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ABSTRACT

Prices in financial markets are primarily driven by the interaction of risk and time.
The returns to financial assets over long time horizons are primarily driven by
fundamental news regarding their promised cash flows. In contrast, short-run price
variation is associated with a large degree of predictable, transient investor trading
behavior unrelated to fundamental prospects.

The quantity of long-run risk directly affects economic well-being, and its
magnitude has varied significantly over the past century. The theoretical model
presented here shows some success in quantifying the impact of news about future
risks on asset prices. In particular, some investing strategies that appear to offer
anomalously large returns are associated with high exposures to future long-run risks.
The historical returns to these portfolios are partly a result of investors’ distaste for
assets whose worth declines when uncertainty increases.

The financial sector is tasked with pricing these risks in a way that properly
allocates investment resources. Over the past thirty years, this sector has grown much
more rapidly than the economy as a whole. As a result, asset prices appear to be more
informative. However, the new information relates to short-term uncertainty, not
long-run risk. This type of high-frequency information is unlikely to affect real

investment in a way that would benefit broader economic growth.
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The energies and skills of the professional investor and spec-
ulator...are, in fact, largely concerned, not with making su-
perior long-term forecasts of the probable yield of an invest-
ment over its whole life, but with foreseeing changes in the
conventional basis of valuation a short time ahead of the gen-

eral public.
John Maynard Keynes

Price Comovement and Time Horizon:

Fads and Fundamentals

THE INVESTMENT RISK OF A PORTFOLIO is closely connected to the comovement of
its components; risk diversifies when price movements are independent but persists
when changes in price are correlated. But what if prices move together over short
time intervals but seem less related over long horizons? It would seem they share
exposure to a fad that is unrelated to fundamental risk or profitability. In other cases,
closely related assets might have prices that move together over long horizons but not

over shorter intervals. This insufficient comovement masks their shared fundamental



exposures. Analyzing the returns to individual US equities, I find their correlations
depend significantly on the time horizon considered. For each pair of stocks,
measures of shared trading behavior versus measures of shared fundamentals are
highly predictive of excess or insufficient comovement.

My empirical results employ a novel methodology in estimating how much of the
measured differences in short-horizon and long-horizon correlations arise from
estimation noise. This drives the statistical inference, emphasizing that these
differences are too large to be circumstantial. The weekly returns to a typical pair of
US stocks have a correlation of 18%, but I find the correlation of their 6-month
returns are frequently 20% higher or lower than their weekly returns would suggest.
Long-horizon correlations predictably decrease for stocks with similar investor
trading patterns and correlations predictably increase for stocks of firms with closely
related business prospects as measured by their industry afliliation or by past
accounting measures.

In contrast with previous studies studying excess comovement by looking for
special cases where nominal labels change but fundamental risks do not, I take the
broad universe of US stocks and analyze comovement through differences in
short-run and long-run correlations. The methodology could easily be employed
within or across other asset classes.

Correlations are a key ingredient in asset allocation and asset pricing, and these
findings have practical implications for investors. Estimates of portfolio risk should
depend on the time horizon. Buy-and-hold investors may be misled if their

diversification estimates are based on short-term returns. Short-horizon correlations
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Figure 1.1: Correlations for Heinz, Phillip Moris and Harley Davidson

will be much more pertinent to an investor who rebalances frequently. Such an
investor might also take advantage of the associated predictability. A simple
long/short trading strategy based on a measure of fads versus fundamentals generates
risk-adjusted annual excess returns of 8.4% and a Sharpe Ratio of 1.03.

As a motivating example, consider the returns to three large US stocks, Heinz,
Philip Morris, and Harley Davidson. During the 1990, all three stocks were actively
traded, and their business lines were relatively stable until the turn of the century,
when Philip Morris began a series of acquisitions and divestitures. Looking at their
weekly returns during this decade, each pairing of the three firms has a correlation of
approximately 20%. This is slightly greater than the average correlation we observe
for most large cap US stocks during this period.

Now consider the long-run fundamentals shared by these stocks. Although



popular culture might lead you to connect the customers of Philip Morris’ tobacco
products with the stereotypical motorcyclist astride a Harley, some of the largest
business lines of Philip Morris included more traditional food staple brands such as
Kraft, Oscar Mayer and Jell-O. As you might expect, Philip Morris’ accounting profits
correlated with those of Heinz (quarterly ROE correlation of 27%), another producer
of food staples, yet seem to have no relationship with those of Harley Davidson.

These relationships become increasingly apparent as the time horizon for returns
lengthens and the estimated correlations differ significantly from the one-week
estimates. Figure 1.1 shows how the correlation estimates change with the length of
the return interval used within the decade. As the horizon increases, the correlation
of the returns of Philip Morris and Heinz steadily increases to greater than 70%, while
the correlations of each firm’s returns with those of Harley Davidson decrease to
approximately zero.

Admittedly, the examples of Heinz, Philip Morris and Harley Davidson are
selected ex post from an enormous number of pairwise correlations and possible
sample periods. Estimates of long-horizon correlations are noisy and the plots in
Figure 1.1 could be coincidental. A more careful analysis of US stock returns between
1970 and 2010 confirms patterns of this sort are pervasive.

A number of researchers have highlighted characteristics that appear to drive
excess comovement in equity returns. Barberis, Shleifer and Wurgler (2005 ) and
Boyer (2011) consider equity index inclusion and find that the addition of a stock to
major market indices causes an immediate increase in the correlation of its returns

with other index constituents. Similarly, Brealey, Cooper and Kaplanis (2009) look at



changes in exchange listing due to cross-border mergers and find a stock’s
comovement immediately increases with securities listed in its new home market.
Controlling even more strongly for differences in fundamental risk, Dabora and Froot
(1999) look at companies with shares that trade on multiple exchanges and find that
the prices of otherwise identical claims diverge from each other and move with other
stocks listed on their respective exchanges. The empirical strategy employed in each
of these papers compares comovement in a specific subset of stocks for which
circumstances suggest there are no differences in fundamental risk, at least on average.

In contrast, my approach examines a broad universe of stock prices and seeks to
measure the aggregate extent to which fads and fundamentals drive comovement.
Instead of comparing correlations immediately before and after some event, I
compare correlations made over the exact same time period where the only
difference is the return increment. In this respect, there are fewer concerns about
omitted risks associated with the treatment effect.

The study of excess comovement and fundamentals bears similarity to the work
motivated by Shiller (1981), questioning how the aggregate stock market can be so
volatile compared to the relatively stable pattern of dividends received by investors.
This led to a large literature testing variance ratios over various time horizons. There
are two advantages to studying correlations rather than variance ratios. First,
correlations control for volatility and are less affected by time variation in market
discount rates. Second, the rich cross-section of correlations allows for panel analysis,
avoiding many of the econometric shortcomings associated with analyzing

long-horizon returns in a limited time series.



One of the more striking empirical features of equity correlations is the fact that
the historical correlations between most stocks increase as their return horizon
lengthens. This stylized fact has not gone unnoticed. Campbell, Lettau, Burton and
Xu (2001) study the volatility of individual equities and note how equity correlations
generally declined during the 1980’s and 1990’s and how correlation estimates using
daily returns are, on average, lower than those using monthly returns. Lo and
MacKinlay (1990) study the profitability of contrarian strategies and attribute the
success of this strategy to positive cross-autocorrelation. Their conclusions imply that
correlations increase with time horizon. This is historically true, though I show much
of this effect is due to market microstructure and becomes less prominent as trading
costs have decreased.

What sort of labels might be most salient for investors’ fads? Since market
capitalization and relative valuations are common groupings, we might associate fads
with investment styles based on size and value. This is a key prediction of Barberis
and Shleifer (2003 ), who propose style driven investing accommodates the cognitive
limitations of investors. Veldkamp (2006) derives similar predictions in a rational
setting where investors generalize costly information across similar firms. My
empirical results show weak evidence that firms of a similar size exhibit excess
comovement, and my results do not show excess comovement in firms with similar
book-to-market ratios.

Others have connected evidence of excess comovement with trading patterns by
obtaining trade or position data for retail investors (Kumar and Lee, 2006) and

mutual fund managers (Greenwood and Thesmar, 2011; Antén and Polk, 2010).



Given the increasing importance of index benchmarks, Greenwood (2008) looks at
how index construction can lead to return patterns induced by index based trading.
In this paper, I attempt to measure shared trading behavior directly by using the
mechanical autocorrelations in returns caused by bid-ask bounce (Roll, 1984) or the
temporary market impact of trading (Campbell, Grossman and Wang, 1993).

To measure shared fundamentals, my primary measure is the past correlation of
accounting returns, measured by return on equity (ROE). I also look at common
industry membership as an indicator that firms face similar demand or profitability
shocks. The attempt to connect stock comovement to fundamentals builds on the
work of Pindyck and Rotemberg (1993 ), who find most price comovement is
unrelated to macroeconomic shocks and Cohen, Polk and Vuolteenaho (2009), who
find the CAPM performs better when they measure betas using accounting returns
rather than traditional price return betas.

The relationship between return horizon and correlation serves as a valuable
measure of excess comovement in asset prices. It quantifies the economic
significance of previous studies that identify an individual phenomenon driving
excess comovement. By introducing measures of trading behavior and fundamentals,
I can further identify the fads associated with excess comovement and the insufficient
comovement associated with shared fundamentals. This is a natural framework to
think about risk and portfolio construction, which yields intuition for portfolio

management and asset prices.



1.1 MODELING AND MEASURING COMOVEMENT

To better understand how correlations might change with time horizon, consider
what happens to the comovement of asset prices if investors are slow in incorporating
new information about fundamental value and if swings in the popularity of
investments affect their demand. We can contrast this with the case of no return
predictability or where return predictability comes through long-term time variation
in discount rates. This simple model of fads and fundamentals also suggests a
prediction regarding which pairs of assets will show correlations increasing with time
horizon and which pairs of assets will show decreasing correlations.

The model could apply to any sort of financial asset or portfolio of assets. The
effect of time horizon on correlation is likely greatest in cases where markets are
segmented or where the fundamental value is opaque. However, the notation and
presentation of the model will consider the assets to be individual equity securities, in

line with the empirical analysis to be presented.

MODELING FADS AND FUNDAMENTALS

Define the fundamental value of security i at time t as P}, entitling its owner to

Pl 1 tDitts

"
Py

payout D; ;,. Changes in log value, Ap},,, = In will be a combination of

the expected return and the unexpected shock,

Apztﬂ =E [ApthrJ aa/ . (1.1)



Suppose that the market price may differ from this fundamental value for two reasons:
first, transitory fads may cause short-run price deviations across certain groups of
securities, and second, changes in fundamental value may be incorporated with a

delay. This can be modeled in a simple way by defining the log return to security i as

Vit = Ap:‘k,t-h — Ad;pyy + Afips (1.2)

where the delay in incorporating fundamentals, Ad; ;,, is governed by §; € [0,1) in

Adiper =100, — (1 —84) Z 85’7f,t—k+1’ (1:3)
k=o

and the fad component,
1— 8 —
Afi,t+1 = &itt1 — S—f Z S}C&,t—kﬂ; (1~4)
f k=1

has shocks €; 1, that decay through §; € [0, 1). I will assume that M and €, ; are
independent martingale difference sequences.

Although this implies predictability in returns, it may not be easy to recognize.
These two forces have offsetting effects on univariate tests of predictability. For
example, consider an attempt to detect forecastability using the autocovariance. For
simplicity, we’ll assume for now that expected returns change very little (i.e.

Cov [Et [Apf +1] By [Apf +TH ~ 0)'. The autocovariance of r; with return r ,

"Note that short-term variation could be driven by behavioral or rational causes, but the label
”"fad” will be used to categorized price movement that is transient and over very short horizons. The
empirical impact of time variation in discount rates is specifically addressed in Section 1.5.



realized 7 > o periods in the future is

Cov [rs, 1141] = 8§ <Var |:r]i,t — Ad,-J) — 8} <Sf_‘Var [Afir — 5,~’t]). (1.5)

J/

Vv Vv
momentum in fundamentals reversal in fads

The delays in incorporating information contribute to momentum in returns
(positive autocorrelation), but the transient nature of fads contribute to return
reversal (negative autocorrelation). These may offset enough that it is hard for an
autocorrelation or variance ratio test to reject the null hypothesis of no predictability.
Fortunately, we may be able to take advantage of variation in the way fads and
fundamentals affect different assets. In the context of this model, there will be an
asset j for which we can measure the effect of the fad (the correlation of ¢; ; with sﬂ)
or delayed fundamentals (the correlation of 1, with 7, .)- A temporary increase in the
popularity of blue chip stocks, for example, may cause the prices of these firms to rise
together even when their future earnings are unchanged and unrelated. Measures of
comovement across assets could offer better information regarding the extent to

which prices temporarily deviate from fundamentals.

DEFINING COMOVEMENT

To be more precise in defining comovement, I will generally refer to the short-term

comovement of asset i and asset j as their contemporaneous correlation

Cov |:1’i7t+1, rj,H—l}

_ ' (1.6)
\/Var (14 t44) Var [”LHI}

p; (1)

10



The long-horizon return of asset i over H periods will be me ti t-+ny 5O the long-term
comovement of asset i and asset j is then the correlation associated with their returns

with horizon length H,

Cov [Zle Fitthy Do Feen)

_ = . : (1.7)
\/Var [Zh:1 ri,t—i—h} Var [Zh:l "J'J-HJ

Pij (H)

One advantage of measuring comovement through correlations is that it controls for
changes in the variance of assets i and j in the denominator. In that sense we are

focusing on their joint price behavior as opposed to factors affecting their individual
volatilities. A key result comes from expanding the variance and covariance terms in

the definition of long-term correlation,

H H 7 H H
COV E ri,t+h7 E rj,t+h = E COV I:ri,t+h7 rj,t+h:| + E E COV |:ri,t+h7 rj,t+k:|
h=1 h=1 | h=1

k£h h=1
H T H H
Var Z Tit+h = ZVar [ri7t+h] + Z Z Cov [ri,t_H,, r,-7t+k} . (1.8)
h=1 | h=1 k#h h=1

The assumption of no fads or delayed fundamentals means past returns do not
forecast the future. This implies Cov [ri,tJr;,, rjﬁ = o Vjand Vh # o, so the double

summations in the equations above must equal zero. In this case
py (H) = p,; (1) VH, (1.9)

and correlations should be the same regardless of return horizon. We might denote

11



the difference between long-run and short-run correlations as
Ap; = p; (H) — p; (1). My null hypothesis is Ap = o. As an alternative, I propose

Cov [riﬁh, rj,t] # o and is instead

Cov [T’i7t+h, T]"t] = P; <COV |:’1i,t - Adivt’r]j,t - Ad},t:|>

/

~
shared fundamentals

- p}: <Pf—1COV |:Afi,t — Eity Af}}t - 8j,t:| > . (1.10)

shared fads

This will be positive when the first term is more important for a pair of firms and
negative when the second term dominates. Correlations will no longer remain
consistent regardless of time horizon. Instead, equation (1.8) shows how firms with
similar fundamentals will have correlations that increase with time horizon and firms
whose prices share exposure to fads will have correlations that decrease with time

horizon.

EMPIRICAL ESTIMATION OF COMOVEMENT

In estimating the relationships of long-horizon returns can be problematic within a
given sample. The sample size effectively gets smaller as the return horizon increases.
For example, with a return horizon of six months, a decade of data allows for only
twenty independent increments. Additionally, the long-horizon returns within a
given sample will depend on the start and end dates chosen. Six month returns
starting in January and June might yield different results than returns starting in April

and October. We can minimize the impact of these limitations by estimating

12



correlations using every possible overlapping window available.

Within a given sample, a correlation for horizon length H is estimated as

Zf:—H (%) Eii (h)

: (1.11)
V(I () & () (S0 (B52) & (1)

[)ij (H) =

The empirical cross-autocovariance ¢;; (h) measures the relationship between r; and

r/’s realizations of h periods in the future,

G ()= —— > (e —7) (ryesr — 7). (1.12)

H-—r

Estimating long-run correlations using (1.11) is equivalent to averaging the
correlation estimates for returns of horizon length H using all possible windows.
Suggestively, this is also identical to the correlation resulting from Newey and West’s
(1987) estimator of the long-run covariance of a time series. The fundamental risk in
a financial time series is closely related to the concept of long-run variance, which

continues to be a major topic of research in time series econometrics.

THE PRICE IMPACT OF TRADING BEHAVIOR

To identify the sorts of firms whose prices are driven by shared trading behavior
rather than fundamentals, we could propose characteristics that might be overly
salient to investors and test to see if they predict negative values for A p;- For example,
if investment styles are indicative of non-fundamental related trading they would
show negative coeflicients in a regression.

To capture trading behavior more directly, we can try to measure which assets tend

13



to be contemporaneously bought and sold. The simple model above would predict
that assets with a greater degree of shared trading behavior will exhibit more values
for Ap,. While it might seem difficult to observe data on who is initiating
transactions, I will show how shared trading behavior can be inferred by looking at
correlations in bid-ask bounce.

Consider Roll’s (1984) model of the effective bid-ask spread. He notes that the
closing price recorded for a security can be affected by whether the last trade was
driven by a purchase or a sale. This price differential can be interpreted as the literal
bid-ask spread paid by buyers and sellers who initiate trades with market makers, or
this could be a more modern concept of temporary price impact as the intensity of
buying or selling pressure affects liquidity provision.

Suppose that an average sized buyer must pay p; ; + b;, and sellers of an average
quantity receive p; ; — b;. Hence b; can be thought of as the temporary market impact
of trading. Any permanent impact from information in trades is captured by updates
in p; ;. The observed return is then a combination of the price change and the
transitory market impact of purchases (indicated by binary variable My = 1) or sales
(when My = —1). The observed return (7; s, ) can be expressed as the log return

(Fit+1 = Pits — pir) plus the market impact
;i7t+1 = Tit+1 + bi <ﬂi,t+1 — ni,t) . (1.13)

Let’s assume that purchases and sales are equally likely and are independent each

period and the null hypothesis that past price changes are not predictive of the future.

14



The effect of this trading on the autocovariance sequence for returns will be

Cov [fis, 7it] = Var|pig, — Pt + 07
Cov [?i,ty?i,t+1] = _b?

Cov[fis, Figrk] = o Vk>1 (1.14)

This is precisely what motivated Roll’s estimate of the effective bid-ask spread:

b,’ = —\/ COV [;i,ta;i,t+1]- (1.15)

And what if the buying pressure is correlated across firms? Suppose that investors
tend to buy and sell asset i and asset j at the same time, so that v;; = E [m o1l t} # o.
We would observe v;; > o if the trading behavior is similar and v;; < o if investors
tend to buy one while selling the other. Intuitively, we can write v;; as a simple
function of the probability that securities are both exposed to common trading

behavior,

vy =2 X (Pr ['71# = 17].4 — o.5> . (1.16)

This is the proposed measure of common trading behavior. Just as we can measure
the effective bid-ask from the autocovariances, we can estimate common trading

behavior from the cross-autocovariances. Under the same assumptions as above, they

15



will be

COV [;i,ﬁ ;]',t:| - COV |:ri,t+1, 7’j7t+1} —|— Zvijbibj
Cov [;i,ta ;j7t+li| = _vijbibj (1.17)
Cov [Fip, Fiurk] = o Vk>1.

From this, I empirically estimate this measure v;; of how trading behavior connects

two stocks through

Cov [ri’t, rj7t+1] + Cov [r,-,tﬂ, r“]

2\/COV [ri,t, Vj,t+1] Cov [r,-yt, rj,t-i—x]

(1.18)

vij =

1.2  SHORT-RUN AND LONG-RUN COMOVEMENT IN US EQUITIES

DATA SOURCES AND VARIABLE CONSTRUCTION

To estimate the comovement of US equity prices, I use four decades of weekly total
returns from The Center for Research in Security Prices* (CRSP), covering the forty
years from 1970 to 2009, and each decade is considered a subsample. To ensure the
analysis focuses on the most liquid securities, I select the 2,000 largest issues by
market cap as determined immediately prior to the start of each decade. The weekly
log returns are measured using Tuesday’s closing prices and include any distributions
received. For the most recent decade spanning 2000-2009, the universe consists of

the largest 2,000 firms measured by their market cap on December 31st, 1999, and

“Center for Research in Security Prices. ©2011 Booth School of Business, The University of
Chicago. Used with permission. All rights reserved. www.crsp.chicagobooth.edu
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the first weekly return is measured from January 4™ to January 11, 2000. Only
publicly traded common stock of US incorporated firms are considered (CRSP share
codes 10and 11).

Within each decade, short-run and long-run correlations are calculated for every
pair of firms, where the short run is defined as one week and the long run is defined as
half of a year. Short-run correlations of weekly returns, p (1) are calculated as in (1.6).
The long-run correlation calculation uses the formula in (1.7) where H = 26 weeks,
generating p (26). The difference between the two yields Ap.

To minimize any bias related to survivorship, long-run correlations are calculated
whenever possible, even when two firms coexist for only a small portion of the
decade. The minimum possible number of observations to calculate p (26) is
approximately one year. The trade-off for reducing this bias is sampling variance, as
the long-run variance in those cases is exceptionally noisy. In practice, requiring a
longer minimum history decreases the sample size and affects the results very little, so
I make this criterion as permissive as possible.

We can be reasonably comfortable that the results of the empirical analysis are not
driven by the anomalous behavior of illiquid firms since the universe consists of the
largest 2,000 securities by market capitalization and the shortest time interval
considered is one week. The mean difference between short-run and long-run
correlation increases when using smaller firms and shorter time horizons, and there is
also a slight increase in the predictability of this difference, but these results are

excluded as they would be open to criticism that they are affected to a larger extent by
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Table 1.1: Data Coverage for Correlation Estimates

This table reports the data availability for the estimated return correlations. The return series con-
sidered are log returns calculated from the CRSP total return data, and the minimum unit of mea-
surement is one week, corresponding to returns from Tuesday to Tuesday. The unique correlation
estimates correspond to the upper triangle of the matrix of correlation coefficients, excluding the di-
agonal.

, I?ecade , , Total
1970s 1980's 1990s 20008
max possible pairs | 1,999,000 1,999,000 1,999,000 1,999,000 | 7,996,000
pairsw/ min # returns | 1,872,110 1,811,088 1,828,826 1,632,793 | 7,144,817

stale prices or other liquidity related issues.

SUMMARIZING THE CORRELATIONS OVER LONG AND SHORT HORIZONS

Summary statistics for the correlation estimates are shown in Table 1.2. The sample
size of 2,000 firms will generate slightly less than two million unique correlation
estimates each decade. The first panel shows the effect of attrition on data coverage.
You can see that correlations can be calculated for more than 90% of all possible pairs
of firms except in the most recent decade where the ten-year period begins in the year
2000, at the peak of the Internet frenzy. Acquisitions and failures cause an atypical
number of firms to disappear during the first 12 months of this subsample.

For the four decades considered, the short-run correlation, f)i]. (1), averages 18.4%,
with a standard deviation of 11.4%. In contrast, long-run correlations are much

higher, with a full sample average of 30.0% and standard deviation of 27.0%. The

difference between the two, p (H) — P (1), averages 11.6%. The difference decreases
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Table 1.2: Summary Statistics for Correlation Estimates

This table reports the data availability and summary statistics for the estimated return correlations.
The return series considered are log returns calculated from the CRSP total return data, and the mini-
mum unit of measurement is one week, corresponding to returns from Tuesday to Tuesday. The short
run correlation measures, p (1), are therefore associated with a one week horizon. In the data panel
measuring coverage by unique correlation pairs, the unique correlation estimates correspond to the
upper triangle of the matrix of correlation coeflicients, excluding the diagonal.

short-horizon correlation Decade

, , , , Full Sample
1970s 1980s 1990’s 2000’s
mean 22.81 19.20 13.01 18.31 18.36
std dev 9.12 10.55 9.31 13.90 11.36
f)ij(l) 5 %ile 8.55 2.59 -0.90 -5.16 0.53

median 22.57 18.96 12.43 18.53 18.18
95 %ile 37.84 36.74 28.88 40.73 36.96

long-horizon correlation Decade

, , , , Full Sample
1970's  1980’s  1990'S 2000’
mean 45.12 30.03 22.77 20.72 30.00
std dev 19.98 24.79 24.84 30.65 26.94
f)ij(zé) 5 %ile 10.52  -15.72  -18.44 -37.30 | -18.62

median 46.69 32.80 23.06 24.26 32.87
95 %ile 74.95 65.68 63.59 64.71 68.81

correlation difference ’ ]’)ecade ’ ’ Full Sample
1970’s 1980’s 1990’s 2000’s
mean 22.31 10.83 9.76 2.42 11.64
std dev 18.36 22.21 22.73 26.23 23.52
Aﬁi]. 5 %ile -9.37  -28.15 -27.77 -45.68 -29.86
median 23.70 12.30 10.01 4.91 13.55

9s %ile | 49.47  44.63  46.79  40.93 | 46.43
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over time, with an average difference of 22.3% in the 1970’s decreasing to a difference
of only 2.4% in the most recent decade.

By definition, there are upper and lower bounds on the possible observed
correlations. In practice, the estimated short-run correlations are nearly always
positive, with less than 5% of the estimated values being less than zero. However,
there is much more variation in the long horizon correlation estimates. Even though
the average long-run correlation is nearly twice as large, a little less than a third of the
estimates are less than zero.

While the standard deviations and percentiles shown in Table 1.2 make it tempting
to conclude that there is a larger degree of cross-sectional variation in correlations
measured over long horizons, it is important to note that the short-run correlations
are estimated much more precisely. Even under the null hypothesis where the true
correlation does not depend on the time horizon, the empirical long-run correlations
will show more variation due to the fact that they are estimated using far fewer
independent observations. We cannot yet draw conclusions about the distribution of
the true long-run correlations. The full sample standard deviation of 27.0% reflects
both the dispersion of correlations in the population as well as the measurement
error. The subsequent section will present a method for quantifying the effect of

measurement error in the long run estimates.
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1.3 A REGRESSION METHODOLOGY FOR CORRELATIONS

REGRESSING EXPLANATORY VARIABLES ON THE CORRELATION DIFFERENCES

To test the null hypothesis in (1.9) against the alternative, I propose running a
regression of the difference in long-run and short-run correlation on candidate
explanatory variables for each pair of firms. Negative values for this difference in
correlations correspond to excess comovement, indicating the pair of stocks has a
higher correlation in the short run than can be justified by their long-run returns.
Positive values are indicative of insufficient comovement, as the short-run returns do
not seem to capture the comovement observed over longer horizons.

Given explanatory variables corresponding to each pair of firms (i, j) whose shared
characteristics constitute vector Z; (including a constant term), the coefficient vector

p is estimated from the linear regression

Apij = ﬁZU + €ij- (1.19)

Under the null hypothesis, every element of 8, including the constant, is equal to zero.
Calculating the standard errors for ﬁ requires special attention, since these errors
are not independent across pairs of firms. The traditional standard errors estimated
using an OLS regression to estimate (1.19) will be far too small. What appears to be a
large cross-sectional sample is effectively smaller since much of the variation in stock
returns is driven by common factors. Even worse, all stocks likely have a positive

loading on a single factor, the market. If none of the residuals are independent,
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traditional techniques to handle correlated residuals in a cross-sectional regression,

like clustering standard errors, will offer little help.

A RESHUFFLING TECHNIQUE FOR STATISTICAL INFERENCE

The problem would benefit from a new approach. Note that under the null
hypothesis, this error term e;; is equal to the estimation error between the true
long-horizon correlation and whatever empirical estimate results from the particular

sample used. We can call this estimation error

€ij = Ai’,‘j - AP,’;‘ (H), (1.20)

and note that ¢;; = ¢, under the null hypothesis.

Fortunately we can take advantage of some properties of the null hypothesis. In
particular, the assumption of no predictability suggests that the error terms in (1.20)
result from the purely coincidental estimation noise of past returns appearing to
predict the future.

Therefore, the historical ordering of the weekly returns makes no difference. We
just need to preserve the contemporaneous return structure. In fact, if we randomly
reshuffle the historical ordering of the weeks and recalculate the long-run
correlations, we would generate an independent draw of error terms with the same
statistical properties.

This is effectively what I propose as a robust, non-parametric method for
calculating standard errors. With new long-term correlation estimates from each

reshuffling of the weekly returns, we find the distribution of  under the null by
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repeatedly rerunning the regression in (1.19). Then we can compare our B estimate
to the distribution of estimates generated from the reshuffled data. We can now test
the hypothesis that B = o properly accounting for the strong dependence across our
observations.

The reshuffling technique also makes it possible to revisit the variation in the
estimated long-horizon correlations. The observed differences in long-horizon and
short-horizon correlations are due to both the variation expected from sampling
noise as well as the true dispersion in correlation values. A casual glance at the
magnitudes might lead someone to prematurely reject the null hypothesis based
solely on the large variation in Table 1.2. The two panels in Figure 1.2 plot a
histogram of the cross-sectional variation in the estimated A f)ij against the density
function of the sampling error expected under the null hypothesis for the earliest and
the most recent decade.

Figure 1.2 also graphically emphasizes the difference between the previously
documented observation that correlations seem to increase with time horizon on
average (Campbell et al., 2001) and the claim that some correlations increase with
horizon and some decrease. By inspection, the estimated long-horizon correlations
are significantly higher than what would be expected under the null hypothesis for
the 1970’, though the significance of the difference is less obvious in the 2000’s. This
paper will show empirical analysis suggesting that the earlier difference in mean
correlation differences can be largely attributed to microstructure noise from the
bid-ask spread.

Setting aside differences in the mean, the dispersion in the reshuflled values is
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Correlation Differences, 1970’s
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Correlation Differences, 2000's

I
I Empirical
Reshuffled

60

Figure 1.2: Comparing Empirical and Reshuftled Correlation Differences

quite high, suggesting that we cannot immediately rule out the possibility that large
cross-sectional differences in correlation estimates for different time horizons are
simply sampling error. A more careful analysis will show evidence that correlations

will predictably increase or decrease as the return horizon lengthens.
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1.4 EXPLAINING EMPIRICAL CORRELATIONS

DATA DESCRIPTION OF EXPLANATORY VARIABLES

All of the explanatory variables that form the elements of the Z;; vector of explanatory
variables in estimating (1.19) are calculated using data available prior to each decade.
I group them by factors ostensibly related to investment behavior and factors that are
indicative of shared fundamental risks.

I estimate shared trading behavior by calculating the correlations in bid-ask
bounce, vj;, as defined in (1.18). Log weekly returns are used to estimate vj; using a
two year window prior to the start of the decade. The effective bid/ask spread, used
in the denominator of the definition of shared trading behavior is shrunk toward the
median value estimated across all securities, which prevents a negative implied spread
in most cases. To further control for large outliers that may be driven by a very small
denominator, or by estimation error in the numerator, the final values of v;; are all
shrunk toward zero.

Somewhat surprisingly, Table 1.4 shows that, on average, firms do not tend to be
bought and sold together for the first two decades in the sample. This might be
indicative that the trading behavior tended to reflect investors shifting investments
across stocks rather than a pattern of broad net inflows or outflows in the equity
market. For the more recent two decades, however, the mean coefficient is much
closer to zero and shows no particular propensity for stocks to be bought or sold

together, though this varies significantly across pairs of stocks.

25



Table 1.3: Summary Statistics for Primary Explanatory Variables

This table reports the data availability and summary statistics for the explanatory variables used in
the regression analysis. The summary of unique correlation pairs represent the upper triangle of the
correlation matrix, excluding the own correlations on the diagonal. The shared trading behavior is an
estimate of the propensity of buyers and sellers of firms to have correlations in the temporary market
impact they cause, as measured through temporary components in autocorrelations. The primary
variable representing fundamental correlation is the correlation of firms return on equity, as derived
from quarterly accounting data from Compustat. Dummy variables capture shared characteristics
related to primary trading exchange and market cap quintiles, using data from CRSP, and the book
equity (BE) and GICS industry data are obtained from the linked CRSP-Compustat database.

Data Availability
, I?ecade , , Full Sample
1970’s 1980’s 1990’s 2000's
pairsw/ min # returns | 1,872,110 1,811,088 1,828,826 1,632,793 | 7,144,817
with v; j values | 1,280,586 904,756 1,482,243 1,019,096 | 4,686,681
with Corr[ROE; ROE] 204,757 1,320,533 963,477 677,598 | 3,166,365
Summary Statistics
, ]?ecade , , Full Sample
Vij 1970’s 1980’s 1990’s 2000’s
mean -0.45 -1.22 0.02 -0.14 -0.38
std dev 1.15§ 1.32 0.94 1.06 1.20
5 %ile -2.38 -3.16 -1.62 -1.97 -2.44
median -0.42 -1.42 0.11 -0.08 -0.27
95 %ile 1.33 1.30 1.37 1.46 1.37
, Pecade , , Full Sample
Corr|[ROE;,ROE|] 1970’ 1980’ 1990’ 2000’s
mean 0.12 0.08 0.01 0.02 0.05
std dev 0.49 0.35 0.30 0.29 0.33
5 %ile -0.72 -0.50 -0.48 -0.46 -0.50
median 0.16 0.08 0.01 0.01 0.04
95 %ile 0.84 0.64 0.52 0.51 0.62
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My primary measure to estimate fundamental correlation is the correlation of
firms’ return on equity. ROE values are constructed from Compustat data, defined as
the ratio of earnings per share (Compustat item: epspiq) divided by common equity
per share (Compustat item: ceqq). This value is censored at -9o% and +100% and
then converted to alog return. Annual Compustat data is used to supplement where
quarterly data is not available. Correlations in this ROE series are calculated for each
pair of firms over the prior 10 years, excluding the quarter immediately prior to the
beginning of the decade, since this data is typically not released until January or later.
I set a minimum requirement of 4 years of accounting data to estimate a valid
correlation. As can be seen in the coverage statistics in Table 2, lack of Compustat
data tends to be the most restrictive data requirement, especially near the beginning
of the sample when only a few hundred firms have accounting data available. This
does not have a substantive effect on the regression results, but I will run a regression
specification that excludes Corr [ROE,-, ROE]-} to take advantage of the larger data set.

Market cap and exchange information all come from CRSP, and the book equity
and GICS industry assignments are all taken from the CRSP-Compustat linked
database. The construction of the book equity / market equity (BE/ME) variable
mirrors that described by Fama and French (1992). Each decade, the 2000 firms in
the universe are matched to their assigned to BE/ME quintiles relative to the CRSP
universe of firms. I do not use the CRSP universe for market cap quintile
assignments, since my sample of the 2,000 largest firms only represents the largest
quintiles. Instead, I create market cap quintiles specific to this sample using market

cap data from the December previous to the start of each decade.
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This information allows for the construction of the dummy variables shown in
Table 1.4. They correspond to pairs of firms being listed on the same exchange,
sharing the same size quintile, being assigned the same GICS industry, etc. As usual,
the dummy variables equal 1 for each pairwise observation where the criteria are met.
The classifications of sharing the same GICS sector, industry or subindustry are not
exclusive of each other, so a pair of firms in the same subindustry will necessarily also
be in the same industry and sector. The occurrence of firms in the same subindustry
is the rarest of the dummy variables, occurring in about 1.7% of the unique firm pairs,

but will be shown to have a strong effect even after controlling for industry and sector.

1.4.1 REGRESSING EXPLANATORY VARIABLES ON Af)

Following the methods described in section 1.3, I estimate regression coeflicients for
each decade subsample via least squares and use the reshuffling technique to calculate
standard errors. The regression estimates for regressions of Ap on various
explanatory variables are combined (assuming independent subsamples) and
reported in Table 1.5.

The first regression specification includes no explanatory variables other than
constant terms. While these regression coeflicients are going to reflect the simple
means previously noted in the summary statistics, the reshuffling methodology help
us better understand the significance of these results. We can see that even across
almost 2 million observations per decade, the common factors driving returns can
generate standard errors in the average difference in long-run and short-run

correlations of about 3%. The fact that long-horizon correlations average 2.42%
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Table 1.4: Summary Statistics for Dummy Variables

This table reports the data availability and summary statistics for dummy variables used as explana-
tory variables in the regression analysis. They characteristics related to primary trading exchange and
market cap quintiles use data from CRSP, and the book equity (BE) and GICS industry data are
obtained from the linked CRSP-Compustat database.

Data Availability

Decade

, ; , , Full Sample
1970’s 1980’s 19908 2000’

pairs w/ min # returns | 1,872,110 1,811,088 1,828,826 1,632,793 | 7,144,817
with GICS industry 686,162 1,198,845 1,771,901 1,611,183 | 5,268,091
with BE/ME values | 1,212,759 1,512,444 1,567,333 1,167,604 | 5,460,140

Frequency
, ]?ecade , , Full Sample
1970's 1980's 1990'S 2000'S
same exchange 53.2% 47.7% 44.4% 49.6% 48.7%
same size quintile 20.0% 20.0% 20.0% 20.0% 20.0%
same BE/ME quintile 20.3% 21.6% 21.8% 30.9% 23.4%
same sector 15.2% 13.1% 12.8% 15.7% 14.1%
same industry 2.7% 3.1% 3.2% 2.8% 3.0%
same subindustry 1.6% 1.8% 1.7% 1.7% 1.7%
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higher than short-horizon correlations in the most recent decade is well within the
range of differences we might randomly observe. The differences in earlier decades, as
large as 22% during the 1970, cannot be explained by estimation error.

The second regression specification includes the two primary explanatory
variables reflecting shared trading behavior (v;;) and shared fundamentals
(Corr [ROE,-, ROE]-} )- Both of these variables are highly significant in explaining the
effect of return horizon on correlations. As expected, common trading behavior is
indicative of temporary price comovement, as indicated by the negative coefficient.
Firms that have a higher probability of being bought or sold together have higher
short-horizon correlations but lower correlations over long horizons. The variable
measuring shared fundamentals generates a positive regression coeflicient and the
opposite effect of trading behavior. Firms with highly similar fundamental exposures
tend to have lower short-horizon correlations relative to long horizons, suggesting
insufficient comovement.

The third regression specification adds the dummy variables indicating firms are
traded on the same exchange, and in similar size or valuation categories, or belong to
the same GICS industry categories. Trading on the same exchange is indicative of
excess comovement, consistent with the international evidence that exchange listings
matter. Considering the three principal exchanges on which these stocks are listed
(NYSE, AMEX, and NASDAQ), more than 1% of stock price variation is associated
with temporary comovement with other stocks on the same exchange. As is true with
all the explanatory variables considered, the exchange listing may not be the causal

force driving excess comovement, but it is predictive.
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Table 1.5: Cross-Sectional Regressions of Correlation Difference, A[)l.j

In the regressions below, the dependent variable is the difference between long run and short run
correlation (A[)il.). All of the explanatory variables are dummy variables except for Shared Trading
Behavior (vy,) and Shared Fundamentals (Corr[ROE;,ROE)] ). The reported coefficients are from com-
bining cross-sectional regressions for each decade, and standard errors, reported in parentheses below
the regression coeflicients, use the reshuftling methodology described in section 1.3 for each cross-
section and assume the subsamples are independent. Statistical significance of the coefficient relative
to the null hypothesis of zero is denoted using asterisks, where * indicates significance at the 5% level
and ** indicates significance at the 1% level.

(1) (2) (3) (4)

1970’s Decade Dummy 22.31% 18.20%* 20.02** 19.36%*
(3.86) (4.22) (3.99) (3.97)
1980’s Decade Dummy 10.83** 9.65™* 10.85** 10.27%*
(3.31) (337) (3.57) (3.51)
1990’s Decade Dummy 9.76™* 9.01%* 9.31%* 9.30™*
(2.68) (2.81) (2.65) (2.75)
2000’s Decade Dummy 2.42 3.33 2.15 2.45
(3.18) (3.62) (3.58) (3.76)
Shared Trading Behavior (v;;) -0.82%* -0.74%*
(0.13) (0-13)
Same Exchange -1.34% -1.85**
(0.48) (0.60)
Same Size Quintile -0.43* -0.93**
(0.17) (0.28)
Same Be/ME Decile 0.58* 0.71%*
(0.24) (0.19)
Shared Fundamentals (Corr[ROE;,ROE;]) 1.27%* 0.98**
(0.23) (0.22)
Same Sector 4.49™* 4.92%*
(0.43) (0.43)
Same Industry 1.34™ 0.26
(0.47) (0.63)
Same Subindustry 2.47% 3.31%*
(058) (0:93)
Observations 7,144,817 2,208,662 4,324,466 1,946,156
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The dummy variable indicating firms are in the same size quintile also has the
expected sign. Prices of firms with similar market caps seem to move together over
short horizons much more than over longer return horizons. On the other hand, the
same logic would suggest a negative regression coefficient on the dummy variable
indicating firms are in the same BE/ME quintile, but this is not the case. The
coeflicient on this variable is positive. A closer examination of excess comovement
across subsamples and controlling for autocorrelations from market microstructure
suggests the value results are not robust and the size effect is primarily driven by
excess comovement in the firms at the smaller range of this sample.

The variables indicating firms share the same sector, industry or subindustry all
show large positive coeflicients. As with the measure of shared fundamentals that
looks at correlations in profitability, these variables seem to indicate firms with
similar factors driving their profitability show insufficient price comovement over
short horizons. For firms in the same subindustry, the correlation of their 6-month
returns will, on average, be 8.3% higher than the correlation of their weekly returns.
This is one of the strongest statistical results, though it’s not without precedent.
Cohen and Frazzini (2008) and Moskowitz and Grinblatt (1999) show evidence of
evidence of positive momentum across connected firms, which would cause their
correlations to increase with the time horizon.

The fourth regression specification includes all explanatory variables. This serves
as a check that each makes an independent contribution. There is a slight decrease in
the coeflicients on the main variables measuring shared trading behavior and shared

fundamentals, but they remain highly significant.
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Interestingly, the coeflicients on the other variables intended to capture labels that
might be salient to investors all increase. The coefficient on firms that share the same
size quintile almost doubles, indicating that it might be more prominent conditioned
on the other explanatory variables than it is when measured in isolation.

The variables intended to capture common exposures to fundamental risks all
remain significant predictors of insufficient short-run comovement with the
exception of the dummy variable for firms sharing the same industry. This is actually
an artifact of this measure being so similar to the subindustry dummy variable that
the coefficient shifts from one to the other.

The general conclusions from the empirical results are broadly consistent across
regression specifications. They provide evidence in favor of the hypothesis that
short-run comovement is different than long-run comovement, and that excess and
insufficient comovement can be predicted by measures of shared trading behavior

and exposures to shared fundamentals.

ROBUSTNESS

The key results in Table 1.5 are robust across a variety of alternative estimation
approaches. However, there are two critiques that deserve special attention, which I'll
call the "micro explanation” and the "macro explanation.” The micro explanation
would assert that the correlation differences are the result of bid-ask spreads and
similar effects in market microstructure, and the macro explanation would assert that
correlation differences are simply a manifestation of predictability in well-known risk

factors.
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Just as the bid-ask bounce can be used to estimate trade-driven price behavior,
serial correlation from market microstructure can also affect correlations. This is clear
from the effects derived in (1.14) and (1.17). In general, long-run correlations will
appear mechanically higher than short-run correlations simply because the
temporary price impact of trading constitutes a much smaller fraction of total price
movement in long-horizon returns relative to short-horizon returns. Since this effect
will be larger for stocks that are less liquid, the regression analysis might mistakenly
associate measures correlated with liquidity as indicators of insufficient comovement.

To show this is not the source of the results in Table 1.5, I construct a measure that
adjusts the difference between long and short-horizon correlations that excludes the
first order autocorrelation and cross-autocorrelation terms that could be affected by
the impact of trading on closing prices. I label this variable Ap .. These excluded first
order autocorrelations would also contain a large degree of information about excess
comovement, so it is important to recognize that assuming them to be zero may be a
useful robustness check, but it biases all results in favor of the null hypothesis.

Table 1.6 reports summary statistics for Ap;;. Comparing these microstructure
adjusted estimates to the original summary statistics reported in Table 1.2. The most
striking difference is that the mean short-run correlation is much closer to the mean
long-run correlation. This suggests that the lower comovement in the short run is
driven, in a large part, by the idiosyncratic price impact from trading that immediately
reverses in the subsequent period. This is in line with the predicted effect of market
microstructure.

Not surprisingly, the microstructure adjustments become less significant over
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Table 1.6: Microstructure Robust Correlation Differences

This table reports summary statistics for the microstructure-robust correlation differ-
ences, A[)ij, where the autocorrelation terms in defining the long run correlation are as-
sumed to be zero. The calculations are otherwise identical to those described for Api]..

, Pecade , , Full Sample
1970 1980's 1990'S 20008
mean 9.30 1.71 5.01 1.74 4.55
std dev 16.13 37.68 19.14 32.59 27.83
Apii 5 %ile -16.74 -34.49 -25.64 -45.47 -30.07
median 9.75 3.03 5.06 4.67 5.96
95 %ile 33.92 35-54 35-53 38.10 35.60

time, which is likely a result of increased liquidity and tighter bid-ask spreads. The
dispersion of the difference remains high on average and over time, suggesting that
the return horizon may have a large effect on individual correlations, even when the
difference is only slightly positive in the cross-section.

To check the robustness of the regression results directly, I run the previous
regressions on Ap, the difference in long-term and short-term correlations that have
been adjusted for microstructure. These regression results are shown in Table 1.7.

The most noticeable differences are in the unconditional averages, as seen in the
first regression specification with no other explanatory variables. As was observed in
the summary statistics, the differences all decrease. Looking at the statistical
significance only the 9.3% average difference in the 1970’s remains statistically
different from zero at the 5% confidence level. This is consistent with the idea that a
great degree of the insufficient comovement we observed was an artifact of

temporary impact of trades on closing prices.
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Table 1.7: Regressions Adjusted for Microstructure Effects, Ap,,

In the regressions shown, the dependent variable is the difference between long run and short run
correlation, after adjusting for the first order autocorrelation that is likely caused by bid-ask bounce
and other microstructure effects, yielding (Ap, j). All of the explanatory variables are dummy variables
except for Shared Trading Behavior (v,,) and Shared Fundamentals (Corr[roE; R0E]). The reported
coeflicients are from combining cross-sectional regressions for each decade, and standard errors, re-
ported in parentheses below the regression coeflicients, use the reshuffling methodology described in
section 1.3 for each cross-section and assume the subsamples are independent. Statistical significance
of the coefficient relative to the null hypothesis of zero is denoted using asterisks, where * indicates
significance at the 5% level and ** indicates significance at the 1% level.

(1) (2) (3) (4)

1970’s Decade Dummy 9.30*% 6.70 6.95 6.62
(3.86) (4.22) (3.99) (3.97)

1980’s Decade Dummy 1.71 1.03 2.33 1.97
(3.31) (3.37) (3:57) (3.51)

1990’s Decade Dummy 5.01 4.95 4.61 4.72
(2.68) (2.81) (2.65) (2.75)

2000’s Decade Dummy 1.74 4.97 3.94 5.22
(3.18) (3.62) (3-58) (3.76)

Shared Trading Behavior (v;;) -0.24 -0.21
(0.13) (0-13)

Same Exchange -0.70 -0.89
(0.48) (0.60)

Same Size Quintile -0.07 -0.13
(0.17) (0.28)

Same Be/ME Decile 0.13 0.26
(0.24) (0.19)
Shared Fundamentals (Corr[ROE;,ROE;]) 0.94** 0.56*
(0.23) (0.22)
Same Sector 1.61%* 1.83%
(0.43) (0.43)

Same Industry 0.90 0.04
(0.47) (0.63)

Same Subindustry 1.20% 1.50
(058) (0.93)

Observations 7,144,817 2,208,662 4,324,466 1,946,156
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Although none of the explanatory variables identified as significant in the prior
regression change drastically, most of their effects are more muted. For example, in
the second regression specification the coefficient on the shared trading behavior
variable previously had a coeflicient of -0.82 and a t-statistic of -6.4, but this now
drops to a coeflicient of -0.24 and an associated t-statistic of -1.83. It might be that
much of the temporary impact captured by this variable corrects itself in the
subsequent week, which is excluded in the calculation of Ap, or it may be that the
shared trading behavior variable also proxies for liquidity.

The other main explanatory variable, measuring correlation in shared
fundamentals, sees a much more moderate decrease in magnitude after adjusting for
microstructure and also remains highly statistically significant. Its coefficient drops
from 1.27 to 0.94.

In the fourth regression specification on Table 1.7 where all explanatory variables
are included, the coeflicients are generally smaller than they were in Table 1.5. The
only dummy variable that could be considered statistically different from zero with
greater than 95% confidence is the measure of firms being in the same GICS sector.

The assumption that long-horizon and short-horizon correlations should be
equivalent comes from equation (1.8) where past returns are assumed not to predict
the future. No arbitrage assumptions in asset pricing theory suggest that this should
be true for conditional moments, but not necessarily true for unconditional measures
of volatility and correlation. Cochrane (1991) emphasizes this point, showing how
unconditional return predictability does not reject rational pricing models outright

and are exactly what we could expect to see in macroeconomic models where
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discount rates vary over time due to changing growth prospects or risk preferences.

The same principle holds true in our analysis. Our null hypothesis would be
rejected by a broad class of models that generate time variation in the price of equity
risk. Let’s consider what we would expect to see in a standard model of this type. Ina
one-factor model where the expected returns to stocks are driven by their exposures
to the aggregate stock market, time variation in expected market returns would imply
that some of the short-horizon price correlation between stocks is driven by their
common exposure to changes in aggregate return expectations. This common
component of comovement becomes less prominent as time horizons increase. We
would then expect that long-horizon correlations across all firms should, on average,
be lower than short-horizon correlations. Instead, the data shows the opposite.

Additionally, we can speculate how aggregate market predictability might explain
cross-sectional variation in Ap. Pairs of firms with large differences in their betas to
priced risk factors should have lower short-run correlations relative to their long-run
correlations, while firms with similar exposures should less of a difference. If we
include the absolute value of their beta differences in our regressions, we should get a
positive coefficient.

I test this hypothesis by estimating firm betas for the three factor model of Fama
and French (1992) prior to each decade. With firm-level coefficients for the market
portfolio B, ., for the size spread portfolio, f, ;, and for the value spread portfolio,
By - I calculate the absolute value of the difference in their estimated betas. These
are considered as an additional explanatory variable in the cross sectional regressions

of the differences in long-horizon and short-horizon correlations adjusted for
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Table 1.8: Regressions of Ap, on Differences in Risk Factor Exposures

In the regressions below, the variables labeled as the |B; 4, — B;
differences in the ex ante estimated beta on risk factor XYZ for the pair of firms. These are included in

xyz| are the absolute value of the

cross-sectional regressions with other explanatory variables found to be predictive of Ap,.. The stan-
dard errors, reported in parentheses below the regression coefficients, use the reshuffling methodol-
ogy described in section 1.3. Statistical significance of the coefficient relative to the null hypothesis
of zero is denoted using asterisks, where * indicates significance at the 5% level and ** indicates sig-
nificance at the 1% level.

(1) (2) (3) (4)

1970’s Decade Dummy 9.04* 8.58* 7.36 8.38*
(3.98) (3.97) (4.48) (3.90)

1980’s Decade Dummy 2.27 2.25 2.18 2.97
(3.42) (3.30) (3.40) (355)
1990’s Decade Dummy 7.70%* 7.58% 6.70* 6.26*
(2.94) (2.95) (3.11) (3.07)

2000’s Decade Dummy 5.31 5.85 5.77 6.43
(3.65) (3.73) (4.00) (3.97)

Shared Trading Behavior (v;;) -0.16 -0.22 -0.18
(0.10) (0.13) (0.13)
Same Exchange -1.21%
(0-59)
Shared Fundamentals (Corr[RrOE;,ROE;]) 0.91%* 0.55*
(0.22) (0.22)

Same Sector 1.63%*

(0.44)

Same Industry 0.02
(0.63)

Same Subindustry 1.29
(0.90)

|[3i7MKT — ﬁj,MKT' -0.06 -0.03 -0.43 -0.36
(0-34) (0:35) (0.51) (0.52)

|Bi sns — Bjsu! -0.68** -0.80™* -0.38 -0.56
(0.26) (0-26) (0.33) (0.33)

|ﬂi’HML — ﬁj’HML| -0.63* -0.64* -0.58 -0.43
(0.26) (0.28) (0.34) (0.35)

Observations 6,148,574 4,397,326 2,207,508 1,947,768
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microstructure effects, Ap.

The regression results are summarized in Table 1.8. The first specification, with the
difference in the betas on risk factors as the only explanatory variables shows the
regression coefficients are negative—the opposite of our prediction. The coeflicient
for the difference in f, .. is effectively zero.

In the other three regression specifications considered, the explanatory variables
previously found to be significant are also included. The coeflicients on the new
variables measuring differences in risk factor loadings remain negative and hardly
precise enough to distinguish from zero. It appears that time variation in discount
rates in loadings on known risk factors may explain a small portion of the differences
in long-horizon versus short-horizon correlations across this sample of US stocks, but
this is not the sort of mean-reverting behavior commonly modeled and it is primarily
driven by SMB and HML, not the aggregate equity market.

It should also be noted that the regression coefficients on the differences in risk
exposures are certainly underestimated because of estimation error. This attenuation
bias similarly affects the shared trading behavior and ROE correlation variables,

which likely have even more estimation error than the betas on the risk factors.

1.5 IMPLICATIONS FOR ASSET PRICES AND INVESTORS

There is nothing about the proposed framework analyzing correlation and time
horizon that is specific to the returns of individual stocks. In a traditional asset
pricing context, we can consider how the time horizon will affect betas on risk

factors, and hence, asset pricing.
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As a first pass, consider how the return horizon affects the volatilities and
correlations of the three factors of the Fama-French model. These are plotted in
Figure 1.3 using the same time period as in the other empirical analysis, 1970-2009.
Since these factor returns coexist for a much longer history than the typical equity

security, we can consider long-term horizons that extend much longer than 6 months.
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Figure 1.3: Annualized Volatility and Correlations for Risk Factors, 1970-2009
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Looking at the top axis, plotting the estimate of volatility as a function of time
horizon, the most striking feature is the upward sloping relationship for SMB and
HML. The positive relationship between volatility and time horizon suggest that
returns to the SMB and HML portfolios exhibit positive autocorrelation—at least at
horizons in the range of o-2 years. This is exactly the sort of behavior that would lead
to the negative regression coeflicients in the regression presented in Table 1.8. At the
two year horizon, the HML volatility begins to decrease while the volatility of the
SMB portfolio continues to increase for return horizons as long 6 or 7 years. This is
indicative of momentum, rather than mean reversion, over these horizons.

Consistent with previous research (Fama and French, 1988), the broad market
portfolio shows relatively little predictability for horizons shorter than one year, with
a relatively constant relationship between volatility and time horizon. This would
explain why aggregate market exposure explains little of the cross-sectional
differences in Ap,; at the stock level. The well-documented tendency for the aggregate
stock market to exhibit mean reversion over long horizons begins to kick in as the
horizon increases beyond one year.

The pairwise correlations are plotted on the lower axis in Figure 1.3. The SMB and
HML portfolios have a negative relationship with the market portfolio over short and
medium horizons, but these correlations tend toward zero as the return horizon
lengthens. Perhaps the most striking relationship is the correlation between SMB and
HML. While these portfolios seem to have uncorrelated returns over short horizons,
the correlation coefficient increases significantly over long horizons. Repeating the

caveat that estimates of long-horizon correlations can be noisy, the initial evidence
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suggests that SMB and HML may be distinct risks over short time horizons but
contain similar fundamental risks that become evident over longer time periods.

At the same time, the SMB and HML portfolios are not nearly as attractive to a
long-horizon investor. While at horizons of a few days these portfolios seem to have
half the volatility as the market portfolio, the volatility almost doubles when the
horizon stretches to a few years. Worse still, these portfolios that previously seemed
to offer good diversification relative to the aggregate equity market see their

correlations increase significantly.

IMPLICATIONS FOR SHORT-TERM TRADERS

While buy-and-hold investors may have poor measures of risk calculated from
short-horizon returns, active investors with a short-term focus (or even long-term
investors who rebalance frequently) may find short-term comovement estimates
appropriately capture the portfolio risks that matter to them. Although the
underlying driver of short-horizon comovement may be fads rather than
fundamentals, it accurately reflects the one-period risks they face.

However, the relationship between correlation and time horizon reveals how one
period affects the next. As equation (1.8) emphasizes, correlation differences imply
predictability. With predictability, there is an implied trading strategy that should be
attractive to tactical traders.

In this section, I will show the historical performance of a simple trading strategy
based on the comovement patterns identified. This exercise provides additional

evidence that the comovement patterns established in the empirical analysis cannot
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be easily explained by established risk factors. It also frames the results in a setting
familiar to other empirical studies of asset (mis)pricing where a portfolio formation
rule generates a trading strategy.

For better or for worse, this trading strategy based on comovement patterns has no
anchor suggesting the true fundamental value of any particular asset. The intuition is
roughly equivalent to that of a "pairs trading” strategy (albeit with a much longer
horizon). When the prices of two assets with similar fundamentals diverge, the
strategy puts on a long-short convergence trade. This comes with some danger. A
more savvy investor would consider the actual news and prices rather than pursue
what Stein (2009) terms an "unanchored” trading scheme. In that sense, the trading

strategy is empirically instructive but not recommended.

A SIMPLE TRADING SIGNAL

The proposed trading signal is derived from the regression relationships for the short

run return

E [rt7i|rt’j} =E [rtﬂ-] + Pij (1) %i_ (rtﬁj —E [rf»i}) (1.21)

and the long run return

H—1 H—1
E Z figrelrej| =B Z Tigre | + Py (H) % (rtd- —E [’”tJD (1.22)
T=0 7=0

of r; conditional on r; ;. If we assume that the volatility ratio ( %‘) is roughly constant

and the unconditional expected return for each stock is approximately equal, then we
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can subtract (1.21) from (1.22) and forecast the excess return for the future

H—1 H—1
Z Z 0;

E Ti7t+-r‘rt7]' —E r,~7t+f = Apij;rtvj' (1.23)
T=1 T=1 J

With N assets, equation (1.23) will yield N — 1 univariate forecasts. For simplicity,

the trading signal will weight them equally.® The signal is then defined as

1 0

X = N Z Api7j_rt7f‘ (1.24)
—1 e 0']'

J71

EMPIRICAL IMPLEMENTATION

In the empirical implementation of the trading strategy, the universe of firms will be
determined in much the same way as before, comprising the 2000 largest firms by
market cap over the 40 year sample. The set of firms will be updated annually, using
data available the final business day in December of the previous year.

To predict the future difference in long-run and short-run correlation (A pl.’j) Tuse
the two main variables presented previously, where investor trading behavior is
proxied by the correlation in bid-ask bounce, v;;, and fundamentals are measured as
the correlation of the return on equity, Corr [ROEi, ROEj] . The difference between
long-horizon and short-horizon correlation that determines the trading signal for
forecasting in (1.24) can be constructed without too much fear of overfitting from
the in-sample regression results by simply taking the equal-weighted difference:

pr. ~ Corr [ROE,',ROEJ — Vyj.

3An alternative would be to create the multivariate optimal forecast with GLS weights
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These two variables are updated annually and implemented in portfolios formed
each January using information that would be available in December. The volatility
ratio % is also updated annually, and is calculated as the standard deviation of the
weekly returns over the prior three years. Shorter histories are used for any firm
where three years are not available, and outliers are winsorized at the s and g5t

percentiles.

SIGNAL PERSISTENCE

There remains the question of how long this signal should persist. The empirical
analysis arbitrarily chose the long horizon to be H = 26 weeks but did not suggest
whether the correlation differences resolved in a matter of weeks or if the correlations
continued to evolve even after the six-month window. In the context of this trading
strategy, this question is analogous to asking how long the signal X; is expected to
forecast excess returns.

In the framework of the simple model of fads and fundamentals presented earlier,
we want to know the decay rates §; and §;. While there is likely a high degree of
variation in the characteristics of fads and fundamentals that affect the US equity
market, it is interesting to take the simplified model and estimate the half-life of the
signal.

We can do this by building a simply portfolio rule, sorting stocks into quintiles
based on their signal X; and constructing a long-short portfolio that buys the highest
quintile and sells the lowest quintile. The event time returns to this portfolio, shown

in Figure 1.4 will show the degree to which the information persists.

46



0.25%

0.20%

0.15%

0.10%

0.05%

0.00%

-0.05%

-0.10%

T —
] [skip t+1
| [ used in L/S strategy| |
[—Inot used
C I I I I I I I 7
t+1 t+4 t+7 t+10 t+13 t+16 t+19

Event Time (in weeks)

Figure 1.4: Event Time Returns to X; Components of the L/S Portfolio

Each column in the bar chart represents the average weekly return resulting from a

portfolio formed at time t = o. The first column, colored white, represents the return

that would be received from buying at the close of the formation week. To be as

conservative as possible in representing the returns to a trading strategy, this first

week is omitted from the trading strategy results shown in the following subsection.

Even discarding this first week, there is a pattern of positive returns that continues at

lags of up to two months.

BACKTEST RESULTS

Given the matrix A, the trading signal in (1.24) is obtained each week by

multiplying A by the returns from the recent past. For the purposes of this backtest,

I will consider the recent past to be the returns from the past 6 weeks, omitting the
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most recent weeks’ returns to avoid the gaining credit for returns previously shown to
be partially attributed to microstructure effects. The results without lagging the signal
by one week would be extraordinarily large.

I generate calendar time backtest returns by sorting stocks each week into
equal-weighted quintile portfolios based on their respective trading signal predicting
future returns. The 200 firms with the highest factor values, populating portfolio Qs,
are predicted to outperform the quintiles with lower factor values, particularly those
in the quintile with the lowest factor values, Q1. A long/short portfolio is created by
taking a long position in the firms in Q35 and an equivalent short position in the firms
comprising Q1.

I will also show event time returns that would result from creating the trading
signals using only one week returns over a range of lags. This will give an indication of
how fast the predicted components of excess and insufficient comovement are
corrected in asset prices. This will also confirm the choice of using a six week window

in the calendar time backtest is both sensible and robust to alternative specifications.

TRADING STRATEGY RESULTS

The annual returns to the long/short portfolio are graphed in Figure 1.5. The
performance of this long/short portfolio is relatively consistent over time and does
not show a tendency to decrease over time. This is true even in the most recent
decade when you might expect that trading by hedge funds, especially so-called
statistical arbitrage funds, might employ similar strategies and erode the returns

available to a comovement based strategy.
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Figure 1.5: Annual Calendar Time Returns to L/S Portfolio

The strong recent performance is also surprising given the fact that, on average,
short-horizon and long-horizon comovement have converged. This result suggests
that the dispersion of comovement differences across firms remains large and
predictable even while the average is near zero. Looking again at the annual returns to
the strategy, the most profitable of the 40 years considered was 2008, with a return of
28.8%. Over the 40-year sample, the long/short portfolio generates an average annual
excess return of 5.3% with a corresponding Sharpe Ratio of 0.65.

The weekly event time returns, shown in Figure 1.4, provide additional insight on
the nature of the portfolio returns. These event time returns only interact one week of
past returns (dated ;) to generate the signal vector X;. The event time graph displays
the mean return to the long/short portfolio traded various weeks into the future. You

can see that the £ + 1 return is shaded in white. This is because the week immediately
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following portfolio formation is excluded in the analysis, since some of that (very
large) return may be generated by temporary price impact and would not achievable.
The returns from ¢ + 2 to t + 6 are shaded in dark blue. This is to indicate that these
five weeks of returns are the ones used in the construction of the calendar time
long/short portfolios. Returns to all subsequent weeks are in light blue. From these
event returns, it appears that the predictive component of comovement identified by
these two signals generates declining abnormal returns for about 10 weeks after

portfolio formation, and afterwards, the returns seem indistinguishable from noise.

AD_]USTING THE CALENDAR TIME RETURNS FOR RISK EXPOSURES

The average weekly excess returns alphas for the calendar time analysis of the five
quintile portfolios and the long/short portfolio are presented in Table 1.9. As would
be desired, there is a consistent pattern of returns increasing by quintile. In the
unadjusted excess returns, the lowest quintile portfolio earns only 0.46 basis points
per week versus the 8.6 basis point average return of the highest quintile, which
corresponds to an annual return of 0.24%. The 8 basis point weekly return of the
long/short portfolio has an associated t-statistic of 3.36, indicating we can
confidently reject the notion that the true excess return of the strategy is zero.

Table 1.9 also reports the alphas for each portfolio after controlling for risk factors
known to generate positive returns. These alphas are the intercept in the regression of
the weekly returns of risk factors on the returns to the quintile and long/short
portfolios. Four factor models are considered, and the Tuesday-to-Tuesday weekly

returns for each of the component risk factors are derived from the daily research
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Table 1.9: Weekly Abnormal Returns (in bps) to Ap Trading Strategy

This table shows the calendar time portfolio abnormal returns, reported in basis points ( 1/100 ™"

of one percent). The first row shows the average weekly returns of the quintile portfolios and the
long/short (L/S) portfolio formed by going long the highest quintile with the highest signal values
(Qs) and short the quintile portfolio with the lowest. Alpha is the intercept coefficient from regress-
ing the weekly returns on various risk factors. The return series of the risk factors and the risk free
rates are derived from the data provided by Ken French on his website. T-statistics are displayed in
brackets below each return coeflicient.

Factor Quintile L/S
(low) (high)

Q Q Q Q4 Qs Qs-Qu

Excess Returns 0.46 2.24 4.36 6.54 8.62 8.16
lo.26]  [1.63]  [3.25] [4.86] [5.40] [3.36]

1-factor alpha -0.48 4.45 7.78 9.72 9.95 10.43
(Mkt) [-0.19]  [2.43]  [4.39] [s:31]  [4.20] [4.31]

3-factor alpha -4.14 0.07 2.88 4.71 5.65 9.79
(...+ SMB, HML) [-2.10] [0.05] [2.12]  [3.42] [3.36] [4.02]

4-factor alpha 0.46 2.24 4.36 6.54 8.62 8.16
(..+ UMD) [0.26] [1.63] [3.25] [4.86]  [s5.40] [3.36]
6-factor alpha -6.37 -0.28 2.12 5.92 9.03 15.40
(..+ STREV,LTREV) | [-3.54] [-019] [1.51]  [418]  [5.37] [6.17]

S1



returns available on Ken French’s website*. The first two models include a 1-factor
model that controls for exposure to the value-weighted market index, and the 3-factor
alpha, that additionally includes the SMB and HML factors popularized by Fama and
French (1992).

In addition to these standard benchmarks, we might wonder if the returns to
portfolios based on comovement are related to momentum and reversal patterns
found to empirically generate positive returns in the cross-section of US equities. To
answer this, we can introduce two additional models, a 4-factor model including
Carhart’s (1997) momentum factor, and finally, a 6-factor model which additionally
includes short-term and long-term reversal patterns. These reversal returns are
defined by French to be the lagged one month return and the past s-year return
excluding the most recent year. Interestingly, this comovement trading strategy tends
to trade in the opposite direction of these reversal factors, making the alphas look
even more compelling. The long/short portfolio, which averages 8.2 basis points of
excess returns weekly, reports a 6-factor alpha of 1.4 basis points. Translated to an
annual time frequency, these risk adjusted returns would yield an average return of

8.4% and a Sharpe Ratio of 1.03.

CONCLUSION

Asset price comovement changes with time horizon. The evidence is consistent with
a model where fads and information delays cause prices to temporarily deviate from

fundamentals. In particular, there is compelling evidence that investor trading

*http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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behavior and salient security characteristics are more important factors in
determining the correlation of US equity returns over short horizons while measures
of long-run fundamentals play a greater role in return correlations over longer
horizons.

I propose the difference between short-horizon and long-horizon comovement is a
natural metric for studying excess comovement. Measures of common trading
behavior and shared economic fundamentals show significant power in explaining
cross-sectional differences in excess comovement across pairs of stocks. They can also
form a successful trading strategy. A portfolio based on predictable differences in
stock correlations generates consistent excess returns not explained by risk exposures.

The main implication for investors with a buy and hold strategy is that they may be
underestimating (or overestimating) the risk concentration of their portfolio if they
extrapolate comovement and volatility from short-horizon returns. This also suggests
a degree of caution to financial econometricians who propose the use of intra-day
data to estimate the covariance of security returns. It would seem that using ever
shorter return horizons to estimate second moments will likely capture a greater
degree of comovement driven by trading behavior rather than the fundamentals that
matter over longer horizons.

Although the empirical evidence presented here focuses on US equities, the
principle should apply just as much in other asset classes as well as in the broader
asset allocation decision. In fact, there is reason to believe differences in comovement
may be even larger across asset classes, as market segmentation may be more

pronounced. The relationship between correlation and return horizon may identify
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risks and opportunities that can arise as short-run comovement deviates from

long-run fundamentals.
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We must include in the long-period cost a third term which
we might call the risk-cost to cover the unknown possibilities

of the actual yield differing from the expected yield.
John Maynard Keynes

An Intertemporal CAPM
with Stochastic Volatility

authored with John Campbell, Stefano Giglio and Christopher Polk

THE FUNDAMENTAL INSIGHT of intertemporal asset pricing theory is that long-term
investors should care just as much about the returns they earn on their invested
wealth as about the level of that wealth. In a simple model with a constant rate of
return, for example, the sustainable level of consumption is the return on wealth

multiplied by the level of wealth, and both terms in this product are equally
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important. In a more realistic model with time-varying investment opportunities,
conservative long-term investors will seek to hold “intertemporal hedges”, assets that
perform well when investment opportunities deteriorate. Such assets should deliver
lower average returns in equilibrium if they are priced from conservative long-term
investors’ first-order conditions.

Since the seminal work of Merton (1973) on the intertemporal capital asset
pricing model (ICAPM), a large empirical literature has explored the relevance of
intertemporal considerations for the pricing of financial assets in general, and the
cross-sectional pricing of stocks in particular. One strand of this literature uses the
approximate accounting identity of Campbell and Shiller (1988a) and the
assumption that a representative investor has Epstein-Zin utility ( Epstein and Zin
1989) to obtain approximate closed-form solutions for the ICAPM’s risk prices
(Campbell 1993). These solutions can be implemented empirically if they are
combined with vector autoregressive (VAR) estimates of asset return dynamics
(Campbell 1996). Campbell and Vuolteenaho (2004), Campbell, Polk, and
Vuolteenaho (2010), and Campbell, Giglio, and Polk (2011) use this approach to
argue that value stocks outperform growth stocks on average because growth stocks
do well when the expected return on the aggregate stock market declines; in other
words, growth stocks have low risk premia because they are intertemporal hedges for
long-term investors.

A weakness of the papers cited above is that they ignore time-variation in the
volatility of stock returns. In general, investment opportunities may deteriorate either

because expected stock returns decline or because the volatility of stock returns
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increases, and it is an empirical question which of these two types of intertemporal
risk have a greater effect on asset returns. We address this weakness in this paper by
extending the approximate closed-form ICAPM to allow for stochastic volatility. The
resulting model explains risk premia in the stock market using three priced risk
factors corresponding to three important attributes of aggregate market returns:
revisions in expected future cash flows, discount rates, and volatility. An attractive
characteristic of the model is that the prices of these three risk factors depend on only
one free parameter, the long-horizon investor’s coefficient of risk aversion.

Since the long-horizon investor in our model cares mostly about persistent
changes in the investment opportunity set, there must be predictable variation in
long-run volatility for volatility risk to matter. Empirically, we implement our
methodology using a vector autoregression (VAR) including stock returns, realized
variance, and other financial indicators that may be relevant for predicting returns
and risk. Our VAR reveals low-frequency movements in market volatility tied to the
default spread, the yield spread of low-rated over high-rated bonds. While this effect
has received little attention in the literature, we argue that it is sensible: Investors in
risky bonds perceive the long-run component of volatility and incorporate this
information when they set credit spreads, as risky bonds are short the option to
default. Moreover, we show that GARCH-based methods that filter only the
information in past returns in order to disentangle the short-run and long-run
volatility components miss this important low-frequency component.

With our novel model of long-run volatility in hand, we find that growth stocks

have low average returns because they outperform not only when the expected stock

57



return declines, but also when stock market volatility increases. Thus growth stocks
hedge two types of deterioration in investment opportunities, not just one. In the
period since 1963 that creates the greatest empirical difficulties for the standard
CAPM, we find that the three-beta model explains over 69% of the cross-sectional
variation in average returns of 25 portfolios sorted by size and book-to-market ratios.
The model is not rejected at the 5% level while the CAPM is strongly rejected. The
implied coefficient of relative risk aversion is an economically reasonable 9.63, in
contrast to the much larger estimate of 20.70, which we get when we estimate a
comparable version of the two-beta CAPM of Campbell and Vuolteenaho (2004)
using the same data." This success is due in large part to the inclusion of volatility
betas in the specification. In particular, the spread in volatility betas in the
cross-section generates an annualized spread in average returns of 6.52% compared to
a comparable spread of 3.90% and 2.24% for cash-flow and discount-rate betas.

We confirm that our findings are robust by expanding the set of test portfolios in
two important dimensions. First, we show that our three-beta model not only
describes the cross-section of size- and book-to-market-sorted portfolios but also can
explain the average returns on risk-sorted portfolios. We examine risk-sorted
portfolios in response to the argument of Daniel and Titman (1997, 2012) and
Lewellen, Nagel, and Shanken (2010) that asset-pricing tests using only portfolios
sorted by characteristics known to be related to average returns, such as size and
value, can be misleading. As tests that include risk-sorted portfolios are unable to

reject our intertemporal CAPM with stochastic volatility, we verify that the model’s

!The risk aversion estimate reported in Campbell and Vuolteenaho’s (2004) paper is 28.75.
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success is not simply due to the low-dimensional factor structure of the 25 size- and
book-to-market-sorted portfolios. Specifically, we show that sorts on stocks’
pre-formation sensitivity to volatility news generate economically and statistically
significant spread in both post-formation volatility beta and average returns in a
manner consistent with our model. Interestingly, in the post-1963 period, sorts on
past CAPM beta generate little spread in post-formation cash-flow betas, but
significant spread in post-formation volatility betas. Since, in the three-beta model,
covariation with aggregate volatility news has a negative premium, the three-beta
model also explains why stocks with high past CAPM betas have offered relatively
little extra return in the post-1963 sample.

Second, we show that our three-beta model can help explain average returns on
non-equity portfolios that are exposed to aggregate volatility risk. These portfolios
include the S&P 100 index straddle of Coval and Shumway (2001 ), which is explicitly
designed to be highly correlated with aggregate volatility risk, and the risky bond
factor of Fama and French (1993 ), which should be sensitive to changes in aggregate
volatility since risky corporate debt is short the option to default. Consistent with
this intuition, we find that compared to the volatility beta of a value-minus-growth
bet, the risky bond factor’s volatility beta is of the same order of magnitude while the
straddle’s volatility beta is more than 3 times larger in absolute magnitude. These
volatility betas are of the right sign to explain the abnormal CAPM returns of the
option and bond portfolios. Approximately 38% of the average straddle return can be
attributed to its three ICAPM betas, based purely on model estimates from the

cross-section of equity returns. Additionally, when we price the joint cross-section of
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equity, bond, and straddle returns our intertemporal CAPM with stochastic volatility
is not rejected at the 5-percent level while the CAPM is strongly rejected.

Our work is complementary to recent research on the “long-run risk model” of
asset prices (Bansal and Yaron 2004) which can be traced back to insights in Kandel
and Stambaugh (1991). Both the approximate closed-form ICAPM and the long-run
risk model start with the first-order conditions of an infinitely lived Epstein-Zin
representative investor. As originally stated by Epstein and Zin (1989), these
first-order conditions involve both aggregate consumption growth and the return on
the market portfolio of aggregate wealth.Campbell (1993) pointed out that the
intertemporal budget constraint could be used to substitute out consumption
growth, turning the model into a Merton-style ICAPM. Restoy and Weil (1998,
2011) used the same logic to substitute out the market portfolio return, turning the
model into a generalized consumption CAPM in the style of Breeden (1979).

Kandel and Stambaugh (1991) were the first researchers to study the implications
for asset returns of time-varying first and second moments of consumption growth in
a model with a representative Epstein-Zin investor. Specifically, Kandel and
Stambaugh (1991) assumed a four-state Markov chain for the expected growth rate
and conditional volatility of consumption, and provided closed-form solutions for
important asset-pricing moments. In the spirit of Kandel and Stambaugh (1991),
Bansal and Yaron (2004) added stochastic volatility to the Restoy-Weil model, and
subsequent research on the long-run risk model has increasingly emphasized the
importance of stochastic volatility for generating empirically plausible implications

from this model (Bansal, Kiku, and Yaron 2012, Beeler and Campbell 2012). In this
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paper we give the approximate closed-form ICAPM the same capability to handle
stochastic volatility that its cousin, the long-run risk model, already possesses.

One might ask whether there is any reason to work with an ICAPM rather than a
consumption-based model given that these models are derived from the same set of
assumptions. The ICAPM developed in this paper has several advantages. First, it
describes risks as they appear to an investor who takes asset prices as given and
chooses consumption to satisfy his budget constraint. This is the way risks appear to
individual agents in the economy, and it seems important for economists to
understand risks in the same way that market participants do rather than relying
exclusively on a macroeconomic perspective. Second, the ICAPM allows an
empirical analysis based on financial proxies for the aggregate market portfolio rather
than on accurate measurement of aggregate consumption. While there are certainly
challenges to the accurate measurement of financial wealth, financial time series are
generally available on a more timely basis and over longer sample periods than
consumption series. Third, the ICAPM in this paper is flexible enough to allow
multiple state variables that can be estimated in a VAR system; it does not require
low-dimensional calibration of the sort used in the long-run risk literature. Finally,
the stochastic volatility process used here governs the volatility of all state variables,
including itself. We show that this assumption fits financial data reasonably well, and
it guarantees that stochastic volatility would always remain positive in a
continuous-time version of the model, a property that does not hold in most current

implementations of the long-run risk model.?

*Eraker (2008) and Eraker and Shaliastovich (2008) are exceptions.
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The closest precursors to our work are unpublished papers by Chen (2003 ) and
Sohn (2010). Both papers explore the effects of stochastic volatility on asset prices in
an ICAPM setting but make strong assumptions about the covariance structure of
various news terms when deriving their pricing equations. Chen (2003 ) assumes
constant covariances between shocks to the market return (and powers of those
shocks) and news about future expected market return variance. Sohn (2010) makes
two strong assumptions about asset returns and consumption growth, specifically
that all assets have zero covariance with news about future consumption growth
volatility and that the conditional contemporaneous correlation between the market
return and consumption growth is constant through time. Duffee (2005 ) presents
evidence against the latter assumption. Itis in any case unattractive to make
assumptions about consumption growth in an ICAPM that does not require accurate
measurement of consumption.

Chen estimates a VAR with a GARCH model to allow for time variation in the
volatility of return shocks, restricting market volatility to depend only on its past
realizations and not those of the other state variables. His empirical analysis has little
success in explaining the cross-section of stock returns. Sohn uses a similar but more
sophisticated GARCH model for market volatility and tests how well short-run and
long-run risk components from the GARCH estimation can explain the returns of
various stock portfolios, comparing the results to factors previously shown to be
empirically successful. In contrast, our paper incorporates the volatility process
directly in the ICAPM, allowing heteroskedasticity to affect and to be predicted by all

state variables, and showing how the price of volatility risk is pinned down by the

62



time-series structure of the model along with the investor’s coefficient of risk
aversion.

A working paper by Bansal, Kiku, Shaliastovich and Yaron (2012),
contemporaneous with our own, explores the effects of stochastic volatility in the
long-run risk model. Like us, they find stochastic volatility to be an important feature
in the time series of equity returns. Their work puts greater emphasis on the implied
consumption dynamics while we focus on the cross-sectional pricing implications of
exposure to volatility news. More fundamentally, there are differences in the
underlying models. They assume that the stochastic process driving volatility is
homoskedastic, and in their cross-sectional analysis they impose that changes in the
equity risk premium are driven only by the conditional variance of the stock market.
The different modeling assumptions account for our contrasting empirical results; we
show that volatility risk is very important in explaining the cross-section of stock
returns while they find it has little impact on cross-sectional differences in risk premia.

Stochastic volatility has, of course, been explored in other branches of the finance
literature. For example, Chacko and Viceira (2005 ) and Liu (2007) show how
stochastic volatility affects the optimal portfolio choice of long-term investors.
Chacko and Viceira assume an AR(1) process for volatility and argue that
movements in volatility are not persistent enough to generate large intertemporal
hedging demands. Campbell and Hentschel (1992), Calvet and Fisher (2007), and
Eraker and Wang (2011) argue that volatility shocks will lower aggregate stock prices
by increasing expected returns, if they do not affect cash flows. The strength of this

volatility feedback effect depends on the persistence of the volatility process. Coval

63



and Shumway (2001 ), Ang, Hodrick, Xing, and Zhang (2006), and Adrian and
Rosenberg (2008) present evidence that shocks to market volatility are priced risk
factors in the cross-section of stock returns, but they do not develop any theory to
explain the risk prices for these factors.

There is also an enormous literature in financial econometrics on modeling and
forecasting time-varying volatility. Since Engle’s (1982) seminal paper on ARCH,
much of the literature has focused on variants of the univariate GARCH model
(Bollerslev 1986), in which return volatility is modeled as a function of past shocks to
returns and of its own lags (see Poon and Granger (2003) and Andersen et al. (2006)
for recent surveys). More recently, realized volatility from high-frequency data has
been used to estimate stochastic volatility processes (Barndorft-Nielsen and
Shephard 2002, Andersen et al. 2003). The use of realized volatility has improved the
modeling and forecasting of volatility, including its long-run component; however,
this literature has primarily focused on the information content of high-frequency
intra-daily return data. This allows very precise measurement of volatility, but at the
same time, given data availability constraints, limits the potential to use long time
series to learn about long-run movements in volatility. In our paper, we measure
realized volatility only with daily data, but augment this information with other
financial time series that reveal information investors have about underlying volatility
components.

A much smaller literature has, like us, looked directly at the information in other
variables concerning future volatility. In early work, Schwert (1989) links movements

in stock market volatility to various indicators of economic activity, particularly the
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price-earnings ratio and the default spread, finding relatively weak results. Engle,
Ghysels and Sohn (2009) study the effect of inflation and industrial production
growth on volatility, finding a significant link between the two, especially at long
horizons. Campbell and Taksler (2003 ) look at the cross-sectional link between
corporate bond yields and equity volatility, emphasizing that bond yields respond to
idiosyncratic firm-level volatility as well as aggregate volatility. Two recent papers,
Paye (2012) and Christiansen et al. (2012), look at larger sets of potential predictors
of volatility, that include the default spread and/or valuation ratios, to study which
ones have predictive power for quarterly realized variance. The former, in a standard
regression framework, finds that a few variables, that include the commercial paper to
Treasury spread and the default spread, contain useful information for predicting
volatility. The latter uses Bayesian Model Averaging to determine which variables are
most important for predicting quarterly volatility, and documents the importance of

the default spread and valuation ratios in forecasting short-run volatility.

2.1 AN INTERTEMPORAL MODEL WITH STOCHASTIC VOLATILITY

ASSET PRICING WITH TIME VARYING RISK

Preferences
We begin by assuming a representative agent with Epstein-Zin preferences. We

write the value function as

0

vi= (-8 ¢ +5 (& Vi) (21)
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where C; is consumption and the preference parameters are the discount factor §, risk

aversion 7, and the elasticity of intertemporal substitution .. For convenience, we

define 0 = (1 —7)/(1 — 1/¥).

The corresponding stochastic discount factor (SDF) can be written as

1/ o 1—0
C W, — C
My, = 8( t ) (;> ; (22)
Ct+1 Wt+1

where W, is the market value of the consumption stream owned by the agent,

including current consumption C;.*> The log return on wealth is
terr = In (Wi, / (Wy — C;)), the log value of wealth tomorrow divided by reinvested

wealth today. The log SDF is therefore
6
me, = 0ln§ — JActﬂ + (0 — 1) reg,. (2.3)

A convenient identity

The gross return to wealth can be written

Wi, C Citr Wi,
R = e = (G0 ) () (B2) G
w,—C  \W:—C/)\ G ) \Cu

expressing it as the product of the current consumption payout, the growth in

consumption, and the future price of a unit of consumption.
We find it convenient to work in logs. We define the log value of reinvested wealth

per unit of consumption as z; = In ((W; — C;) /C;), and the future value of a

3This notational convention is not consistent in the literature. Some authors exclude current
consumption from the definition of current wealth.
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consumption claim as 4, = In (Wi, /Ce, ), so that the log return is:
Terr = —2¢ + Aceyy + by (2.5)

Heuristically, the return on wealth is negatively related to the current value of
reinvested wealth and positively related to consumption growth and the future value
of wealth. The last term in equation (2.5) will capture the effects of intertemporal
hedging on asset prices, hence the choice of the notation h., for this term.

The ICAPM

We assume that asset returns are jointly conditionally lognormal, but we allow
changing conditional volatility so we are careful to write second moments with time
subscripts to indicate that they can vary over time. Under this standard assumption,

the expected return on any asset must satisfy
1
o =InEsexp{mur, + rips.} = B¢ (Mg + riga] + S Var, My + rien),  (2.6)
and the risk premium on any asset is given by
1
Et”i,t+1 — Tt + ;Véll'trtJrl = —Cov; [mtJrl; ”i,t+1] . (2-7)

The convenient identity (2.5) can be used to write the log SDF (2.3) without

reference to consumption growth:

0 0
mey, = 0Iné — V/Zt + ;htﬂ — Ylgr- (2.8)
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Since the first two terms in (2.5) are known at time t, only the latter two terms appear
in the conditional covariance in (2.7). We obtain an ICAPM pricing equation that
relates the risk premium on any asset to the asset’s covariance with the wealth return

and with shocks to future consumption claim values:

1 0
Etri,t—i-l — TIft + ;Vart7t+1 = yCov; [ri,t—i-n ”t-s-l] - JCOW [ri,t-i—n ht+1] (2-9)

Return and risk shocks in the ICAPM

To better understand the intertemporal hedging component h;,, we proceed in
two steps. First, we approximate the relationship of ;. and z;, by taking a loglinear
approximation about z:

Wy, = &+ pzeg, (2.10)

where the loglinearization parameter p = exp(z)/(1 + exp(z)) ~ 1 — C/W.
Second, we apply the general pricing equation (2.6) to the wealth portfolio itself

(setting 7; ¢+, = r¢+,), and use the convenient identity (2. s) to substitute out

consumption growth from this expression. Rearranging, we can write the variable z;

as

1
ze=YIn8 + (Vv — 1)Erey, + Behey, + %;Vart (M, + repa] - (2.11)
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Third, we combine these expressions to obtain the innovation in h;,:

hey, — Eheyy = P(Zt+1 - Etzt+1)
(V = Uress + heps

= (Baa —Edp . (2.12)
+E 2 Var, (M + 1)

Solving forward to an infinite horizon,

oo

hevs =By = (¥ = )(Bes —E) D plrisayy

j=1

o0

L .
J:%(Etﬂ —Ey) Z p'Vargy; [mt+1+i + rt+1+f}

j=1

1
= (¥ —1)Npres + ;%NRISK,t+1- (2.13)

The second equality follows Campbell and Vuolteenaho (2004) and uses the
notation Npg (“news about discount rates”) for revisions in expected future returns.
In a similar spirit we write revisions in expectations of future risk (the variance of the
future log return plus the log stochastic discount factor) as Ngysk.

Finally, we substitute back into the intertemporal model (2.9):

1
Eiripp — 1t + ;Val’t"i,t+1 = yCoV¢ [fi 1y Ncr )
+CoV; [i 441, —Npr,t-44]

1
—;COVt [7i,t10, NRis t44) - (2.14)
This comes from the classic expression expressing the risk premium as risk
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aversion y times covariance with the current market return, plus (y — 1) times
covariance with news about future market returns, minus one half covariance with
risk. This is an extension of the ICAPM as written by Campbell (1993 ), with no
reference to consumption or the elasticity of intertemporal substitution ¥.* When
the investor’s risk aversion is greater than 1, assets which hedge aggregate discount
rates (Covy [f; 441, Npr t4:] < 0) or aggregate risk (Covy [r; ¢11, Nrisk e+.) > 0) have
lower expected returns, all else equal.

In the rewritten form of equation (2.14), the expression followes Campbell and
Vuolteenaho (2004), by breaking the market return into cash-flow news and
discount-rate news. Cash-flow news N¢r is defined by Ncg = r¢4, —E¢rer, + Npr.
The price of risk for cash-flow news is y times greater than the price of risk for
discount-rate news, hence Campbell and Vuolteenaho call betas with cash-flow news
“bad betas” and those with discount-rate news “good betas” since they have lower risk
prices in equilibrium. The third term in (2.14) shows the risk premium associated
with exposure to news about future risks and did not appear in Campbell and
Vuolteenaho’s model, which assumed homoskedasticity. Not surprisingly, the
coeflicient is negative, indicating that an asset providing positive returns when risk

expectations increase will offer a lower return on average.

*Campbell (1993) briefly considers the heteroskedastic case, noting that when y = 1,
Vary [myy, + ¢4, is a constant. This implies that Nrysx does not vary over time so the stochastic
volatility term disappears. Campbell claims that the stochastic volatility term also disappears when
¥ = 1, but this is incorrect. When limits are taken correctly, Nrzsx does not depend on ¢ (except
indirectly through the loglinearization parameter, p).
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FROM RISK TO VOLATILITY

The risk shocks defined in the previous subsection are shocks to the conditional
volatility of returns plus the stochastic discount factor, that is, the conditional
volatility of risk-neutralized returns. We now make additional assumptions on the
data generating process for stock returns that allow us to estimate the news terms.
These assumptions imply that the conditional volatility of risk-neutralized returns is
proportional to the conditional volatility of returns themselves.

Suppose the economy is described by a first-order VAR

X =X+ T (% — X) + oy, (2.15)

where X, isan n X 1vector of state variables that has r,, as its first element, 07, as
its second element, and n — 2 other variables that help to predict the first and second
moments of aggregate returns. X and I are ann X 1vector and an n X n matrix of
constant parameters, and u,, is a vector of shocks to the state variables normalized
so that its first element has unit variance. The key assumption here is that a scalar
random variable, 0}, equal to the conditional variance of market returns, also governs
time-variation in the variance of all shocks to this system. Both market returns and
state variables, including volatility itself, have innovations whose variances move in

proportion to one another.
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Given this structure, news about discount rates can be written as

o0

NDR,H_I = (Et+1 - Et) Z P] Fttrtj

=1

oo

= ei Z ij'j(TtuH_l
j=1
= e pI'(I—pI) " oruyy, (2.16)

Furthermore, our log-linear model will make the log SDF, m,.,, a linear function
of the state variables. Since all shocks to the SDF are then proportional to oy,
Var; [myi, + rip,] < 0?. As aresult, the conditional variance,
Var; [(msy, + r11,) /0¢] = w;, will be a constant that does not depend on the state
variables. Without knowing the parameters of the utility function, we can write
Var; [msy, + ri1,] = wo? so that the news about risk, Ng;sx, is proportional to news

about market return variance, Ny.

[e.e]

Nristr1 = (Eeyn — Ee) Z Pjvaft+j [T’t+1+j + mt+1+j}

j=1

= (Eyy — Er) ZP’ (w(r:-i-j)
j=1

= wpe, Z Pl

j=o

= wpe, (I—pI) "oy, = wNy 14, (2.17)

Substituting (2.17) into (2.14), we obtain an empirically-testable intertemporal
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CAPM with stochastic volatility:

1
Eeripps — re + ;Vﬁft”i,t+1 = yCov;¢ [t 11, Ncp e14]

+Cov¢ [Fi ¢ 11, —Nprt44]

1
—;a)Covt [ri,t+17 NV,t+1] ’ (2'18)

where covariances with news about three key attributes of the market portfolio (cash

flows, discount rates, and volatility) describe the cross section of average returns.

The parameter w is a nonlinear function of the coefficient of relative risk aversion

7, as well as the VAR parameters and the loglinearization coeflicient p, but it does not

depend on the elasticity of intertemporal substitution ¥ except indirectly through the

influence of ¥ on p.

By definition
wo; = Vary [me, + 1]

I

= Var, | —hy, + (1 — 7’)"t+1}
LY
o Ly

= Var, ; (\// — 1)NDR¢+1 + ;5(&)NV¢+1 + (1= 7)ren
- 1

= Vart (1 — '}’)NDR,H-l + ;CUNV,t—H + (1 — 7)7t+1:|
r 1

= Var; (1 - 7)NCF,t+1 + ;“-’NV,HI} .
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Therefore w solves:

wo; = (1—7y)*Var [NCFt+1]

+w(1 — y)Cov; [NCFH_I,NVH_I,} + wziVart [NVM] . (2.19)

We can see two main channels through which y affects w. First, a higher risk
aversion—given the underlying volatilities of all shocks—implies a more volatile
stochastic discount factor m, and therefore a higher RISK. This effect is proportional
to (1 — 7)?, so it increases rapidly with y. Second, there is a feedback effect on RISK
through future risk: w appears on the right-hand side of the equation as well. Given
that in our estimation we find Cov, [Ncpt . Ny, +”] < o, this second effect makes w
increase even faster with 7.

This equation can also be written directly in terms of the VAR parameters. If we

define xcp and xy as the error-to-news vectors such that

1 —1
;NCF,t+1 = et = (¢ + €pl(I— pI)7") tgsy (2.20)

t

L —1
;Nv,t+1 = XylUty = (6/2,0(1 - pr) ) Upyy (2.21)
t

and define the covariance matrix of the residuals (scaled to eliminate stochastic

SBansal, Kiku, Shaliastovich and Yaron (2012) derive a similar expression. The equivalent expres-
sion for w in their case reduces to (1 — 7)* as they impose that the volatility process is homoskedastic
and the conditional equity premium is driven solely by the stochastic volatility.
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volatility) as ¥ =Var[u,,,], then w solves

0= wzixVZxQ, —w(1— (1—7y)xcrZxy) + (1 — 7)* xcpZalp (2.22)

This quadratic equation for w has two solutions. This result is an artifact of our
linear approximation of the Euler Equation, and the appendix shows that one of the
solutions can be disregarded. This false solution is easily identified by its implication

that w becomes infinite as volatility shocks become small. The correct solution is

1— (1— 7)xcpZxl,
>~y 2y
V(10— (1 — y)acrZaly)* — (1 — 7)*(avEal,) (xcrEacy)

— 2.2
ixVZxQ, (2.23)

There is an additional disadvantage to the quadratic expression arising from our
loglinearization. In the case where risk aversion, volatility shocks and cash flow
shocks are large enough, as measured by the product (1 — 7)*(xyZx%,) (xcpZagg).
equation (2.22) may deliver a complex rather than a real value for . While the
conditional variance Var;|m;, + r;1,| from which we define w will be both real and
finite, the loglinear approximation may not allow for a real solution in an
economically important region of the parameter space. Given our VAR estimates of
the variance and covariance terms, we find equation (2.22) yields a real solution as y

ranges from zero to 6.93.
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Figure 2.1: Approximate Gamma-Omega Relationship
This figure graphs the approximate relation between the parameter y and the parameter w described
by equation (2.24) as well as the quadratic solution for w described in equation (2.23). These func-
tions depend on the loglinearization parameter p, set to 0.95 per year and the empirically estimated
VAR parameters of Table 1. 7 is the investor’s risk aversion while w is the sensitivity of news about
risk, Ngrsk, to news about market variance, Ny.

To allow for larger values in our risk aversion parameter, we consider an alternative
approximation. If we linearize the right hand side of equation (2.19) around w = o
we can approximate Var[m;, + r.+,] as a linear, rather than quadratic, function of w.

‘We then have
(1 — 7)*(xcrZacp)
1— (1= 7)(xcrZay)

(2.24)

which is now defined for all y > o. Figure 2.1 plots w as a function of y using both the

solution in equation (2.23) and the approximation in (2.24) for values of y up to 20.
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By construction, they will yield similar solutions for values of ¥ close to one, where
w gets close to o and volatility news becomes less and less important. In other words,
it is easy to show that our linearization preserves the property of the true model that

asy = 1, w — oand

Vary[mg, + re4.) — (1 — 7)*Vary[N¢g]

As risk aversion increases, we find that this approximate value for w continues to
resemble the exact solution of the quadratic equation (2.22) in the region where a
real solution exists. We have also used numerical methods, similar to those proposed
by Tauchen and Hussey (1991), to solve the model and validate our estimates of w for
a range of values for ¥ that include the region where the quadratic equation does not

have a real solution.

IMPLICATIONS FOR CONSUMPTION GROWTH

Following Campbell (1993 ), in this paper we substitute consumption out of the
pricing equations using the intertemporal budget constraint. However the model
does have interesting implications for the implied consumption process. From

equations (5) and (13), we can derive the expression:

ACt+1 — EtACt+1 = (rt+1 - Etrt+1) - (‘P - I)NDR7t+1
1 w
0N (229)
21— 7
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The first two components of the equation for consumption growth are the same as in
the homoskedastic case. An unexpectedly high return of the wealth portfolio has a
one-for-one effect on consumption. An increase in expected future returns increases
today’s consumption if ¥ < 1, as the low elasticity of intertemporal substitution
induces the representative investor to consume today (the income effect dominates).
If ¥ > 1, instead, the same increase induces the agent to reduce consumption to better
exploit the improved investment opportunities (the substitution effect dominates).

The introduction of time-varying conditional volatility adds an additional term to
the equation describing consumption growth. News about high future risk is news
about a deterioration of future investment opportunities, which is bad news for a
risk-averse investor (y > 1). When y < 1, the representative agent will reduce
consumption and save to ensure adequate future consumption. An investor with high
elasticity of intertemporal substitution, on the other hand, will increase current
consumption and reduce the amount of wealth exposed to the future (worse)
investment opportunities.

Using estimates of the news terms from our VAR model (described in the next
section), we can explore the implications of the model for consumption growth. As
shown in the previous subsection, the three shocks that drive innovations in
consumption growth (r+, — E¢r¢11, NpR 41, Ny ¢+,) can all be expressed as functions
of the vector of innovations o¢u;,. The conditional variance of consumption growth,
Var(Ac;., ), will then be proportional to the conditional variance of returns,
Vary(r¢,); similarly, the conditional standard deviation of consumption growth will

be proportional to the conditional standard deviation of returns. As a consequence,
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Figure 2.2: Consumption Growth Variance and Risk Aversion
This figure plots plots the coefficient A(y, V) relating the conditional volatility of consumption
growth to the volatility of returns for different values of y and V¥ for the homoskedastic case (left
panel) and for the heteroskedastic case (right panel), where A(y, V) is a function of the variances
and covariances of the scaled residuals u;,. In each panel, we plot A(y, ¥) as y varies between 1 and
20, for different values of psi. Each line corresponds to a different ¥ between o.5 and 1.5.

the ratio of the standard deviations,

Var,(Acty,)

Aly,v) = Var)
arg\re4,

will be a constant that depends on the model parameters y and y as well as on the
unconditional variances and covariances of the innovation vector u;. ,, which we

obtain by estimating the VAR.
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Figure 2.2 plots the coefficient A(y, ¥/) for different values of y and  for the
homoskedastic case (left panel), and for the heteroskedastic case (right panel) using
the linear approximation for w described in Section 2.2. In each panel, we plot
A(y, V) as y varies between o and 20, for different values of y. Each line corresponds
to a different y between 0.5 and 1.5; when ¥ = 1 the value of A(y, V) is always equal
to 1 since in that case the volatility of consumption growth is equal to the volatility of
returns.

As expected, in the homoskedastic case (left panel), the variance of consumption
growth does not depend on y but only on . Itis rising in ¥ because our VAR
estimates imply that the return on wealth is negatively correlated with news about
future expected returns Npg ¢+,, that is, wealth returns are mean-reverting. This
confirms results reported in Campbell (1996). Once we add stochastic volatility
(right panel), as y increases the volatility of consumption growth increases for all
values of ¥ as long as ¥ # 1. To understand why this is the case, notice in equation
(2.24) that since w grows with 7 faster than (1 — 7)?, the term I_Ly is increasing in y in
absolute value. Therefore, the larger 7, the more the variance of Ny gets amplified
into a higher variance of consumption innovations.

Note also that for y < 1and for high enough 7 (i.e. in the bottom-right section of
the right panel), the volatility of consumption innovations is higher for lower values of
Y. When risk aversion is high, innovations in consumption are dominated by news
about future risk. Agents with very low or very high elasticity of intertemporal
substitution, i.e. with ¥ far from 1, will tend to adjust their consumption strongly (in

different directions) to volatility news. Therefore, it is possible for individuals with
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lower elasticity of intertemporal substitution to end up with a more volatile process for

consumption innovations, due to their strong reaction to volatility news.

2.2 PREDICTING AGGREGATE STOCK RETURNS AND VOLATILITY

STATE VARIABLES

Our full VAR specification of the vector x;, includes six state variables, five of which
are the same as in Campbell, Giglio and Polk (2011). To those five variables, we add
an estimate of conditional volatility. The data are all quarterly, from 1926:2 to 2011:4.

The first variable in the VAR is the log real return on the market, ry, the difference
between the log return on the Center for Research in Securities Prices (CRSP)
value-weighted stock index and the log return on the Consumer Price Index.

The second variable is expected market variance (EVAR). This variable is meant to
capture the volatility of market returns, o;, conditional on information available at
time ¢, so that innovations to this variable can be mapped to the Ny term described
above. To construct EVAR,, we proceed as follows. We first construct a series of
within-quarter realized variance of daily returns for each time ¢, RVAR;. We then run
aregression of RVAR,, on lagged realized variance (RVAR;) as well as the other five
state variables at time t. This regression then generates a series of predicted values for
RVAR at each time ¢ + 1, that depend on information available at time ¢: ﬁ/A\RHl.
Finally, we define our expected variance at time t to be exactly this predicted value at
t+ 1

EVAR, = RVAR,,,.
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Note that though we describe our methodology in a two-step fashion where we first
estimate EVAR and then use EVAR in a VAR, this is only for interpretability. Indeed,
this approach to modeling EVAR can be considered a simple renormalization of
equivalent results we would find from a VAR that included RVAR directly.®

The third variable is the price-earnings ratio (PE) from Shiller (2000), constructed
as the price of the S&P 500 index divided by a ten-year trailing moving average of
aggregate earnings of companies in the S&P 500 index. Following Graham and Dodd
(1934), Campbell and Shiller (1988b, 1998) advocate averaging earnings over several
years to avoid temporary spikes in the price-earnings ratio caused by cyclical declines
in earnings. We avoid any interpolation of earnings as well as lag the moving average
by one quarter in order to ensure that all components of the time-f price-earnings
ratio are contemporaneously observable by time t. The ratio is log transformed.

Fourth, the term yield spread (TY) is obtained from Global Financial Data. We
compute the TY series as the difference between the log yield on the 10-Year US
Constant Maturity Bond (IGUSA10D) and the log yield on the 3-Month US
Treasury Bill (ITUSA3D).

Fifth, the small-stock value spread (VS) is constructed from data on the six
“elementary” equity portfolios also obtained from Professor French’s website. These
elementary portfolios, which are constructed at the end of each June, are the
intersections of two portfolios formed on size (market equity, ME) and three

portfolios formed on the ratio of book equity to market equity (BE/ME). The size

%Since we weight observations based on RVAR in the first stage and then reweight observations
using EVAR in the second stage, our two-stage approach in practice is not exactly the same as a one-
stage approach. However, the results from a RVAR-weighted single-step estimation are qualitatively
very similar to those produced by our two-stage approach.
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breakpoint for year t is the median NYSE market equity at the end of June of year t.
BE/ME for June of year t is the book equity for the last fiscal year end in t — 1 divided
by ME for December of t — 1. The BE/ME breakpoints are the 3oth and 7oth NYSE
percentiles.

At the end of June of year t, we construct the small-stock value spread as the
difference between the In(BE/ME) of the small high-book-to-market portfolio and
the In(BE/ME) of the small low-book-to-market portfolio, where BE and ME are
measured at the end of December of year t — 1. For months from July to May, the
small-stock value spread is constructed by adding the cumulative log return (from the
previous June) on the small low-book-to-market portfolio to, and subtracting the
cumulative log return on the small high-book-to-market portfolio from, the
end-of-June small-stock value spread. The construction of this series follows
Campbell and Vuolteenaho (2004) closely.

The sixth variable in our VAR is the default spread (DEF), defined as the difference
between the log yield on Moody’s BAA and AAA bonds. The series is obtained from
the Federal Reserve Bank of St. Louis. Campbell, Giglio and Polk (2011) add the
default spread to the Campbell and Vuolteenaho (2004) VAR specification in part
because that variable is known to track time-series variation in expected real returns
on the market portfolio (Fama and French, 1989), but mostly because shocks to the
default spread should to some degree reflect news about aggregate default
probabilities. Of course, news about aggregate default probabilities should in turn

reflect news about the market’s future cash flows.
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SHORT-RUN VOLATILITY ESTIMATION

In order for the regression model that generates EVAR; to be consistent with a
reasonable data-generating process for market variance, we deviate from standard
OLS in two ways. First, we constrain the regression coefficients to produce fitted
values (i.e. expected market return variance) that are positive. Second, given that we
explicitly consider heteroskedasticity of the innovations to our variables, we estimate
this regression using Weighted Least Squares (WLS), where the weight of each
observation pair (RVAR;,,, x;) is initially based on the time-t value of (RVAR) .
However, to ensure that the ratio of weights across observations is not extreme, we
shrink these initial weights towards equal weights. In particular, we set our shrinkage
factor large enough so that the ratio of the largest observation weight to the smallest
observation weight is always less than or equal to five. Though admittedly somewhat
ad hoc, this bound is consistent with reasonable priors of the degree of variation over
time in expected market return variance. More importantly, we show later that our
results are robust to variation in this bound. Both the constraint on the regression’s
fitted values and the constraint on WLS observation weights bind in the sample we
study.

The results of the first stage regression generating the state variable EVAR, are
reported in Table 2.1 Panel A. Perhaps not surprisingly, past realized variance strongly
predicts future realized variance. More importantly, the regression documents that an
increase in either PE or DEF predicts higher future realized volatility. Both of these

results are very statistically significant and are a novel finding of the paper. In
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particular, the fact that we find that very persistent variables like PE and DEF forecast
next period’s volatility indicates a potential important role in volatility news for lower
frequency or long-run movements in stochastic volatility.

We argue that the links we find are sensible. Investors in risky bonds incorporate
their expectation of future volatility when they set credit spreads, as risky bonds are
short the option to default. Therefore we expect higher DEF to be associated with
higher RVAR. The result that higher PE predicts higher RVAR might seem surprising
at first, but one has to remember that the coeflicient indicates the effect of a change in
PE holding constant the other variables, in particular the default spread. Since the
default spread should also generally depend on the equity premium and since most of
the variation in PE is due to variation in the equity premium, for a given value of the
default spread, a relatively high value of PE implies a relatively higher level of future
volatility. Thus PE cleans up the information in DEF concerning future volatility.

The R* of this regression is just over 23%. The relatively low R* masks the fact that
the fit is indeed quite good, as we can see from Figure 2.3, in which RVAR and EVAR
are plotted together. The R* is heavily influenced by the occasional spikes in realized
variance, which the simple linear model we use is not able to capture. Indeed, our
WLS approach downweights the importance of those spikes in the estimation
procedure.

The internet appendix to this paper (Campbell, Giglio, Polk, and Turley 2012)
reports descriptive statistics for these variables for the full sample, the early sample,
and the modern sample. Consistent with Campbell, Giglio and Polk (2012), we

document high correlation between DEF and both PE and V8. The table also
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Figure 2.3: Realized and Expected Variance, 1926-2011
This figure plots quarterly observations of realized within-quarter daily return variance over the sam-
ple period 1926:2-2011:4 and the expected variance implied by the estimated model.
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documents the persistence of both RVAR and EVAR (autocorrelations of 0.524 and
0.740 respectively) and the high correlation between these variance measures and the
default spread.

Perhaps the most notable difference between the two subsamples is that the
correlation between PE and several of our other state variables changes dramatically.
In the early sample, PE is quite negatively correlated with both RVAR and VS. In the
modern sample, PE is essentially uncorrelated with RVAR and quite positively
correlated with VS. As a consequence, since EVAR is just a linear combination of our
state variables, the correlation between PE and EVAR changes sign across the two
samples. In the early sample, this correlation is very negative, with a value of -0.511.
This strong negative correlation reflects the high volatility that occurred during the
Great Depression when prices were relatively low. In the modern sample, the
correlation is positive, 0.140. The positive correlation simply reflects the economic
fact that episodes with high volatility and high stock prices, such as the technology
boom of the late 1990s, were more prevalent in this subperiod than episodes with

high volatility and low stock prices, such as the recession of the early 1980s.

ESTIMATION OF THE VAR AND THE NEWS TERMS

Following Campbell (1993 ), we estimate a first-order VAR as in equation (2.15),

where x;,, isa 6 X 1vector of state variables ordered as follows:

Xl’+1 == [rM,t+1 EVARt+1 PEt+1 TYt+1 DEFt+1 VSt+1]
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so that the real market return rp ., is the first element and EVAR is the second
element. Xis a 6 X 1vector of the means of the variables, and I'is a 6 X 6 matrix of
constant parameters. Finally, o/u,,, isa 6 X 1vector of innovations, with the

conditional variance-covariance matrix of u;,, a constant:

¥ = Var(u;,)

so that the parameter o7 scales the entire variance-covariance matrix of the vector of
innovations.

The first-stage regression forecasting realized market return variance described in
the previous section generates the variable EVAR. The theory in Section 2.2 assumes
that ¢}, proxied for by EVAR, scales the variance-covariance matrix of state variable
shocks. Thus, as in the first stage, we estimate the second-stage VAR using WLS,
where the weight of each observation pair (x;,, X;) is initially based on (EVAR,) .
We continue to constrain both the weights across observations and the fitted values
of the regression forecasting EVAR.

Table 2.1 Panel B presents the results of the VAR estimation for the full sample
(1926:2 to 2011:4). We report bootstrap standard errors for the parameter estimates
of the VAR that take into account the uncertainty generated by forecasting variance in
the first stage. Consistent with previous research, we find that PE negatively predict
future returns, though the t-statistic indicates only marginal significance. The value
spread has a negative but not statistically significant effect on future returns. In our
specification, a higher conditional variance, EVAR, is associated with higher future

returns, though the effect is not statistically significant. Of course, the relatively high

89



degree of correlation among PE, DEF, VS, and EVAR complicates the interpretation
of the individual effect of those variables. As for the other novel aspects of the
transition matrix, both high PE and high DEF predict higher future conditional
variance of returns. High past market returns forecast lower EVAR, higher PE, and
lower DEF.”

Tables 2.2 and 2.3 report the sample correlation and autocorrelation matrices of
both the unscaled residuals o;u,, and the scaled residuals u;,. The correlation
matrices report standard deviations on the diagonals. There are a couple of aspects of
these results to note. For one thing, a comparison of the standard deviations of the
unscaled and scaled residuals provides a rough indication of the effectiveness of our
empirical solution to the heteroskedasticity of the VAR. In general, the standard
deviations of the scaled residuals are several times larger than their unscaled
counterparts. More specifically, our approach implies that the scaled return residuals
should have unit standard deviation. Our implementation results in a sample
standard deviation of 0.562, that is relatively close to one.

Additionally, a comparison of the unscaled and scaled autocorrelation matrices
reported in Table 2.3 reveals that much of the sample autocorrelation in the unscaled
residuals is eliminated by our WLS approach. For example, the unscaled residuals in

the regression forecasting the log real return have an autocorrelation of -0.074. The

’One worry is that many of the elements of the transition matrix are estimated imprecisely.
Though these estimates may be zero, their non-zero but statistically insignificant in-sample point es-
timates, in conjunction with the highly-nonlinear function that generates discount-rate and volatility
news, may result in misleading estimates of risk prices. However, the results are qualitatively similar if
we instead employ a partial VAR where, via a standard iterative process, only variables with t-statistics
greater than 1.0 are included in each VAR regression.
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Table 2.2: VAR Residual Correlations and Standard Deviations

The table reports the correlation ("Corr/std”) matrices of both the unscaled and scaled shocks from
the second-stage VAR; the correlation matrix reports shock standard deviations on the diagonal. The
sample period for the dependent variables is 1926.3-2011.4, 342 quarterly data points.

Corr/std M EVAR  PE TY DEF VS
unscaled

ry 0.106 -0.488 0.907 -0.022 -0.489 -0.036
EVAR -0.488 0.018 -0.575 -0.074 0.645 0.121
PE o0.907 -0.575 0.099 -0.011 -0.601 -0.064
TY -0.022 -0.074 -0.011 0.561 0.006 -0.024
DEF o0.000 -0.489 0.645 -0.601 0.006 0.290
VS -0.036 o0.121 -0.064 -0.024 0.316 0.086
scaled

M 0.568 -0.484 0.904 -0.043 -0.383 0.023
EVAR -0.484 0.090 -0.561 -0.069 0.627 0.088
PE o0.904 -0.561 0.522 -0.033 -0.488 0.004
TY -0.043 -0.069 -0.033 3.247 0.018 -0.033
DEF -0.383 0.627 -0.488 0.018 1.363 0.261
VS o0.023 0.088 0.004 -0.033 0.261 0.496
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Table 2.3: VAR Residual Autocorrelations

The table reports the autocorrelation (“Autocorr.”) matrices of both the unscaled and scaled shocks
from the second-stage VAR; the correlation matrix reports shock standard deviations on the diagonal.
The sample period for the dependent variables is 1926.3-2011.4, 342 quarterly data points.

Autocorr.  ry, EVARy, PE., TY., DEF., VS,

unscaled
Mm¢ -0.074 0.092 -0.067 0.047  0.100  0.045
EVAR; o0.071 -0.153 0.083 -0.126 -0.183 -0.087
PE;, -0.086 0.177 -0.151  0.070 0.221 0.093
TY, -0.046 0.075 -0.029 -0.088 0.081 0.050
DEF; o.152 -0.124 0.186 -0.1§7 -0.311 -0.147
VS: o0.022 -0.034 0.020 -0.076 -0.080 -0.097
scaled

m¢ 0.002 0.045§ -0.004 0.009  0.007 -0.006
EVAR; o0.060 -0.102 0.073 -0.082 -0.120 -0.060
PE;, -o0.012 0.125 -0.077 0.027 0.109 0.027

TY, -0.036 0.067 -0.028 -0.058  0.073 0.039
DEF; 0.094 -0.083 0.123 -0.111 -0.218 -0.107
VS; o0.018 -0.031 0.009 -0.044 -0.066 -0.083
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Table 2.4: VAR Specification Test

The table reports the results of regressions forecasting the squared second-stage residuals from the
VAR estimated in Table 2.1 with EVAR;. Bootstrap standard errors that take into account the un-
certainty in generating EVAR are in parentheses. The sample period for the dependent variables is
1926.3-2011.4, 342 quarterly data points.

Heteroskedastic Shocks

Squared, second-stage,
unscaled residual Constant EVAR, R*%

M, t+1 -0.003 0.478 19.78%
(0.004) (0.076)

EVAR;, 0.000 0.018 5.86%
(0.000)  (0.006)

PE, ., -0.004 0.484 19.61%
(0.004) (0.076)

TY 1, 0.205§ 3.770 1.67%
(0.084) (1.837)

DEF,,, -0.117 6.960  26.12%
(0.044) (0.922)

VSt 0.004 0.118 5.47%

(0.002) (0.034)

corresponding autocorrelation of the scaled return residuals is essentially zero, 0.002.
Though the scaled residuals in the EVAR, PE and DEF regression still display some
negative autocorrelation, the unscaled residuals are much more negatively
autocorrelated.

Table 2.4 reports the coefficients of a regression of the squared unscaled residuals
o¢u, of each VAR equation on a constant and EVAR. These results are consistent
with our assumption that EVAR captures the conditional volatility of market returns

(the coefficient on EVAR in the regression forecasting the squared residuals of ryy is
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0.478). The fact that EVAR significantly predicts with a positive sign all the squared
errors of the VAR supports our underlying assumption that one parameter (o?)
drives the volatility of all innovations.

The top panel of Table 2.5 presents the variance-covariance matrix and the
standard deviation/correlation matrix of the news terms, estimated as described
above. Consistent with previous research, we find that discount-rate news is twice as
volatile as cash-flow news.

The interesting new results in this table concern the variance news term Ny. First,
news about future variance is more volatile than discount-rate news. Second, it is
negatively correlated (-0.22) with cash-flow news: as one might expect from the
literature on the “leverage effect” (Black 1976, Christie 1982), news about low cash
flows is associated with news about higher future volatility. Third, Ny correlates
negatively (-0.09) with discount-rate news, indicating that news of high volatility
tends to coincide with news of low future real returns.® The net effect of these
correlations, documented in the lower left panel of Table 2.5, is a slightly negative
correlation of -.02 between our measure of volatility news and contemporaneous
market returns (for related research see French, Schwert, and Stambaugh 1987).

The lower right panel of Table 2.5 reports the decomposition of the vector of
innovations o} u,, into the three terms N¢g ¢4, Npg ¢+1, and Ny ;,. As shocks to
EVAR are just a linear combination of shocks to the underlying state variables, which

includes RVAR, we “unpack” EVAR to express the news terms as a function of ry, PE,

8Though the point estimate is negative, the large standard errors imply that we cannot reject the
“volatility feedback effect” (Campbell and Hentschel 1992, Calvet and Fisher 2007).
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Figure 2.4: Normalized News Series
This figure plots normalized cash-flow news, the negative of normalized discount-rate news, and nor-
malized variance news. The series are smoothed with a trailing exponentially-weighted moving aver-
age where the decay parameter is set to 0.08 per quarter, and the smoothed news series is generated
as MA;(N) = 0.08N; + (1 — 0.08)MA;_,(N). This decay parameter implies a half-life of six years.
The sample period is 1926:2-2011:4.

TY, VS, DEF, and RVAR. The panel shows that innovations to RVAR are mapped
more than one-to-one to news about future volatility. However, several of the other
state variables also drive news about volatility. Specifically, we find that innovations in
PE, DEF, and VS are associated with news of higher future volatility.

Figure 2.4 plots the smoothed series for Ncg, —Npg and Ny using an
exponentially-weighted moving average with a quarterly decay parameter of 0.08.

This decay parameter implies a half-life of six years. The pattern of Ncr and —Npg we
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find is consistent with previous research. As a consequence, we focus on the
smoothed series for market variance news. There is considerable time varijation in
Ny, and in particular we find episodes of news of high future volatility during the
Great Depression and just before the beginning of World War II, followed by a period
of little news until the late 1960s. From then on, periods of positive volatility news
alternate with periods of negative volatility news in cycles of 3 to 5 years. Spikes in
news about future volatility are found in the early 1970s (following the oil shocks), in
the late 1970s and again following the 1987 crash of the stock market. The late 1990s
are characterized by strongly negative news about future returns, and at the same
time higher expected future volatility. The recession of the late 2000s is instead
characterized by strongly negative cash-flow news, together with a spike in volatility
of the highest magnitude in our sample. The recovery from the financial crisis has

brought positive cash-flow news together with news about lower future volatility.

PREDICTING LONG-RUN VOLATILITY

The predictability of volatility, and especially of its long-run component, is central to
this paper. In the previous sections, we have shown that volatility is strongly
predictable, and it is predictable in particular by variables beyond lagged realizations
of volatility itself: PE and DEF contain essential information about future volatility.
We have also proposed a VAR-based methodology to construct long-horizon
forecasts of volatility that incorporate all the information in lagged volatility as well as
in the additional predictors like PE and DEF.

We now ask how well our proposed long-run volatility forecasts capture the
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long-horizon component of volatility. In Table 2.6 we regress realized long-run

variance up to period h,

= P 'RVAR,y;

j=1

z"j=1pj_1

LHRVAR,;, =

I

on different forecasting models of long-run variance.’ In particular, we estimate two
standard GARCH-type models, specifically designed to capture the long-run
component of volatility. The first one is the two-component EGARCH model
proposed by Adrian and Rosenberg (2008). This model assumes the existence of two
separate components of volatility, one of which is more persistent than the other, and
therefore will tend to capture the long-run dynamics of the volatility process. The
other model we estimate is the FIGARCH model of Baillie, Bollerslev, and Mikkelsen
(1996), in which the process for volatility is modeled as a fractionally-integrated
process, and whose slow, hyperbolic rate of decay of lagged, squared innovations
potentially captures long-run movements in volatility better. We first estimate both
GARCH models using the full sample of daily returns and then generate the
appropriate forecast of LHRVAR,,."° To these two models, we add the set of variables
from our VAR, and compare the forecasting ability of these different models.

Table 2.6 Panel A reports, for different horizons h ranging from 1 year to 15 years,
the results of forecasting regressions of long run volatility LHRVAR,;, using different

specifications. The first row of each sub-panel presents results using the state variables

Note that we rescale by the sum of the weights p/ to maintain the scale of the coefficients in the
predictive regressions across different horizons.
1%We start our forecasting exercise in January 1930 so that we have a long enough history of past
returns to feed the FIGARCH model.
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in our VAR, each included separately. The second row predicts LHRVAR), with the
horizon-specific forecast implied by our VAR (VARy,). The third and fourth rows
forecast LHRVAR), with the corresponding forecast from the EGARCH model
(EG},) and the FIGARCH model (FIG),) respectively. The fifth and sixth rows join
the VAR variables with the two GARCH-based forecasts, one at a time. The seventh
and eighth row conducts a horse race between VAR;, and FIGj, and between VAR,
and DEF.

First note that both the EGARCH and FIGARCH forecasts by themselves capture
a significant portion of the variation in long-run realized volatility: both have
significant coeflicients, and both have nontrivial R*s, even at very long horizons. Our
VAR variables provide as good or better explanatory power, and RVAR, PE and DEF
appear strongly statistically significant at all horizons (with the exception of RVAR at
h = 20, i.e. 5 years). Finally, the VAR-implied forecast, VARy, is not only significantly
different from o, but it is also not significantly different from 1. This indicates that our
VAR is able to produce forecasts of volatility that not only go in the right direction,
but are also of the right magnitude, even at very long horizons.

Very interesting results appear once we join our variables to the two GARCH
models. Even after controlling for the GARCH-based forecasts (which render RVAR
insignificant), PE and DEF always come in significantly in predicting long-horizon
volatility. Moreover, and especially at long horizons, the addition of the VAR state
variables strongly increases the R*. We further show that when using the
VAR-implied forecast together with the FIGARCH forecast, the coefficient on VAR,

is still very close to one and always statistically significant while the FIGARCH

99



TL'99 [£61°0] [900°0]
%98°87T LSg0 Soo'o
90°Sg [941°0] [961°0]
%91+¢ LoS o €10
8T'ST [StTo] [goo0] [Loo0] [roo'0] [goo0'0] [T60'0] [610°0] [9700]
(72844 6L9°0 €00°'0 07T0'0 700'0- ¥zoo g8¢o0°0- S$zo'o- T80'0-
99°€¢€ [oT70] [Loo'0] [900°0] [ro00] [900°0] [980°0] [810°0] [zo0]
%LE 1Y 976°0 Y000 910°0 700°0- 810°0 z¢€1°0- 970°0- 1L0°0-
90°601  [S81°0] [too0]
%10°ST 866°0 100°0-
6L°0L1 [TLr0] [too0]
%8¢ Y€ ¥So'1 L0O'0-
Sg'gbv1 [8170] [Soo0]
%EETE g866°0 700°0-
€5°St [Looo] [goo0] [roo'0] [gooo] [¥600] [170°0] [£zo0]
(3453 L00'0 S§zo'o 700°0- 9700 117°0 LTO0- 6g0'0-
(peayesieal 1) ¥ =y
d/%d ) Dq A2 SA 49d AL Hd VAL W juejsuon
H”VN a”&

A?L:Q < \«iﬁ\\»%?\é& ) ury uoz11oH ay3 SuIkIeA 1Y [PUR
] ]

v 110T-1°0€61 ST 9[qerieA u:o@cumuw Elig!
10§ porrad o[dures oy, 's3axydeIq axenbs ur are suonearasqo Jurddezoso jo oquinu oy 351M3 03 Surpuodsariod sSe[ YILM PIJEUIIISS SIOLID pIepue)s

IJUBLIEA PIZI[eay] GONMHOHlmlmaO\H maﬁmaumhom $9°TIIqEL

=y

1S3M-L9MIN] "peaISUl pasn ST 3sed310§ uozLIoy-3uol 4 10 Yy A Surpuodsariods oy a1aym ‘s3seda10§ 1o 10 1Yy A Surajoaur suorssaidar asoyyy ur

=y

1do0x3 35829105 UOZLI0Y-8uO] D[ Surpuodsariod a3 03 [euoniodord Apsroaur are s3ySrom STM [ERIUL *((1_y)d T /ITIVAY (1_y)d ) s103renb +
0 ]

JX3U 3} JOA0 YA Y 2ININJ JO WNS PAJUNODISIP PIZI[enuue 3y) SUrISed9I0J SUOISSIIIoT PIUTEIISUOD JO sajeturysd 1ajourered g a3 syrodoaa a[qey ayT,

100



coefficient moves closer to zero (though estimates of the coefficient on FIG}, remain
statistically significant at some horizons).

We develop an additional test of our VAR-based model of stochastic volatility from
the idea that the variables that form the VAR — in particular the strongest of them,
DEF - should predict volatility at long horizons only through the VAR, not in addition
to it. In other words, the VAR forecasts should ideally represent the best way to
combine the information contained in the state variables concerning long-run
volatility. If true, after controlling for the VAR-implied forecast, DEF or other
variables that enter the VAR should not significantly predict future long-run volatility.
We test this hypothesis by running a regression using both the VAR-implied forecast
and DEF as right-hand side variables. We find that at all horizons the coefficient on
VAR, is still not significantly different from 1, while the coefficient on DEF is small
and statistically indistinguishable from o.

Finally, in Panel B of Table 2.6 we examine more carefully the link between DEF
and LHRVAR focusing on the 10-year horizon. The Table reports the results from
regressions forecasting LHRVAR,, with PE, DEF, PEO (PE orthogonalized to DEF),
and DEFO (DEF orthogonalized to PE). The Table shows that by itself, PE has no
information about low-frequency variation in volatility. In contrast, DEF forecasts
nearly 22% of the variation in LHRVAR,,. And once DEF is orthogonalized to PE,
the R* increases to §1%. Adding PEO has little effect on the R*. We argue that this is
clear evidence of the strong predictive power of the orthogonalized component of the
default spread.

Recall our simple interpretation of these results. DEF contains information about
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future volatility as risky bonds are short the option to default. However, DEF also
contains information about future aggregate risk premia. We know from previous
work that most of the variation in PE is about aggregate risk premia. Therefore,
including PE in the volatility forecasting regression cleans up variation in DEF due to
aggregate risk premia and thus sharpens the link between DEF and future volatility.
Since PE and DEF are negatively correlated (default spreads are relatively low when
the market trades rich), both PE and DEF receive positive coeflicients in the multiple
regression.

In Figure 2.5, we provide a visual representation of the volatility-forecasting power
of our key VAR state variables and our interpretation of the results. The top panel
plots LHRVAR,, together with lagged DEF and PE. The graph confirms the strong
negative correlation between PE and DEF (correlation of -0.6) and highlights how
both variables track long-run movements in long run volatility. To isolate the
contribution of the default spread in predicting long run volatility, the bottom panel
plots LHRVAR,, together with DEFO. In general, the improvement in fit moving
from the top panel to the bottom panel is clear.

More specifically, the contrasting behavior of DEF and DEFO in the two panels
during episodes such as the tech boom help illustrate the workings of our story.
Taken in isolation, the relatively stable default spread throughout most of the late
1990s would predict little change in expectations of future market volatility.
However, once the declining equity premium over that period is taken into account
(as shown by the rapid increase in PE), one recognizes that a PE-adjusted spread in

the late 1990s actually forecasted much higher volatility ahead.
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Figure 2.5: Key Components of Long-Horizon Volatility

We measure long-horizon realized variance (LHRVAR) as the annualized discounted sum of within-

h j—
sl 'RVAR,

quarter daily return variance, LHRVAR;, = . . Each panel of this figure plots quar-

terly observations of ten-year realized variance, LHRVAR,,,, over the sample period 1930:1-2001:1.
In Panel A, in addition to LHRVAR,,, we also plot lagged PE and DEF. In Panel B, in addition to
LHRVAR,,, we also plot the fitted value from a regression forecasting LHRVAR,, with DEFO, de-
fined as DEF orthogonalized to demeaned PE.
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Taken together, the results in Table 2.1 Panel A and Table 2.6 make a strong case
that credit spreads and valuation ratios contain information about future volatility
not captured by simple univariate models, even those like the FIGARCH model or
the two-component EGARCH model that are designed to fit long-run movements in
volatility, and that our VAR method for calculating long-horizon forecasts preserves

this information.

2.3 PricING CASH-FLOW, D1SCOUNT-RATE, AND VOLATILITY BETAS

TEST ASSETS

In addition to the six VAR state variables, our analysis also requires returns on a
cross-section of test assets. We construct three sets of portfolios to use as test assets.
Our primary cross-section consists of the excess returns on the 25 ME- and
BE/ME-sorted portfolios, studied in Fama and French (1993 ), extended in Davis,
Fama, and French (2000), and made available by Professor Kenneth French on his
web site.!!

Daniel and Titman (1997, 2012) and Lewellen, Nagel, and Shanken (2010) point
out that it can be misleading to test asset pricing models using only portfolios sorted
by characteristics known to be related to average returns, such as size and value. In
particular, characteristics-sorted portfolios are likely to show some spread in betas
identified as risk by almost any asset pricing model, at least in sample. When the

model is estimated, a high premium per unit of beta will fit the large variation in

http://mba.tuck.dartmouth.edu/ pages/faculty/ken.french/
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average returns. Thus, at least when premia are not constrained by theory, an asset
pricing model may spuriously explain the average returns to characteristics-sorted
portfolios.

To alleviate this concern, we follow the advice of Daniel and Titman (1997, 2012)
and Lewellen, Nagel, and Shanken (2010) and construct a second set of six portfolios
double-sorted on past risk loadings to market and variance risk. First, we run a
loading-estimation regression for each stock in the CRSP database where r; ; is the log

stock return on stock i for month ¢.

3 3

3
Z Titrj = bo + bpy "metj + bavar Z AVARyj + €ip4y

j=1 j=1 j=1

We calculate AVAR as a weighted sum of changes in the VAR state variables. The
weight on each change is the corresponding value in the linear combination of VAR
shocks that defines news about market variance. We choose to work with changes
rather than shocks as this allows us to generate pre-formation loading estimates at a
frequency that is different from our VAR. Namely, though we estimate our VAR using
calendar-quarter-end data, our approach allows a stock’s loading estimates to be
updated at each interim month.

The regression is reestimated from a rolling 36-month window of overlapping
observations for each stock at the end of each month. Since these regressions are
estimated from stock-level instead of portfolio-level data, we use quarterly data to
minimize the impact of infrequent trading. With loading estimates in hand, each

month we perform a two-dimensional sequential sort on market beta and AVAR
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beta. First, we form three groups by sorting stocks on Z,M. Then, we further sort
stocks in each group to three portfolios on /b\AVAR and record returns on these nine
value-weight portfolios. The final set of risk-sorted portfolios are the two sets of three
/b\,M portfolios within the extreme ZAVAR groups. To ensure that the average returns on
these portfolio strategies are not influenced by various market-microstructure issues
plaguing the smallest stocks, we exclude the five percent of stocks with the lowest ME
from each cross-section and lag the estimated risk loadings by a month in our sorts.

In the empirical analysis, we consider two main subsamples: early
(1931:3-1963:3) and modern (1963:4-2011:4) due to the findings in Campbell and
Vuolteenaho (2004) of dramatic differences in the risks of these portfolios between
the early and modern period. The first subsample is shorter than that in Campbell
and Vuolteenaho (2004) as we require each of the 25 portfolios to have at least one
stock as of the time of formation in June.

Finally, we generate a parsimonious cross-section of option, bond, and equity
returns for the 1986:1-2011:4 time period based on the findings in Fama and French
(1993) and Coval and Shumway (2001). In particular, we use the S&P 100 index
straddle returns studied by Coval and Shumway.'? We also include proxies for the
two components of the risky bond factor of Fama and French (1993) which we
measure using the return on the Barclays Capital High Yield Bond Index (HYRET)
and the return on Barclays Capital Investment Grade Bond Index (IGRET). When

pricing the straddle and risky bond return series, we include the returns on the

128pecifically, the series we study includes only those straddle positions where the difference be-
tween the options’ strike price and the underlying price is between o and 5. We thank Josh Coval and
Tyler Shumway for providing their updated data series to us.
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market (RMRF), size (SMB), and value (HML) equity factors of Fama and French
(1993) as they argue these factors do a good job describing the cross-section of

average equity returns.

BETA MEASUREMENT

We now examine the validity of an unconditional version of the first-order condition
in equation (2.18). We modify equation (2.18) in three ways. First, we use simple
expected returns on the left-hand side to make our results easier to compare with
previous empirical studies. Second, we condition down equation (2.18) to avoid
having to estimate all required conditional moments. Finally, we cosmetically
multiply and divide all three covariances by the sample variance of the unexpected
log real return on the market portfolio. By doing so, we can express our pricing
equation in terms of betas, facilitating comparison to previous research. These

modifications result in the following asset-pricing equation

2 2 1 2
E[R; — Rf] = YO'M:BI',CFM + GMﬁi,DRM - ;“’UMﬁi,VM’ (2.26)
where

Cov(r; ¢, Ncry)

ﬁi’CFM - Va”(’”M,t - Et—ﬂ'M,t) ’
ﬁ _ C0v<ri,t7 _NDR,t)
DR Var(rM,t — Et_lrMJ)’
C i e, N
andf, = ov(rit, Nvz)

Var(rM,t — Et,lrMyt) ’
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We price the average excess returns on our test assets using the unconditional
first-order condition in equation (2.26) and the quadratic relationship between the
parameters w and y given by (2.24). As a first step, we estimate cash-flow,
discount-rate, and variance betas using the fitted values of the market’s cash flow,
discount-rate, and variance news estimated in the previous section. Specifically, we
estimate simple WLS regressions of each portfolio’s log returns on each news term,
weighting each time-t + 1 observation pair by the weights used to estimate the VAR
in Table 2.1 Panel B. We then scale the regression loadings by the ratio of the sample
variance of the news term in question to the sample variance of the unexpected log
real return on the market portfolio to generate estimates for our three-beta model.

Characteristic-sorted test assets

Table 2.7 shows the estimated betas for the 25 size- and book-to-market portfolios
over the 1931-1963 period. The portfolios are organized in a square matrix with
growth stocks at the left, value stocks at the right, small stocks at the top, and large
stocks at the bottom. At the right edge of the matrix we report the differences
between the extreme growth and extreme value portfolios in each size group; along
the bottom of the matrix we report the differences between the extreme small and
extreme large portfolios in each BE/ME category. The top matrix displays
post-formation cash-flow betas, the middle matrix displays post-formation
discount-rate betas, while the bottom matrix displays post-formation variance betas.
In square brackets after each beta estimate we report a standard error, calculated
conditional on the realizations of the news series from the aggregate VAR model.

In the pre-1963 sample period, value stocks have both higher cash-flow and higher
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discount-rate betas than growth stocks. An equal-weighted average of the extreme
value stocks across size quintiles has a cash-flow beta o.12 higher than an
equal-weighted average of the extreme growth stocks. The difference in estimated
discount-rate betas, 0.20, is in the same direction. Similar to value stocks, small stocks
have higher cash-flow betas and discount-rate betas than large stocks in this sample
(by 0.14 and 0.3 4, respectively, for an equal-weighted average of the smallest stocks
across value quintiles relative to an equal-weighted average of the largest stocks).
These differences are extremely similar to those in Campbell and Vuolteenaho
(2004), despite the exclusion of the 1929-193 1 subperiod, the replacement of the
excess log market return with the log real return, and the use of a richer,
heteroskedastic VAR.

The new finding in Table 2.7 Panel A is that value stocks and small stocks are also
riskier in terms of volatility betas. An equal-weighted average of the extreme value
stocks across size quintiles has a volatility beta 0.21 lower than an equal-weighted
average of the extreme growth stocks. Similarly, an equal-weighted average of the
smallest stocks across value quintiles has a volatility beta that is 0.18 lower than an
equal-weighted average of the largest stocks. In summary, value and small stocks were
unambiguously riskier than growth and large stocks over the 1931-1963 period.

Table 2.8 reports the corresponding estimates for the post-1963 period. As
documented in this subsample by Campbell and Vuolteenaho (2004), value stocks
still have slightly higher cash-flow betas than growth stocks, but much lower
discount-rate betas. Our new finding here is that value stocks continue to have much

lower volatility betas, and the spread in volatility betas is even greater than in the early
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period. The volatility beta for the equal-weighted average of the extreme value stocks
across size quintiles is 0.52 lower than the volatility beta of an equal-weighted average
of the extreme growth stocks, a difference that is more than 42% higher than the
corresponding difference in the early period.

One interesting aspect of these findings is the fact that the average ,, of the 25
size- and book-to-market portfolios changes sign from the early to the modern
subperiod. Over the 1931-1963 period, the average 8, is -0.25 while over the
1964-2011 period this average becomes 0.36. Of course, given the strong positive link
between PE and volatility news documented in the lower right panel of Table 2.5, one
should not be surprised that the market’s 8, can be positive. Moreover, given the
change in sign over time in PE’s correlation with some of the key state variables
driving EVAR documented in the Online Appendix, one should not be surprised that
B, changes sign as well.

These results imply that in the post-1963 period where the CAPM has difficulty
explaining the low returns on growth stocks relative to value stocks, growth stocks are
relative hedges for two key aspects of the investment opportunity set. Consistent
with Campbell and Vuolteenaho (2004), growth stocks hedge news about future real
stock returns. The novel finding of this paper is that growth stocks also hedge news
about the variance of the market return.

Risk-sorted test assets

Table 2.9 shows the estimated betas for the six risk-sorted portfolios over the
1931-1963 period. The portfolios are organized in a rectangular matrix with low

CAPM beta stocks at the left, high CAPM beta stocks at the right, low volatility beta



Table 2.9: Betas for Six Risk-Sorted Portfolios in the Early Sample

Bcr Lob,, 2 Hib,, Diff

Lobyar ©0.22 [0.07] 033 [0.09] o043 [o0.11] o0.21 [o.05]
Hibysg 0.8 [0.06] 0.26 [0.08] 0.36 [o0.10] o0.17 [0.05]
Diff -0.04 [0.02] -0.07 [0.03] -0.08 [0.02]

Bor Lob,, 2 Hib,, Diff

Lobyar 0.61 [ [0.14] 0.48 [o0.09]

Hibyar 0.55 [0.06] 0.76 [0.09] o0.95 [0.11] o0.40 [o0.07]
[ (

0.07] 0.87 [o.11] 1.09

Diff -0.07 [0.04] -0.12 [0.06] -0.14 [o0.05]
By Lob,, 2 Hib,, Diff

Lo bysg -0.08 0.09] -0.20 [0.13] -0.30 o.16] -0.22 [0.09]

[ [
Hibyag -0.06 [0.09] -0.09 [o.10] -0.17 [o0.13] -0.11 [0.07]
Diff 0.02 | [0.06]

0.05§] o.11 [o0.07] o0.13
stocks at the top, and high volatility beta stocks at the bottom. At the right edge of the
matrix we report the differences between the high CAPM beta and the low CAPM
beta portfolios in each volatility beta group; along the bottom of the matrix we report
the differences between the high volatility beta and the low volatility beta portfolios
in each CAPM beta category. As in Panel A, the top matrix displays post-formation
cash-flow betas, the middle matrix displays post-formation discount-rate betas, while
the bottom matrix displays post-formation volatility betas.

In the pre-1963 sample period, high CAPM beta stocks have both higher cash-flow
and higher discount-rate betas than low CAPM beta stocks. An equal-weighted
average of the high CAPM beta stocks across the two volatility beta categories has a
cash-flow beta o.19 higher than an equal-weighted average of the low CAPM beta

stocks. The difference in estimated discount-rate betas is 0.44 and in the same
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direction. Similar to high CAPM beta stocks, low volatility beta stocks have higher
cash-flow betas and discount-rate betas than high volatility beta stocks in this
subsample (by 0.06 and .11, respectively, for an equal-weighted average of the low
volatility beta stocks across the three CAPM beta categories relative to a
corresponding equal-weighted average of the high volatility beta stocks).

High CAPM beta stocks and low volatility beta stocks are also riskier in terms of
volatility betas. An equal-weighted average of the high CAPM beta stocks across
volatility beta categories has a post-formation volatility beta 0.16 lower than an
equal-weighted average of the low CAPM beta stocks. Similarly, an equal-weighted
average of the low volatility beta stocks across CAPM beta categories has a
post-formation volatility beta that is 0.09 lower than an equal-weighted average of the
high volatility beta stocks. In summary, high CAPM beta and low volatility beta
stocks were unambiguously riskier than low CAPM beta and high volatility beta
stocks over the 1931-1963 period.

Table 2.10 shows the estimated betas for the six risk-sorted portfolios over the
post-1963 period. In the modern period, high CAPM beta stocks again have higher
cash-flow and higher discount-rate betas than low CAPM beta stocks. An
equal-weighted average of the high CAPM beta stocks across the two volatility beta
categories has a cash-flow beta 0.08 higher than an equal-weighted average of the low
CAPM beta stocks. The difference in estimated discount-rate betas is 0.55 and in the
same direction. However, high CAPM beta stocks are no longer riskier in terms of
volatility betas. Now, an equal-weighted average of the high CAPM beta stocks across

the two volatility beta categories has a post-formation variance beta 0.28 higher than
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Table 2.10: Betas for Six Risk-Sorted Portfolios in the Modern Sample

Lobysgr o©0.16 [0.03] 0.17 [0.03] 0.25§ [0.05] 0.08 [0.04]
HiZVAR 0.15 [0.03] o0.17 [o.04] o0.23 [o0.05] 0.08 [0.04]
Diff -0.01 [0.02] o0.00 [0.02] -0.01 [o0.02]

Bor Lo b,,, 2 Hib,, Diff
Lobyar ©0.55 [0.05] o071 [o0.05] 1.11 [0.09] o0.56 [0.08]
Hi@VAR 0.73 [0.06] 0.95 [0.06] 1.27 [0.09] 0.54 [0.1 1]
Diff 0.18 [o0.07] o0.24 [o0.07] 0.16 [0.06]

By Lob,, 2 Hib,, Dift
Lobysr o0.22 [0.19] 0.31 [0.22] o050 [0.29] o0.27 [0.13]
Hibyar 0.44 [0.16] 0.64 [0.18] o0.72 [o0.27] 0.28 [o.15]
Diff 021 [0.07] 0.33 [0.09] o0.22 [0.06]

a corresponding equal-weighted average of the low CAPM beta stocks. Since, in the
three-beta model, covariation with aggregate volatility has a negative premium, the
three-beta model can potentially explain why stocks with high past CAPM betas have
offered relatively little extra return, at least in the modern period.

In the post-1963 period, sorts on volatility beta continue to generate economically
and statistically significant spread in post-formation volatility beta. An
equal-weighted average of low volatility beta stocks across the three CAPM beta
categories has a post-formation volatility beta that is 0.26 lower than the
post-formation volatility beta of a corresponding equal-weighted average of high
volatility beta stocks. Sorts on volatility beta also generate spread in discount-rate
beta, but essentially no spread in cash-flow betas in the post-1963 period.

Non-equity test assets
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Finally, Table 2.11 reports the three ICAPM betas of the S&P 100 index straddle
position analyzed in Coval and Shumway (2001) along with the corresponding
ICAPM betas of the three equity factors and the default bond factor of Fama and
French (1993) over the period 1986:1 - 2011:4. Consistent with the nature of a
straddle bet, we find that the straddle has a very large volatility beta of 1.51 along with
a large negative discount-rate beta of -1.71 and a large (relatively speaking) negative
cash-flow beta of -0.39. As one would expect, the betas of the Fama-French equity
factors are consistent with the findings for the size- and book-to-market-sorted
portfolios in Table 2.8 Panel B. Finally, the riskier component of Fama and French’s
(1993) risky bond factor, HYRET, has a cash-flow beta of 0.06, a discount-rate beta of
0.26, and a volatility beta of -0.20. These betas are economically and statistically
significant from those of the safer component, IGRET. The difference in volatility
beta between HYRET and IGRET is consistent with the fact that risky corporate debt

is short the option to default.

BETA PRICING

We next turn to pricing the cross-section with these three ICAPM betas. We evaluate
the performance of five asset-pricing models: 1) the traditional CAPM that restricts
cash-flow and discount-rate betas to have the same price of risk and sets the price of
variance risk equal to zero; 2) the two-beta intertemporal asset pricing model of
Campbell and Vuolteenaho (2004) that restricts the price of discount-rate risk to
equal the variance of the market return, 3) our three-beta intertemporal asset pricing

model that restricts the price of discount-rate risk to equal the variance of the market
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return and constrains the price of cash-flow and variance risk to be related by
equation (2.24), with p = 0.95 per year; 4) a partially-constrained three-beta model
that restricts the price of discount-rate risk to equal the variance of the market return
but freely estimates the other two risk prices (effectively decoupling y and w), and s)
an unrestricted three-beta model that allows free risk prices for cash-flow,
discount-rate, and volatility betas. Each model is estimated in two different forms:
one with a restricted zero-beta rate equal to the Treasury-bill rate, and one with an
unrestricted zero-beta rate following Black (1972).

Characteristic-sorted test assets

Table 2.12 reports results for the early sample period 1931-1963, using 25 size- and
book-to-market-sorted portfolios as test assets. The table has ten columns, two
specifications for each of our five asset pricing models. The first 16 rows of Table 2.12
are divided into four sets of four rows. The first set of four rows corresponds to the
zero-beta rate (in excess of the Treasury-bill rate), the second set to the premium on
cash-flow beta, the third set to the premium on discount-rate beta, and the fourth set
to the premium on volatility beta. Within each set, the first row reports the point
estimate in fractions per quarter, and the second row annualizes this estimate,
multiplying by 400 to aid in interpretation. These parameters are estimated from a

cross-sectional regression

R =g+ 8Bicry T &Pipry T &Pivy T s (2.27)

where a bar denotes time-series mean and R; = R; — R,y denotes the sample average

simple excess return on asset i. The third and fourth rows present two alternative
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standard errors of the monthly estimate, described below.

Below the premia estimates, we report the R* statistic for a cross-sectional
regression of average returns on our test assets onto the fitted values from the model.
We also report a composite pricing error, computed as a quadratic form of the pricing
errors. The weighting matrix in the quadratic form is a diagonal matrix with the
inverse of the sample test asset return volatilities on the main diagonal.

Standard errors are produced with a bootstrap from 10,000 simulated realizations.
Our bootstrap experiment samples test-asset returns and first-stage VAR errors, and
uses the first-stage and second-stage WLS VAR estimates in Table 2.1 to generate the
state-variable data.'® We partition the VAR errors and test-asset returns into two
groups, one for 1931 to 1963 and another for 1963 to 2011, which enables us to use
the same simulated realizations in subperiod analyses. The first set of standard errors
(labeled A) conditions on estimated news terms and generates betas and return
premia separately for each simulated realization, while the second set (labeled B) also
estimates the first-stage and second-stage VAR and the news terms separately for each
simulated realization. Standard errors B thus incorporate the considerable additional
sampling uncertainty due to the fact that the news terms as well as betas are generated
regressors.

Two alternative 5-percent critical values for the composite pricing error are
produced with a bootstrap method similar to the one we have described above,
except that the test-asset returns are adjusted to be consistent with the pricing model

before the random samples are generated. Critical values A condition on estimated

3When simulating the bootstrap, we drop realizations which would result in negative RVAR and
redraw.

119



news terms, while critical values B take account of the fact that news terms must be
estimated.

Finally, Table 2.12 reports the implied risk-aversion coefficient, y, which can be
recovered as g, /g,, as well as the sensitivity of news about risk to news about market
variance, @, which can be recovered as —2 * g, /g,. The three-beta ICAPM estimates
are constrained so that both y and the implied w are strictly positive.

Table 2.12 shows that in the 1931-1963 period, the restricted three-beta model
explains the cross-section of stock returns reasonably well. The cross-sectional R*
statistics are almost §6% for both forms of this model. Both the Sharpe-Lintner and
Black versions of the CAPM do a slightly poorer job describing the cross-section
(both R* statistics are roughly 52%). The two-beta ICAPM of Campbell and
Vuolteenaho (2004) performs slightly better than the CAPM and slightly worse than
the volatility ICAPM. None of the theoretically-motivated models considered are
rejected by the data based on the composite pricing test. Consistent with the claim
that the three-beta model does a good job describing the cross-section, Table 2.12
shows that the constrained and the unrestricted factor model barely improve pricing
relative to the three-beta ICAPM.

Figure 2.6 provides a visual summary of these results. The figure plots the
predicted average excess return on the horizontal axis and the actual sample average
excess return on the vertical axis. In summary, we find that the three-beta ICAPM
improves pricing relative to both the Sharpe-Lintner and Black versions of the

CAPM.
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Figure 2.6: Pricing 2.5 Size and Value Portfolios, Early Period
The four diagrams correspond to (clockwise from the top left) the CAPM with a constrained zero-
beta rate, the CAPM with an unconstrained zero-beta rate, the three-factor ICAPM with a free zero-
beta rate, and the three-factor ICAPM with the zero-beta rate constrained to the risk-freee rate. The
horizontal axes correspond to the predicted average excess returns and the vertical axes to the sample
average realized excess returns for the 25 ME- and BE/ME-sorted portfolios. The predicted values
are from regressions presented in Table 2.12 for the sample period 1931:3-1963:2.
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This success is due in part to the inclusion of volatility betas in the specification.
For the Black version of the three-beta ICAPM, the spread in volatility betas across
the 25 size- and book-to-market-sorted portfolios generates an annualized spread in
average returns of 1.46% compared to a comparable spread of 7.41% and 3.18% for
cash-flow and discount-rate betas. Variation in volatility betas accounts for 2% of the
variation in explained returns compared to 39% and 7% for cash-flow and
discount-rate betas respectively. The remaining §2% of the explained variation in
average returns is due of course to the covariation among the three types of betas.

Results are very different in the 1963-2011 period. Table 2.13 shows that in this
period, both versions of the CAPM do a very poor job of explaining cross-sectional
variation in average returns on portfolios sorted by size and book-to-market. When
the zero-beta rate is left as a free parameter, the cross-sectional regression picks a
negative premium for the CAPM beta and implies an R* of roughly 5%. When the
zero-beta rate is constrained to the risk-free rate, the CAPM R? falls to roughly -37%.
Both versions of the static CAPM are easily rejected at the five-percent level by both
sets of critical values.

In the modern period, the unconstrained zero-beta rate version of the two-beta
Campbell and Vuolteenaho (2004) model does a better job describing the
cross-section of average returns than the CAPM. However, the implied coefhicient of
risk aversion, 20.70, is arguably extreme.

The three-beta model with the restricted zero-beta rate also does a poor job
explaining cross-sectional variation in average returns across our test assets. However,

if we continue to restrict the risk price for discount-rate and variance news but allow
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Figure 2.7: Pricing 25 Size and Value Portfolios, Modern Period
The four diagrams correspond to (clockwise from the top left) the CAPM with a constrained zero-
beta rate, the CAPM with an unconstrained zero-beta rate, the three-factor ICAPM with a free zero-
beta rate, and the three-factor ICAPM with the zero-beta rate constrained to the risk-freee rate. The
horizontal axes correspond to the predicted average excess returns and the vertical axes to the sample
average realized excess returns for the 25 ME- and BE/ME-sorted portfolios. The predicted values
are from regressions presented in Table 2.13 for the sample period 1963:3-2011:4.

an unrestricted zero-beta rate, the explained variation increases to roughly 69%,
three-quarters larger than the R* of the corresponding two-beta ICAPM. The
estimated risk price for cash-flow beta is an economically reasonable 30 percent per
year with an implied coeflicient of relative risk aversion of 9.63. Both versions of our
intertemporal CAPM with stochastic volatility are not rejected at the s-percent level
by either set of critical values.

Figure 2.7 provides a visual summary of these results. For the Black version of the
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three-beta ICAPM, spread in volatility betas across the 25 size- and
book-to-market-sorted portfolios generates an annualized spread in average returns
of 6.52% compared to a comparable spread of 3.90% and 2.24% for cash-flow and
discount-rate betas. Variation in volatility betas accounts for 92% of the variation in
explained returns compared to 20% for cash-flow betas as well as 7% for discount-rate
betas. Covariation among the three types of betas is responsible for the remaining
-19% of explained variation in average returns.

The relatively poor performance of the risk-free rate version of the three-beta
ICAPM is due to the derived link between ¥ and w. To show this, Figure 2.8 provides
two contour plots (one each for the risk-free and zero-beta rate versions of the model
in the top and bottom panels of the figure respectively) of the R* resulting from
combinations of (,w) ranging from (0,0) to (40,16). On the same figure we also plot
the relation between y and w derived in equation (2.24). The top panel of Figure 2.8
shows that even with the intercept restricted to zero, R*’s are as high as 70% for some
combinations of (y,). Unfortunately, as the plot shows, these combinations do not
coincide with the curve implied by equation (2.24). Once the zero-beta rate is
unconstrained, the contours for R*’s greater than 60% cover a much larger area of the
plot and coincide nicely with the ICAPM relation of equation (2.24).

Consistent with the contour plots of Figure 2.8, the pricing results in Table 2.13
based on the partially-constrained factor model further confirms that the link
between y and w is responsible for the poor fit of the restricted zero-beta rate version
of the three-beta ICAPM in the modern period. When removing the constraint

linking y and w but leaving the constraint on the discount-rate beta premium in place,
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Figure 2.8: Contour Plots Showing Goodness-of-Fit
The two contour plots show how the R* of the cross-sectional regression explaining the average re-
turns on the 25 size- and book-to-market portfolios varies for different values of y and w for the risk-
free rate (top panel) and zero-beta rate (bottom panel) three-beta ICAPM model estimated in Table
2.13 for the sample period 1963:3-2011:4. The two plots also indicate the approximate ICAPM rela-
tion between y and w described in equation (2.24,).
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the R* increases from -57% to 74%. Nevertheless, the risk prices for y and w remain
economically large and of the right sign.

Risk-sorted test assets

We confirm that the success of the three-beta ICAPM is robust by expanding the
set of test portfolios beyond the 25 size- and book-to-market-sorted portfolios. First,
we show that our three-beta model not only describes the cross-section of
characteristics-sorted portfolios but also can explain the average returns on
risk-sorted portfolios. We examine risk-sorted portfolios as Daniel and Titman
(1997, 2012) and Lewellen, Nagel, and Shanken (2010) argue that asset-pricing tests
using only portfolios sorted by characteristics known to be related to average returns,
such as size and value, can be misleading due to the low-dimensional factor structure
of the 25 size and book-to-market-sorted portfolios.

Table 2.14 prices the six risk-sorted portfolios described in Table 2.7 Panel B in
conjunction with six of the 25 size- and book-to-market-sorted portfolios of Table 2.7
Panel A (the low, medium, and high BE/ME portfolios within the small and large ME
quintiles). We continue to find that the three-beta ICAPM improves pricing relative
to both the Sharpe-Lintner and Black versions of the CAPM. Moreover, the relatively
high R* (57%) is not disproportionately due to characteristics-sorted portfolios as
the R* for the risk-sorted subset (69%) is not only comparable to but also larger than
the R* for the characteristics-sorted subset (519% ). Figure 2.9 shows this success
graphically.

Table 2.15 prices the cross-section of characteristics- and risk-sorted portfolios in
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Figure 2.9: Pricing Risk Sorted Portfolios, Early Period
The four diagrams correspond to (clockwise from the top left) the CAPM with a constrained zero-
beta rate, the CAPM with an unconstrained zero-beta rate, the three-factor ICAPM with a free zero-
beta rate, and the three-factor ICAPM with the zero-beta rate constrained to the risk-freee rate. The
horizontal axes correspond to the predicted average excess returns and the vertical axes to the sample
average realized excess returns for the 25 ME- and BE/ME-sorted portfolios. The predicted values
are from regressions presented in Table 2.13 for the sample period 1963:3-2011:4.
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the modern period. We find that the zero-beta rate three-beta ICAPM is not rejected
by the data while both versions of the CAPM are rejected. Again, the relatively high
R* for the zero-beta rate version of the volatility ICAPM (76%) is not
disproportionately due to characteristics-sorted portfolios as the R* for the
risk-sorted subset (81%) is not only comparable to but also larger than the R* for the
characteristics-sorted subset (77%). Figure 2.10 provides a graphically summary of
these results.

Non-equity test assets

We also show that our three-beta model can help explain average returns on
non-equity portfolios designed to be highly correlated with aggregate volatility risk,
namely the S&P 100 index straddles of Coval and Shumway (2001). We first
calculate the expected return on straddle portfolio based on the estimates of the
zero-beta rate volatility ICAPM in Table 2.13. The contributions to expected
quarterly return from the straddle’s cash-flow, discount-rate, and volatility betas are
-2.92%, -1.33%, and -3.87% respectively. As the average quarterly realized return on
the straddle is -21.66%, an equity-based estimate of the three-beta model explains
roughly 38% of the realized straddle premium.

Table 22 shows that our intertemporal CAPM with stochastic volatility is not
rejected at the s-percent level when we price the joint cross-section of equity, bond,
and straddle returns. The implied risk aversion coefficient (roughly 15 for both the
risk-free and zero-beta rate implementations of the model) is high but not

unreasonable. In sharp contrast, the CAPM is strongly rejected. Though the two-beta

131



V/N V/N V/N V/N otL 96'¢ V/N V/N V/N V/N @ parduy
V/N V/N V/N V/N 9oror 6L 10°0T gTL V/N V/N 4 porduy
(¢zo0) (ovo0) (9vo0) (S9o00) (woro) (1ST0) (geo'0) (6¥0'0) (zTO'0O) (SfO0O) “[eA 1L %S
S10'0 910°0 910°0 910°0 910°0 oto'o 7€0'0 7€0'0 1¥0'0 oSo'o 10113 SuDdIIg
%TL1g %Tb1g  whTig %ET'EL Tt I8  9%6TTO- %ESC€T- %O6TTII- %6901  9%Tggh- po3ros-ysu
%EILL  9%99°9L  %BITLL  9%06°9L  9%99°9L  9%09°'9¢  9%SETE  9%0¢€'8T  9%TOSI %86 - SOnSLIdYOBIRYD
%EV 9L %HLOVL  %LE 9L %LoVL  %T6'SL  %vgtr %68°L1 %St91 %618  9%Sg61- <
(otr0) (fr0) (LoT'O) (Sor'O) (1€0'0) (S7T0°0) 119 'pIS
%8I CT-  9%IQ°L-  9%6E TT- 9LLOT- 9IS TI- 9%ST'9- wnuue 13d 9
¢¢oro- 610°0- 6to0'0- LToo- 670°0- S10°0- Am@ winrwaxd >n
(1900) (€900) (zo0'0) (z00'0) (T00'0) (T00'0) (T00'0) (TOO00) (¥10°0) (600°0) 119 *pas
%0T1°S %85°0- %IT' € %IT' € %IT € %IT € %IT € %IT € %t o %979 wnuue 13d 9
€100 100°0- 800°0 800°0 800°0 800°0 800°0 800°0 100°0 910°0 Aﬂ/@ wnruraxd mmm
Ame.OV Amf.oV ANT.OV ?2.3 Aowo.OV Aw¢o.0v ANOH.OV Gwo.ov Ajo.OV Amoo.OV 119 'p3s
%€9°6T %1t vS 9loog %SSty  ogTI¢€ %<9ttt %TIIE %¢€9°TT %Yo %979 wnuue 13d 9
vLoo 9¢T1°0 0600 I11°0 8L0°0 790°'0 8L0°0 LSo'0 100°0 910°0 AN@ wnruaxd mou
(110°0) ) (¢10°0) 0 (o10°0) ) (€10°0) o (600°0) ) 119 *pas
%97 %0 9%00°T %0 %86°T %0 %YL 1- %0 9%00°9 %0 wnuue 13d 9
900°0 o Soo'o o §00°0 o Y00°0- o L10°0 o Ao@ N SS9[ ¥y
pa3oLnsaIun) paurensuo)) WAVDI 8¥2q-€ WdVDI ®19g-< WAV JojouwrereJ

SOT[0J3I0 P=3I0S-YSTY YIM SIS, MQMUEAH JOSSY oﬁnﬁa.mw UIPON S1°¢ 9Iqel,

132



15

A
10 =
*
*
*A *
5 /\
* A
0
0 5 10 15
CAPM with risk-free rate
15 A
10 A
*
*
* 4
5 Ax A
* A
0
0 5 10 15

ICAPM with risk—free rate

15 A
10 o
*
*
5 '\
A
0
0 5 10 15
CAPM with zero-beta rate
15 A
10 A
*
*
* A
5 TN a
N
0
0 5 10 15

ICAPM with zero-beta rate

Figure 2.10: Pricing Risk Sorted Portfolios, Modern Period

The four diagrams correspond to (clockwise from the top left) the CAPM with a constrained zero-
beta rate, the CAPM with an unconstrained zero-beta rate, the three-factor ICAPM with a free zero-
beta rate, and the three-factor ICAPM with the zero-beta rate constrained to the risk-free rate. The
horizontal axes correspond to the predicted average excess returns and the vertical axes to the sample
average realized excess returns for six ME- and BE/ME-sorted portfolios (denoted by triangles) and
six risk-sorted portfolios (denoted by asterisks). The predicted values are from regressions presented
in Table 2.14 for the sample period 1931:3-1963:2.
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ICAPM is not rejected, the required risk aversion is too extreme (over 53 for both
versions of the model) to be realistic.

Summary of US financial history

Figure 2.11 (third panel) plots the time-series of the smoothed combined shock
¥Ncr — Npr — ;wNy based on the estimate of the zero-beta model for the modern
period (Table 2.13). The correlation of this shock with the associated N¢r is 0.90.
Similarly, the correlation of this shock with the associated Npp is 0.26. Finally, the
correlation of this shock with the associated Ny is -0.76. Figure 2.11 also plots the
corresponding smoothed shock series for the CAPM (Ncr — Npg) and for the
two-beta ICAPM (yNcr — Npgr). The two-beta model shifts the history of good and
bad times relative to the CAPM, as emphasized by Campbell, Giglio, and Polk
(2012). The model with stochastic volatility further accentuates that periods with
high market volatility, such as the 1930s and the late 2000s, are particularly hard

times for long-term investors.

2.4 THE CONTRIBUTION OF STOCHASTIC VOLATILITY

We extend the approximate closed-form intertemporal capital asset pricing model of
Campbell (1993 ) to allow for stochastic volatility. Our model recognizes that an
investor’s investment opportunities may deteriorate either because expected stock
returns decline or because the volatility of stock returns increases. A conservative
long-term investor will wish to hedge against both types of changes in investment

opportunities; thus, a stock’s risk is determined not only by its beta with unexpected
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Figure 2.11: Pricing Risk Sorted Portfolios, Modern Period

This figure plots the time-series of the smoothed combined shock for the CAPM (Ncg — Npg),
the two-beta ICAPM (yNcrg — Npgr), and the three-beta ICAPM that includes stochastic volatil-
ity (y{Ncr — Npr — inV) for the unconstrained zero-beta rate specifications estimated in Table
8 for the modern subperiod. The shock is smoothed with a trailing exponentially-weighted moving
average. The decay parameter is set to 0.08 per quarter, and the smoothed news series is generated as
MA¢(SDF) = 0.088DF; + (1 — 0.08)MA;_,(N). This decay parameter implies a half-life of six years.
The sample period is 1926:2-2011:4.
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market returns and news about future returns (or equivalently, news about market
cash flows and discount rates), but also by its beta with news about future market
volatility. Although our model has three dimensions of risk, the prices of all these
risks are determined by a single free parameter, the coeflicient of relative risk aversion.

Our implementation models the return on the aggregate stock market as one
element of a vector autoregressive (VAR) system; the volatility of all shocks to the
VAR is another element of the system. The empirical implementation of our VAR
reveals new low-frequency movements in market volatility tied to the default spread.
We show that the negative post-1963 CAPM alphas of growth stocks are justified
because these stocks hedge long-term investors against both declining expected stock
returns, and increasing volatility. The addition of volatility risk to the model helps it
to deliver a moderate, economically reasonable value of risk aversion.

Our empirical work is limited in one important respect. We test only the
unconditional implications of the model and do not evaluate its conditional
implications. A full conditional test is likely to be a challenging hurdle for the model.
To see why, recall that we assume a rational long-term investor always holds 100% of
his or her assets in equities. However, time-variation in real stock returns generally
gives the long-term investor an incentive to shift the relative weights on cash and
equity, unless real interest rates and market volatility move in exactly the right way to
make the equity premium proportional to market volatility. Although we do not
explicitly test whether this is the case, previous work by Campbell (1987) and
Harvey (1989, 199 1) rejects this proportionality restriction.

One way to support the assumption of constant 100% equity investment is to
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invoke binding leverage constraints. Indeed, in the modern sample, the Black (1972)
version of our three-beta model is consistent with this interpretation as the estimated
difference between the zero-beta and risk-free rates is positive, statistically significant,
and economically large. However, the risk aversion coeflicient we estimate may be
too large to explain why leverage constraints should bind.

Nevertheless, our model does directly answer the interesting microeconomic
question: Are there reasonable preference parameters that would make a long-term
investor, constrained to invest 100% in equity, content to hold the market rather than
tilting towards value stocks or other high-return stock portfolios? Our answer is

clearly yes.
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The high brokerage charges and the heavy transfer
tax...sufficiently diminish the liquidity of the market. But
a little consideration of this expedient brings us up against
a dilemma, and shows how the liquidity of investment
markets often faciliates, though it sometimes impedes, the

course of new investment.

John Maynard Keynes

Informative Prices and the

Cost of Capital Markets

INVESTORS SPEND A GREAT DEAL of time and money speculating on financial
valuations or hiring others to trade on their behalf. While criticizing speculation is
always fashionable, the scale of the recent increase in resources spent on capital
markets has many people concerned that we are wasting talent and resources. There
seems to be little consensus among financial economists regarding the value of this
speculative activity; however, it is easy to observe the increase in quantity.

Historically, the share of national income spent on financial market activity remained
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relatively stable until the mid-1970s, when the financial sector began to grow much
more rapidly than the aggregate US economy. Before rushing to judge whether we
now spend too much, or too little, on active investing, we need theory and evidence
that promise to explain the root cause of this growth and the resulting effect on asset
prices.

In this paper, I document how the sharp decline in the cost of financial transactions
facilitated the modern increase in financial activity. To clarify the forces at work, I
present a stylized model of an economy with a financial sector that allows investors to
trade ownership claims on a risky investment. The supply of investment responds to
asset prices, and investor demand drives costly financial activity. Investors decide
how much of their resources to employ researching the future prospects of the
uncertain outcome, and market transaction costs affect the quantity and time horizon
of informed speculation. We see the surprising result that the financial sector
consumes more resources through spending on active investing as it operates more
efficiently. As dynamic trading strategies become feasible, the model suggests that the
information content of asset prices increases, especially over short-horizons.

Historical data on US market activity and asset prices confirm these predictions.
The most significant decrease in transaction costs occurred in 1975, when on May
Day the SEC demanded that stock exchanges end the practice of forcing a fixed
commission schedule on all equity transactions. In response to broker competition,
the average cost of institutional trading plummeted to about half of previous levels."

This event is significant not only in the historical time series, but it also provides a

'US Securities and Exchange Commission, Directorate of Economic and Policy Research. Staff
Report on the Securities Industry in 1978 (July 26, 1979)
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natural setting for identifying the causal mechanism. This regulatory change leads to
a surge in capital market spending, trading, and compensation, with an impact that
predictably varies across investment characteristics and time horizons.

The efficiency of modern financial markets enables dynamic trading strategies and
encourages investors to spend more resources on research and trading, but increased
efficiency does not necessarily align the incentives of private speculators toward
activities with the greatest social benefit. Returning again to the stylized model shows
that increases in the efficiency of financial market operations may lead to less efficient

economic outcomes.

SPENDING ON CAPITAL MARKET ACTIVITY

Consider how much the United States spends on capital market activities each year as
a share of total national production. Figure 3.1 shows the cost of capital markets as a
percentage of the GDP of the US private sector, where capital market spending
consists of the profits and employee compensation tabulated using the gross value
added measures reported by United States Bureau of Economic Analysis (BEA).> The
cost of capital markets is remarkably stable for approximately half a century.
Beginning with a cost of 0.27% of GDP in 1920 to a cost of 0.35% in 1970, spending
stays fairly close to its average of 0.32% with the exception of a moderate dip around
World War II. Then, a little before 1980, we notice a dramatic surge in the cost of
capital markets to the point where capital markets now consume two percent of

annual spending.

%A complete description of the underlying data will be available in an online appendix.
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Capital Market Cost as Share of Private GDP
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Figure 3.1: Capital Market Spending and Compensation
The upper plot shows the share of GDP attributed to the capital markets sector using the gross value
added measure, and the lower plot shows the ratio of average employee compensation in the capital
markets sector relative to the US private industry average. The primary source for these calculations is
the industry accounts data published by the US Bureau of Economic Analysis as of March 2011. Cap-
ital markets-related industries are described in Table 3.1. Data prior to 1947 comes from Philippon
(2012).
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Philippon (2012) lays out the scope of the historical challenge as he tabulates the
costs and quantities of various financial activities over the past 130 years in the United
States. In his analysis, it appears that the unit cost of financial intermediation has
remained relatively stable over time despite advancements in technology. He notes a
puzzling increase in the cost of financial activity over the past 30 years that he cannot
explain with a corresponding increase in the quantity or quality of financial services.

With a particular focus on this modern period, Greenwood and Scharfstein (2012)
attribute the modern growth of the financial sector as a whole to two specific
components: an increase in active investing and an expansion in credit markets. To
contrast these two culprits, I allocate the corresponding financial activities from the
national industry accounts data, as shown in Table 3.1. The resources consumed in
credit and banking activities grew significantly over the past century but follow a
distinct pattern from the resources spent investing in financial markets. The upper
plot in Figure 3.2 shows both activities consumed a growing fraction of GDP, but the
cost of banking and credit expanded at steady consistent pace since World War II
while the surge in trading and investing seems to be a more recent phenomenon.
Unlike the capital markets sector, the lower plot of Figure 3.2 shows the historical
compensation of employees in the banking and credit sector differs only slightly from

the private sector average and increases only moderately in recent decades.
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Figure 3.2: Contrasting Banking and Credit vs. Capital Market Activities
The upper plot contrasts the cost of banking and credit activity with the cost of capital markets using
gross value added, and the lower plot shows the respective employee compensation ratios relative to
the US private industry average. The primary source for these calculations is the industry accounts
data published by the US Bureau of Economic Analysis as of March 201 1. The classification to indus-
try groups is shown in Table 3.1. Data prior to 1947 comes from Philippon (2012).
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Table 3.1: Financial sector components in national income accounts

This table shows the components of the financial sector and the associated NAICS codes as used by
the US Bureau of Economic Analysis in their national income accounts. The grouping of the compo-
nents has not always been historically consistent. The highlighted industries are those which will be
termed the capital markets sector and are the primary focus of this paper.

Finance, Insurance, and Real Estate
Banking and Credit (521 & 522)
Banking
Credit agencies other than banks
Capital Markets (523 & 525)
Security and commodity brokers
Funds, trusts, and other financial vehicles
Holding and other investment offices
Insurance (524)
Insurance carriers
Insurance agents, brokers, and service
Real Estate and Leasing (531, 532, 533)
Real Estate

Rental and leasing services and lessors of intangible assets

THEORIES OF FINANCIAL INVESTMENT DISTORTIONS

Dissatisfaction with the quantity of talent and resources consumed by financial
markets seems to peak during economic downturns. Amidst the Great Depression,
Keynes criticized American financial markets, arguing, “when the capital
development of a country becomes the by-product of the activities of a casino, the
job is likely to be ill-done.”® On the other hand, the broad impact of financial crises
could also suggest we need a large and highly compensated financial sector to replace
animal spirits with dispassionate analysts.

Certainly, there is a need to understand the circumstances and incentives that pull

resources toward financial markets. What gives rise to a distorted financial sector?

*Keynes, John Maynard, The General Theory of Employment, Interest and Money (London:
Macmillan, 1936), page 159.
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Economic research offers three explanations for outsized financial activity: irrational
investors do not know they trade too much, rational investors cannot help trading too
much, or perhaps the industry is rife with rent-seeking.

Financial markets seem to be amazingly adroit at exploiting irrational beliefs and
behaviors. Fanciful trading or the decision to pay exorbitant fees to popular
investment managers may funnel unnecessary fees into finance and have other
negative consequences (De Long, Shleifer, Summers and Waldmann, 1989).

In a model where market participants are assumed to be rational, they may still
spend too much on active investment because inference is difficult (Pastor and
Stambaugh, 2010) or out of a desire to avoid being the greater fool when negotiating
transactions. Glode, Green and Lowery (2012) present this situation as an arms race
externality for financial expertise. The model presented by Bolton, Santos and
Scheinkman (2011) has a similar mechanism; opaque markets attract talent and
more informed valuations lure the best investments away from public exchanges.

These explanations capture important aspects of financial markets, but neither
seems uniquely modern. If traders are foolish now, they were foolish before. Shrewd
traders will always prefer to be better informed than their counterparty. We are forced
to ask: what changed?

Philippon and Reshef (2013 ) point toward the rent-seeking channel, and propose
the growth in compensation is a result of deregulation. The active government
oversight intended to curb the worst excesses in the financial markets of the 1920s
was gradually relaxed 5o years later, and Philippon and Reshef propose rents lured

talent from more productive endeavors (Murphy, Shleifer and Vishny, 1991).
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Supporting this view, Bai, Philippon and Savov (2012) suggest modern asset
prices show no increase in their information content over the past 5o years. They
suggest the increase in financial spending may result from rent extraction, suggesting

the growth in active investment has had little effect on asset prices.

UNDERSTANDING THE CAUSES AND CONSEQUENCES OF THE COST OF CAPITAL MAR-

KETS

With so much highly compensated talent flowing into investment management, it is
hard to believe that asset prices are no more informative in the modern information
age than they were in the bygone era when investors in top hats exchanged small
pieces of paper. As an alternative explanation for the root cause of the modern
growth of capital markets, I propose technological efficiency. The decreasing cost of
transacting makes dynamic trading strategies feasible and draws talent and
technology toward acquiring faster paced information. Confirming the results of Bai
etal. (2012), I find only very weak evidence that modern asset prices capture more
long-horizon information; however, I find strong evidence of an increase in active
trading and information content at horizons of less than one year.

To help frame the empirical findings, I present a stylized model illustrating the role
of trading horizons in costly capital markets. The key comparative static will measure
the effect of increases in trading efficiency. The model predicts that as the cost of
financial activity decreases, total spending in the financial sector actually increases,
especially for short-horizon speculation.

This explanation has a large degree of empirical success in explaining aggregate
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spending on capital markets over time, particularly in regard to aggregate spending on
active investing (French, 2008). More efficient transaction costs lead to higher
quantities of informed trading, providing an underlying explanation for Greenwood
and Scharfstein’s observation that the observed growth of modern finance coincides
with a growth in actively investing. The events of May 1975 highlight the significance
of this mechanism, as the SEC instituted rule 19-b and replaced the high trading
commissions enforced by stock exchange members with competitive transaction
rates. Using this event and information from historical fee schedules, we observe how
the operational efficiency of capital markets affects the financial industry and market
prices.

This paper provides new evidence on the changes that caused and accompanied
the modern growth in the cost of capital markets. Linking these findings to economic
theory clarifies the underlying incentives and opens the door to the broader question

of whether the returns to finance are worth the cost.

3.1 A STYLIZED MODEL OF CAPITAL MARKETS

In this section, I present a stylized model of capital markets where the supply of the
risky investment responds to asset prices and where the financial market is costly to
operate. I will show how changes in the cost of transacting affect the quantity of
resources spent on finance and affect the characteristics of asset prices.

To better understand the role financial markets play, consider an illustrative,
general equilibrium framework where investors spend resources in acquiring

information and engaging in costly transactions. In the spirit of the Q-theory
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(Brainard and Tobin, 1977), the supply of investment will respond to the market
price, so the information in asset prices plays a key role in capital allocation.
Ultimately, we want to observe how changes in the cost of transacting affects the
resources spent in capital markets. Additionally, the model will distinguish between
short-run and long-run behavior, generating novel predictions relating the growth in
capital market spending to asset prices which will be confirmed in the data.

Unlike the opaque bilateral setting of Glode et al. (2012), all market prices in the
model will be publicly observed, which has historically been true for equity markets
and is becoming increasingly common across asset classes. The setup more closely
resembles the endogenous information setting of Grossman and Stiglitz (1980),
adding the salient features necessary to model a costly financial market and multiple
time horizons.

The key comparative statics will be the impact of an exogenous change of
transaction costs on total capital market spending and the information content of
asset prices, noting the differential impact by trading horizon. I briefly mention the

welfare implications in section 3.4.

THE SETTING
THE SUPPLY OF RISKY INVESTMENT

Consider a risky investment traded publicly over a T periods (t € [1, T]) prior to

yielding an uncertain payout X consumer in period T + 1, where the uncertain
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component of X is

X-EX|=) 6 +e (3.1)

Each of the component random variables are independent, mean-zero, and normally
distributed with variances 0§ and ¢2. The full, random component ) _ 6; becomes
public knowledge in period T + 1. However, market participants can spend resources
to discover the information in period o, and they will be termed long-horizon
investors. Alternately, short-horizon investors may spend a smaller amount of
resources to discover each piece of short horizon information (6;) in period t. The
random component € cannot be observed prior to period T + 1.

The quantity of the risky investment is responsive to investment demand, allowing
the quantity of shares in one period, Q;, to increase or decrease with the market price,
P;. For simplicity, we’ll model this as a linear supply curve, with slope parameter

b > o. The change in investment supply will be

Qi —Q=b(P—P,). (32)

where the initial price is assumed to be the unconditional expectation, P, = E, [P,].
By construction, the supply of investment is fixed in the short-run (contemporaneous
with the trading period) and responds to financial market prices over longer horizons

(the next period).
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INVESTORS AND FINANCIAL MARKETS

The agents will be modeled by a continuum of identical investors. Wealth can be
transferred across periods at an interest rate of zero and is consumed in the final
period. Each investor is endowed with w,, units of wealth (measured in units of final
consumption) and a share, q,, of the risky investment. By construction, the total
initial quantity of investment is Q, = fl clon] qo,idi.

Individuals can choose whether they want to acquire information and actively
speculate based on the difference between their valuation and the observed market
price. To learn the full value of ) | 0, during the first trading period requires paying
kr, whereas short-horizon traders who only learn each component 0 at time ¢ pay
ks < kg. Alternately, investors may choose to infer their valuations from the public
market price. Since their valuations will not differ from the market price, they will not
actively trade and I'll refer to these traders as passive, though they might make trades
driven by changes in their uncertainty.

Each individual seeks to maximize expected CARA utility of final consumption.
For convenience, we’ll denote the consumption of investor i as their final wealth, w;,
with associated expected utility E[— exp { —aw; }| for absolute risk aversion
parameter a.

Investors must commit whether to spend resources on information in period t = o
before any trading happens. In subsequent periods prior to the final outcome,
investors may choose to trade their holdings of the risky asset at the prevailing market
price. The transaction costs associated with capital markets are passed directly

through to investors. For analytical convenience, we’ll assume they take a quadratic
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form so that the trading from a prior holding of g; ;_, shares in period t — 1 to g;;

. . . . . . . 2
during the trading in period ¢ will result in a transaction cost of < (gt — ge—) "

We can describe the evolution of investor wealth as

C 2
Witrr = Wig + qit (Pers — Pr) (Gittr — i) (3-3)

2

where agents are identically endowed with w, consumption and g, shares of the risky
investment. In the final period, the price of the risky investment will simply be the

outcome, i.e. Py, = X.

PORTFOLIO CHOICE

The linear-CARA-normal framework allows the expected utility from the perspective

of investor i in trading period ¢ to be calculated as

Ei;[—exp{—aw;}] = —exp {—aE,-,t [wi] + %Varu [wi]} ) (3.4)

Through monotonic transformations, the investor can maximize the
certainty-equivalent, which takes the mean-variance form, E; ; [w;] — £Var; ; [w;]. The
concavity of the problem suggests we can find the optimal portfolio in each period,

q; ;» at the point where the first order condition holds,
0 o)
B Bit [wis] = § 5. Vary [wig].
To motivate the optimal portfolio rules, we can work backwards from the final

trading period. The optimal portfolio g; 1 in last trading period that maximizes the
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utility of consumption in the subsequent period will have the associated first order

condition

x Eir[X — Pr] + cqir—,
4ir aVar;r [X]+¢

(3:5)
This is the classic myopic portfolio rule with a transaction cost adjustment. In the
numerator, we see the optimal portfolio increases linearly with the expected return,
E; 7 [X — Pr|. The second term in the numerator shows how much transaction costs
discourage trading by anchoring the portfolio at the initial position, g; 7—,. The
magnitude of the transaction costs, ¢, determines the extent to which this affects the
optimal portfolio.

In solving the model, I will show how the anchoring feature of transaction costs

results in optimal portfolio rules that are a weighted average of their myopic,

one-period expected return and the returns offered in future periods.

EQUILIBRIUM

In this setting, investors can be grouped into three types based on their information
sets. The mass of agents of type j are those who pay k; for their investment

information will be measured as the quantity A; € [o, 1].
Definition In a rational expectations equilibrium,
(a) markets will clear

(b) investors will choose to spend resources on information to maximize ex ante
utility, leading to an allocation {11, A5} and where Ay = 1 — A, — Agis the

fraction of individuals who will only infer information from market prices

152



(c) investors of each type have an optimal demand function g; ; (P;) for the risky
asset conditional on the market price, which will be constructed from their
rational beliefs about random variables (0; and v;) conditional on the observed

price.

MARKET CLEARING

It will be useful to explicitly define market clearing. Noisy supply shocks will add
uncertainty so that the market price does not perfectly reveal all information.

Specifically, the total quantity of investment supply will equal investment demand,

Vi

= Aig; ) .6
Q Z q,t+a0_§+c (3.6)

comprising the sum of the individual demands (g; ;) times the mass of the investor
type (1;) plus the scaled demand shock v; ~ N (02). The values in the denominator
scale the shock by variance and transaction costs. In this sense, the noise can be
interpreted in the same way as the demands of an informed investor, as can be seen
from demand function (3.5), but obviously the shock is unrelated to the actual final

payout of the investment.

INTUITION

To build the intuition behind this model and its equilibrium, consider Figure 3.3. For
this particular illustration, this will assume just one trading period (T = 1) and there

is no distinction between long-horizon and short-horizon informed investors, though
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the paper will generally consider T > 1in order to highlight the importance of time
horizon. The left panel plots the fraction of informed speculators along the horizontal
axis, ranging from o to 1. The vertical axis measures expected utility for both the
informed speculators and the expected utility for the uninformed, passive investors.
When there are no informed speculators, the information advantage is obvious as the
expected utility for informed active investors is significantly higher than that of the
passive investors who observe only the market price. As the fraction of the informed
investors increases, the difference between the two expected utilities decreases. This
is the general case, and the intuition extends to the multiple period setting; as the
market price becomes more informative the relative advantage of paying for the
information decreases. With these parameters, the equilibrium point of indifference
between acquiring the costly information occurs at the point where approximately |
of the investors acquire the costly information. To the right of the equilibrium point,
the trading profits resulting from learning more about the risky outcome 0 are not
worth the resources it could cost (k).

On the right panel, the horizontal axis continues to measure the fraction of
informed speculators, and on the vertical axis we see the equilibrium price. In the
case of no informed investors, the variation in price is entirely due to the supply
shocks v. As the fraction of informed traders increases, we see two effects. The
average price increases as investors are willing to commit more capital to investment
because there is less uncertainty. Additionally, the variance of the market prices
increases. This is because the price now also contains information about the

investment prospects. Not surprisingly, the information content of asset prices levels
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Expected Utility Price

informed
uninformed

0 equilibrium 1
fraction of informed speculators (A) fraction of informed speculators (A)

Figure 3.3: Intuition behind model equilibrium
The plots above correspond to the model presented in the paper in the one-period setting, T = 1. The

model parameters are: Q, = 1, X = 100, 07 = 0 = 10%, 05 = 2*,4 = 0.1,¢ = 10,and k = 1. For
illustration, the investment supply is allowed to be elastic in the short-run (AQ = b(P — E[P])), with
linear supply parameter b = o.2. The left axis plots the expected utility for the informed speculators
and the uninformed passive investors. The right axis plots how the distribution of the market price,
P, changes with respect to the quantity of informed speculators.

of around the equilibrium point, further evidence that little additional value is gained

acquiring information that is already largely in the market price.

Proposition 1 (Equilibria) There exist rational expectations equilibria under the

assumed parameter restrictions (o < ks < kr).

The proof for the one-period case (T = 1) should be clear from the discussion
above. There will be no long-horizon traders. Since the expected utilities are
continuous in A € [o, 1], we simply need to appeal to the intermediate value theorem
for existence. The difference between the expected utility of the informed and
uninformed traders will nearly always be monotonically decreasing in A, which

guarantees uniqueness.
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The same intermediate value approach guarantees a unique solution in the case of
multiple periods (T > 2) in the case where one or more type is always inferior and
has optimal weight zero. The existence of the multiple horizon solution when there is
a positive mass of each of the three types can be motivated by working backwards
from the final period. In the final period, informed traders face a situation identical to
the one-period model. In prior periods, the relative advantage to the long-horizon
information is decreasing in A;. The mass of investors in Ag will be uninformed about
the information 6, (for k > 1), and like the uninformed investors, can infer more
information as Ay, increases. As long as there are positive quantities of each investor
type, the marginal effect of more traders will follow the same relative rank impact on

ex ante utility, guaranteeing a unique solution.

CHARACTERIZING A MULTIPLE HORIZON SOLUTION (T = 2)

To characterize the analytical differences between long-horizon and short-horizon
speculation, I will more fully characterize the solution for T = 2. In this setting, the
outcome will be a long-run event in the first period and a short-run event in the
second period, which immediately precedes the investment outcome. After this

short-horizon trading is complete, investor i will consume

¢ 2 2
w; = Wo+QoP1+Qi,1 (Pz - P1)+qi,z (X - Pz) _; ((%’,1 - ‘10) + (qi,z - Qi,l) )_kl
(3.7)
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ASSUMING LINEARITY AND THE RESULTING EXPECTATIONS

To calculate the investor demand functions, we need to know their expectations,
which will be affected by the information they perceive from the market prices they
observe. I will assert and then prove that the market prices can be expressed as linear

functions of the unknown variables,
P, =P, +B,0,+ B0, + B, (3.8)

and

P,=P,+p,(P,—P)+ B.6, + B0, + B, v.. (3.9)

The unknown coefficients are derived in the appendix, thus confirming the assumed

linear functional form.

Additionally, to help with the notation and intuition, we note that the beliefs of
uninformed and short-run traders hold about X from observing the market price in
period 1 will be affected by the variation in price. We can express these expectations
as

Es, [X] =X+ Ps.Ys, (3.10)

where

'Bv‘v 11
B (3.11)

X (P1 —P, — /3191) (3.12)

YS1 - 92+

)
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and so that p € [0, 1] is a simple function of the assumed parameters

2

Oy

A TR
o+ (52) @

The investors who have spent no resources on information simply take valuations

from their deviation from the market price

(En, [X] = X) o< (P, — P) (3.13)

PORTFOLIO OPTIMIZATION IN PERIOD 2

The investors will be categorized by the trading period in which they receive

information about 0: in the long-horizon (L), short-horizon (S) and not at all (N).

For each of the three investor types (L, S, and N), we can express their optimal
portfolio in terms of their prior position and their current expectations E; , [X] and
Var; , [X]. The long-run and short-run speculators will both know 6, and 6, in period
250 B, [X] =Es, [X]. The associated variance will be Vary , [X] =Varg, [X] = o2.
From (3.5) we can conclude that the optimal portfolio for these two types of
investors will be

(X+6,+0,—P,)+ cqy.,

*
= .1
L. ac* +c¢ (314)

and
(X+6,+6, —P,) +cq,

2
aoz + ¢

(3.15)

* JR—
qS,z -
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The optimal portfolio for the investors who purchase no information

. BalX— P+,
N aVary, [X] + ¢

(3.16)

depends on the expectations, E, , [0] and Var, , [6], which will be derived later.

PORTFOLIO OPTIMIZATION IN PERIOD 1

When investing for the long-run (in period 1), investors choose their allocation aware
of their optimal short-run portfolio rules in equations (3.14 - 3.16). Those short-run
rules show that each portfolio allocation is linearly related to the expected return
(E; [X — P,]) and the prior portfolio allocation (g;., ).

The form of the period 1 demand function for long-horizon investors is similar to
that of the other two investor types. It is derived by substituting the period 1 demand

from equation (3.14) into equation (3.7) and taking the first order conditions to find

the optimal portfolio
. (1 — I') Ep, [Pz — Pl] +TI'Ep, [X — Pl] + ¢q,
a, = — (3.17)
Q+c (1 + (ﬁrﬁc) )
where the tilt toward the long-run return is
c (2a0% +¢) B2 ora*ct
I' = a &V
ac® +c (ao? +¢)
return next period prefer to av;;d adverse v,
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and the variance

c > ao? 4
Q= (—2 n ) o+ <—2 j_ ) ﬁz2720§.
ao* +c¢ ac* +c¢

(. N J/
-~~~ ~~

variance of X variance in P,

To develop some intuition for this long-horizon portfolio rule in equation (3.17),
consider the three terms in the numerator. As before, there is a weight pulling the
optimal portfolio toward the initial position, g, as a result of transaction costs. The
other two terms are a weighted average of the myopic expected return, E; , [P, — P,]
and the long-run expected return, E; , [X — P,], with respective weights (1 — I') and
I.

The weight I that the investor tilts toward the long-horizon return will always be
weakly positive, I' € [0, 1), and its magnitude will increase with transaction costs.
The relationship with transaction costs arises from the investor recognizing positions
taken today will persist into the future due to the anchoring effect of transaction
costs. Additionally, there is some uncertainty in the price next period, so investors
have an incentive to lock in P, now rather than pay an uncertain P,.

The demand functions for the short-run and uninformed investors take an

identical form, with slightly different values for I and Q.

DERIVING INVESTOR DEMAND

This section derives the demand functions for the model with two trading periods

(T = 2). For each investor, we use their expectations to maximize the utility of final
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wealth, as defined in equation (3.7),

c 2 2
w; — Wo—ki+QoP1+Qi,1 (Pz - P1)+qi,z (X - Pz)_; ((%,1 - qo) + (qi,z - qi,l) )

The first order condition, %Ei,t [w;] = N 8?

Var; ; [w;], can be used to derive the

investor demand functions. In period 2, the only source of uncertainty is X and we get

* Ei,z [X - Pz] + qu,l
%2 = aVar; , [X] + ¢

)

which leads to the optimal demand functions presented for each type of investor, as

in (3.5).

Deriving the demand functions for period 1 with multiple horizons requires a fair

amount of algebra. Beginning with the expression for expected wealth,

Ei,1 [Wi] = W, — ki + QOP1 + qi,1Ei,1 [Pz - Pl] + Ei,1 [Qi,z (X - Pz)}

c

(912 — 90)* + Ei (g5, — 9i2)°])

2
we can substitute in period 2’s demand function

Ei,z [X_ Pz] + qu,l (X— P )
aVar; , [X] + ¢ :

¢ 2 Ei12 [X] - P7- + C‘ﬁl :
- i1~ Yo Eil - — i1
(e e | (M) |)

Ei,l [W,’] = w,+ qopl + qi,lEi,x [Pz - Pl] + Ei,l |:
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with first derivative

0 Elw] = E;,[P _p]+w
09i, ' pre Y avar, [X] + ¢
aVar;, [X] '\~ aVar;, [X] B, [X — P,

B (aVar,-y2 [X] + c) o (aVari,2 [X] + 6)2

— ¢(qix — qo)

so the final expression is

0
aqi,l

Ew] = E;,[P,—P|]

n c + aVar; , [X]
aVar; , [X] + ¢ C(aVarL2 [X] +¢)*

n . aVar;, [X] '\~
cgo —c |1 —_— i1
1 aVar; , [X] + ¢ %,

The optimal portfolio in period one will be the one that solves the first order

) E;,[X —P,]

condition,

aVar; , [X]

Ei,l [P?- - Pl] + (aVar,v,:[X]—i-c + C(aVar,-ﬂ,[X]—l-c)") Eivl [X - PZ] + ¢qo

a aVar; , | X 2
;:lvari,l [W,] + (1 + (aVar,',z[)%j-c> ) ¢

* —_—
qi,l -

The expected values for P, and X are apparent from the assumed linearity in (3.8)

and (3.9), so the task at hand is to come up with expressions for 2qL‘*Var,-,1 [w,], where
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the variance term can be expressed as

Vari,l [Wt] Vari,l qi,lpz + qi,z

Vari,l qi,lpz + qi,z

Var; ,

qi,lpz + qi,z

(X=P) = = (gis — a1,)’]

2

c 2
(X—PJ—;%@+mm%J

(X —Ei, [X]) + q;, (aVar,-@ [X] +

)]

and the remaining calculation requires using the expectations of each investor and

calculating the sensitivity with respect to the first period allocation.

LONG-HORIZON INVESTORS IN PERIOD 1

For long-horizon investors, the uncertain terms will be:

P2 - EL,1 [Pz]

X—Ep, [X]=

=B, .V

X—E,[X] =

The optimal position during the final trading period

o EL,1 [X - Pz] + CqL,1 . ﬂv,vl
s = ao? +c¢ ao? +c¢
B,
= Ep.[qu.] — -

Vs
asz +c¢
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From this, we can calculate the variance

qL,l,szvz + EL,z [qL,z] € — afz+CV25

 (Bulaza) - ozon) (w02 +9)

Varg , [WL] = Varg,

EL,.[X—P,]

(aag—FCqul + T;) €
_ 2 \* 1<
= Varp, | + (qu (ajf’ +c> —2E;, [X—P)] a“f; s ) B,.vs

_ﬁv2v2€+a+ﬁ

ao%+c (aoz+c)*Fv

and using the normality and independence of € and v,,

Var [wy] = Var[av + be + cv* + dve]

S 2 2 2 2 2 4 2 2 2
= a‘o, +b'o. + a0} + d*oy0

we can write

c Er,[X—P,]\"
Varp, [w] = i ’ o’
act+c’ ao* + ¢ :
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To calculate the demand function, we need to evaluate the first derivative

0 E; .| X—P,
—Var;, [wi] = 2 ¢ ( ¢ Qiy + L ]) o2
aql l

ac? +c¢ \aoz +c¢ ar: +c¢

e Y LARR P
2 i1 O'V
ao: +c %, ao: +c "

— a%e Er, [X — P,] L_FCZ B o
ac +c ’ (ao2 +¢) :

and calculate the term

adVarp, [w ac* \* c *
a L (Wil — 4 < B o+ 02 ] Qin
2 Oqy aoz +c 2 aoz +c

2a02 4 ¢) a*otp: o2 2
—a ( a( 2) iﬂv} - :08 2 EL,z [X - Pz]
ac* + c) (ao2 +¢)

The optimal portfolio for the long-term speculator is then

(2002 +c)B;, ,o3a’at

. EL,1 [Pz - P1] + {atrg—i-c +a (a0 +o)* } EL71 [X — P,_] + 9o
qL,l = 2 ac? 4 a0 2
a { (acrchrc) 0"75- + <F~ic> 131’;2,20'1’;} tc <1 - (Fic) >

which can be written as in equation (3.17)

EL,1 [Pz - Pl] + FZEL,I [X - Pz] + qu

qi,l = aox 2
e ()

(1—T)Ep, [P, — P]+TEL, [X—PJ] + cqo

aQ + ¢ (1 — <—a:;ic) )
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The variance term, () is a linear combination of the uncertainty in next period’s

price (02) and uncertainty in the final payout (o?)

c * aoc> \*
Q=(—) a2+|(——) g o
act +c) °© ac+c) "7

N J/ N

vV VT
variance of X variance in P,

The sensitivity to next period’s expected return is

c (2a02 +c)a*et | |
= —— ta———"—=F,.0
ac: +c (ac +¢) >
—— ~ P
return next period prefer to avoid uncertain v,

The weight I that the investor tilts toward the long-horizon return will always be
positive, and its magnitude will increase with transaction costs. The relationship with
transaction costs comes from the investor recognizing positions taken now will
persist later. Additionally, there is some uncertainty in the price next period, so
investors have an incentive to lock in P, now rather than pay an uncertain P,.

SHORT-HORIZON INVESTORS IN PERIOD 1

For the short-run investors, the uncertain terms will be

Pz - EN,1 [Pz] - ,8465 + lgvlvz

and

)(—ES71 [X] = €s+8,
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where

e — (92 — ES71 [92]) .
The optimal portfolio in the final trading period can then be expressed as

ES,z [X - Pz] + CCIs,l

. = aoz +c¢
_ Eg,[X—P,] + cqs, N Es, [X — P,] — Es, [X — P,]
B as: +c¢ asrz +¢
es(1—p ﬁvzvz
= ESJ [qs,,_] + ( > 4) - N .
aoz +c¢ asz +c¢

So we can calculate the variance as

c
Varg , [ws] = Varg, [QS,le +gs. (X — Es, [X]) + g5, <ao‘2 4 ;>]

So the variance is

o
2 4 S,
ao: +c¢

n (qs,l B 2Es,l [%,z] ((10’5 + ;)) ﬁi}’z

1— ESI S.2 00'76' f * s 2
Varg, [ws] = (%,1—2( ﬂ4) [‘1]( + )) 8

asl +c¢

+ (s, [g5,.])" 07

acz+c aot+c 2
+Varg,
7 + es(l_ﬁ4> _ ﬂvzv" £
acz+c acz+c
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E 1 X_Pz 1 . .
M and get first derivative
aot+c

aVars,l [Ws] = 2g5, aza'g’ 2 2 ﬂz 017; n c 2 O'z
04s.. ’ (ao? +¢) v ao* + ¢
atot — B, (2ace 4+ )\ * L
s { ( (a0 + )" s

and we can substitute in Eg , [gs..] =

a* 0’5 2a0%+c) ﬂ O
B _ (aoz+c)* v,V a0’1+c)
ZESJ [X Pz] (a ot— ﬂ4(2aca’E+C ))( ﬁ4)(mag+c) 2 o
T (aoz+0)° P,

The optimal portfolio can be expressed in a form analogous to the long-run
demand function in equation (3.17) by naming the short-horizon parameters, I'; and

QS)

_ (1 — Fs) _ES71 [P2 - Pl] + FSES,I [X - Pl] + 4o

qS,l - a0 2
aQg + ¢ <1 + (sz_c> )

The intuition and form are nearly identical, with the short-horizon investors tilting

slightly more toward the long-run return, Eg, [X — P,], due to their uncertainty

about 6,
(1 = ﬂ4) (azcrg — B, (2aco® + cz)) g
(ao? + ¢)* 4ral

vV
prefer to avoid uncertain e,

FS:F+Q

(.

Their associated uncertainty term, Qg, is

¢ 2 (azag - B, (2aco® + ¢ )) Bos, + atolp: o3
QS = 0': + . = .
(ac® +¢)*

ao? +c¢
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UNINFORMED INVESTORS IN PERIOD 1

The uninformed investors have the highest degree of uncertainty. In period 1, this is

summarized by the uncertain terms:

X—En.[X]=e+e+e¢

where the errors in expectations in the final period are expressed as

e. = (0, —En,[0)])

e, = (0,—En.[6.]).

The additional, orthogonal error in the first period expectation is

Ae, = (6, —En,[0,]) — (6, — En. [6)])

Ae,, = (92 - EN,l [92]) - (92 - ENp. [92])

so that

P, —En, [P = B, (e, + Ae,) + B, (e, + Ae,) + B, v,

and

X —En, [X] = (e, + Ae,) + (e, + Ae,) + €.
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The optimal portfolio in the final trading period can then be expressed as

En. [X — P, + cqn.,

s = aVary, [X] + ¢

_ Eny[X—PJ+cqn, | En, X —P] — En, [X — Py
aVary, [X] + ¢ aVary, [X] + ¢

_ En,[X— P, +cqn,  En.[X] — En, [X] — P, — En, [P
aVary , [X] + ¢ aVary , [X] + ¢

By o] Ae, + Ae, — B, (e, + Ae,) — B, (e, + Ae,) — B, v
’ ’ aVary, [X] + ¢

o] Ae, (1 — [33) + Ae, (1 — [34) — ,[33e1 — ‘3462 — ﬁvzvz‘
’ ’ aVary , [X] + ¢

The uncertainty from the perspective of the investors who acquire no information

will be

Vary, [wy] = Vary, [qn.Ps + qn. (X — En [X]) + N <aVarN72 (X] + —)] )
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Splitting out the terms,

aVary , [X] + < > X
+c %

Vary, [wy] = {qN,lﬁ3 + En, [an,] — 2B,En.s [9x..] aVary , [X]

+ {‘INJ,B4 + EN,I [QN,Z] - 2ﬁ4EN,1 [‘IN,z] a

aVary, [X] +£)°
1 — E . ) ’ 2 2
aVary, [X] + <)
1 — E L ) > 2 2
+ {‘IN, B, + (1—B,) 2En, [an.)] Nar, X T C} Tae,

aVary , [X] + E }2 oo

+ {qN’l —2ENa [qN’Z] aVary [X] +c

+{En, [qn,.]} " o

+ {the terms without gy, } ,

and taking the first derivative yields the comon form

q* - (1 — FN) EN71 [Pz —_ Pl] + 1—‘1\]EN71 [X —_ Pl] —l— qu
N, — 2 > .
aQy +c <1 + (ﬁ:ﬁtﬂ) >

In this case,

c aVary,, [X] 2\ 2 2
<aVarN,2[X]+c + '83 (aVarNi[X]—i-c) ) Te,
c aVarn, [ X] 2\ ? 2
+ <aVarN,z[X]+c + 184 <aVarNi[X]+c> ) e,
aVary, [X] N, aVary,, [X] N,
+ (1 B /;3 <aVarNi[X]+c) ) The, + <1 B ﬂ4 <uVarNi[X]+c> ) T A,

aVary , [X] \* 2 c *
+ (1 o (aVarNi[X}—i-c) ) ﬁv;ovz + {aVarNYZ[X]—i-c} O¢

QN:
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and

c aVary, [X]
+c : B
aVary, [X] + ¢ (aVary, [X] + ¢)

( )

(c (aVary, [X] + ¢) + ,33 (aVary,, [X])Z)

X (aVarM2 [X] 4+ c— ﬁ3 (2aVary, [X] + c))
(aVary, [X] + ¢)* &

(c (aVary, [X] + ¢) + B, (aVary,, [X])z)

X (aVarM2 [X] 4+ c— ﬁ4 (2aVary, [X] + c))
(aVary, [X] + ¢)* e

( . avary,, [X
1 'B 3 aVarN 2[X +c .

(1 (zaVarN L[X]+c¢) T Ae,
uVarN L[ X]+c)*

+
Q

X
VR

( aVarn,[X]
(1 o ﬂ (aVaerj[X 4
+(1 (1 zaVarN ,,
X aVarN N [X]+c
\ J
aVary , [X] * 2aVary , [X] + ¢ .
—as(1— | ————— s | ¢ B.o,
aVary, [X] + ¢ (aVary, [X] + ¢) e
¢ 2

e { (aVary, [X] + } -

2
> UAez

MARKET CLEARING AND INVESTOR EXPECTATIONS

The investors will form expectations about investment prospects (X) and the effect of

the noise shocks (v, and v, ) from the market price. Intuitively, investor expectations
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of § increase in the market price, but larger noise shocks dampens this relationship. It
remains to be verified that the assumed linear relationship between prices and the
unknown variables as suggested in equations (3.8) and (3.9) holds.

In period 1, the market clears when

V1

" .
asz + ¢

Qo = Anqn, + Asqsy + Arqr, +

The demand functions for the short-horizon and long-horizon investors are both
linear in E[X] and hence linear in the state variables, so substituting them into the
market clearing condition shows the price to be linear in the state variables. The
expectations of the risky payout will all be linear in P,, which can be seen from

substituting in the demand functions to the market clearing condition

1—T +T 1—TI)B.6,+T0,
b« I (1—Ts) B, ls N ( ) B, o
e (2))) e (2))
(1—I‘)/34—1—I’
AL

2 2 92
alQ) + ¢ (1 — (a:;j_c> )
1
+ A
{aag + c}

This confirms (3.8).

Similarly, in period 2 the market clearing condition shows that

As + A
P =T L(91+92)+{ 1 }vz,
aoz +c¢ aoz +c¢

)

173



which confirms (3.9).

THE IMPACT OF MORE EFFICIENT TRANSACTIONS

Let’s now turn to the question of what happens if the financial sector is more
operationally efficient and the cost of transacting decreases. I consider two key
comparative statics: how does this affect total active investment management (%)

s o
5 versus ).

and how does this effect differ by investment horizon (

Proposition 2 (More active management) As the cost of transacting decreases, total

informed trading increases,

o> A <o
oc —

and this becomes a strict inequality if there is any interior solution (i.e. 0<); < 1 for some
i)-

The value gained from information lies in the ability capitalize on the information
through active trading. Clearly, in the limiting case, lim,_,~, A, — 1. For interior
solutions, we must consider the marginal impact of transaction costs on the relative
utility of informed and uninformed investors. The unconditional expected utility of
an informed speculator will be a decreasing, continuous function of transaction costs.
The unconditional expected utility of a passive investors will also decrease-but much

93 Ay

5~ > o. Since these functions are continuous, equality will

less rapidly. Hence,
only hold in the corner solutions where marginal changes in expected utility have no

effect on the allocations of investor type.
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Proposition 3 (Shorter investment horizons) Lower transaction costs have a greater

effect on short-horizon investors than long-horizon investors,

with strict inequality for interior solutions (i.e. A, € (0,1) and A5 € (0,1)).

This result comes from the fact that the short-horizon investors’ optimal portfolio
contains a subset of the information of the long-horizon investor. So the desire to
spread trading over a longer horizon is offset by the fact that the short-horizon signal
in period 1 (6,) may be in the opposite direction as the signal in period 2 (6,). Asa
result, short-horizon traders are forced to trade more for the same expected return.

In fact, in a model with many periods (T large), the short-horizon traders will find
that the independence of 6; makes trading in the earliest periods costly relative to the
weakness of their accumulated signal. As the final horizon approaches, the
short-horizon traders will be more inclined to trade as their accumulated signal is
stronger and less likely to suggest they need to unwind their trades because of future
information.

In contrast, the long-horizon traders are eager to trade on their information as
early as possible, but they submit to spreading their trading across later periods in
their desire to minimize their transaction costs. There are also information
advantages to spreading out trades, since larger trades move prices and allow other
traders to freely infer the costly information, but the infinitesimal traders do not

absorb this externality.
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3.2 EXPLAINING THE EMPIRICAL GROWTH IN CAPITAL MARKET SPEND-

ING

A key contribution of this paper is document the relationship between the efficiency
of financial transactions and the growth of modern finance. As improvements in
technology and market organization make transactions less costly, we should expect
to see the volume of transactions increase. This simply follows from the economic
Law of Demand. A more surprising result is that as financial costs decrease, total
spending on finance increases. This is fundamentally a statement about elasticities.

In this section, I focus on establishing the relationship between financial efficiency
and the aggregate measures of financial spending and activity. I use timing to assert
causality in the Granger sense, and using the (plausibly) exogenous historical break
in May of 1975. The evidence is statistically strong but open to the criticism that the
changes in efficiency may be interrelated with contemporaneous events. In section
3.3, I will use cross-sectional variation in the panel data to establish even stronger
results and focus more explicitly on measuring the information content and

investment horizon, two key features of the model.

A TIME SERIES OF TRANSACTION COSTS

With the possible exception of the very recent past, brokerage commissions were the
primary cost in trading equities (Berkowitz, Logue and Noser, 1988). They funded
all the operations required in financial market transactions. To test the efficiency

explanation for the growth of capital markets, I construct a historical time series that
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measures the representative cost of transacting. The measure I propose splices two

date ranges: 1927-1975 and 1975-2010.

PRrRE-1975: THE NYSE FIXED COMMISSION SCHEDULE

From its founding in 1792 up to 1975, the New York Stock Exchange (NYSE)
enforced a minimum commission schedule on all of its member firms. The smaller,
regional exchanges mirrored the commission schedule of the NYSE, and in the rare
cases where they didn't, they faced enormous industry pressure to conform. The
stated goal was to “"prevent competition amongst the members” to protect their
profits. Exchange members referenced the general fear of unfettered trading and
defended high trading costs by observing that "a very low or competitive rate would
also promote speculation.” *

An example commission schedule, corresponding to the NYSE rates for 1956 is
displayed in Figure 3.4. We can see how the formula defining the commission rate is a
function of the nominal share price. Purchasing a round lot (100 shares) of a stock
costing $30 per share, for example, would have a commission of $15 +0.5 times $30.
A round lot of a $60 stock would cost $35 +0.1 times $60.

To construct a time series of the average transaction cost prior to 1975 I collect the
NYSE commission schedules, including the NYSE annual fact books and the

monthly S&P Stock Owners Guide. Combining these commission schedules with

trading volume and price data from CRSP,” I construct an annual series of the

*Report of the Committee Appointed Pursuant to House Resolutions 429 and 504 to Investigate
the Concentration of Control of Money and Credit, H.R. REP. NO. 62-1593
SCenter for Research in Security Prices. Graduate School of Business, The University of Chicago
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Figure 3.4: NYSE Commission Schedule, 1956

An image of the New York Stock Exchange minimum commission schedule for 1956, as reported on

page 7 of the NYSE Fact Book for 1965.
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weighted average cost of trading.

May DAY 1975

In the aftermath of the financial disasters surrounding the Great Depression, the
Securities Exchange Act of 1934 charged the Securities and Exchange Commission
(SEC) with regulating and approving changes to any enforced commission schedules.
Over the following forty years, the NYSE would periodically submit proposals to
increase rates. A pattern emerged whereby the NYSE would complain about the
rising costs and shrinking profits of its members, propose an increase in the
commission schedule in order to maintain an appropriate level of profitability, and
they would get immediate approval from the SEC.

In 1968, however the SEC scrutinized the latest proposed increase with more
skepticism. Regulators asked why the cost of transacting in the financial markets
could not itself be the product of a competitive response. The response from the
exchange was emphatic: "One does not move the keystone of an industry which
facilitates the raising of the bulk of new capital for this country...Negotiated rates
would bring a degree of destructive competition.®

Although the SEC continued to approve a series of regular increases, this initial
dissatisfaction was not placated. On January 23, 1975 the SEC adopted rule 19-b,
requiring all stock exchanges to end the practice of the fixed commission schedule

and allow members to set rates competitively. This rule was to go in effect on May 1,

1975. Distressed brokers and the popular press referred to the deadline as May Day.

(2012), Used with permission. All rights reserved.
®Richard Hack, NYSE president (August 19, 1968)
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As brokers competed for the first time on trading costs, there was a sharp drop in
costs, especially for institutional investors. The SEC instituted a number of studies
trying to measure the impact of their rule. Only two weeks after the beginning of
competitive rates, the SEC Commissioner noted that they “have seen sharp price
cutting, in some instances to half or less of previously prevailing rates.”” The SEC
study of 1978 concluded that institutional trading costs had stabilized to alevel 52.9%
below their fixed rate levels.® Interestingly, the costs to individual traders decreased
only moderately, giving rise to price discrimination among investor types (Tinic and

West, 1980).

PosT-1975: NYSE MEMBER FINANCIAL STATEMENTS

To continue the time series measuring the cost of transacting in the modern period of
negotiated commissions post-197s, I collect commission revenues from the member
financial statements of the NYSE and divide them by trading volume to estimate the
weighted average cost per share.

Figure 3.5 shows the composite time series from 1927 to 2010. We can see the
significant increase in the early 1930Xs followed by a relatively steady increase in costs
for almost 5o years until the sudden drop resulting from the events of May 1975. To
ensure the aggregate time series is a fair representation of aggregate transaction costs,
I compare it to a number of independent measures. These include: the survey results

from Greenwich Associates, a consultancy that surveys institutional investors

“Remarks by A. A. Sommer Jr. in a talk titled “The New Breath of Competition” delivered at the
Seminar on the Analysis of Security Prices, University of Chicago, May 15, 1975.
8SEC Staff Report on the Securities Industry in 1978
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regarding the costs they pay for their transactions; the SEC studies measuring
transaction costs in the wake of rule 19-b; and for historical purposes, the cost
associated with trading a $30 stock, holding the nominal share price constant through
the duration of the fixed commission schedule. Each of these measures corresponds
relatively closely to the composite series I created.

Since the post-1975 series imputes costs rather than calculating them directly, it is
especially useful to compare them with data published by Greenwich Associates, a
firm that has been polling institutional investors on their average commission costs
since 1976. The time series of their survey results is plotted in green triangles
alongside my own estimates on Figure 3.5. The two series are highly similar, except in
the first few years of the sample where the commissions paid by institutions are even
lower than the computed average. This is consistent with historical reports that the
trading commissions charged to individuals did not drop immediately in response to
the deregulation until the advent of discount stock brokers around 198o.

Looking at the data prior to 1975, I plot the evolution of the cost of trading a $30
stock using the orange squares. Historical patterns in share prices and trading volume
cause the higher frequency variation in my composite series, making it useful to
compare against a series where the nominal share price is held constant. Any changes
can then be attributed to the imposed cost schedule and not to endogenous investor
behavior. Focusing on the cost of trading a $30 stock from 1928 to 1973, we see the
round trip cost more than tripled, from 1.07% to 3.46% of the notional value.
Including the additional 1.7% for paying the typical $1/, cost from the bid-ask spread,

the total cost of buying and selling exceeded 5% in 1975. It is important to note the
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economic importance of this magnitude. To put this in perspective, the average stock
response to an earnings announcement is in the range of 4%”, so even if it were
possible to know earnings announcements with certainty, you would typically not be
able to recover the cost of transacting. The costs were so high that only large
misvaluations could merit attention. A speculator would favor low frequency
information, with the hope that transaction costs might be amortized over along
horizon. Furthermore, any dynamic trading strategy, such as a portfolio rebalancing

rule or a derivative replication, would be incredibly costly.

TIME SERIES ANALYSIS

We can expect the constructed time series of transaction costs to be negatively
correlated with trading volume, a relationship that should hold true in nearly any
economic model. If the proposed efficiency explanation for capital market growth
plays a significant role, transaction costs should also be negatively related to capital
market spending. In particular, this increase should correspond to active investment
management and not just an increase in the operational costs associated with higher
trading volume. Lastly, the prediction of more informed speculation also suggests
that employees with higher skill and compensation enter the sector in response to a
cheaper cost of transacting.

The series measuring the cost of capital markets continues to be the value added
measure of capital market industries relative to private GDP with annual data from

1927 to 2010. The series measuring capital markets compensation relative to average

?See, for example, Francis, Schipper and Vincent (2002).
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US private compensation was also previously described and plotted in Figure 3.1. I
measure equity turnover by collecting all available CRSP data on stock volume and
shares outstanding for common equity of US firms. Additional details behind the

data sources and data construction can be found in the online data appendix.

SUMMARY STATISTICS AND SIMPLE REGRESSION ANALYSIS

The summary statistics for these four time series are presented in Table 3.2. We can
see that the transaction cost, measured in basis points (hundredths of one percent),
averages 71 basis points over the full sample. The series ranges significantly from
more than 150 bps near its peak to just a few basis points in recent years. The fraction
of GDP devoted to capital markets averages about 79 basis points over this time
series, averaging about 30 basis points before 1975 and increasing to about 200 basis
points in recent years. The compensation for capital market employees has an average
that is approximately twice the US private sector average over the full sample,
increasing to almost 4 times average compensation in recent years. Equity turnover is
about 56% a year on average, suggesting an average holding period of approximately
two years. While turnover was very high in the late 1920’s, it was consistently low for
most of the 2o0th century and then rises again in the recent past, with a current
horizon of just a few months.

The correlations of the four series are displayed in the bottom panel of Table 3.2.
As predicted, transaction costs have a strong negative relationship with the size of
capital market spending and the volume of trade. While supporting the idea of a

contemporaneous relationship, the slow-moving nature of all four time series might
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Table 3.2: Time series summary statistics and correlations

This table shows summary statistics for annual data on: the average commission cost of transacting
stocks in the United States (tcost) constructed as described in section 3.2; the percentage of national
income consumed by capital markets related activity using a GDP value-added measure divided by
private GDP calculated using data from the Bureau of Economic Analysis (capmkt%); the ratio of
the average salary for employees in capital markets related industries relative to the average salary
across all private-sector employees using data from the Bureau of Economic Analysis (comp ratio);
and the annual turnover in US equities measured by dividing annual volume by shares outstanding
as reported in CRSP. Annual observations are used over the period 1927-2010 to calculate the mean,
standard deviation and various percentiles in the upper panel. Correlations are displayed in the lower

panel.
1927-2010
mean std. 1 %ile 50 %ile 99 %ile
tcost (bps) 71.1 43.6 3.6 78.4 152.0
capmkt% (bps) 78.8 65.7 8.5 43.1 221.6
comp ratio 2.09 0.77 1.20 1.72 3.92
turnover 55.7 58.9 7.3 30.4 277.1
Correlation
tcost capmkt comp turnover
tcost (bps) 1.00 -0.81 -0.83 -0.76
capmkt (bps) -0.81 1.00 0.90 0.72
comp ratio -0.83 0.90 1.00 0.87
turnover -0.76 0.72 0.87 1.00
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Figure 3.6: Predicting the cost of capital markets using the cost of transacting
The above figure plots in red the percentage of national income consumed by capital markets related
activity using a GDP value-added measure divided by private GDP calculated using data from the
Bureau of Economic Analysis. The dotted line shows the fit of a time series regression using the com-
posite commission time series and a linear time trend.

cast doubt on the statistical significance.

We can see this more precisely in the simple regressions shown in Table 3.3, where
the GDP share of capital market (capmkt), the relative compensation ratio for capital
markets (comp) and the estimated US equity market turnover (furnover) are each
regressed on the transaction cost series (tcost). As an illustration of the strength of
this predictive relationship, Figure 3.6 plots the growth in the cost of capital markets
(shown previously in Figure 3.1) against the predicted value from the regression.
While there is certainly some unexplained variation, the visual fit is striking. Note
that each of these series is highly persistent, as is observed in their plots, so it comes

as no surprise that an augmented Dickey-Fuler test does not reject the possibility of a
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unit root. This degree of persistence would discount the significance of their

observed correlations.

REGRESSION OF FIRST DIFFERENCES

To make a stronger case for this relationship and establish causality (in the Granger
sense that past transaction costs forecast growth in capital market activity), we can
consider how the changes in one series affects the other by taking first differences.
With the high degree of persistence in the raw time series, they may be susceptible to
the type of spurious regression results that occur with unit roots. The first differences
could then reveal if the time series are truly related, and if so, if one tends to forecast
the other. Table 3.3 reports the results for regressions forecasting annual changes in
capital market spending, the capital market compensation ratio, and trading volume
as each is regressed on annual changes in transaction costs with up to 4 lags.

The predicted negative relationship remains. Interestingly, changes in transaction
costs lead changes in the other series by approximately 2 to 3 years. For example, in
the first regression of capital market spending on lagged changes in transaction costs
we see negative coefficients for every lag with the second lag being of the strongest
magnitude. We can interpret this coefficient as suggesting a one basis point decrease
in the cost of transactions predicts that capital markets will consume a 13 basis point
higher share of private GDP two years in the future. The same one basis point
decrease in the cost of transacting would predict the average compensation of capital
markets professionals in three years to rise by an additional 0.18 times the

compensation of the average US employee. Looking at the effect on trading volume,
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Table 3.3: Time series regressions of first differences

This table shows the results of regressing changes in the income share of capital markets (Acapmkt),
capital market compensation (Acomp), and equity turnover by volume (Aturnover) on changes in
the commission cost of stock transactions (Atcost) with up to four lags. Newey-West adjusted t-
statistics, with four lags, are reported in parentheses. Statistical significance is noted with: ***p <
0.0, p < 0.05,%p < o.1.

Acapmkt Acomp Aturnover

(1) (2) (3)

Atcost -3.46 4.33 0.62
(4.93) (8.45) (6.34)

L(Atcost) -3.01 3.42 -4.24
(6.20) (9.77) (5.55)

L*(Atcost) -12.98* 2.62 -2.95
(7.29) (11.67) (5.64)
L3(Atcost) -2.41 -18.11% -9.16**
(4.77) (7.07) (4.13)

L*(Atcost) -6.06 -7.20 -7.34
(6.56) (7.95) (5.86)

Constant 1.92 2.38 2.16

(1.17) (1.56) (1.72)

Observations 80 80 80
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this one basis point decrease in transaction costs would suggest trading volume to be
9% higher in three years’ time.

This is actually what we might predict if innovations to transaction costs are
unexpected. In the context of the proposed model, investors commit to their type ex
ante, so we would expect the delayed response to correspond to the time it takes to
acquire the talent and research necessary to launch new dynamic strategies.

The statistical relationship seems compelling, although any claims about the
importance of the efficiency mechanism are certainly open to critiques of omitted
variable bias. A number of important regulatory and technological changes happened
during the 1970’. The coincident growth in capital markets and decline in
transaction costs could be coincidence, although it would be difficult to explain the
strong predictive power of the transaction cost changes exhibited in Table 3.3. To
strengthen the identification of the true mechanism causing financial growth, we can
look at the cross-section of firms and focus on specific predictions around the events

of May 1975.

3.3 MARKET ACTIVITY AND ASSET PRICES IN THE CROSS SECTION

Moving from broad statements about financial activity to the activity we observe for
individual firms provides a more refined measure of how much of the growth in active
investing can be explained by transaction efficiency. The model presented in section
3.1 had specific predictions regarding trading activity and the information content of
asset prices. As trading efficiency increases we expect to see more trading volume and

more informative asset prices. There should also be a differentially large impact on
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the shorter investment horizons relative to longer horizons. Observing
cross-sectional variation in the prices and trading activity of individual firms over the
past few decades will generate micro-level support to add to the macro-level time
series evidence presented in the previous section.

For increased confidence that we are isolating a key driving mechanism behind the
growth of active investing, we can use the events of May 1975 as Rule 19-b came in
force. First, we expect that the subsequent drop in transaction costs associated with
competitive brokerage commissions should lead to a subsequent increase in the
trading and information content of US equities. Following a key prediction of the
model, we should expect this to be stronger for shorter horizons. Then, to better
identify the efficiency channel, we can use specific features of how the fixed
commission schedule affected the cross-section of firms until May 1975 to measure
differential effects. This additional level of control helps rule out competing

explanations that might have occurred on or around 1975.

CONNECTING THE PANEL DATA WITH THE STYLIZED MODEL

In the stylized model of section 3.1, the information content of long-horizon prices
can be measured through the regression coeflicient from projecting the risky
investment outcome (X — E[X]) on to the change in the long-horizon price

(R = P, — P,), defining

- Cov[X,R;] B4,
L Var|Ry | B Var[Ry ]
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Intuitively, the information content of long-horizon prices is positively related to the
quantity of long-horizon active investors.*
The information content of short-horizon prices can be similarly expressed by

(RS =P, — Pz)
_ COV[X7 RS] 50,2‘75

Bs =

Var[Rg]  Var[Rg]’

which increases with the sum of the long-horizon and the short-horizon active
investors.

We can construct an analogous measure with empirical data on stock prices and
earnings. I define the "long horizon” as the period stretching from two years prior to a
firm’s earnings announcement to 7 months prior to the earnings announcement, the
“short horizon” spanning 7 months prior to the earnings announcement to one
month prior to the earnings announcement, and the "announcement period” spans
from one month before to two months after the announcement. The risky investment
outcome will be defined as the scaled change in a firm’s quarterly earnings (Ax;).

This motivates a corresponding empirical regression of the firm’s uncertain payout

on the returns over each horizon,

Axy =B+ B, XL+ g X rs+ B, X1 (3.18)

Each of the returns will be measured as the change in log-price, so if time ¢ is

HCov[X,Ry]

'°Formally, this can be stated as ==5== > o, and also, S%LL > o given Var[Ry| > B, 05
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measured in months relative to the earnings announcement,

. = In(P,) —In(P,,,)
rg = In(Pt,I)—1n<Pt*3))

ra = In(Py,) — In(P,)).

Similarly, the risky payout will be measured as a log return scaled by the price
observed prior to all the returns. If EPS, corresponds to the earnings-per-share

reported on the announcement date, the risky payout in the panel regressions

specified by (3.18) will be defined as

EPS; — EPS;_
Ax; = In (1—}-#) )
Pt—z4

DESCRIPTION OF PANEL DATA

For each year from 1960 to 2012, I construct a universe of firms by selecting the 1000
largest firms by market capitalization, as measured by their CRSP-reported market
cap on December 3 1st of the prior year. For this set of firms, I collect historical
weekly total returns, nominal share prices, trading volume, and shares outstanding.
Using the linked CRSP-Compustat data, I collect a panel of their reported earnings
per share and the date of the earnings announcement.

The announcements dates are not always available, particularly early in the sample,

so I create an additional supplemental series of earnings announcement data where I
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use historical announcement patterns to estimate the date when not available. This
has the advantage of increasing the sample size, and the methodology for estimating
historical announcement dates appears to be very accurate when checked against
firms for which the actual dates are known. Since the announcement return period is
defined to begin one month prior to the reported announcement, any imprecision
should have little effect on the results of the subsequent panel regressions.

Table 3.4 reports the summary statistics for the variables considered in the panel
data regression. The earnings news measure (Ax;) for these large firms over the 45
year sample averages approximately zero with a standard deviation of approximately
2%. The market price for the firms in the sample appears surprisingly high, at about
$104, but this is actually an artifact of Berkshire-Hathaway’s inordinately large
nominal share price. The median share price is $32 with a standard deviation of $24.
Dividing the trading volume recorded in CRSP for each quarter by the shares
outstanding, I obtain firm-level annualized turnover rates for each firm-quarter in the
panel. Over the full sample, annualized turnover averages 2.36, with a wide degree of
variation across firms. The return variables, rr, rs and r4, each correspond to a
different horizon length, so the magnitudes of their average returns and standard
deviations are not directly comparable.

The lower panel of Table 3.4 reports the same summary statistics for the
sub-sample corresponding to the five years before May of 1975, the two years of
observations that overlap with May 1975, and five years afterward. This subsample,
and ones like it, will be used in the panel regressions where the data window tightens

around the events around the implementation of Rule 19-b.
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Table 3.4: Summary Statistics for Panel Data Analysis

The summary statistics below are for the quarterly panel data collected for the 1,000 firms in the an-
nual universe being analyzed. The universe is reset each year, taking the 1,000 largest firms by market
cap. The first panel cover the full sample period, while the lower panel covers the 5-year window be-
fore fixed exchange regime was ended on May 1, 1975 up until 5-years after May 1, 1977—the date at
which none of the collected series overlap with the fixed-rate commission regime.

mean std. 1 %ile 50 %ile 99 %ile
1966 - 2010
Ax; -0.01 2.08 -9.88 0.05 8.83
price 104.10 23.56 6.24 32.50 132.60
turnover 2.36 3.20 0.10 1.39 14.58
rL 0.124 0.446 -0.835 0.082 1.526
rg 0.013 0.216 -0.577 0.011 0.598
ra 0.006 0.156 -0.411 0.004 0.434
(N =134,128)
1970-1982
Ax; 0.02 1.97 -7.60 0.07 6.90
price 32.17 22.26 6.75 27.38 111.80
turnover 0.81 0.87 0.0§ 0.58 4.19
rL 0.102 0.388 -0.785 0.075§ 1.245§
rg 0.017 0.193 -0.485 0.012 0.546
ra 0.007 0.139 -0.336 0.004 0.394

(N=36,174)
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ROLLING PANEL REGRESSION

To generate a graphical measure of the changing information content of prices over
time, we can perform a rolling panel regression. I hold the window length constant at
two years and then estimate the panel regression corresponding to equation (3.18)
with firm fixed effects. Figure 3.7 displays the rolling coefficient estimates as a
scatterplot in the upper axis, where each estimated long horizon coefficient, 3,
corresponds to a white circle and each estimated short-horizon coefficient, f,
correspond to a shaded circle. The lower axis reports the estimated root mean square
error (RMSE) and the R-squared coefficient of each regression.

The rising pattern in the information content of asset prices is clearly visible.
While the magnitude of these betas are roughly similar in the first 10 years of the
sample, the predictive power of the short-horizon prices increases much more rapidly
than the long-horizon prices. In a more careful subsequent regression estimating the
trend in information content over time, I show the increase in the long horizon
coefhicient, while positive, to be statistically difficult to distinguish from a hypothesis
of no change.

This is consistent with the results of Bai et al. (2012). They look at the information
content of prices at one to three years prior to earnings releases. This is what my
results would consider long-horizon information, and I find no compelling evidence
that this information has improved over time.

On the other hand, asset prices less than one year prior to earnings
announcements show a consistent increase in information content. Previewing my

focus on the events of May 1975, this figure already gives a strong visual indication
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that the strongest increases in information content correspond to this change as
active investing increased dramatically.

While this rolling analysis is instructive, the underlying investment setting may not
be fully comparable as the sample rolls across time. The information gathering
problem may be different from one decade to the next, and there may be significant
changes in the price-to-earnings relationship that would affect the magnitude of the
coeflicients.

With that in mind, it is interesting to look at the bottom axis of Figure 3.7 and note
how both the explained variation (R*) and the unexplained variation (RMSE) are
increasing in the late 1970’ and, to a lesser extent, over the full historical sample. This
suggests that the raw difficulty of forecasting earnings increased, but so did the

fraction of variation that prices could explain.

PANEL REGRESSION WITH TREND

To directly estimate the pattern of change in the information contained in asset prices
over the full sample, I run a full panel regression, interacting the return variables with
the time trend. The variable, trend is measured in years, and the coeflicient on
ry, X trend can be interpreted as the annual change in the regression coeflicient
measuring long-horizon information content. Corresponding interaction terms are
used for the short-horizon and announcement return.

Table 3.5 reports the results of the base panel regressions suggested in equation
(3.18) as well as a version with these time trend interactions. The reported standard

errors are estimated using industry clustering, where I use the two digit SIC code as
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Figure 3.7: Rolling Regression Coeflicient and Moving Average, 1965-2010
The two axes plot the results of the rolling regressions described in section 3.3. The top axis plots the
estimated regression coefficients and the lower axis plots the square root of the mean squared error

(RMSE) and the R* values.
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the definition for industry throughout.

The regression reported in the first column of Table 3.5 reports the results of the
base regression using firm fixed effects, considering variation within firms. The
second regression specification uses industry and quarter fixed effects to isolate the
impact of variation among similar firms in the same time period. The results of each
specification are very similar. The strong statistical significance of these regression
coefhicients should not be too surprising; changes in asset prices correspond to
present and future changes in earnings. On the other hand, the coefhicient on the
long-horizon return is not particularly strong in the first specification with firm fixed
effects, and disappears entirely in the second specification.

The third specification is the primary one of interest. It shows the gradual change
in these coeflicients over time. The interaction term between the short horizon
return and the time trend is statistically significant at the 1% level. In contrast the
long horizon return shows little evidence of increasing informativeness over time. Of
note, the three-month return around the earnings announcement actually shows a
decreasing relationship in predicting the reported earnings. The fact that we observe
opposite effects on the short-horizon and announcement returns may indicate a

substitution of information being pulled into earlier asset prices.

THE POST-1975 EFFECT

Over such a long sample, any number of underlying parameters could be changing.
The types of firms today are certainly very different than those of the 1960s. There

could very well be differences in the difficulty of predicting their future profitability,
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Table 3.5: Base panel regression with time trend

The regression estimates below are the result of panel regressions of earnings news (Ax defined in
section 3.3 of the paper) on past log returns, log returns interacted with a time trend. The regres-
sion also includes a constant term and constant trend variable, but the coefficients are not reported.
Industry-clustered, heteroskedasticity robust standard errors are in parentheses below each estimated
coeflicient. Statistical significance is noted with: ***p < 0.0, p < 0.05,*p < 0.1.

(1) (2) (3)

. 0.033 -0.001 0.029
(0.028) (0.026) (0.053)
r X trend 0.0000
(0.0020)
rs 0.667"** 0.712%** 0.31§***
(0.078) (0.073) (0.100)
rs X trend 0.0110™**
(0.0026)
ra 0.720™** 0.816™** 1.380™**
(0.080) (0.073) (0.145)
ra X trend -0.0208***
(0.0056)
Fixed Effects
# firms 3,061 3,061
# industries 66
# quarters 175§
Observations 134,128 134,128 134,128
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there can be differences across industries, and there could be differences in their
accounting conventions. To be sure that we are truly measuring changes in asset price
information and not these other confounding features, we can focus on the change in
transaction efficiency associated with the implementation of Rule 19-b in May of
1975 and tighten the estimation window around this period.

I estimate panel regressions using the same framework as before, but I now interact
the returns with a dummy variable, post7s, that equals one for observations where all
corresponding variables are observed after the advent of competitive commissions
(ie. after May of 1977). Interacting with this dummy variables tests for a
discontinuity in the parameter estimates when crossing this boundary. This
regression is reported in Table 3.6.

There are four regression specifications in the columns of the table, with each one
representing a smaller window around 1975. The first specification estimates the
panel regression over the full sample, comparing pre-1973 to post-1975 data using the
observations from 1966 to 2010. Both long horizon and short horizon prices show
dramatic increases in their information content, with their coefficients increasing by a
factor of four. However, only the short horizon variables show statistical significance.

The three successive regression specifications with tighter and tighter sample
windows increase the standard errors in the coeflicient estimates but decrease the
concern that other factors unrelated to efficiency and information are driving this
result. Looking at the coeflicient estimates, the post-1975 effect on short horizon
price information remains roughly equal for each time window considered. The effect

on long horizon information is always weaker than short horizon and difhicult to
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Table 3.6: Testing the May Day effect in the time series

The regression estimates below are the result of panel regressions of earnings news (Ax defined in
section 3.3 of the paper) on past log returns and log returns interacted with a post-1975 dummy vari-
able. Coeflicients for constant term and constant post-1975 dummy are estimated but not reported.
Industry-clustered, heteroskedasticity-robust standard errors are reported in parentheses. Statistical
significance is noted with: ***p < 0.01, ™ p < 0.05,*p < 0.1.

full-sample 10 yr window s yr window 3 yr window

(1) (2) (3) (4)

L 0.010 0.010 0.016 0.069

(0.035) (0.035) (0.051) (0.074)

rL X post7s 0.031 0.078 -0.000 -0.137
(0.043) (0.055) (0.062) (0.105)

rs 0.234"** 0.235*** 0.255** 0.375**

(0.066) (0.066) (0.086) (0.153)

rs X post7s 0.513%** 0.560"** 0.469™* 0.407
(0.119) (0.180) (0.208) (0.319)
ra 0.811%** 0.812%** 0.933*** 0.870™**

(0.128) (0.129) (0.178) (0.251)

ra X post7s -0.124 0.514%** 0.704** 1.077**
(0.173) (0.191) (0.287) (0.496)

Fixed Effects

# firms 3,058 1,653 1,205 1,059
Observations 128,114 55,184 30,160 18,070
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distinguish from zero.

IDENTIFICATION USING CROSS-SECTIONAL COST DIFFERENTIALS

So far the panel analysis has only used the dimension of time to associate active
trading and information with transaction efficiency. The strongest evidence for this
channel will come from the differential impact across stocks.

The NYSE fixed commission schedule was always a function of the nominal share
price. Assuming the nominal share price is a historical artifact, this creates variation
across stocks that is plausibly unrelated to any economic characteristics. The
commission schedule was set as a decreasing function of nominal share price, so
stocks with lower prices were much more expensive to trade than those with higher
share prices."!

There are various ways to exploit this variation. The most simplistic is to use a
difference in differences approach. I form three categories: lowP for stocks with a
nominal share price less than $15, midP for stocks whose nominal share price is
between $15 and $30, and highP for stocks whose nominal share price is above $30.
We can then look at the differential impact across categories before and after 1975.

Table 3.7 reports the results of this approach, where the coeflicients of interest are
the magnitudes of the product: r;, X lowP X post7s, r;, X midP X post7s,
rr, X highP X post7s, rs X highP X post7s, and so forth. The prediction we are testing is

whether these coefficients are positive (indicating more information post-1975) and

A surprising fact about stock prices is that the distribution of their nominal price per share has
been remarkably consistent over time despite inflation and secular changes in investor and investment
characteristics. This has been discussed by Weld, Michaely, Thaler and Benartzi (2009).

202



monotonically decreasing in nominal price (indicating a differential impact across
firms according to the relative change in transaction efficiency). As in the previous
table, each regression specification corresponds to tighter windows around 1975.

The results for short-horizon prices are just as predicted. All prices appear more
informative, but the impact on securities with the largest change in transaction costs
(lowP) is an order of magnitude higher than stocks where the change was more
moderate. As hoped, the relationship is monotonic across the three categories and
roughly consistent as the time window shrinks.

In the first regression specification, which uses the longest window, there is some
evidence of an increase in information content of long-horizon prices, and the
cross-sectional relationship with respect to nominal share price is monotonically
decreasing. However, the statistical significance is low, and result disappears entirely

in the specifications with shorter sampling windows.

3.4 IMPLICATIONS AND CONCLUSIONS

The empirical analysis shows great success in explaining the modern growth in the
cost of capital markets and in looking at its effect on asset prices. However, looking at
the information in asset prices only opens the door to broader questions about the
social benefits of these changes.

In the simple model presented here, the benefits of active trading largely come
from two sources: the noise shocks and the efficient allocation of capital. However,

the improved capital allocation is a broadly shared positive externality, not something
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Table 3.7: Testing May Day effect in the cross-section

Coeflicients for constant term and unique permutations of constant dummies are not reported.
Industry-clustered, heteroskedasticity-robust standard errors are reported in parentheses. Statistical
significance is noted with: ***p < 0.01,™ p < 0.05,*p < 0.1.

10 yr window 5 yr window 3 yr window

(1) (2) (3)

Long-horizon return

Rig... -0.014 0.004 0.015
(0.020) (0.029) (0.042)

X lowP 0.025 -0.009 -0.023
(0.120) (0.137) (0.180)

X midP -0.040 -0.087 -0.164
(0.038) (0.056) (0.111)

xlowP X post7s 0.137 -0.091 -0.193
(0.191) (0.201) (0.261)

XmidP X post7s 0.125** 0.0639 0.113
(0.047) (0.062) (0.135)
X highP X post7s -0.013 -0.040 -0.0659
(0.191) (0.287) (0.496)

Short-horizon return

Ry ... 0.186™** 0.225™* 0.313%**
(0.040) (0.058) (0.089)
X lowP -0.0217 -0.027 -0.094
(0.225) (0.244) (0.325)
XmidP 0.131 -0.0375 -0.02§
(0.146) (0.168) (0.209)
xlowP X post7s 2.201™** 2.056™* 1.939™*
(0.416) (0.520) (0.675)
XmidP X post7s 0.292 0.368 0.067
(0.241) (0.248) (0.292)
x highP X post7s 0.164* 0.144* 0.170
(0.082) (0.084) (0.121)
Fixed effects
# industries 64 61 61
Observations 61,198 36,174 24,084
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the active investors accrue directly. The immediate trading profits come at the
expense of a counterparty. To what extent will these noise traders be happy in

funding trading profits?

SOCIAL WELFARE

The bigger normative question everyone wants to answer is: are we spending too
much on finance? Taking the empirical results back to the modeling framework, we
easily see two important welfare effects. First, investors fight over their slice of the
pie, leading to what Stein (1987) terms "welfare-reducing speculation.” These
expenses are wasteful and would suggest too much spending in financial markets.
Second, more informed asset prices increase the size of the pie, but the informed
investors capture only a small portion of this benefit. All of us who use public market
prices are free-riders, and this positive externality suggests we aren’t spending nearly
enough on informed speculation.

The welfare-reducing speculation can be clearly seen in the simple model where
the supply of the risky investment is perfectly inelastic, as it would be for very short
horizons. Using the same model parameters that illustrated the equilibrium in
section 3.1, 1 add a dotted line to the left panel of Figure 3.8 to show the social welfare
(calculated as average expected utility) in the same plot as the expected utility of the
active and passive investors. Since the resources spent on information have no effect
on total output, social welfare is maximized with practically no informed trading, a
solution clearly less than the competitive equilibrium.

It is this type of intuition that drives the suggestions of Philippon (2010), who
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suggests we may have too few engineers relative to financiers, or Bolton et al. (2011)
who similarly contrasts an overabundance of financiers relative to entrepreneurs.

In contrast, the free-riding effect is illustrated in the case of an elastic investment
supply, as we would expect for long horizons. The left panel of Figure 3.9 shows the
equilibrium for the same parameters used in the previously discussed example, except
the supply of investment will now respond to more accurate asset prices. As you can
see, the socially optimal level of informed investment would allocate nearly half of
investors to buy information, but the competitive equilibrium allocates far fewer
since the uninformed investors are free riding on the social benefits of more informed
asset prices.

This analysis builds on the fundamental insight of Hirshleifer (1971), who
contrasts the private and social value of foreknowledge. In the model presented here,
all information is foreknowledge, learning about information that will inevitably be

public knowledge later.

CONCLUSIONS

In the aftermath of the recent financial crisis, scrutiny of financial institutions has
increased. The growth in the resources poured into active investment and the surging
compensation levels of financial professionals are used as prima facie evidence that
financial markets have become inefficient, with many doubting that more active
management leads to more informative asset prices.

In a stylized model, I show that investment research and trading are complements,

which causes the quantity of both to increase. Financial markets become more
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informationally and operationally efficient. Empirically, this explanation is very
successful in explaining the growth in resources spent in capital markets.
Furthermore, it introduces new evidence on the importance of time horizon. Trading
horizons have shortened, and there is a corresponding increase in the short-horizon
information contained in asset prices.

Since shorter trading horizons may not be socially optimal, this result could be
interpreted as justification for Summers and Summers (1989) claim that a non-zero
tax on trading might be welfare enhancing, although this requires more explicit
measurement of the benefits that arise from informative markets and the recognition
that the actual implementation of a financial transaction tax may be impractical
(Campbell and Froot, 1994).

The types of dynamic strategies that become feasible with lower transaction costs
not only make short-horizon information more valuable but they can also come
closer to dynamically completing markets. It is certainly no accident that equity
options became widely available in the late 1970s and early 1980s, precisely when US
transaction costs experienced their largest drop. The newfound exposures made
possible by dynamical hedging may have attracted investors to trade on new risks
(Simsek, 2012).

The cost of capital markets has grown enormously over the past few decades. A
portion of this can be attributed to the events of May 1975 that enabled dynamic
trading strategies and spurred an increase in active investing. This opened the door to

modern capital markets, with information and trades moving at ever shorter horizons.
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