analysis, - .

Since these factor returns coexist for a much longer history than the typical equity

security, we can consider long-term horizons that extend much longer than months.

1 day 1 week 1 month 6 months 2 years 8 years

−75%

−50%

−25%

0

25%

50%

75%

Return Horizon (logarithmic scale)

P
ai

rw
is

e 
C

or
re

la
tio

n

 

 

Mkt & SMB
Mkt & HML
SMB & HML

1 day 1 week 1 month 6 months 2 years 8 years

4%

8%

12%

16%

20%

A
nn

ua
liz

ed
 V

ol
at

ili
ty

 

 

Mkt

SMB

HML

Figure . : Annualized Volatility and Correlations for Risk Factors, -



Looking at the top axis, plo ing the estimate of volatility as a function of time

horizon, the most striking feature is the upward sloping relationship for SMB and

HML. e positive relationship between volatility and time horizon suggest that

returns to the SMB and HML portfolios exhibit positive autocorrelation–at least at

horizons in the range of - years. is is exactly the sort of behavior that would lead

to the negative regression coefficients in the regression presented in Table . . At the

two year horizon, the HML volatility begins to decrease while the volatility of the

SMB portfolio continues to increase for return horizons as long or years. is is

indicative of momentum, rather than mean reversion, over these horizons.

Consistent with previous research (Fama and French, ), the broad market

portfolio shows relatively li le predictability for horizons shorter than one year, with

a relatively constant relationship between volatility and time horizon. is would

explain why aggregate market exposure explains li le of the cross-sectional

differences in Δρ̂ij at the stock level. e well-documented tendency for the aggregate

stock market to exhibit mean reversion over long horizons begins to kick in as the

horizon increases beyond one year.

e pairwise correlations are plo ed on the lower axis in Figure . . e SMB and

HML portfolios have a negative relationship with the market portfolio over short and

medium horizons, but these correlations tend toward zero as the return horizon

lengthens. Perhaps the most striking relationship is the correlation between SMB and

HML. While these portfolios seem to have uncorrelated returns over short horizons,

the correlation coefficient increases signi cantly over long horizons. Repeating the

caveat that estimates of long-horizon correlations can be noisy, the initial evidence



suggests that SMB and HML may be distinct risks over short time horizons but

contain similar fundamental risks that become evident over longer time periods.

At the same time, the SMB and HML portfolios are not nearly as a ractive to a

long-horizon investor. While at horizons of a few days these portfolios seem to have

half the volatility as the market portfolio, the volatility almost doubles when the

horizon stretches to a few years. Worse still, these portfolios that previously seemed

to offer good diversi cation relative to the aggregate equity market see their

correlations increase signi cantly.

I S -T T

While buy-and-hold investors may have poor measures of risk calculated from

short-horizon returns, active investors with a short-term focus (or even long-term

investors who rebalance frequently) may nd short-term comovement estimates

appropriately capture the portfolio risks that ma er to them. Although the

underlying driver of short-horizon comovement may be fads rather than

fundamentals, it accurately re ects the one-period risks they face.

However, the relationship between correlation and time horizon reveals how one

period affects the next. As equation ( . ) emphasizes, correlation differences imply

predictability. With predictability, there is an implied trading strategy that should be

a ractive to tactical traders.

In this section, I will show the historical performance of a simple trading strategy

based on the comovement pa erns identi ed. is exercise provides additional

evidence that the comovement pa erns established in the empirical analysis cannot



be easily explained by established risk factors. It also frames the results in a se ing

familiar to other empirical studies of asset (mis)pricing where a portfolio formation

rule generates a trading strategy.

For be er or for worse, this trading strategy based on comovement pa erns has no

anchor suggesting the true fundamental value of any particular asset. e intuition is

roughly equivalent to that of a ”pairs trading” strategy (albeit with a much longer

horizon). When the prices of two assets with similar fundamentals diverge, the

strategy puts on a long-short convergence trade. is comes with some danger. A

more savvy investor would consider the actual news and prices rather than pursue

what Stein ( ) terms an ”unanchored” trading scheme. In that sense, the trading

strategy is empirically instructive but not recommended.

A

e proposed trading signal is derived from the regression relationships for the short

run return

E
[
rt,i|rt,j

]
= E [rt,i] + ρij ( )

σ i
σj
(
rt,j − E

[
rt,j
])

( . )

and the long run return

E

[
H−∑
τ=

ri,t+τ|rt,j

]
= E

[
H−∑
τ=

ri,t+τ

]
+ ρij (H)

σ i
σj
(
rt,j − E

[
rt,j
])

( . )

of rt,i conditional on rt,j. If we assume that the volatility ratio ( σ i
σj) is roughly constant

and the unconditional expected return for each stock is approximately equal, then we



can subtract ( . ) from ( . ) and forecast the excess return for the future

E

[
H−∑
τ=

ri,t+τ|rt,j

]
− E

[
H−∑
τ=

ri,t+τ

]
= Δρij

σ i
σj
rt,j. ( . )

WithN assets, equation ( . ) will yieldN− univariate forecasts. For simplicity,

the trading signal will weight them equally.³ e signal is then de ned as

Xi,t = N−
∑
j̸=i

Δρi,j
σ i
σ j
rt,j. ( . )

E

In the empirical implementation of the trading strategy, the universe of rms will be

determined in much the same way as before, comprising the largest rms by

market cap over the year sample. e set of rms will be updated annually, using

data available the nal business day in December of the previous year.

To predict the future difference in long-run and short-run correlation (Δρi,j) I use

the two main variables presented previously, where investor trading behavior is

proxied by the correlation in bid-ask bounce, νij, and fundamentals are measured as

the correlation of the return on equity, Corr
[
ROEi,ROEj

]
. e difference between

long-horizon and short-horizon correlation that determines the trading signal for

forecasting in ( . ) can be constructed without too much fear of over ing from

the in-sample regression results by simply taking the equal-weighted difference:

Δρi,j ≈ Corr
[
ROEi,ROEj

]
− νij.

³An alternative would be to create the multivariate optimal forecast with GLS weights



ese two variables are updated annually and implemented in portfolios formed

each January using information that would be available in December. e volatility

ratio σ i
σj

is also updated annually, and is calculated as the standard deviation of the

weekly returns over the prior three years. Shorter histories are used for any rm

where three years are not available, and outliers are winsorized at the th and th

percentiles.

S

ere remains the question of how long this signal should persist. e empirical

analysis arbitrarily chose the long horizon to beH = weeks but did not suggest

whether the correlation differences resolved in a ma er of weeks or if the correlations

continued to evolve even a er the six-month window. In the context of this trading

strategy, this question is analogous to asking how long the signal Xt is expected to

forecast excess returns.

In the framework of the simple model of fads and fundamentals presented earlier,

we want to know the decay rates δd and δf. While there is likely a high degree of

variation in the characteristics of fads and fundamentals that affect the US equity

market, it is interesting to take the simpli ed model and estimate the half-life of the

signal.

We can do this by building a simply portfolio rule, sorting stocks into quintiles

based on their signal Xt and constructing a long-short portfolio that buys the highest

quintile and sells the lowest quintile. e event time returns to this portfolio, shown

in Figure . will show the degree to which the information persists.
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Figure . : Event Time Returns to Xt Components of the L/S Portfolio

Each column in the bar chart represents the average weekly return resulting from a

portfolio formed at time t = . e rst column, colored white, represents the return

that would be received from buying at the close of the formation week. To be as

conservative as possible in representing the returns to a trading strategy, this rst

week is omi ed from the trading strategy results shown in the following subsection.

Even discarding this rst week, there is a pa ern of positive returns that continues at

lags of up to two months.

B

Given the matrix Δβ, the trading signal in ( . ) is obtained each week by

multiplying Δβ by the returns from the recent past. For the purposes of this backtest,

I will consider the recent past to be the returns from the past weeks, omi ing the



most recent weeks’ returns to avoid the gaining credit for returns previously shown to

be partially a ributed to microstructure effects. e results without lagging the signal

by one week would be extraordinarily large.

I generate calendar time backtest returns by sorting stocks each week into

equal-weighted quintile portfolios based on their respective trading signal predicting

future returns. e rms with the highest factor values, populating portfolio Q ,

are predicted to outperform the quintiles with lower factor values, particularly those

in the quintile with the lowest factor values, Q . A long/short portfolio is created by

taking a long position in the rms in Q and an equivalent short position in the rms

comprising Q .

I will also show event time returns that would result from creating the trading

signals using only one week returns over a range of lags. is will give an indication of

how fast the predicted components of excess and insufficient comovement are

corrected in asset prices. is will also con rm the choice of using a six week window

in the calendar time backtest is both sensible and robust to alternative speci cations.

T S R

e annual returns to the long/short portfolio are graphed in Figure . . e

performance of this long/short portfolio is relatively consistent over time and does

not show a tendency to decrease over time. is is true even in the most recent

decade when you might expect that trading by hedge funds, especially so-called

statistical arbitrage funds, might employ similar strategies and erode the returns

available to a comovement based strategy.
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Figure . : Annual Calendar Time Returns to L/S Portfolio

e strong recent performance is also surprising given the fact that, on average,

short-horizon and long-horizon comovement have converged. is result suggests

that the dispersion of comovement differences across rms remains large and

predictable even while the average is near zero. Looking again at the annual returns to

the strategy, the most pro table of the years considered was , with a return of

. . Over the -year sample, the long/short portfolio generates an average annual

excess return of . with a corresponding Sharpe Ratio of . .

e weekly event time returns, shown in Figure . , provide additional insight on

the nature of the portfolio returns. ese event time returns only interact one week of

past returns (dated rt) to generate the signal vector Xt. e event time graph displays

the mean return to the long/short portfolio traded various weeks into the future. You

can see that the t+ return is shaded in white. is is because the week immediately



following portfolio formation is excluded in the analysis, since some of that (very

large) return may be generated by temporary price impact and would not achievable.

e returns from t+ to t+ are shaded in dark blue. is is to indicate that these

ve weeks of returns are the ones used in the construction of the calendar time

long/short portfolios. Returns to all subsequent weeks are in light blue. From these

event returns, it appears that the predictive component of comovement identi ed by

these two signals generates declining abnormal returns for about weeks a er

portfolio formation, and a erwards, the returns seem indistinguishable from noise.

A

e average weekly excess returns alphas for the calendar time analysis of the ve

quintile portfolios and the long/short portfolio are presented in Table . . As would

be desired, there is a consistent pa ern of returns increasing by quintile. In the

unadjusted excess returns, the lowest quintile portfolio earns only . basis points

per week versus the . basis point average return of the highest quintile, which

corresponds to an annual return of . . e basis point weekly return of the

long/short portfolio has an associated t-statistic of . , indicating we can

con dently reject the notion that the true excess return of the strategy is zero.

Table . also reports the alphas for each portfolio a er controlling for risk factors

known to generate positive returns. ese alphas are the intercept in the regression of

the weekly returns of risk factors on the returns to the quintile and long/short

portfolios. Four factor models are considered, and the Tuesday-to-Tuesday weekly

returns for each of the component risk factors are derived from the daily research



Table . : Weekly Abnormal Returns (in bps) to Δβ Trading Strategy

is table shows the calendar time portfolio abnormal returns, reported in basis points ( / th

of one percent). e rst row shows the average weekly returns of the quintile portfolios and the
long/short (L/S) portfolio formed by going long the highest quintile with the highest signal values
(Q ) and short the quintile portfolio with the lowest. Alpha is the intercept coefficient from regress-
ing the weekly returns on various risk factors. e return series of the risk factors and the risk free
rates are derived from the data provided by Ken French on his website. T-statistics are displayed in
brackets below each return coefficient.

Factor Quintile L/S
(low) (high)
Q Q Q Q Q Q -Q

Excess Returns . . . . . .
[ . ] [ . ] [ . ] [ . ] [ . ] [ . ]

-factor alpha - . . . . . .
(Mkt) [- . ] [ . ] [ . ] [ . ] [ . ] [ . ]

-factor alpha - . . . . . .
(...+ SMB, HML) [- . ] [ . ] [ . ] [ . ] [ . ] [ . ]

-factor alpha . . . . . .
(...+ UMD) [ . ] [ . ] [ . ] [ . ] [ . ] [ . ]

-factor alpha - . - . . . . .
(...+ STREV, LTREV) [- . ] [- . ] [ . ] [ . ] [ . ] [ . ]



returns available on Ken French’s website⁴. e rst two models include a -factor

model that controls for exposure to the value-weightedmarket index, and the -factor

alpha, that additionally includes the SMB and HML factors popularized by Fama and

French ( ).

In addition to these standard benchmarks, we might wonder if the returns to

portfolios based on comovement are related to momentum and reversal pa erns

found to empirically generate positive returns in the cross-section of US equities. To

answer this, we can introduce two additional models, a -factor model including

Carhart’s ( ) momentum factor, and nally, a -factor model which additionally

includes short-term and long-term reversal pa erns. ese reversal returns are

de ned by French to be the lagged one month return and the past -year return

excluding the most recent year. Interestingly, this comovement trading strategy tends

to trade in the opposite direction of these reversal factors, making the alphas look

even more compelling. e long/short portfolio, which averages . basis points of

excess returns weekly, reports a -factor alpha of . basis points. Translated to an

annual time frequency, these risk adjusted returns would yield an average return of

. and a Sharpe Ratio of . .

C

Asset price comovement changes with time horizon. e evidence is consistent with

a model where fads and information delays cause prices to temporarily deviate from

fundamentals. In particular, there is compelling evidence that investor trading

⁴h p://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html



behavior and salient security characteristics are more important factors in

determining the correlation of US equity returns over short horizons while measures

of long-run fundamentals play a greater role in return correlations over longer

horizons.

I propose the difference between short-horizon and long-horizon comovement is a

natural metric for studying excess comovement. Measures of common trading

behavior and shared economic fundamentals show signi cant power in explaining

cross-sectional differences in excess comovement across pairs of stocks. ey can also

form a successful trading strategy. A portfolio based on predictable differences in

stock correlations generates consistent excess returns not explained by risk exposures.

e main implication for investors with a buy and hold strategy is that they may be

underestimating (or overestimating) the risk concentration of their portfolio if they

extrapolate comovement and volatility from short-horizon returns. is also suggests

a degree of caution to nancial econometricians who propose the use of intra-day

data to estimate the covariance of security returns. It would seem that using ever

shorter return horizons to estimate second moments will likely capture a greater

degree of comovement driven by trading behavior rather than the fundamentals that

ma er over longer horizons.

Although the empirical evidence presented here focuses on US equities, the

principle should apply just as much in other asset classes as well as in the broader

asset allocation decision. In fact, there is reason to believe differences in comovement

may be even larger across asset classes, as market segmentation may be more

pronounced. e relationship between correlation and return horizon may identify



risks and opportunities that can arise as short-run comovement deviates from

long-run fundamentals.



We must include in the long-period cost a third term which
we might call the risk-cost to cover the unknown possibilities
of the actual yield differing om the expected yield.

JohnMaynard Keynes

2
An Intertemporal CAPM
with Stochastic Volatility

authored with John Campbell, Stefano Giglio and Christopher Polk

T of intertemporal asset pricing theory is that long-term

investors should care just as much about the returns they earn on their invested

wealth as about the level of that wealth. In a simple model with a constant rate of

return, for example, the sustainable level of consumption is the return on wealth

multiplied by the level of wealth, and both terms in this product are equally



important. In a more realistic model with time-varying investment opportunities,

conservative long-term investors will seek to hold “intertemporal hedges”, assets that

perform well when investment opportunities deteriorate. Such assets should deliver

lower average returns in equilibrium if they are priced from conservative long-term

investors’ rst-order conditions.

Since the seminal work of Merton ( ) on the intertemporal capital asset

pricing model (ICAPM), a large empirical literature has explored the relevance of

intertemporal considerations for the pricing of nancial assets in general, and the

cross-sectional pricing of stocks in particular. One strand of this literature uses the

approximate accounting identity of Campbell and Shiller ( a) and the

assumption that a representative investor has Epstein-Zin utility ( Epstein and Zin

) to obtain approximate closed-form solutions for the ICAPM’s risk prices

(Campbell ). ese solutions can be implemented empirically if they are

combined with vector autoregressive (VAR) estimates of asset return dynamics

(Campbell ). Campbell and Vuolteenaho ( ), Campbell, Polk, and

Vuolteenaho ( ), and Campbell, Giglio, and Polk ( ) use this approach to

argue that value stocks outperform growth stocks on average because growth stocks

do well when the expected return on the aggregate stock market declines; in other

words, growth stocks have low risk premia because they are intertemporal hedges for

long-term investors.

A weakness of the papers cited above is that they ignore time-variation in the

volatility of stock returns. In general, investment opportunities may deteriorate either

because expected stock returns decline or because the volatility of stock returns



increases, and it is an empirical question which of these two types of intertemporal

risk have a greater effect on asset returns. We address this weakness in this paper by

extending the approximate closed-form ICAPM to allow for stochastic volatility. e

resulting model explains risk premia in the stock market using three priced risk

factors corresponding to three important a ributes of aggregate market returns:

revisions in expected future cash ows, discount rates, and volatility. An a ractive

characteristic of the model is that the prices of these three risk factors depend on only

one free parameter, the long-horizon investor’s coefficient of risk aversion.

Since the long-horizon investor in our model cares mostly about persistent

changes in the investment opportunity set, there must be predictable variation in

long-run volatility for volatility risk to ma er. Empirically, we implement our

methodology using a vector autoregression (VAR) including stock returns, realized

variance, and other nancial indicators that may be relevant for predicting returns

and risk. Our VAR reveals low-frequency movements in market volatility tied to the

default spread, the yield spread of low-rated over high-rated bonds. While this effect

has received li le a ention in the literature, we argue that it is sensible: Investors in

risky bonds perceive the long-run component of volatility and incorporate this

information when they set credit spreads, as risky bonds are short the option to

default. Moreover, we show that GARCH-based methods that lter only the

information in past returns in order to disentangle the short-run and long-run

volatility components miss this important low-frequency component.

With our novel model of long-run volatility in hand, we nd that growth stocks

have low average returns because they outperform not only when the expected stock



return declines, but also when stock market volatility increases. us growth stocks

hedge two types of deterioration in investment opportunities, not just one. In the

period since that creates the greatest empirical difficulties for the standard

CAPM, we nd that the three-beta model explains over of the cross-sectional

variation in average returns of portfolios sorted by size and book-to-market ratios.

e model is not rejected at the level while the CAPM is strongly rejected. e

implied coefficient of relative risk aversion is an economically reasonable . , in

contrast to the much larger estimate of . , which we get when we estimate a

comparable version of the two-beta CAPM of Campbell and Vuolteenaho ( )

using the same data.¹ is success is due in large part to the inclusion of volatility

betas in the speci cation. In particular, the spread in volatility betas in the

cross-section generates an annualized spread in average returns of . compared to

a comparable spread of . and . for cash- ow and discount-rate betas.

We con rm that our ndings are robust by expanding the set of test portfolios in

two important dimensions. First, we show that our three-beta model not only

describes the cross-section of size- and book-to-market-sorted portfolios but also can

explain the average returns on risk-sorted portfolios. We examine risk-sorted

portfolios in response to the argument of Daniel and Titman ( , ) and

Lewellen, Nagel, and Shanken ( ) that asset-pricing tests using only portfolios

sorted by characteristics known to be related to average returns, such as size and

value, can be misleading. As tests that include risk-sorted portfolios are unable to

reject our intertemporal CAPM with stochastic volatility, we verify that the model’s

¹ e risk aversion estimate reported in Campbell and Vuolteenaho’s ( ) paper is . .



success is not simply due to the low-dimensional factor structure of the size- and

book-to-market-sorted portfolios. Speci cally, we show that sorts on stocks’

pre-formation sensitivity to volatility news generate economically and statistically

signi cant spread in both post-formation volatility beta and average returns in a

manner consistent with our model. Interestingly, in the post- period, sorts on

past CAPM beta generate li le spread in post-formation cash- ow betas, but

signi cant spread in post-formation volatility betas. Since, in the three-beta model,

covariation with aggregate volatility news has a negative premium, the three-beta

model also explains why stocks with high past CAPM betas have offered relatively

li le extra return in the post- sample.

Second, we show that our three-beta model can help explain average returns on

non-equity portfolios that are exposed to aggregate volatility risk. ese portfolios

include the S&P index straddle of Coval and Shumway ( ), which is explicitly

designed to be highly correlated with aggregate volatility risk, and the risky bond

factor of Fama and French ( ), which should be sensitive to changes in aggregate

volatility since risky corporate debt is short the option to default. Consistent with

this intuition, we nd that compared to the volatility beta of a value-minus-growth

bet, the risky bond factor’s volatility beta is of the same order of magnitude while the

straddle’s volatility beta is more than times larger in absolute magnitude. ese

volatility betas are of the right sign to explain the abnormal CAPM returns of the

option and bond portfolios. Approximately of the average straddle return can be

a ributed to its three ICAPM betas, based purely on model estimates from the

cross-section of equity returns. Additionally, when we price the joint cross-section of



equity, bond, and straddle returns our intertemporal CAPM with stochastic volatility

is not rejected at the -percent level while the CAPM is strongly rejected.

Our work is complementary to recent research on the “long-run risk model” of

asset prices (Bansal and Yaron ) which can be traced back to insights in Kandel

and Stambaugh ( ). Both the approximate closed-form ICAPM and the long-run

risk model start with the rst-order conditions of an in nitely lived Epstein-Zin

representative investor. As originally stated by Epstein and Zin ( ), these

rst-order conditions involve both aggregate consumption growth and the return on

the market portfolio of aggregate wealth.Campbell ( ) pointed out that the

intertemporal budget constraint could be used to substitute out consumption

growth, turning the model into a Merton-style ICAPM. Restoy and Weil ( ,

) used the same logic to substitute out the market portfolio return, turning the

model into a generalized consumption CAPM in the style of Breeden ( ).

Kandel and Stambaugh ( ) were the rst researchers to study the implications

for asset returns of time-varying rst and second moments of consumption growth in

a model with a representative Epstein-Zin investor. Speci cally, Kandel and

Stambaugh ( ) assumed a four-state Markov chain for the expected growth rate

and conditional volatility of consumption, and provided closed-form solutions for

important asset-pricing moments. In the spirit of Kandel and Stambaugh ( ),

Bansal and Yaron ( ) added stochastic volatility to the Restoy-Weil model, and

subsequent research on the long-run risk model has increasingly emphasized the

importance of stochastic volatility for generating empirically plausible implications

from this model (Bansal, Kiku, and Yaron , Beeler and Campbell ). In this



paper we give the approximate closed-form ICAPM the same capability to handle

stochastic volatility that its cousin, the long-run risk model, already possesses.

One might ask whether there is any reason to work with an ICAPM rather than a

consumption-based model given that these models are derived from the same set of

assumptions. e ICAPM developed in this paper has several advantages. First, it

describes risks as they appear to an investor who takes asset prices as given and

chooses consumption to satisfy his budget constraint. is is the way risks appear to

individual agents in the economy, and it seems important for economists to

understand risks in the same way that market participants do rather than relying

exclusively on a macroeconomic perspective. Second, the ICAPM allows an

empirical analysis based on nancial proxies for the aggregate market portfolio rather

than on accurate measurement of aggregate consumption. While there are certainly

challenges to the accurate measurement of nancial wealth, nancial time series are

generally available on a more timely basis and over longer sample periods than

consumption series. ird, the ICAPM in this paper is exible enough to allow

multiple state variables that can be estimated in a VAR system; it does not require

low-dimensional calibration of the sort used in the long-run risk literature. Finally,

the stochastic volatility process used here governs the volatility of all state variables,

including itself. We show that this assumption ts nancial data reasonably well, and

it guarantees that stochastic volatility would always remain positive in a

continuous-time version of the model, a property that does not hold in most current

implementations of the long-run risk model.²

²Eraker ( ) and Eraker and Shaliastovich ( ) are exceptions.



e closest precursors to our work are unpublished papers by Chen ( ) and

Sohn ( ). Both papers explore the effects of stochastic volatility on asset prices in

an ICAPM se ing but make strong assumptions about the covariance structure of

various news terms when deriving their pricing equations. Chen ( ) assumes

constant covariances between shocks to the market return (and powers of those

shocks) and news about future expected market return variance. Sohn ( ) makes

two strong assumptions about asset returns and consumption growth, speci cally

that all assets have zero covariance with news about future consumption growth

volatility and that the conditional contemporaneous correlation between the market

return and consumption growth is constant through time. Duffee ( ) presents

evidence against the la er assumption. It is in any case una ractive to make

assumptions about consumption growth in an ICAPM that does not require accurate

measurement of consumption.

Chen estimates a VAR with a GARCH model to allow for time variation in the

volatility of return shocks, restricting market volatility to depend only on its past

realizations and not those of the other state variables. His empirical analysis has li le

success in explaining the cross-section of stock returns. Sohn uses a similar but more

sophisticated GARCH model for market volatility and tests how well short-run and

long-run risk components from the GARCH estimation can explain the returns of

various stock portfolios, comparing the results to factors previously shown to be

empirically successful. In contrast, our paper incorporates the volatility process

directly in the ICAPM, allowing heteroskedasticity to affect and to be predicted by all

state variables, and showing how the price of volatility risk is pinned down by the



time-series structure of the model along with the investor’s coefficient of risk

aversion.

A working paper by Bansal, Kiku, Shaliastovich and Yaron ( ),

contemporaneous with our own, explores the effects of stochastic volatility in the

long-run risk model. Like us, they nd stochastic volatility to be an important feature

in the time series of equity returns. eir work puts greater emphasis on the implied

consumption dynamics while we focus on the cross-sectional pricing implications of

exposure to volatility news. More fundamentally, there are differences in the

underlying models. ey assume that the stochastic process driving volatility is

homoskedastic, and in their cross-sectional analysis they impose that changes in the

equity risk premium are driven only by the conditional variance of the stock market.

e different modeling assumptions account for our contrasting empirical results; we

show that volatility risk is very important in explaining the cross-section of stock

returns while they nd it has li le impact on cross-sectional differences in risk premia.

Stochastic volatility has, of course, been explored in other branches of the nance

literature. For example, Chacko and Viceira ( ) and Liu ( ) show how

stochastic volatility affects the optimal portfolio choice of long-term investors.

Chacko and Viceira assume an AR( ) process for volatility and argue that

movements in volatility are not persistent enough to generate large intertemporal

hedging demands. Campbell and Hentschel ( ), Calvet and Fisher ( ), and

Eraker and Wang ( ) argue that volatility shocks will lower aggregate stock prices

by increasing expected returns, if they do not affect cash ows. e strength of this

volatility feedback effect depends on the persistence of the volatility process. Coval



and Shumway ( ), Ang, Hodrick, Xing, and Zhang ( ), and Adrian and

Rosenberg ( ) present evidence that shocks to market volatility are priced risk

factors in the cross-section of stock returns, but they do not develop any theory to

explain the risk prices for these factors.

ere is also an enormous literature in nancial econometrics on modeling and

forecasting time-varying volatility. Since Engle’s ( ) seminal paper on ARCH,

much of the literature has focused on variants of the univariate GARCH model

(Bollerslev ), in which return volatility is modeled as a function of past shocks to

returns and of its own lags (see Poon and Granger ( ) and Andersen et al. ( )

for recent surveys). More recently, realized volatility from high-frequency data has

been used to estimate stochastic volatility processes (Barndorff-Nielsen and

Shephard , Andersen et al. ). e use of realized volatility has improved the

modeling and forecasting of volatility, including its long-run component; however,

this literature has primarily focused on the information content of high-frequency

intra-daily return data. is allows very precise measurement of volatility, but at the

same time, given data availability constraints, limits the potential to use long time

series to learn about long-run movements in volatility. In our paper, we measure

realized volatility only with daily data, but augment this information with other

nancial time series that reveal information investors have about underlying volatility

components.

A much smaller literature has, like us, looked directly at the information in other

variables concerning future volatility. In early work, Schwert ( ) links movements

in stock market volatility to various indicators of economic activity, particularly the



price-earnings ratio and the default spread, nding relatively weak results. Engle,

Ghysels and Sohn ( ) study the effect of in ation and industrial production

growth on volatility, nding a signi cant link between the two, especially at long

horizons. Campbell and Taksler ( ) look at the cross-sectional link between

corporate bond yields and equity volatility, emphasizing that bond yields respond to

idiosyncratic rm-level volatility as well as aggregate volatility. Two recent papers,

Paye ( ) and Christiansen et al. ( ), look at larger sets of potential predictors

of volatility, that include the default spread and/or valuation ratios, to study which

ones have predictive power for quarterly realized variance. e former, in a standard

regression framework, nds that a few variables, that include the commercial paper to

Treasury spread and the default spread, contain useful information for predicting

volatility. e la er uses Bayesian Model Averaging to determine which variables are

most important for predicting quarterly volatility, and documents the importance of

the default spread and valuation ratios in forecasting short-run volatility.

. A I M S V

A

Preferences

We begin by assuming a representative agent with Epstein-Zin preferences. We

write the value function as

Vt =

[
( − δ)C

−γ
θ

t + δ
(
Et
[
V −γ
t+
]) /θ

] θ
−γ

, ( . )



whereCt is consumption and the preference parameters are the discount factor δ, risk

aversion γ, and the elasticity of intertemporal substitution ψ. For convenience, we

de ne θ = ( − γ)/( − /ψ).

e corresponding stochastic discount factor (SDF) can be wri en as

Mt+ =

(
δ
(

Ct

Ct+

) /ψ
)θ (

Wt − Ct

Wt+

) −θ

, ( . )

whereWt is the market value of the consumption stream owned by the agent,

including current consumption Ct.³ e log return on wealth is

rt+ = ln (Wt+ / (Wt − Ct)), the log value of wealth tomorrow divided by reinvested

wealth today. e log SDF is therefore

mt+ = θ ln δ − θ
ψ
Δct+ + (θ − ) rt+ . ( . )

A convenient identity

e gross return to wealth can be wri en

+ Rt+ =
Wt+

Wt − Ct
=

(
Ct

Wt − Ct

)(
Ct+

Ct

)(
Wt+

Ct+

)
, ( . )

expressing it as the product of the current consumption payout, the growth in

consumption, and the future price of a unit of consumption.

We nd it convenient to work in logs. We de ne the log value of reinvested wealth

per unit of consumption as zt = ln ((Wt − Ct) /Ct), and the future value of a

³ is notational convention is not consistent in the literature. Some authors exclude current
consumption from the de nition of current wealth.



consumption claim as ht+ = ln (Wt+ /Ct+ ), so that the log return is:

rt+ = −zt + Δct+ + ht+ . ( . )

Heuristically, the return on wealth is negatively related to the current value of

reinvested wealth and positively related to consumption growth and the future value

of wealth. e last term in equation ( . ) will capture the effects of intertemporal

hedging on asset prices, hence the choice of the notation ht+ for this term.

e ICAPM

We assume that asset returns are jointly conditionally lognormal, but we allow

changing conditional volatility so we are careful to write second moments with time

subscripts to indicate that they can vary over time. Under this standard assumption,

the expected return on any asset must satisfy

= ln Et exp{mt+ + ri,t+ } = Et [mt+ + ri,t+ ] + Vart [mt+ + ri,t+ ] , ( . )

and the risk premium on any asset is given by

Etri,t+ − rf,t + Vartrt+ = −Covt [mt+ , ri,t+ ] . ( . )

e convenient identity ( . ) can be used to write the log SDF ( . ) without

reference to consumption growth:

mt+ = θ ln δ − θ
ψ
zt +

θ
ψ
ht+ − γrt+ . ( . )



Since the rst two terms in ( . ) are known at time t, only the la er two terms appear

in the conditional covariance in ( . ). We obtain an ICAPM pricing equation that

relates the risk premium on any asset to the asset’s covariance with the wealth return

and with shocks to future consumption claim values:

Etri,t+ − rf,t + Vartrt+ = γCovt [ri,t+ , rt+ ]− θ
ψ
Covt [ri,t+ , ht+ ] ( . )

Return and risk shocks in the ICAPM

To be er understand the intertemporal hedging component ht+ , we proceed in

two steps. First, we approximate the relationship of ht+ and zt+ by taking a loglinear

approximation about z̄:

ht+ ≈ κ + ρzt+ ( . )

where the loglinearization parameter ρ = exp(z̄)/( + exp(z̄)) ≈ − C/W.

Second, we apply the general pricing equation ( . ) to the wealth portfolio itself

(se ing ri,t+ = rt+ ), and use the convenient identity ( . ) to substitute out

consumption growth from this expression. Rearranging, we can write the variable zt

as

zt = ψ ln δ + (ψ − )Etrt+ + Etht+ +
ψ
θ

Vart [mt+ + rt+ ] . ( . )



ird, we combine these expressions to obtain the innovation in ht+ :

ht+ − Etht+ = ρ(zt+ − Etzt+ )

= (Et+ − Et)ρ

 (ψ − )rt+ + ht+

+ ψ
θ Vart+ [mt+ + rt+ ]

 . ( . )

Solving forward to an in nite horizon,

ht+ − Etht+ = (ψ − )(Et+ − Et)
∞∑
j=

ρjrt+ +j

+
ψ
θ
(Et+ − Et)

∞∑
j=

ρjVart+j
[
mt+ +j + rt+ +j

]
= (ψ − )NDR,t+ +

ψ
θ
NRISK,t+ . ( . )

e second equality follows Campbell and Vuolteenaho ( ) and uses the

notationNDR (“news about discount rates”) for revisions in expected future returns.

In a similar spirit we write revisions in expectations of future risk (the variance of the

future log return plus the log stochastic discount factor) asNRISK.

Finally, we substitute back into the intertemporal model ( . ):

Etri,t+ − rf,t + Vartri,t+ = γCovt [ri,t+ ,NCF,t+ ]

+Covt [ri,t+ ,−NDR,t+ ]

− Covt [ri,t+ ,NRISK,t+ ] . ( . )

is comes from the classic expression expressing the risk premium as risk



aversion γ times covariance with the current market return, plus (γ − ) times

covariance with news about future market returns, minus one half covariance with

risk. is is an extension of the ICAPM as wri en by Campbell ( ), with no

reference to consumption or the elasticity of intertemporal substitution ψ.⁴ When

the investor’s risk aversion is greater than , assets which hedge aggregate discount

rates (Covt [ri,t+ ,NDR,t+ ] < ) or aggregate risk (Covt [ri,t+ ,NRISK,t+ ] > ) have

lower expected returns, all else equal.

In the rewri en form of equation ( . ), the expression followes Campbell and

Vuolteenaho ( ), by breaking the market return into cash- ow news and

discount-rate news. Cash- ow newsNCF is de ned byNCF = rt+ −Etrt+ + NDR.

e price of risk for cash- ow news is γ times greater than the price of risk for

discount-rate news, hence Campbell and Vuolteenaho call betas with cash- ow news

“bad betas” and those with discount-rate news “good betas” since they have lower risk

prices in equilibrium. e third term in ( . ) shows the risk premium associated

with exposure to news about future risks and did not appear in Campbell and

Vuolteenaho’s model, which assumed homoskedasticity. Not surprisingly, the

coefficient is negative, indicating that an asset providing positive returns when risk

expectations increase will offer a lower return on average.

⁴Campbell ( ) brie y considers the heteroskedastic case, noting that when γ = ,
Vart [mt+ + rt+ ] is a constant. is implies that NRISK does not vary over time so the stochastic
volatility term disappears. Campbell claims that the stochastic volatility term also disappears when
ψ = , but this is incorrect. When limits are taken correctly, NRISK does not depend on ψ (except
indirectly through the loglinearization parameter, ρ).



F

e risk shocks de ned in the previous subsection are shocks to the conditional

volatility of returns plus the stochastic discount factor, that is, the conditional

volatility of risk-neutralized returns. We now make additional assumptions on the

data generating process for stock returns that allow us to estimate the news terms.

ese assumptions imply that the conditional volatility of risk-neutralized returns is

proportional to the conditional volatility of returns themselves.

Suppose the economy is described by a rst-order VAR

xt+ = x̄ + Γ (xt − x̄) + σtut+ , ( . )

where xt+ is an n× vector of state variables that has rt+ as its rst element, σt+ as

its second element, and n− other variables that help to predict the rst and second

moments of aggregate returns. x̄ and Γ are an n× vector and an n× nmatrix of

constant parameters, and ut+ is a vector of shocks to the state variables normalized

so that its rst element has unit variance. e key assumption here is that a scalar

random variable, σt , equal to the conditional variance of market returns, also governs

time-variation in the variance of all shocks to this system. Both market returns and

state variables, including volatility itself, have innovations whose variances move in

proportion to one another.



Given this structure, news about discount rates can be wri en as

NDR,t+ = (Et+ − Et)
∞∑
j=

ρjrt+ +j

= e′
∞∑
j=

ρjΓjσtut+

= e′ρΓ (I − ρΓ)− σtut+ ( . )

Furthermore, our log-linear model will make the log SDF,mt+ , a linear function

of the state variables. Since all shocks to the SDF are then proportional to σt,

Vart [mt+ + rt+ ] ∝ σt . As a result, the conditional variance,

Vart [(mt+ + rt+ ) /σt] = ωt, will be a constant that does not depend on the state

variables. Without knowing the parameters of the utility function, we can write

Vart [mt+ + rt+ ] = ωσt so that the news about risk,NRISK, is proportional to news

about market return variance,NV.

NRISK,t+ = (Et+ − Et)
∞∑
j=

ρjVart+j
[
rt+ +j + mt+ +j

]
= (Et+ − Et)

∞∑
j=

ρj
(
ωσt+j

)
= ωρe′

∞∑
j=

ρjΓjσtut+

= ωρe′ (I − ρΓ)− σtut+ = ωNV,t+ . ( . )

Substituting ( . ) into ( . ), we obtain an empirically-testable intertemporal



CAPM with stochastic volatility:

Etri,t+ − rf,t + Vartri,t+ = γCovt [ri,t+ ,NCF,t+ ]

+Covt [ri,t+ ,−NDR,t+ ]

− ωCovt [ri,t+ ,NV,t+ ] , ( . )

where covariances with news about three key a ributes of the market portfolio (cash

ows, discount rates, and volatility) describe the cross section of average returns.

e parameter ω is a nonlinear function of the coefficient of relative risk aversion

γ, as well as the VAR parameters and the loglinearization coefficient ρ, but it does not

depend on the elasticity of intertemporal substitution ψ except indirectly through the

in uence of ψ on ρ.

By de nition

ωσt = Vart [mt+ + rt+ ]

= Vart

[
θ
ψ
ht+ + ( − γ)rt+

]
= Vart

[
θ
ψ

(
(ψ − )NDR,t+ +

ψ
θ
ωNV,t+

)
+ ( − γ)rt+

]
= Vart

[
( − γ)NDR,t+ + ωNV,t+ + ( − γ)rt+

]
= Vart

[
( − γ)NCF,t+ + ωNV,t+

]
.



erefore ω solves:

ωσt = ( − γ) Vart
[
NCFt+

]
+ω( − γ)Covt

[
NCFt+ ,NVt+ ,

]
+ ω Vart

[
NVt+

]
. ( . )

We can see two main channels through which γ affects ω. First, a higher risk

aversion given the underlying volatilities of all shocks implies a more volatile

stochastic discount factorm, and therefore a higher RISK. is effect is proportional

to ( − γ) , so it increases rapidly with γ. Second, there is a feedback effect on RISK

through future risk: ω appears on the right-hand side of the equation as well. Given

that in our estimation we nd Covt
[
NCFt+ ,NVt+ ,

]
< , this second effect makes ω

increase even faster with γ.⁵

is equation can also be wri en directly in terms of the VAR parameters. If we

de ne xCF and xV as the error-to-news vectors such that

σt
NCF,t+ = xCFut+ =

(
e′ + e′ρΓ(I− ρΓ)−

)
ut+ ( . )

σt
NV,t+ = xVut+ =

(
e′ ρ(I− ρΓ)−

)
ut+ ( . )

and de ne the covariance matrix of the residuals (scaled to eliminate stochastic

⁵Bansal, Kiku, Shaliastovich and Yaron ( ) derive a similar expression. e equivalent expres-
sion for ω in their case reduces to ( − γ) as they impose that the volatility process is homoskedastic
and the conditional equity premium is driven solely by the stochastic volatility.



volatility) as Σ =Var[ut+ ], then ω solves

= ω xVΣx′V − ω ( − ( − γ) xCFΣx′V) + ( − γ) xCFΣx′CF ( . )

is quadratic equation for ω has two solutions. is result is an artifact of our

linear approximation of the Euler Equation, and the appendix shows that one of the

solutions can be disregarded. is false solution is easily identi ed by its implication

that ω becomes in nite as volatility shocks become small. e correct solution is

ω =
− ( − γ)xCFΣx′V

xVΣx′V

−
√
( − ( − γ)xCFΣx′V) − ( − γ) (xVΣx′V)(xCFΣx′CF)

xVΣx′V
( . )

ere is an additional disadvantage to the quadratic expression arising from our

loglinearization. In the case where risk aversion, volatility shocks and cash ow

shocks are large enough, as measured by the product ( − γ) (xVΣx′V)(xCFΣx′CF).

equation ( . ) may deliver a complex rather than a real value for ω. While the

conditional variance Vart[mt+ + rt+ ] from which we de ne ω will be both real and

nite, the loglinear approximation may not allow for a real solution in an

economically important region of the parameter space. Given our VAR estimates of

the variance and covariance terms, we nd equation ( . ) yields a real solution as γ

ranges from zero to . .
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Figure . : Approximate Gamma-Omega Relationship
is gure graphs the approximate relation between the parameter γ and the parameter ω described

by equation ( . ) as well as the quadratic solution for ω described in equation ( . ). ese func-
tions depend on the loglinearization parameter ρ, set to . per year and the empirically estimated
VAR parameters of Table . γ is the investor’s risk aversion while ω is the sensitivity of news about
risk,NRISK, to news about market variance,NV.

To allow for larger values in our risk aversion parameter, we consider an alternative

approximation. If we linearize the right hand side of equation ( . ) around ω =

we can approximate Vart[mt+ + rt+ ] as a linear, rather than quadratic, function of ω.

We then have

ω ≈ ( − γ) (xCFΣx′CF)
− ( − γ)(xCFΣx′V)

( . )

which is now de ned for all γ > . Figure . plots ω as a function of γ using both the

solution in equation ( . ) and the approximation in ( . ) for values of γ up to .



By construction, they will yield similar solutions for values of γ close to one, where

ω gets close to and volatility news becomes less and less important. In other words,

it is easy to show that our linearization preserves the property of the true model that

as γ → , ω → and

Vart[mt+ + rt+ ] → ( − γ) Vart[NCF]

As risk aversion increases, we nd that this approximate value for ω continues to

resemble the exact solution of the quadratic equation ( . ) in the region where a

real solution exists. We have also used numerical methods, similar to those proposed

by Tauchen andHussey ( ), to solve the model and validate our estimates of ω for

a range of values for γ that include the region where the quadratic equation does not

have a real solution.

I

Following Campbell ( ), in this paper we substitute consumption out of the

pricing equations using the intertemporal budget constraint. However the model

does have interesting implications for the implied consumption process. From

equations ( ) and ( ), we can derive the expression:

Δct+ − EtΔct+ = (rt+ − Etrt+ )− (ψ − )NDR,t+

−(ψ − )
ω
− γ

NV,t+ . ( . )



e rst two components of the equation for consumption growth are the same as in

the homoskedastic case. An unexpectedly high return of the wealth portfolio has a

one-for-one effect on consumption. An increase in expected future returns increases

today’s consumption if ψ < , as the low elasticity of intertemporal substitution

induces the representative investor to consume today (the income effect dominates).

If ψ > , instead, the same increase induces the agent to reduce consumption to be er

exploit the improved investment opportunities (the substitution effect dominates).

e introduction of time-varying conditional volatility adds an additional term to

the equation describing consumption growth. News about high future risk is news

about a deterioration of future investment opportunities, which is bad news for a

risk-averse investor (γ > ). When ψ < , the representative agent will reduce

consumption and save to ensure adequate future consumption. An investor with high

elasticity of intertemporal substitution, on the other hand, will increase current

consumption and reduce the amount of wealth exposed to the future (worse)

investment opportunities.

Using estimates of the news terms from our VAR model (described in the next

section), we can explore the implications of the model for consumption growth. As

shown in the previous subsection, the three shocks that drive innovations in

consumption growth (rt+ − Etrt+ ,NDR,t+ ,NV,t+ ) can all be expressed as functions

of the vector of innovations σtut+ . e conditional variance of consumption growth,

Vart(Δct+ ), will then be proportional to the conditional variance of returns,

Vart(rt+ ); similarly, the conditional standard deviation of consumption growth will

be proportional to the conditional standard deviation of returns. As a consequence,
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Figure . : Consumption Growth Variance and Risk Aversion
is gure plots plots the coefficient A(γ, ψ) relating the conditional volatility of consumption

growth to the volatility of returns for different values of γ and ψ for the homoskedastic case (le
panel) and for the heteroskedastic case (right panel), where A(γ, ψ) is a function of the variances
and covariances of the scaled residuals ut+ . In each panel, we plot A(γ, ψ) as γ varies between and
, for different values of psi. Each line corresponds to a different ψ between . and . .

the ratio of the standard deviations,

A(γ, ψ) ≡
√

Vart(Δct+ )√
Vart(rt+ )

will be a constant that depends on the model parameters γ and ψ as well as on the

unconditional variances and covariances of the innovation vector ut+ , which we

obtain by estimating the VAR.



Figure . plots the coefficient A(γ, ψ) for different values of γ and ψ for the

homoskedastic case (le panel), and for the heteroskedastic case (right panel) using

the linear approximation for ω described in Section . . In each panel, we plot

A(γ, ψ) as γ varies between and , for different values of ψ. Each line corresponds

to a different ψ between . and . ; when ψ = the value of A(γ, ψ) is always equal

to since in that case the volatility of consumption growth is equal to the volatility of

returns.

As expected, in the homoskedastic case (le panel), the variance of consumption

growth does not depend on γ but only on ψ. It is rising in ψ because our VAR

estimates imply that the return on wealth is negatively correlated with news about

future expected returnsNDR,t+ , that is, wealth returns are mean-reverting. is

con rms results reported in Campbell ( ). Once we add stochastic volatility

(right panel), as γ increases the volatility of consumption growth increases for all

values of ψ as long as ψ ̸= . To understand why this is the case, notice in equation

( . ) that since ω grows with γ faster than ( − γ) , the term ω
−γ is increasing in γ in

absolute value. erefore, the larger γ, the more the variance ofNV gets ampli ed

into a higher variance of consumption innovations.

Note also that for ψ < and for high enough γ (i.e. in the bo om-right section of

the right panel), the volatility of consumption innovations is higher for lower values of

ψ. When risk aversion is high, innovations in consumption are dominated by news

about future risk. Agents with very low or very high elasticity of intertemporal

substitution, i.e. with ψ far from , will tend to adjust their consumption strongly (in

different directions) to volatility news. erefore, it is possible for individuals with



lower elasticity of intertemporal substitution to end up with amore volatile process for

consumption innovations, due to their strong reaction to volatility news.

. P A S R V

S

Our full VAR speci cation of the vector xt+ includes six state variables, ve of which

are the same as in Campbell, Giglio and Polk ( ). To those ve variables, we add

an estimate of conditional volatility. e data are all quarterly, from : to : .

e rst variable in the VAR is the log real return on the market, rM, the difference

between the log return on the Center for Research in Securities Prices (CRSP)

value-weighted stock index and the log return on the Consumer Price Index.

e second variable is expected market variance (EVAR). is variable is meant to

capture the volatility of market returns, σt, conditional on information available at

time t, so that innovations to this variable can be mapped to theNV term described

above. To construct EVARt, we proceed as follows. We rst construct a series of

within-quarter realized variance of daily returns for each time t, RVARt. We then run

a regression of RVARt+ on lagged realized variance (RVARt) as well as the other ve

state variables at time t. is regression then generates a series of predicted values for

RVAR at each time t+ , that depend on information available at time t: R̂VARt+ .

Finally, we de ne our expected variance at time t to be exactly this predicted value at

t+ :

EVARt ≡ R̂VARt+ .



Note that though we describe our methodology in a two-step fashion where we rst

estimate EVAR and then use EVAR in a VAR, this is only for interpretability. Indeed,

this approach to modeling EVAR can be considered a simple renormalization of

equivalent results we would nd from a VAR that included RVAR directly.⁶

e third variable is the price-earnings ratio (PE) from Shiller ( ), constructed

as the price of the S&P index divided by a ten-year trailing moving average of

aggregate earnings of companies in the S&P index. Following Graham and Dodd

( ), Campbell and Shiller ( b, ) advocate averaging earnings over several

years to avoid temporary spikes in the price-earnings ratio caused by cyclical declines

in earnings. We avoid any interpolation of earnings as well as lag the moving average

by one quarter in order to ensure that all components of the time-t price-earnings

ratio are contemporaneously observable by time t. e ratio is log transformed.

Fourth, the term yield spread (TY) is obtained from Global Financial Data. We

compute the TY series as the difference between the log yield on the -Year US

Constant Maturity Bond (IGUSA D) and the log yield on the -Month US

Treasury Bill (ITUSA D).

Fi h, the small-stock value spread (VS) is constructed from data on the six

“elementary” equity portfolios also obtained from Professor French’s website. ese

elementary portfolios, which are constructed at the end of each June, are the

intersections of two portfolios formed on size (market equity, ME) and three

portfolios formed on the ratio of book equity to market equity (BE/ME). e size

⁶Since we weight observations based on RVAR in the rst stage and then reweight observations
using EVAR in the second stage, our two-stage approach in practice is not exactly the same as a one-
stage approach. However, the results from a RVAR-weighted single-step estimation are qualitatively
very similar to those produced by our two-stage approach.



breakpoint for year t is the median NYSE market equity at the end of June of year t.

BE/ME for June of year t is the book equity for the last scal year end in t− divided

by ME for December of t− . e BE/ME breakpoints are the th and th NYSE

percentiles.

At the end of June of year t, we construct the small-stock value spread as the

difference between the ln(BE/ME) of the small high-book-to-market portfolio and

the ln(BE/ME) of the small low-book-to-market portfolio, where BE and ME are

measured at the end of December of year t− . For months from July to May, the

small-stock value spread is constructed by adding the cumulative log return (from the

previous June) on the small low-book-to-market portfolio to, and subtracting the

cumulative log return on the small high-book-to-market portfolio from, the

end-of-June small-stock value spread. e construction of this series follows

Campbell and Vuolteenaho ( ) closely.

e sixth variable in our VAR is the default spread (DEF), de ned as the difference

between the log yield on Moody’s BAA and AAA bonds. e series is obtained from

the Federal Reserve Bank of St. Louis. Campbell, Giglio and Polk ( ) add the

default spread to the Campbell and Vuolteenaho ( ) VAR speci cation in part

because that variable is known to track time-series variation in expected real returns

on the market portfolio (Fama and French, ), but mostly because shocks to the

default spread should to some degree re ect news about aggregate default

probabilities. Of course, news about aggregate default probabilities should in turn

re ect news about the market’s future cash ows.



S -

In order for the regression model that generates EVARt to be consistent with a

reasonable data-generating process for market variance, we deviate from standard

OLS in two ways. First, we constrain the regression coefficients to produce ed

values (i.e. expected market return variance) that are positive. Second, given that we

explicitly consider heteroskedasticity of the innovations to our variables, we estimate

this regression using Weighted Least Squares (WLS), where the weight of each

observation pair (RVARt+ , xt) is initially based on the time-t value of (RVAR)− .

However, to ensure that the ratio of weights across observations is not extreme, we

shrink these initial weights towards equal weights. In particular, we set our shrinkage

factor large enough so that the ratio of the largest observation weight to the smallest

observation weight is always less than or equal to ve. ough admi edly somewhat

ad hoc, this bound is consistent with reasonable priors of the degree of variation over

time in expectedmarket return variance. More importantly, we show later that our

results are robust to variation in this bound. Both the constraint on the regression’s

ed values and the constraint on WLS observation weights bind in the sample we

study.

e results of the rst stage regression generating the state variable EVARt are

reported in Table . Panel A. Perhaps not surprisingly, past realized variance strongly

predicts future realized variance. More importantly, the regression documents that an

increase in either PE orDEF predicts higher future realized volatility. Both of these

results are very statistically signi cant and are a novel nding of the paper. In



Ta
bl

e
.
:V

AR
Es

tim
at
io

n

e
ta
bl
e
sh
ow

st
he

pa
ra
m
et
er

es
tim

at
es

fo
ra

rs
t-o

rd
er

VA
R
m
od

el
.P

an
el
A
re
po

rt
sW

LS
es
tim

at
es

of
a

rs
t-s
ta
ge

re
gr
es
sio

n
fo
re
ca
st
in
g
RV

AR
w
ith

th
es
ta
te
va
ria

bl
es
.P

an
el
B
re
po

rt
sW

LS
es
tim

at
es
of
th
ef
ul
ls
ec
on

d-
st
ag
eV

A
R
.

e
rs
ts
ev
en

co
lu
m
ns

re
po

rt
co
effi

ci
en
ts
on

th
ee

xp
la
na
to
ry

va
ria

bl
es
,a
nd

th
er
em

ai
ni
ng

co
lu
m
n
sh
ow

st
he

R
an
d
F
st
at
ist
ic
s.
Bo

ot
st
ra
pp

ed
st
an
da
rd

er
ro
rs
th
at
ta
ke

in
to
ac
co
un

tt
he

un
ce
rt
ai
nt
yi
n
ge
ne
ra
tin

g
EV

AR
ar
ei
n
pa
re
nt
he
se
s.

e
sa
m
pl
e
pe
rio

d
fo
rt
he

de
pe
nd

en
tv
ar
ia
bl
es
is

.
-

.
,

qu
ar
te
rly

da
ta
po

in
ts
.

Pa
ne
lA

:F
or
ec
as
tin

g
Q
ua
rt
er
ly
R
ea
liz
ed

Va
ria

nc
e(

RV
AR

t+
)

C
on

st
an
t

r M
,t

RV
AR

t
PE

t
TY

t
D
EF

t
VS

t
R

/F
-
.

-
.

.
.

-
.

.
.

.
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
.

Pa
ne
lB

:V
A
R
Es
tim

at
es

Se
co
nd

st
ag
e

C
on

st
an
t

r M
,t

EV
AR

t
PE

t
TY

t
D
EF

t
VS

t
R

/F
r M

,t
+

.
.

.
-
.

.
-
.

-
.

.
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
.

EV
AR

t+
-
.

-
.

.
.

-
.

.
.

.
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
.

PE
t+

.
.

.
.

.
-
.

-
.

.
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
.

TY
t+

-
.

-
.

.
.

.
.

.
.

(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
.

D
EF

t+
.

-
.

.
-
.

.
.

.
.

(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
.

VS
t+

.
.

.
-
.

-
.

-
.

.
.

(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
(
.

)
.



particular, the fact that we nd that very persistent variables like PE and DEF forecast

next period’s volatility indicates a potential important role in volatility news for lower

frequency or long-run movements in stochastic volatility.

We argue that the links we nd are sensible. Investors in risky bonds incorporate

their expectation of future volatility when they set credit spreads, as risky bonds are

short the option to default. erefore we expect higherDEF to be associated with

higher RVAR. e result that higher PE predicts higher RVARmight seem surprising

at rst, but one has to remember that the coefficient indicates the effect of a change in

PE holding constant the other variables, in particular the default spread. Since the

default spread should also generally depend on the equity premium and since most of

the variation in PE is due to variation in the equity premium, for a given value of the

default spread, a relatively high value of PE implies a relatively higher level of future

volatility. us PE cleans up the information inDEF concerning future volatility.

e R of this regression is just over . e relatively low R masks the fact that

the t is indeed quite good, as we can see from Figure . , in which RVAR and EVAR

are plo ed together. e R is heavily in uenced by the occasional spikes in realized

variance, which the simple linear model we use is not able to capture. Indeed, our

WLS approach downweights the importance of those spikes in the estimation

procedure.

e internet appendix to this paper (Campbell, Giglio, Polk, and Turley )

reports descriptive statistics for these variables for the full sample, the early sample,

and the modern sample. Consistent with Campbell, Giglio and Polk ( ), we

document high correlation betweenDEF and both PE and VS. e table also
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Figure . : Realized and Expected Variance, -
is gure plots quarterly observations of realized within-quarter daily return variance over the sam-

ple period : - : and the expected variance implied by the estimated model.



documents the persistence of both RVAR and EVAR (autocorrelations of . and

. respectively) and the high correlation between these variance measures and the

default spread.

Perhaps the most notable difference between the two subsamples is that the

correlation between PE and several of our other state variables changes dramatically.

In the early sample, PE is quite negatively correlated with both RVAR and VS. In the

modern sample, PE is essentially uncorrelated with RVAR and quite positively

correlated with VS. As a consequence, since EVAR is just a linear combination of our

state variables, the correlation between PE and EVAR changes sign across the two

samples. In the early sample, this correlation is very negative, with a value of - . .

is strong negative correlation re ects the high volatility that occurred during the

Great Depression when prices were relatively low. In the modern sample, the

correlation is positive, . . e positive correlation simply re ects the economic

fact that episodes with high volatility and high stock prices, such as the technology

boom of the late s, were more prevalent in this subperiod than episodes with

high volatility and low stock prices, such as the recession of the early s.

E VAR

Following Campbell ( ), we estimate a rst-order VAR as in equation ( . ),

where xt+ is a × vector of state variables ordered as follows:

xt+ = [rM,t+ EVARt+ PEt+ TYt+ DEFt+ VSt+ ]



so that the real market return rM,t+ is the rst element and EVAR is the second

element. x̄ is a × vector of the means of the variables, and Γ is a × matrix of

constant parameters. Finally, σtut+ is a × vector of innovations, with the

conditional variance-covariance matrix of ut+ a constant:

Σ = Var(ut+ )

so that the parameter σt scales the entire variance-covariance matrix of the vector of

innovations.

e rst-stage regression forecasting realized market return variance described in

the previous section generates the variable EVAR. e theory in Section . assumes

that σt , proxied for by EVAR, scales the variance-covariance matrix of state variable

shocks. us, as in the rst stage, we estimate the second-stage VAR using WLS,

where the weight of each observation pair (xt+ , xt) is initially based on (EVARt)
− .

We continue to constrain both the weights across observations and the ed values

of the regression forecasting EVAR.

Table . Panel B presents the results of the VAR estimation for the full sample

( : to : ). We report bootstrap standard errors for the parameter estimates

of the VAR that take into account the uncertainty generated by forecasting variance in

the rst stage. Consistent with previous research, we nd that PE negatively predict

future returns, though the t-statistic indicates only marginal signi cance. e value

spread has a negative but not statistically signi cant effect on future returns. In our

speci cation, a higher conditional variance, EVAR, is associated with higher future

returns, though the effect is not statistically signi cant. Of course, the relatively high



degree of correlation among PE,DEF, VS, and EVAR complicates the interpretation

of the individual effect of those variables. As for the other novel aspects of the

transition matrix, both high PE and highDEF predict higher future conditional

variance of returns. High past market returns forecast lower EVAR, higher PE, and

lowerDEF.⁷

Tables . and . report the sample correlation and autocorrelation matrices of

both the unscaled residuals σtut+ and the scaled residuals ut+ . e correlation

matrices report standard deviations on the diagonals. ere are a couple of aspects of

these results to note. For one thing, a comparison of the standard deviations of the

unscaled and scaled residuals provides a rough indication of the effectiveness of our

empirical solution to the heteroskedasticity of the VAR. In general, the standard

deviations of the scaled residuals are several times larger than their unscaled

counterparts. More speci cally, our approach implies that the scaled return residuals

should have unit standard deviation. Our implementation results in a sample

standard deviation of . , that is relatively close to one.

Additionally, a comparison of the unscaled and scaled autocorrelation matrices

reported in Table . reveals that much of the sample autocorrelation in the unscaled

residuals is eliminated by our WLS approach. For example, the unscaled residuals in

the regression forecasting the log real return have an autocorrelation of - . . e

⁷One worry is that many of the elements of the transition matrix are estimated imprecisely.
ough these estimates may be zero, their non-zero but statistically insigni cant in-sample point es-

timates, in conjunction with the highly-nonlinear function that generates discount-rate and volatility
news, may result inmisleading estimates of risk prices. However, the results are qualitatively similar if
we instead employ a partial VARwhere, via a standard iterative process, only variables with t-statistics
greater than . are included in each VAR regression.



Table . : VAR Residual Correlations and Standard Deviations

e table reports the correlation (”Corr/std”) matrices of both the unscaled and scaled shocks from
the second-stage VAR; the correlationmatrix reports shock standard deviations on the diagonal. e
sample period for the dependent variables is . - . , quarterly data points.

Corr/std rM EVAR PE TY DEF VS
unscaled

rM . - . . - . - . - .
EVAR - . . - . - . . .

PE . - . . - . - . - .
TY - . - . - . . . - .

DEF . - . . - . . .
VS - . . - . - . . .

scaled
rM . - . . - . - . .

EVAR - . . - . - . . .
PE . - . . - . - . .
TY - . - . - . . . - .

DEF - . . - . . . .
VS . . . - . . .



Table . : VAR Residual Autocorrelations

e table reports the autocorrelation (”Autocorr.”) matrices of both the unscaled and scaled shocks
from the second-stageVAR; the correlationmatrix reports shock standard deviations on the diagonal.

e sample period for the dependent variables is . - . , quarterly data points.

Autocorr. rM,t+ EVARt+ PEt+ TYt+ DEFt+ VSt+
unscaled

rM,t - . . - . . . .
EVARt . - . . - . - . - .

PEt - . . - . . . .
TYt - . . - . - . . .

DEFt . - . . - . - . - .
VSt . - . . - . - . - .

scaled
rM,t . . - . . . - .

EVARt . - . . - . - . - .
PEt - . . - . . . .
TYt - . . - . - . . .

DEFt . - . . - . - . - .
VSt . - . . - . - . - .



Table . : VAR Speci cation Test

e table reports the results of regressions forecasting the squared second-stage residuals from the
VAR estimated in Table . with EVARt. Bootstrap standard errors that take into account the un-
certainty in generating EVAR are in parentheses. e sample period for the dependent variables is

. - . , quarterly data points.

Heteroskedastic Shocks
Squared, second-stage,

unscaled residual Constant EVARt R
rM,t+ - . . .

( . ) ( . )
EVARt+ . . .

( . ) ( . )
PEt+ - . . .

( . ) ( . )
TYt+ . . .

( . ) ( . )
DEFt+ - . . .

( . ) ( . )
VSt+ . . .

( . ) ( . )

corresponding autocorrelation of the scaled return residuals is essentially zero, . .

ough the scaled residuals in the EVAR, PE andDEF regression still display some

negative autocorrelation, the unscaled residuals are much more negatively

autocorrelated.

Table . reports the coefficients of a regression of the squared unscaled residuals

σtut+ of each VAR equation on a constant and EVAR. ese results are consistent

with our assumption that EVAR captures the conditional volatility of market returns

(the coefficient on EVAR in the regression forecasting the squared residuals of rM is



. ). e fact that EVAR signi cantly predicts with a positive sign all the squared

errors of the VAR supports our underlying assumption that one parameter (σt )

drives the volatility of all innovations.

e top panel of Table . presents the variance-covariance matrix and the

standard deviation/correlation matrix of the news terms, estimated as described

above. Consistent with previous research, we nd that discount-rate news is twice as

volatile as cash- ow news.

e interesting new results in this table concern the variance news termNV. First,

news about future variance is more volatile than discount-rate news. Second, it is

negatively correlated (- . ) with cash- ow news: as one might expect from the

literature on the “leverage effect” (Black , Christie ), news about low cash

ows is associated with news about higher future volatility. ird,NV correlates

negatively (- . ) with discount-rate news, indicating that news of high volatility

tends to coincide with news of low future real returns.⁸ e net effect of these

correlations, documented in the lower le panel of Table . , is a slightly negative

correlation of -. between our measure of volatility news and contemporaneous

market returns (for related research see French, Schwert, and Stambaugh ).

e lower right panel of Table . reports the decomposition of the vector of

innovations σtut+ into the three termsNCF,t+ ,NDR,t+ , andNV,t+ . As shocks to

EVAR are just a linear combination of shocks to the underlying state variables, which

includes RVAR, we “unpack” EVAR to express the news terms as a function of rM, PE,

⁸ ough the point estimate is negative, the large standard errors imply that we cannot reject the
“volatility feedback effect” (Campbell and Hentschel , Calvet and Fisher ).
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Figure . : Normalized News Series
is gure plots normalized cash- ow news, the negative of normalized discount-rate news, and nor-

malized variance news. e series are smoothed with a trailing exponentially-weighted moving aver-
age where the decay parameter is set to . per quarter, and the smoothed news series is generated
asMAt(N) = . Nt + ( − . )MAt− (N). is decay parameter implies a half-life of six years.

e sample period is : - : .

TY, VS,DEF, and RVAR. e panel shows that innovations to RVAR are mapped

more than one-to-one to news about future volatility. However, several of the other

state variables also drive news about volatility. Speci cally, we nd that innovations in

PE,DEF, and VS are associated with news of higher future volatility.

Figure . plots the smoothed series forNCF,−NDR andNV using an

exponentially-weighted moving average with a quarterly decay parameter of . .

is decay parameter implies a half-life of six years. e pa ern ofNCF and−NDR we



nd is consistent with previous research. As a consequence, we focus on the

smoothed series for market variance news. ere is considerable time variation in

NV, and in particular we nd episodes of news of high future volatility during the

Great Depression and just before the beginning of World War II, followed by a period

of li le news until the late s. From then on, periods of positive volatility news

alternate with periods of negative volatility news in cycles of to years. Spikes in

news about future volatility are found in the early s (following the oil shocks), in

the late s and again following the crash of the stock market. e late s

are characterized by strongly negative news about future returns, and at the same

time higher expected future volatility. e recession of the late s is instead

characterized by strongly negative cash- ow news, together with a spike in volatility

of the highest magnitude in our sample. e recovery from the nancial crisis has

brought positive cash- ow news together with news about lower future volatility.

P -

e predictability of volatility, and especially of its long-run component, is central to

this paper. In the previous sections, we have shown that volatility is strongly

predictable, and it is predictable in particular by variables beyond lagged realizations

of volatility itself: PE andDEF contain essential information about future volatility.

We have also proposed a VAR-based methodology to construct long-horizon

forecasts of volatility that incorporate all the information in lagged volatility as well as

in the additional predictors like PE andDEF.

We now ask how well our proposed long-run volatility forecasts capture the



long-horizon component of volatility. In Table . we regress realized long-run

variance up to period h,

LHRVARh =
Σh
j= ρj− RVARt+j

Σh
j= ρj−

,

on different forecasting models of long-run variance.⁹ In particular, we estimate two

standard GARCH-type models, speci cally designed to capture the long-run

component of volatility. e rst one is the two-component EGARCH model

proposed by Adrian and Rosenberg ( ). is model assumes the existence of two

separate components of volatility, one of which is more persistent than the other, and

therefore will tend to capture the long-run dynamics of the volatility process. e

other model we estimate is the FIGARCHmodel of Baillie, Bollerslev, and Mikkelsen

( ), in which the process for volatility is modeled as a fractionally-integrated

process, and whose slow, hyperbolic rate of decay of lagged, squared innovations

potentially captures long-run movements in volatility be er. We rst estimate both

GARCH models using the full sample of daily returns and then generate the

appropriate forecast of LHRVARh.¹⁰ To these two models, we add the set of variables

from our VAR, and compare the forecasting ability of these different models.

Table . Panel A reports, for different horizons h ranging from year to years,

the results of forecasting regressions of long run volatility LHRVARh using different

speci cations. e rst row of each sub-panel presents results using the state variables

⁹Note that we rescale by the sum of the weights ρj to maintain the scale of the coefficients in the
predictive regressions across different horizons.

¹⁰We start our forecasting exercise in January so that we have a long enough history of past
returns to feed the FIGARCHmodel.



in our VAR, each included separately. e second row predicts LHRVARh with the

horizon-speci c forecast implied by our VAR (VARh). e third and fourth rows

forecast LHRVARh with the corresponding forecast from the EGARCH model

(EGh) and the FIGARCH model (FIGh) respectively. e h and sixth rows join

the VAR variables with the two GARCH-based forecasts, one at a time. e seventh

and eighth row conducts a horse race between VARh and FIGh and between VARh

andDEF.

First note that both the EGARCH and FIGARCH forecasts by themselves capture

a signi cant portion of the variation in long-run realized volatility: both have

signi cant coefficients, and both have nontrivial R s, even at very long horizons. Our

VAR variables provide as good or be er explanatory power, and RVAR, PE andDEF

appear strongly statistically signi cant at all horizons (with the exception of RVAR at

h = , i.e. years). Finally, the VAR-implied forecast, VARh, is not only signi cantly

different from , but it is also not signi cantly different from . is indicates that our

VAR is able to produce forecasts of volatility that not only go in the right direction,

but are also of the right magnitude, even at very long horizons.

Very interesting results appear once we join our variables to the two GARCH

models. Even a er controlling for the GARCH-based forecasts (which render RVAR

insigni cant), PE andDEF always come in signi cantly in predicting long-horizon

volatility. Moreover, and especially at long horizons, the addition of the VAR state

variables strongly increases the R . We further show that when using the

VAR-implied forecast together with the FIGARCH forecast, the coefficient on VARh

is still very close to one and always statistically signi cant while the FIGARCH
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coefficient moves closer to zero (though estimates of the coefficient on FIGh remain

statistically signi cant at some horizons).

We develop an additional test of our VAR-based model of stochastic volatility from

the idea that the variables that form the VAR – in particular the strongest of them,

DEF – should predict volatility at long horizons only through the VAR, not in addition

to it. In other words, the VAR forecasts should ideally represent the best way to

combine the information contained in the state variables concerning long-run

volatility. If true, a er controlling for the VAR-implied forecast, DEF or other

variables that enter the VAR should not signi cantly predict future long-run volatility.

We test this hypothesis by running a regression using both the VAR-implied forecast

andDEF as right-hand side variables. We nd that at all horizons the coefficient on

VARh is still not signi cantly different from , while the coefficient onDEF is small

and statistically indistinguishable from .

Finally, in Panel B of Table . we examine more carefully the link betweenDEF

and LHRVAR focusing on the -year horizon. e Table reports the results from

regressions forecasting LHRVAR with PE,DEF, PEO (PE orthogonalized toDEF),

andDEFO (DEF orthogonalized to PE). e Table shows that by itself, PE has no

information about low-frequency variation in volatility. In contrast,DEF forecasts

nearly of the variation in LHRVAR . And onceDEF is orthogonalized to PE,

the R increases to . Adding PEO has li le effect on the R . We argue that this is

clear evidence of the strong predictive power of the orthogonalized component of the

default spread.

Recall our simple interpretation of these results. DEF contains information about



future volatility as risky bonds are short the option to default. However,DEF also

contains information about future aggregate risk premia. We know from previous

work that most of the variation in PE is about aggregate risk premia. erefore,

including PE in the volatility forecasting regression cleans up variation inDEF due to

aggregate risk premia and thus sharpens the link betweenDEF and future volatility.

Since PE andDEF are negatively correlated (default spreads are relatively low when

the market trades rich), both PE andDEF receive positive coefficients in the multiple

regression.

In Figure . , we provide a visual representation of the volatility-forecasting power

of our key VAR state variables and our interpretation of the results. e top panel

plots LHRVAR together with laggedDEF and PE. e graph con rms the strong

negative correlation between PE andDEF (correlation of - . ) and highlights how

both variables track long-run movements in long run volatility. To isolate the

contribution of the default spread in predicting long run volatility, the bo om panel

plots LHRVAR together withDEFO. In general, the improvement in t moving

from the top panel to the bo om panel is clear.

More speci cally, the contrasting behavior ofDEF andDEFO in the two panels

during episodes such as the tech boom help illustrate the workings of our story.

Taken in isolation, the relatively stable default spread throughout most of the late

s would predict li le change in expectations of future market volatility.

However, once the declining equity premium over that period is taken into account

(as shown by the rapid increase in PE), one recognizes that a PE-adjusted spread in

the late s actually forecasted much higher volatility ahead.
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Figure . : Key Components of Long-Horizon Volatility
Wemeasure long-horizon realized variance (LHRVAR) as the annualized discounted sum of within-

quarter daily return variance, LHRVARh =
Σh
j= ρj− RVARt+j

Σh
j= ρj− . Each panel of this gure plots quar-

terly observations of ten-year realized variance, LHRVAR , over the sample period : - : .
In Panel A, in addition to LHRVAR , we also plot lagged PE and DEF. In Panel B, in addition to
LHRVAR , we also plot the ed value from a regression forecasting LHRVAR with DEFO, de-
ned asDEF orthogonalized to demeaned PE.



Taken together, the results in Table . Panel A and Table . make a strong case

that credit spreads and valuation ratios contain information about future volatility

not captured by simple univariate models, even those like the FIGARCH model or

the two-component EGARCH model that are designed to t long-run movements in

volatility, and that our VAR method for calculating long-horizon forecasts preserves

this information.

. P C - , D -R , V B

T

In addition to the six VAR state variables, our analysis also requires returns on a

cross-section of test assets. We construct three sets of portfolios to use as test assets.

Our primary cross-section consists of the excess returns on the ME- and

BE/ME-sorted portfolios, studied in Fama and French ( ), extended in Davis,

Fama, and French ( ), and made available by Professor Kenneth French on his

web site.¹¹

Daniel and Titman ( , ) and Lewellen, Nagel, and Shanken ( ) point

out that it can be misleading to test asset pricing models using only portfolios sorted

by characteristics known to be related to average returns, such as size and value. In

particular, characteristics-sorted portfolios are likely to show some spread in betas

identi ed as risk by almost any asset pricing model, at least in sample. When the

model is estimated, a high premium per unit of beta will t the large variation in

¹¹h p://mba.tuck.dartmouth.edu/pages/faculty/ken.french/



average returns. us, at least when premia are not constrained by theory, an asset

pricing model may spuriously explain the average returns to characteristics-sorted

portfolios.

To alleviate this concern, we follow the advice of Daniel and Titman ( , )

and Lewellen, Nagel, and Shanken ( ) and construct a second set of six portfolios

double-sorted on past risk loadings to market and variance risk. First, we run a

loading-estimation regression for each stock in the CRSP database where ri,t is the log

stock return on stock i for month t.

∑
j=

ri,t+j = b + brM
∑
j=

rM,t+j + bΔVAR
∑
j=

ΔVARt+j + εi,t+

We calculate ΔVAR as a weighted sum of changes in the VAR state variables. e

weight on each change is the corresponding value in the linear combination of VAR

shocks that de nes news about market variance. We choose to work with changes

rather than shocks as this allows us to generate pre-formation loading estimates at a

frequency that is different from our VAR. Namely, though we estimate our VAR using

calendar-quarter-end data, our approach allows a stock’s loading estimates to be

updated at each interim month.

e regression is reestimated from a rolling -month window of overlapping

observations for each stock at the end of each month. Since these regressions are

estimated from stock-level instead of portfolio-level data, we use quarterly data to

minimize the impact of infrequent trading. With loading estimates in hand, each

month we perform a two-dimensional sequential sort on market beta and ΔVAR



beta. First, we form three groups by sorting stocks on b̂rM . en, we further sort

stocks in each group to three portfolios on b̂ΔVAR and record returns on these nine

value-weight portfolios. e nal set of risk-sorted portfolios are the two sets of three

b̂rM portfolios within the extreme b̂ΔVAR groups. To ensure that the average returns on

these portfolio strategies are not in uenced by various market-microstructure issues

plaguing the smallest stocks, we exclude the ve percent of stocks with the lowestME

from each cross-section and lag the estimated risk loadings by a month in our sorts.

In the empirical analysis, we consider two main subsamples: early

( : - : ) and modern ( : - : ) due to the ndings in Campbell and

Vuolteenaho ( ) of dramatic differences in the risks of these portfolios between

the early and modern period. e rst subsample is shorter than that in Campbell

and Vuolteenaho ( ) as we require each of the portfolios to have at least one

stock as of the time of formation in June.

Finally, we generate a parsimonious cross-section of option, bond, and equity

returns for the : - : time period based on the ndings in Fama and French

( ) and Coval and Shumway ( ). In particular, we use the S&P index

straddle returns studied by Coval and Shumway.¹² We also include proxies for the

two components of the risky bond factor of Fama and French ( ) which we

measure using the return on the Barclays Capital High Yield Bond Index (HYRET)

and the return on Barclays Capital Investment Grade Bond Index (IGRET). When

pricing the straddle and risky bond return series, we include the returns on the

¹²Speci cally, the series we study includes only those straddle positions where the difference be-
tween the options’ strike price and the underlying price is between and . We thank Josh Coval and
Tyler Shumway for providing their updated data series to us.



market (RMRF), size (SMB), and value (HML) equity factors of Fama and French

( ) as they argue these factors do a good job describing the cross-section of

average equity returns.

B

We now examine the validity of an unconditional version of the rst-order condition

in equation ( . ). We modify equation ( . ) in three ways. First, we use simple

expected returns on the le -hand side to make our results easier to compare with

previous empirical studies. Second, we condition down equation ( . ) to avoid

having to estimate all required conditional moments. Finally, we cosmetically

multiply and divide all three covariances by the sample variance of the unexpected

log real return on the market portfolio. By doing so, we can express our pricing

equation in terms of betas, facilitating comparison to previous research. ese

modi cations result in the following asset-pricing equation

E[Ri − Rf] = γσMβi,CFM + σMβi,DRM
− ωσMβi,VM

, ( . )

where

βi,CFM ≡ Cov(ri,t,NCF,t)

Var(rM,t − Et− rM,t)
,

βi,DRM
≡ Cov(ri,t,−NDR,t)

Var(rM,t − Et− rM,t)
,

and βi,VM
≡ Cov(ri,t,NV,t)

Var(rM,t − Et− rM,t)
.



We price the average excess returns on our test assets using the unconditional

rst-order condition in equation ( . ) and the quadratic relationship between the

parameters ω and γ given by ( . ). As a rst step, we estimate cash- ow,

discount-rate, and variance betas using the ed values of the market’s cash ow,

discount-rate, and variance news estimated in the previous section. Speci cally, we

estimate simple WLS regressions of each portfolio’s log returns on each news term,

weighting each time-t+ observation pair by the weights used to estimate the VAR

in Table . Panel B. We then scale the regression loadings by the ratio of the sample

variance of the news term in question to the sample variance of the unexpected log

real return on the market portfolio to generate estimates for our three-beta model.

Characteristic-sorted test assets

Table . shows the estimated betas for the size- and book-to-market portfolios

over the - period. e portfolios are organized in a square matrix with

growth stocks at the le , value stocks at the right, small stocks at the top, and large

stocks at the bo om. At the right edge of the matrix we report the differences

between the extreme growth and extreme value portfolios in each size group; along

the bo om of the matrix we report the differences between the extreme small and

extreme large portfolios in each BE/ME category. e top matrix displays

post-formation cash- ow betas, the middle matrix displays post-formation

discount-rate betas, while the bo om matrix displays post-formation variance betas.

In square brackets a er each beta estimate we report a standard error, calculated

conditional on the realizations of the news series from the aggregate VAR model.

In the pre- sample period, value stocks have both higher cash- ow and higher
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discount-rate betas than growth stocks. An equal-weighted average of the extreme

value stocks across size quintiles has a cash- ow beta . higher than an

equal-weighted average of the extreme growth stocks. e difference in estimated

discount-rate betas, . , is in the same direction. Similar to value stocks, small stocks

have higher cash- ow betas and discount-rate betas than large stocks in this sample

(by . and . , respectively, for an equal-weighted average of the smallest stocks

across value quintiles relative to an equal-weighted average of the largest stocks).

ese differences are extremely similar to those in Campbell and Vuolteenaho

( ), despite the exclusion of the - subperiod, the replacement of the

excess log market return with the log real return, and the use of a richer,

heteroskedastic VAR.

e new nding in Table . Panel A is that value stocks and small stocks are also

riskier in terms of volatility betas. An equal-weighted average of the extreme value

stocks across size quintiles has a volatility beta . lower than an equal-weighted

average of the extreme growth stocks. Similarly, an equal-weighted average of the

smallest stocks across value quintiles has a volatility beta that is . lower than an

equal-weighted average of the largest stocks. In summary, value and small stocks were

unambiguously riskier than growth and large stocks over the - period.

Table . reports the corresponding estimates for the post- period. As

documented in this subsample by Campbell and Vuolteenaho ( ), value stocks

still have slightly higher cash- ow betas than growth stocks, but much lower

discount-rate betas. Our new nding here is that value stocks continue to have much

lower volatility betas, and the spread in volatility betas is even greater than in the early
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period. e volatility beta for the equal-weighted average of the extreme value stocks

across size quintiles is . lower than the volatility beta of an equal-weighted average

of the extreme growth stocks, a difference that is more than higher than the

corresponding difference in the early period.

One interesting aspect of these ndings is the fact that the average βV of the

size- and book-to-market portfolios changes sign from the early to the modern

subperiod. Over the - period, the average βV is - . while over the

- period this average becomes . . Of course, given the strong positive link

between PE and volatility news documented in the lower right panel of Table . , one

should not be surprised that the market’s βV can be positive. Moreover, given the

change in sign over time in PE’s correlation with some of the key state variables

driving EVAR documented in the Online Appendix, one should not be surprised that

βV changes sign as well.

ese results imply that in the post- period where the CAPM has difficulty

explaining the low returns on growth stocks relative to value stocks, growth stocks are

relative hedges for two key aspects of the investment opportunity set. Consistent

with Campbell and Vuolteenaho ( ), growth stocks hedge news about future real

stock returns. e novel nding of this paper is that growth stocks also hedge news

about the variance of the market return.

Risk-sorted test assets

Table . shows the estimated betas for the six risk-sorted portfolios over the

- period. e portfolios are organized in a rectangular matrix with low

CAPM beta stocks at the le , high CAPM beta stocks at the right, low volatility beta



Table . : Betas for Six Risk-Sorted Portfolios in the Early Sample

β̂CF Lo b̂rM Hi b̂rM Diff
Lo b̂VAR . [ . ] . [ . ] . [ . ] . [ . ]
Hi b̂VAR . [ . ] . [ . ] . [ . ] . [ . ]
Diff - . [ . ] - . [ . ] - . [ . ]

β̂DR Lo b̂rM Hi b̂rM Diff
Lo b̂VAR . [ . ] . [ . ] . [ . ] . [ . ]
Hi b̂VAR . [ . ] . [ . ] . [ . ] . [ . ]
Diff - . [ . ] - . [ . ] - . [ . ]

β̂V Lo b̂rM Hi b̂rM Diff
Lo b̂VAR - . [ . ] - . [ . ] - . [ . ] - . [ . ]
Hi b̂VAR - . [ . ] - . [ . ] - . [ . ] - . [ . ]
Diff . [ . ] . [ . ] . [ . ]

stocks at the top, and high volatility beta stocks at the bo om. At the right edge of the

matrix we report the differences between the high CAPM beta and the low CAPM

beta portfolios in each volatility beta group; along the bo om of the matrix we report

the differences between the high volatility beta and the low volatility beta portfolios

in each CAPM beta category. As in Panel A, the top matrix displays post-formation

cash- ow betas, the middle matrix displays post-formation discount-rate betas, while

the bo om matrix displays post-formation volatility betas.

In the pre- sample period, high CAPM beta stocks have both higher cash- ow

and higher discount-rate betas than low CAPM beta stocks. An equal-weighted

average of the high CAPM beta stocks across the two volatility beta categories has a

cash- ow beta . higher than an equal-weighted average of the low CAPM beta

stocks. e difference in estimated discount-rate betas is . and in the same



direction. Similar to high CAPM beta stocks, low volatility beta stocks have higher

cash- ow betas and discount-rate betas than high volatility beta stocks in this

subsample (by . and . , respectively, for an equal-weighted average of the low

volatility beta stocks across the three CAPM beta categories relative to a

corresponding equal-weighted average of the high volatility beta stocks).

High CAPM beta stocks and low volatility beta stocks are also riskier in terms of

volatility betas. An equal-weighted average of the high CAPM beta stocks across

volatility beta categories has a post-formation volatility beta . lower than an

equal-weighted average of the low CAPM beta stocks. Similarly, an equal-weighted

average of the low volatility beta stocks across CAPM beta categories has a

post-formation volatility beta that is . lower than an equal-weighted average of the

high volatility beta stocks. In summary, high CAPM beta and low volatility beta

stocks were unambiguously riskier than low CAPM beta and high volatility beta

stocks over the - period.

Table . shows the estimated betas for the six risk-sorted portfolios over the

post- period. In the modern period, high CAPM beta stocks again have higher

cash- ow and higher discount-rate betas than low CAPM beta stocks. An

equal-weighted average of the high CAPM beta stocks across the two volatility beta

categories has a cash- ow beta . higher than an equal-weighted average of the low

CAPM beta stocks. e difference in estimated discount-rate betas is . and in the

same direction. However, high CAPM beta stocks are no longer riskier in terms of

volatility betas. Now, an equal-weighted average of the high CAPM beta stocks across

the two volatility beta categories has a post-formation variance beta . higher than



Table . : Betas for Six Risk-Sorted Portfolios in the Modern Sample

Lo b̂VAR . [ . ] . [ . ] . [ . ] . [ . ]
Hi b̂VAR . [ . ] . [ . ] . [ . ] . [ . ]
Diff - . [ . ] . [ . ] - . [ . ]

β̂DR Lo b̂rM Hi b̂rM Diff
Lo b̂VAR . [ . ] . [ . ] . [ . ] . [ . ]
Hi b̂VAR . [ . ] . [ . ] . [ . ] . [ . ]
Diff . [ . ] . [ . ] . [ . ]

β̂V Lo b̂rM Hi b̂rM Diff
Lo b̂VAR . [ . ] . [ . ] . [ . ] . [ . ]
Hi b̂VAR . [ . ] . [ . ] . [ . ] . [ . ]
Diff . [ . ] . [ . ] . [ . ]

a corresponding equal-weighted average of the low CAPM beta stocks. Since, in the

three-beta model, covariation with aggregate volatility has a negative premium, the

three-beta model can potentially explain why stocks with high past CAPM betas have

offered relatively li le extra return, at least in the modern period.

In the post- period, sorts on volatility beta continue to generate economically

and statistically signi cant spread in post-formation volatility beta. An

equal-weighted average of low volatility beta stocks across the three CAPM beta

categories has a post-formation volatility beta that is . lower than the

post-formation volatility beta of a corresponding equal-weighted average of high

volatility beta stocks. Sorts on volatility beta also generate spread in discount-rate

beta, but essentially no spread in cash- ow betas in the post- period.

Non-equity test assets



Finally, Table . reports the three ICAPM betas of the S&P index straddle

position analyzed in Coval and Shumway ( ) along with the corresponding

ICAPM betas of the three equity factors and the default bond factor of Fama and

French ( ) over the period : - : . Consistent with the nature of a

straddle bet, we nd that the straddle has a very large volatility beta of . along with

a large negative discount-rate beta of - . and a large (relatively speaking) negative

cash- ow beta of - . . As one would expect, the betas of the Fama-French equity

factors are consistent with the ndings for the size- and book-to-market-sorted

portfolios in Table . Panel B. Finally, the riskier component of Fama and French’s

( ) risky bond factor,HYRET, has a cash- ow beta of . , a discount-rate beta of

. , and a volatility beta of - . . ese betas are economically and statistically

signi cant from those of the safer component, IGRET. e difference in volatility

beta betweenHYRET and IGRET is consistent with the fact that risky corporate debt

is short the option to default.

B

We next turn to pricing the cross-section with these three ICAPM betas. We evaluate

the performance of ve asset-pricing models: ) the traditional CAPM that restricts

cash- ow and discount-rate betas to have the same price of risk and sets the price of

variance risk equal to zero; ) the two-beta intertemporal asset pricing model of

Campbell and Vuolteenaho ( ) that restricts the price of discount-rate risk to

equal the variance of the market return, ) our three-beta intertemporal asset pricing

model that restricts the price of discount-rate risk to equal the variance of the market
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return and constrains the price of cash- ow and variance risk to be related by

equation ( . ), with ρ = . per year; ) a partially-constrained three-beta model

that restricts the price of discount-rate risk to equal the variance of the market return

but freely estimates the other two risk prices (effectively decoupling γ and ω), and )

an unrestricted three-beta model that allows free risk prices for cash- ow,

discount-rate, and volatility betas. Each model is estimated in two different forms:

one with a restricted zero-beta rate equal to the Treasury-bill rate, and one with an

unrestricted zero-beta rate following Black ( ).

Characteristic-sorted test assets

Table . reports results for the early sample period - , using size- and

book-to-market-sorted portfolios as test assets. e table has ten columns, two

speci cations for each of our ve asset pricing models. e rst rows of Table .

are divided into four sets of four rows. e rst set of four rows corresponds to the

zero-beta rate (in excess of the Treasury-bill rate), the second set to the premium on

cash- ow beta, the third set to the premium on discount-rate beta, and the fourth set

to the premium on volatility beta. Within each set, the rst row reports the point

estimate in fractions per quarter, and the second row annualizes this estimate,

multiplying by to aid in interpretation. ese parameters are estimated from a

cross-sectional regression

Re
i = g + g β̂i,CFM + g β̂i,DRM

+ g β̂i,VM
+ ei, ( . )

where a bar denotes time-series mean and Re
i ≡ Ri − Rrf denotes the sample average

simple excess return on asset i. e third and fourth rows present two alternative



standard errors of the monthly estimate, described below.

Below the premia estimates, we report the R statistic for a cross-sectional

regression of average returns on our test assets onto the ed values from the model.

We also report a composite pricing error, computed as a quadratic form of the pricing

errors. e weighting matrix in the quadratic form is a diagonal matrix with the

inverse of the sample test asset return volatilities on the main diagonal.

Standard errors are produced with a bootstrap from , simulated realizations.

Our bootstrap experiment samples test-asset returns and rst-stage VAR errors, and

uses the rst-stage and second-stage WLS VAR estimates in Table . to generate the

state-variable data.¹³ We partition the VAR errors and test-asset returns into two

groups, one for to and another for to , which enables us to use

the same simulated realizations in subperiod analyses. e rst set of standard errors

(labeled A) conditions on estimated news terms and generates betas and return

premia separately for each simulated realization, while the second set (labeled B) also

estimates the rst-stage and second-stage VAR and the news terms separately for each

simulated realization. Standard errors B thus incorporate the considerable additional

sampling uncertainty due to the fact that the news terms as well as betas are generated

regressors.

Two alternative -percent critical values for the composite pricing error are

produced with a bootstrap method similar to the one we have described above,

except that the test-asset returns are adjusted to be consistent with the pricing model

before the random samples are generated. Critical values A condition on estimated

¹³When simulating the bootstrap, we drop realizations which would result in negative RVAR and
redraw.



news terms, while critical values B take account of the fact that news terms must be

estimated.

Finally, Table . reports the implied risk-aversion coefficient, γ, which can be

recovered as g /g , as well as the sensitivity of news about risk to news about market

variance, ω, which can be recovered as− ∗ g /g . e three-beta ICAPM estimates

are constrained so that both γ and the implied ω are strictly positive.

Table . shows that in the - period, the restricted three-beta model

explains the cross-section of stock returns reasonably well. e cross-sectional R

statistics are almost for both forms of this model. Both the Sharpe-Lintner and

Black versions of the CAPM do a slightly poorer job describing the cross-section

(both R statistics are roughly ). e two-beta ICAPM of Campbell and

Vuolteenaho ( ) performs slightly be er than the CAPM and slightly worse than

the volatility ICAPM. None of the theoretically-motivated models considered are

rejected by the data based on the composite pricing test. Consistent with the claim

that the three-beta model does a good job describing the cross-section, Table .

shows that the constrained and the unrestricted factor model barely improve pricing

relative to the three-beta ICAPM.

Figure . provides a visual summary of these results. e gure plots the

predicted average excess return on the horizontal axis and the actual sample average

excess return on the vertical axis. In summary, we nd that the three-beta ICAPM

improves pricing relative to both the Sharpe-Lintner and Black versions of the

CAPM.
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Figure . : Pricing Size and Value Portfolios, Early Period
e four diagrams correspond to (clockwise from the top le ) the CAPM with a constrained zero-

beta rate, the CAPMwith an unconstrained zero-beta rate, the three-factor ICAPMwith a free zero-
beta rate, and the three-factor ICAPM with the zero-beta rate constrained to the risk-freee rate. e
horizontal axes correspond to the predicted average excess returns and the vertical axes to the sample
average realized excess returns for the ME- and BE/ME-sorted portfolios. e predicted values
are from regressions presented in Table . for the sample period : - : .



is success is due in part to the inclusion of volatility betas in the speci cation.

For the Black version of the three-beta ICAPM, the spread in volatility betas across

the size- and book-to-market-sorted portfolios generates an annualized spread in

average returns of . compared to a comparable spread of . and . for

cash- ow and discount-rate betas. Variation in volatility betas accounts for of the

variation in explained returns compared to and for cash- ow and

discount-rate betas respectively. e remaining of the explained variation in

average returns is due of course to the covariation among the three types of betas.

Results are very different in the - period. Table . shows that in this

period, both versions of the CAPM do a very poor job of explaining cross-sectional

variation in average returns on portfolios sorted by size and book-to-market. When

the zero-beta rate is le as a free parameter, the cross-sectional regression picks a

negative premium for the CAPM beta and implies an R of roughly . When the

zero-beta rate is constrained to the risk-free rate, the CAPM R falls to roughly - .

Both versions of the static CAPM are easily rejected at the ve-percent level by both

sets of critical values.

In the modern period, the unconstrained zero-beta rate version of the two-beta

Campbell and Vuolteenaho ( ) model does a be er job describing the

cross-section of average returns than the CAPM. However, the implied coefficient of

risk aversion, . , is arguably extreme.

e three-beta model with the restricted zero-beta rate also does a poor job

explaining cross-sectional variation in average returns across our test assets. However,

if we continue to restrict the risk price for discount-rate and variance news but allow
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Figure . : Pricing Size and Value Portfolios, Modern Period
e four diagrams correspond to (clockwise from the top le ) the CAPM with a constrained zero-

beta rate, the CAPMwith an unconstrained zero-beta rate, the three-factor ICAPMwith a free zero-
beta rate, and the three-factor ICAPM with the zero-beta rate constrained to the risk-freee rate. e
horizontal axes correspond to the predicted average excess returns and the vertical axes to the sample
average realized excess returns for the ME- and BE/ME-sorted portfolios. e predicted values
are from regressions presented in Table . for the sample period : - : .

an unrestricted zero-beta rate, the explained variation increases to roughly ,

three-quarters larger than the R of the corresponding two-beta ICAPM. e

estimated risk price for cash- ow beta is an economically reasonable percent per

year with an implied coefficient of relative risk aversion of . . Both versions of our

intertemporal CAPM with stochastic volatility are not rejected at the -percent level

by either set of critical values.

Figure . provides a visual summary of these results. For the Black version of the



three-beta ICAPM, spread in volatility betas across the size- and

book-to-market-sorted portfolios generates an annualized spread in average returns

of . compared to a comparable spread of . and . for cash- ow and

discount-rate betas. Variation in volatility betas accounts for of the variation in

explained returns compared to for cash- ow betas as well as for discount-rate

betas. Covariation among the three types of betas is responsible for the remaining

- of explained variation in average returns.

e relatively poor performance of the risk-free rate version of the three-beta

ICAPM is due to the derived link between γ and ω. To show this, Figure . provides

two contour plots (one each for the risk-free and zero-beta rate versions of the model

in the top and bo om panels of the gure respectively) of the R resulting from

combinations of (γ,ω) ranging from ( , ) to ( , ). On the same gure we also plot

the relation between γ and ω derived in equation ( . ). e top panel of Figure .

shows that even with the intercept restricted to zero, R ’s are as high as for some

combinations of (γ,ω). Unfortunately, as the plot shows, these combinations do not

coincide with the curve implied by equation ( . ). Once the zero-beta rate is

unconstrained, the contours for R ’s greater than cover a much larger area of the

plot and coincide nicely with the ICAPM relation of equation ( . ).

Consistent with the contour plots of Figure . , the pricing results in Table .

based on the partially-constrained factor model further con rms that the link

between γ and ω is responsible for the poor t of the restricted zero-beta rate version

of the three-beta ICAPM in the modern period. When removing the constraint

linking γ and ω but leaving the constraint on the discount-rate beta premium in place,
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Figure . : Contour Plots Showing Goodness-of-Fit
e two contour plots show how the R of the cross-sectional regression explaining the average re-

turns on the size- and book-to-market portfolios varies for different values of γ and ω for the risk-
free rate (top panel) and zero-beta rate (bo om panel) three-beta ICAPMmodel estimated in Table
. for the sample period : - : . e two plots also indicate the approximate ICAPM rela-
tion between γ and ω described in equation ( . ).



the R increases from - to . Nevertheless, the risk prices for γ and ω remain

economically large and of the right sign.

Risk-sorted test assets

We con rm that the success of the three-beta ICAPM is robust by expanding the

set of test portfolios beyond the size- and book-to-market-sorted portfolios. First,

we show that our three-beta model not only describes the cross-section of

characteristics-sorted portfolios but also can explain the average returns on

risk-sorted portfolios. We examine risk-sorted portfolios as Daniel and Titman

( , ) and Lewellen, Nagel, and Shanken ( ) argue that asset-pricing tests

using only portfolios sorted by characteristics known to be related to average returns,

such as size and value, can be misleading due to the low-dimensional factor structure

of the size and book-to-market-sorted portfolios.

Table . prices the six risk-sorted portfolios described in Table . Panel B in

conjunction with six of the size- and book-to-market-sorted portfolios of Table .

Panel A (the low, medium, and high BE/ME portfolios within the small and large ME

quintiles). We continue to nd that the three-beta ICAPM improves pricing relative

to both the Sharpe-Lintner and Black versions of the CAPM. Moreover, the relatively

high R ( ) is not disproportionately due to characteristics-sorted portfolios as

the R for the risk-sorted subset ( ) is not only comparable to but also larger than

the R for the characteristics-sorted subset ( ). Figure . shows this success

graphically.

Table . prices the cross-section of characteristics- and risk-sorted portfolios in
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Figure . : Pricing Risk Sorted Portfolios, Early Period
e four diagrams correspond to (clockwise from the top le ) the CAPM with a constrained zero-

beta rate, the CAPMwith an unconstrained zero-beta rate, the three-factor ICAPMwith a free zero-
beta rate, and the three-factor ICAPM with the zero-beta rate constrained to the risk-freee rate. e
horizontal axes correspond to the predicted average excess returns and the vertical axes to the sample
average realized excess returns for the ME- and BE/ME-sorted portfolios. e predicted values
are from regressions presented in Table . for the sample period : - : .



the modern period. We nd that the zero-beta rate three-beta ICAPM is not rejected

by the data while both versions of the CAPM are rejected. Again, the relatively high

R for the zero-beta rate version of the volatility ICAPM ( ) is not

disproportionately due to characteristics-sorted portfolios as the R for the

risk-sorted subset ( ) is not only comparable to but also larger than the R for the

characteristics-sorted subset ( ). Figure . provides a graphically summary of

these results.

Non-equity test assets

We also show that our three-beta model can help explain average returns on

non-equity portfolios designed to be highly correlated with aggregate volatility risk,

namely the S&P index straddles of Coval and Shumway ( ). We rst

calculate the expected return on straddle portfolio based on the estimates of the

zero-beta rate volatility ICAPM in Table . . e contributions to expected

quarterly return from the straddle’s cash- ow, discount-rate, and volatility betas are

- . , - . , and - . respectively. As the average quarterly realized return on

the straddle is - . , an equity-based estimate of the three-beta model explains

roughly of the realized straddle premium.

Table ?? shows that our intertemporal CAPM with stochastic volatility is not

rejected at the -percent level when we price the joint cross-section of equity, bond,

and straddle returns. e implied risk aversion coefficient (roughly for both the

risk-free and zero-beta rate implementations of the model) is high but not

unreasonable. In sharp contrast, the CAPM is strongly rejected. ough the two-beta



Ta
bl

e
.

:M
od

er
n
Sa

m
pl
eA

ss
et

Pr
ic
in

g
Te

st
sw

ith
R
isk

-s
or

te
d
Po

rt
fo

lio
s

Pa
ra
m

et
er

C
AP

M
-b

et
aI

C
AP

M
-b

et
aI

C
AP

M
C
on

st
ra
in

ed
U
nr

es
tr
ic
te
d

R̂ z
b
le
ss
R f

(̂g
)

.
-

.
.

.
.

pe
ra

nn
um

.
-

.
.

.
.

St
d.

er
r.

(
.

)
(

.
)

(
.

)
(

.
)

(
.

)
β̂ C

F
pr

em
iu
m

(̂g
)

.
.

.
.

.
.

.
.

.
.

pe
ra

nn
um

.
.

.
.

.
.

.
.

.
.

St
d.

er
r.

(
.

)
(

.
)

(
.

)
(

.
)

(
.

)
(

.
)

(
.

)
(

.
)

(
.

)
(

.
)

β̂ D
R
pr

em
iu
m

(̂g
)

.
.

.
.

.
.

.
.

-
.

.
pe

ra
nn

um
.

.
.

.
.

.
.

.
-

.
.

St
d.

er
r.

(
.

)
(

.
)

(
.

)
(

.
)

(
.

)
(

.
)

(
.

)
(

.
)

(
.

)
(

.
)

β̂ V
pr

em
iu
m

(̂g
)

-
.

-
.

-
.

-
.

-
.

-
.

pe
ra

nn
um

-
.

-
.

-
.

-
.

-
.

-
.

St
d.

er
r.

(
.

)
(

.
)

(
.

)
(

.
)

(
.

)
(

.
)

R̂
-

.
.

.
.

.
.

.
.

.
.

ch
ar
ac

te
ris

tic
s

-
.

.
.

.
.

.
.

.
.

.
ris

k-
so

rt
ed

-
.

.
-

.
-

.
-

.
.

.
.

.
.

Pr
ic
in

g
er

ro
r

.
.

.
.

.
.

.
.

.
.

cr
iti

c.
va

l.
(

.
)

(
.

)
(

.
)

(
.

)
(

.
)

(
.

)
(

.
)

(
.

)
(

.
)

(
.

)
Im

pl
ie
d
γ̂

N
/A

N
/A

.
.

.
.

N
/A

N
/A

N
/A

N
/A

Im
pl
ie
d
ω̂

N
/A

N
/A

N
/A

N
/A

.
.

N
/A

N
/A

N
/A

N
/A



0 5 10 15
0

5

10

15

ICAPM with zero−beta rate
0 5 10 15

0

5

10

15

ICAPM with risk−free rate

0 5 10 15
0

5

10

15

CAPM with zero−beta rate
0 5 10 15

0

5

10

15

CAPM with risk−free rate

Figure . : Pricing Risk Sorted Portfolios, Modern Period
e four diagrams correspond to (clockwise from the top le ) the CAPM with a constrained zero-

beta rate, the CAPMwith an unconstrained zero-beta rate, the three-factor ICAPMwith a free zero-
beta rate, and the three-factor ICAPM with the zero-beta rate constrained to the risk-free rate. e
horizontal axes correspond to the predicted average excess returns and the vertical axes to the sample
average realized excess returns for six ME- and BE/ME-sorted portfolios (denoted by triangles) and
six risk-sorted portfolios (denoted by asterisks). e predicted values are from regressions presented
in Table . for the sample period : - : .



ICAPM is not rejected, the required risk aversion is too extreme (over for both

versions of the model) to be realistic.

Summary of US nancial history

Figure . (third panel) plots the time-series of the smoothed combined shock

γNCF − NDR − ωNV based on the estimate of the zero-beta model for the modern

period (Table . ). e correlation of this shock with the associatedNCF is . .

Similarly, the correlation of this shock with the associatedNDR is . . Finally, the

correlation of this shock with the associatedNV is - . . Figure . also plots the

corresponding smoothed shock series for the CAPM (NCF − NDR) and for the

two-beta ICAPM (γNCF − NDR). e two-beta model shi s the history of good and

bad times relative to the CAPM, as emphasized by Campbell, Giglio, and Polk

( ). e model with stochastic volatility further accentuates that periods with

high market volatility, such as the s and the late s, are particularly hard

times for long-term investors.

. T C S V

We extend the approximate closed-form intertemporal capital asset pricing model of

Campbell ( ) to allow for stochastic volatility. Our model recognizes that an

investor’s investment opportunities may deteriorate either because expected stock

returns decline or because the volatility of stock returns increases. A conservative

long-term investor will wish to hedge against both types of changes in investment

opportunities; thus, a stock’s risk is determined not only by its beta with unexpected
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Figure . : Pricing Risk Sorted Portfolios, Modern Period
is gure plots the time-series of the smoothed combined shock for the CAPM (NCF − NDR),

the two-beta ICAPM (γNCF − NDR), and the three-beta ICAPM that includes stochastic volatil-
ity (γNCF − NDR − ωNV) for the unconstrained zero-beta rate speci cations estimated in Table
for the modern subperiod. e shock is smoothed with a trailing exponentially-weighted moving

average. e decay parameter is set to . per quarter, and the smoothed news series is generated as
MAt(SDF) = . SDFt +( − . )MAt− (N). is decay parameter implies a half-life of six years.

e sample period is : - : .



market returns and news about future returns (or equivalently, news about market

cash ows and discount rates), but also by its beta with news about future market

volatility. Although our model has three dimensions of risk, the prices of all these

risks are determined by a single free parameter, the coefficient of relative risk aversion.

Our implementation models the return on the aggregate stock market as one

element of a vector autoregressive (VAR) system; the volatility of all shocks to the

VAR is another element of the system. e empirical implementation of our VAR

reveals new low-frequency movements in market volatility tied to the default spread.

We show that the negative post- CAPM alphas of growth stocks are justi ed

because these stocks hedge long-term investors against both declining expected stock

returns, and increasing volatility. e addition of volatility risk to the model helps it

to deliver a moderate, economically reasonable value of risk aversion.

Our empirical work is limited in one important respect. We test only the

unconditional implications of the model and do not evaluate its conditional

implications. A full conditional test is likely to be a challenging hurdle for the model.

To see why, recall that we assume a rational long-term investor always holds of

his or her assets in equities. However, time-variation in real stock returns generally

gives the long-term investor an incentive to shi the relative weights on cash and

equity, unless real interest rates and market volatility move in exactly the right way to

make the equity premium proportional to market volatility. Although we do not

explicitly test whether this is the case, previous work by Campbell ( ) and

Harvey ( , ) rejects this proportionality restriction.

One way to support the assumption of constant equity investment is to



invoke binding leverage constraints. Indeed, in the modern sample, the Black ( )

version of our three-beta model is consistent with this interpretation as the estimated

difference between the zero-beta and risk-free rates is positive, statistically signi cant,

and economically large. However, the risk aversion coefficient we estimate may be

too large to explain why leverage constraints should bind.

Nevertheless, our model does directly answer the interesting microeconomic

question: Are there reasonable preference parameters that would make a long-term

investor, constrained to invest in equity, content to hold the market rather than

tilting towards value stocks or other high-return stock portfolios? Our answer is

clearly yes.



e high brokerage charges and the heavy transfer
tax...sufficiently diminish the liquidity of the market. But
a li le consideration of this expedient brings us up against
a dilemma, and shows how the liquidity of investment
markets o en faciliates, though it sometimes impedes, the
course of new investment.

JohnMaynard Keynes

3
Informative Prices and the
Cost of CapitalMarkets

I of time and money speculating on nancial

valuations or hiring others to trade on their behalf. While criticizing speculation is

always fashionable, the scale of the recent increase in resources spent on capital

markets has many people concerned that we are wasting talent and resources. ere

seems to be li le consensus among nancial economists regarding the value of this

speculative activity; however, it is easy to observe the increase in quantity.

Historically, the share of national income spent on nancial market activity remained



relatively stable until the mid- s, when the nancial sector began to grow much

more rapidly than the aggregate US economy. Before rushing to judge whether we

now spend too much, or too li le, on active investing, we need theory and evidence

that promise to explain the root cause of this growth and the resulting effect on asset

prices.

In this paper, I document how the sharp decline in the cost of nancial transactions

facilitated the modern increase in nancial activity. To clarify the forces at work, I

present a stylized model of an economy with a nancial sector that allows investors to

trade ownership claims on a risky investment. e supply of investment responds to

asset prices, and investor demand drives costly nancial activity. Investors decide

how much of their resources to employ researching the future prospects of the

uncertain outcome, and market transaction costs affect the quantity and time horizon

of informed speculation. We see the surprising result that the nancial sector

consumes more resources through spending on active investing as it operates more

efficiently. As dynamic trading strategies become feasible, the model suggests that the

information content of asset prices increases, especially over short-horizons.

Historical data on US market activity and asset prices con rm these predictions.

e most signi cant decrease in transaction costs occurred in , when on May

Day the SEC demanded that stock exchanges end the practice of forcing a xed

commission schedule on all equity transactions. In response to broker competition,

the average cost of institutional trading plummeted to about half of previous levels.¹

is event is signi cant not only in the historical time series, but it also provides a

¹US Securities and Exchange Commission, Directorate of Economic and Policy Research. Staff
Report on the Securities Industry in ( July , )



natural se ing for identifying the causal mechanism. is regulatory change leads to

a surge in capital market spending, trading, and compensation, with an impact that

predictably varies across investment characteristics and time horizons.

e efficiency of modern nancial markets enables dynamic trading strategies and

encourages investors to spend more resources on research and trading, but increased

efficiency does not necessarily align the incentives of private speculators toward

activities with the greatest social bene t. Returning again to the stylized model shows

that increases in the efficiency of nancial market operations may lead to less efficient

economic outcomes.

S C M A

Consider howmuch the United States spends on capital market activities each year as

a share of total national production. Figure . shows the cost of capital markets as a

percentage of the GDP of the US private sector, where capital market spending

consists of the pro ts and employee compensation tabulated using the gross value

addedmeasures reported by United States Bureau of Economic Analysis (BEA).² e

cost of capital markets is remarkably stable for approximately half a century.

Beginning with a cost of . of GDP in to a cost of . in , spending

stays fairly close to its average of . with the exception of a moderate dip around

World War II. en, a li le before , we notice a dramatic surge in the cost of

capital markets to the point where capital markets now consume two percent of

annual spending.

²A complete description of the underlying data will be available in an online appendix.
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Figure . : Capital Market Spending and Compensation
e upper plot shows the share of GDP a ributed to the capital markets sector using the gross value

added measure, and the lower plot shows the ratio of average employee compensation in the capital
markets sector relative to theUS private industry average. e primary source for these calculations is
the industry accounts data published by theUSBureau of Economic Analysis as ofMarch . Cap-
ital markets-related industries are described in Table . . Data prior to comes from Philippon
( ).



Philippon ( ) lays out the scope of the historical challenge as he tabulates the

costs and quantities of various nancial activities over the past years in the United

States. In his analysis, it appears that the unit cost of nancial intermediation has

remained relatively stable over time despite advancements in technology. He notes a

puzzling increase in the cost of nancial activity over the past years that he cannot

explain with a corresponding increase in the quantity or quality of nancial services.

With a particular focus on this modern period, Greenwood and Scharfstein ( )

a ribute the modern growth of the nancial sector as a whole to two speci c

components: an increase in active investing and an expansion in credit markets. To

contrast these two culprits, I allocate the corresponding nancial activities from the

national industry accounts data, as shown in Table . . e resources consumed in

credit and banking activities grew signi cantly over the past century but follow a

distinct pa ern from the resources spent investing in nancial markets. e upper

plot in Figure . shows both activities consumed a growing fraction of GDP, but the

cost of banking and credit expanded at steady consistent pace since World War II

while the surge in trading and investing seems to be a more recent phenomenon.

Unlike the capital markets sector, the lower plot of Figure . shows the historical

compensation of employees in the banking and credit sector differs only slightly from

the private sector average and increases only moderately in recent decades.
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Figure . : Contrasting Banking and Credit vs. Capital Market Activities
e upper plot contrasts the cost of banking and credit activity with the cost of capital markets using

gross value added, and the lower plot shows the respective employee compensation ratios relative to
the US private industry average. e primary source for these calculations is the industry accounts
data published by the US Bureau of Economic Analysis as ofMarch . e classi cation to indus-
try groups is shown in Table . . Data prior to comes from Philippon ( ).



Table . : Financial sector components in national income accounts

is table shows the components of the nancial sector and the associated NAICS codes as used by
the US Bureau of Economic Analysis in their national income accounts. e grouping of the compo-
nents has not always been historically consistent. e highlighted industries are those which will be
termed the capital markets sector and are the primary focus of this paper.

Finance, Insurance, and Real Estate
Banking and Credit ( & )

Banking
Credit agencies other than banks

Capital Markets ( & )
Security and commodity brokers
Funds, trusts, and other nancial vehicles
Holding and other investment offices

Insurance ( )
Insurance carriers
Insurance agents, brokers, and service

Real Estate and Leasing ( , , )
Real Estate
Rental and leasing services and lessors of intangible assets

T

Dissatisfaction with the quantity of talent and resources consumed by nancial

markets seems to peak during economic downturns. Amidst the Great Depression,

Keynes criticized American nancial markets, arguing, “when the capital

development of a country becomes the by-product of the activities of a casino, the

job is likely to be ill-done.”³ On the other hand, the broad impact of nancial crises

could also suggest we need a large and highly compensated nancial sector to replace

animal spirits with dispassionate analysts.

Certainly, there is a need to understand the circumstances and incentives that pull

resources toward nancial markets. What gives rise to a distorted nancial sector?

³Keynes, John Maynard, e General eory of Employment, Interest and Money (London:
Macmillan, ), page .



Economic research offers three explanations for outsized nancial activity: irrational

investors do not know they trade too much, rational investors cannot help trading too

much, or perhaps the industry is rife with rent-seeking.

Financial markets seem to be amazingly adroit at exploiting irrational beliefs and

behaviors. Fanciful trading or the decision to pay exorbitant fees to popular

investment managers may funnel unnecessary fees into nance and have other

negative consequences (De Long, Shleifer, Summers and Waldmann, ).

In a model where market participants are assumed to be rational, they may still

spend too much on active investment because inference is difficult (Pástor and

Stambaugh, ) or out of a desire to avoid being the greater fool when negotiating

transactions. Glode, Green and Lowery ( ) present this situation as an arms race

externality for nancial expertise. e model presented by Bolton, Santos and

Scheinkman ( ) has a similar mechanism; opaque markets a ract talent and

more informed valuations lure the best investments away from public exchanges.

ese explanations capture important aspects of nancial markets, but neither

seems uniquely modern. If traders are foolish now, they were foolish before. Shrewd

traders will always prefer to be be er informed than their counterparty. We are forced

to ask: what changed?

Philippon and Reshef ( ) point toward the rent-seeking channel, and propose

the growth in compensation is a result of deregulation. e active government

oversight intended to curb the worst excesses in the nancial markets of the s

was gradually relaxed years later, and Philippon and Reshef propose rents lured

talent from more productive endeavors (Murphy, Shleifer and Vishny, ).



Supporting this view, Bai, Philippon and Savov ( ) suggest modern asset

prices show no increase in their information content over the past years. ey

suggest the increase in nancial spending may result from rent extraction, suggesting

the growth in active investment has had li le effect on asset prices.

U -

With so much highly compensated talent owing into investment management, it is

hard to believe that asset prices are no more informative in the modern information

age than they were in the bygone era when investors in top hats exchanged small

pieces of paper. As an alternative explanation for the root cause of the modern

growth of capital markets, I propose technological efficiency. e decreasing cost of

transacting makes dynamic trading strategies feasible and draws talent and

technology toward acquiring faster paced information. Con rming the results of Bai

et al. ( ), I nd only very weak evidence that modern asset prices capture more

long-horizon information; however, I nd strong evidence of an increase in active

trading and information content at horizons of less than one year.

To help frame the empirical ndings, I present a stylized model illustrating the role

of trading horizons in costly capital markets. e key comparative static will measure

the effect of increases in trading efficiency. e model predicts that as the cost of

nancial activity decreases, total spending in the nancial sector actually increases,

especially for short-horizon speculation.

is explanation has a large degree of empirical success in explaining aggregate



spending on capital markets over time, particularly in regard to aggregate spending on

active investing (French, ). More efficient transaction costs lead to higher

quantities of informed trading, providing an underlying explanation for Greenwood

and Scharfstein’s observation that the observed growth of modern nance coincides

with a growth in actively investing. e events of May highlight the signi cance

of this mechanism, as the SEC instituted rule -b and replaced the high trading

commissions enforced by stock exchange members with competitive transaction

rates. Using this event and information from historical fee schedules, we observe how

the operational efficiency of capital markets affects the nancial industry and market

prices.

is paper provides new evidence on the changes that caused and accompanied

the modern growth in the cost of capital markets. Linking these ndings to economic

theory clari es the underlying incentives and opens the door to the broader question

of whether the returns to nance are worth the cost.

. A S M C M

In this section, I present a stylized model of capital markets where the supply of the

risky investment responds to asset prices and where the nancial market is costly to

operate. I will show how changes in the cost of transacting affect the quantity of

resources spent on nance and affect the characteristics of asset prices.

To be er understand the role nancial markets play, consider an illustrative,

general equilibrium framework where investors spend resources in acquiring

information and engaging in costly transactions. In the spirit of the Q-theory



(Brainard and Tobin, ), the supply of investment will respond to the market

price, so the information in asset prices plays a key role in capital allocation.

Ultimately, we want to observe how changes in the cost of transacting affects the

resources spent in capital markets. Additionally, the model will distinguish between

short-run and long-run behavior, generating novel predictions relating the growth in

capital market spending to asset prices which will be con rmed in the data.

Unlike the opaque bilateral se ing of Glode et al. ( ), all market prices in the

model will be publicly observed, which has historically been true for equity markets

and is becoming increasingly common across asset classes. e setup more closely

resembles the endogenous information se ing of Grossman and Stiglitz ( ),

adding the salient features necessary to model a costly nancial market and multiple

time horizons.

e key comparative statics will be the impact of an exogenous change of

transaction costs on total capital market spending and the information content of

asset prices, noting the differential impact by trading horizon. I brie y mention the

welfare implications in section . .

T S

T

Consider a risky investment traded publicly over a T periods (t ∈ [ ,T]) prior to

yielding an uncertain payout X consumer in period T+ , where the uncertain



component of X is

X− E [X] =
T∑
t=

θt + ε. ( . )

Each of the component random variables are independent, mean-zero, and normally

distributed with variances σθ and σε. e full, random component
∑

θt becomes

public knowledge in period T+ . However, market participants can spend resources

to discover the information in period , and they will be termed long-horizon

investors. Alternately, short-horizon investors may spend a smaller amount of

resources to discover each piece of short horizon information (θt) in period t. e

random component ε cannot be observed prior to period T+ .

e quantity of the risky investment is responsive to investment demand, allowing

the quantity of shares in one period,Qt, to increase or decrease with the market price,

Pt. For simplicity, we’ll model this as a linear supply curve, with slope parameter

b > . e change in investment supply will be

Qt+ − Qt = b (Pt − Pt− ) . ( . )

where the initial price is assumed to be the unconditional expectation, P = E [P ].

By construction, the supply of investment is xed in the short-run (contemporaneous

with the trading period) and responds to nancial market prices over longer horizons

(the next period).



I

e agents will be modeled by a continuum of identical investors. Wealth can be

transferred across periods at an interest rate of zero and is consumed in the nal

period. Each investor is endowed with w units of wealth (measured in units of nal

consumption) and a share, q , of the risky investment. By construction, the total

initial quantity of investment isQ =
∫
i∈[ , ]

q ,idi.

Individuals can choose whether they want to acquire information and actively

speculate based on the difference between their valuation and the observed market

price. To learn the full value of
∑

θt during the rst trading period requires paying

kL, whereas short-horizon traders who only learn each component θt at time t pay

kS ≤ kL. Alternately, investors may choose to infer their valuations from the public

market price. Since their valuations will not differ from the market price, they will not

actively trade and I’ll refer to these traders as passive, though they might make trades

driven by changes in their uncertainty.

Each individual seeks to maximize expected CA utility of nal consumption.

For convenience, we’ll denote the consumption of investor i as their nal wealth, wi,

with associated expected utility E[− exp {−awi}] for absolute risk aversion

parameter a.

Investors must commit whether to spend resources on information in period t =

before any trading happens. In subsequent periods prior to the nal outcome,

investors may choose to trade their holdings of the risky asset at the prevailing market

price. e transaction costs associated with capital markets are passed directly

through to investors. For analytical convenience, we’ll assume they take a quadratic



form so that the trading from a prior holding of qi,t− shares in period t− to qi,t

during the trading in period twill result in a transaction cost of c (qt − qt− ) .

We can describe the evolution of investor wealth as

wi,t+ = wi,t + qi,t (Pt+ − Pt)−
c
(qi,t+ − qi,t) ( . )

where agents are identically endowed with w consumption and q shares of the risky

investment. In the nal period, the price of the risky investment will simply be the

outcome, i.e. PT+ = X.

P

e linear-CA -normal framework allows the expected utility from the perspective

of investor i in trading period t to be calculated as

Ei,t [− exp {−awi}] = − exp
{
−aEi,t [wi] +

a
Vari,t [wi]

}
. ( . )

rough monotonic transformations, the investor can maximize the

certainty-equivalent, which takes the mean-variance form, Ei,t [wi]− aVari,t [wi]. e

concavity of the problem suggests we can nd the optimal portfolio in each period,

q∗i,t, at the point where the rst order condition holds,

∂
∂qi,t

Ei,t [wi, ] =
a ∂
∂qi,t

Vari,t [wi, ].

To motivate the optimal portfolio rules, we can work backwards from the nal

trading period. e optimal portfolio q∗i,T in last trading period that maximizes the



utility of consumption in the subsequent period will have the associated rst order

condition

q∗i,T =
Ei,T [X− PT] + cqi,T−

aVari,T [X] + c
. ( . )

is is the classic myopic portfolio rule with a transaction cost adjustment. In the

numerator, we see the optimal portfolio increases linearly with the expected return,

Ei,T [X− PT]. e second term in the numerator shows how much transaction costs

discourage trading by anchoring the portfolio at the initial position, qi,T− . e

magnitude of the transaction costs, c, determines the extent to which this affects the

optimal portfolio.

In solving the model, I will show how the anchoring feature of transaction costs

results in optimal portfolio rules that are a weighted average of their myopic,

one-period expected return and the returns offered in future periods.

E

In this se ing, investors can be grouped into three types based on their information

sets. e mass of agents of type j are those who pay kj for their investment

information will be measured as the quantity λj ∈ [ , ].

De nition In a rational expectations equilibrium,

(a) markets will clear

(b) investors will choose to spend resources on information to maximize ex ante

utility, leading to an allocation {λL, λS} and where λN = − λL − λS is the

fraction of individuals who will only infer information from market prices



(c) investors of each type have an optimal demand function qi,t (Pt) for the risky

asset conditional on the market price, which will be constructed from their

rational beliefs about random variables (θt and νt) conditional on the observed

price.

M

It will be useful to explicitly de ne market clearing. Noisy supply shocks will add

uncertainty so that the market price does not perfectly reveal all information.

Speci cally, the total quantity of investment supply will equal investment demand,

Qt =
∑
i

λiqi,t +
νt

aσε + c
, ( . )

comprising the sum of the individual demands (qi,t) times the mass of the investor

type (λi) plus the scaled demand shock νt ∼ N (σν). e values in the denominator

scale the shock by variance and transaction costs. In this sense, the noise can be

interpreted in the same way as the demands of an informed investor, as can be seen

from demand function ( . ), but obviously the shock is unrelated to the actual nal

payout of the investment.

I

To build the intuition behind this model and its equilibrium, consider Figure . . For

this particular illustration, this will assume just one trading period (T = ) and there

is no distinction between long-horizon and short-horizon informed investors, though



the paper will generally consider T > in order to highlight the importance of time

horizon. e le panel plots the fraction of informed speculators along the horizontal

axis, ranging from to . e vertical axis measures expected utility for both the

informed speculators and the expected utility for the uninformed, passive investors.

When there are no informed speculators, the information advantage is obvious as the

expected utility for informed active investors is signi cantly higher than that of the

passive investors who observe only the market price. As the fraction of the informed

investors increases, the difference between the two expected utilities decreases. is

is the general case, and the intuition extends to the multiple period se ing; as the

market price becomes more informative the relative advantage of paying for the

information decreases. With these parameters, the equilibrium point of indifference

between acquiring the costly information occurs at the point where approximately

of the investors acquire the costly information. To the right of the equilibrium point,

the trading pro ts resulting from learning more about the risky outcome θ are not

worth the resources it could cost (k).

On the right panel, the horizontal axis continues to measure the fraction of

informed speculators, and on the vertical axis we see the equilibrium price. In the

case of no informed investors, the variation in price is entirely due to the supply

shocks ν. As the fraction of informed traders increases, we see two effects. e

average price increases as investors are willing to commit more capital to investment

because there is less uncertainty. Additionally, the variance of the market prices

increases. is is because the price now also contains information about the

investment prospects. Not surprisingly, the information content of asset prices levels
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Figure . : Intuition behind model equilibrium
e plots above correspond to themodel presented in the paper in the one-period se ing,T = . e

model parameters are: Q = , X̄ = , σε = σθ = , σν = , a = . , c = , and k = . For
illustration, the investment supply is allowed to be elastic in the short-run (ΔQ = b(P−E[P])), with
linear supply parameter b = . . e le axis plots the expected utility for the informed speculators
and the uninformed passive investors. e right axis plots how the distribution of the market price,
P, changes with respect to the quantity of informed speculators.

of around the equilibrium point, further evidence that li le additional value is gained

acquiring information that is already largely in the market price.

Proposition (Equilibria) ere exist rational expectations equilibria under the

assumed parameter restrictions ( < kS < kL).

e proof for the one-period case (T = ) should be clear from the discussion

above. ere will be no long-horizon traders. Since the expected utilities are

continuous in λ ∈ [ , ], we simply need to appeal to the intermediate value theorem

for existence. e difference between the expected utility of the informed and

uninformed traders will nearly always be monotonically decreasing in λ, which

guarantees uniqueness.



e same intermediate value approach guarantees a unique solution in the case of

multiple periods (T > ) in the case where one or more type is always inferior and

has optimal weight zero. e existence of the multiple horizon solution when there is

a positive mass of each of the three types can be motivated by working backwards

from the nal period. In the nal period, informed traders face a situation identical to

the one-period model. In prior periods, the relative advantage to the long-horizon

information is decreasing in λL. e mass of investors in λS will be uninformed about

the information θt+k (for k > ), and like the uninformed investors, can infer more

information as λL increases. As long as there are positive quantities of each investor

type, the marginal effect of more traders will follow the same relative rank impact on

ex ante utility, guaranteeing a unique solution.

C (T = )

To characterize the analytical differences between long-horizon and short-horizon

speculation, I will more fully characterize the solution for T = . In this se ing, the

outcome will be a long-run event in the rst period and a short-run event in the

second period, which immediately precedes the investment outcome. A er this

short-horizon trading is complete, investor iwill consume

wi = w +q P +qi, (P − P )+qi, (X− P )− c
((qi, − q ) + (qi, − qi, ) )−ki.

( . )



A

To calculate the investor demand functions, we need to know their expectations,

which will be affected by the information they perceive from the market prices they

observe. I will assert and then prove that the market prices can be expressed as linear

functions of the unknown variables,

P = P̄ + β θ + β θ + βν ν ( . )

and

P = P̄ + βP (P − P̄) + β θ + β θ + βν ν . ( . )

e unknown coefficients are derived in the appendix, thus con rming the assumed

linear functional form.

Additionally, to help with the notation and intuition, we note that the beliefs of

uninformed and short-run traders hold about X from observing the market price in

period will be affected by the variation in price. We can express these expectations

as

ES, [X] = X̄+ ρS, YS, ( . )

where

YS, = θ +
βν
β

ν ( . )

∝
(
P − P̄ − β θ

)
( . )



and so that ρ ∈ [ , ] is a simple function of the assumed parameters

ρ =
σθ

σθ +
(

βν ,

βθ,

)
σν

.

e investors who have spent no resources on information simply take valuations

from their deviation from the market price

(EN, [X]− X̄) ∝ (P − P̄) ( . )

P

e investors will be categorized by the trading period in which they receive

information about θ: in the long-horizon (L), short-horizon (S) and not at all (N).

For each of the three investor types (L, S, andN), we can express their optimal

portfolio in terms of their prior position and their current expectations Ei, [X] and

Vari, [X]. e long-run and short-run speculators will both know θ and θ in period

so EL, [X] =ES, [X]. e associated variance will be VarL, [X] =VarS, [X] = σε.

From ( . ) we can conclude that the optimal portfolio for these two types of

investors will be

q∗L, =
(X̄+ θ + θ − P ) + cq∗L,

aσε + c
( . )

and

q∗S, =
(X̄+ θ + θ − P ) + cq∗S,

aσε + c
( . )



e optimal portfolio for the investors who purchase no information

q∗N, =
EN, [X− P ] + cq∗N,

aVarN, [X] + c
( . )

depends on the expectations, En, [θ] and Varn, [θ], which will be derived later.

P

When investing for the long-run (in period ), investors choose their allocation aware

of their optimal short-run portfolio rules in equations ( . - . ). ose short-run

rules show that each portfolio allocation is linearly related to the expected return

(Ei [X− P ]) and the prior portfolio allocation (qi, ).

e form of the period demand function for long-horizon investors is similar to

that of the other two investor types. It is derived by substituting the period demand

from equation ( . ) into equation ( . ) and taking the rst order conditions to nd

the optimal portfolio

q∗L, =
( − Γ)EL, [P − P ] + ΓEL, [X− P ] + cq

Ω + c
(

+
(

aσε
aσε+c

) ) ( . )

where the tilt toward the long-run return is

Γ =
c

aσε + c︸ ︷︷ ︸
return next period

+ a
( aσε + c) βν σνa σε

(aσε + c)︸ ︷︷ ︸
prefer to avoid adverse ν



and the variance

Ω =

(
c

aσε + c

)
σε︸ ︷︷ ︸

variance of X

+

(
aσε

aσε + c

)
βν , σν︸ ︷︷ ︸

variance in P

.

To develop some intuition for this long-horizon portfolio rule in equation ( . ),

consider the three terms in the numerator. As before, there is a weight pulling the

optimal portfolio toward the initial position, q as a result of transaction costs. e

other two terms are a weighted average of the myopic expected return, EL, [P − P ]

and the long-run expected return, EL, [X− P ], with respective weights ( − Γ) and

Γ.

e weight Γ that the investor tilts toward the long-horizon return will always be

weakly positive, Γ ∈ [ , ), and its magnitude will increase with transaction costs.

e relationship with transaction costs arises from the investor recognizing positions

taken today will persist into the future due to the anchoring effect of transaction

costs. Additionally, there is some uncertainty in the price next period, so investors

have an incentive to lock in P now rather than pay an uncertain P .

e demand functions for the short-run and uninformed investors take an

identical form, with slightly different values for Γ and Ω.

D

is section derives the demand functions for the model with two trading periods

(T = ). For each investor, we use their expectations to maximize the utility of nal



wealth, as de ned in equation ( . ),

wi = w −ki+q P +qi, (P − P )+qi, (X− P )− c
((qi, − q ) + (qi, − qi, ) ) .

e rst order condition, ∂
∂qi,t

Ei,t [wi] =
a ∂
∂qi,t

Vari,t [wi], can be used to derive the

investor demand functions. In period , the only source of uncertainty isX and we get

q∗i, =
Ei, [X− P ] + cqi,

aVari, [X] + c
,

which leads to the optimal demand functions presented for each type of investor, as

in ( . ).

Deriving the demand functions for period with multiple horizons requires a fair

amount of algebra. Beginning with the expression for expected wealth,

Ei, [wi] = w − ki + q P + qi, Ei, [P − P ] + Ei, [qi, (X− P )]

− c
((qi, − q ) + Ei, [(qi, − qi, ) ]) ,

we can substitute in period ’s demand function

Ei, [wi] = w + q P + qi, Ei, [P − P ] + Ei,

[
Ei, [X− P ] + cqi,

aVari, [X] + c
(X− P )

]
− c
(
(qi, − q ) + Ei,

[(
Ei, [X]− P + cq∗i,

aVari, [X] + c
− qi,

) ])



with rst derivative

∂

∂qi,
E [wi] = Ei, [P − P ] +

cEi, [X− P ]

aVari, [X] + c
− c (qi, − q )

−c
(

aVari, [X]
aVari, [X] + c

)
qi, + c

aVari, [X]El, [X− P ]

(aVari, [X] + c)

so the nal expression is

∂

∂qi,
E [wi] = Ei, [P − P ]

+

(
c

aVari, [X] + c
+ c

aVari, [X]
(aVari, [X] + c)

)
Ei, [X− P ]

+cq − c
(

+

(
aVari, [X]

aVari, [X] + c

) )
qi,

e optimal portfolio in period one will be the one that solves the rst order

condition,

q∗i, =
Ei, [P − P ] +

(
c

aVari, [X]+c + c aVari, [X]
(aVari, [X]+c)

)
Ei, [X− P ] + cq

a
q∗i,

Vari, [wi] +
(

+
(

aVari, [X]
aVari, [X]+c

) )
c

.

e expected values for P and X are apparent from the assumed linearity in ( . )

and ( . ), so the task at hand is to come up with expressions for a
q∗i,

Vari, [w ], where



the variance term can be expressed as

Vari, [wi] = Vari,
[
qi, P + qi, (X− P )− c

(qi, − qi, )
]

= Vari,
[
qi, P + qi, (X− P )− c

qi, + cql, qi,
]

= Vari,
[
qi, P + qi, (X− Ei, [X]) + qi,

(
aVari, [X] +

c)]

and the remaining calculation requires using the expectations of each investor and

calculating the sensitivity with respect to the rst period allocation.

L -

For long-horizon investors, the uncertain terms will be:

P − EL, [P ] = βν , ν ,

X− EL, [X] = X− El, [X] = ε.

e optimal position during the nal trading period

qL, =
EL, [X− P ] + cqL,

aσε + c
−

βν ν
aσε + c

= EL, [qL, ]−
βν

aσε + c
ν .



From this, we can calculate the variance

VarL, [wL] = VarL,

 qL, βν ν + EL, [qL, ] ε−
βν

aσε+c ν ε

+
(
EL, [qL, ]−

βν
aσε+c ν

) (
aσε +

c)


= VarL,


(

c
aσε+cqL, +

EL, [X−P ]

aσε+c

)
ε

+
(
qL,
(

aσε
aσε+c

)
− EL, [X− P ]

aσε+
c

(aσε+c)

)
βν ν

− βν
aσε+c ν ε+

aσε+
c

(aσε+c) βν ν


and using the normality and independence of ε and ν ,

Var [wL] = Var[aν + bε+ cν + dνε]

= a σν + b σε + c σν + d σνσε

we can write

VarL, [wL] =

(
c

aσε + c
qi, +

EL, [X− P ]

aσε + c

)
σε

+

(
qL,
(

aσε
aσε + c

)
− EL, [X− P ]

aσε + c
(aσε + c)

)
βν σν

+

{ βν
aσε + c

}
σνσε +

{
aσε +

c

(aσε + c)

}
βν , σ .



To calculate the demand function, we need to evaluate the rst derivative

∂

∂q ,l
Vari, [wi] =

c
aσε + c

(
c

aσε + c
qi, +

EL, [X− P ]

aσε + c

)
σε

+

(
aσε

aσε + c

) (
qi,
(

aσε
aσε + c

) )
βν σν

−
(

aσε
aσε + c

) (
EL, [X− P ]

aσε + c
(aσε + c)

)
βν σν

and calculate the term

a ∂VarL, [wL]

∂q ,l
= a

((
aσε

aσε + c

)
βν σν +

(
c

aσε + c

)
σε

)
qi,

−a
(
( aσε + c) a σεβν σν

(aσε + c)
− cσε

(aσε + c)

)
EL, [X− P ]

e optimal portfolio for the long-term speculator is then

q∗L, =
EL, [P − P ] +

{
c

aσε+c + a ( aσε+c)βν , σνa σε
(aσε+c)

}
EL, [X− P ] + cq

a
{(

c
aσε+c

)
σε +

(
aσε

aσε+c

)
βν , σν

}
+ c
(

−
(

aσε
aσε+c

) )
which can be wri en as in equation ( . )

q∗L, =
EL, [P − P ] + ΓlEL, [X− P ] + cq

aΩ + c
(

−
(

aσε
aσε+c

) )
=

( − Γ)EL, [P − P ] + ΓEL, [X− P ] + cq

aΩ + c
(

−
(

aσε
aσε+c

) )



e variance term, Ω is a linear combination of the uncertainty in next period’s

price (σν) and uncertainty in the nal payout (σε)

Ω =

(
c

aσε + c

)
σε︸ ︷︷ ︸

variance of X

+

(
aσε

aσε + c

)
βν , σν︸ ︷︷ ︸

variance in P

.

e sensitivity to next period’s expected return is

Γ =
c

aσε + c︸ ︷︷ ︸
return next period

+ a
( aσε + c) a σε
(aσε + c)

βν , σν︸ ︷︷ ︸
prefer to avoid uncertain ν

.

e weight Γ that the investor tilts toward the long-horizon return will always be

positive, and its magnitude will increase with transaction costs. e relationship with

transaction costs comes from the investor recognizing positions taken now will

persist later. Additionally, there is some uncertainty in the price next period, so

investors have an incentive to lock in P now rather than pay an uncertain P .

S -

For the short-run investors, the uncertain terms will be

P − EN, [P ] = β eS + βν ν

and

X− Es, [X] = eS + ε,



where

eS = (θ − ES, [θ ]) .

e optimal portfolio in the nal trading period can then be expressed as

qS, =
ES, [X− P ] + cqS,

aσε + c

=
ES, [X− P ] + cqS,

aσε + c
+

ES, [X− P ]− ES, [X− P ]

aσε + c

= ES, [qS, ] +
eS
(
− β

)
aσε + c

−
βν ν

aσε + c
.

So we can calculate the variance as

VarS, [wS] = VarS,
[
qS, P + qS, (X− ES, [X]) + qS,

(
aσε +

c)]

So the variance is

VarS, [wS] =

(
qS, −

(
− β

)
ES, [qS, ]

(
aσε +

c)
aσε + c

)
β σS,

+

(
qS, −

ES, [qS, ]
(
aσε +

c)
aσε + c

)
βν σν

+(ES, [qS, ]) σε

+VarS,


(

eS( −β )
aσε+c − βν ν

aσε+c

) (
aσε +

c)
+

(
eS( −β )
aσε+c − βν ν

aσε+c

)
ε





and we can substitute in ES, [qS, ] =
ES, [X−P ]+cqS,

aσε+c and get rst derivative

∂VarS, [wS]

∂qS,
= qS,

{(
a σε

(aσε + c)

)
βν σν +

(
c

aσε + c

)
σε

}
+ qS,

{(a σε − β ( acσε + c )
(aσε + c)

)
β σS,

}

− ES, [X− P ]

 a σε( aσε+c)
(aσε+c) βν σν −

cσε
(aσε+c)

+
(a σε−β ( acσε+c ))( −β )( aσε+c)

(aσε+c) β σS,


e optimal portfolio can be expressed in a form analogous to the long-run

demand function in equation ( . ) by naming the short-horizon parameters, Γs and

Ωs,

q∗S, =
( − ΓS)ES, [P − P ] + ΓSES, [X− P ] + cq

aΩS + c
(

+
(

aσε
aσε+c

) ) .

e intuition and form are nearly identical, with the short-horizon investors tilting

slightly more toward the long-run return, ES, [X− P ], due to their uncertainty

about θ ,

ΓS = Γ + a

(
− β

) (
a σε − β ( acσε + c )

)
(aσε + c)

β σe︸ ︷︷ ︸
prefer to avoid uncertain e

.

eir associated uncertainty term, ΩS, is

ΩS =

(
c

aσε + c

)
σε +

(
a σε − β ( acσε + c )

)
β σS, + a σεβν σν

(aσε + c)
.



U

e uninformed investors have the highest degree of uncertainty. In period , this is

summarized by the uncertain terms:

X− EN, [X] = e + e + ε

where the errors in expectations in the nal period are expressed as

e = (θ − EN, [θ ])

e = (θ − EN, [θ ]) .

e additional, orthogonal error in the rst period expectation is

Δe = (θ − EN, [θ ])− (θ − EN, [θ ])

Δe = (θ − EN, [θ ])− (θ − EN, [θ ])

so that

P − EN, [P ] = β (e + Δe ) + β (e + Δe ) + βν ν

and

X− EN, [X] = (e + Δe ) + (e + Δe ) + ε.



e optimal portfolio in the nal trading period can then be expressed as

qN, =
EN, [X− P ] + cqN,

aVarN, [X] + c

=
EN, [X− P ] + cqN,

aVarN, [X] + c
+

EN, [X− P ]− EN, [X− P ]

aVarN, [X] + c

=
EN, [X− P ] + cqN,

aVarN, [X] + c
+

EN, [X]− EN, [X]− P − EN, [P ]

aVarN, [X] + c

= EN, [qN, ] +
Δe + Δe − β (e + Δe )− β (e + Δe )− βν ν

aVarN, [X] + c

= EN, [qN, ] +
Δe
(
− β

)
+ Δe

(
− β

)
− β e − β e − βν ν

aVarN, [X] + c
.

e uncertainty from the perspective of the investors who acquire no information

will be

VarN, [wN] = VarN,
[
qN, P + qN, (X− EN, [X]) + qN,

(
aVarN, [X] +

c)]
.



Spli ing out the terms,

VarN, [wN] =

{
qN, β + EN, [qN, ]− β EN, [qN, ]

aVarN, [X] + c

aVarN, [X] + c

}
σe

+

{
qN, β + EN, [qN, ]− β EN, [qN, ]

aVarN, [X] + c

aVarN, [X] + c

}
σe

+

{
qN, β +

(
− β

)
EN, [qN, ]

aVarN, [X] + c

aVarN, [X] + c

}
σΔe

+

{
qN, β +

(
− β

)
EN, [qN, ]

aVarN, [X] + c

aVarN, [X] + c

}
σΔe

+

{
qN, − EN, [qN, ]

aVarN, [X] + c

aVarN, [X] + c

}
βν σν

+ {EN, [qN, ]} σε

+ {the terms without qN, } ,

and taking the rst derivative yields the comon form

q∗N, =
( − ΓN)EN, [P − P ] + ΓNEN, [X− P ] + cq

aΩN + c
(

+
(

aσε
aσε+c

) ) .

In this case,

ΩN =

(
c

aVarN, [X]+c + β
(

aVarN, [X]
aVarN, [X]+c

) )
σe

+
(

c
aVarN, [X]+c + β

(
aVarN, [X]

aVarN, [X]+c

) )
σe

+
(

− β
(

aVarN, [X]
aVarN, [X]+c

) )
σΔe +

(
− β

(
aVarN, [X]

aVarN, [X]+c

) )
σΔe

+
(

−
(

aVarN, [X]
aVarN, [X]+c

) )
βν σν +

{
c

aVarN, [X]+c

}
σε



and

ΓN =
c

aVarN, [X] + c
+ c

aVarN, [X]
(aVarN, [X] + c)

+a



(
c (aVarN, [X] + c) + β (aVarN, [X])

)
×
(
aVarN, [X] + c− β ( aVarN, [X] + c)

)
(aVarN, [X] + c)


σe

+a



(
c (aVarN, [X] + c) + β (aVarN, [X])

)
×
(
aVarN, [X] + c− β ( aVarN, [X] + c)

)
(aVarN, [X] + c)


σe

+a


(

− β
(

aVarN, [X]
aVarN, [X]+c

) )
×
(
( −β )( aVarN, [X]+c)

(aVarN, [X]+c)

)
 σΔe

+a


(

− β
(

aVarN, [X]
aVarN, [X]+c

) )
×
(
( −β )( aVarN, [X]+c)

(aVarN, [X]+c)

)
 σΔe

−a
{(

−
(

aVarN, [X]
aVarN, [X] + c

) )(
aVarN, [X] + c

(aVarN, [X] + c)

)}
βν σν

+a
{

c
(aVarN, [X] + c)

}
σε

M C I

e investors will form expectations about investment prospects (X) and the effect of

the noise shocks (ν and ν ) from the market price. Intuitively, investor expectations



of θ increase in the market price, but larger noise shocks dampens this relationship. It

remains to be veri ed that the assumed linear relationship between prices and the

unknown variables as suggested in equations ( . ) and ( . ) holds.

In period , the market clears when

Q = λNqN, + λSqS, + λLqL, +
ν

aσε + c
.

e demand functions for the short-horizon and long-horizon investors are both

linear in E[X] and hence linear in the state variables, so substituting them into the

market clearing condition shows the price to be linear in the state variables. e

expectations of the risky payout will all be linear in P , which can be seen from

substituting in the demand functions to the market clearing condition

P ∝

λS

 ( − ΓS) β + ΓS

aΩS + c
(

+
(

aσε
aσε+c

) )
+ λL

 ( − Γ) β θ + Γθ

aΩ + c
(

−
(

aσε
aσε+c

) )
 θ

λL

 ( − Γ) β + Γ

aΩ + c
(

−
(

aσε
aσε+c

) )
 θ

+

{
aσε + c

}
ν

is con rms ( . ).

Similarly, in period the market clearing condition shows that

P ∝ λS + λL
aσε + c

(θ + θ ) +

{
aσε + c

}
ν ,



which con rms ( . ).

T

Let’s now turn to the question of what happens if the nancial sector is more

operationally efficient and the cost of transacting decreases. I consider two key

comparative statics: how does this affect total active investment management (∂
∑

λi
∂c )

and how does this effect differ by investment horizon (∂λs
∂c versus ∂λl

∂c ).

Proposition (More activemanagement) As the cost of transacting decreases, total

informed trading increases,
∂
∑

λi
∂c

≤

and this becomes a strict inequality if there is any interior solution (i.e. <λj < for some

j).

e value gained from information lies in the ability capitalize on the information

through active trading. Clearly, in the limiting case, limc→∞ λ∗n → . For interior

solutions, we must consider the marginal impact of transaction costs on the relative

utility of informed and uninformed investors. e unconditional expected utility of

an informed speculator will be a decreasing, continuous function of transaction costs.

e unconditional expected utility of a passive investors will also decrease–but much

less rapidly. Hence, ∂
∑

λN
∂c ≥ . Since these functions are continuous, equality will

only hold in the corner solutions where marginal changes in expected utility have no

effect on the allocations of investor type.



Proposition (Shorter investment horizons) Lower transaction costs have a greater

effect on short-horizon investors than long-horizon investors,

∂λS
∂c

≤ ∂λL
∂c

with strict inequality for interior solutions (i.e. λL ∈ ( , ) and λS ∈ ( , )).

is result comes from the fact that the short-horizon investors’ optimal portfolio

contains a subset of the information of the long-horizon investor. So the desire to

spread trading over a longer horizon is offset by the fact that the short-horizon signal

in period (θ ) may be in the opposite direction as the signal in period (θ ). As a

result, short-horizon traders are forced to trade more for the same expected return.

In fact, in a model with many periods (T large), the short-horizon traders will nd

that the independence of θt makes trading in the earliest periods costly relative to the

weakness of their accumulated signal. As the nal horizon approaches, the

short-horizon traders will be more inclined to trade as their accumulated signal is

stronger and less likely to suggest they need to unwind their trades because of future

information.

In contrast, the long-horizon traders are eager to trade on their information as

early as possible, but they submit to spreading their trading across later periods in

their desire to minimize their transaction costs. ere are also information

advantages to spreading out trades, since larger trades move prices and allow other

traders to freely infer the costly information, but the in nitesimal traders do not

absorb this externality.



. E E G C M S -

A key contribution of this paper is document the relationship between the efficiency

of nancial transactions and the growth of modern nance. As improvements in

technology and market organization make transactions less costly, we should expect

to see the volume of transactions increase. is simply follows from the economic

Law of Demand. A more surprising result is that as nancial costs decrease, total

spending on nance increases. is is fundamentally a statement about elasticities.

In this section, I focus on establishing the relationship between nancial efficiency

and the aggregate measures of nancial spending and activity. I use timing to assert

causality in the Granger sense, and using the (plausibly) exogenous historical break

in May of . e evidence is statistically strong but open to the criticism that the

changes in efficiency may be interrelated with contemporaneous events. In section

. , I will use cross-sectional variation in the panel data to establish even stronger

results and focus more explicitly on measuring the information content and

investment horizon, two key features of the model.

A

With the possible exception of the very recent past, brokerage commissions were the

primary cost in trading equities (Berkowitz, Logue and Noser, ). ey funded

all the operations required in nancial market transactions. To test the efficiency

explanation for the growth of capital markets, I construct a historical time series that



measures the representative cost of transacting. e measure I propose splices two

date ranges: - and - .

P - : NYSE

From its founding in up to , the New York Stock Exchange (NYSE)

enforced a minimum commission schedule on all of its member rms. e smaller,

regional exchanges mirrored the commission schedule of the NYSE, and in the rare

cases where they didn’t, they faced enormous industry pressure to conform. e

stated goal was to ”prevent competition amongst the members” to protect their

pro ts. Exchange members referenced the general fear of unfe ered trading and

defended high trading costs by observing that ”a very low or competitive rate would

also promote speculation.” ⁴

An example commission schedule, corresponding to the NYSE rates for is

displayed in Figure . . We can see how the formula de ning the commission rate is a

function of the nominal share price. Purchasing a round lot ( shares) of a stock

costing per share, for example, would have a commission of + . times .

A round lot of a stock would cost + . times .

To construct a time series of the average transaction cost prior to I collect the

NYSE commission schedules, including the NYSE annual fact books and the

monthly S&P Stock Owners Guide. Combining these commission schedules with

trading volume and price data from CRSP,⁵ I construct an annual series of the

⁴Report of the Commi ee Appointed Pursuant to House Resolutions and to Investigate
the Concentration of Control of Money and Credit, H.R. REP. NO. -

⁵Center for Research in Security Prices. Graduate School of Business, e University of Chicago



Figure . : NYSE Commission Schedule,
An image of the New York Stock Exchange minimum commission schedule for , as reported on
page of the NYSE Fact Book for .



weighted average cost of trading.

M D

In the a ermath of the nancial disasters surrounding the Great Depression, the

Securities Exchange Act of charged the Securities and Exchange Commission

(SEC) with regulating and approving changes to any enforced commission schedules.

Over the following forty years, the NYSE would periodically submit proposals to

increase rates. A pa ern emerged whereby the NYSE would complain about the

rising costs and shrinking pro ts of its members, propose an increase in the

commission schedule in order to maintain an appropriate level of pro tability, and

they would get immediate approval from the SEC.

In , however the SEC scrutinized the latest proposed increase with more

skepticism. Regulators asked why the cost of transacting in the nancial markets

could not itself be the product of a competitive response. e response from the

exchange was emphatic: ”One does not move the keystone of an industry which

facilitates the raising of the bulk of new capital for this country...Negotiated rates

would bring a degree of destructive competition.”⁶

Although the SEC continued to approve a series of regular increases, this initial

dissatisfaction was not placated. On January , the SEC adopted rule -b,

requiring all stock exchanges to end the practice of the xed commission schedule

and allow members to set rates competitively. is rule was to go in effect on May ,

. Distressed brokers and the popular press referred to the deadline as May Day.

( ), Used with permission. All rights reserved.
⁶Richard Hack, NYSE president (August , )



As brokers competed for the rst time on trading costs, there was a sharp drop in

costs, especially for institutional investors. e SEC instituted a number of studies

trying to measure the impact of their rule. Only two weeks a er the beginning of

competitive rates, the SEC Commissioner noted that they “have seen sharp price

cu ing, in some instances to half or less of previously prevailing rates.”⁷ e SEC

study of concluded that institutional trading costs had stabilized to a level .

below their xed rate levels.⁸ Interestingly, the costs to individual traders decreased

only moderately, giving rise to price discrimination among investor types (Tinic and

West, ).

P - : NYSE

To continue the time series measuring the cost of transacting in the modern period of

negotiated commissions post- , I collect commission revenues from the member

nancial statements of the NYSE and divide them by trading volume to estimate the

weighted average cost per share.

Figure . shows the composite time series from to . We can see the

signi cant increase in the early �s followed by a relatively steady increase in costs

for almost years until the sudden drop resulting from the events of May . To

ensure the aggregate time series is a fair representation of aggregate transaction costs,

I compare it to a number of independent measures. ese include: the survey results

from Greenwich Associates, a consultancy that surveys institutional investors

⁷Remarks by A. A. Sommer Jr. in a talk titled ” e New Breath of Competition” delivered at the
Seminar on the Analysis of Security Prices, University of Chicago, May , .

⁸SEC Staff Report on the Securities Industry in



regarding the costs they pay for their transactions; the SEC studies measuring

transaction costs in the wake of rule -b; and for historical purposes, the cost

associated with trading a stock, holding the nominal share price constant through

the duration of the xed commission schedule. Each of these measures corresponds

relatively closely to the composite series I created.

Since the post- series imputes costs rather than calculating them directly, it is

especially useful to compare them with data published by Greenwich Associates, a

rm that has been polling institutional investors on their average commission costs

since . e time series of their survey results is plo ed in green triangles

alongside my own estimates on Figure . . e two series are highly similar, except in

the rst few years of the sample where the commissions paid by institutions are even

lower than the computed average. is is consistent with historical reports that the

trading commissions charged to individuals did not drop immediately in response to

the deregulation until the advent of discount stock brokers around .

Looking at the data prior to , I plot the evolution of the cost of trading a

stock using the orange squares. Historical pa erns in share prices and trading volume

cause the higher frequency variation in my composite series, making it useful to

compare against a series where the nominal share price is held constant. Any changes

can then be a ributed to the imposed cost schedule and not to endogenous investor

behavior. Focusing on the cost of trading a stock from to , we see the

round trip cost more than tripled, from . to . of the notional value.

Including the additional . for paying the typical / cost from the bid-ask spread,

the total cost of buying and selling exceeded in . It is important to note the
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economic importance of this magnitude. To put this in perspective, the average stock

response to an earnings announcement is in the range of ⁹, so even if it were

possible to know earnings announcements with certainty, you would typically not be

able to recover the cost of transacting. e costs were so high that only large

misvaluations could merit a ention. A speculator would favor low frequency

information, with the hope that transaction costs might be amortized over a long

horizon. Furthermore, any dynamic trading strategy, such as a portfolio rebalancing

rule or a derivative replication, would be incredibly costly.

T

We can expect the constructed time series of transaction costs to be negatively

correlated with trading volume, a relationship that should hold true in nearly any

economic model. If the proposed efficiency explanation for capital market growth

plays a signi cant role, transaction costs should also be negatively related to capital

market spending. In particular, this increase should correspond to active investment

management and not just an increase in the operational costs associated with higher

trading volume. Lastly, the prediction of more informed speculation also suggests

that employees with higher skill and compensation enter the sector in response to a

cheaper cost of transacting.

e series measuring the cost of capital markets continues to be the value added

measure of capital market industries relative to private GDP with annual data from

to . e series measuring capital markets compensation relative to average

⁹See, for example, Francis, Schipper and Vincent ( ).



US private compensation was also previously described and plo ed in Figure . . I

measure equity turnover by collecting all available CRSP data on stock volume and

shares outstanding for common equity of US rms. Additional details behind the

data sources and data construction can be found in the online data appendix.

S

e summary statistics for these four time series are presented in Table . . We can

see that the transaction cost, measured in basis points (hundredths of one percent),

averages basis points over the full sample. e series ranges signi cantly from

more than bps near its peak to just a few basis points in recent years. e fraction

of GDP devoted to capital markets averages about basis points over this time

series, averaging about basis points before and increasing to about basis

points in recent years. e compensation for capital market employees has an average

that is approximately twice the US private sector average over the full sample,

increasing to almost times average compensation in recent years. Equity turnover is

about a year on average, suggesting an average holding period of approximately

two years. While turnover was very high in the late ′s, it was consistently low for

most of the th century and then rises again in the recent past, with a current

horizon of just a few months.

e correlations of the four series are displayed in the bo om panel of Table . .

As predicted, transaction costs have a strong negative relationship with the size of

capital market spending and the volume of trade. While supporting the idea of a

contemporaneous relationship, the slow-moving nature of all four time series might



Table . : Time series summary statistics and correlations

is table shows summary statistics for annual data on: the average commission cost of transacting
stocks in the United States (tcost) constructed as described in section . ; the percentage of national
income consumed by capital markets related activity using a GDP value-added measure divided by
private GDP calculated using data from the Bureau of Economic Analysis (capmkt ); the ratio of
the average salary for employees in capital markets related industries relative to the average salary
across all private-sector employees using data from the Bureau of Economic Analysis (comp ratio);
and the annual turnover in US equities measured by dividing annual volume by shares outstanding
as reported in CRSP. Annual observations are used over the period - to calculate the mean,
standard deviation and various percentiles in the upper panel. Correlations are displayed in the lower
panel.

-
mean std. ile ile ile

tcost (bps) . . . . .
capmkt (bps) . . . . .

comp ratio . . . . .
turnover . . . . .

Correlation
tcost capmkt comp turnover

tcost (bps) . - . - . - .
capmkt (bps) - . . . .

comp ratio - . . . .
turnover - . . . .
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Figure . : Predicting the cost of capital markets using the cost of transacting
e above gure plots in red the percentage of national income consumed by capital markets related

activity using a GDP value-added measure divided by private GDP calculated using data from the
Bureau of Economic Analysis. e do ed line shows the t of a time series regression using the com-
posite commission time series and a linear time trend.

cast doubt on the statistical signi cance.

We can see this more precisely in the simple regressions shown in Table . , where

the GDP share of capital market (capmkt), the relative compensation ratio for capital

markets (comp) and the estimated US equity market turnover (turnover) are each

regressed on the transaction cost series (tcost). As an illustration of the strength of

this predictive relationship, Figure . plots the growth in the cost of capital markets

(shown previously in Figure . ) against the predicted value from the regression.

While there is certainly some unexplained variation, the visual t is striking. Note

that each of these series is highly persistent, as is observed in their plots, so it comes

as no surprise that an augmented Dickey-Fuler test does not reject the possibility of a



unit root. is degree of persistence would discount the signi cance of their

observed correlations.

R

To make a stronger case for this relationship and establish causality (in the Granger

sense that past transaction costs forecast growth in capital market activity), we can

consider how the changes in one series affects the other by taking rst differences.

With the high degree of persistence in the raw time series, they may be susceptible to

the type of spurious regression results that occur with unit roots. e rst differences

could then reveal if the time series are truly related, and if so, if one tends to forecast

the other. Table . reports the results for regressions forecasting annual changes in

capital market spending, the capital market compensation ratio, and trading volume

as each is regressed on annual changes in transaction costs with up to lags.

e predicted negative relationship remains. Interestingly, changes in transaction

costs lead changes in the other series by approximately to years. For example, in

the rst regression of capital market spending on lagged changes in transaction costs

we see negative coefficients for every lag with the second lag being of the strongest

magnitude. We can interpret this coefficient as suggesting a one basis point decrease

in the cost of transactions predicts that capital markets will consume a basis point

higher share of private GDP two years in the future. e same one basis point

decrease in the cost of transacting would predict the average compensation of capital

markets professionals in three years to rise by an additional . times the

compensation of the average US employee. Looking at the effect on trading volume,



Table . : Time series regressions of rst differences

is table shows the results of regressing changes in the income share of capital markets (Δcapmkt),
capital market compensation (Δcomp), and equity turnover by volume (Δturnover) on changes in
the commission cost of stock transactions (Δtcost) with up to four lags. Newey-West adjusted t-
statistics, with four lags, are reported in parentheses. Statistical signi cance is noted with: *** p <
. , ** p < . , * p < . .

Δcapmkt Δcomp Δturnover
( ) ( ) ( )

Δtcost - . . .
( . ) ( . ) ( . )

L(Δtcost) - . . - .
( . ) ( . ) ( . )

L (Δtcost) - . * . - .
( . ) ( . ) ( . )

L (Δtcost) - . - . ** - . **
( . ) ( . ) ( . )

L (Δtcost) - . - . - .
( . ) ( . ) ( . )

Constant . . .
( . ) ( . ) ( . )

Observations



this one basis point decrease in transaction costs would suggest trading volume to be

higher in three years’ time.

is is actually what we might predict if innovations to transaction costs are

unexpected. In the context of the proposed model, investors commit to their type ex

ante, so we would expect the delayed response to correspond to the time it takes to

acquire the talent and research necessary to launch new dynamic strategies.

e statistical relationship seems compelling, although any claims about the

importance of the efficiency mechanism are certainly open to critiques of omi ed

variable bias. A number of important regulatory and technological changes happened

during the ’s. e coincident growth in capital markets and decline in

transaction costs could be coincidence, although it would be difficult to explain the

strong predictive power of the transaction cost changes exhibited in Table . . To

strengthen the identi cation of the true mechanism causing nancial growth, we can

look at the cross-section of rms and focus on speci c predictions around the events

of May .

. M A A P C S

Moving from broad statements about nancial activity to the activity we observe for

individual rms provides a more re nedmeasure of howmuch of the growth in active

investing can be explained by transaction efficiency. e model presented in section

. had speci c predictions regarding trading activity and the information content of

asset prices. As trading efficiency increases we expect to see more trading volume and

more informative asset prices. ere should also be a differentially large impact on



the shorter investment horizons relative to longer horizons. Observing

cross-sectional variation in the prices and trading activity of individual rms over the

past few decades will generate micro-level support to add to the macro-level time

series evidence presented in the previous section.

For increased con dence that we are isolating a key driving mechanism behind the

growth of active investing, we can use the events of May as Rule -b came in

force. First, we expect that the subsequent drop in transaction costs associated with

competitive brokerage commissions should lead to a subsequent increase in the

trading and information content of US equities. Following a key prediction of the

model, we should expect this to be stronger for shorter horizons. en, to be er

identify the efficiency channel, we can use speci c features of how the xed

commission schedule affected the cross-section of rms until May to measure

differential effects. is additional level of control helps rule out competing

explanations that might have occurred on or around .

C

In the stylized model of section . , the information content of long-horizon prices

can be measured through the regression coefficient from projecting the risky

investment outcome (X− E[X]) on to the change in the long-horizon price

(RL = P − P ), de ning

βL =
Cov[X,RL]

Var[RL]
=

βθ, σθ
Var[RL]

.



Intuitively, the information content of long-horizon prices is positively related to the

quantity of long-horizon active investors.¹⁰

e information content of short-horizon prices can be similarly expressed by

(RS = P − P )

βS =
Cov[X,RS]

Var[RS]
=

βθ, σθ
Var[RS]

.

which increases with the sum of the long-horizon and the short-horizon active

investors.

We can construct an analogous measure with empirical data on stock prices and

earnings. I de ne the ”long horizon” as the period stretching from two years prior to a

rm’s earnings announcement to months prior to the earnings announcement, the

”short horizon” spanning months prior to the earnings announcement to one

month prior to the earnings announcement, and the ”announcement period” spans

from one month before to two months a er the announcement. e risky investment

outcome will be de ned as the scaled change in a rm’s quarterly earnings (Δxt).

is motivates a corresponding empirical regression of the rm’s uncertain payout

on the returns over each horizon,

Δxt = β + βL × rL + βS × rS + βA × rA ( . )

Each of the returns will be measured as the change in log-price, so if time t is

¹⁰Formally, this can be stated as ∂Cov[X,RL]
∂λL > , and also, βL

∂λL > given Var[RL] > βθ, σθ .



measured in months relative to the earnings announcement,

rL = ln(Pt− )− ln(Pt− )

rS = ln(Pt− )− ln(Pt− ))

rA = ln(Pt+ )− ln(Pt− )).

Similarly, the risky payout will be measured as a log return scaled by the price

observed prior to all the returns. If EPSt corresponds to the earnings-per-share

reported on the announcement date, the risky payout in the panel regressions

speci ed by ( . ) will be de ned as

Δxt = ln
(

+
EPSt − EPSt−

Pt−

)
.

D

For each year from to , I construct a universe of rms by selecting the

largest rms by market capitalization, as measured by their CRSP-reported market

cap on December st of the prior year. For this set of rms, I collect historical

weekly total returns, nominal share prices, trading volume, and shares outstanding.

Using the linked CRSP-Compustat data, I collect a panel of their reported earnings

per share and the date of the earnings announcement.

e announcements dates are not always available, particularly early in the sample,

so I create an additional supplemental series of earnings announcement data where I



use historical announcement pa erns to estimate the date when not available. is

has the advantage of increasing the sample size, and the methodology for estimating

historical announcement dates appears to be very accurate when checked against

rms for which the actual dates are known. Since the announcement return period is

de ned to begin one month prior to the reported announcement, any imprecision

should have li le effect on the results of the subsequent panel regressions.

Table . reports the summary statistics for the variables considered in the panel

data regression. e earnings news measure (Δxt) for these large rms over the

year sample averages approximately zero with a standard deviation of approximately

. e market price for the rms in the sample appears surprisingly high, at about

, but this is actually an artifact of Berkshire-Hathaway’s inordinately large

nominal share price. e median share price is with a standard deviation of .

Dividing the trading volume recorded in CRSP for each quarter by the shares

outstanding, I obtain rm-level annualized turnover rates for each rm-quarter in the

panel. Over the full sample, annualized turnover averages . , with a wide degree of

variation across rms. e return variables, rL, rS and rA, each correspond to a

different horizon length, so the magnitudes of their average returns and standard

deviations are not directly comparable.

e lower panel of Table . reports the same summary statistics for the

sub-sample corresponding to the ve years before May of , the two years of

observations that overlap with May , and ve years a erward. is subsample,

and ones like it, will be used in the panel regressions where the data window tightens

around the events around the implementation of Rule -b.



Table . : Summary Statistics for Panel Data Analysis

e summary statistics below are for the quarterly panel data collected for the , rms in the an-
nual universe being analyzed. e universe is reset each year, taking the , largest rms bymarket
cap. e rst panel cover the full sample period, while the lower panel covers the -year window be-
fore xed exchange regime was ended onMay , up until -years a erMay , the date at
which none of the collected series overlap with the xed-rate commission regime.

mean std. ile ile ile

-

Δxt - . . - . . .
price . . . . .

turnover . . . . .
rL . . - . . .
rS . . - . . .
rA . . - . . .

(N = , )

-

Δxt . . - . . .
price . . . . .

turnover . . . . .
rL . . - . . .
rS . . - . . .
rA . . - . . .

(N = , )



R

To generate a graphical measure of the changing information content of prices over

time, we can perform a rolling panel regression. I hold the window length constant at

two years and then estimate the panel regression corresponding to equation ( . )

with rm xed effects. Figure . displays the rolling coefficient estimates as a

sca erplot in the upper axis, where each estimated long horizon coefficient, βL,

corresponds to a white circle and each estimated short-horizon coefficient, βS,

correspond to a shaded circle. e lower axis reports the estimated root mean square

error (RMSE) and the R-squared coefficient of each regression.

e rising pa ern in the information content of asset prices is clearly visible.

While the magnitude of these betas are roughly similar in the rst years of the

sample, the predictive power of the short-horizon prices increases much more rapidly

than the long-horizon prices. In a more careful subsequent regression estimating the

trend in information content over time, I show the increase in the long horizon

coefficient, while positive, to be statistically difficult to distinguish from a hypothesis

of no change.

is is consistent with the results of Bai et al. ( ). ey look at the information

content of prices at one to three years prior to earnings releases. is is what my

results would consider long-horizon information, and I nd no compelling evidence

that this information has improved over time.

On the other hand, asset prices less than one year prior to earnings

announcements show a consistent increase in information content. Previewing my

focus on the events of May , this gure already gives a strong visual indication



that the strongest increases in information content correspond to this change as

active investing increased dramatically.

While this rolling analysis is instructive, the underlying investment se ing may not

be fully comparable as the sample rolls across time. e information gathering

problem may be different from one decade to the next, and there may be signi cant

changes in the price-to-earnings relationship that would affect the magnitude of the

coefficients.

With that in mind, it is interesting to look at the bo om axis of Figure . and note

how both the explained variation (R ) and the unexplained variation (RMSE) are

increasing in the late ’s and, to a lesser extent, over the full historical sample. is

suggests that the raw difficulty of forecasting earnings increased, but so did the

fraction of variation that prices could explain.

P

To directly estimate the pa ern of change in the information contained in asset prices

over the full sample, I run a full panel regression, interacting the return variables with

the time trend. e variable, trend is measured in years, and the coefficient on

rL × trend can be interpreted as the annual change in the regression coefficient

measuring long-horizon information content. Corresponding interaction terms are

used for the short-horizon and announcement return.

Table . reports the results of the base panel regressions suggested in equation

( . ) as well as a version with these time trend interactions. e reported standard

errors are estimated using industry clustering, where I use the two digit SIC code as
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Figure . : Rolling Regression Coefficient and Moving Average, -
e two axes plot the results of the rolling regressions described in section . . e top axis plots the

estimated regression coefficients and the lower axis plots the square root of the mean squared error
(RMSE) and the R values.



the de nition for industry throughout.

e regression reported in the rst column of Table . reports the results of the

base regression using rm xed effects, considering variation within rms. e

second regression speci cation uses industry and quarter xed effects to isolate the

impact of variation among similar rms in the same time period. e results of each

speci cation are very similar. e strong statistical signi cance of these regression

coefficients should not be too surprising; changes in asset prices correspond to

present and future changes in earnings. On the other hand, the coefficient on the

long-horizon return is not particularly strong in the rst speci cation with rm xed

effects, and disappears entirely in the second speci cation.

e third speci cation is the primary one of interest. It shows the gradual change

in these coefficients over time. e interaction term between the short horizon

return and the time trend is statistically signi cant at the level. In contrast the

long horizon return shows li le evidence of increasing informativeness over time. Of

note, the three-month return around the earnings announcement actually shows a

decreasing relationship in predicting the reported earnings. e fact that we observe

opposite effects on the short-horizon and announcement returns may indicate a

substitution of information being pulled into earlier asset prices.

T -

Over such a long sample, any number of underlying parameters could be changing.

e types of rms today are certainly very different than those of the s. ere

could very well be differences in the difficulty of predicting their future pro tability,



Table . : Base panel regression with time trend

e regression estimates below are the result of panel regressions of earnings news (Δx de ned in
section . of the paper) on past log returns, log returns interacted with a time trend. e regres-
sion also includes a constant term and constant trend variable, but the coefficients are not reported.
Industry-clustered, heteroskedasticity robust standard errors are in parentheses below each estimated
coefficient. Statistical signi cance is noted with: *** p < . , ** p < . , * p < . .

( ) ( ) ( )

rL . - . .
( . ) ( . ) ( . )

rL × trend .
( . )

rS . *** . *** . ***
( . ) ( . ) ( . )

rS × trend . ***
( . )

rA . *** . *** . ***
( . ) ( . ) ( . )

rA × trend - . ***
( . )

Fixed Effects
rms , ,

industries
quarters

Observations , , ,



there can be differences across industries, and there could be differences in their

accounting conventions. To be sure that we are truly measuring changes in asset price

information and not these other confounding features, we can focus on the change in

transaction efficiency associated with the implementation of Rule -b in May of

and tighten the estimation window around this period.

I estimate panel regressions using the same framework as before, but I now interact

the returns with a dummy variable, post , that equals one for observations where all

corresponding variables are observed a er the advent of competitive commissions

(i.e. a er May of ). Interacting with this dummy variables tests for a

discontinuity in the parameter estimates when crossing this boundary. is

regression is reported in Table . .

ere are four regression speci cations in the columns of the table, with each one

representing a smaller window around . e rst speci cation estimates the

panel regression over the full sample, comparing pre- to post- data using the

observations from to . Both long horizon and short horizon prices show

dramatic increases in their information content, with their coefficients increasing by a

factor of four. However, only the short horizon variables show statistical signi cance.

e three successive regression speci cations with tighter and tighter sample

windows increase the standard errors in the coefficient estimates but decrease the

concern that other factors unrelated to efficiency and information are driving this

result. Looking at the coefficient estimates, the post- effect on short horizon

price information remains roughly equal for each time window considered. e effect

on long horizon information is always weaker than short horizon and difficult to



Table . : Testing the May Day effect in the time series

e regression estimates below are the result of panel regressions of earnings news (Δx de ned in
section . of the paper) on past log returns and log returns interacted with a post- dummy vari-
able. Coefficients for constant term and constant post- dummy are estimated but not reported.
Industry-clustered, heteroskedasticity-robust standard errors are reported in parentheses. Statistical
signi cance is noted with: *** p < . , ** p < . , * p < . .

full-sample yr window yr window yr window
( ) ( ) ( ) ( )

rL . . . .
( . ) ( . ) ( . ) ( . )

rL × post . . - . - .
( . ) ( . ) ( . ) ( . )

rS . *** . *** . *** . **
( . ) ( . ) ( . ) ( . )

rS × post . *** . *** . ** .
( . ) ( . ) ( . ) ( . )

rA . *** . *** . *** . ***
( . ) ( . ) ( . ) ( . )

rA × post - . . *** . ** . **
( . ) ( . ) ( . ) ( . )

Fixed Effects
rms , , , ,

Observations , , , ,



distinguish from zero.

I -

So far the panel analysis has only used the dimension of time to associate active

trading and information with transaction efficiency. e strongest evidence for this

channel will come from the differential impact across stocks.

e NYSE xed commission schedule was always a function of the nominal share

price. Assuming the nominal share price is a historical artifact, this creates variation

across stocks that is plausibly unrelated to any economic characteristics. e

commission schedule was set as a decreasing function of nominal share price, so

stocks with lower prices were much more expensive to trade than those with higher

share prices.¹¹

ere are various ways to exploit this variation. e most simplistic is to use a

difference in differences approach. I form three categories: lowP for stocks with a

nominal share price less than ,midP for stocks whose nominal share price is

between and , and highP for stocks whose nominal share price is above .

We can then look at the differential impact across categories before and a er .

Table . reports the results of this approach, where the coefficients of interest are

the magnitudes of the product: rL × lowP× post , rL × midP× post ,

rL× highP× post , rS× highP× post , and so forth. e prediction we are testing is

whether these coefficients are positive (indicating more information post- ) and

¹¹A surprising fact about stock prices is that the distribution of their nominal price per share has
been remarkably consistent over time despite in ation and secular changes in investor and investment
characteristics. is has been discussed byWeld, Michaely, aler and Benartzi ( ).



monotonically decreasing in nominal price (indicating a differential impact across

rms according to the relative change in transaction efficiency). As in the previous

table, each regression speci cation corresponds to tighter windows around .

e results for short-horizon prices are just as predicted. All prices appear more

informative, but the impact on securities with the largest change in transaction costs

(lowP) is an order of magnitude higher than stocks where the change was more

moderate. As hoped, the relationship is monotonic across the three categories and

roughly consistent as the time window shrinks.

In the rst regression speci cation, which uses the longest window, there is some

evidence of an increase in information content of long-horizon prices, and the

cross-sectional relationship with respect to nominal share price is monotonically

decreasing. However, the statistical signi cance is low, and result disappears entirely

in the speci cations with shorter sampling windows.

. I C

e empirical analysis shows great success in explaining the modern growth in the

cost of capital markets and in looking at its effect on asset prices. However, looking at

the information in asset prices only opens the door to broader questions about the

social bene ts of these changes.

In the simple model presented here, the bene ts of active trading largely come

from two sources: the noise shocks and the efficient allocation of capital. However,

the improved capital allocation is a broadly shared positive externality, not something



Table . : Testing May Day effect in the cross-section

Coefficients for constant term and unique permutations of constant dummies are not reported.
Industry-clustered, heteroskedasticity-robust standard errors are reported in parentheses. Statistical
signi cance is noted with: *** p < . , ** p < . , * p < . .

yr window yr window yr window
( ) ( ) ( )

Long-horizon return

RLH . . . - . . .
( . ) ( . ) ( . )

×lowP . - . - .
( . ) ( . ) ( . )

×midP - . - . - .
( . ) ( . ) ( . )

×lowP× post . - . - .
( . ) ( . ) ( . )

×midP× post . *** . .
( . ) ( . ) ( . )

×highP× post - . - . - .
( . ) ( . ) ( . )

Short-horizon return

RSH . . . . *** . *** . ***
( . ) ( . ) ( . )

×lowP - . - . - .
( . ) ( . ) ( . )

×midP . - . - .
( . ) ( . ) ( . )

×lowP× post . *** . *** . ***
( . ) ( . ) ( . )

×midP× post . . .
( . ) ( . ) ( . )

×highP× post . * . * .
( . ) ( . ) ( . )

Fixed effects
industries

Observations , , ,



the active investors accrue directly. e immediate trading pro ts come at the

expense of a counterparty. To what extent will these noise traders be happy in

funding trading pro ts?

S

e bigger normative question everyone wants to answer is: are we spending too

much on nance? Taking the empirical results back to the modeling framework, we

easily see two important welfare effects. First, investors ght over their slice of the

pie, leading to what Stein ( ) terms ”welfare-reducing speculation.” ese

expenses are wasteful and would suggest too much spending in nancial markets.

Second, more informed asset prices increase the size of the pie, but the informed

investors capture only a small portion of this bene t. All of us who use public market

prices are free-riders, and this positive externality suggests we aren’t spending nearly

enough on informed speculation.

e welfare-reducing speculation can be clearly seen in the simple model where

the supply of the risky investment is perfectly inelastic, as it would be for very short

horizons. Using the same model parameters that illustrated the equilibrium in

section . , I add a do ed line to the le panel of Figure . to show the social welfare

(calculated as average expected utility) in the same plot as the expected utility of the

active and passive investors. Since the resources spent on information have no effect

on total output, social welfare is maximized with practically no informed trading, a

solution clearly less than the competitive equilibrium.

It is this type of intuition that drives the suggestions of Philippon ( ), who



suggests we may have too few engineers relative to nanciers, or Bolton et al. ( )

who similarly contrasts an overabundance of nanciers relative to entrepreneurs.

In contrast, the free-riding effect is illustrated in the case of an elastic investment

supply, as we would expect for long horizons. e le panel of Figure . shows the

equilibrium for the same parameters used in the previously discussed example, except

the supply of investment will now respond to more accurate asset prices. As you can

see, the socially optimal level of informed investment would allocate nearly half of

investors to buy information, but the competitive equilibrium allocates far fewer

since the uninformed investors are free riding on the social bene ts of more informed

asset prices.

is analysis builds on the fundamental insight of Hirshleifer ( ), who

contrasts the private and social value of foreknowledge. In the model presented here,

all information is foreknowledge, learning about information that will inevitably be

public knowledge later.

C

In the a ermath of the recent nancial crisis, scrutiny of nancial institutions has

increased. e growth in the resources poured into active investment and the surging

compensation levels of nancial professionals are used as prima facie evidence that

nancial markets have become inefficient, with many doubting that more active

management leads to more informative asset prices.

In a stylized model, I show that investment research and trading are complements,

which causes the quantity of both to increase. Financial markets become more
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informationally and operationally efficient. Empirically, this explanation is very

successful in explaining the growth in resources spent in capital markets.

Furthermore, it introduces new evidence on the importance of time horizon. Trading

horizons have shortened, and there is a corresponding increase in the short-horizon

information contained in asset prices.

Since shorter trading horizons may not be socially optimal, this result could be

interpreted as justi cation for Summers and Summers ( ) claim that a non-zero

tax on trading might be welfare enhancing, although this requires more explicit

measurement of the bene ts that arise from informative markets and the recognition

that the actual implementation of a nancial transaction tax may be impractical

(Campbell and Froot, ).

e types of dynamic strategies that become feasible with lower transaction costs

not only make short-horizon information more valuable but they can also come

closer to dynamically completing markets. It is certainly no accident that equity

options became widely available in the late s and early s, precisely when US

transaction costs experienced their largest drop. e newfound exposures made

possible by dynamical hedging may have a racted investors to trade on new risks

(Simsek, ).

e cost of capital markets has grown enormously over the past few decades. A

portion of this can be a ributed to the events of May that enabled dynamic

trading strategies and spurred an increase in active investing. is opened the door to

modern capital markets, with information and tradesmoving at ever shorter horizons.
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