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AĶňŉŇĵķŉ

Prices in ėnancial markets are primarily driven by the interaction of risk and time.

ĉe returns to ėnancial assets over long time horizons are primarily driven by

fundamental news regarding their promised cash Ěows. In contrast, short-run price

variation is associated with a large degree of predictable, transient investor trading

behavior unrelated to fundamental prospects.

ĉe quantity of long-run risk directly affects economic well-being, and its

magnitude has varied signiėcantly over the past century. ĉe theoretical model

presented here shows some success in quantifying the impact of news about future

risks on asset prices. In particular, some investing strategies that appear to offer

anomalously large returns are associated with high exposures to future long-run risks.

ĉe historical returns to these portfolios are partly a result of investors’ distaste for

assets whose worth declines when uncertainty increases.

ĉe ėnancial sector is tasked with pricing these risks in a way that properly

allocates investment resources. Over the past thirty years, this sector has grown much

more rapidly than the economy as a whole. As a result, asset prices appear to be more

informative. However, the new information relates to short-term uncertainty, not

long-run risk. ĉis type of high-frequency information is unlikely to affect real

investment in a way that would beneėt broader economic growth.
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ĉe energies and skills of the professional investor and spec-
ulator...are, in fact, largely concerned, not with making su-
perior long-term forecasts of the probable yield of an invest-
ment over its whole life, but with foreseeing changes in the
conventional basis of valuation a short time ahead of the gen-
eral public.

JohnMaynard Keynes

1
Price Comovement and TimeHorizon:

Fads and Fundamentals

TļĹ ĽłŋĹňŉŁĹłŉ ŇĽňĿ Ńĺ ĵ ńŃŇŉĺŃŀĽŃ is closely connected to the comovement of

its components; risk diversiėes when price movements are independent but persists

when changes in price are correlated. But what if prices move together over short

time intervals but seem less related over long horizons? It would seem they share

exposure to a fad that is unrelated to fundamental risk or proėtability. In other cases,

closely related assets might have prices that move together over long horizons but not

over shorter intervals. ĉis insufficient comovement masks their shared fundamental

ǉ



exposures. Analyzing the returns to individual US equities, I ėnd their correlations

depend signiėcantly on the time horizon considered. For each pair of stocks,

measures of shared trading behavior versus measures of shared fundamentals are

highly predictive of excess or insufficient comovement.

My empirical results employ a novel methodology in estimating how much of the

measured differences in short-horizon and long-horizon correlations arise from

estimation noise. ĉis drives the statistical inference, emphasizing that these

differences are too large to be circumstantial. ĉe weekly returns to a typical pair of

US stocks have a correlation of ǉǐƻ, but I ėnd the correlation of their ǎ-month

returns are frequently Ǌǈƻ higher or lower than their weekly returns would suggest.

Long-horizon correlations predictably decrease for stocks with similar investor

trading paĨerns and correlations predictably increase for stocks of ėrms with closely

related business prospects as measured by their industry affiliation or by past

accounting measures.

In contrast with previous studies studying excess comovement by looking for

special cases where nominal labels change but fundamental risks do not, I take the

broad universe of US stocks and analyze comovement through differences in

short-run and long-run correlations. ĉe methodology could easily be employed

within or across other asset classes.

Correlations are a key ingredient in asset allocation and asset pricing, and these

ėndings have practical implications for investors. Estimates of portfolio risk should

depend on the time horizon. Buy-and-hold investors may be misled if their

diversiėcation estimates are based on short-term returns. Short-horizon correlations

Ǌ
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Figure ǉ.ǉ: Correlations for Heinz, Phillip Moris and Harley Davidson

will be much more pertinent to an investor who rebalances frequently. Such an

investor might also take advantage of the associated predictability. A simple

long/short trading strategy based on a measure of fads versus fundamentals generates

risk-adjusted annual excess returns of ǐ.ǌƻ and a Sharpe Ratio of ǉ.ǈǋ.

As a motivating example, consider the returns to three large US stocks, Heinz,

Philip Morris, and Harley Davidson. During the ǉǑǑǈ’s, all three stocks were actively

traded, and their business lines were relatively stable until the turn of the century,

when Philip Morris began a series of acquisitions and divestitures. Looking at their

weekly returns during this decade, each pairing of the three ėrms has a correlation of

approximately Ǌǈƻ. ĉis is slightly greater than the average correlation we observe

for most large cap US stocks during this period.

Now consider the long-run fundamentals shared by these stocks. Although

ǋ



popular culture might lead you to connect the customers of Philip Morris’ tobacco

products with the stereotypical motorcyclist astride a Harley, some of the largest

business lines of Philip Morris included more traditional food staple brands such as

Kraě, Oscar Mayer and Jell-O. As you might expect, Philip Morris’ accounting proėts

correlated with those of Heinz (quarterly ROE correlation of ǊǏƻ), another producer

of food staples, yet seem to have no relationship with those of Harley Davidson.

ĉese relationships become increasingly apparent as the time horizon for returns

lengthens and the estimated correlations differ signiėcantly from the one-week

estimates. Figure ǉ.ǉ shows how the correlation estimates change with the length of

the return interval used within the decade. As the horizon increases, the correlation

of the returns of Philip Morris and Heinz steadily increases to greater than Ǐǈƻ, while

the correlations of each ėrm’s returns with those of Harley Davidson decrease to

approximately zero.

AdmiĨedly, the examples of Heinz, Philip Morris and Harley Davidson are

selected ex post from an enormous number of pairwise correlations and possible

sample periods. Estimates of long-horizon correlations are noisy and the plots in

Figure ǉ.ǉ could be coincidental. A more careful analysis of US stock returns between

ǉǑǏǈ and Ǌǈǉǈ conėrms paĨerns of this sort are pervasive.

A number of researchers have highlighted characteristics that appear to drive

excess comovement in equity returns. Barberis, Shleifer and Wurgler (ǊǈǈǍ) and

Boyer (Ǌǈǉǉ) consider equity index inclusion and ėnd that the addition of a stock to

major market indices causes an immediate increase in the correlation of its returns

with other index constituents. Similarly, Brealey, Cooper and Kaplanis (ǊǈǈǑ) look at

ǌ



changes in exchange listing due to cross-border mergers and ėnd a stock’s

comovement immediately increases with securities listed in its new home market.

Controlling evenmore strongly for differences in fundamental risk, Dabora and Froot

(ǉǑǑǑ) look at companies with shares that trade on multiple exchanges and ėnd that

the prices of otherwise identical claims diverge from each other and move with other

stocks listed on their respective exchanges. ĉe empirical strategy employed in each

of these papers compares comovement in a speciėc subset of stocks for which

circumstances suggest there are no differences in fundamental risk, at least on average.

In contrast, my approach examines a broad universe of stock prices and seeks to

measure the aggregate extent to which fads and fundamentals drive comovement.

Instead of comparing correlations immediately before and aěer some event, I

compare correlations made over the exact same time period where the only

difference is the return increment. In this respect, there are fewer concerns about

omiĨed risks associated with the treatment effect.

ĉe study of excess comovement and fundamentals bears similarity to the work

motivated by Shiller (ǉǑǐǉ), questioning how the aggregate stock market can be so

volatile compared to the relatively stable paĨern of dividends received by investors.

ĉis led to a large literature testing variance ratios over various time horizons. ĉere

are two advantages to studying correlations rather than variance ratios. First,

correlations control for volatility and are less affected by time variation in market

discount rates. Second, the rich cross-section of correlations allows for panel analysis,

avoiding many of the econometric shortcomings associated with analyzing

long-horizon returns in a limited time series.
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One of the more striking empirical features of equity correlations is the fact that

the historical correlations between most stocks increase as their return horizon

lengthens. ĉis stylized fact has not gone unnoticed. Campbell, LeĨau, Burton and

Xu (Ǌǈǈǉ) study the volatility of individual equities and note how equity correlations

generally declined during the ǉǑǐǈ’s and ǉǑǑǈ’s and how correlation estimates using

daily returns are, on average, lower than those using monthly returns. Lo and

MacKinlay (ǉǑǑǈ) study the proėtability of contrarian strategies and aĨribute the

success of this strategy to positive cross-autocorrelation. ĉeir conclusions imply that

correlations increase with time horizon. ĉis is historically true, though I show much

of this effect is due to market microstructure and becomes less prominent as trading

costs have decreased.

What sort of labels might be most salient for investors’ fads? Since market

capitalization and relative valuations are common groupings, we might associate fads

with investment styles based on size and value. ĉis is a key prediction of Barberis

and Shleifer (Ǌǈǈǋ), who propose style driven investing accommodates the cognitive

limitations of investors. Veldkamp (Ǌǈǈǎ) derives similar predictions in a rational

seĨing where investors generalize costly information across similar ėrms. My

empirical results show weak evidence that ėrms of a similar size exhibit excess

comovement, and my results do not show excess comovement in ėrms with similar

book-to-market ratios.

Others have connected evidence of excess comovement with trading paĨerns by

obtaining trade or position data for retail investors (Kumar and Lee, Ǌǈǈǎ) and

mutual fund managers (Greenwood and ĉesmar, Ǌǈǉǉ; Antón and Polk, Ǌǈǉǈ).
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Given the increasing importance of index benchmarks, Greenwood (Ǌǈǈǐ) looks at

how index construction can lead to return paĨerns induced by index based trading.

In this paper, I aĨempt to measure shared trading behavior directly by using the

mechanical autocorrelations in returns caused by bid-ask bounce (Roll, ǉǑǐǌ) or the

temporary market impact of trading (Campbell, Grossman and Wang, ǉǑǑǋ).

To measure shared fundamentals, my primary measure is the past correlation of

accounting returns, measured by return on equity (ROE). I also look at common

industry membership as an indicator that ėrms face similar demand or proėtability

shocks. ĉe aĨempt to connect stock comovement to fundamentals builds on the

work of Pindyck and Rotemberg (ǉǑǑǋ), who ėnd most price comovement is

unrelated to macroeconomic shocks and Cohen, Polk and Vuolteenaho (ǊǈǈǑ), who

ėnd the CAPM performs beĨer when they measure betas using accounting returns

rather than traditional price return betas.

ĉe relationship between return horizon and correlation serves as a valuable

measure of excess comovement in asset prices. It quantiėes the economic

signiėcance of previous studies that identify an individual phenomenon driving

excess comovement. By introducing measures of trading behavior and fundamentals,

I can further identify the fads associated with excess comovement and the insufficient

comovement associated with shared fundamentals. ĉis is a natural framework to

think about risk and portfolio construction, which yields intuition for portfolio

management and asset prices.

Ǐ



ǉ.ǉ MŃĸĹŀĽłĻ ĵłĸMĹĵňŊŇĽłĻCŃŁŃŋĹŁĹłŉ

To beĨer understand how correlations might change with time horizon, consider

what happens to the comovement of asset prices if investors are slow in incorporating

new information about fundamental value and if swings in the popularity of

investments affect their demand. We can contrast this with the case of no return

predictability or where return predictability comes through long-term time variation

in discount rates. ĉis simple model of fads and fundamentals also suggests a

prediction regarding which pairs of assets will show correlations increasing with time

horizon and which pairs of assets will show decreasing correlations.

ĉe model could apply to any sort of ėnancial asset or portfolio of assets. ĉe

effect of time horizon on correlation is likely greatest in cases where markets are

segmented or where the fundamental value is opaque. However, the notation and

presentation of the model will consider the assets to be individual equity securities, in

line with the empirical analysis to be presented.

MŃĸĹŀĽłĻ ĺĵĸň ĵłĸ ĺŊłĸĵŁĹłŉĵŀň

Deėne the fundamental value of security i at time t as P∗i,t, entitling its owner to

payoutDi,t+ƥ. Changes in log value, Δp∗i,t+ƥ = ln P∗i,t+ƥ+Di,t+ƥ

P∗i,t
will be a combination of

the expected return and the unexpected shock,

Δp∗i,t+ƥ = Et
[
Δp∗i,t+ƥ

]
+ ηi,t+ƥ. (ǉ.ǉ)
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Suppose that themarket pricemay differ from this fundamental value for two reasons:

ėrst, transitory fads may cause short-run price deviations across certain groups of

securities, and second, changes in fundamental value may be incorporated with a

delay. ĉis can be modeled in a simple way by deėning the log return to security i as

ri,t+ƥ = Δp∗i,t+ƥ − Δdi,t+ƥ + Δfi,t+ƥ (ǉ.Ǌ)

where the delay in incorporating fundamentals, Δdi,t+ƥ, is governed by δd ∈ [Ƥ, ƥ) in

Δdi,t+ƥ = ηi,t+ƥ − (ƥ − δd)
∞∑
k=Ƥ

δkdηi,t−k+ƥ, (ǉ.ǋ)

and the fad component,

Δfi,t+ƥ = εi,t+ƥ −
ƥ − δf
δf

∞∑
k=ƥ

δkf εi,t−k+ƥ, (ǉ.ǌ)

has shocks εi,t+ƥ that decay through δf ∈ [Ƥ, ƥ). I will assume that ηi,t and εi,t are

independent martingale difference sequences.

Although this implies predictability in returns, it may not be easy to recognize.

ĉese two forces have offseĨing effects on univariate tests of predictability. For

example, consider an aĨempt to detect forecastability using the autocovariance. For

simplicity, we’ll assume for now that expected returns change very liĨle (i.e.

Cov
[
Et
[
Δp∗t+ƥ

]
,Et+τ−ƥ

[
Δp∗t+τ

]]
≈ Ƥ)¹. ĉe autocovariance of rt with return rt+τ

¹Note that short-term variation could be driven by behavioral or rational causes, but the label
”fad” will be used to categorized price movement that is transient and over very short horizons. ĉe
empirical impact of time variation in discount rates is speciėcally addressed in Section ǉ.Ǎ.
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realized τ > Ƥ periods in the future is

Cov [rt, rt+τ] = δτd
(
Var
[
ηi,t − Δdi,t

])
︸ ︷︷ ︸
momentum in fundamentals

− δτf
(
δ−ƥ
f Var [Δfi,t − εi,t]

)
︸ ︷︷ ︸

reversal in fads

. (ǉ.Ǎ)

ĉe delays in incorporating information contribute to momentum in returns

(positive autocorrelation), but the transient nature of fads contribute to return

reversal (negative autocorrelation). ĉese may offset enough that it is hard for an

autocorrelation or variance ratio test to reject the null hypothesis of no predictability.

Fortunately, we may be able to take advantage of variation in the way fads and

fundamentals affect different assets. In the context of this model, there will be an

asset j for which we can measure the effect of the fad (the correlation of εi,t with εj,t)

or delayed fundamentals (the correlation of ηi,t with ηj,t). A temporary increase in the

popularity of blue chip stocks, for example, may cause the prices of these ėrms to rise

together even when their future earnings are unchanged and unrelated. Measures of

comovement across assets could offer beĨer information regarding the extent to

which prices temporarily deviate from fundamentals.

DĹĺĽłĽłĻ ķŃŁŃŋĹŁĹłŉ

To be more precise in deėning comovement, I will generally refer to the short-term

comovement of asset i and asset j as their contemporaneous correlation

ρij (ƥ) =
Cov

[
ri,t+ƥ, rj,t+ƥ

]√
Var [ri,t+ƥ]Var

[
rj,t+ƥ

] . (ǉ.ǎ)
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ĉe long-horizon return of asset i overH periods will be
∑H

h=ƥ ri,t+h, so the long-term

comovement of asset i and asset j is then the correlation associated with their returns

with horizon lengthH ,

ρij (H) =
Cov

[∑H
h=ƥ ri,t+h,

∑H
h=ƥ rj,t+h

]√
Var
[∑H

h=ƥ ri,t+h
]
Var
[∑H

h=ƥ rj,t+h
] . (ǉ.Ǐ)

One advantage of measuring comovement through correlations is that it controls for

changes in the variance of assets i and j in the denominator. In that sense we are

focusing on their joint price behavior as opposed to factors affecting their individual

volatilities. A key result comes from expanding the variance and covariance terms in

the deėnition of long-term correlation,

Cov

[
H∑
h=ƥ

ri,t+h,
H∑
h=ƥ

rj,t+h

]
=

H∑
h=ƥ

Cov
[
ri,t+h, rj,t+h

]
+
∑
k̸=h

H∑
h=ƥ

Cov
[
ri,t+h, rj,t+k

]
Var

[
H∑
h=ƥ

ri,t+h

]
=

H∑
h=ƥ

Var [ri,t+h] +
∑
k̸=h

H∑
h=ƥ

Cov [ri,t+h, ri,t+k] . (ǉ.ǐ)

ĉe assumption of no fads or delayed fundamentals means past returns do not

forecast the future. ĉis implies Cov
[
ri,t+h, rj,t

]
= Ƥ ∀j and ∀h ̸= Ƥ, so the double

summations in the equations above must equal zero. In this case

ρij (H) = ρij (ƥ) ∀H , (ǉ.Ǒ)

and correlations should be the same regardless of return horizon. We might denote
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the difference between long-run and short-run correlations as

Δρij = ρij (H)− ρij (ƥ). My null hypothesis is Δρ = Ƥ. As an alternative, I propose

Cov
[
ri,t+h, rj,t

]
̸= Ƥ and is instead

Cov
[
ri,t+h, rj,t

]
= ρτd

(
Cov

[
ηi,t − Δdi,t,ηj,t − Δdj,t

])
︸ ︷︷ ︸

shared fundamentals

− ρτf
(
ρ−ƥ
f Cov

[
Δfi,t − εi,t,Δfj,t − εj,t

])︸ ︷︷ ︸
shared fads

. (ǉ.ǉǈ)

ĉis will be positive when the ėrst term is more important for a pair of ėrms and

negative when the second term dominates. Correlations will no longer remain

consistent regardless of time horizon. Instead, equation (ǉ.ǐ) shows how ėrms with

similar fundamentals will have correlations that increase with time horizon and ėrms

whose prices share exposure to fads will have correlations that decrease with time

horizon.

EŁńĽŇĽķĵŀ ĹňŉĽŁĵŉĽŃł Ńĺ ķŃŁŃŋĹŁĹłŉ

In estimating the relationships of long-horizon returns can be problematic within a

given sample. ĉe sample size effectively gets smaller as the return horizon increases.

For example, with a return horizon of six months, a decade of data allows for only

twenty independent increments. Additionally, the long-horizon returns within a

given sample will depend on the start and end dates chosen. Six month returns

starting in January and June might yield different results than returns starting in April

and October. We can minimize the impact of these limitations by estimating
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correlations using every possible overlapping window available.

Within a given sample, a correlation for horizon lengthH is estimated as

ρ̂ij (H) =
∑H

h=−H

(H−h
H

)
ĉij (h)√(∑H

h=−H

(H−h
H

)
ĉii (h)

) (∑H
h=−H

(H−h
H

)
ĉjj (h)

) . (ǉ.ǉǉ)

ĉe empirical cross-autocovariance ĉij (h)measures the relationship between ri and

rj’s realizations of h periods in the future,

ĉij (h) =
ƥ

H− r

∑
(ri,t − r̄i)

(
rj,t+r − r̄i

)
. (ǉ.ǉǊ)

Estimating long-run correlations using (ǉ.ǉǉ) is equivalent to averaging the

correlation estimates for returns of horizon lengthH using all possible windows.

Suggestively, this is also identical to the correlation resulting from Newey and West’s

(ǉǑǐǏ) estimator of the long-run covariance of a time series. ĉe fundamental risk in

a ėnancial time series is closely related to the concept of long-run variance, which

continues to be a major topic of research in time series econometrics.

TļĹ ńŇĽķĹ ĽŁńĵķŉ Ńĺ ŉŇĵĸĽłĻ ĶĹļĵŋĽŃŇ

To identify the sorts of ėrms whose prices are driven by shared trading behavior

rather than fundamentals, we could propose characteristics that might be overly

salient to investors and test to see if they predict negative values for Δρij. For example,

if investment styles are indicative of non-fundamental related trading they would

show negative coefficients in a regression.

To capture trading behavior more directly, we can try to measure which assets tend
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to be contemporaneously bought and sold. ĉe simple model above would predict

that assets with a greater degree of shared trading behavior will exhibit more values

for Δρij. While it might seem difficult to observe data on who is initiating

transactions, I will show how shared trading behavior can be inferred by looking at

correlations in bid-ask bounce.

Consider Roll’s (ǉǑǐǌ) model of the effective bid-ask spread. He notes that the

closing price recorded for a security can be affected by whether the last trade was

driven by a purchase or a sale. ĉis price differential can be interpreted as the literal

bid-ask spread paid by buyers and sellers who initiate trades with market makers, or

this could be a more modern concept of temporary price impact as the intensity of

buying or selling pressure affects liquidity provision.

Suppose that an average sized buyer must pay pi,t + bi, and sellers of an average

quantity receive pi,t − bi. Hence bi can be thought of as the temporary market impact

of trading. Any permanent impact from information in trades is captured by updates

in pi,t. ĉe observed return is then a combination of the price change and the

transitory market impact of purchases (indicated by binary variable ηi,t = ƥ) or sales

(when ηi,t = −ƥ). ĉe observed return (̃ri,t+ƥ) can be expressed as the log return

(ri,t+ƥ = pi,t+ƥ − pi,t) plus the market impact

r̃i,t+ƥ = ri,t+ƥ + bi
(
ηi,t+ƥ − ηi,t

)
. (ǉ.ǉǋ)

Let’s assume that purchases and sales are equally likely and are independent each

period and the null hypothesis that past price changes are not predictive of the future.
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ĉe effect of this trading on the autocovariance sequence for returns will be

Cov [̃ri,t, r̃i,t] = Var [pi,t+ƥ − pi,t+ƥ] + bƦi

Cov [̃ri,t, r̃i,t+ƥ] = −bƦi

Cov [̃ri,t, r̃i,t+k] = Ƥ ∀k > ƥ. (ǉ.ǉǌ)

ĉis is precisely what motivated Roll’s estimate of the effective bid-ask spread:

bi = −
√

Cov [̃ri,t, r̃i,t+ƥ]. (ǉ.ǉǍ)

And what if the buying pressure is correlated across ėrms? Suppose that investors

tend to buy and sell asset i and asset j at the same time, so that νij = E
[
ηi,t, ηj,t

]
̸= Ƥ.

We would observe νij > Ƥ if the trading behavior is similar and νij < Ƥ if investors

tend to buy one while selling the other. Intuitively, we can write νij as a simple

function of the probability that securities are both exposed to common trading

behavior,

νij = Ʀ ×
(
Pr
[
ηi,t = ηj,t

]
− Ƥ.Ʃ

)
. (ǉ.ǉǎ)

ĉis is the proposed measure of common trading behavior. Just as we can measure

the effective bid-ask from the autocovariances, we can estimate common trading

behavior from the cross-autocovariances. Under the same assumptions as above, they
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will be

Cov
[̃
ri,t, r̃j,t

]
= Cov

[
ri,t+ƥ, rj,t+ƥ

]
+ Ʀνijbibj

Cov
[̃
ri,t, r̃j,t+ƥ

]
= −νijbibj (ǉ.ǉǏ)

Cov
[̃
ri,t, r̃j,t+k

]
= Ƥ ∀k > ƥ.

From this, I empirically estimate this measure νij of how trading behavior connects

two stocks through

νij = −
Cov

[̃
ri,t, r̃j,t+ƥ

]
+ Cov

[̃
ri,t+ƥ, r̃j,t

]
Ʀ
√

Cov
[̃
ri,t, r̃j,t+ƥ

]
Cov

[̃
ri,t, r̃j,t+ƥ

] . (ǉ.ǉǐ)

ǉ.Ǌ SļŃŇŉ-RŊł ĵłĸ LŃłĻ-RŊłCŃŁŃŋĹŁĹłŉ ĽłUS EŅŊĽŉĽĹň

Dĵŉĵ ňŃŊŇķĹň ĵłĸ ŋĵŇĽĵĶŀĹ ķŃłňŉŇŊķŉĽŃł

To estimate the comovement of US equity prices, I use four decades of weekly total

returns from ĉe Center for Research in Security Prices² (CRSP), covering the forty

years from ǉǑǏǈ to ǊǈǈǑ, and each decade is considered a subsample. To ensure the

analysis focuses on the most liquid securities, I select the Ǌ,ǈǈǈ largest issues by

market cap as determined immediately prior to the start of each decade. ĉe weekly

log returns are measured using Tuesday’s closing prices and include any distributions

received. For the most recent decade spanning Ǌǈǈǈ-ǊǈǈǑ, the universe consists of

the largest Ǌ,ǈǈǈ ėrms measured by their market cap on December ǋǉst, ǉǑǑǑ, and

²Center for Research in Security Prices. ©Ǌǈǉǉ Booth School of Business, ĉe University of
Chicago. Used with permission. All rights reserved. www.crsp.chicagobooth.edu
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the ėrst weekly return is measured from January ǌth to January ǉǉth, Ǌǈǈǈ. Only

publicly traded common stock of US incorporated ėrms are considered (CRSP share

codes ǉǈ and ǉǉ).

Within each decade, short-run and long-run correlations are calculated for every

pair of ėrms, where the short run is deėned as one week and the long run is deėned as

half of a year. Short-run correlations of weekly returns, ρ̂ (ƥ) are calculated as in (ǉ.ǎ).

ĉe long-run correlation calculation uses the formula in (ǉ.Ǐ) whereH = Ǌǎ weeks,

generating ρ̂ (Ʀƪ). ĉe difference between the two yields Δρ̂.

To minimize any bias related to survivorship, long-run correlations are calculated

whenever possible, even when two ėrms coexist for only a small portion of the

decade. ĉe minimum possible number of observations to calculate ρ̂ (Ʀƪ) is

approximately one year. ĉe trade-off for reducing this bias is sampling variance, as

the long-run variance in those cases is exceptionally noisy. In practice, requiring a

longer minimum history decreases the sample size and affects the results very liĨle, so

I make this criterion as permissive as possible.

We can be reasonably comfortable that the results of the empirical analysis are not

driven by the anomalous behavior of illiquid ėrms since the universe consists of the

largest Ǌ,ǈǈǈ securities by market capitalization and the shortest time interval

considered is one week. ĉe mean difference between short-run and long-run

correlation increases when using smaller ėrms and shorter time horizons, and there is

also a slight increase in the predictability of this difference, but these results are

excluded as they would be open to criticism that they are affected to a larger extent by
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Table ǉ.ǉ: Data Coverage for Correlation Estimates

ĉis table reports the data availability for the estimated return correlations. ĉe return series con-
sidered are log returns calculated from the CRSP total return data, and the minimum unit of mea-
surement is one week, corresponding to returns from Tuesday to Tuesday. ĉe unique correlation
estimates correspond to the upper triangle of the matrix of correlation coefficients, excluding the di-
agonal.

Decade Total
ǉǑǏǈ’s ǉǑǐǈ’s ǉǑǑǈ’s Ǌǈǈǈ’s

max possible pairs ǉ,ǑǑǑ,ǈǈǈ ǉ,ǑǑǑ,ǈǈǈ ǉ,ǑǑǑ,ǈǈǈ ǉ,ǑǑǑ,ǈǈǈ Ǐ,ǑǑǎ,ǈǈǈ
pairs w/ min ƺ returns ǉ,ǐǏǊ,ǉǉǈ ǉ,ǐǉǉ,ǈǐǐ ǉ,ǐǊǐ,ǐǊǎ ǉ,ǎǋǊ,ǏǑǋ Ǐ,ǉǌǌ,ǐǉǏ

stale prices or other liquidity related issues.

SŊŁŁĵŇĽŐĽłĻ ŉļĹ ķŃŇŇĹŀĵŉĽŃłň ŃŋĹŇ ŀŃłĻ ĵłĸ ňļŃŇŉ ļŃŇĽŐŃłň

Summary statistics for the correlation estimates are shown in Table ǉ.Ǌ. ĉe sample

size of Ǌ,ǈǈǈ ėrms will generate slightly less than two million unique correlation

estimates each decade. ĉe ėrst panel shows the effect of aĨrition on data coverage.

You can see that correlations can be calculated for more than Ǒǈƻ of all possible pairs

of ėrms except in the most recent decade where the ten-year period begins in the year

Ǌǈǈǈ, at the peak of the Internet frenzy. Acquisitions and failures cause an atypical

number of ėrms to disappear during the ėrst ǉǊ months of this subsample.

For the four decades considered, the short-run correlation, ρ̂ij (ƥ), averages ǉǐ.ǌƻ,

with a standard deviation of ǉǉ.ǌƻ. In contrast, long-run correlations are much

higher, with a full sample average of ǋǈ.ǈƻ and standard deviation of ǊǏ.ǈƻ. ĉe

difference between the two, ρ̂ (H)− ρ̂ij (ƥ), averages ǉǉ.ǎƻ. ĉe difference decreases
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Table ǉ.Ǌ: Summary Statistics for Correlation Estimates

ĉis table reports the data availability and summary statistics for the estimated return correlations.
ĉe return series considered are log returns calculated from theCRSP total return data, and themini-
mumunit ofmeasurement is oneweek, corresponding to returns fromTuesday toTuesday. ĉe short
run correlation measures, ρ̂ (ƥ), are therefore associated with a one week horizon. In the data panel
measuring coverage by unique correlation pairs, the unique correlation estimates correspond to the
upper triangle of the matrix of correlation coefficients, excluding the diagonal.

short-horizon correlation Decade Full Sample
ǉǑǏǈ’s ǉǑǐǈ’s ǉǑǑǈ’s Ǌǈǈǈ’s

mean ǊǊ.ǐǉ ǉǑ.Ǌǈ ǉǋ.ǈǉ ǉǐ.ǋǉ ǉǐ.ǋǎ
std dev Ǒ.ǉǊ ǉǈ.ǍǍ Ǒ.ǋǉ ǉǋ.Ǒǈ ǉǉ.ǋǎ

ρ̂ij(ƥ) Ǎ ƻile ǐ.ǍǍ Ǌ.ǍǑ -ǈ.Ǒǈ -Ǎ.ǉǎ ǈ.Ǎǋ
median ǊǊ.ǍǏ ǉǐ.Ǒǎ ǉǊ.ǌǋ ǉǐ.Ǎǋ ǉǐ.ǉǐ
ǑǍ ƻile ǋǏ.ǐǌ ǋǎ.Ǐǌ Ǌǐ.ǐǐ ǌǈ.Ǐǋ ǋǎ.Ǒǎ

long-horizon correlation Decade Full Sample
ǉǑǏǈ’s ǉǑǐǈ’s ǉǑǑǈ’s Ǌǈǈǈ’s

mean ǌǍ.ǉǊ ǋǈ.ǈǋ ǊǊ.ǏǏ Ǌǈ.ǏǊ ǋǈ.ǈǈ
std dev ǉǑ.Ǒǐ Ǌǌ.ǏǑ Ǌǌ.ǐǌ ǋǈ.ǎǍ Ǌǎ.Ǒǌ

ρ̂ij(Ʀƪ) Ǎ ƻile ǉǈ.ǍǊ -ǉǍ.ǏǊ -ǉǐ.ǌǌ -ǋǏ.ǋǈ -ǉǐ.ǎǊ
median ǌǎ.ǎǑ ǋǊ.ǐǈ Ǌǋ.ǈǎ Ǌǌ.Ǌǎ ǋǊ.ǐǏ
ǑǍ ƻile Ǐǌ.ǑǍ ǎǍ.ǎǐ ǎǋ.ǍǑ ǎǌ.Ǐǉ ǎǐ.ǐǉ

correlation difference Decade Full Sample
ǉǑǏǈ’s ǉǑǐǈ’s ǉǑǑǈ’s Ǌǈǈǈ’s

mean ǊǊ.ǋǉ ǉǈ.ǐǋ Ǒ.Ǐǎ Ǌ.ǌǊ ǉǉ.ǎǌ
std dev ǉǐ.ǋǎ ǊǊ.Ǌǉ ǊǊ.Ǐǋ Ǌǎ.Ǌǋ Ǌǋ.ǍǊ

Δρ̂ij Ǎ ƻile -Ǒ.ǋǏ -Ǌǐ.ǉǍ -ǊǏ.ǏǏ -ǌǍ.ǎǐ -ǊǑ.ǐǎ
median Ǌǋ.Ǐǈ ǉǊ.ǋǈ ǉǈ.ǈǉ ǌ.Ǒǉ ǉǋ.ǍǍ
ǑǍ ƻile ǌǑ.ǌǏ ǌǌ.ǎǋ ǌǎ.ǏǑ ǌǈ.Ǒǋ ǌǎ.ǌǋ
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over time, with an average difference of ǊǊ.ǋƻ in the ǉǑǏǈ’s decreasing to a difference

of only Ǌ.ǌƻ in the most recent decade.

By deėnition, there are upper and lower bounds on the possible observed

correlations. In practice, the estimated short-run correlations are nearly always

positive, with less than Ǎƻ of the estimated values being less than zero. However,

there is much more variation in the long horizon correlation estimates. Even though

the average long-run correlation is nearly twice as large, a liĨle less than a third of the

estimates are less than zero.

While the standard deviations and percentiles shown in Table ǉ.Ǌ make it tempting

to conclude that there is a larger degree of cross-sectional variation in correlations

measured over long horizons, it is important to note that the short-run correlations

are estimated much more precisely. Even under the null hypothesis where the true

correlation does not depend on the time horizon, the empirical long-run correlations

will show more variation due to the fact that they are estimated using far fewer

independent observations. We cannot yet draw conclusions about the distribution of

the true long-run correlations. ĉe full sample standard deviation of ǊǏ.ǈƻ reĚects

both the dispersion of correlations in the population as well as the measurement

error. ĉe subsequent section will present a method for quantifying the effect of

measurement error in the long run estimates.
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ǉ.ǋ A RĹĻŇĹňňĽŃłMĹŉļŃĸŃŀŃĻŏ ĺŃŇ CŃŇŇĹŀĵŉĽŃłň

RĹĻŇĹňňĽłĻ ĹŎńŀĵłĵŉŃŇŏ ŋĵŇĽĵĶŀĹň Ńł ŉļĹ ķŃŇŇĹŀĵŉĽŃł ĸĽĺĺĹŇĹłķĹň

To test the null hypothesis in (ǉ.Ǒ) against the alternative, I propose running a

regression of the difference in long-run and short-run correlation on candidate

explanatory variables for each pair of ėrms. Negative values for this difference in

correlations correspond to excess comovement, indicating the pair of stocks has a

higher correlation in the short run than can be justiėed by their long-run returns.

Positive values are indicative of insufficient comovement, as the short-run returns do

not seem to capture the comovement observed over longer horizons.

Given explanatory variables corresponding to each pair of ėrms (i, j) whose shared

characteristics constitute vector Zij (including a constant term), the coefficient vector

β is estimated from the linear regression

Δρ̂ij = βZij + eij. (ǉ.ǉǑ)

Under the null hypothesis, every element of β, including the constant, is equal to zero.

Calculating the standard errors for β̂ requires special aĨention, since these errors

are not independent across pairs of ėrms. ĉe traditional standard errors estimated

using an OLS regression to estimate (ǉ.ǉǑ) will be far too small. What appears to be a

large cross-sectional sample is effectively smaller since much of the variation in stock

returns is driven by common factors. Even worse, all stocks likely have a positive

loading on a single factor, the market. If none of the residuals are independent,
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traditional techniques to handle correlated residuals in a cross-sectional regression,

like clustering standard errors, will offer liĨle help.

A ŇĹňļŊĺĺŀĽłĻ ŉĹķļłĽŅŊĹ ĺŃŇ ňŉĵŉĽňŉĽķĵŀ ĽłĺĹŇĹłķĹ

ĉe problem would beneėt from a new approach. Note that under the null

hypothesis, this error term eij is equal to the estimation error between the true

long-horizon correlation and whatever empirical estimate results from the particular

sample used. We can call this estimation error

εij = Δρ̂ij − Δρij (H) , (ǉ.Ǌǈ)

and note that eij = εij, under the null hypothesis.

Fortunately we can take advantage of some properties of the null hypothesis. In

particular, the assumption of no predictability suggests that the error terms in (ǉ.Ǌǈ)

result from the purely coincidental estimation noise of past returns appearing to

predict the future.

ĉerefore, the historical ordering of the weekly returns makes no difference. We

just need to preserve the contemporaneous return structure. In fact, if we randomly

reshuffle the historical ordering of the weeks and recalculate the long-run

correlations, we would generate an independent draw of error terms with the same

statistical properties.

ĉis is effectively what I propose as a robust, non-parametric method for

calculating standard errors. With new long-term correlation estimates from each

reshuffling of the weekly returns, we ėnd the distribution of β under the null by
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repeatedly rerunning the regression in (ǉ.ǉǑ). ĉen we can compare our β̂ estimate

to the distribution of estimates generated from the reshuffled data. We can now test

the hypothesis that β̂ = Ƥ properly accounting for the strong dependence across our

observations.

ĉe reshuffling technique also makes it possible to revisit the variation in the

estimated long-horizon correlations. ĉe observed differences in long-horizon and

short-horizon correlations are due to both the variation expected from sampling

noise as well as the true dispersion in correlation values. A casual glance at the

magnitudes might lead someone to prematurely reject the null hypothesis based

solely on the large variation in Table ǉ.Ǌ. ĉe two panels in Figure ǉ.Ǌ plot a

histogram of the cross-sectional variation in the estimated Δρ̂ij against the density

function of the sampling error expected under the null hypothesis for the earliest and

the most recent decade.

Figure ǉ.Ǌ also graphically emphasizes the difference between the previously

documented observation that correlations seem to increase with time horizon on

average (Campbell et al., Ǌǈǈǉ) and the claim that some correlations increase with

horizon and some decrease. By inspection, the estimated long-horizon correlations

are signiėcantly higher than what would be expected under the null hypothesis for

the ǉǑǏǈ’s, though the signiėcance of the difference is less obvious in the Ǌǈǈǈ’s. ĉis

paper will show empirical analysis suggesting that the earlier difference in mean

correlation differences can be largely aĨributed to microstructure noise from the

bid-ask spread.

SeĨing aside differences in the mean, the dispersion in the reshuffled values is
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Figure ǉ.Ǌ: Comparing Empirical and Reshuffled Correlation Differences

quite high, suggesting that we cannot immediately rule out the possibility that large

cross-sectional differences in correlation estimates for different time horizons are

simply sampling error. A more careful analysis will show evidence that correlations

will predictably increase or decrease as the return horizon lengthens.
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ǉ.ǌ EŎńŀĵĽłĽłĻ EŁńĽŇĽķĵŀ CŃŇŇĹŀĵŉĽŃłň

Dĵŉĵ ĸĹňķŇĽńŉĽŃł Ńĺ ĹŎńŀĵłĵŉŃŇŏ ŋĵŇĽĵĶŀĹň

All of the explanatory variables that form the elements of the Zij vector of explanatory

variables in estimating (ǉ.ǉǑ) are calculated using data available prior to each decade.

I group them by factors ostensibly related to investment behavior and factors that are

indicative of shared fundamental risks.

I estimate shared trading behavior by calculating the correlations in bid-ask

bounce, νij, as deėned in (ǉ.ǉǐ). Log weekly returns are used to estimate νij using a

two year window prior to the start of the decade. ĉe effective bid/ask spread, used

in the denominator of the deėnition of shared trading behavior is shrunk toward the

median value estimated across all securities, which prevents a negative implied spread

in most cases. To further control for large outliers that may be driven by a very small

denominator, or by estimation error in the numerator, the ėnal values of νij are all

shrunk toward zero.

Somewhat surprisingly, Table ǉ.ǌ shows that, on average, ėrms do not tend to be

bought and sold together for the ėrst two decades in the sample. ĉis might be

indicative that the trading behavior tended to reĚect investors shiěing investments

across stocks rather than a paĨern of broad net inĚows or outĚows in the equity

market. For the more recent two decades, however, the mean coefficient is much

closer to zero and shows no particular propensity for stocks to be bought or sold

together, though this varies signiėcantly across pairs of stocks.
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Table ǉ.ǋ: Summary Statistics for Primary Explanatory Variables

ĉis table reports the data availability and summary statistics for the explanatory variables used in
the regression analysis. ĉe summary of unique correlation pairs represent the upper triangle of the
correlationmatrix, excluding the own correlations on the diagonal. ĉe shared trading behavior is an
estimate of the propensity of buyers and sellers of ėrms to have correlations in the temporary market
impact they cause, as measured through temporary components in autocorrelations. ĉe primary
variable representing fundamental correlation is the correlation of ėrms return on equity, as derived
from quarterly accounting data from Compustat. Dummy variables capture shared characteristics
related to primary trading exchange and market cap quintiles, using data from CRSP, and the book
equity (BE) and GICS industry data are obtained from the linked CRSP-Compustat database.

Data Availability

Decade Full Sample
ǉǑǏǈ’s ǉǑǐǈ’s ǉǑǑǈ’s Ǌǈǈǈ’s

pairs w/ min ƺ returns ǉ,ǐǏǊ,ǉǉǈ ǉ,ǐǉǉ,ǈǐǐ ǉ,ǐǊǐ,ǐǊǎ ǉ,ǎǋǊ,ǏǑǋ Ǐ,ǉǌǌ,ǐǉǏ
with νi,j values ǉ,Ǌǐǈ,Ǎǐǎ Ǒǈǌ,ǏǍǎ ǉ,ǌǐǊ,Ǌǌǋ ǉ,ǈǉǑ,ǈǑǎ ǌ,ǎǐǎ,ǎǐǉ

with Corr[ROEi,ROEj] Ǌǈǌ,ǏǍǏ ǉ,ǋǊǈ,Ǎǋǋ Ǒǎǋ,ǌǏǏ ǎǏǏ,ǍǑǐ ǋ,ǉǎǎ,ǋǎǍ

Summary Statistics

Decade Full Sample
νij ǉǑǏǈ’s ǉǑǐǈ’s ǉǑǑǈ’s Ǌǈǈǈ’s

mean -ǈ.ǌǍ -ǉ.ǊǊ ǈ.ǈǊ -ǈ.ǉǌ -ǈ.ǋǐ
std dev ǉ.ǉǍ ǉ.ǋǊ ǈ.Ǒǌ ǉ.ǈǎ ǉ.Ǌǈ
Ǎ ƻile -Ǌ.ǋǐ -ǋ.ǉǎ -ǉ.ǎǊ -ǉ.ǑǏ -Ǌ.ǌǌ
median -ǈ.ǌǊ -ǉ.ǌǊ ǈ.ǉǉ -ǈ.ǈǐ -ǈ.ǊǏ
ǑǍ ƻile ǉ.ǋǋ ǉ.ǋǈ ǉ.ǋǏ ǉ.ǌǎ ǉ.ǋǏ

Decade Full Sample
Corr[ROEi,ROEj] ǉǑǏǈ’s ǉǑǐǈ’s ǉǑǑǈ’s Ǌǈǈǈ’s

mean ǈ.ǉǊ ǈ.ǈǐ ǈ.ǈǉ ǈ.ǈǊ ǈ.ǈǍ
std dev ǈ.ǌǑ ǈ.ǋǍ ǈ.ǋǈ ǈ.ǊǑ ǈ.ǋǋ
Ǎ ƻile -ǈ.ǏǊ -ǈ.Ǎǈ -ǈ.ǌǐ -ǈ.ǌǎ -ǈ.Ǎǈ
median ǈ.ǉǎ ǈ.ǈǐ ǈ.ǈǉ ǈ.ǈǉ ǈ.ǈǌ
ǑǍ ƻile ǈ.ǐǌ ǈ.ǎǌ ǈ.ǍǊ ǈ.Ǎǉ ǈ.ǎǊ
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My primary measure to estimate fundamental correlation is the correlation of

ėrms’ return on equity. ROE values are constructed from Compustat data, deėned as

the ratio of earnings per share (Compustat item: epspiq) divided by common equity

per share (Compustat item: ceqq). ĉis value is censored at -Ǒǈƻ and +ǉǈǈƻ and

then converted to a log return. Annual Compustat data is used to supplement where

quarterly data is not available. Correlations in this ROE series are calculated for each

pair of ėrms over the prior ǉǈ years, excluding the quarter immediately prior to the

beginning of the decade, since this data is typically not released until January or later.

I set a minimum requirement of ǌ years of accounting data to estimate a valid

correlation. As can be seen in the coverage statistics in Table Ǌ, lack of Compustat

data tends to be the most restrictive data requirement, especially near the beginning

of the sample when only a few hundred ėrms have accounting data available. ĉis

does not have a substantive effect on the regression results, but I will run a regression

speciėcation that excludes Corr
[
ROEi,ROEj

]
to take advantage of the larger data set.

Market cap and exchange information all come from CRSP, and the book equity

and GICS industry assignments are all taken from the CRSP-Compustat linked

database. ĉe construction of the book equity / market equity (BE/ME) variable

mirrors that described by Fama and French (ǉǑǑǊ). Each decade, the Ǌǈǈǈ ėrms in

the universe are matched to their assigned to BE/ME quintiles relative to the CRSP

universe of ėrms. I do not use the CRSP universe for market cap quintile

assignments, since my sample of the Ǌ,ǈǈǈ largest ėrms only represents the largest

quintiles. Instead, I create market cap quintiles speciėc to this sample using market

cap data from the December previous to the start of each decade.
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ĉis information allows for the construction of the dummy variables shown in

Table ǉ.ǌ. ĉey correspond to pairs of ėrms being listed on the same exchange,

sharing the same size quintile, being assigned the same GICS industry, etc. As usual,

the dummy variables equal ǉ for each pairwise observation where the criteria are met.

ĉe classiėcations of sharing the same GICS sector, industry or subindustry are not

exclusive of each other, so a pair of ėrms in the same subindustry will necessarily also

be in the same industry and sector. ĉe occurrence of ėrms in the same subindustry

is the rarest of the dummy variables, occurring in about ǉ.Ǐƻ of the unique ėrm pairs,

but will be shown to have a strong effect even aěer controlling for industry and sector.

ǉ.ǌ.ǉ RĹĻŇĹňňĽłĻ ĹŎńŀĵłĵŉŃŇŏ ŋĵŇĽĵĶŀĹň Ńł Δρ̂

Following the methods described in section ǉ.ǋ, I estimate regression coefficients for

each decade subsample via least squares and use the reshuffling technique to calculate

standard errors. ĉe regression estimates for regressions of Δρ̂ on various

explanatory variables are combined (assuming independent subsamples) and

reported in Table ǉ.Ǎ.

ĉe ėrst regression speciėcation includes no explanatory variables other than

constant terms. While these regression coefficients are going to reĚect the simple

means previously noted in the summary statistics, the reshuffling methodology help

us beĨer understand the signiėcance of these results. We can see that even across

almost Ǌ million observations per decade, the common factors driving returns can

generate standard errors in the average difference in long-run and short-run

correlations of about ǋƻ. ĉe fact that long-horizon correlations average Ǌ.ǌǊƻ
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Table ǉ.ǌ: Summary Statistics for Dummy Variables

ĉis table reports the data availability and summary statistics for dummy variables used as explana-
tory variables in the regression analysis. ĉey characteristics related to primary trading exchange and
market cap quintiles use data from CRSP, and the book equity (BE) and GICS industry data are
obtained from the linked CRSP-Compustat database.

Data Availability

Decade Full Sample
ǉǑǏǈ’s ǉǑǐǈ’s ǉǑǑǈ’s Ǌǈǈǈ’s

pairs w/ min ƺ returns ǉ,ǐǏǊ,ǉǉǈ ǉ,ǐǉǉ,ǈǐǐ ǉ,ǐǊǐ,ǐǊǎ ǉ,ǎǋǊ,ǏǑǋ Ǐ,ǉǌǌ,ǐǉǏ
with GICS industry ǎǐǎ,ǉǎǊ ǉ,ǉǑǐ,ǐǌǍ ǉ,ǏǏǉ,Ǒǈǉ ǉ,ǎǉǉ,ǉǐǋ Ǎ,Ǌǎǐ,ǈǑǉ
with BE/ME values ǉ,ǊǉǊ,ǏǍǑ ǉ,ǍǉǊ,ǌǌǌ ǉ,ǍǎǏ,ǋǋǋ ǉ,ǉǎǏ,ǎǈǌ Ǎ,ǌǎǈ,ǉǌǈ

Frequency
Decade Full Sample

ǉǑǏǈ’s ǉǑǐǈ’s ǉǑǑǈ’s Ǌǈǈǈ’s

same exchange Ǎǋ.Ǌƻ ǌǏ.Ǐƻ ǌǌ.ǌƻ ǌǑ.ǎƻ ǌǐ.Ǐƻ
same size quintile Ǌǈ.ǈƻ Ǌǈ.ǈƻ Ǌǈ.ǈƻ Ǌǈ.ǈƻ Ǌǈ.ǈƻ

same BE/ME quintile Ǌǈ.ǋƻ Ǌǉ.ǎƻ Ǌǉ.ǐƻ ǋǈ.Ǒƻ Ǌǋ.ǌƻ
same sector ǉǍ.Ǌƻ ǉǋ.ǉƻ ǉǊ.ǐƻ ǉǍ.Ǐƻ ǉǌ.ǉƻ

same industry Ǌ.Ǐƻ ǋ.ǉƻ ǋ.Ǌƻ Ǌ.ǐƻ ǋ.ǈƻ
same subindustry ǉ.ǎƻ ǉ.ǐƻ ǉ.Ǐƻ ǉ.Ǐƻ ǉ.Ǐƻ
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higher than short-horizon correlations in the most recent decade is well within the

range of differences wemight randomly observe. ĉe differences in earlier decades, as

large as ǊǊƻ during the ǉǑǏǈ’s, cannot be explained by estimation error.

ĉe second regression speciėcation includes the two primary explanatory

variables reĚecting shared trading behavior (νij) and shared fundamentals

(Corr
[
ROEi,ROEj

]
). Both of these variables are highly signiėcant in explaining the

effect of return horizon on correlations. As expected, common trading behavior is

indicative of temporary price comovement, as indicated by the negative coefficient.

Firms that have a higher probability of being bought or sold together have higher

short-horizon correlations but lower correlations over long horizons. ĉe variable

measuring shared fundamentals generates a positive regression coefficient and the

opposite effect of trading behavior. Firms with highly similar fundamental exposures

tend to have lower short-horizon correlations relative to long horizons, suggesting

insufficient comovement.

ĉe third regression speciėcation adds the dummy variables indicating ėrms are

traded on the same exchange, and in similar size or valuation categories, or belong to

the same GICS industry categories. Trading on the same exchange is indicative of

excess comovement, consistent with the international evidence that exchange listings

maĨer. Considering the three principal exchanges on which these stocks are listed

(NYSE, AMEX, and NASDAQ), more than ǉƻ of stock price variation is associated

with temporary comovement with other stocks on the same exchange. As is true with

all the explanatory variables considered, the exchange listing may not be the causal

force driving excess comovement, but it is predictive.
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Table ǉ.Ǎ: Cross-Sectional Regressions of Correlation Difference, Δρ̂ij

In the regressions below, the dependent variable is the difference between long run and short run
correlation (Δρ̂ij). All of the explanatory variables are dummy variables except for Shared Trading
Behavior (νxy) and Shared Fundamentals (Corr[ROEi,ROEj]). ĉe reported coefficients are from com-
bining cross-sectional regressions for each decade, and standard errors, reported in parentheses below
the regression coefficients, use the reshuffling methodology described in section ǉ.ǋ for each cross-
section and assume the subsamples are independent. Statistical signiėcance of the coefficient relative
to the null hypothesis of zero is denoted using asterisks, where * indicates signiėcance at the Ǎƻ level
and ** indicates signiėcance at the ǉƻ level.

(ǉ) (Ǌ) (ǋ) (ǌ)

ǉǑǏǈ’s Decade Dummy ǊǊ.ǋǉ** ǉǐ.Ǌǈ** Ǌǈ.ǈǊ** ǉǑ.ǋǎ**
(ǋ.ǐǎ) (ǌ.ǊǊ) (ǋ.ǑǑ) (ǋ.ǑǏ)

ǉǑǐǈ’s Decade Dummy ǉǈ.ǐǋ** Ǒ.ǎǍ** ǉǈ.ǐǍ** ǉǈ.ǊǏ**
(ǋ.ǋǉ) (ǋ.ǋǏ) (ǋ.ǍǏ) (ǋ.Ǎǉ)

ǉǑǑǈ’s Decade Dummy Ǒ.Ǐǎ** Ǒ.ǈǉ** Ǒ.ǋǉ** Ǒ.ǋǈ**
(Ǌ.ǎǐ) (Ǌ.ǐǉ) (Ǌ.ǎǍ) (Ǌ.ǏǍ)

Ǌǈǈǈ’s Decade Dummy Ǌ.ǌǊ ǋ.ǋǋ Ǌ.ǉǍ Ǌ.ǌǍ
(ǋ.ǉǐ) (ǋ.ǎǊ) (ǋ.Ǎǐ) (ǋ.Ǐǎ)

Shared Trading Behavior (νij) -ǈ.ǐǊ** -ǈ.Ǐǌ**
(ǈ.ǉǋ) (ǈ.ǉǋ)

Same Exchange -ǉ.ǋǌ** -ǉ.ǐǍ**
(ǈ.ǌǐ) (ǈ.ǎǈ)

Same Size Quintile -ǈ.ǌǋ* -ǈ.Ǒǋ**
(ǈ.ǉǏ) (ǈ.Ǌǐ)

Same Be/MEDecile ǈ.Ǎǐ* ǈ.Ǐǉ**
(ǈ.Ǌǌ) (ǈ.ǉǑ)

Shared Fundamentals (Corr[ROEi,ROEj]) ǉ.ǊǏ** ǈ.Ǒǐ**
(ǈ.Ǌǋ) (ǈ.ǊǊ)

Same Sector ǌ.ǌǑ** ǌ.ǑǊ**
(ǈ.ǌǋ) (ǈ.ǌǋ)

Same Industry ǉ.ǋǌ** ǈ.Ǌǎ
(ǈ.ǌǏ) (ǈ.ǎǋ)

Same Subindustry Ǌ.ǌǏ** ǋ.ǋǉ**
(ǈ.Ǎǐ) (ǈ.Ǒǋ)

Observations Ǐ,ǉǌǌ,ǐǉǏ Ǌ,Ǌǈǐ,ǎǎǊ ǌ,ǋǊǌ,ǌǎǎ ǉ,Ǒǌǎ,ǉǍǎ
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ĉe dummy variable indicating ėrms are in the same size quintile also has the

expected sign. Prices of ėrms with similar market caps seem to move together over

short horizons much more than over longer return horizons. On the other hand, the

same logic would suggest a negative regression coefficient on the dummy variable

indicating ėrms are in the same BE/ME quintile, but this is not the case. ĉe

coefficient on this variable is positive. A closer examination of excess comovement

across subsamples and controlling for autocorrelations from market microstructure

suggests the value results are not robust and the size effect is primarily driven by

excess comovement in the ėrms at the smaller range of this sample.

ĉe variables indicating ėrms share the same sector, industry or subindustry all

show large positive coefficients. As with the measure of shared fundamentals that

looks at correlations in proėtability, these variables seem to indicate ėrms with

similar factors driving their proėtability show insufficient price comovement over

short horizons. For ėrms in the same subindustry, the correlation of their ǎ-month

returns will, on average, be ǐ.ǋƻ higher than the correlation of their weekly returns.

ĉis is one of the strongest statistical results, though it’s not without precedent.

Cohen and Frazzini (Ǌǈǈǐ) and Moskowitz and GrinblaĨ (ǉǑǑǑ) show evidence of

evidence of positive momentum across connected ėrms, which would cause their

correlations to increase with the time horizon.

ĉe fourth regression speciėcation includes all explanatory variables. ĉis serves

as a check that each makes an independent contribution. ĉere is a slight decrease in

the coefficients on the main variables measuring shared trading behavior and shared

fundamentals, but they remain highly signiėcant.
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Interestingly, the coefficients on the other variables intended to capture labels that

might be salient to investors all increase. ĉe coefficient on ėrms that share the same

size quintile almost doubles, indicating that it might be more prominent conditioned

on the other explanatory variables than it is when measured in isolation.

ĉe variables intended to capture common exposures to fundamental risks all

remain signiėcant predictors of insufficient short-run comovement with the

exception of the dummy variable for ėrms sharing the same industry. ĉis is actually

an artifact of this measure being so similar to the subindustry dummy variable that

the coefficient shiěs from one to the other.

ĉe general conclusions from the empirical results are broadly consistent across

regression speciėcations. ĉey provide evidence in favor of the hypothesis that

short-run comovement is different than long-run comovement, and that excess and

insufficient comovement can be predicted by measures of shared trading behavior

and exposures to shared fundamentals.

RŃĶŊňŉłĹňň

ĉe key results in Table ǉ.Ǎ are robust across a variety of alternative estimation

approaches. However, there are two critiques that deserve special aĨention, which I’ll

call the ”micro explanation” and the ”macro explanation.” ĉe micro explanation

would assert that the correlation differences are the result of bid-ask spreads and

similar effects in market microstructure, and the macro explanation would assert that

correlation differences are simply a manifestation of predictability in well-known risk

factors.
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Just as the bid-ask bounce can be used to estimate trade-driven price behavior,

serial correlation from market microstructure can also affect correlations. ĉis is clear

from the effects derived in (ǉ.ǉǌ) and (ǉ.ǉǏ). In general, long-run correlations will

appear mechanically higher than short-run correlations simply because the

temporary price impact of trading constitutes a much smaller fraction of total price

movement in long-horizon returns relative to short-horizon returns. Since this effect

will be larger for stocks that are less liquid, the regression analysis might mistakenly

associate measures correlated with liquidity as indicators of insufficient comovement.

To show this is not the source of the results in Table ǉ.Ǎ, I construct a measure that

adjusts the difference between long and short-horizon correlations that excludes the

ėrst order autocorrelation and cross-autocorrelation terms that could be affected by

the impact of trading on closing prices. I label this variable Δρ̇ij. ĉese excluded ėrst

order autocorrelations would also contain a large degree of information about excess

comovement, so it is important to recognize that assuming them to be zero may be a

useful robustness check, but it biases all results in favor of the null hypothesis.

Table ǉ.ǎ reports summary statistics for Δρ̇ij. Comparing these microstructure

adjusted estimates to the original summary statistics reported in Table ǉ.Ǌ. ĉe most

striking difference is that the mean short-run correlation is much closer to the mean

long-run correlation. ĉis suggests that the lower comovement in the short run is

driven, in a large part, by the idiosyncratic price impact from trading that immediately

reverses in the subsequent period. ĉis is in line with the predicted effect of market

microstructure.

Not surprisingly, the microstructure adjustments become less signiėcant over
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Table ǉ.ǎ: Microstructure Robust Correlation Differences

ĉis table reports summary statistics for the microstructure-robust correlation differ-
ences, Δρ̇ij, where the autocorrelation terms in deėning the long run correlation are as-
sumed to be zero. ĉe calculations are otherwise identical to those described for Δρij.

Decade Full Sample
ǉǑǏǈ’s ǉǑǐǈ’s ǉǑǑǈ’s Ǌǈǈǈ’s

mean Ǒ.ǋǈ ǉ.Ǐǉ Ǎ.ǈǉ ǉ.Ǐǌ ǌ.ǍǍ
std dev ǉǎ.ǉǋ ǋǏ.ǎǐ ǉǑ.ǉǌ ǋǊ.ǍǑ ǊǏ.ǐǋ

Δρ̇ij Ǎ ƻile -ǉǎ.Ǐǌ -ǋǌ.ǌǑ -ǊǍ.ǎǌ -ǌǍ.ǌǏ -ǋǈ.ǈǏ
median Ǒ.ǏǍ ǋ.ǈǋ Ǎ.ǈǎ ǌ.ǎǏ Ǎ.Ǒǎ
ǑǍ ƻile ǋǋ.ǑǊ ǋǍ.Ǎǌ ǋǍ.Ǎǋ ǋǐ.ǉǈ ǋǍ.ǎǈ

time, which is likely a result of increased liquidity and tighter bid-ask spreads. ĉe

dispersion of the difference remains high on average and over time, suggesting that

the return horizon may have a large effect on individual correlations, even when the

difference is only slightly positive in the cross-section.

To check the robustness of the regression results directly, I run the previous

regressions on Δρ̇, the difference in long-term and short-term correlations that have

been adjusted for microstructure. ĉese regression results are shown in Table ǉ.Ǐ.

ĉe most noticeable differences are in the unconditional averages, as seen in the

ėrst regression speciėcation with no other explanatory variables. As was observed in

the summary statistics, the differences all decrease. Looking at the statistical

signiėcance only the Ǒ.ǋƻ average difference in the ǉǑǏǈ’s remains statistically

different from zero at the Ǎƻ conėdence level. ĉis is consistent with the idea that a

great degree of the insufficient comovement we observed was an artifact of

temporary impact of trades on closing prices.
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Table ǉ.Ǐ: Regressions Adjusted for Microstructure Effects, Δρ̇ij
In the regressions shown, the dependent variable is the difference between long run and short run
correlation, aěer adjusting for the ėrst order autocorrelation that is likely caused by bid-ask bounce
andothermicrostructure effects, yielding (Δρ̇ij). All of the explanatory variables are dummyvariables
except for Shared Trading Behavior (νxy) and Shared Fundamentals (Corr[ROEi,ROEj]). ĉe reported
coefficients are from combining cross-sectional regressions for each decade, and standard errors, re-
ported in parentheses below the regression coefficients, use the reshufflingmethodology described in
section ǉ.ǋ for each cross-section and assume the subsamples are independent. Statistical signiėcance
of the coefficient relative to the null hypothesis of zero is denoted using asterisks, where * indicates
signiėcance at the Ǎƻ level and ** indicates signiėcance at the ǉƻ level.

(ǉ) (Ǌ) (ǋ) (ǌ)

ǉǑǏǈ’s Decade Dummy Ǒ.ǋǈ* ǎ.Ǐǈ ǎ.ǑǍ ǎ.ǎǊ
(ǋ.ǐǎ) (ǌ.ǊǊ) (ǋ.ǑǑ) (ǋ.ǑǏ)

ǉǑǐǈ’s Decade Dummy ǉ.Ǐǉ ǉ.ǈǋ Ǌ.ǋǋ ǉ.ǑǏ
(ǋ.ǋǉ) (ǋ.ǋǏ) (ǋ.ǍǏ) (ǋ.Ǎǉ)

ǉǑǑǈ’s Decade Dummy Ǎ.ǈǉ ǌ.ǑǍ ǌ.ǎǉ ǌ.ǏǊ
(Ǌ.ǎǐ) (Ǌ.ǐǉ) (Ǌ.ǎǍ) (Ǌ.ǏǍ)

Ǌǈǈǈ’s Decade Dummy ǉ.Ǐǌ ǌ.ǑǏ ǋ.Ǒǌ Ǎ.ǊǊ
(ǋ.ǉǐ) (ǋ.ǎǊ) (ǋ.Ǎǐ) (ǋ.Ǐǎ)

Shared Trading Behavior (νij) -ǈ.Ǌǌ -ǈ.Ǌǉ
(ǈ.ǉǋ) (ǈ.ǉǋ)

Same Exchange -ǈ.Ǐǈ -ǈ.ǐǑ
(ǈ.ǌǐ) (ǈ.ǎǈ)

Same Size Quintile -ǈ.ǈǏ -ǈ.ǉǋ
(ǈ.ǉǏ) (ǈ.Ǌǐ)

Same Be/MEDecile ǈ.ǉǋ ǈ.Ǌǎ
(ǈ.Ǌǌ) (ǈ.ǉǑ)

Shared Fundamentals (Corr[ROEi,ROEj]) ǈ.Ǒǌ** ǈ.Ǎǎ*
(ǈ.Ǌǋ) (ǈ.ǊǊ)

Same Sector ǉ.ǎǉ** ǉ.ǐǋ*
(ǈ.ǌǋ) (ǈ.ǌǋ)

Same Industry ǈ.Ǒǈ ǈ.ǈǌ
(ǈ.ǌǏ) (ǈ.ǎǋ)

Same Subindustry ǉ.Ǌǈ* ǉ.Ǎǈ
(ǈ.Ǎǐ) (ǈ.Ǒǋ)

Observations Ǐ,ǉǌǌ,ǐǉǏ Ǌ,Ǌǈǐ,ǎǎǊ ǌ,ǋǊǌ,ǌǎǎ ǉ,Ǒǌǎ,ǉǍǎ

ǋǎ



Although none of the explanatory variables identiėed as signiėcant in the prior

regression change drastically, most of their effects are more muted. For example, in

the second regression speciėcation the coefficient on the shared trading behavior

variable previously had a coefficient of -ǈ.ǐǊ and a t-statistic of -ǎ.ǌ, but this now

drops to a coefficient of -ǈ.Ǌǌ and an associated t-statistic of -ǉ.ǐǋ. It might be that

much of the temporary impact captured by this variable corrects itself in the

subsequent week, which is excluded in the calculation of Δρ̇, or it may be that the

shared trading behavior variable also proxies for liquidity.

ĉe other main explanatory variable, measuring correlation in shared

fundamentals, sees a much more moderate decrease in magnitude aěer adjusting for

microstructure and also remains highly statistically signiėcant. Its coefficient drops

from ǉ.ǊǏ to ǈ.Ǒǌ.

In the fourth regression speciėcation on Table ǉ.Ǐ where all explanatory variables

are included, the coefficients are generally smaller than they were in Table ǉ.Ǎ. ĉe

only dummy variable that could be considered statistically different from zero with

greater than ǑǍƻ conėdence is the measure of ėrms being in the same GICS sector.

ĉe assumption that long-horizon and short-horizon correlations should be

equivalent comes from equation (ǉ.ǐ) where past returns are assumed not to predict

the future. No arbitrage assumptions in asset pricing theory suggest that this should

be true for conditional moments, but not necessarily true for unconditional measures

of volatility and correlation. Cochrane (ǉǑǑǉ) emphasizes this point, showing how

unconditional return predictability does not reject rational pricing models outright

and are exactly what we could expect to see in macroeconomic models where
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discount rates vary over time due to changing growth prospects or risk preferences.

ĉe same principle holds true in our analysis. Our null hypothesis would be

rejected by a broad class of models that generate time variation in the price of equity

risk. Let’s consider what we would expect to see in a standard model of this type. In a

one-factor model where the expected returns to stocks are driven by their exposures

to the aggregate stock market, time variation in expected market returns would imply

that some of the short-horizon price correlation between stocks is driven by their

common exposure to changes in aggregate return expectations. ĉis common

component of comovement becomes less prominent as time horizons increase. We

would then expect that long-horizon correlations across all ėrms should, on average,

be lower than short-horizon correlations. Instead, the data shows the opposite.

Additionally, we can speculate how aggregate market predictability might explain

cross-sectional variation in Δρ. Pairs of ėrms with large differences in their betas to

priced risk factors should have lower short-run correlations relative to their long-run

correlations, while ėrms with similar exposures should less of a difference. If we

include the absolute value of their beta differences in our regressions, we should get a

positive coefficient.

I test this hypothesis by estimating ėrm betas for the three factor model of Fama

and French (ǉǑǑǊ) prior to each decade. With ėrm-level coefficients for the market

portfolio βMKT, for the size spread portfolio, βSMB, and for the value spread portfolio,

βHML. I calculate the absolute value of the difference in their estimated betas. ĉese

are considered as an additional explanatory variable in the cross sectional regressions

of the differences in long-horizon and short-horizon correlations adjusted for

ǋǐ



Table ǉ.ǐ: Regressions of Δρ̇ij on Differences in Risk Factor Exposures

In the regressions below, the variables labeled as the |βi,XYZ − βj,XYZ| are the absolute value of the
differences in the ex ante estimated beta on risk factorXYZ for the pair of ėrms. ĉese are included in
cross-sectional regressions with other explanatory variables found to be predictive of Δρ̇ij. ĉe stan-
dard errors, reported in parentheses below the regression coefficients, use the reshuffling methodol-
ogy described in section ǉ.ǋ. Statistical signiėcance of the coefficient relative to the null hypothesis
of zero is denoted using asterisks, where * indicates signiėcance at the Ǎƻ level and ** indicates sig-
niėcance at the ǉƻ level.

(ǉ) (Ǌ) (ǋ) (ǌ)

ǉǑǏǈ’s Decade Dummy Ǒ.ǈǌ* ǐ.Ǎǐ* Ǐ.ǋǎ ǐ.ǋǐ*
(ǋ.Ǒǐ) (ǋ.ǑǏ) (ǌ.ǌǐ) (ǋ.Ǒǈ)

ǉǑǐǈ’s Decade Dummy Ǌ.ǊǏ Ǌ.ǊǍ Ǌ.ǉǐ Ǌ.ǑǏ
(ǋ.ǌǊ) (ǋ.ǋǈ) (ǋ.ǌǈ) (ǋ.ǍǍ)

ǉǑǑǈ’s Decade Dummy Ǐ.Ǐǈ** Ǐ.Ǎǐ* ǎ.Ǐǈ* ǎ.Ǌǎ*
(Ǌ.Ǒǌ) (Ǌ.ǑǍ) (ǋ.ǉǉ) (ǋ.ǈǏ)

Ǌǈǈǈ’s Decade Dummy Ǎ.ǋǉ Ǎ.ǐǍ Ǎ.ǏǏ ǎ.ǌǋ
(ǋ.ǎǍ) (ǋ.Ǐǋ) (ǌ.ǈǈ) (ǋ.ǑǏ)

Shared Trading Behavior (νij) -ǈ.ǉǎ -ǈ.ǊǊ -ǈ.ǉǐ
(ǈ.ǉǈ) (ǈ.ǉǋ) (ǈ.ǉǋ)

Same Exchange -ǉ.Ǌǉ*
(ǈ.ǍǑ)

Shared Fundamentals (Corr[ROEi,ROEj]) ǈ.Ǒǉ** ǈ.ǍǍ*
(ǈ.ǊǊ) (ǈ.ǊǊ)

Same Sector ǉ.ǎǋ**
(ǈ.ǌǌ)

Same Industry ǈ.ǈǊ
(ǈ.ǎǋ)

Same Subindustry ǉ.ǊǑ
(ǈ.Ǒǈ)

|βi,MKT − βj,MKT| -ǈ.ǈǎ -ǈ.ǈǋ -ǈ.ǌǋ -ǈ.ǋǎ
(ǈ.ǋǌ) (ǈ.ǋǍ) (ǈ.Ǎǉ) (ǈ.ǍǊ)

|βi,SMB − βj,SMB| -ǈ.ǎǐ** -ǈ.ǐǈ** -ǈ.ǋǐ -ǈ.Ǎǎ
(ǈ.Ǌǎ) (ǈ.Ǌǎ) (ǈ.ǋǋ) (ǈ.ǋǋ)

|βi,HML − βj,HML| -ǈ.ǎǋ* -ǈ.ǎǌ* -ǈ.Ǎǐ -ǈ.ǌǋ
(ǈ.Ǌǎ) (ǈ.Ǌǐ) (ǈ.ǋǌ) (ǈ.ǋǍ)

Observations ǎ,ǉǌǐ,ǍǏǌ ǌ,ǋǑǏ,ǋǊǎ Ǌ,ǊǈǏ,Ǎǈǐ ǉ,ǑǌǏ,Ǐǎǐ
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microstructure effects, Δρ̇.

ĉe regression results are summarized in Table ǉ.ǐ. ĉe ėrst speciėcation, with the

difference in the betas on risk factors as the only explanatory variables shows the

regression coefficients are negative–the opposite of our prediction. ĉe coefficient

for the difference in βMKT is effectively zero.

In the other three regression speciėcations considered, the explanatory variables

previously found to be signiėcant are also included. ĉe coefficients on the new

variables measuring differences in risk factor loadings remain negative and hardly

precise enough to distinguish from zero. It appears that time variation in discount

rates in loadings on known risk factors may explain a small portion of the differences

in long-horizon versus short-horizon correlations across this sample of US stocks, but

this is not the sort of mean-reverting behavior commonly modeled and it is primarily

driven by SMB and HML, not the aggregate equity market.

It should also be noted that the regression coefficients on the differences in risk

exposures are certainly underestimated because of estimation error. ĉis aĨenuation

bias similarly affects the shared trading behavior and ROE correlation variables,

which likely have even more estimation error than the betas on the risk factors.

ǉ.Ǎ IŁńŀĽķĵŉĽŃłň ĺŃŇ AňňĹŉ PŇĽķĹň ĵłĸ IłŋĹňŉŃŇň

ĉere is nothing about the proposed framework analyzing correlation and time

horizon that is speciėc to the returns of individual stocks. In a traditional asset

pricing context, we can consider how the time horizon will affect betas on risk

factors, and hence, asset pricing.
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As a ėrst pass, consider how the return horizon affects the volatilities and

correlations of the three factors of the Fama-French model. ĉese are ploĨed in

Figure ǉ.ǋ using the same time period as in the other empirical analysis, ǉǑǏǈ-ǊǈǈǑ.

Since these factor returns coexist for a much longer history than the typical equity

security, we can consider long-term horizons that extend much longer than ǎ months.
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Figure ǉ.ǋ: Annualized Volatility and Correlations for Risk Factors, ǉǑǏǈ-ǊǈǈǑ
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Looking at the top axis, ploĨing the estimate of volatility as a function of time

horizon, the most striking feature is the upward sloping relationship for SMB and

HML. ĉe positive relationship between volatility and time horizon suggest that

returns to the SMB and HML portfolios exhibit positive autocorrelation–at least at

horizons in the range of ǈ-Ǌ years. ĉis is exactly the sort of behavior that would lead

to the negative regression coefficients in the regression presented in Table ǉ.ǐ. At the

two year horizon, the HML volatility begins to decrease while the volatility of the

SMB portfolio continues to increase for return horizons as long ǎ or Ǐ years. ĉis is

indicative of momentum, rather than mean reversion, over these horizons.

Consistent with previous research (Fama and French, ǉǑǐǐ), the broad market

portfolio shows relatively liĨle predictability for horizons shorter than one year, with

a relatively constant relationship between volatility and time horizon. ĉis would

explain why aggregate market exposure explains liĨle of the cross-sectional

differences in Δρ̂ij at the stock level. ĉe well-documented tendency for the aggregate

stock market to exhibit mean reversion over long horizons begins to kick in as the

horizon increases beyond one year.

ĉe pairwise correlations are ploĨed on the lower axis in Figure ǉ.ǋ. ĉe SMB and

HML portfolios have a negative relationship with the market portfolio over short and

medium horizons, but these correlations tend toward zero as the return horizon

lengthens. Perhaps the most striking relationship is the correlation between SMB and

HML. While these portfolios seem to have uncorrelated returns over short horizons,

the correlation coefficient increases signiėcantly over long horizons. Repeating the

caveat that estimates of long-horizon correlations can be noisy, the initial evidence
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suggests that SMB and HML may be distinct risks over short time horizons but

contain similar fundamental risks that become evident over longer time periods.

At the same time, the SMB and HML portfolios are not nearly as aĨractive to a

long-horizon investor. While at horizons of a few days these portfolios seem to have

half the volatility as the market portfolio, the volatility almost doubles when the

horizon stretches to a few years. Worse still, these portfolios that previously seemed

to offer good diversiėcation relative to the aggregate equity market see their

correlations increase signiėcantly.

IŁńŀĽķĵŉĽŃłň ĺŃŇ SļŃŇŉ-TĹŇŁ TŇĵĸĹŇň

While buy-and-hold investors may have poor measures of risk calculated from

short-horizon returns, active investors with a short-term focus (or even long-term

investors who rebalance frequently) may ėnd short-term comovement estimates

appropriately capture the portfolio risks that maĨer to them. Although the

underlying driver of short-horizon comovement may be fads rather than

fundamentals, it accurately reĚects the one-period risks they face.

However, the relationship between correlation and time horizon reveals how one

period affects the next. As equation (ǉ.ǐ) emphasizes, correlation differences imply

predictability. With predictability, there is an implied trading strategy that should be

aĨractive to tactical traders.

In this section, I will show the historical performance of a simple trading strategy

based on the comovement paĨerns identiėed. ĉis exercise provides additional

evidence that the comovement paĨerns established in the empirical analysis cannot
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be easily explained by established risk factors. It also frames the results in a seĨing

familiar to other empirical studies of asset (mis)pricing where a portfolio formation

rule generates a trading strategy.

For beĨer or for worse, this trading strategy based on comovement paĨerns has no

anchor suggesting the true fundamental value of any particular asset. ĉe intuition is

roughly equivalent to that of a ”pairs trading” strategy (albeit with a much longer

horizon). When the prices of two assets with similar fundamentals diverge, the

strategy puts on a long-short convergence trade. ĉis comes with some danger. A

more savvy investor would consider the actual news and prices rather than pursue

what Stein (ǊǈǈǑ) terms an ”unanchored” trading scheme. In that sense, the trading

strategy is empirically instructive but not recommended.

A ňĽŁńŀĹ ŉŇĵĸĽłĻ ňĽĻłĵŀ

ĉe proposed trading signal is derived from the regression relationships for the short

run return

E
[
rt,i|rt,j

]
= E [rt,i] + ρij (ƥ)

σ i
σj
(
rt,j − E

[
rt,j
])

(ǉ.Ǌǉ)

and the long run return

E

[
H−ƥ∑
τ=Ƥ

ri,t+τ|rt,j

]
= E

[
H−ƥ∑
τ=Ƥ

ri,t+τ

]
+ ρij (H)

σ i
σj
(
rt,j − E

[
rt,j
])

(ǉ.ǊǊ)

of rt,i conditional on rt,j. If we assume that the volatility ratio ( σ i
σj) is roughly constant

and the unconditional expected return for each stock is approximately equal, then we
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can subtract (ǉ.Ǌǉ) from (ǉ.ǊǊ) and forecast the excess return for the future

E

[
H−ƥ∑
τ=ƥ

ri,t+τ|rt,j

]
− E

[
H−ƥ∑
τ=ƥ

ri,t+τ

]
= Δρij

σ i
σj
rt,j. (ǉ.Ǌǋ)

WithN assets, equation (ǉ.Ǌǋ) will yieldN− ƥ univariate forecasts. For simplicity,

the trading signal will weight them equally.³ ĉe signal is then deėned as

Xi,t =
ƥ

N− ƥ

∑
j̸=i

Δρi,j
σ i
σ j
rt,j. (ǉ.Ǌǌ)

EŁńĽŇĽķĵŀ ĽŁńŀĹŁĹłŉĵŉĽŃł

In the empirical implementation of the trading strategy, the universe of ėrms will be

determined in much the same way as before, comprising the Ǌǈǈǈ largest ėrms by

market cap over the ǌǈ year sample. ĉe set of ėrms will be updated annually, using

data available the ėnal business day in December of the previous year.

To predict the future difference in long-run and short-run correlation (Δρi,j) I use

the two main variables presented previously, where investor trading behavior is

proxied by the correlation in bid-ask bounce, νij, and fundamentals are measured as

the correlation of the return on equity, Corr
[
ROEi,ROEj

]
. ĉe difference between

long-horizon and short-horizon correlation that determines the trading signal for

forecasting in (ǉ.Ǌǌ) can be constructed without too much fear of overėĨing from

the in-sample regression results by simply taking the equal-weighted difference:

Δρi,j ≈ Corr
[
ROEi,ROEj

]
− νij.

³An alternative would be to create the multivariate optimal forecast with GLS weights

ǌǍ



ĉese two variables are updated annually and implemented in portfolios formed

each January using information that would be available in December. ĉe volatility

ratio σ i
σj

is also updated annually, and is calculated as the standard deviation of the

weekly returns over the prior three years. Shorter histories are used for any ėrm

where three years are not available, and outliers are winsorized at the Ǎth and ǑǍth

percentiles.

SĽĻłĵŀ ńĹŇňĽňŉĹłķĹ

ĉere remains the question of how long this signal should persist. ĉe empirical

analysis arbitrarily chose the long horizon to beH = Ʀƪ weeks but did not suggest

whether the correlation differences resolved in a maĨer of weeks or if the correlations

continued to evolve even aěer the six-month window. In the context of this trading

strategy, this question is analogous to asking how long the signal Xt is expected to

forecast excess returns.

In the framework of the simple model of fads and fundamentals presented earlier,

we want to know the decay rates δd and δf. While there is likely a high degree of

variation in the characteristics of fads and fundamentals that affect the US equity

market, it is interesting to take the simpliėed model and estimate the half-life of the

signal.

We can do this by building a simply portfolio rule, sorting stocks into quintiles

based on their signal Xt and constructing a long-short portfolio that buys the highest

quintile and sells the lowest quintile. ĉe event time returns to this portfolio, shown

in Figure ǉ.ǌ will show the degree to which the information persists.
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Figure ǉ.ǌ: Event Time Returns to Xt Components of the L/S Portfolio

Each column in the bar chart represents the average weekly return resulting from a

portfolio formed at time t = Ƥ. ĉe ėrst column, colored white, represents the return

that would be received from buying at the close of the formation week. To be as

conservative as possible in representing the returns to a trading strategy, this ėrst

week is omiĨed from the trading strategy results shown in the following subsection.

Even discarding this ėrst week, there is a paĨern of positive returns that continues at

lags of up to two months.

BĵķĿŉĹňŉ ŇĹňŊŀŉň

Given the matrix Δβ, the trading signal in (ǉ.Ǌǌ) is obtained each week by

multiplying Δβ by the returns from the recent past. For the purposes of this backtest,

I will consider the recent past to be the returns from the past ǎ weeks, omiĨing the
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most recent weeks’ returns to avoid the gaining credit for returns previously shown to

be partially aĨributed to microstructure effects. ĉe results without lagging the signal

by one week would be extraordinarily large.

I generate calendar time backtest returns by sorting stocks each week into

equal-weighted quintile portfolios based on their respective trading signal predicting

future returns. ĉe Ǌǈǈ ėrms with the highest factor values, populating portfolio QǍ,

are predicted to outperform the quintiles with lower factor values, particularly those

in the quintile with the lowest factor values, Qǉ. A long/short portfolio is created by

taking a long position in the ėrms in QǍ and an equivalent short position in the ėrms

comprising Qǉ.

I will also show event time returns that would result from creating the trading

signals using only one week returns over a range of lags. ĉis will give an indication of

how fast the predicted components of excess and insufficient comovement are

corrected in asset prices. ĉis will also conėrm the choice of using a six week window

in the calendar time backtest is both sensible and robust to alternative speciėcations.

TŇĵĸĽłĻ SŉŇĵŉĹĻŏ RĹňŊŀŉň

ĉe annual returns to the long/short portfolio are graphed in Figure ǉ.Ǎ. ĉe

performance of this long/short portfolio is relatively consistent over time and does

not show a tendency to decrease over time. ĉis is true even in the most recent

decade when you might expect that trading by hedge funds, especially so-called

statistical arbitrage funds, might employ similar strategies and erode the returns

available to a comovement based strategy.
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Figure ǉ.Ǎ: Annual Calendar Time Returns to L/S Portfolio

ĉe strong recent performance is also surprising given the fact that, on average,

short-horizon and long-horizon comovement have converged. ĉis result suggests

that the dispersion of comovement differences across ėrms remains large and

predictable even while the average is near zero. Looking again at the annual returns to

the strategy, the most proėtable of the ǌǈ years considered was Ǌǈǈǐ, with a return of

Ǌǐ.ǐƻ. Over the ǌǈ-year sample, the long/short portfolio generates an average annual

excess return of Ǎ.ǋƻ with a corresponding Sharpe Ratio of ǈ.ǎǍ.

ĉe weekly event time returns, shown in Figure ǉ.ǌ, provide additional insight on

the nature of the portfolio returns. ĉese event time returns only interact one week of

past returns (dated rt) to generate the signal vector Xt. ĉe event time graph displays

the mean return to the long/short portfolio traded various weeks into the future. You

can see that the t+ ƥ return is shaded in white. ĉis is because the week immediately
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following portfolio formation is excluded in the analysis, since some of that (very

large) return may be generated by temporary price impact and would not achievable.

ĉe returns from t+ Ʀ to t+ ƪ are shaded in dark blue. ĉis is to indicate that these

ėve weeks of returns are the ones used in the construction of the calendar time

long/short portfolios. Returns to all subsequent weeks are in light blue. From these

event returns, it appears that the predictive component of comovement identiėed by

these two signals generates declining abnormal returns for about ǉǈ weeks aěer

portfolio formation, and aěerwards, the returns seem indistinguishable from noise.

AĸľŊňŉĽłĻ ŉļĹ ķĵŀĹłĸĵŇ ŉĽŁĹ ŇĹŉŊŇłň ĺŃŇ ŇĽňĿ ĹŎńŃňŊŇĹň

ĉe average weekly excess returns alphas for the calendar time analysis of the ėve

quintile portfolios and the long/short portfolio are presented in Table ǉ.Ǒ. As would

be desired, there is a consistent paĨern of returns increasing by quintile. In the

unadjusted excess returns, the lowest quintile portfolio earns only ǈ.ǌǎ basis points

per week versus the ǐ.ǎ basis point average return of the highest quintile, which

corresponds to an annual return of ǈ.Ǌǌƻ. ĉe ǐ basis point weekly return of the

long/short portfolio has an associated t-statistic of ǋ.ǋǎ, indicating we can

conėdently reject the notion that the true excess return of the strategy is zero.

Table ǉ.Ǒ also reports the alphas for each portfolio aěer controlling for risk factors

known to generate positive returns. ĉese alphas are the intercept in the regression of

the weekly returns of risk factors on the returns to the quintile and long/short

portfolios. Four factor models are considered, and the Tuesday-to-Tuesday weekly

returns for each of the component risk factors are derived from the daily research
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Table ǉ.Ǒ: Weekly Abnormal Returns (in bps) to Δβ Trading Strategy

ĉis table shows the calendar time portfolio abnormal returns, reported in basis points ( ǉ/ǉǈǈ th

of one percent). ĉe ėrst row shows the average weekly returns of the quintile portfolios and the
long/short (L/S) portfolio formed by going long the highest quintile with the highest signal values
(QǍ) and short the quintile portfolio with the lowest. Alpha is the intercept coefficient from regress-
ing the weekly returns on various risk factors. ĉe return series of the risk factors and the risk free
rates are derived from the data provided by Ken French on his website. T-statistics are displayed in
brackets below each return coefficient.

Factor Quintile L/S
(low) (high)
Qǉ QǊ Qǋ Qǌ QǍ QǍ-Qǉ

Excess Returns ǈ.ǌǎ Ǌ.Ǌǌ ǌ.ǋǎ ǎ.Ǎǌ ǐ.ǎǊ ǐ.ǉǎ
[ǈ.Ǌǎ] [ǉ.ǎǋ] [ǋ.ǊǍ] [ǌ.ǐǎ] [Ǎ.ǌǈ] [ǋ.ǋǎ]

ǉ-factor alpha -ǈ.ǌǐ ǌ.ǌǍ Ǐ.Ǐǐ Ǒ.ǏǊ Ǒ.ǑǍ ǉǈ.ǌǋ
(Mkt) [-ǈ.ǉǑ] [Ǌ.ǌǋ] [ǌ.ǋǑ] [Ǎ.ǋǉ] [ǌ.Ǌǈ] [ǌ.ǋǉ]

ǋ-factor alpha -ǌ.ǉǌ ǈ.ǈǏ Ǌ.ǐǐ ǌ.Ǐǉ Ǎ.ǎǍ Ǒ.ǏǑ
(...+ SMB, HML) [-Ǌ.ǉǈ] [ǈ.ǈǍ] [Ǌ.ǉǊ] [ǋ.ǌǊ] [ǋ.ǋǎ] [ǌ.ǈǊ]

ǌ-factor alpha ǈ.ǌǎ Ǌ.Ǌǌ ǌ.ǋǎ ǎ.Ǎǌ ǐ.ǎǊ ǐ.ǉǎ
(...+ UMD) [ǈ.Ǌǎ] [ǉ.ǎǋ] [ǋ.ǊǍ] [ǌ.ǐǎ] [Ǎ.ǌǈ] [ǋ.ǋǎ]

ǎ-factor alpha -ǎ.ǋǏ -ǈ.Ǌǐ Ǌ.ǉǊ Ǎ.ǑǊ Ǒ.ǈǋ ǉǍ.ǌǈ
(...+ STREV, LTREV) [-ǋ.Ǎǌ] [-ǈ.ǉǑ] [ǉ.Ǎǉ] [ǌ.ǉǐ] [Ǎ.ǋǏ] [ǎ.ǉǏ]
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returns available on Ken French’s website⁴. ĉe ėrst two models include a ǉ-factor

model that controls for exposure to the value-weightedmarket index, and the ǋ-factor

alpha, that additionally includes the SMB and HML factors popularized by Fama and

French (ǉǑǑǊ).

In addition to these standard benchmarks, we might wonder if the returns to

portfolios based on comovement are related to momentum and reversal paĨerns

found to empirically generate positive returns in the cross-section of US equities. To

answer this, we can introduce two additional models, a ǌ-factor model including

Carhart’s (ǉǑǑǏ) momentum factor, and ėnally, a ǎ-factor model which additionally

includes short-term and long-term reversal paĨerns. ĉese reversal returns are

deėned by French to be the lagged one month return and the past Ǎ-year return

excluding the most recent year. Interestingly, this comovement trading strategy tends

to trade in the opposite direction of these reversal factors, making the alphas look

even more compelling. ĉe long/short portfolio, which averages ǐ.Ǌ basis points of

excess returns weekly, reports a ǎ-factor alpha of ǉǍ.ǌ basis points. Translated to an

annual time frequency, these risk adjusted returns would yield an average return of

ǐ.ǌƻ and a Sharpe Ratio of ǉ.ǈǋ.

CŃłķŀŊňĽŃł

Asset price comovement changes with time horizon. ĉe evidence is consistent with

a model where fads and information delays cause prices to temporarily deviate from

fundamentals. In particular, there is compelling evidence that investor trading

⁴hĨp://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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behavior and salient security characteristics are more important factors in

determining the correlation of US equity returns over short horizons while measures

of long-run fundamentals play a greater role in return correlations over longer

horizons.

I propose the difference between short-horizon and long-horizon comovement is a

natural metric for studying excess comovement. Measures of common trading

behavior and shared economic fundamentals show signiėcant power in explaining

cross-sectional differences in excess comovement across pairs of stocks. ĉey can also

form a successful trading strategy. A portfolio based on predictable differences in

stock correlations generates consistent excess returns not explained by risk exposures.

ĉe main implication for investors with a buy and hold strategy is that they may be

underestimating (or overestimating) the risk concentration of their portfolio if they

extrapolate comovement and volatility from short-horizon returns. ĉis also suggests

a degree of caution to ėnancial econometricians who propose the use of intra-day

data to estimate the covariance of security returns. It would seem that using ever

shorter return horizons to estimate second moments will likely capture a greater

degree of comovement driven by trading behavior rather than the fundamentals that

maĨer over longer horizons.

Although the empirical evidence presented here focuses on US equities, the

principle should apply just as much in other asset classes as well as in the broader

asset allocation decision. In fact, there is reason to believe differences in comovement

may be even larger across asset classes, as market segmentation may be more

pronounced. ĉe relationship between correlation and return horizon may identify
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risks and opportunities that can arise as short-run comovement deviates from

long-run fundamentals.
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We must include in the long-period cost a third term which
we might call the risk-cost to cover the unknown possibilities
of the actual yield differing ěom the expected yield.

JohnMaynard Keynes

2
An Intertemporal CAPM
with Stochastic Volatility

authored with John Campbell, Stefano Giglio and Christopher Polk

TļĹ ĺŊłĸĵŁĹłŉĵŀ ĽłňĽĻļŉ of intertemporal asset pricing theory is that long-term

investors should care just as much about the returns they earn on their invested

wealth as about the level of that wealth. In a simple model with a constant rate of

return, for example, the sustainable level of consumption is the return on wealth

multiplied by the level of wealth, and both terms in this product are equally
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important. In a more realistic model with time-varying investment opportunities,

conservative long-term investors will seek to hold “intertemporal hedges”, assets that

perform well when investment opportunities deteriorate. Such assets should deliver

lower average returns in equilibrium if they are priced from conservative long-term

investors’ ėrst-order conditions.

Since the seminal work of Merton (ǉǑǏǋ) on the intertemporal capital asset

pricing model (ICAPM), a large empirical literature has explored the relevance of

intertemporal considerations for the pricing of ėnancial assets in general, and the

cross-sectional pricing of stocks in particular. One strand of this literature uses the

approximate accounting identity of Campbell and Shiller (ǉǑǐǐa) and the

assumption that a representative investor has Epstein-Zin utility ( Epstein and Zin

ǉǑǐǑ) to obtain approximate closed-form solutions for the ICAPM’s risk prices

(Campbell ǉǑǑǋ). ĉese solutions can be implemented empirically if they are

combined with vector autoregressive (VAR) estimates of asset return dynamics

(Campbell ǉǑǑǎ). Campbell and Vuolteenaho (Ǌǈǈǌ), Campbell, Polk, and

Vuolteenaho (Ǌǈǉǈ), and Campbell, Giglio, and Polk (Ǌǈǉǉ) use this approach to

argue that value stocks outperform growth stocks on average because growth stocks

do well when the expected return on the aggregate stock market declines; in other

words, growth stocks have low risk premia because they are intertemporal hedges for

long-term investors.

A weakness of the papers cited above is that they ignore time-variation in the

volatility of stock returns. In general, investment opportunities may deteriorate either

because expected stock returns decline or because the volatility of stock returns
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increases, and it is an empirical question which of these two types of intertemporal

risk have a greater effect on asset returns. We address this weakness in this paper by

extending the approximate closed-form ICAPM to allow for stochastic volatility. ĉe

resulting model explains risk premia in the stock market using three priced risk

factors corresponding to three important aĨributes of aggregate market returns:

revisions in expected future cash Ěows, discount rates, and volatility. An aĨractive

characteristic of the model is that the prices of these three risk factors depend on only

one free parameter, the long-horizon investor’s coefficient of risk aversion.

Since the long-horizon investor in our model cares mostly about persistent

changes in the investment opportunity set, there must be predictable variation in

long-run volatility for volatility risk to maĨer. Empirically, we implement our

methodology using a vector autoregression (VAR) including stock returns, realized

variance, and other ėnancial indicators that may be relevant for predicting returns

and risk. Our VAR reveals low-frequency movements in market volatility tied to the

default spread, the yield spread of low-rated over high-rated bonds. While this effect

has received liĨle aĨention in the literature, we argue that it is sensible: Investors in

risky bonds perceive the long-run component of volatility and incorporate this

information when they set credit spreads, as risky bonds are short the option to

default. Moreover, we show that GARCH-based methods that ėlter only the

information in past returns in order to disentangle the short-run and long-run

volatility components miss this important low-frequency component.

With our novel model of long-run volatility in hand, we ėnd that growth stocks

have low average returns because they outperform not only when the expected stock
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return declines, but also when stock market volatility increases. ĉus growth stocks

hedge two types of deterioration in investment opportunities, not just one. In the

period since ǉǑǎǋ that creates the greatest empirical difficulties for the standard

CAPM, we ėnd that the three-beta model explains over ǎǑƻ of the cross-sectional

variation in average returns of ǊǍ portfolios sorted by size and book-to-market ratios.

ĉe model is not rejected at the Ǎƻ level while the CAPM is strongly rejected. ĉe

implied coefficient of relative risk aversion is an economically reasonable Ǒ.ǎǋ, in

contrast to the much larger estimate of Ǌǈ.Ǐǈ, which we get when we estimate a

comparable version of the two-beta CAPM of Campbell and Vuolteenaho (Ǌǈǈǌ)

using the same data.¹ ĉis success is due in large part to the inclusion of volatility

betas in the speciėcation. In particular, the spread in volatility betas in the

cross-section generates an annualized spread in average returns of ǎ.ǍǊƻ compared to

a comparable spread of ǋ.Ǒǈƻ and Ǌ.Ǌǌƻ for cash-Ěow and discount-rate betas.

We conėrm that our ėndings are robust by expanding the set of test portfolios in

two important dimensions. First, we show that our three-beta model not only

describes the cross-section of size- and book-to-market-sorted portfolios but also can

explain the average returns on risk-sorted portfolios. We examine risk-sorted

portfolios in response to the argument of Daniel and Titman (ǉǑǑǏ, ǊǈǉǊ) and

Lewellen, Nagel, and Shanken (Ǌǈǉǈ) that asset-pricing tests using only portfolios

sorted by characteristics known to be related to average returns, such as size and

value, can be misleading. As tests that include risk-sorted portfolios are unable to

reject our intertemporal CAPM with stochastic volatility, we verify that the model’s

¹ĉe risk aversion estimate reported in Campbell and Vuolteenaho’s (Ǌǈǈǌ) paper is Ǌǐ.ǏǍ.
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success is not simply due to the low-dimensional factor structure of the ǊǍ size- and

book-to-market-sorted portfolios. Speciėcally, we show that sorts on stocks’

pre-formation sensitivity to volatility news generate economically and statistically

signiėcant spread in both post-formation volatility beta and average returns in a

manner consistent with our model. Interestingly, in the post-ǉǑǎǋ period, sorts on

past CAPM beta generate liĨle spread in post-formation cash-Ěow betas, but

signiėcant spread in post-formation volatility betas. Since, in the three-beta model,

covariation with aggregate volatility news has a negative premium, the three-beta

model also explains why stocks with high past CAPM betas have offered relatively

liĨle extra return in the post-ǉǑǎǋ sample.

Second, we show that our three-beta model can help explain average returns on

non-equity portfolios that are exposed to aggregate volatility risk. ĉese portfolios

include the S&P ǉǈǈ index straddle of Coval and Shumway (Ǌǈǈǉ), which is explicitly

designed to be highly correlated with aggregate volatility risk, and the risky bond

factor of Fama and French (ǉǑǑǋ), which should be sensitive to changes in aggregate

volatility since risky corporate debt is short the option to default. Consistent with

this intuition, we ėnd that compared to the volatility beta of a value-minus-growth

bet, the risky bond factor’s volatility beta is of the same order of magnitude while the

straddle’s volatility beta is more than ǋ times larger in absolute magnitude. ĉese

volatility betas are of the right sign to explain the abnormal CAPM returns of the

option and bond portfolios. Approximately ǋǐƻ of the average straddle return can be

aĨributed to its three ICAPM betas, based purely on model estimates from the

cross-section of equity returns. Additionally, when we price the joint cross-section of
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equity, bond, and straddle returns our intertemporal CAPM with stochastic volatility

is not rejected at the Ǎ-percent level while the CAPM is strongly rejected.

Our work is complementary to recent research on the “long-run risk model” of

asset prices (Bansal and Yaron Ǌǈǈǌ) which can be traced back to insights in Kandel

and Stambaugh (ǉǑǑǉ). Both the approximate closed-form ICAPM and the long-run

risk model start with the ėrst-order conditions of an inėnitely lived Epstein-Zin

representative investor. As originally stated by Epstein and Zin (ǉǑǐǑ), these

ėrst-order conditions involve both aggregate consumption growth and the return on

the market portfolio of aggregate wealth.Campbell (ǉǑǑǋ) pointed out that the

intertemporal budget constraint could be used to substitute out consumption

growth, turning the model into a Merton-style ICAPM. Restoy and Weil (ǉǑǑǐ,

Ǌǈǉǉ) used the same logic to substitute out the market portfolio return, turning the

model into a generalized consumption CAPM in the style of Breeden (ǉǑǏǑ).

Kandel and Stambaugh (ǉǑǑǉ) were the ėrst researchers to study the implications

for asset returns of time-varying ėrst and second moments of consumption growth in

a model with a representative Epstein-Zin investor. Speciėcally, Kandel and

Stambaugh (ǉǑǑǉ) assumed a four-state Markov chain for the expected growth rate

and conditional volatility of consumption, and provided closed-form solutions for

important asset-pricing moments. In the spirit of Kandel and Stambaugh (ǉǑǑǉ),

Bansal and Yaron (Ǌǈǈǌ) added stochastic volatility to the Restoy-Weil model, and

subsequent research on the long-run risk model has increasingly emphasized the

importance of stochastic volatility for generating empirically plausible implications

from this model (Bansal, Kiku, and Yaron ǊǈǉǊ, Beeler and Campbell ǊǈǉǊ). In this
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paper we give the approximate closed-form ICAPM the same capability to handle

stochastic volatility that its cousin, the long-run risk model, already possesses.

One might ask whether there is any reason to work with an ICAPM rather than a

consumption-based model given that these models are derived from the same set of

assumptions. ĉe ICAPM developed in this paper has several advantages. First, it

describes risks as they appear to an investor who takes asset prices as given and

chooses consumption to satisfy his budget constraint. ĉis is the way risks appear to

individual agents in the economy, and it seems important for economists to

understand risks in the same way that market participants do rather than relying

exclusively on a macroeconomic perspective. Second, the ICAPM allows an

empirical analysis based on ėnancial proxies for the aggregate market portfolio rather

than on accurate measurement of aggregate consumption. While there are certainly

challenges to the accurate measurement of ėnancial wealth, ėnancial time series are

generally available on a more timely basis and over longer sample periods than

consumption series. ĉird, the ICAPM in this paper is Ěexible enough to allow

multiple state variables that can be estimated in a VAR system; it does not require

low-dimensional calibration of the sort used in the long-run risk literature. Finally,

the stochastic volatility process used here governs the volatility of all state variables,

including itself. We show that this assumption ėts ėnancial data reasonably well, and

it guarantees that stochastic volatility would always remain positive in a

continuous-time version of the model, a property that does not hold in most current

implementations of the long-run risk model.²

²Eraker (Ǌǈǈǐ) and Eraker and Shaliastovich (Ǌǈǈǐ) are exceptions.
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ĉe closest precursors to our work are unpublished papers by Chen (Ǌǈǈǋ) and

Sohn (Ǌǈǉǈ). Both papers explore the effects of stochastic volatility on asset prices in

an ICAPM seĨing but make strong assumptions about the covariance structure of

various news terms when deriving their pricing equations. Chen (Ǌǈǈǋ) assumes

constant covariances between shocks to the market return (and powers of those

shocks) and news about future expected market return variance. Sohn (Ǌǈǉǈ) makes

two strong assumptions about asset returns and consumption growth, speciėcally

that all assets have zero covariance with news about future consumption growth

volatility and that the conditional contemporaneous correlation between the market

return and consumption growth is constant through time. Duffee (ǊǈǈǍ) presents

evidence against the laĨer assumption. It is in any case unaĨractive to make

assumptions about consumption growth in an ICAPM that does not require accurate

measurement of consumption.

Chen estimates a VAR with a GARCH model to allow for time variation in the

volatility of return shocks, restricting market volatility to depend only on its past

realizations and not those of the other state variables. His empirical analysis has liĨle

success in explaining the cross-section of stock returns. Sohn uses a similar but more

sophisticated GARCH model for market volatility and tests how well short-run and

long-run risk components from the GARCH estimation can explain the returns of

various stock portfolios, comparing the results to factors previously shown to be

empirically successful. In contrast, our paper incorporates the volatility process

directly in the ICAPM, allowing heteroskedasticity to affect and to be predicted by all

state variables, and showing how the price of volatility risk is pinned down by the
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time-series structure of the model along with the investor’s coefficient of risk

aversion.

A working paper by Bansal, Kiku, Shaliastovich and Yaron (ǊǈǉǊ),

contemporaneous with our own, explores the effects of stochastic volatility in the

long-run risk model. Like us, they ėnd stochastic volatility to be an important feature

in the time series of equity returns. ĉeir work puts greater emphasis on the implied

consumption dynamics while we focus on the cross-sectional pricing implications of

exposure to volatility news. More fundamentally, there are differences in the

underlying models. ĉey assume that the stochastic process driving volatility is

homoskedastic, and in their cross-sectional analysis they impose that changes in the

equity risk premium are driven only by the conditional variance of the stock market.

ĉe different modeling assumptions account for our contrasting empirical results; we

show that volatility risk is very important in explaining the cross-section of stock

returns while they ėnd it has liĨle impact on cross-sectional differences in risk premia.

Stochastic volatility has, of course, been explored in other branches of the ėnance

literature. For example, Chacko and Viceira (ǊǈǈǍ) and Liu (ǊǈǈǏ) show how

stochastic volatility affects the optimal portfolio choice of long-term investors.

Chacko and Viceira assume an AR(ǉ) process for volatility and argue that

movements in volatility are not persistent enough to generate large intertemporal

hedging demands. Campbell and Hentschel (ǉǑǑǊ), Calvet and Fisher (ǊǈǈǏ), and

Eraker and Wang (Ǌǈǉǉ) argue that volatility shocks will lower aggregate stock prices

by increasing expected returns, if they do not affect cash Ěows. ĉe strength of this

volatility feedback effect depends on the persistence of the volatility process. Coval
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and Shumway (Ǌǈǈǉ), Ang, Hodrick, Xing, and Zhang (Ǌǈǈǎ), and Adrian and

Rosenberg (Ǌǈǈǐ) present evidence that shocks to market volatility are priced risk

factors in the cross-section of stock returns, but they do not develop any theory to

explain the risk prices for these factors.

ĉere is also an enormous literature in ėnancial econometrics on modeling and

forecasting time-varying volatility. Since Engle’s (ǉǑǐǊ) seminal paper on ARCH,

much of the literature has focused on variants of the univariate GARCH model

(Bollerslev ǉǑǐǎ), in which return volatility is modeled as a function of past shocks to

returns and of its own lags (see Poon and Granger (Ǌǈǈǋ) and Andersen et al. (Ǌǈǈǎ)

for recent surveys). More recently, realized volatility from high-frequency data has

been used to estimate stochastic volatility processes (Barndorff-Nielsen and

Shephard ǊǈǈǊ, Andersen et al. Ǌǈǈǋ). ĉe use of realized volatility has improved the

modeling and forecasting of volatility, including its long-run component; however,

this literature has primarily focused on the information content of high-frequency

intra-daily return data. ĉis allows very precise measurement of volatility, but at the

same time, given data availability constraints, limits the potential to use long time

series to learn about long-run movements in volatility. In our paper, we measure

realized volatility only with daily data, but augment this information with other

ėnancial time series that reveal information investors have about underlying volatility

components.

A much smaller literature has, like us, looked directly at the information in other

variables concerning future volatility. In early work, Schwert (ǉǑǐǑ) links movements

in stock market volatility to various indicators of economic activity, particularly the
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price-earnings ratio and the default spread, ėnding relatively weak results. Engle,

Ghysels and Sohn (ǊǈǈǑ) study the effect of inĚation and industrial production

growth on volatility, ėnding a signiėcant link between the two, especially at long

horizons. Campbell and Taksler (Ǌǈǈǋ) look at the cross-sectional link between

corporate bond yields and equity volatility, emphasizing that bond yields respond to

idiosyncratic ėrm-level volatility as well as aggregate volatility. Two recent papers,

Paye (ǊǈǉǊ) and Christiansen et al. (ǊǈǉǊ), look at larger sets of potential predictors

of volatility, that include the default spread and/or valuation ratios, to study which

ones have predictive power for quarterly realized variance. ĉe former, in a standard

regression framework, ėnds that a few variables, that include the commercial paper to

Treasury spread and the default spread, contain useful information for predicting

volatility. ĉe laĨer uses Bayesian Model Averaging to determine which variables are

most important for predicting quarterly volatility, and documents the importance of

the default spread and valuation ratios in forecasting short-run volatility.

Ǌ.ǉ Ał IłŉĹŇŉĹŁńŃŇĵŀMŃĸĹŀŌĽŉļ SŉŃķļĵňŉĽķ VŃŀĵŉĽŀĽŉŏ

AňňĹŉ ńŇĽķĽłĻ ŌĽŉļ ŉĽŁĹ ŋĵŇŏĽłĻ ŇĽňĿ

Preferences

We begin by assuming a representative agent with Epstein-Zin preferences. We

write the value function as

Vt =

[
(ƥ − δ)C

ƥ−γ
θ

t + δ
(
Et
[
Vƥ−γ
t+ƥ
])ƥ/θ] θ

ƥ−γ

, (Ǌ.ǉ)

ǎǍ



whereCt is consumption and the preference parameters are the discount factor δ, risk

aversion γ, and the elasticity of intertemporal substitution ψ. For convenience, we

deėne θ = (ƥ − γ)/(ƥ − ƥ/ψ).

ĉe corresponding stochastic discount factor (SDF) can be wriĨen as

Mt+ƥ =

(
δ
(

Ct

Ct+ƥ

)ƥ/ψ
)θ (

Wt − Ct

Wt+ƥ

)ƥ−θ

, (Ǌ.Ǌ)

whereWt is the market value of the consumption stream owned by the agent,

including current consumption Ct.³ ĉe log return on wealth is

rt+ƥ = ln (Wt+ƥ/ (Wt − Ct)), the log value of wealth tomorrow divided by reinvested

wealth today. ĉe log SDF is therefore

mt+ƥ = θ ln δ − θ
ψ
Δct+ƥ + (θ − ƥ) rt+ƥ. (Ǌ.ǋ)

A convenient identity

ĉe gross return to wealth can be wriĨen

ƥ + Rt+ƥ =
Wt+ƥ

Wt − Ct
=

(
Ct

Wt − Ct

)(
Ct+ƥ

Ct

)(
Wt+ƥ

Ct+ƥ

)
, (Ǌ.ǌ)

expressing it as the product of the current consumption payout, the growth in

consumption, and the future price of a unit of consumption.

We ėnd it convenient to work in logs. We deėne the log value of reinvested wealth

per unit of consumption as zt = ln ((Wt − Ct) /Ct), and the future value of a

³ĉis notational convention is not consistent in the literature. Some authors exclude current
consumption from the deėnition of current wealth.
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consumption claim as ht+ƥ = ln (Wt+ƥ/Ct+ƥ), so that the log return is:

rt+ƥ = −zt + Δct+ƥ + ht+ƥ. (Ǌ.Ǎ)

Heuristically, the return on wealth is negatively related to the current value of

reinvested wealth and positively related to consumption growth and the future value

of wealth. ĉe last term in equation (Ǌ.Ǎ) will capture the effects of intertemporal

hedging on asset prices, hence the choice of the notation ht+ƥ for this term.

ĉe ICAPM

We assume that asset returns are jointly conditionally lognormal, but we allow

changing conditional volatility so we are careful to write second moments with time

subscripts to indicate that they can vary over time. Under this standard assumption,

the expected return on any asset must satisfy

Ƥ = ln Et exp{mt+ƥ + ri,t+ƥ} = Et [mt+ƥ + ri,t+ƥ] +
ƥ
Ʀ
Vart [mt+ƥ + ri,t+ƥ] , (Ǌ.ǎ)

and the risk premium on any asset is given by

Etri,t+ƥ − rf,t +
ƥ
Ʀ
Vartrt+ƥ = −Covt [mt+ƥ, ri,t+ƥ] . (Ǌ.Ǐ)

ĉe convenient identity (Ǌ.Ǎ) can be used to write the log SDF (Ǌ.ǋ) without

reference to consumption growth:

mt+ƥ = θ ln δ − θ
ψ
zt +

θ
ψ
ht+ƥ − γrt+ƥ. (Ǌ.ǐ)
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Since the ėrst two terms in (Ǌ.Ǎ) are known at time t, only the laĨer two terms appear

in the conditional covariance in (Ǌ.Ǐ). We obtain an ICAPM pricing equation that

relates the risk premium on any asset to the asset’s covariance with the wealth return

and with shocks to future consumption claim values:

Etri,t+ƥ − rf,t +
ƥ
Ʀ
Vartrt+ƥ = γCovt [ri,t+ƥ, rt+ƥ]−

θ
ψ
Covt [ri,t+ƥ, ht+ƥ] (Ǌ.Ǒ)

Return and risk shocks in the ICAPM

To beĨer understand the intertemporal hedging component ht+ƥ, we proceed in

two steps. First, we approximate the relationship of ht+ƥ and zt+ƥ by taking a loglinear

approximation about z̄:

ht+ƥ ≈ κ + ρzt+ƥ (Ǌ.ǉǈ)

where the loglinearization parameter ρ = exp(z̄)/(ƥ + exp(z̄)) ≈ ƥ − C/W.

Second, we apply the general pricing equation (Ǌ.ǎ) to the wealth portfolio itself

(seĨing ri,t+ƥ = rt+ƥ), and use the convenient identity (Ǌ.Ǎ) to substitute out

consumption growth from this expression. Rearranging, we can write the variable zt

as

zt = ψ ln δ + (ψ − ƥ)Etrt+ƥ + Etht+ƥ +
ψ
θ

ƥ
Ʀ
Vart [mt+ƥ + rt+ƥ] . (Ǌ.ǉǉ)
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ĉird, we combine these expressions to obtain the innovation in ht+ƥ:

ht+ƥ − Etht+ƥ = ρ(zt+ƥ − Etzt+ƥ)

= (Et+ƥ − Et)ρ

 (ψ − ƥ)rt+Ʀ + ht+Ʀ

+ ψ
θ
ƥ
ƦVart+ƥ [mt+Ʀ + rt+Ʀ]

 . (Ǌ.ǉǊ)

Solving forward to an inėnite horizon,

ht+ƥ − Etht+ƥ = (ψ − ƥ)(Et+ƥ − Et)
∞∑
j=ƥ

ρjrt+ƥ+j

+
ƥ
Ʀ
ψ
θ
(Et+ƥ − Et)

∞∑
j=ƥ

ρjVart+j
[
mt+ƥ+j + rt+ƥ+j

]
= (ψ − ƥ)NDR,t+ƥ +

ƥ
Ʀ
ψ
θ
NRISK,t+ƥ. (Ǌ.ǉǋ)

ĉe second equality follows Campbell and Vuolteenaho (Ǌǈǈǌ) and uses the

notationNDR (“news about discount rates”) for revisions in expected future returns.

In a similar spirit we write revisions in expectations of future risk (the variance of the

future log return plus the log stochastic discount factor) asNRISK.

Finally, we substitute back into the intertemporal model (Ǌ.Ǒ):

Etri,t+ƥ − rf,t +
ƥ
Ʀ
Vartri,t+ƥ = γCovt [ri,t+ƥ,NCF,t+ƥ]

+Covt [ri,t+ƥ,−NDR,t+ƥ]

− ƥ
Ʀ
Covt [ri,t+ƥ,NRISK,t+ƥ] . (Ǌ.ǉǌ)

ĉis comes from the classic expression expressing the risk premium as risk
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aversion γ times covariance with the current market return, plus (γ − ƥ) times

covariance with news about future market returns, minus one half covariance with

risk. ĉis is an extension of the ICAPM as wriĨen by Campbell (ǉǑǑǋ), with no

reference to consumption or the elasticity of intertemporal substitution ψ.⁴ When

the investor’s risk aversion is greater than ǉ, assets which hedge aggregate discount

rates (Covt [ri,t+ƥ,NDR,t+ƥ] < Ƥ) or aggregate risk (Covt [ri,t+ƥ,NRISK,t+ƥ] > Ƥ) have

lower expected returns, all else equal.

In the rewriĨen form of equation (Ǌ.ǉǌ), the expression followes Campbell and

Vuolteenaho (Ǌǈǈǌ), by breaking the market return into cash-Ěow news and

discount-rate news. Cash-Ěow newsNCF is deėned byNCF = rt+ƥ−Etrt+ƥ + NDR.

ĉe price of risk for cash-Ěow news is γ times greater than the price of risk for

discount-rate news, hence Campbell and Vuolteenaho call betas with cash-Ěow news

“bad betas” and those with discount-rate news “good betas” since they have lower risk

prices in equilibrium. ĉe third term in (Ǌ.ǉǌ) shows the risk premium associated

with exposure to news about future risks and did not appear in Campbell and

Vuolteenaho’s model, which assumed homoskedasticity. Not surprisingly, the

coefficient is negative, indicating that an asset providing positive returns when risk

expectations increase will offer a lower return on average.

⁴Campbell (ǉǑǑǋ) brieĚy considers the heteroskedastic case, noting that when γ = ƥ,
Vart [mt+ƥ + rt+ƥ] is a constant. ĉis implies that NRISK does not vary over time so the stochastic
volatility term disappears. Campbell claims that the stochastic volatility term also disappears when
ψ = ƥ, but this is incorrect. When limits are taken correctly, NRISK does not depend on ψ (except
indirectly through the loglinearization parameter, ρ).
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FŇŃŁ ŇĽňĿ ŉŃ ŋŃŀĵŉĽŀĽŉŏ

ĉe risk shocks deėned in the previous subsection are shocks to the conditional

volatility of returns plus the stochastic discount factor, that is, the conditional

volatility of risk-neutralized returns. We now make additional assumptions on the

data generating process for stock returns that allow us to estimate the news terms.

ĉese assumptions imply that the conditional volatility of risk-neutralized returns is

proportional to the conditional volatility of returns themselves.

Suppose the economy is described by a ėrst-order VAR

xt+ƥ = x̄ + Γ (xt − x̄) + σtut+ƥ, (Ǌ.ǉǍ)

where xt+ƥ is an n× ƥ vector of state variables that has rt+ƥ as its ėrst element, σƦt+ƥ as

its second element, and n− Ʀ other variables that help to predict the ėrst and second

moments of aggregate returns. x̄ and Γ are an n× ƥ vector and an n× nmatrix of

constant parameters, and ut+ƥ is a vector of shocks to the state variables normalized

so that its ėrst element has unit variance. ĉe key assumption here is that a scalar

random variable, σƦt , equal to the conditional variance of market returns, also governs

time-variation in the variance of all shocks to this system. Both market returns and

state variables, including volatility itself, have innovations whose variances move in

proportion to one another.
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Given this structure, news about discount rates can be wriĨen as

NDR,t+ƥ = (Et+ƥ − Et)
∞∑
j=ƥ

ρjrt+ƥ+j

= e′ƥ
∞∑
j=ƥ

ρjΓjσtut+ƥ

= e′ƥρΓ (I − ρΓ)−ƥ σtut+ƥ (Ǌ.ǉǎ)

Furthermore, our log-linear model will make the log SDF,mt+ƥ, a linear function

of the state variables. Since all shocks to the SDF are then proportional to σt,

Vart [mt+ƥ + rt+ƥ] ∝ σƦt . As a result, the conditional variance,

Vart [(mt+ƥ + rt+ƥ) /σt] = ωt, will be a constant that does not depend on the state

variables. Without knowing the parameters of the utility function, we can write

Vart [mt+ƥ + rt+ƥ] = ωσƦt so that the news about risk,NRISK, is proportional to news

about market return variance,NV.

NRISK,t+ƥ = (Et+ƥ − Et)
∞∑
j=ƥ

ρjVart+j
[
rt+ƥ+j + mt+ƥ+j

]
= (Et+ƥ − Et)

∞∑
j=ƥ

ρj
(
ωσƦt+j

)
= ωρe′Ʀ

∞∑
j=Ƥ

ρjΓjσtut+ƥ

= ωρe′Ʀ (I − ρΓ)−ƥ σtut+ƥ = ωNV,t+ƥ. (Ǌ.ǉǏ)

Substituting (Ǌ.ǉǏ) into (Ǌ.ǉǌ), we obtain an empirically-testable intertemporal
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CAPM with stochastic volatility:

Etri,t+ƥ − rf,t +
ƥ
Ʀ
Vartri,t+ƥ = γCovt [ri,t+ƥ,NCF,t+ƥ]

+Covt [ri,t+ƥ,−NDR,t+ƥ]

− ƥ
Ʀ
ωCovt [ri,t+ƥ,NV,t+ƥ] , (Ǌ.ǉǐ)

where covariances with news about three key aĨributes of the market portfolio (cash

Ěows, discount rates, and volatility) describe the cross section of average returns.

ĉe parameter ω is a nonlinear function of the coefficient of relative risk aversion

γ, as well as the VAR parameters and the loglinearization coefficient ρ, but it does not

depend on the elasticity of intertemporal substitution ψ except indirectly through the

inĚuence of ψ on ρ.

By deėnition

ωσƦt = Vart [mt+ƥ + rt+ƥ]

= Vart

[
θ
ψ
ht+ƥ + (ƥ − γ)rt+ƥ

]
= Vart

[
θ
ψ

(
(ψ − ƥ)NDR,t+ƥ +

ƥ
Ʀ
ψ
θ
ωNV,t+ƥ

)
+ (ƥ − γ)rt+ƥ

]
= Vart

[
(ƥ − γ)NDR,t+ƥ +

ƥ
Ʀ
ωNV,t+ƥ + (ƥ − γ)rt+ƥ

]
= Vart

[
(ƥ − γ)NCF,t+ƥ +

ƥ
Ʀ
ωNV,t+ƥ

]
.
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ĉerefore ω solves:

ωσƦt = (ƥ − γ)ƦVart
[
NCFt+ƥ

]
+ω(ƥ − γ)Covt

[
NCFt+ƥ,NVt+ƥ,

]
+ ωƦ ƥ

ƨ
Vart

[
NVt+ƥ

]
. (Ǌ.ǉǑ)

We can see two main channels through which γ affects ω. First, a higher risk

aversionãgiven the underlying volatilities of all shocksãimplies a more volatile

stochastic discount factorm, and therefore a higher RISK. ĉis effect is proportional

to (ƥ − γ)Ʀ, so it increases rapidly with γ. Second, there is a feedback effect on RISK

through future risk: ω appears on the right-hand side of the equation as well. Given

that in our estimation we ėnd Covt
[
NCFt+ƥ,NVt+ƥ,

]
< Ƥ, this second effect makes ω

increase even faster with γ.⁵

ĉis equation can also be wriĨen directly in terms of the VAR parameters. If we

deėne xCF and xV as the error-to-news vectors such that

ƥ
σt
NCF,t+ƥ = xCFut+ƥ =

(
e′ƥ + e′ƥρΓ(I− ρΓ)−ƥ) ut+ƥ (Ǌ.Ǌǈ)

ƥ
σt
NV,t+ƥ = xVut+ƥ =

(
e′Ʀρ(I− ρΓ)−ƥ) ut+ƥ (Ǌ.Ǌǉ)

and deėne the covariance matrix of the residuals (scaled to eliminate stochastic

⁵Bansal, Kiku, Shaliastovich and Yaron (ǊǈǉǊ) derive a similar expression. ĉe equivalent expres-
sion for ω in their case reduces to (ƥ− γ)Ʀ as they impose that the volatility process is homoskedastic
and the conditional equity premium is driven solely by the stochastic volatility.
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volatility) as Σ =Var[ut+ƥ], then ω solves

Ƥ = ωƦ ƥ
ƨ
xVΣx′V − ω (ƥ − (ƥ − γ) xCFΣx′V) + (ƥ − γ)Ʀ xCFΣx′CF (Ǌ.ǊǊ)

ĉis quadratic equation for ω has two solutions. ĉis result is an artifact of our

linear approximation of the Euler Equation, and the appendix shows that one of the

solutions can be disregarded. ĉis false solution is easily identiėed by its implication

that ω becomes inėnite as volatility shocks become small. ĉe correct solution is

ω =
ƥ − (ƥ − γ)xCFΣx′V

ƥ
ƦxVΣx

′
V

−
√
(ƥ − (ƥ − γ)xCFΣx′V)Ʀ − (ƥ − γ)Ʀ(xVΣx′V)(xCFΣx′CF)

ƥ
ƦxVΣx

′
V

(Ǌ.Ǌǋ)

ĉere is an additional disadvantage to the quadratic expression arising from our

loglinearization. In the case where risk aversion, volatility shocks and cash Ěow

shocks are large enough, as measured by the product (ƥ − γ)Ʀ(xVΣx′V)(xCFΣx′CF).

equation (Ǌ.ǊǊ) may deliver a complex rather than a real value for ω. While the

conditional variance Vart[mt+ƥ + rt+ƥ] from which we deėne ω will be both real and

ėnite, the loglinear approximation may not allow for a real solution in an

economically important region of the parameter space. Given our VAR estimates of

the variance and covariance terms, we ėnd equation (Ǌ.ǊǊ) yields a real solution as γ

ranges from zero to ƪ.ƭƧ.
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Figure Ǌ.ǉ: Approximate Gamma-Omega Relationship
ĉis ėgure graphs the approximate relation between the parameter γ and the parameter ω described
by equation (Ǌ.Ǌǌ) as well as the quadratic solution for ω described in equation (Ǌ.Ǌǋ). ĉese func-
tions depend on the loglinearization parameter ρ, set to ǈ.ǑǍ per year and the empirically estimated
VAR parameters of Table ǉ. γ is the investor’s risk aversion while ω is the sensitivity of news about
risk,NRISK, to news about market variance,NV.

To allow for larger values in our risk aversion parameter, we consider an alternative

approximation. If we linearize the right hand side of equation (Ǌ.ǉǑ) around ω = Ƥ

we can approximate Vart[mt+ƥ + rt+ƥ] as a linear, rather than quadratic, function of ω.

We then have

ω ≈ (ƥ − γ)Ʀ(xCFΣx′CF)
ƥ − (ƥ − γ)(xCFΣx′V)

(Ǌ.Ǌǌ)

which is now deėned for all γ > Ƥ. Figure Ǌ.ǉ plots ω as a function of γ using both the

solution in equation (Ǌ.Ǌǋ) and the approximation in (Ǌ.Ǌǌ) for values of γ up to Ǌǈ.
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By construction, they will yield similar solutions for values of γ close to one, where

ω gets close to ǈ and volatility news becomes less and less important. In other words,

it is easy to show that our linearization preserves the property of the true model that

as γ → ƥ, ω → Ƥ and

Vart[mt+ƥ + rt+ƥ] → (ƥ − γ)ƦVart[NCF]

As risk aversion increases, we ėnd that this approximate value for ω continues to

resemble the exact solution of the quadratic equation (Ǌ.ǊǊ) in the region where a

real solution exists. We have also used numerical methods, similar to those proposed

by Tauchen andHussey (ǉǑǑǉ), to solve the model and validate our estimates of ω for

a range of values for γ that include the region where the quadratic equation does not

have a real solution.

IŁńŀĽķĵŉĽŃłň ĺŃŇ ķŃłňŊŁńŉĽŃł ĻŇŃŌŉļ

Following Campbell (ǉǑǑǋ), in this paper we substitute consumption out of the

pricing equations using the intertemporal budget constraint. However the model

does have interesting implications for the implied consumption process. From

equations (Ǎ) and (ǉǋ), we can derive the expression:

Δct+ƥ − EtΔct+ƥ = (rt+ƥ − Etrt+ƥ)− (ψ − ƥ)NDR,t+ƥ

−(ψ − ƥ)
ƥ
Ʀ

ω
ƥ − γ

NV,t+ƥ. (Ǌ.ǊǍ)
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ĉe ėrst two components of the equation for consumption growth are the same as in

the homoskedastic case. An unexpectedly high return of the wealth portfolio has a

one-for-one effect on consumption. An increase in expected future returns increases

today’s consumption if ψ < ƥ, as the low elasticity of intertemporal substitution

induces the representative investor to consume today (the income effect dominates).

If ψ > ƥ, instead, the same increase induces the agent to reduce consumption to beĨer

exploit the improved investment opportunities (the substitution effect dominates).

ĉe introduction of time-varying conditional volatility adds an additional term to

the equation describing consumption growth. News about high future risk is news

about a deterioration of future investment opportunities, which is bad news for a

risk-averse investor (γ > ƥ). When ψ < ƥ, the representative agent will reduce

consumption and save to ensure adequate future consumption. An investor with high

elasticity of intertemporal substitution, on the other hand, will increase current

consumption and reduce the amount of wealth exposed to the future (worse)

investment opportunities.

Using estimates of the news terms from our VAR model (described in the next

section), we can explore the implications of the model for consumption growth. As

shown in the previous subsection, the three shocks that drive innovations in

consumption growth (rt+ƥ − Etrt+ƥ,NDR,t+ƥ,NV,t+ƥ) can all be expressed as functions

of the vector of innovations σtut+ƥ. ĉe conditional variance of consumption growth,

Vart(Δct+ƥ), will then be proportional to the conditional variance of returns,

Vart(rt+ƥ); similarly, the conditional standard deviation of consumption growth will

be proportional to the conditional standard deviation of returns. As a consequence,
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Figure Ǌ.Ǌ: Consumption Growth Variance and Risk Aversion
ĉis ėgure plots plots the coefficient A(γ, ψ) relating the conditional volatility of consumption
growth to the volatility of returns for different values of γ and ψ for the homoskedastic case (leě
panel) and for the heteroskedastic case (right panel), where A(γ, ψ) is a function of the variances
and covariances of the scaled residuals ut+ƥ. In each panel, we plot A(γ, ψ) as γ varies between ǉ and
Ǌǈ, for different values of psi. Each line corresponds to a different ψ between ǈ.Ǎ and ǉ.Ǎ.

the ratio of the standard deviations,

A(γ, ψ) ≡
√

Vart(Δct+ƥ)√
Vart(rt+ƥ)

will be a constant that depends on the model parameters γ and ψ as well as on the

unconditional variances and covariances of the innovation vector ut+ƥ, which we

obtain by estimating the VAR.
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Figure Ǌ.Ǌ plots the coefficient A(γ, ψ) for different values of γ and ψ for the

homoskedastic case (leě panel), and for the heteroskedastic case (right panel) using

the linear approximation for ω described in Section Ǌ.Ǌ. In each panel, we plot

A(γ, ψ) as γ varies between ǈ and Ǌǈ, for different values of ψ. Each line corresponds

to a different ψ between ǈ.Ǎ and ǉ.Ǎ; when ψ = ƥ the value of A(γ, ψ) is always equal

to ǉ since in that case the volatility of consumption growth is equal to the volatility of

returns.

As expected, in the homoskedastic case (leě panel), the variance of consumption

growth does not depend on γ but only on ψ. It is rising in ψ because our VAR

estimates imply that the return on wealth is negatively correlated with news about

future expected returnsNDR,t+ƥ, that is, wealth returns are mean-reverting. ĉis

conėrms results reported in Campbell (ǉǑǑǎ). Once we add stochastic volatility

(right panel), as γ increases the volatility of consumption growth increases for all

values of ψ as long as ψ ̸= ƥ. To understand why this is the case, notice in equation

(Ǌ.Ǌǌ) that since ω grows with γ faster than (ƥ− γ)Ʀ, the term ω
ƥ−γ is increasing in γ in

absolute value. ĉerefore, the larger γ, the more the variance ofNV gets ampliėed

into a higher variance of consumption innovations.

Note also that for ψ < ƥ and for high enough γ (i.e. in the boĨom-right section of

the right panel), the volatility of consumption innovations is higher for lower values of

ψ. When risk aversion is high, innovations in consumption are dominated by news

about future risk. Agents with very low or very high elasticity of intertemporal

substitution, i.e. with ψ far from ǉ, will tend to adjust their consumption strongly (in

different directions) to volatility news. ĉerefore, it is possible for individuals with
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lower elasticity of intertemporal substitution to end up with amore volatile process for

consumption innovations, due to their strong reaction to volatility news.

Ǌ.Ǌ PŇĹĸĽķŉĽłĻ AĻĻŇĹĻĵŉĹ SŉŃķĿ RĹŉŊŇłň ĵłĸ VŃŀĵŉĽŀĽŉŏ

SŉĵŉĹ ŋĵŇĽĵĶŀĹň

Our full VAR speciėcation of the vector xt+ƥ includes six state variables, ėve of which

are the same as in Campbell, Giglio and Polk (Ǌǈǉǉ). To those ėve variables, we add

an estimate of conditional volatility. ĉe data are all quarterly, from ǉǑǊǎ:Ǌ to Ǌǈǉǉ:ǌ.

ĉe ėrst variable in the VAR is the log real return on the market, rM, the difference

between the log return on the Center for Research in Securities Prices (CRSP)

value-weighted stock index and the log return on the Consumer Price Index.

ĉe second variable is expected market variance (EVAR). ĉis variable is meant to

capture the volatility of market returns, σt, conditional on information available at

time t, so that innovations to this variable can be mapped to theNV term described

above. To construct EVARt, we proceed as follows. We ėrst construct a series of

within-quarter realized variance of daily returns for each time t, RVARt. We then run

a regression of RVARt+ƥ on lagged realized variance (RVARt) as well as the other ėve

state variables at time t. ĉis regression then generates a series of predicted values for

RVAR at each time t+ ƥ, that depend on information available at time t: R̂VARt+ƥ.

Finally, we deėne our expected variance at time t to be exactly this predicted value at

t+ ƥ:

EVARt ≡ R̂VARt+ƥ.
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Note that though we describe our methodology in a two-step fashion where we ėrst

estimate EVAR and then use EVAR in a VAR, this is only for interpretability. Indeed,

this approach to modeling EVAR can be considered a simple renormalization of

equivalent results we would ėnd from a VAR that included RVAR directly.⁶

ĉe third variable is the price-earnings ratio (PE) from Shiller (Ǌǈǈǈ), constructed

as the price of the S&P Ǎǈǈ index divided by a ten-year trailing moving average of

aggregate earnings of companies in the S&P Ǎǈǈ index. Following Graham and Dodd

(ǉǑǋǌ), Campbell and Shiller (ǉǑǐǐb, ǉǑǑǐ) advocate averaging earnings over several

years to avoid temporary spikes in the price-earnings ratio caused by cyclical declines

in earnings. We avoid any interpolation of earnings as well as lag the moving average

by one quarter in order to ensure that all components of the time-t price-earnings

ratio are contemporaneously observable by time t. ĉe ratio is log transformed.

Fourth, the term yield spread (TY) is obtained from Global Financial Data. We

compute the TY series as the difference between the log yield on the ǉǈ-Year US

Constant Maturity Bond (IGUSAǉǈD) and the log yield on the ǋ-Month US

Treasury Bill (ITUSAǋD).

Fiěh, the small-stock value spread (VS) is constructed from data on the six

“elementary” equity portfolios also obtained from Professor French’s website. ĉese

elementary portfolios, which are constructed at the end of each June, are the

intersections of two portfolios formed on size (market equity, ME) and three

portfolios formed on the ratio of book equity to market equity (BE/ME). ĉe size

⁶Since we weight observations based on RVAR in the ėrst stage and then reweight observations
using EVAR in the second stage, our two-stage approach in practice is not exactly the same as a one-
stage approach. However, the results from a RVAR-weighted single-step estimation are qualitatively
very similar to those produced by our two-stage approach.
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breakpoint for year t is the median NYSE market equity at the end of June of year t.

BE/ME for June of year t is the book equity for the last ėscal year end in t− ƥ divided

by ME for December of t− ƥ. ĉe BE/ME breakpoints are the ǋǈth and Ǐǈth NYSE

percentiles.

At the end of June of year t, we construct the small-stock value spread as the

difference between the ln(BE/ME) of the small high-book-to-market portfolio and

the ln(BE/ME) of the small low-book-to-market portfolio, where BE and ME are

measured at the end of December of year t− ƥ. For months from July to May, the

small-stock value spread is constructed by adding the cumulative log return (from the

previous June) on the small low-book-to-market portfolio to, and subtracting the

cumulative log return on the small high-book-to-market portfolio from, the

end-of-June small-stock value spread. ĉe construction of this series follows

Campbell and Vuolteenaho (Ǌǈǈǌ) closely.

ĉe sixth variable in our VAR is the default spread (DEF), deėned as the difference

between the log yield on Moody’s BAA and AAA bonds. ĉe series is obtained from

the Federal Reserve Bank of St. Louis. Campbell, Giglio and Polk (Ǌǈǉǉ) add the

default spread to the Campbell and Vuolteenaho (Ǌǈǈǌ) VAR speciėcation in part

because that variable is known to track time-series variation in expected real returns

on the market portfolio (Fama and French, ǉǑǐǑ), but mostly because shocks to the

default spread should to some degree reĚect news about aggregate default

probabilities. Of course, news about aggregate default probabilities should in turn

reĚect news about the market’s future cash Ěows.
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SļŃŇŉ-ŇŊł ŋŃŀĵŉĽŀĽŉŏ ĹňŉĽŁĵŉĽŃł

In order for the regression model that generates EVARt to be consistent with a

reasonable data-generating process for market variance, we deviate from standard

OLS in two ways. First, we constrain the regression coefficients to produce ėĨed

values (i.e. expected market return variance) that are positive. Second, given that we

explicitly consider heteroskedasticity of the innovations to our variables, we estimate

this regression using Weighted Least Squares (WLS), where the weight of each

observation pair (RVARt+ƥ, xt) is initially based on the time-t value of (RVAR)−ƥ.

However, to ensure that the ratio of weights across observations is not extreme, we

shrink these initial weights towards equal weights. In particular, we set our shrinkage

factor large enough so that the ratio of the largest observation weight to the smallest

observation weight is always less than or equal to ėve. ĉough admiĨedly somewhat

ad hoc, this bound is consistent with reasonable priors of the degree of variation over

time in expectedmarket return variance. More importantly, we show later that our

results are robust to variation in this bound. Both the constraint on the regression’s

ėĨed values and the constraint on WLS observation weights bind in the sample we

study.

ĉe results of the ėrst stage regression generating the state variable EVARt are

reported in Table Ǌ.ǉ Panel A. Perhaps not surprisingly, past realized variance strongly

predicts future realized variance. More importantly, the regression documents that an

increase in either PE orDEF predicts higher future realized volatility. Both of these

results are very statistically signiėcant and are a novel ėnding of the paper. In
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particular, the fact that we ėnd that very persistent variables like PE and DEF forecast

next period’s volatility indicates a potential important role in volatility news for lower

frequency or long-run movements in stochastic volatility.

We argue that the links we ėnd are sensible. Investors in risky bonds incorporate

their expectation of future volatility when they set credit spreads, as risky bonds are

short the option to default. ĉerefore we expect higherDEF to be associated with

higher RVAR. ĉe result that higher PE predicts higher RVARmight seem surprising

at ėrst, but one has to remember that the coefficient indicates the effect of a change in

PE holding constant the other variables, in particular the default spread. Since the

default spread should also generally depend on the equity premium and since most of

the variation in PE is due to variation in the equity premium, for a given value of the

default spread, a relatively high value of PE implies a relatively higher level of future

volatility. ĉus PE cleans up the information inDEF concerning future volatility.

ĉe RƦ of this regression is just over Ǌǋƻ. ĉe relatively low RƦ masks the fact that

the ėt is indeed quite good, as we can see from Figure Ǌ.ǋ, in which RVAR and EVAR

are ploĨed together. ĉe RƦ is heavily inĚuenced by the occasional spikes in realized

variance, which the simple linear model we use is not able to capture. Indeed, our

WLS approach downweights the importance of those spikes in the estimation

procedure.

ĉe internet appendix to this paper (Campbell, Giglio, Polk, and Turley ǊǈǉǊ)

reports descriptive statistics for these variables for the full sample, the early sample,

and the modern sample. Consistent with Campbell, Giglio and Polk (ǊǈǉǊ), we

document high correlation betweenDEF and both PE and VS. ĉe table also
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Figure Ǌ.ǋ: Realized and Expected Variance, ǉǑǊǎ-Ǌǈǉǉ
ĉis ėgure plots quarterly observations of realized within-quarter daily return variance over the sam-
ple period ǉǑǊǎ:Ǌ-Ǌǈǉǉ:ǌ and the expected variance implied by the estimated model.
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documents the persistence of both RVAR and EVAR (autocorrelations of ǈ.ǍǊǌ and

ǈ.Ǐǌǈ respectively) and the high correlation between these variance measures and the

default spread.

Perhaps the most notable difference between the two subsamples is that the

correlation between PE and several of our other state variables changes dramatically.

In the early sample, PE is quite negatively correlated with both RVAR and VS. In the

modern sample, PE is essentially uncorrelated with RVAR and quite positively

correlated with VS. As a consequence, since EVAR is just a linear combination of our

state variables, the correlation between PE and EVAR changes sign across the two

samples. In the early sample, this correlation is very negative, with a value of -ǈ.Ǎǉǉ.

ĉis strong negative correlation reĚects the high volatility that occurred during the

Great Depression when prices were relatively low. In the modern sample, the

correlation is positive, ǈ.ǉǌǈ. ĉe positive correlation simply reĚects the economic

fact that episodes with high volatility and high stock prices, such as the technology

boom of the late ǉǑǑǈs, were more prevalent in this subperiod than episodes with

high volatility and low stock prices, such as the recession of the early ǉǑǐǈs.

EňŉĽŁĵŉĽŃł Ńĺ ŉļĹ VAR ĵłĸ ŉļĹ łĹŌň ŉĹŇŁň

Following Campbell (ǉǑǑǋ), we estimate a ėrst-order VAR as in equation (Ǌ.ǉǍ),

where xt+ƥ is a ƪ × ƥ vector of state variables ordered as follows:

xt+ƥ = [rM,t+ƥ EVARt+ƥ PEt+ƥ TYt+ƥ DEFt+ƥ VSt+ƥ]
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so that the real market return rM,t+ƥ is the ėrst element and EVAR is the second

element. x̄ is a ƪ × ƥ vector of the means of the variables, and Γ is a ƪ × ƪ matrix of

constant parameters. Finally, σtut+ƥ is a ƪ × ƥ vector of innovations, with the

conditional variance-covariance matrix of ut+ƥ a constant:

Σ = Var(ut+ƥ)

so that the parameter σƦt scales the entire variance-covariance matrix of the vector of

innovations.

ĉe ėrst-stage regression forecasting realized market return variance described in

the previous section generates the variable EVAR. ĉe theory in Section Ǌ.Ǌ assumes

that σƦt , proxied for by EVAR, scales the variance-covariance matrix of state variable

shocks. ĉus, as in the ėrst stage, we estimate the second-stage VAR using WLS,

where the weight of each observation pair (xt+ƥ, xt) is initially based on (EVARt)
−ƥ.

We continue to constrain both the weights across observations and the ėĨed values

of the regression forecasting EVAR.

Table Ǌ.ǉ Panel B presents the results of the VAR estimation for the full sample

(ǉǑǊǎ:Ǌ to Ǌǈǉǉ:ǌ). We report bootstrap standard errors for the parameter estimates

of the VAR that take into account the uncertainty generated by forecasting variance in

the ėrst stage. Consistent with previous research, we ėnd that PE negatively predict

future returns, though the t-statistic indicates only marginal signiėcance. ĉe value

spread has a negative but not statistically signiėcant effect on future returns. In our

speciėcation, a higher conditional variance, EVAR, is associated with higher future

returns, though the effect is not statistically signiėcant. Of course, the relatively high
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degree of correlation among PE,DEF, VS, and EVAR complicates the interpretation

of the individual effect of those variables. As for the other novel aspects of the

transition matrix, both high PE and highDEF predict higher future conditional

variance of returns. High past market returns forecast lower EVAR, higher PE, and

lowerDEF.⁷

Tables Ǌ.Ǌ and Ǌ.ǋ report the sample correlation and autocorrelation matrices of

both the unscaled residuals σtut+ƥ and the scaled residuals ut+ƥ. ĉe correlation

matrices report standard deviations on the diagonals. ĉere are a couple of aspects of

these results to note. For one thing, a comparison of the standard deviations of the

unscaled and scaled residuals provides a rough indication of the effectiveness of our

empirical solution to the heteroskedasticity of the VAR. In general, the standard

deviations of the scaled residuals are several times larger than their unscaled

counterparts. More speciėcally, our approach implies that the scaled return residuals

should have unit standard deviation. Our implementation results in a sample

standard deviation of ǈ.ǍǎǊ, that is relatively close to one.

Additionally, a comparison of the unscaled and scaled autocorrelation matrices

reported in Table Ǌ.ǋ reveals that much of the sample autocorrelation in the unscaled

residuals is eliminated by our WLS approach. For example, the unscaled residuals in

the regression forecasting the log real return have an autocorrelation of -ǈ.ǈǏǌ. ĉe

⁷One worry is that many of the elements of the transition matrix are estimated imprecisely.
ĉough these estimates may be zero, their non-zero but statistically insigniėcant in-sample point es-
timates, in conjunction with the highly-nonlinear function that generates discount-rate and volatility
news, may result inmisleading estimates of risk prices. However, the results are qualitatively similar if
we instead employ a partial VARwhere, via a standard iterative process, only variables with t-statistics
greater than ǉ.ǈ are included in each VAR regression.
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Table Ǌ.Ǌ: VAR Residual Correlations and Standard Deviations

ĉe table reports the correlation (”Corr/std”) matrices of both the unscaled and scaled shocks from
the second-stage VAR; the correlationmatrix reports shock standard deviations on the diagonal. ĉe
sample period for the dependent variables is ǉǑǊǎ.ǋ-Ǌǈǉǉ.ǌ, ǋǌǊ quarterly data points.

Corr/std rM EVAR PE TY DEF VS
unscaled

rM ǈ.ǉǈǎ -ǈ.ǌǐǐ ǈ.ǑǈǏ -ǈ.ǈǊǊ -ǈ.ǌǐǑ -ǈ.ǈǋǎ
EVAR -ǈ.ǌǐǐ ǈ.ǈǉǐ -ǈ.ǍǏǍ -ǈ.ǈǏǌ ǈ.ǎǌǍ ǈ.ǉǊǉ

PE ǈ.ǑǈǏ -ǈ.ǍǏǍ ǈ.ǈǑǑ -ǈ.ǈǉǉ -ǈ.ǎǈǉ -ǈ.ǈǎǌ
TY -ǈ.ǈǊǊ -ǈ.ǈǏǌ -ǈ.ǈǉǉ ǈ.Ǎǎǉ ǈ.ǈǈǎ -ǈ.ǈǊǌ

DEF ǈ.ǈǈǈ -ǈ.ǌǐǑ ǈ.ǎǌǍ -ǈ.ǎǈǉ ǈ.ǈǈǎ ǈ.ǊǑǈ
VS -ǈ.ǈǋǎ ǈ.ǉǊǉ -ǈ.ǈǎǌ -ǈ.ǈǊǌ ǈ.ǋǉǎ ǈ.ǈǐǎ

scaled
rM ǈ.Ǎǎǐ -ǈ.ǌǐǌ ǈ.Ǒǈǌ -ǈ.ǈǌǋ -ǈ.ǋǐǋ ǈ.ǈǊǋ

EVAR -ǈ.ǌǐǌ ǈ.ǈǑǈ -ǈ.Ǎǎǉ -ǈ.ǈǎǑ ǈ.ǎǊǏ ǈ.ǈǐǐ
PE ǈ.Ǒǈǌ -ǈ.Ǎǎǉ ǈ.ǍǊǊ -ǈ.ǈǋǋ -ǈ.ǌǐǐ ǈ.ǈǈǌ
TY -ǈ.ǈǌǋ -ǈ.ǈǎǑ -ǈ.ǈǋǋ ǋ.ǊǌǏ ǈ.ǈǉǐ -ǈ.ǈǋǋ

DEF -ǈ.ǋǐǋ ǈ.ǎǊǏ -ǈ.ǌǐǐ ǈ.ǈǉǐ ǉ.ǋǎǋ ǈ.Ǌǎǉ
VS ǈ.ǈǊǋ ǈ.ǈǐǐ ǈ.ǈǈǌ -ǈ.ǈǋǋ ǈ.Ǌǎǉ ǈ.ǌǑǎ
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Table Ǌ.ǋ: VAR Residual Autocorrelations

ĉe table reports the autocorrelation (”Autocorr.”) matrices of both the unscaled and scaled shocks
from the second-stageVAR; the correlationmatrix reports shock standard deviations on the diagonal.
ĉe sample period for the dependent variables is ǉǑǊǎ.ǋ-Ǌǈǉǉ.ǌ, ǋǌǊ quarterly data points.

Autocorr. rM,t+ƥ EVARt+ƥ PEt+ƥ TYt+ƥ DEFt+ƥ VSt+ƥ

unscaled
rM,t -ǈ.ǈǏǌ ǈ.ǈǑǊ -ǈ.ǈǎǏ ǈ.ǈǌǏ ǈ.ǉǈǈ ǈ.ǈǌǍ

EVARt ǈ.ǈǏǉ -ǈ.ǉǍǋ ǈ.ǈǐǋ -ǈ.ǉǊǎ -ǈ.ǉǐǋ -ǈ.ǈǐǏ
PEt -ǈ.ǈǐǎ ǈ.ǉǏǏ -ǈ.ǉǍǉ ǈ.ǈǏǈ ǈ.ǊǊǉ ǈ.ǈǑǋ
TYt -ǈ.ǈǌǎ ǈ.ǈǏǍ -ǈ.ǈǊǑ -ǈ.ǈǐǐ ǈ.ǈǐǉ ǈ.ǈǍǈ

DEFt ǈ.ǉǍǊ -ǈ.ǉǊǌ ǈ.ǉǐǎ -ǈ.ǉǍǏ -ǈ.ǋǉǉ -ǈ.ǉǌǏ
VSt ǈ.ǈǊǊ -ǈ.ǈǋǌ ǈ.ǈǊǈ -ǈ.ǈǏǎ -ǈ.ǈǐǈ -ǈ.ǈǑǏ

scaled
rM,t ǈ.ǈǈǊ ǈ.ǈǌǍ -ǈ.ǈǈǌ ǈ.ǈǈǑ ǈ.ǈǈǏ -ǈ.ǈǈǎ

EVARt ǈ.ǈǎǈ -ǈ.ǉǈǊ ǈ.ǈǏǋ -ǈ.ǈǐǊ -ǈ.ǉǊǈ -ǈ.ǈǎǈ
PEt -ǈ.ǈǉǊ ǈ.ǉǊǍ -ǈ.ǈǏǏ ǈ.ǈǊǏ ǈ.ǉǈǑ ǈ.ǈǊǏ
TYt -ǈ.ǈǋǎ ǈ.ǈǎǏ -ǈ.ǈǊǐ -ǈ.ǈǍǐ ǈ.ǈǏǋ ǈ.ǈǋǑ

DEFt ǈ.ǈǑǌ -ǈ.ǈǐǋ ǈ.ǉǊǋ -ǈ.ǉǉǉ -ǈ.Ǌǉǐ -ǈ.ǉǈǏ
VSt ǈ.ǈǉǐ -ǈ.ǈǋǉ ǈ.ǈǈǑ -ǈ.ǈǌǌ -ǈ.ǈǎǎ -ǈ.ǈǐǋ
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Table Ǌ.ǌ: VAR Speciėcation Test

ĉe table reports the results of regressions forecasting the squared second-stage residuals from the
VAR estimated in Table Ǌ.ǉ with EVARt. Bootstrap standard errors that take into account the un-
certainty in generating EVAR are in parentheses. ĉe sample period for the dependent variables is
ǉǑǊǎ.ǋ-Ǌǈǉǉ.ǌ, ǋǌǊ quarterly data points.

Heteroskedastic Shocks
Squared, second-stage,

unscaled residual Constant EVARt RƦƻ
rM,t+ƥ -ǈ.ǈǈǋ ǈ.ǌǏǐ ǉǑ.Ǐǐƻ

(ǈ.ǈǈǌ) (ǈ.ǈǏǎ)
EVARt+ƥ ǈ.ǈǈǈ ǈ.ǈǉǐ Ǎ.ǐǎƻ

(ǈ.ǈǈǈ) (ǈ.ǈǈǎ)
PEt+ƥ -ǈ.ǈǈǌ ǈ.ǌǐǌ ǉǑ.ǎǉƻ

(ǈ.ǈǈǌ) (ǈ.ǈǏǎ)
TYt+ƥ ǈ.ǊǈǍ ǋ.ǏǏǈ ǉ.ǎǏƻ

(ǈ.ǈǐǌ) (ǉ.ǐǋǏ)
DEFt+ƥ -ǈ.ǉǉǏ ǎ.Ǒǎǈ Ǌǎ.ǉǊƻ

(ǈ.ǈǌǌ) (ǈ.ǑǊǊ)
VSt+ƥ ǈ.ǈǈǌ ǈ.ǉǉǐ Ǎ.ǌǏƻ

(ǈ.ǈǈǊ) (ǈ.ǈǋǌ)

corresponding autocorrelation of the scaled return residuals is essentially zero, ǈ.ǈǈǊ.

ĉough the scaled residuals in the EVAR, PE andDEF regression still display some

negative autocorrelation, the unscaled residuals are much more negatively

autocorrelated.

Table Ǌ.ǌ reports the coefficients of a regression of the squared unscaled residuals

σtut+ƥ of each VAR equation on a constant and EVAR. ĉese results are consistent

with our assumption that EVAR captures the conditional volatility of market returns

(the coefficient on EVAR in the regression forecasting the squared residuals of rM is
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ǈ.ǌǏǐ). ĉe fact that EVAR signiėcantly predicts with a positive sign all the squared

errors of the VAR supports our underlying assumption that one parameter (σƦt )

drives the volatility of all innovations.

ĉe top panel of Table Ǌ.Ǎ presents the variance-covariance matrix and the

standard deviation/correlation matrix of the news terms, estimated as described

above. Consistent with previous research, we ėnd that discount-rate news is twice as

volatile as cash-Ěow news.

ĉe interesting new results in this table concern the variance news termNV. First,

news about future variance is more volatile than discount-rate news. Second, it is

negatively correlated (-ǈ.ǊǊ) with cash-Ěow news: as one might expect from the

literature on the “leverage effect” (Black ǉǑǏǎ, Christie ǉǑǐǊ), news about low cash

Ěows is associated with news about higher future volatility. ĉird,NV correlates

negatively (-ǈ.ǈǑ) with discount-rate news, indicating that news of high volatility

tends to coincide with news of low future real returns.⁸ ĉe net effect of these

correlations, documented in the lower leě panel of Table Ǌ.Ǎ, is a slightly negative

correlation of -.ǈǊ between our measure of volatility news and contemporaneous

market returns (for related research see French, Schwert, and Stambaugh ǉǑǐǏ).

ĉe lower right panel of Table Ǌ.Ǎ reports the decomposition of the vector of

innovations σƦtut+ƥ into the three termsNCF,t+ƥ,NDR,t+ƥ, andNV,t+ƥ. As shocks to

EVAR are just a linear combination of shocks to the underlying state variables, which

includes RVAR, we “unpack” EVAR to express the news terms as a function of rM, PE,

⁸ĉough the point estimate is negative, the large standard errors imply that we cannot reject the
“volatility feedback effect” (Campbell and Hentschel ǉǑǑǊ, Calvet and Fisher ǊǈǈǏ).
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Figure Ǌ.ǌ: Normalized News Series
ĉis ėgure plots normalized cash-Ěow news, the negative of normalized discount-rate news, and nor-
malized variance news. ĉe series are smoothed with a trailing exponentially-weighted moving aver-
age where the decay parameter is set to ǈ.ǈǐ per quarter, and the smoothed news series is generated
asMAt(N) = Ƥ.ƤƬNt + (ƥ − Ƥ.ƤƬ)MAt−ƥ(N). ĉis decay parameter implies a half-life of six years.
ĉe sample period is ǉǑǊǎ:Ǌ-Ǌǈǉǉ:ǌ.

TY, VS,DEF, and RVAR. ĉe panel shows that innovations to RVAR are mapped

more than one-to-one to news about future volatility. However, several of the other

state variables also drive news about volatility. Speciėcally, we ėnd that innovations in

PE,DEF, and VS are associated with news of higher future volatility.

Figure Ǌ.ǌ plots the smoothed series forNCF,−NDR andNV using an

exponentially-weighted moving average with a quarterly decay parameter of Ƥ.ƤƬ.

ĉis decay parameter implies a half-life of six years. ĉe paĨern ofNCF and−NDR we
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ėnd is consistent with previous research. As a consequence, we focus on the

smoothed series for market variance news. ĉere is considerable time variation in

NV, and in particular we ėnd episodes of news of high future volatility during the

Great Depression and just before the beginning of World War II, followed by a period

of liĨle news until the late ǉǑǎǈs. From then on, periods of positive volatility news

alternate with periods of negative volatility news in cycles of ǋ to Ǎ years. Spikes in

news about future volatility are found in the early ǉǑǏǈs (following the oil shocks), in

the late ǉǑǏǈs and again following the ǉǑǐǏ crash of the stock market. ĉe late ǉǑǑǈs

are characterized by strongly negative news about future returns, and at the same

time higher expected future volatility. ĉe recession of the late Ǌǈǈǈs is instead

characterized by strongly negative cash-Ěow news, together with a spike in volatility

of the highest magnitude in our sample. ĉe recovery from the ėnancial crisis has

brought positive cash-Ěow news together with news about lower future volatility.

PŇĹĸĽķŉĽłĻ ŀŃłĻ-ŇŊł ŋŃŀĵŉĽŀĽŉŏ

ĉe predictability of volatility, and especially of its long-run component, is central to

this paper. In the previous sections, we have shown that volatility is strongly

predictable, and it is predictable in particular by variables beyond lagged realizations

of volatility itself: PE andDEF contain essential information about future volatility.

We have also proposed a VAR-based methodology to construct long-horizon

forecasts of volatility that incorporate all the information in lagged volatility as well as

in the additional predictors like PE andDEF.

We now ask how well our proposed long-run volatility forecasts capture the
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long-horizon component of volatility. In Table Ǌ.ǎ we regress realized long-run

variance up to period h,

LHRVARh =
Σh
j=ƥρj−ƥRVARt+j

Σh
j=ƥρj−ƥ ,

on different forecasting models of long-run variance.⁹ In particular, we estimate two

standard GARCH-type models, speciėcally designed to capture the long-run

component of volatility. ĉe ėrst one is the two-component EGARCH model

proposed by Adrian and Rosenberg (Ǌǈǈǐ). ĉis model assumes the existence of two

separate components of volatility, one of which is more persistent than the other, and

therefore will tend to capture the long-run dynamics of the volatility process. ĉe

other model we estimate is the FIGARCHmodel of Baillie, Bollerslev, and Mikkelsen

(ǉǑǑǎ), in which the process for volatility is modeled as a fractionally-integrated

process, and whose slow, hyperbolic rate of decay of lagged, squared innovations

potentially captures long-run movements in volatility beĨer. We ėrst estimate both

GARCH models using the full sample of daily returns and then generate the

appropriate forecast of LHRVARh.¹⁰ To these two models, we add the set of variables

from our VAR, and compare the forecasting ability of these different models.

Table Ǌ.ǎ Panel A reports, for different horizons h ranging from ǉ year to ǉǍ years,

the results of forecasting regressions of long run volatility LHRVARh using different

speciėcations. ĉe ėrst row of each sub-panel presents results using the state variables

⁹Note that we rescale by the sum of the weights ρj to maintain the scale of the coefficients in the
predictive regressions across different horizons.

¹⁰We start our forecasting exercise in January ǉǑǋǈ so that we have a long enough history of past
returns to feed the FIGARCHmodel.
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in our VAR, each included separately. ĉe second row predicts LHRVARh with the

horizon-speciėc forecast implied by our VAR (VARh). ĉe third and fourth rows

forecast LHRVARh with the corresponding forecast from the EGARCH model

(EGh) and the FIGARCH model (FIGh) respectively. ĉe ėěh and sixth rows join

the VAR variables with the two GARCH-based forecasts, one at a time. ĉe seventh

and eighth row conducts a horse race between VARh and FIGh and between VARh

andDEF.

First note that both the EGARCH and FIGARCH forecasts by themselves capture

a signiėcant portion of the variation in long-run realized volatility: both have

signiėcant coefficients, and both have nontrivial RƦs, even at very long horizons. Our

VAR variables provide as good or beĨer explanatory power, and RVAR, PE andDEF

appear strongly statistically signiėcant at all horizons (with the exception of RVAR at

h = ƦƤ, i.e. Ʃ years). Finally, the VAR-implied forecast, VARh, is not only signiėcantly

different from ǈ, but it is also not signiėcantly different from ǉ. ĉis indicates that our

VAR is able to produce forecasts of volatility that not only go in the right direction,

but are also of the right magnitude, even at very long horizons.

Very interesting results appear once we join our variables to the two GARCH

models. Even aěer controlling for the GARCH-based forecasts (which render RVAR

insigniėcant), PE andDEF always come in signiėcantly in predicting long-horizon

volatility. Moreover, and especially at long horizons, the addition of the VAR state

variables strongly increases the RƦ. We further show that when using the

VAR-implied forecast together with the FIGARCH forecast, the coefficient on VARh

is still very close to one and always statistically signiėcant while the FIGARCH
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coefficient moves closer to zero (though estimates of the coefficient on FIGh remain

statistically signiėcant at some horizons).

We develop an additional test of our VAR-based model of stochastic volatility from

the idea that the variables that form the VAR – in particular the strongest of them,

DEF – should predict volatility at long horizons only through the VAR, not in addition

to it. In other words, the VAR forecasts should ideally represent the best way to

combine the information contained in the state variables concerning long-run

volatility. If true, aěer controlling for the VAR-implied forecast, DEF or other

variables that enter the VAR should not signiėcantly predict future long-run volatility.

We test this hypothesis by running a regression using both the VAR-implied forecast

andDEF as right-hand side variables. We ėnd that at all horizons the coefficient on

VARh is still not signiėcantly different from ǉ, while the coefficient onDEF is small

and statistically indistinguishable from ǈ.

Finally, in Panel B of Table Ǌ.ǎ we examine more carefully the link betweenDEF

and LHRVAR focusing on the ǉǈ-year horizon. ĉe Table reports the results from

regressions forecasting LHRVARƨƤ with PE,DEF, PEO (PE orthogonalized toDEF),

andDEFO (DEF orthogonalized to PE). ĉe Table shows that by itself, PE has no

information about low-frequency variation in volatility. In contrast,DEF forecasts

nearly ǊǊƻ of the variation in LHRVARƨƤ. And onceDEF is orthogonalized to PE,

the RƦ increases to Ǎǉƻ. Adding PEO has liĨle effect on the RƦ. We argue that this is

clear evidence of the strong predictive power of the orthogonalized component of the

default spread.

Recall our simple interpretation of these results. DEF contains information about

ǉǈǉ



future volatility as risky bonds are short the option to default. However,DEF also

contains information about future aggregate risk premia. We know from previous

work that most of the variation in PE is about aggregate risk premia. ĉerefore,

including PE in the volatility forecasting regression cleans up variation inDEF due to

aggregate risk premia and thus sharpens the link betweenDEF and future volatility.

Since PE andDEF are negatively correlated (default spreads are relatively low when

the market trades rich), both PE andDEF receive positive coefficients in the multiple

regression.

In Figure Ǌ.Ǎ, we provide a visual representation of the volatility-forecasting power

of our key VAR state variables and our interpretation of the results. ĉe top panel

plots LHRVARƨƤ together with laggedDEF and PE. ĉe graph conėrms the strong

negative correlation between PE andDEF (correlation of -ǈ.ǎ) and highlights how

both variables track long-run movements in long run volatility. To isolate the

contribution of the default spread in predicting long run volatility, the boĨom panel

plots LHRVARƨƤ together withDEFO. In general, the improvement in ėt moving

from the top panel to the boĨom panel is clear.

More speciėcally, the contrasting behavior ofDEF andDEFO in the two panels

during episodes such as the tech boom help illustrate the workings of our story.

Taken in isolation, the relatively stable default spread throughout most of the late

ǉǑǑǈs would predict liĨle change in expectations of future market volatility.

However, once the declining equity premium over that period is taken into account

(as shown by the rapid increase in PE), one recognizes that a PE-adjusted spread in

the late ǉǑǑǈs actually forecasted much higher volatility ahead.
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Figure Ǌ.Ǎ: Key Components of Long-Horizon Volatility
Wemeasure long-horizon realized variance (LHRVAR) as the annualized discounted sum of within-

quarter daily return variance, LHRVARh =
Σh
j=ƥρ

j−ƥRVARt+j

Σh
j=ƥρj−ƥ . Each panel of this ėgure plots quar-

terly observations of ten-year realized variance, LHRVARƨƤ, over the sample period ǉǑǋǈ:ǉ-Ǌǈǈǉ:ǉ.
In Panel A, in addition to LHRVARƨƤ, we also plot lagged PE and DEF. In Panel B, in addition to
LHRVARƨƤ, we also plot the ėĨed value from a regression forecasting LHRVARƨƤ with DEFO, de-
ėned asDEF orthogonalized to demeaned PE.
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Taken together, the results in Table Ǌ.ǉ Panel A and Table Ǌ.ǎ make a strong case

that credit spreads and valuation ratios contain information about future volatility

not captured by simple univariate models, even those like the FIGARCH model or

the two-component EGARCH model that are designed to ėt long-run movements in

volatility, and that our VAR method for calculating long-horizon forecasts preserves

this information.

Ǌ.ǋ PŇĽķĽłĻ Cĵňļ-ĺŀŃŌ, DĽňķŃŊłŉ-RĵŉĹ, ĵłĸ VŃŀĵŉĽŀĽŉŏ BĹŉĵň

TĹňŉ ĵňňĹŉň

In addition to the six VAR state variables, our analysis also requires returns on a

cross-section of test assets. We construct three sets of portfolios to use as test assets.

Our primary cross-section consists of the excess returns on the ǊǍ ME- and

BE/ME-sorted portfolios, studied in Fama and French (ǉǑǑǋ), extended in Davis,

Fama, and French (Ǌǈǈǈ), and made available by Professor Kenneth French on his

web site.¹¹

Daniel and Titman (ǉǑǑǏ, ǊǈǉǊ) and Lewellen, Nagel, and Shanken (Ǌǈǉǈ) point

out that it can be misleading to test asset pricing models using only portfolios sorted

by characteristics known to be related to average returns, such as size and value. In

particular, characteristics-sorted portfolios are likely to show some spread in betas

identiėed as risk by almost any asset pricing model, at least in sample. When the

model is estimated, a high premium per unit of beta will ėt the large variation in

¹¹hĨp://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

ǉǈǌ



average returns. ĉus, at least when premia are not constrained by theory, an asset

pricing model may spuriously explain the average returns to characteristics-sorted

portfolios.

To alleviate this concern, we follow the advice of Daniel and Titman (ǉǑǑǏ, ǊǈǉǊ)

and Lewellen, Nagel, and Shanken (Ǌǈǉǈ) and construct a second set of six portfolios

double-sorted on past risk loadings to market and variance risk. First, we run a

loading-estimation regression for each stock in the CRSP database where ri,t is the log

stock return on stock i for month t.

Ƨ∑
j=ƥ

ri,t+j = bƤ + brM
Ƨ∑

j=ƥ

rM,t+j + bΔVAR
Ƨ∑

j=ƥ

ΔVARt+j + εi,t+Ƨ

We calculate ΔVAR as a weighted sum of changes in the VAR state variables. ĉe

weight on each change is the corresponding value in the linear combination of VAR

shocks that deėnes news about market variance. We choose to work with changes

rather than shocks as this allows us to generate pre-formation loading estimates at a

frequency that is different from our VAR. Namely, though we estimate our VAR using

calendar-quarter-end data, our approach allows a stock’s loading estimates to be

updated at each interim month.

ĉe regression is reestimated from a rolling ǋǎ-month window of overlapping

observations for each stock at the end of each month. Since these regressions are

estimated from stock-level instead of portfolio-level data, we use quarterly data to

minimize the impact of infrequent trading. With loading estimates in hand, each

month we perform a two-dimensional sequential sort on market beta and ΔVAR

ǉǈǍ



beta. First, we form three groups by sorting stocks on b̂rM . ĉen, we further sort

stocks in each group to three portfolios on b̂ΔVAR and record returns on these nine

value-weight portfolios. ĉe ėnal set of risk-sorted portfolios are the two sets of three

b̂rM portfolios within the extreme b̂ΔVAR groups. To ensure that the average returns on

these portfolio strategies are not inĚuenced by various market-microstructure issues

plaguing the smallest stocks, we exclude the ėve percent of stocks with the lowestME

from each cross-section and lag the estimated risk loadings by a month in our sorts.

In the empirical analysis, we consider two main subsamples: early

(ǉǑǋǉ:ǋ-ǉǑǎǋ:ǋ) and modern (ǉǑǎǋ:ǌ-Ǌǈǉǉ:ǌ) due to the ėndings in Campbell and

Vuolteenaho (Ǌǈǈǌ) of dramatic differences in the risks of these portfolios between

the early and modern period. ĉe ėrst subsample is shorter than that in Campbell

and Vuolteenaho (Ǌǈǈǌ) as we require each of the ǊǍ portfolios to have at least one

stock as of the time of formation in June.

Finally, we generate a parsimonious cross-section of option, bond, and equity

returns for the ǉǑǐǎ:ǉ-Ǌǈǉǉ:ǌ time period based on the ėndings in Fama and French

(ǉǑǑǋ) and Coval and Shumway (Ǌǈǈǉ). In particular, we use the S&P ǉǈǈ index

straddle returns studied by Coval and Shumway.¹² We also include proxies for the

two components of the risky bond factor of Fama and French (ǉǑǑǋ) which we

measure using the return on the Barclays Capital High Yield Bond Index (HYRET)

and the return on Barclays Capital Investment Grade Bond Index (IGRET). When

pricing the straddle and risky bond return series, we include the returns on the

¹²Speciėcally, the series we study includes only those straddle positions where the difference be-
tween the options’ strike price and the underlying price is between ǈ and Ǎ. We thank Josh Coval and
Tyler Shumway for providing their updated data series to us.
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market (RMRF), size (SMB), and value (HML) equity factors of Fama and French

(ǉǑǑǋ) as they argue these factors do a good job describing the cross-section of

average equity returns.

BĹŉĵ ŁĹĵňŊŇĹŁĹłŉ

We now examine the validity of an unconditional version of the ėrst-order condition

in equation (Ǌ.ǉǐ). We modify equation (Ǌ.ǉǐ) in three ways. First, we use simple

expected returns on the leě-hand side to make our results easier to compare with

previous empirical studies. Second, we condition down equation (Ǌ.ǉǐ) to avoid

having to estimate all required conditional moments. Finally, we cosmetically

multiply and divide all three covariances by the sample variance of the unexpected

log real return on the market portfolio. By doing so, we can express our pricing

equation in terms of betas, facilitating comparison to previous research. ĉese

modiėcations result in the following asset-pricing equation

E[Ri − Rf] = γσƦMβi,CFM + σƦMβi,DRM
− ƥ

Ʀ
ωσƦMβi,VM

, (Ǌ.Ǌǎ)

where

βi,CFM ≡ Cov(ri,t,NCF,t)

Var(rM,t − Et−ƥrM,t)
,

βi,DRM
≡ Cov(ri,t,−NDR,t)

Var(rM,t − Et−ƥrM,t)
,

and βi,VM
≡ Cov(ri,t,NV,t)

Var(rM,t − Et−ƥrM,t)
.

ǉǈǏ



We price the average excess returns on our test assets using the unconditional

ėrst-order condition in equation (Ǌ.Ǌǎ) and the quadratic relationship between the

parameters ω and γ given by (Ǌ.Ǌǌ). As a ėrst step, we estimate cash-Ěow,

discount-rate, and variance betas using the ėĨed values of the market’s cash Ěow,

discount-rate, and variance news estimated in the previous section. Speciėcally, we

estimate simple WLS regressions of each portfolio’s log returns on each news term,

weighting each time-t+ ƥ observation pair by the weights used to estimate the VAR

in Table Ǌ.ǉ Panel B. We then scale the regression loadings by the ratio of the sample

variance of the news term in question to the sample variance of the unexpected log

real return on the market portfolio to generate estimates for our three-beta model.

Characteristic-sorted test assets

Table Ǌ.Ǐ shows the estimated betas for the ǊǍ size- and book-to-market portfolios

over the ǉǑǋǉ-ǉǑǎǋ period. ĉe portfolios are organized in a square matrix with

growth stocks at the leě, value stocks at the right, small stocks at the top, and large

stocks at the boĨom. At the right edge of the matrix we report the differences

between the extreme growth and extreme value portfolios in each size group; along

the boĨom of the matrix we report the differences between the extreme small and

extreme large portfolios in each BE/ME category. ĉe top matrix displays

post-formation cash-Ěow betas, the middle matrix displays post-formation

discount-rate betas, while the boĨom matrix displays post-formation variance betas.

In square brackets aěer each beta estimate we report a standard error, calculated

conditional on the realizations of the news series from the aggregate VAR model.

In the pre-ǉǑǎǋ sample period, value stocks have both higher cash-Ěow and higher
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discount-rate betas than growth stocks. An equal-weighted average of the extreme

value stocks across size quintiles has a cash-Ěow beta ǈ.ǉǊ higher than an

equal-weighted average of the extreme growth stocks. ĉe difference in estimated

discount-rate betas, ǈ.Ǌǈ, is in the same direction. Similar to value stocks, small stocks

have higher cash-Ěow betas and discount-rate betas than large stocks in this sample

(by ǈ.ǉǌ and ǈ.ǋǌ, respectively, for an equal-weighted average of the smallest stocks

across value quintiles relative to an equal-weighted average of the largest stocks).

ĉese differences are extremely similar to those in Campbell and Vuolteenaho

(Ǌǈǈǌ), despite the exclusion of the ǉǑǊǑ-ǉǑǋǉ subperiod, the replacement of the

excess log market return with the log real return, and the use of a richer,

heteroskedastic VAR.

ĉe new ėnding in Table Ǌ.Ǐ Panel A is that value stocks and small stocks are also

riskier in terms of volatility betas. An equal-weighted average of the extreme value

stocks across size quintiles has a volatility beta ǈ.Ǌǉ lower than an equal-weighted

average of the extreme growth stocks. Similarly, an equal-weighted average of the

smallest stocks across value quintiles has a volatility beta that is ǈ.ǉǐ lower than an

equal-weighted average of the largest stocks. In summary, value and small stocks were

unambiguously riskier than growth and large stocks over the ǉǑǋǉ-ǉǑǎǋ period.

Table Ǌ.ǐ reports the corresponding estimates for the post-ǉǑǎǋ period. As

documented in this subsample by Campbell and Vuolteenaho (Ǌǈǈǌ), value stocks

still have slightly higher cash-Ěow betas than growth stocks, but much lower

discount-rate betas. Our new ėnding here is that value stocks continue to have much

lower volatility betas, and the spread in volatility betas is even greater than in the early

ǉǉǈ
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period. ĉe volatility beta for the equal-weighted average of the extreme value stocks

across size quintiles is ǈ.ǍǊ lower than the volatility beta of an equal-weighted average

of the extreme growth stocks, a difference that is more than ǌǊƻ higher than the

corresponding difference in the early period.

One interesting aspect of these ėndings is the fact that the average βV of the ǊǍ

size- and book-to-market portfolios changes sign from the early to the modern

subperiod. Over the ǉǑǋǉ-ǉǑǎǋ period, the average βV is -ǈ.ǊǍ while over the

ǉǑǎǌ-Ǌǈǉǉ period this average becomes ǈ.ǋǎ. Of course, given the strong positive link

between PE and volatility news documented in the lower right panel of Table Ǌ.Ǎ, one

should not be surprised that the market’s βV can be positive. Moreover, given the

change in sign over time in PE’s correlation with some of the key state variables

driving EVAR documented in the Online Appendix, one should not be surprised that

βV changes sign as well.

ĉese results imply that in the post-ǉǑǎǋ period where the CAPM has difficulty

explaining the low returns on growth stocks relative to value stocks, growth stocks are

relative hedges for two key aspects of the investment opportunity set. Consistent

with Campbell and Vuolteenaho (Ǌǈǈǌ), growth stocks hedge news about future real

stock returns. ĉe novel ėnding of this paper is that growth stocks also hedge news

about the variance of the market return.

Risk-sorted test assets

Table Ǌ.Ǒ shows the estimated betas for the six risk-sorted portfolios over the

ǉǑǋǉ-ǉǑǎǋ period. ĉe portfolios are organized in a rectangular matrix with low

CAPM beta stocks at the leě, high CAPM beta stocks at the right, low volatility beta
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Table Ǌ.Ǒ: Betas for Six Risk-Sorted Portfolios in the Early Sample

β̂CF Lo b̂rM Ǌ Hi b̂rM Diff
Lo b̂VAR ǈ.ǊǊ [ǈ.ǈǏ] ǈ.ǋǋ [ǈ.ǈǑ] ǈ.ǌǋ [ǈ.ǉǉ] ǈ.Ǌǉ [ǈ.ǈǍ]
Hi b̂VAR ǈ.ǉǐ [ǈ.ǈǎ] ǈ.Ǌǎ [ǈ.ǈǐ] ǈ.ǋǎ [ǈ.ǉǈ] ǈ.ǉǏ [ǈ.ǈǍ]
Diff -ǈ.ǈǌ [ǈ.ǈǊ] -ǈ.ǈǏ [ǈ.ǈǋ] -ǈ.ǈǐ [ǈ.ǈǊ]

β̂DR Lo b̂rM Ǌ Hi b̂rM Diff
Lo b̂VAR ǈ.ǎǉ [ǈ.ǈǏ] ǈ.ǐǏ [ǈ.ǉǉ] ǉ.ǈǑ [ǈ.ǉǌ] ǈ.ǌǐ [ǈ.ǈǑ]
Hi b̂VAR ǈ.ǍǍ [ǈ.ǈǎ] ǈ.Ǐǎ [ǈ.ǈǑ] ǈ.ǑǍ [ǈ.ǉǉ] ǈ.ǌǈ [ǈ.ǈǏ]
Diff -ǈ.ǈǏ [ǈ.ǈǌ] -ǈ.ǉǊ [ǈ.ǈǎ] -ǈ.ǉǌ [ǈ.ǈǍ]

β̂V Lo b̂rM Ǌ Hi b̂rM Diff
Lo b̂VAR -ǈ.ǈǐ [ǈ.ǈǑ] -ǈ.Ǌǈ [ǈ.ǉǋ] -ǈ.ǋǈ [ǈ.ǉǎ] -ǈ.ǊǊ [ǈ.ǈǑ]
Hi b̂VAR -ǈ.ǈǎ [ǈ.ǈǑ] -ǈ.ǈǑ [ǈ.ǉǈ] -ǈ.ǉǏ [ǈ.ǉǋ] -ǈ.ǉǉ [ǈ.ǈǏ]
Diff ǈ.ǈǊ [ǈ.ǈǍ] ǈ.ǉǉ [ǈ.ǈǏ] ǈ.ǉǋ [ǈ.ǈǎ]

stocks at the top, and high volatility beta stocks at the boĨom. At the right edge of the

matrix we report the differences between the high CAPM beta and the low CAPM

beta portfolios in each volatility beta group; along the boĨom of the matrix we report

the differences between the high volatility beta and the low volatility beta portfolios

in each CAPM beta category. As in Panel A, the top matrix displays post-formation

cash-Ěow betas, the middle matrix displays post-formation discount-rate betas, while

the boĨom matrix displays post-formation volatility betas.

In the pre-ǉǑǎǋ sample period, high CAPM beta stocks have both higher cash-Ěow

and higher discount-rate betas than low CAPM beta stocks. An equal-weighted

average of the high CAPM beta stocks across the two volatility beta categories has a

cash-Ěow beta ǈ.ǉǑ higher than an equal-weighted average of the low CAPM beta

stocks. ĉe difference in estimated discount-rate betas is ǈ.ǌǌ and in the same
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direction. Similar to high CAPM beta stocks, low volatility beta stocks have higher

cash-Ěow betas and discount-rate betas than high volatility beta stocks in this

subsample (by ǈ.ǈǎ and ǈ.ǉǉ, respectively, for an equal-weighted average of the low

volatility beta stocks across the three CAPM beta categories relative to a

corresponding equal-weighted average of the high volatility beta stocks).

High CAPM beta stocks and low volatility beta stocks are also riskier in terms of

volatility betas. An equal-weighted average of the high CAPM beta stocks across

volatility beta categories has a post-formation volatility beta ǈ.ǉǎ lower than an

equal-weighted average of the low CAPM beta stocks. Similarly, an equal-weighted

average of the low volatility beta stocks across CAPM beta categories has a

post-formation volatility beta that is ǈ.ǈǑ lower than an equal-weighted average of the

high volatility beta stocks. In summary, high CAPM beta and low volatility beta

stocks were unambiguously riskier than low CAPM beta and high volatility beta

stocks over the ǉǑǋǉ-ǉǑǎǋ period.

Table Ǌ.ǉǈ shows the estimated betas for the six risk-sorted portfolios over the

post-ǉǑǎǋ period. In the modern period, high CAPM beta stocks again have higher

cash-Ěow and higher discount-rate betas than low CAPM beta stocks. An

equal-weighted average of the high CAPM beta stocks across the two volatility beta

categories has a cash-Ěow beta ǈ.ǈǐ higher than an equal-weighted average of the low

CAPM beta stocks. ĉe difference in estimated discount-rate betas is ǈ.ǍǍ and in the

same direction. However, high CAPM beta stocks are no longer riskier in terms of

volatility betas. Now, an equal-weighted average of the high CAPM beta stocks across

the two volatility beta categories has a post-formation variance beta ǈ.Ǌǐ higher than

ǉǉǌ



Table Ǌ.ǉǈ: Betas for Six Risk-Sorted Portfolios in the Modern Sample

Lo b̂VAR ǈ.ǉǎ [ǈ.ǈǋ] ǈ.ǉǏ [ǈ.ǈǋ] ǈ.ǊǍ [ǈ.ǈǍ] ǈ.ǈǐ [ǈ.ǈǌ]
Hi b̂VAR ǈ.ǉǍ [ǈ.ǈǋ] ǈ.ǉǏ [ǈ.ǈǌ] ǈ.Ǌǋ [ǈ.ǈǍ] ǈ.ǈǐ [ǈ.ǈǌ]
Diff -ǈ.ǈǉ [ǈ.ǈǊ] ǈ.ǈǈ [ǈ.ǈǊ] -ǈ.ǈǉ [ǈ.ǈǊ]

β̂DR Lo b̂rM Ǌ Hi b̂rM Diff
Lo b̂VAR ǈ.ǍǍ [ǈ.ǈǍ] ǈ.Ǐǉ [ǈ.ǈǍ] ǉ.ǉǉ [ǈ.ǈǑ] ǈ.Ǎǎ [ǈ.ǈǐ]
Hi b̂VAR ǈ.Ǐǋ [ǈ.ǈǎ] ǈ.ǑǍ [ǈ.ǈǎ] ǉ.ǊǏ [ǈ.ǈǑ] ǈ.Ǎǌ [ǈ.ǉǉ]
Diff ǈ.ǉǐ [ǈ.ǈǏ] ǈ.Ǌǌ [ǈ.ǈǏ] ǈ.ǉǎ [ǈ.ǈǎ]

β̂V Lo b̂rM Ǌ Hi b̂rM Diff
Lo b̂VAR ǈ.ǊǊ [ǈ.ǉǑ] ǈ.ǋǉ [ǈ.ǊǊ] ǈ.Ǎǈ [ǈ.ǊǑ] ǈ.ǊǏ [ǈ.ǉǋ]
Hi b̂VAR ǈ.ǌǌ [ǈ.ǉǎ] ǈ.ǎǌ [ǈ.ǉǐ] ǈ.ǏǊ [ǈ.ǊǏ] ǈ.Ǌǐ [ǈ.ǉǍ]
Diff ǈ.Ǌǉ [ǈ.ǈǏ] ǈ.ǋǋ [ǈ.ǈǑ] ǈ.ǊǊ [ǈ.ǈǎ]

a corresponding equal-weighted average of the low CAPM beta stocks. Since, in the

three-beta model, covariation with aggregate volatility has a negative premium, the

three-beta model can potentially explain why stocks with high past CAPM betas have

offered relatively liĨle extra return, at least in the modern period.

In the post-ǉǑǎǋ period, sorts on volatility beta continue to generate economically

and statistically signiėcant spread in post-formation volatility beta. An

equal-weighted average of low volatility beta stocks across the three CAPM beta

categories has a post-formation volatility beta that is ǈ.Ǌǎ lower than the

post-formation volatility beta of a corresponding equal-weighted average of high

volatility beta stocks. Sorts on volatility beta also generate spread in discount-rate

beta, but essentially no spread in cash-Ěow betas in the post-ǉǑǎǋ period.

Non-equity test assets

ǉǉǍ



Finally, Table Ǌ.ǉǉ reports the three ICAPM betas of the S&P ǉǈǈ index straddle

position analyzed in Coval and Shumway (Ǌǈǈǉ) along with the corresponding

ICAPM betas of the three equity factors and the default bond factor of Fama and

French (ǉǑǑǋ) over the period ǉǑǐǎ:ǉ - Ǌǈǉǉ:ǌ. Consistent with the nature of a

straddle bet, we ėnd that the straddle has a very large volatility beta of ǉ.Ǎǉ along with

a large negative discount-rate beta of -ǉ.Ǐǉ and a large (relatively speaking) negative

cash-Ěow beta of -ǈ.ǋǑ. As one would expect, the betas of the Fama-French equity

factors are consistent with the ėndings for the size- and book-to-market-sorted

portfolios in Table Ǌ.ǐ Panel B. Finally, the riskier component of Fama and French’s

(ǉǑǑǋ) risky bond factor,HYRET, has a cash-Ěow beta of ǈ.ǈǎ, a discount-rate beta of

ǈ.Ǌǎ, and a volatility beta of -ǈ.Ǌǈ. ĉese betas are economically and statistically

signiėcant from those of the safer component, IGRET. ĉe difference in volatility

beta betweenHYRET and IGRET is consistent with the fact that risky corporate debt

is short the option to default.

BĹŉĵ ńŇĽķĽłĻ

We next turn to pricing the cross-section with these three ICAPM betas. We evaluate

the performance of ėve asset-pricing models: ǉ) the traditional CAPM that restricts

cash-Ěow and discount-rate betas to have the same price of risk and sets the price of

variance risk equal to zero; Ǌ) the two-beta intertemporal asset pricing model of

Campbell and Vuolteenaho (Ǌǈǈǌ) that restricts the price of discount-rate risk to

equal the variance of the market return, ǋ) our three-beta intertemporal asset pricing

model that restricts the price of discount-rate risk to equal the variance of the market

ǉǉǎ
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return and constrains the price of cash-Ěow and variance risk to be related by

equation (Ǌ.Ǌǌ), with ρ = Ƥ.ƭƩ per year; ǌ) a partially-constrained three-beta model

that restricts the price of discount-rate risk to equal the variance of the market return

but freely estimates the other two risk prices (effectively decoupling γ and ω), and Ǎ)

an unrestricted three-beta model that allows free risk prices for cash-Ěow,

discount-rate, and volatility betas. Each model is estimated in two different forms:

one with a restricted zero-beta rate equal to the Treasury-bill rate, and one with an

unrestricted zero-beta rate following Black (ǉǑǏǊ).

Characteristic-sorted test assets

Table Ǌ.ǉǊ reports results for the early sample period ǉǑǋǉ-ǉǑǎǋ, using ǊǍ size- and

book-to-market-sorted portfolios as test assets. ĉe table has ten columns, two

speciėcations for each of our ėve asset pricing models. ĉe ėrst ǉǎ rows of Table Ǌ.ǉǊ

are divided into four sets of four rows. ĉe ėrst set of four rows corresponds to the

zero-beta rate (in excess of the Treasury-bill rate), the second set to the premium on

cash-Ěow beta, the third set to the premium on discount-rate beta, and the fourth set

to the premium on volatility beta. Within each set, the ėrst row reports the point

estimate in fractions per quarter, and the second row annualizes this estimate,

multiplying by ǌǈǈ to aid in interpretation. ĉese parameters are estimated from a

cross-sectional regression

Re
i = gƤ + gƥβ̂i,CFM + gƦβ̂i,DRM

+ gƧβ̂i,VM
+ ei, (Ǌ.ǊǏ)

where a bar denotes time-series mean and Re
i ≡ Ri − Rrf denotes the sample average

simple excess return on asset i. ĉe third and fourth rows present two alternative

ǉǉǐ



standard errors of the monthly estimate, described below.

Below the premia estimates, we report the RƦ statistic for a cross-sectional

regression of average returns on our test assets onto the ėĨed values from the model.

We also report a composite pricing error, computed as a quadratic form of the pricing

errors. ĉe weighting matrix in the quadratic form is a diagonal matrix with the

inverse of the sample test asset return volatilities on the main diagonal.

Standard errors are produced with a bootstrap from ǉǈ,ǈǈǈ simulated realizations.

Our bootstrap experiment samples test-asset returns and ėrst-stage VAR errors, and

uses the ėrst-stage and second-stage WLS VAR estimates in Table Ǌ.ǉ to generate the

state-variable data.¹³ We partition the VAR errors and test-asset returns into two

groups, one for ǉǑǋǉ to ǉǑǎǋ and another for ǉǑǎǋ to Ǌǈǉǉ, which enables us to use

the same simulated realizations in subperiod analyses. ĉe ėrst set of standard errors

(labeled A) conditions on estimated news terms and generates betas and return

premia separately for each simulated realization, while the second set (labeled B) also

estimates the ėrst-stage and second-stage VAR and the news terms separately for each

simulated realization. Standard errors B thus incorporate the considerable additional

sampling uncertainty due to the fact that the news terms as well as betas are generated

regressors.

Two alternative Ǎ-percent critical values for the composite pricing error are

produced with a bootstrap method similar to the one we have described above,

except that the test-asset returns are adjusted to be consistent with the pricing model

before the random samples are generated. Critical values A condition on estimated

¹³When simulating the bootstrap, we drop realizations which would result in negative RVAR and
redraw.
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news terms, while critical values B take account of the fact that news terms must be

estimated.

Finally, Table Ǌ.ǉǊ reports the implied risk-aversion coefficient, γ, which can be

recovered as gƥ/gƦ, as well as the sensitivity of news about risk to news about market

variance, ω, which can be recovered as−Ʀ ∗ gƧ/gƦ. ĉe three-beta ICAPM estimates

are constrained so that both γ and the implied ω are strictly positive.

Table Ǌ.ǉǊ shows that in the ǉǑǋǉ-ǉǑǎǋ period, the restricted three-beta model

explains the cross-section of stock returns reasonably well. ĉe cross-sectional RƦ

statistics are almost Ǎǎƻ for both forms of this model. Both the Sharpe-Lintner and

Black versions of the CAPM do a slightly poorer job describing the cross-section

(both RƦ statistics are roughly ǍǊƻ). ĉe two-beta ICAPM of Campbell and

Vuolteenaho (Ǌǈǈǌ) performs slightly beĨer than the CAPM and slightly worse than

the volatility ICAPM. None of the theoretically-motivated models considered are

rejected by the data based on the composite pricing test. Consistent with the claim

that the three-beta model does a good job describing the cross-section, Table Ǌ.ǉǊ

shows that the constrained and the unrestricted factor model barely improve pricing

relative to the three-beta ICAPM.

Figure Ǌ.ǎ provides a visual summary of these results. ĉe ėgure plots the

predicted average excess return on the horizontal axis and the actual sample average

excess return on the vertical axis. In summary, we ėnd that the three-beta ICAPM

improves pricing relative to both the Sharpe-Lintner and Black versions of the

CAPM.
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Figure Ǌ.ǎ: Pricing ǊǍ Size and Value Portfolios, Early Period
ĉe four diagrams correspond to (clockwise from the top leě) the CAPM with a constrained zero-
beta rate, the CAPMwith an unconstrained zero-beta rate, the three-factor ICAPMwith a free zero-
beta rate, and the three-factor ICAPM with the zero-beta rate constrained to the risk-freee rate. ĉe
horizontal axes correspond to the predicted average excess returns and the vertical axes to the sample
average realized excess returns for the ǊǍ ME- and BE/ME-sorted portfolios. ĉe predicted values
are from regressions presented in Table Ǌ.ǉǊ for the sample period ǉǑǋǉ:ǋ-ǉǑǎǋ:Ǌ.
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ĉis success is due in part to the inclusion of volatility betas in the speciėcation.

For the Black version of the three-beta ICAPM, the spread in volatility betas across

the ǊǍ size- and book-to-market-sorted portfolios generates an annualized spread in

average returns of ǉ.ǌǎƻ compared to a comparable spread of Ǐ.ǌǉƻ and ǋ.ǉǐƻ for

cash-Ěow and discount-rate betas. Variation in volatility betas accounts for Ǌƻ of the

variation in explained returns compared to ǋǑƻ and Ǐƻ for cash-Ěow and

discount-rate betas respectively. ĉe remaining ǍǊƻ of the explained variation in

average returns is due of course to the covariation among the three types of betas.

Results are very different in the ǉǑǎǋ-Ǌǈǉǉ period. Table Ǌ.ǉǋ shows that in this

period, both versions of the CAPM do a very poor job of explaining cross-sectional

variation in average returns on portfolios sorted by size and book-to-market. When

the zero-beta rate is leě as a free parameter, the cross-sectional regression picks a

negative premium for the CAPM beta and implies an RƦ of roughly Ǎƻ. When the

zero-beta rate is constrained to the risk-free rate, the CAPM RƦ falls to roughly -ǋǏƻ.

Both versions of the static CAPM are easily rejected at the ėve-percent level by both

sets of critical values.

In the modern period, the unconstrained zero-beta rate version of the two-beta

Campbell and Vuolteenaho (Ǌǈǈǌ) model does a beĨer job describing the

cross-section of average returns than the CAPM. However, the implied coefficient of

risk aversion, Ǌǈ.Ǐǈ, is arguably extreme.

ĉe three-beta model with the restricted zero-beta rate also does a poor job

explaining cross-sectional variation in average returns across our test assets. However,

if we continue to restrict the risk price for discount-rate and variance news but allow
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Figure Ǌ.Ǐ: Pricing ǊǍ Size and Value Portfolios, Modern Period
ĉe four diagrams correspond to (clockwise from the top leě) the CAPM with a constrained zero-
beta rate, the CAPMwith an unconstrained zero-beta rate, the three-factor ICAPMwith a free zero-
beta rate, and the three-factor ICAPM with the zero-beta rate constrained to the risk-freee rate. ĉe
horizontal axes correspond to the predicted average excess returns and the vertical axes to the sample
average realized excess returns for the ǊǍ ME- and BE/ME-sorted portfolios. ĉe predicted values
are from regressions presented in Table Ǌ.ǉǋ for the sample period ǉǑǎǋ:ǋ-Ǌǈǉǉ:ǌ.

an unrestricted zero-beta rate, the explained variation increases to roughly ǎǑƻ,

three-quarters larger than the RƦ of the corresponding two-beta ICAPM. ĉe

estimated risk price for cash-Ěow beta is an economically reasonable ǋǈ percent per

year with an implied coefficient of relative risk aversion of Ǒ.ǎǋ. Both versions of our

intertemporal CAPM with stochastic volatility are not rejected at the Ǎ-percent level

by either set of critical values.

Figure Ǌ.Ǐ provides a visual summary of these results. For the Black version of the

ǉǊǍ



three-beta ICAPM, spread in volatility betas across the ǊǍ size- and

book-to-market-sorted portfolios generates an annualized spread in average returns

of ǎ.ǍǊƻ compared to a comparable spread of ǋ.Ǒǈƻ and Ǌ.Ǌǌƻ for cash-Ěow and

discount-rate betas. Variation in volatility betas accounts for ǑǊƻ of the variation in

explained returns compared to Ǌǈƻ for cash-Ěow betas as well as Ǐƻ for discount-rate

betas. Covariation among the three types of betas is responsible for the remaining

-ǉǑƻ of explained variation in average returns.

ĉe relatively poor performance of the risk-free rate version of the three-beta

ICAPM is due to the derived link between γ and ω. To show this, Figure Ǌ.ǐ provides

two contour plots (one each for the risk-free and zero-beta rate versions of the model

in the top and boĨom panels of the ėgure respectively) of the RƦ resulting from

combinations of (γ,ω) ranging from (ǈ,ǈ) to (ǌǈ,ǉǎ). On the same ėgure we also plot

the relation between γ and ω derived in equation (Ǌ.Ǌǌ). ĉe top panel of Figure Ǌ.ǐ

shows that even with the intercept restricted to zero, RƦ’s are as high as Ǐǈƻ for some

combinations of (γ,ω). Unfortunately, as the plot shows, these combinations do not

coincide with the curve implied by equation (Ǌ.Ǌǌ). Once the zero-beta rate is

unconstrained, the contours for RƦ’s greater than ǎǈƻ cover a much larger area of the

plot and coincide nicely with the ICAPM relation of equation (Ǌ.Ǌǌ).

Consistent with the contour plots of Figure Ǌ.ǐ, the pricing results in Table Ǌ.ǉǋ

based on the partially-constrained factor model further conėrms that the link

between γ and ω is responsible for the poor ėt of the restricted zero-beta rate version

of the three-beta ICAPM in the modern period. When removing the constraint

linking γ and ω but leaving the constraint on the discount-rate beta premium in place,

ǉǊǎ
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Figure Ǌ.ǐ: Contour Plots Showing Goodness-of-Fit
ĉe two contour plots show how the RƦ of the cross-sectional regression explaining the average re-
turns on the ǊǍ size- and book-to-market portfolios varies for different values of γ and ω for the risk-
free rate (top panel) and zero-beta rate (boĨom panel) three-beta ICAPMmodel estimated in Table
Ǌ.ǉǋ for the sample period ǉǑǎǋ:ǋ-Ǌǈǉǉ:ǌ. ĉe two plots also indicate the approximate ICAPM rela-
tion between γ and ω described in equation (Ǌ.Ǌǌ).
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the RƦ increases from -ǍǏƻ to Ǐǌƻ. Nevertheless, the risk prices for γ and ω remain

economically large and of the right sign.

Risk-sorted test assets

We conėrm that the success of the three-beta ICAPM is robust by expanding the

set of test portfolios beyond the ǊǍ size- and book-to-market-sorted portfolios. First,

we show that our three-beta model not only describes the cross-section of

characteristics-sorted portfolios but also can explain the average returns on

risk-sorted portfolios. We examine risk-sorted portfolios as Daniel and Titman

(ǉǑǑǏ, ǊǈǉǊ) and Lewellen, Nagel, and Shanken (Ǌǈǉǈ) argue that asset-pricing tests

using only portfolios sorted by characteristics known to be related to average returns,

such as size and value, can be misleading due to the low-dimensional factor structure

of the ǊǍ size and book-to-market-sorted portfolios.

Table Ǌ.ǉǌ prices the six risk-sorted portfolios described in Table Ǌ.Ǐ Panel B in

conjunction with six of the ǊǍ size- and book-to-market-sorted portfolios of Table Ǌ.Ǐ

Panel A (the low, medium, and high BE/ME portfolios within the small and large ME

quintiles). We continue to ėnd that the three-beta ICAPM improves pricing relative

to both the Sharpe-Lintner and Black versions of the CAPM. Moreover, the relatively

high RƦ (ǍǏƻ) is not disproportionately due to characteristics-sorted portfolios as

the RƦ for the risk-sorted subset (ǎǑƻ) is not only comparable to but also larger than

the RƦ for the characteristics-sorted subset (Ǎǉƻ). Figure Ǌ.Ǒ shows this success

graphically.

Table Ǌ.ǉǍ prices the cross-section of characteristics- and risk-sorted portfolios in

ǉǊǐ
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Figure Ǌ.Ǒ: Pricing Risk Sorted Portfolios, Early Period
ĉe four diagrams correspond to (clockwise from the top leě) the CAPM with a constrained zero-
beta rate, the CAPMwith an unconstrained zero-beta rate, the three-factor ICAPMwith a free zero-
beta rate, and the three-factor ICAPM with the zero-beta rate constrained to the risk-freee rate. ĉe
horizontal axes correspond to the predicted average excess returns and the vertical axes to the sample
average realized excess returns for the ǊǍ ME- and BE/ME-sorted portfolios. ĉe predicted values
are from regressions presented in Table Ǌ.ǉǋ for the sample period ǉǑǎǋ:ǋ-Ǌǈǉǉ:ǌ.
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the modern period. We ėnd that the zero-beta rate three-beta ICAPM is not rejected

by the data while both versions of the CAPM are rejected. Again, the relatively high

RƦ for the zero-beta rate version of the volatility ICAPM (Ǐǎƻ) is not

disproportionately due to characteristics-sorted portfolios as the RƦ for the

risk-sorted subset (ǐǉƻ) is not only comparable to but also larger than the RƦ for the

characteristics-sorted subset (ǏǏƻ). Figure Ǌ.ǉǈ provides a graphically summary of

these results.

Non-equity test assets

We also show that our three-beta model can help explain average returns on

non-equity portfolios designed to be highly correlated with aggregate volatility risk,

namely the S&P ǉǈǈ index straddles of Coval and Shumway (Ǌǈǈǉ). We ėrst

calculate the expected return on straddle portfolio based on the estimates of the

zero-beta rate volatility ICAPM in Table Ǌ.ǉǋ. ĉe contributions to expected

quarterly return from the straddle’s cash-Ěow, discount-rate, and volatility betas are

-Ǌ.ǑǊƻ, -ǉ.ǋǋƻ, and -ǋ.ǐǏƻ respectively. As the average quarterly realized return on

the straddle is -Ǌǉ.ǎǎƻ, an equity-based estimate of the three-beta model explains

roughly ǋǐƻ of the realized straddle premium.

Table ?? shows that our intertemporal CAPM with stochastic volatility is not

rejected at the Ǎ-percent level when we price the joint cross-section of equity, bond,

and straddle returns. ĉe implied risk aversion coefficient (roughly ǉǍ for both the

risk-free and zero-beta rate implementations of the model) is high but not

unreasonable. In sharp contrast, the CAPM is strongly rejected. ĉough the two-beta

ǉǋǉ
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Figure Ǌ.ǉǈ: Pricing Risk Sorted Portfolios, Modern Period
ĉe four diagrams correspond to (clockwise from the top leě) the CAPM with a constrained zero-
beta rate, the CAPMwith an unconstrained zero-beta rate, the three-factor ICAPMwith a free zero-
beta rate, and the three-factor ICAPM with the zero-beta rate constrained to the risk-free rate. ĉe
horizontal axes correspond to the predicted average excess returns and the vertical axes to the sample
average realized excess returns for six ME- and BE/ME-sorted portfolios (denoted by triangles) and
six risk-sorted portfolios (denoted by asterisks). ĉe predicted values are from regressions presented
in Table Ǌ.ǉǌ for the sample period ǉǑǋǉ:ǋ-ǉǑǎǋ:Ǌ.
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ICAPM is not rejected, the required risk aversion is too extreme (over Ǎǋ for both

versions of the model) to be realistic.

Summary of US ėnancial history

Figure Ǌ.ǉǉ (third panel) plots the time-series of the smoothed combined shock

γNCF − NDR − ƥ
ƦωNV based on the estimate of the zero-beta model for the modern

period (Table Ǌ.ǉǋ). ĉe correlation of this shock with the associatedNCF is ǈ.Ǒǈ.

Similarly, the correlation of this shock with the associatedNDR is ǈ.Ǌǎ. Finally, the

correlation of this shock with the associatedNV is -ǈ.Ǐǎ. Figure Ǌ.ǉǉ also plots the

corresponding smoothed shock series for the CAPM (NCF − NDR) and for the

two-beta ICAPM (γNCF − NDR). ĉe two-beta model shiěs the history of good and

bad times relative to the CAPM, as emphasized by Campbell, Giglio, and Polk

(ǊǈǉǊ). ĉe model with stochastic volatility further accentuates that periods with

high market volatility, such as the ǉǑǋǈs and the late Ǌǈǈǈs, are particularly hard

times for long-term investors.

Ǌ.ǌ TļĹ CŃłŉŇĽĶŊŉĽŃł Ńĺ SŉŃķļĵňŉĽķ VŃŀĵŉĽŀĽŉŏ

We extend the approximate closed-form intertemporal capital asset pricing model of

Campbell (ǉǑǑǋ) to allow for stochastic volatility. Our model recognizes that an

investor’s investment opportunities may deteriorate either because expected stock

returns decline or because the volatility of stock returns increases. A conservative

long-term investor will wish to hedge against both types of changes in investment

opportunities; thus, a stock’s risk is determined not only by its beta with unexpected

ǉǋǌ
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Figure Ǌ.ǉǉ: Pricing Risk Sorted Portfolios, Modern Period
ĉis ėgure plots the time-series of the smoothed combined shock for the CAPM (NCF − NDR),
the two-beta ICAPM (γNCF − NDR), and the three-beta ICAPM that includes stochastic volatil-
ity (γNCF − NDR − ƥ

ƦωNV) for the unconstrained zero-beta rate speciėcations estimated in Table
ǐ for the modern subperiod. ĉe shock is smoothed with a trailing exponentially-weighted moving
average. ĉe decay parameter is set to ǈ.ǈǐ per quarter, and the smoothed news series is generated as
MAt(SDF) = Ƥ.ƤƬSDFt +(ƥ− Ƥ.ƤƬ)MAt−ƥ(N). ĉis decay parameter implies a half-life of six years.
ĉe sample period is ǉǑǊǎ:Ǌ-Ǌǈǉǉ:ǌ.
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market returns and news about future returns (or equivalently, news about market

cash Ěows and discount rates), but also by its beta with news about future market

volatility. Although our model has three dimensions of risk, the prices of all these

risks are determined by a single free parameter, the coefficient of relative risk aversion.

Our implementation models the return on the aggregate stock market as one

element of a vector autoregressive (VAR) system; the volatility of all shocks to the

VAR is another element of the system. ĉe empirical implementation of our VAR

reveals new low-frequency movements in market volatility tied to the default spread.

We show that the negative post-ǉǑǎǋ CAPM alphas of growth stocks are justiėed

because these stocks hedge long-term investors against both declining expected stock

returns, and increasing volatility. ĉe addition of volatility risk to the model helps it

to deliver a moderate, economically reasonable value of risk aversion.

Our empirical work is limited in one important respect. We test only the

unconditional implications of the model and do not evaluate its conditional

implications. A full conditional test is likely to be a challenging hurdle for the model.

To see why, recall that we assume a rational long-term investor always holds ǉǈǈƻ of

his or her assets in equities. However, time-variation in real stock returns generally

gives the long-term investor an incentive to shiě the relative weights on cash and

equity, unless real interest rates and market volatility move in exactly the right way to

make the equity premium proportional to market volatility. Although we do not

explicitly test whether this is the case, previous work by Campbell (ǉǑǐǏ) and

Harvey (ǉǑǐǑ, ǉǑǑǉ) rejects this proportionality restriction.

One way to support the assumption of constant ǉǈǈƻ equity investment is to

ǉǋǎ



invoke binding leverage constraints. Indeed, in the modern sample, the Black (ǉǑǏǊ)

version of our three-beta model is consistent with this interpretation as the estimated

difference between the zero-beta and risk-free rates is positive, statistically signiėcant,

and economically large. However, the risk aversion coefficient we estimate may be

too large to explain why leverage constraints should bind.

Nevertheless, our model does directly answer the interesting microeconomic

question: Are there reasonable preference parameters that would make a long-term

investor, constrained to invest ǉǈǈƻ in equity, content to hold the market rather than

tilting towards value stocks or other high-return stock portfolios? Our answer is

clearly yes.
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ĉe high brokerage charges and the heavy transfer
tax...sufficiently diminish the liquidity of the market. But
a liĪle consideration of this expedient brings us up against
a dilemma, and shows how the liquidity of investment
markets oĜen faciliates, though it sometimes impedes, the
course of new investment.

JohnMaynard Keynes

3
Informative Prices and the
Cost of CapitalMarkets

IłŋĹňŉŃŇň ňńĹłĸ ĵ ĻŇĹĵŉ ĸĹĵŀ of time and money speculating on ėnancial

valuations or hiring others to trade on their behalf. While criticizing speculation is

always fashionable, the scale of the recent increase in resources spent on capital

markets has many people concerned that we are wasting talent and resources. ĉere

seems to be liĨle consensus among ėnancial economists regarding the value of this

speculative activity; however, it is easy to observe the increase in quantity.

Historically, the share of national income spent on ėnancial market activity remained
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relatively stable until the mid-ǉǑǏǈs, when the ėnancial sector began to grow much

more rapidly than the aggregate US economy. Before rushing to judge whether we

now spend too much, or too liĨle, on active investing, we need theory and evidence

that promise to explain the root cause of this growth and the resulting effect on asset

prices.

In this paper, I document how the sharp decline in the cost of ėnancial transactions

facilitated the modern increase in ėnancial activity. To clarify the forces at work, I

present a stylized model of an economy with a ėnancial sector that allows investors to

trade ownership claims on a risky investment. ĉe supply of investment responds to

asset prices, and investor demand drives costly ėnancial activity. Investors decide

how much of their resources to employ researching the future prospects of the

uncertain outcome, and market transaction costs affect the quantity and time horizon

of informed speculation. We see the surprising result that the ėnancial sector

consumes more resources through spending on active investing as it operates more

efficiently. As dynamic trading strategies become feasible, the model suggests that the

information content of asset prices increases, especially over short-horizons.

Historical data on US market activity and asset prices conėrm these predictions.

ĉe most signiėcant decrease in transaction costs occurred in ǉǑǏǍ, when on May

Day the SEC demanded that stock exchanges end the practice of forcing a ėxed

commission schedule on all equity transactions. In response to broker competition,

the average cost of institutional trading plummeted to about half of previous levels.¹

ĉis event is signiėcant not only in the historical time series, but it also provides a

¹US Securities and Exchange Commission, Directorate of Economic and Policy Research. Staff
Report on the Securities Industry in ȕȝțȜ ( July Ǌǎ, ǉǑǏǑ)
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natural seĨing for identifying the causal mechanism. ĉis regulatory change leads to

a surge in capital market spending, trading, and compensation, with an impact that

predictably varies across investment characteristics and time horizons.

ĉe efficiency of modern ėnancial markets enables dynamic trading strategies and

encourages investors to spend more resources on research and trading, but increased

efficiency does not necessarily align the incentives of private speculators toward

activities with the greatest social beneėt. Returning again to the stylized model shows

that increases in the efficiency of ėnancial market operations may lead to less efficient

economic outcomes.

SńĹłĸĽłĻ Ńł CĵńĽŉĵŀ MĵŇĿĹŉ AķŉĽŋĽŉŏ

Consider howmuch the United States spends on capital market activities each year as

a share of total national production. Figure ǋ.ǉ shows the cost of capital markets as a

percentage of the GDP of the US private sector, where capital market spending

consists of the proėts and employee compensation tabulated using the gross value

addedmeasures reported by United States Bureau of Economic Analysis (BEA).²ĉe

cost of capital markets is remarkably stable for approximately half a century.

Beginning with a cost of ǈ.ǊǏƻ of GDP in ǉǑǊǈ to a cost of ǈ.ǋǍƻ in ǉǑǏǈ, spending

stays fairly close to its average of ǈ.ǋǊƻ with the exception of a moderate dip around

World War II. ĉen, a liĨle before ǉǑǐǈ, we notice a dramatic surge in the cost of

capital markets to the point where capital markets now consume two percent of

annual spending.

²A complete description of the underlying data will be available in an online appendix.

ǉǌǈ



1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

0.5%

1.0%

1.5%

2.0%

2.5%
Capital Market Cost as Share of Private GDP

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

1.5

2.0

2.5

3.0

3.5

4.0
Capital Market Employee Compensation Relative to US Average

Figure ǋ.ǉ: Capital Market Spending and Compensation
ĉe upper plot shows the share of GDP aĨributed to the capital markets sector using the gross value
added measure, and the lower plot shows the ratio of average employee compensation in the capital
markets sector relative to theUS private industry average. ĉeprimary source for these calculations is
the industry accounts data published by theUSBureau of Economic Analysis as ofMarch Ǌǈǉǉ. Cap-
ital markets-related industries are described in Table ǋ.ǉ. Data prior to ǉǑǌǏ comes from Philippon
(ǊǈǉǊ).

ǉǌǉ



Philippon (ǊǈǉǊ) lays out the scope of the historical challenge as he tabulates the

costs and quantities of various ėnancial activities over the past ǉǋǈ years in the United

States. In his analysis, it appears that the unit cost of ėnancial intermediation has

remained relatively stable over time despite advancements in technology. He notes a

puzzling increase in the cost of ėnancial activity over the past ǋǈ years that he cannot

explain with a corresponding increase in the quantity or quality of ėnancial services.

With a particular focus on this modern period, Greenwood and Scharfstein (ǊǈǉǊ)

aĨribute the modern growth of the ėnancial sector as a whole to two speciėc

components: an increase in active investing and an expansion in credit markets. To

contrast these two culprits, I allocate the corresponding ėnancial activities from the

national industry accounts data, as shown in Table ǋ.ǉ. ĉe resources consumed in

credit and banking activities grew signiėcantly over the past century but follow a

distinct paĨern from the resources spent investing in ėnancial markets. ĉe upper

plot in Figure ǋ.Ǌ shows both activities consumed a growing fraction of GDP, but the

cost of banking and credit expanded at steady consistent pace since World War II

while the surge in trading and investing seems to be a more recent phenomenon.

Unlike the capital markets sector, the lower plot of Figure ǋ.Ǌ shows the historical

compensation of employees in the banking and credit sector differs only slightly from

the private sector average and increases only moderately in recent decades.
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Figure ǋ.Ǌ: Contrasting Banking and Credit vs. Capital Market Activities
ĉe upper plot contrasts the cost of banking and credit activity with the cost of capital markets using
gross value added, and the lower plot shows the respective employee compensation ratios relative to
the US private industry average. ĉe primary source for these calculations is the industry accounts
data published by the US Bureau of Economic Analysis as ofMarch Ǌǈǉǉ. ĉe classiėcation to indus-
try groups is shown in Table ǋ.ǉ. Data prior to ǉǑǌǏ comes from Philippon (ǊǈǉǊ).
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Table ǋ.ǉ: Financial sector components in national income accounts

ĉis table shows the components of the ėnancial sector and the associated NAICS codes as used by
the US Bureau of Economic Analysis in their national income accounts. ĉe grouping of the compo-
nents has not always been historically consistent. ĉe highlighted industries are those which will be
termed the capital markets sector and are the primary focus of this paper.

Finance, Insurance, and Real Estate
Banking and Credit (ǍǊǉ & ǍǊǊ)

Banking
Credit agencies other than banks

Capital Markets (ǍǊǋ & ǍǊǍ)
Security and commodity brokers
Funds, trusts, and other ėnancial vehicles
Holding and other investment offices

Insurance (ǍǊǌ)
Insurance carriers
Insurance agents, brokers, and service

Real Estate and Leasing (Ǎǋǉ, ǍǋǊ, Ǎǋǋ)
Real Estate
Rental and leasing services and lessors of intangible assets

TļĹŃŇĽĹň Ńĺ ĺĽłĵłķĽĵŀ ĽłŋĹňŉŁĹłŉ ĸĽňŉŃŇŉĽŃłň

Dissatisfaction with the quantity of talent and resources consumed by ėnancial

markets seems to peak during economic downturns. Amidst the Great Depression,

Keynes criticized American ėnancial markets, arguing, “when the capital

development of a country becomes the by-product of the activities of a casino, the

job is likely to be ill-done.”³ On the other hand, the broad impact of ėnancial crises

could also suggest we need a large and highly compensated ėnancial sector to replace

animal spirits with dispassionate analysts.

Certainly, there is a need to understand the circumstances and incentives that pull

resources toward ėnancial markets. What gives rise to a distorted ėnancial sector?

³Keynes, John Maynard, ĉe General ĉeory of Employment, Interest and Money (London:
Macmillan, ǉǑǋǎ), page ǉǍǑ.
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Economic research offers three explanations for outsized ėnancial activity: irrational

investors do not know they trade too much, rational investors cannot help trading too

much, or perhaps the industry is rife with rent-seeking.

Financial markets seem to be amazingly adroit at exploiting irrational beliefs and

behaviors. Fanciful trading or the decision to pay exorbitant fees to popular

investment managers may funnel unnecessary fees into ėnance and have other

negative consequences (De Long, Shleifer, Summers and Waldmann, ǉǑǐǑ).

In a model where market participants are assumed to be rational, they may still

spend too much on active investment because inference is difficult (Pástor and

Stambaugh, Ǌǈǉǈ) or out of a desire to avoid being the greater fool when negotiating

transactions. Glode, Green and Lowery (ǊǈǉǊ) present this situation as an arms race

externality for ėnancial expertise. ĉe model presented by Bolton, Santos and

Scheinkman (Ǌǈǉǉ) has a similar mechanism; opaque markets aĨract talent and

more informed valuations lure the best investments away from public exchanges.

ĉese explanations capture important aspects of ėnancial markets, but neither

seems uniquely modern. If traders are foolish now, they were foolish before. Shrewd

traders will always prefer to be beĨer informed than their counterparty. We are forced

to ask: what changed?

Philippon and Reshef (Ǌǈǉǋ) point toward the rent-seeking channel, and propose

the growth in compensation is a result of deregulation. ĉe active government

oversight intended to curb the worst excesses in the ėnancial markets of the ǉǑǊǈs

was gradually relaxed Ǎǈ years later, and Philippon and Reshef propose rents lured

talent from more productive endeavors (Murphy, Shleifer and Vishny, ǉǑǑǉ).
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Supporting this view, Bai, Philippon and Savov (ǊǈǉǊ) suggest modern asset

prices show no increase in their information content over the past Ǎǈ years. ĉey

suggest the increase in ėnancial spending may result from rent extraction, suggesting

the growth in active investment has had liĨle effect on asset prices.

UłĸĹŇňŉĵłĸĽłĻ ŉļĹ ķĵŊňĹň ĵłĸ ķŃłňĹŅŊĹłķĹň Ńĺ ŉļĹ ķŃňŉ Ńĺ ķĵńĽŉĵŀ ŁĵŇ-

ĿĹŉň

With so much highly compensated talent Ěowing into investment management, it is

hard to believe that asset prices are no more informative in the modern information

age than they were in the bygone era when investors in top hats exchanged small

pieces of paper. As an alternative explanation for the root cause of the modern

growth of capital markets, I propose technological efficiency. ĉe decreasing cost of

transacting makes dynamic trading strategies feasible and draws talent and

technology toward acquiring faster paced information. Conėrming the results of Bai

et al. (ǊǈǉǊ), I ėnd only very weak evidence that modern asset prices capture more

long-horizon information; however, I ėnd strong evidence of an increase in active

trading and information content at horizons of less than one year.

To help frame the empirical ėndings, I present a stylized model illustrating the role

of trading horizons in costly capital markets. ĉe key comparative static will measure

the effect of increases in trading efficiency. ĉe model predicts that as the cost of

ėnancial activity decreases, total spending in the ėnancial sector actually increases,

especially for short-horizon speculation.

ĉis explanation has a large degree of empirical success in explaining aggregate
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spending on capital markets over time, particularly in regard to aggregate spending on

active investing (French, Ǌǈǈǐ). More efficient transaction costs lead to higher

quantities of informed trading, providing an underlying explanation for Greenwood

and Scharfstein’s observation that the observed growth of modern ėnance coincides

with a growth in actively investing. ĉe events of May ǉǑǏǍ highlight the signiėcance

of this mechanism, as the SEC instituted rule ǉǑ-b and replaced the high trading

commissions enforced by stock exchange members with competitive transaction

rates. Using this event and information from historical fee schedules, we observe how

the operational efficiency of capital markets affects the ėnancial industry and market

prices.

ĉis paper provides new evidence on the changes that caused and accompanied

the modern growth in the cost of capital markets. Linking these ėndings to economic

theory clariėes the underlying incentives and opens the door to the broader question

of whether the returns to ėnance are worth the cost.

ǋ.ǉ A SŉŏŀĽŐĹĸMŃĸĹŀ Ńĺ CĵńĽŉĵŀMĵŇĿĹŉň

In this section, I present a stylized model of capital markets where the supply of the

risky investment responds to asset prices and where the ėnancial market is costly to

operate. I will show how changes in the cost of transacting affect the quantity of

resources spent on ėnance and affect the characteristics of asset prices.

To beĨer understand the role ėnancial markets play, consider an illustrative,

general equilibrium framework where investors spend resources in acquiring

information and engaging in costly transactions. In the spirit of the Q-theory
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(Brainard and Tobin, ǉǑǏǏ), the supply of investment will respond to the market

price, so the information in asset prices plays a key role in capital allocation.

Ultimately, we want to observe how changes in the cost of transacting affects the

resources spent in capital markets. Additionally, the model will distinguish between

short-run and long-run behavior, generating novel predictions relating the growth in

capital market spending to asset prices which will be conėrmed in the data.

Unlike the opaque bilateral seĨing of Glode et al. (ǊǈǉǊ), all market prices in the

model will be publicly observed, which has historically been true for equity markets

and is becoming increasingly common across asset classes. ĉe setup more closely

resembles the endogenous information seĨing of Grossman and Stiglitz (ǉǑǐǈ),

adding the salient features necessary to model a costly ėnancial market and multiple

time horizons.

ĉe key comparative statics will be the impact of an exogenous change of

transaction costs on total capital market spending and the information content of

asset prices, noting the differential impact by trading horizon. I brieĚy mention the

welfare implications in section ǋ.ǌ.

TļĹ SĹŔĽłĻ

TļĹ ňŊńńŀŏ Ńĺ ŇĽňĿŏ ĽłŋĹňŉŁĹłŉ

Consider a risky investment traded publicly over a T periods (t ∈ [ƥ,T]) prior to

yielding an uncertain payout X consumer in period T+ ƥ, where the uncertain
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component of X is

X− E [X] =
T∑
t=ƥ

θt + ε. (ǋ.ǉ)

Each of the component random variables are independent, mean-zero, and normally

distributed with variances σƦθ and σƦε. ĉe full, random component
∑

θt becomes

public knowledge in period T+ ƥ. However, market participants can spend resources

to discover the information in period ǈ, and they will be termed long-horizon

investors. Alternately, short-horizon investors may spend a smaller amount of

resources to discover each piece of short horizon information (θt) in period t. ĉe

random component ε cannot be observed prior to period T+ ƥ.

ĉe quantity of the risky investment is responsive to investment demand, allowing

the quantity of shares in one period,Qt, to increase or decrease with the market price,

Pt. For simplicity, we’ll model this as a linear supply curve, with slope parameter

b > Ƥ. ĉe change in investment supply will be

Qt+ƥ − Qt = b (Pt − Pt−ƥ) . (ǋ.Ǌ)

where the initial price is assumed to be the unconditional expectation, PƤ = EƤ [Pƥ].

By construction, the supply of investment is ėxed in the short-run (contemporaneous

with the trading period) and responds to ėnancial market prices over longer horizons

(the next period).
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IłŋĹňŉŃŇň ĵłĸ ĺĽłĵłķĽĵŀ ŁĵŇĿĹŉň

ĉe agents will be modeled by a continuum of identical investors. Wealth can be

transferred across periods at an interest rate of zero and is consumed in the ėnal

period. Each investor is endowed with wƤ units of wealth (measured in units of ėnal

consumption) and a share, qƤ, of the risky investment. By construction, the total

initial quantity of investment isQƤ =
∫
i∈[Ƥ,ƥ] qƤ,idi.

Individuals can choose whether they want to acquire information and actively

speculate based on the difference between their valuation and the observed market

price. To learn the full value of
∑

θt during the ėrst trading period requires paying

kL, whereas short-horizon traders who only learn each component θt at time t pay

kS ≤ kL. Alternately, investors may choose to infer their valuations from the public

market price. Since their valuations will not differ from the market price, they will not

actively trade and I’ll refer to these traders as passive, though they might make trades

driven by changes in their uncertainty.

Each individual seeks to maximize expected CAĆ utility of ėnal consumption.

For convenience, we’ll denote the consumption of investor i as their ėnal wealth, wi,

with associated expected utility E[− exp {−awi}] for absolute risk aversion

parameter a.

Investors must commit whether to spend resources on information in period t = Ƥ

before any trading happens. In subsequent periods prior to the ėnal outcome,

investors may choose to trade their holdings of the risky asset at the prevailing market

price. ĉe transaction costs associated with capital markets are passed directly

through to investors. For analytical convenience, we’ll assume they take a quadratic
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form so that the trading from a prior holding of qi,t−ƥ shares in period t− ƥ to qi,t

during the trading in period twill result in a transaction cost of c
Ʀ (qt − qt−ƥ)

Ʀ.

We can describe the evolution of investor wealth as

wi,t+ƥ = wi,t + qi,t (Pt+ƥ − Pt)−
c
Ʀ
(qi,t+ƥ − qi,t)

Ʀ (ǋ.ǋ)

where agents are identically endowed with wƤ consumption and qƤ shares of the risky

investment. In the ėnal period, the price of the risky investment will simply be the

outcome, i.e. PT+ƥ = X.

PŃŇŉĺŃŀĽŃ ķļŃĽķĹ

ĉe linear-CAĆ-normal framework allows the expected utility from the perspective

of investor i in trading period t to be calculated as

Ei,t [− exp {−awi}] = − exp
{
−aEi,t [wi] +

aƦ

Ʀ
Vari,t [wi]

}
. (ǋ.ǌ)

ĉrough monotonic transformations, the investor can maximize the

certainty-equivalent, which takes the mean-variance form, Ei,t [wi]− a
ƦVari,t [wi]. ĉe

concavity of the problem suggests we can ėnd the optimal portfolio in each period,

q∗i,t, at the point where the ėrst order condition holds,

∂
∂qi,t

Ei,t [wi,Ƨ] =
a
Ʀ

∂
∂qi,t

Vari,t [wi,Ƨ].

To motivate the optimal portfolio rules, we can work backwards from the ėnal

trading period. ĉe optimal portfolio q∗i,T in last trading period that maximizes the
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utility of consumption in the subsequent period will have the associated ėrst order

condition

q∗i,T =
Ei,T [X− PT] + cqi,T−ƥ

aVari,T [X] + c
. (ǋ.Ǎ)

ĉis is the classic myopic portfolio rule with a transaction cost adjustment. In the

numerator, we see the optimal portfolio increases linearly with the expected return,

Ei,T [X− PT]. ĉe second term in the numerator shows how much transaction costs

discourage trading by anchoring the portfolio at the initial position, qi,T−ƥ. ĉe

magnitude of the transaction costs, c, determines the extent to which this affects the

optimal portfolio.

In solving the model, I will show how the anchoring feature of transaction costs

results in optimal portfolio rules that are a weighted average of their myopic,

one-period expected return and the returns offered in future periods.

EŅŊĽŀĽĶŇĽŊŁ

In this seĨing, investors can be grouped into three types based on their information

sets. ĉe mass of agents of type j are those who pay kj for their investment

information will be measured as the quantity λj ∈ [Ƥ, ƥ].

Deėnition In a rational expectations equilibrium,

(a) markets will clear

(b) investors will choose to spend resources on information to maximize ex ante

utility, leading to an allocation {λL, λS} and where λN = ƥ − λL − λS is the

fraction of individuals who will only infer information from market prices
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(c) investors of each type have an optimal demand function qi,t (Pt) for the risky

asset conditional on the market price, which will be constructed from their

rational beliefs about random variables (θt and νt) conditional on the observed

price.

MĵŇĿĹŉ ķŀĹĵŇĽłĻ

It will be useful to explicitly deėne market clearing. Noisy supply shocks will add

uncertainty so that the market price does not perfectly reveal all information.

Speciėcally, the total quantity of investment supply will equal investment demand,

Qt =
∑
i

λiqi,t +
νt

aσƦε + c
, (ǋ.ǎ)

comprising the sum of the individual demands (qi,t) times the mass of the investor

type (λi) plus the scaled demand shock νt ∼ N (σƦν). ĉe values in the denominator

scale the shock by variance and transaction costs. In this sense, the noise can be

interpreted in the same way as the demands of an informed investor, as can be seen

from demand function (ǋ.Ǎ), but obviously the shock is unrelated to the actual ėnal

payout of the investment.

IłŉŊĽŉĽŃł

To build the intuition behind this model and its equilibrium, consider Figure ǋ.ǋ. For

this particular illustration, this will assume just one trading period (T = ƥ) and there

is no distinction between long-horizon and short-horizon informed investors, though
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the paper will generally consider T > ƥ in order to highlight the importance of time

horizon. ĉe leě panel plots the fraction of informed speculators along the horizontal

axis, ranging from ǈ to ǉ. ĉe vertical axis measures expected utility for both the

informed speculators and the expected utility for the uninformed, passive investors.

When there are no informed speculators, the information advantage is obvious as the

expected utility for informed active investors is signiėcantly higher than that of the

passive investors who observe only the market price. As the fraction of the informed

investors increases, the difference between the two expected utilities decreases. ĉis

is the general case, and the intuition extends to the multiple period seĨing; as the

market price becomes more informative the relative advantage of paying for the

information decreases. With these parameters, the equilibrium point of indifference

between acquiring the costly information occurs at the point where approximately ƥ
ƨ

of the investors acquire the costly information. To the right of the equilibrium point,

the trading proėts resulting from learning more about the risky outcome θ are not

worth the resources it could cost (k).

On the right panel, the horizontal axis continues to measure the fraction of

informed speculators, and on the vertical axis we see the equilibrium price. In the

case of no informed investors, the variation in price is entirely due to the supply

shocks ν. As the fraction of informed traders increases, we see two effects. ĉe

average price increases as investors are willing to commit more capital to investment

because there is less uncertainty. Additionally, the variance of the market prices

increases. ĉis is because the price now also contains information about the

investment prospects. Not surprisingly, the information content of asset prices levels
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Figure ǋ.ǋ: Intuition behind model equilibrium
ĉeplots above correspond to themodel presented in the paper in the one-period seĨing,T = ƥ. ĉe
model parameters are: QƤ = ƥ, X̄ = ƥƤƤ, σƦε = σƦθ = ƥƤƦ, σƦν = ƦƦ, a = Ƥ.ƥ, c = ƥƤ, and k = ƥ. For
illustration, the investment supply is allowed to be elastic in the short-run (ΔQ = b(P−E[P])), with
linear supply parameter b = Ƥ.Ʀ. ĉe leě axis plots the expected utility for the informed speculators
and the uninformed passive investors. ĉe right axis plots how the distribution of the market price,
P, changes with respect to the quantity of informed speculators.

of around the equilibrium point, further evidence that liĨle additional value is gained

acquiring information that is already largely in the market price.

Proposition ǉ (Equilibria) ĉere exist rational expectations equilibria under the

assumed parameter restrictions (Ƥ < kS < kL).

ĉe proof for the one-period case (T = ƥ) should be clear from the discussion

above. ĉere will be no long-horizon traders. Since the expected utilities are

continuous in λ ∈ [Ƥ, ƥ], we simply need to appeal to the intermediate value theorem

for existence. ĉe difference between the expected utility of the informed and

uninformed traders will nearly always be monotonically decreasing in λ, which

guarantees uniqueness.
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ĉe same intermediate value approach guarantees a unique solution in the case of

multiple periods (T > Ʀ) in the case where one or more type is always inferior and

has optimal weight zero. ĉe existence of the multiple horizon solution when there is

a positive mass of each of the three types can be motivated by working backwards

from the ėnal period. In the ėnal period, informed traders face a situation identical to

the one-period model. In prior periods, the relative advantage to the long-horizon

information is decreasing in λL. ĉe mass of investors in λS will be uninformed about

the information θt+k (for k > ƥ), and like the uninformed investors, can infer more

information as λL increases. As long as there are positive quantities of each investor

type, the marginal effect of more traders will follow the same relative rank impact on

ex ante utility, guaranteeing a unique solution.

CļĵŇĵķŉĹŇĽŐĽłĻ ĵ ŁŊŀŉĽńŀĹ ļŃŇĽŐŃł ňŃŀŊŉĽŃł (T = Ʀ)

To characterize the analytical differences between long-horizon and short-horizon

speculation, I will more fully characterize the solution for T = Ʀ. In this seĨing, the

outcome will be a long-run event in the ėrst period and a short-run event in the

second period, which immediately precedes the investment outcome. Aěer this

short-horizon trading is complete, investor iwill consume

wi = wƤ+qƤPƥ+qi,ƥ (PƦ − Pƥ)+qi,Ʀ (X− PƦ)−
c
Ʀ
((qi,ƥ − qƤ)

Ʀ + (qi,Ʀ − qi,ƥ)
Ʀ)−ki.

(ǋ.Ǐ)
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AňňŊŁĽłĻ ŀĽłĹĵŇĽŉŏ ĵłĸ ŉļĹ ŇĹňŊŀŉĽłĻ ĹŎńĹķŉĵŉĽŃłň

To calculate the investor demand functions, we need to know their expectations,

which will be affected by the information they perceive from the market prices they

observe. I will assert and then prove that the market prices can be expressed as linear

functions of the unknown variables,

Pƥ = P̄ƥ + βƥθƥ + βƦθƦ + βνƥνƥ (ǋ.ǐ)

and

PƦ = P̄Ʀ + βP (Pƥ − P̄) + βƧθƥ + βƨθƦ + βνƦνƦ. (ǋ.Ǒ)

ĉe unknown coefficients are derived in the appendix, thus conėrming the assumed

linear functional form.

Additionally, to help with the notation and intuition, we note that the beliefs of

uninformed and short-run traders hold about X from observing the market price in

period ǉ will be affected by the variation in price. We can express these expectations

as

ES,ƥ [X] = X̄+ ρS,ƥYS,ƥ (ǋ.ǉǈ)

where

YS,ƥ = θƦ +
βνƥ
βƦ

νƥ (ǋ.ǉǉ)

∝
(
Pƥ − P̄ƥ − βƥθƥ

)
(ǋ.ǉǊ)
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and so that ρ ∈ [Ƥ, ƥ] is a simple function of the assumed parameters

ρ =
σƦθ

σƦθ +
(

βνƥ,ƥ
βθ,ƥ

)Ʀ
σƦν

.

ĉe investors who have spent no resources on information simply take valuations

from their deviation from the market price

(EN,ƥ [X]− X̄) ∝ (Pƥ − P̄) (ǋ.ǉǋ)

PŃŇŉĺŃŀĽŃ ŃńŉĽŁĽŐĵŉĽŃł Ľł ńĹŇĽŃĸ Ǌ

ĉe investors will be categorized by the trading period in which they receive

information about θ: in the long-horizon (L), short-horizon (S) and not at all (N).

For each of the three investor types (L, S, andN), we can express their optimal

portfolio in terms of their prior position and their current expectations Ei,Ʀ [X] and

Vari,Ʀ [X]. ĉe long-run and short-run speculators will both know θƥ and θƦ in period

Ʀ so EL,Ʀ [X] =ES,Ʀ [X]. ĉe associated variance will be VarL,Ʀ [X] =VarS,Ʀ [X] = σƦε.

From (ǋ.Ǎ) we can conclude that the optimal portfolio for these two types of

investors will be

q∗L,Ʀ =
(X̄+ θƥ + θƦ − PƦ) + cq∗L,ƥ

aσƦε + c
(ǋ.ǉǌ)

and

q∗S,Ʀ =
(X̄+ θƥ + θƦ − PƦ) + cq∗S,ƥ

aσƦε + c
(ǋ.ǉǍ)
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ĉe optimal portfolio for the investors who purchase no information

q∗N,Ʀ =
EN,Ʀ [X− PƦ] + cq∗N,ƥ

aVarN,Ʀ [X] + c
(ǋ.ǉǎ)

depends on the expectations, En,Ʀ [θ] and Varn,Ʀ [θ], which will be derived later.

PŃŇŉĺŃŀĽŃ ŃńŉĽŁĽŐĵŉĽŃł Ľł ńĹŇĽŃĸ ǉ

When investing for the long-run (in period ƥ), investors choose their allocation aware

of their optimal short-run portfolio rules in equations (ǋ.ǉǌ - ǋ.ǉǎ). ĉose short-run

rules show that each portfolio allocation is linearly related to the expected return

(Ei [X− PƦ]) and the prior portfolio allocation (qi,ƥ).

ĉe form of the period ǉ demand function for long-horizon investors is similar to

that of the other two investor types. It is derived by substituting the period ƥ demand

from equation (ǋ.ǉǌ) into equation (ǋ.Ǐ) and taking the ėrst order conditions to ėnd

the optimal portfolio

q∗L,ƥ =
(ƥ − Γ)EL,ƥ [PƦ − Pƥ] + ΓEL,ƥ [X− Pƥ] + cqƤ

Ω + c
(
ƥ +
(

aσƦε
aσƦε+c

)Ʀ) (ǋ.ǉǏ)

where the tilt toward the long-run return is

Γ =
c

aσƦε + c︸ ︷︷ ︸
return next period

+ a
(ƦaσƦε + c) βƦνƦσ

Ʀ
νaƦσƨε

(aσƦε + c)ƨ︸ ︷︷ ︸
prefer to avoid adverse νƦ

ǉǍǑ



and the variance

Ω =

(
c

aσƦε + c

)Ʀ

σƦε︸ ︷︷ ︸
variance of X

+

(
aσƦε

aσƦε + c

)ƨ

βƦνƦ,Ʀσ
Ʀ
ν︸ ︷︷ ︸

variance in PƦ

.

To develop some intuition for this long-horizon portfolio rule in equation (ǋ.ǉǏ),

consider the three terms in the numerator. As before, there is a weight pulling the

optimal portfolio toward the initial position, qƤ as a result of transaction costs. ĉe

other two terms are a weighted average of the myopic expected return, EL,ƥ [PƦ − Pƥ]

and the long-run expected return, EL,ƥ [X− Pƥ], with respective weights (ƥ − Γ) and

Γ.

ĉe weight Γ that the investor tilts toward the long-horizon return will always be

weakly positive, Γ ∈ [Ƥ, ƥ), and its magnitude will increase with transaction costs.

ĉe relationship with transaction costs arises from the investor recognizing positions

taken today will persist into the future due to the anchoring effect of transaction

costs. Additionally, there is some uncertainty in the price next period, so investors

have an incentive to lock in Pƥ now rather than pay an uncertain PƦ.

ĉe demand functions for the short-run and uninformed investors take an

identical form, with slightly different values for Γ and Ω.

DĹŇĽŋĽłĻ ĽłŋĹňŉŃŇ ĸĹŁĵłĸ

ĉis section derives the demand functions for the model with two trading periods

(T = Ʀ). For each investor, we use their expectations to maximize the utility of ėnal

ǉǎǈ



wealth, as deėned in equation (ǋ.Ǐ),

wi = wƤ−ki+qƤPƥ+qi,ƥ (PƦ − Pƥ)+qi,Ʀ (X− PƦ)−
c
Ʀ
((qi,ƥ − qƤ)

Ʀ + (qi,Ʀ − qi,ƥ)
Ʀ) .

ĉe ėrst order condition, ∂
∂qi,t

Ei,t [wi] =
a
Ʀ

∂
∂qi,t

Vari,t [wi], can be used to derive the

investor demand functions. In period Ǌ, the only source of uncertainty isX and we get

q∗i,Ʀ =
Ei,Ʀ [X− PƦ] + cqi,ƥ

aVari,Ʀ [X] + c
,

which leads to the optimal demand functions presented for each type of investor, as

in (ǋ.Ǎ).

Deriving the demand functions for period ǉ with multiple horizons requires a fair

amount of algebra. Beginning with the expression for expected wealth,

Ei,ƥ [wi] = wƤ − ki + qƤPƥ + qi,ƥEi,ƥ [PƦ − Pƥ] + Ei,ƥ [qi,Ʀ (X− PƦ)]

− c
Ʀ
((qi,ƥ − qƤ)

Ʀ + Ei,ƥ [(qi,Ʀ − qi,ƥ)
Ʀ]) ,

we can substitute in period Ǌ’s demand function

Ei,ƥ [wi] = wƤ + qƤPƥ + qi,ƥEi,ƥ [PƦ − Pƥ] + Ei,ƥ

[
Ei,Ʀ [X− PƦ] + cqi,ƥ

aVari,Ʀ [X] + c
(X− PƦ)

]
− c

Ʀ

(
(qi,ƥ − qƤ)

Ʀ + Ei,ƥ

[(
Ei,Ʀ [X]− PƦ + cq∗i,ƥ

aVari,Ʀ [X] + c
− qi,ƥ

)Ʀ])
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with ėrst derivative

∂

∂qi,ƥ
E [wi] = Ei,ƥ [PƦ − Pƥ] +

cEi,ƥ [X− PƦ]
aVari,Ʀ [X] + c

− c (qi,ƥ − qƤ)

−c
(

aVari,Ʀ [X]
aVari,Ʀ [X] + c

)Ʀ

qi,ƥ + c
aVari,Ʀ [X]El,ƥ [X− PƦ]

(aVari,Ʀ [X] + c)Ʀ

so the ėnal expression is

∂

∂qi,ƥ
E [wi] = Ei,ƥ [PƦ − Pƥ]

+

(
c

aVari,Ʀ [X] + c
+ c

aVari,Ʀ [X]
(aVari,Ʀ [X] + c)Ʀ

)
Ei,ƥ [X− PƦ]

+cqƤ − c
(

ƥ +
(

aVari,Ʀ [X]
aVari,Ʀ [X] + c

)Ʀ)
qi,ƥ

ĉe optimal portfolio in period one will be the one that solves the ėrst order

condition,

q∗i,ƥ =
Ei,ƥ [PƦ − Pƥ] +

(
c

aVari,Ʀ[X]+c + c aVari,Ʀ[X]
(aVari,Ʀ[X]+c)Ʀ

)
Ei,ƥ [X− PƦ] + cqƤ

a
Ʀq∗i,ƥ

Vari,ƥ [wi] +
(
ƥ +
(

aVari,Ʀ[X]
aVari,Ʀ[X]+c

)Ʀ)
c

.

ĉe expected values for PƦ and X are apparent from the assumed linearity in (ǋ.ǐ)

and (ǋ.Ǒ), so the task at hand is to come up with expressions for a
Ʀq∗i,ƥ

Vari,ƥ [wƧ], where
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the variance term can be expressed as

Vari,ƥ [wi] = Vari,ƥ
[
qi,ƥPƦ + qi,Ʀ (X− PƦ)−

c
Ʀ
(qi,Ʀ − qi,ƥ)

Ʀ
]

= Vari,ƥ
[
qi,ƥPƦ + qi,Ʀ (X− PƦ)−

c
Ʀ
qƦi,Ʀ + cql,ƥqi,Ʀ

]
= Vari,ƥ

[
qi,ƥPƦ + qi,Ʀ (X− Ei,Ʀ [X]) + qƦi,Ʀ

(
aVari,Ʀ [X] +

c
Ʀ

)]

and the remaining calculation requires using the expectations of each investor and

calculating the sensitivity with respect to the ėrst period allocation.

LŃłĻ-ļŃŇĽŐŃł ĽłŋĹňŉŃŇň Ľł ńĹŇĽŃĸ ǉ

For long-horizon investors, the uncertain terms will be:

PƦ − EL,ƥ [PƦ] = βνƦ,ƦνƦ,

X− EL,ƥ [X] = X− El,Ʀ [X] = ε.

ĉe optimal position during the ėnal trading period

qL,Ʀ =
EL,ƥ [X− PƦ] + cqL,ƥ

aσƦε + c
−

βνƦνƦ
aσƦε + c

= EL,ƥ [qL,Ʀ]−
βνƦ

aσƦε + c
νƦ.
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From this, we can calculate the variance

VarL,ƥ [wL] = VarL,ƥ

 qL,ƥβνƦνƦ + EL,Ʀ [qL,Ʀ] ε−
βνƦ

aσƦε+c νƦε

+
(
EL,ƥ [qL,Ʀ]−

βνƦ
aσƦε+c νƦ

)Ʀ (
aσƦε +

c
Ʀ

)


= VarL,ƥ


(

c
aσƦε+cqL,ƥ +

EL,ƥ[X−PƦ]
aσƦε+c

)
ε

+
(
qL,ƥ
(

aσƦε
aσƦε+c

)Ʀ
− ƦEL,ƥ [X− PƦ]

aσƦε+
c
Ʀ

(aσƦε+c)Ʀ

)
βνƦνƦ

− βνƦ
aσƦε+c νƦε+

aσƦε+
c
Ʀ

(aσƦε+c)Ʀ β
Ʀ
νƦν

Ʀ
Ʀ


and using the normality and independence of ε and νƦ,

Var [wL] = Var[aν + bε+ cνƦ + dνε]

= aƦσƦν + bƦσƦε + ƦcƦσƨν + dƦσƦνσ
Ʀ
ε

we can write

VarL,ƥ [wL] =

(
c

aσƦε + c
qi,ƥ +

EL,ƥ [X− PƦ]
aσƦε + c

)Ʀ

σƦε

+

(
qL,ƥ
(

aσƦε
aσƦε + c

)Ʀ

− EL,ƥ [X− PƦ]
ƦaσƦε + c
(aσƦε + c)Ʀ

)Ʀ

βƦνƦσ
Ʀ
ν

+

{ βνƦ
aσƦε + c

}Ʀ

σƦνσ
Ʀ
ε + Ʀ

{
aσƦε +

c
Ʀ

(aσƦε + c)Ʀ

}Ʀ

βƨνƦ,Ʀσ
ƨ
Ʀ .
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To calculate the demand function, we need to evaluate the ėrst derivative

∂

∂qƥ,l
Vari,ƥ [wi] = Ʀ

c
aσƦε + c

(
c

aσƦε + c
qi,ƥ +

EL,ƥ [X− PƦ]
aσƦε + c

)
σƦε

+Ʀ
(

aσƦε
aσƦε + c

)Ʀ(
qi,ƥ
(

aσƦε
aσƦε + c

)Ʀ)
βƦνƦσ

Ʀ
ν

−Ʀ
(

aσƦε
aσƦε + c

)Ʀ(
EL,ƥ [X− PƦ]

ƦaσƦε + c
(aσƦε + c)Ʀ

)
βƦνƦσ

Ʀ
ν

and calculate the term

a
Ʀ
∂VarL,ƥ [wL]

∂qƥ,l
= a

((
aσƦε

aσƦε + c

)ƨ

βƦνƦσ
Ʀ
ν +

(
c

aσƦε + c

)Ʀ

σƦε

)
qi,ƥ

−a
(
(ƦaσƦε + c) aƦσƨεβ

Ʀ
νƦσ

Ʀ
ν

(aσƦε + c)ƨ
− cσƦε

(aσƦε + c)Ʀ

)
EL,Ʀ [X− PƦ]

ĉe optimal portfolio for the long-term speculator is then

q∗L,ƥ =
EL,ƥ [PƦ − Pƥ] +

{
c

aσƦε+c + a (ƦaσƦε+c)βƦνƦ,Ʀσ
Ʀ
νaƦσ

ƨ
ε

(aσƦε+c)ƨ

}
EL,ƥ [X− PƦ] + cqƤ

a
{(

c
aσƦε+c

)Ʀ
σƦε +

(
aσƦε

aσƦε+c

)ƨ
βƦνƦ,Ʀσ

Ʀ
ν

}
+ c
(
ƥ −
(

aσƦε
aσƦε+c

)Ʀ)
which can be wriĨen as in equation (ǋ.ǉǏ)

q∗L,ƥ =
EL,ƥ [PƦ − Pƥ] + ΓlEL,ƥ [X− PƦ] + cqƤ

aΩ + c
(
ƥ −
(

aσƦε
aσƦε+c

)Ʀ)
=

(ƥ − Γ)EL,ƥ [PƦ − Pƥ] + ΓEL,ƥ [X− Pƥ] + cqƤ

aΩ + c
(
ƥ −
(

aσƦε
aσƦε+c

)Ʀ)
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ĉe variance term, Ω is a linear combination of the uncertainty in next period’s

price (σƦν) and uncertainty in the ėnal payout (σƦε)

Ω =

(
c

aσƦε + c

)Ʀ

σƦε︸ ︷︷ ︸
variance of X

+

(
aσƦε

aσƦε + c

)ƨ

βƦνƦ,Ʀσ
Ʀ
ν︸ ︷︷ ︸

variance in PƦ

.

ĉe sensitivity to next period’s expected return is

Γ =
c

aσƦε + c︸ ︷︷ ︸
return next period

+ a
(ƦaσƦε + c) aƦσƨε
(aσƦε + c)ƨ

βƦνƦ,Ʀσ
Ʀ
ν︸ ︷︷ ︸

prefer to avoid uncertain νƦ

.

ĉe weight Γ that the investor tilts toward the long-horizon return will always be

positive, and its magnitude will increase with transaction costs. ĉe relationship with

transaction costs comes from the investor recognizing positions taken now will

persist later. Additionally, there is some uncertainty in the price next period, so

investors have an incentive to lock in Pƥ now rather than pay an uncertain PƦ.

SļŃŇŉ-ļŃŇĽŐŃł ĽłŋĹňŉŃŇň Ľł ńĹŇĽŃĸ ǉ

For the short-run investors, the uncertain terms will be

PƦ − EN,ƥ [PƦ] = βƨeS + βνƦνƦ

and

X− Es,ƥ [X] = eS + ε,
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where

eS = (θƦ − ES,ƥ [θƦ]) .

ĉe optimal portfolio in the ėnal trading period can then be expressed as

qS,Ʀ =
ES,Ʀ [X− PƦ] + cqS,ƥ

aσƦε + c

=
ES,ƥ [X− PƦ] + cqS,ƥ

aσƦε + c
+

ES,Ʀ [X− PƦ]− ES,ƥ [X− PƦ]
aσƦε + c

= ES,ƥ [qS,Ʀ] +
eS
(
ƥ − βƨ

)
aσƦε + c

−
βνƦνƦ

aσƦε + c
.

So we can calculate the variance as

VarS,ƥ [wS] = VarS,ƥ
[
qS,ƥPƦ + qS,Ʀ (X− ES,Ʀ [X]) + qƦS,Ʀ

(
aσƦε +

c
Ʀ

)]

So the variance is

VarS,ƥ [wS] =

(
qS,ƥ − Ʀ

(
ƥ − βƨ

)
ES,ƥ [qS,Ʀ]

(
aσƦε +

c
Ʀ

)
aσƦε + c

)Ʀ

βƦƨσ
Ʀ
S,ƥ

+

(
qS,ƥ − Ʀ

ES,ƥ [qS,Ʀ]
(
aσƦε +

c
Ʀ

)
aσƦε + c

)Ʀ

βƦνƦσ
Ʀ
ν

+(ES,ƥ [qS,Ʀ])
Ʀ σƦε

+VarS,ƥ


(

eS(ƥ−βƨ)
aσƦε+c − βνƦ νƦ

aσƦε+c

)Ʀ (
aσƦε +

c
Ʀ

)
+

(
eS(ƥ−βƨ)
aσƦε+c − βνƦ νƦ

aσƦε+c

)
ε


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and we can substitute in ES,ƥ [qS,Ʀ] =
ES,ƥ[X−PƦ]+cqS,ƥ

aσƦε+c and get ėrst derivative

∂VarS,ƥ [wS]

∂qS,ƥ
= ƦqS,ƥ

{(
aƦσƨε

(aσƦε + c)Ʀ

)Ʀ

βƦνƦσ
Ʀ
ν +

(
c

aσƦε + c

)Ʀ

σƦε

}
+ƦqS,ƥ

{(aƦσƨε − βƨ (Ʀacσ
Ʀ
ε + cƦ)

(aσƦε + c)Ʀ

)Ʀ

βƦƨσ
Ʀ
S,ƥ

}

−ƦES,ƥ [X− PƦ]

 aƦσƨε(ƦaσƦε+c)
(aσƦε+c)ƨ βƦνƦσ

Ʀ
ν −

cσƦε
(aσƦε+c)Ʀ

+
(aƦσƨε−βƨ(Ʀacσ

Ʀ
ε+cƦ))(ƥ−βƨ)(ƦaσƦε+c)
(aσƦε+c)ƨ βƦƨσ

Ʀ
S,ƥ


ĉe optimal portfolio can be expressed in a form analogous to the long-run

demand function in equation (ǋ.ǉǏ) by naming the short-horizon parameters, Γs and

Ωs,

q∗S,ƥ =
(ƥ − ΓS)ES,ƥ [PƦ − Pƥ] + ΓSES,ƥ [X− Pƥ] + cqƤ

aΩS + c
(
ƥ +
(

aσƦε
aσƦε+c

)Ʀ) .

ĉe intuition and form are nearly identical, with the short-horizon investors tilting

slightly more toward the long-run return, ES,ƥ [X− PƦ], due to their uncertainty

about θƦ,

ΓS = Γ + a

(
ƥ − βƨ

) (
aƦσƨε − βƨ (Ʀacσ

Ʀ
ε + cƦ)

)
(aσƦε + c)ƨ

βƦƨσ
Ʀ
eƥ︸ ︷︷ ︸

prefer to avoid uncertain eƥ

.

ĉeir associated uncertainty term, ΩS, is

ΩS =

(
c

aσƦε + c

)Ʀ

σƦε +

(
aƦσƨε − βƨ (Ʀacσ

Ʀ
ε + cƦ)

)Ʀ βƦƨσƦS,ƥ + aƨσƬεβ
Ʀ
νƦσ

Ʀ
ν

(aσƦε + c)ƨ
.
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UłĽłĺŃŇŁĹĸ ĽłŋĹňŉŃŇň Ľł ńĹŇĽŃĸ ǉ

ĉe uninformed investors have the highest degree of uncertainty. In period ǉ, this is

summarized by the uncertain terms:

X− EN,Ʀ [X] = eƥ + eƦ + ε

where the errors in expectations in the ėnal period are expressed as

eƥ = (θƥ − EN,Ʀ [θƥ])

eƦ = (θƦ − EN,Ʀ [θƦ]) .

ĉe additional, orthogonal error in the ėrst period expectation is

Δeƥ = (θƥ − EN,ƥ [θƥ])− (θƥ − EN,Ʀ [θƥ])

ΔeƦ = (θƦ − EN,ƥ [θƦ])− (θƦ − EN,Ʀ [θƦ])

so that

PƦ − EN,ƥ [PƦ] = βƧ (eƥ + Δeƥ) + βƨ (eƦ + ΔeƦ) + βνƦνƦ

and

X− EN,ƥ [X] = (eƥ + Δeƥ) + (eƦ + ΔeƦ) + ε.
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ĉe optimal portfolio in the ėnal trading period can then be expressed as

qN,Ʀ =
EN,Ʀ [X− PƦ] + cqN,ƥ

aVarN,Ʀ [X] + c

=
EN,ƥ [X− PƦ] + cqN,ƥ

aVarN,Ʀ [X] + c
+

EN,Ʀ [X− PƦ]− EN,ƥ [X− PƦ]
aVarN,Ʀ [X] + c

=
EN,ƥ [X− PƦ] + cqN,ƥ

aVarN,Ʀ [X] + c
+

EN,Ʀ [X]− EN,ƥ [X]− PƦ − EN,ƥ [PƦ]
aVarN,Ʀ [X] + c

= EN,ƥ [qN,Ʀ] +
Δeƥ + ΔeƦ − βƧ (eƥ + Δeƥ)− βƨ (eƦ + ΔeƦ)− βνƦνƦ

aVarN,Ʀ [X] + c

= EN,ƥ [qN,Ʀ] +
Δeƥ
(
ƥ − βƧ

)
+ ΔeƦ

(
ƥ − βƨ

)
− βƧeƥ − βƨeƦ − βνƦνƦ

aVarN,Ʀ [X] + c
.

ĉe uncertainty from the perspective of the investors who acquire no information

will be

VarN,ƥ [wN] = VarN,ƥ
[
qN,ƥPƦ + qN,Ʀ (X− EN,Ʀ [X]) + qƦN,Ʀ

(
aVarN,Ʀ [X] +

c
Ʀ

)]
.
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SpliĨing out the terms,

VarN,ƥ [wN] =

{
qN,ƥβƧ + EN,ƥ [qN,Ʀ]− ƦβƧEN,ƥ [qN,Ʀ]

aVarN,Ʀ [X] + c
Ʀ

aVarN,Ʀ [X] + c

}Ʀ

σƦeƥ

+

{
qN,ƥβƨ + EN,ƥ [qN,Ʀ]− ƦβƨEN,ƥ [qN,Ʀ]

aVarN,Ʀ [X] + c
Ʀ

aVarN,Ʀ [X] + c

}Ʀ

σƦeƦ

+

{
qN,ƥβƧ +

(
ƥ − βƧ

)
ƦEN,ƥ [qN,Ʀ]

aVarN,Ʀ [X] + c
Ʀ

aVarN,Ʀ [X] + c

}Ʀ

σƦΔeƥ

+

{
qN,ƥβƨ +

(
ƥ − βƨ

)
ƦEN,ƥ [qN,Ʀ]

aVarN,Ʀ [X] + c
Ʀ

aVarN,Ʀ [X] + c

}Ʀ

σƦΔeƦ

+

{
qN,ƥ − ƦEN,ƥ [qN,Ʀ]

aVarN,Ʀ [X] + c
Ʀ

aVarN,Ʀ [X] + c

}Ʀ

βƦνƦσ
Ʀ
νƦ

+ {EN,ƥ [qN,Ʀ]}Ʀ σƦε

+ {the terms without qN,ƥ} ,

and taking the ėrst derivative yields the comon form

q∗N,ƥ =
(ƥ − ΓN)EN,ƥ [PƦ − Pƥ] + ΓNEN,ƥ [X− Pƥ] + cqƤ

aΩN + c
(
ƥ +
(

aσƦε
aσƦε+c

)Ʀ) .

In this case,

ΩN =

(
c

aVarN,Ʀ[X]+c + βƧ
(

aVarN,Ʀ[X]
aVarN,Ʀ[X]+c

)Ʀ)Ʀ
σƦeƥ

+
(

c
aVarN,Ʀ[X]+c + βƨ

(
aVarN,Ʀ[X]

aVarN,Ʀ[X]+c

)Ʀ)Ʀ
σƦeƦ

+
(
ƥ − βƧ

(
aVarN,Ʀ[X]

aVarN,Ʀ[X]+c

)Ʀ)Ʀ
σƦΔeƥ +

(
ƥ − βƨ

(
aVarN,Ʀ[X]

aVarN,Ʀ[X]+c

)Ʀ)Ʀ
σƦΔeƦ

+
(
ƥ −
(

aVarN,Ʀ[X]
aVarN,Ʀ[X]+c

)Ʀ)Ʀ
βƦνƦσ

Ʀ
νƦ +

{
c

aVarN,Ʀ[X]+c

}Ʀ
σƦε
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and

ΓN =
c

aVarN,Ʀ [X] + c
+ c

aVarN,Ʀ [X]
(aVarN,Ʀ [X] + c)Ʀ

+a



(
c (aVarN,Ʀ [X] + c) + βƧ (aVarN,Ʀ [X])

Ʀ)
×
(
aVarN,Ʀ [X] + c− βƧ (ƦaVarN,Ʀ [X] + c)

)
(aVarN,Ʀ [X] + c)ƨ


σƦeƥ

+a



(
c (aVarN,Ʀ [X] + c) + βƨ (aVarN,Ʀ [X])

Ʀ)
×
(
aVarN,Ʀ [X] + c− βƨ (ƦaVarN,Ʀ [X] + c)

)
(aVarN,Ʀ [X] + c)ƨ


σƦeƦ

+a


(
ƥ − βƧ

(
aVarN,Ʀ[X]

aVarN,Ʀ[X]+c

)Ʀ)
×
(
(ƥ−βƧ)(ƦaVarN,Ʀ[X]+c)

(aVarN,Ʀ[X]+c)Ʀ

)
 σƦΔeƥ

+a


(
ƥ − βƨ

(
aVarN,Ʀ[X]

aVarN,Ʀ[X]+c

)Ʀ)
×
(
(ƥ−βƨ)(ƦaVarN,Ʀ[X]+c)

(aVarN,Ʀ[X]+c)Ʀ

)
 σƦΔeƦ

−a
{(

ƥ −
(

aVarN,Ʀ [X]
aVarN,Ʀ [X] + c

)Ʀ)( ƦaVarN,Ʀ [X] + c
(aVarN,Ʀ [X] + c)Ʀ

)}
βƦνƦσ

Ʀ
νƦ

+a
{

c
(aVarN,Ʀ [X] + c)Ʀ

}Ʀ

σƦε

MĵŇĿĹŉ CŀĹĵŇĽłĻ ĵłĸ IłŋĹňŉŃŇ ĹŎńĹķŉĵŉĽŃłň

ĉe investors will form expectations about investment prospects (X) and the effect of

the noise shocks (νƥ and νƦ) from the market price. Intuitively, investor expectations
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of θ increase in the market price, but larger noise shocks dampens this relationship. It

remains to be veriėed that the assumed linear relationship between prices and the

unknown variables as suggested in equations (ǋ.ǐ) and (ǋ.Ǒ) holds.

In period ǉ, the market clears when

QƤ = λNqN,ƥ + λSqS,ƥ + λLqL,ƥ +
νƥ

aσƦε + c
.

ĉe demand functions for the short-horizon and long-horizon investors are both

linear in E[X] and hence linear in the state variables, so substituting them into the

market clearing condition shows the price to be linear in the state variables. ĉe

expectations of the risky payout will all be linear in Pƥ, which can be seen from

substituting in the demand functions to the market clearing condition

Pƥ ∝

λS

 (ƥ − ΓS) βƧ + ΓS

aΩS + c
(
ƥ +
(

aσƦε
aσƦε+c

)Ʀ)
+ λL

 (ƥ − Γ) βƧθƥ + Γθƥ

aΩ + c
(
ƥ −
(

aσƦε
aσƦε+c

)Ʀ)
 θƥ

λL

 (ƥ − Γ) βƨ + Γ

aΩ + c
(
ƥ −
(

aσƦε
aσƦε+c

)Ʀ)
 θƦ

+

{
ƥ

aσƦε + c

}
νƥ

ĉis conėrms (ǋ.ǐ).

Similarly, in period Ǌ the market clearing condition shows that

PƦ ∝
λS + λL
aσƦε + c

(θƥ + θƦ) +
{

ƥ
aσƦε + c

}
νƦ,
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which conėrms (ǋ.Ǒ).

TļĹ ĽŁńĵķŉ Ńĺ ŁŃŇĹ ĹĺĺĽķĽĹłŉ ŉŇĵłňĵķŉĽŃłň

Let’s now turn to the question of what happens if the ėnancial sector is more

operationally efficient and the cost of transacting decreases. I consider two key

comparative statics: how does this affect total active investment management (∂
∑

λi
∂c )

and how does this effect differ by investment horizon (∂λs
∂c versus ∂λl

∂c ).

Proposition Ǌ (More activemanagement) As the cost of transacting decreases, total

informed trading increases,
∂
∑

λi
∂c

≤ Ƥ

and this becomes a strict inequality if there is any interior solution (i.e. Ȕ<λj < ƥ for some

j).

ĉe value gained from information lies in the ability capitalize on the information

through active trading. Clearly, in the limiting case, limc→∞ λ∗n → ƥ. For interior

solutions, we must consider the marginal impact of transaction costs on the relative

utility of informed and uninformed investors. ĉe unconditional expected utility of

an informed speculator will be a decreasing, continuous function of transaction costs.

ĉe unconditional expected utility of a passive investors will also decrease–but much

less rapidly. Hence, ∂
∑

λN
∂c ≥ Ƥ. Since these functions are continuous, equality will

only hold in the corner solutions where marginal changes in expected utility have no

effect on the allocations of investor type.
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Proposition ǋ (Shorter investment horizons) Lower transaction costs have a greater

effect on short-horizon investors than long-horizon investors,

∂λS
∂c

≤ ∂λL
∂c

with strict inequality for interior solutions (i.e. λL ∈ (Ƥ, ƥ) and λS ∈ (Ƥ, ƥ)).

ĉis result comes from the fact that the short-horizon investors’ optimal portfolio

contains a subset of the information of the long-horizon investor. So the desire to

spread trading over a longer horizon is offset by the fact that the short-horizon signal

in period ǉ (θƥ) may be in the opposite direction as the signal in period Ǌ (θƦ). As a

result, short-horizon traders are forced to trade more for the same expected return.

In fact, in a model with many periods (T large), the short-horizon traders will ėnd

that the independence of θt makes trading in the earliest periods costly relative to the

weakness of their accumulated signal. As the ėnal horizon approaches, the

short-horizon traders will be more inclined to trade as their accumulated signal is

stronger and less likely to suggest they need to unwind their trades because of future

information.

In contrast, the long-horizon traders are eager to trade on their information as

early as possible, but they submit to spreading their trading across later periods in

their desire to minimize their transaction costs. ĉere are also information

advantages to spreading out trades, since larger trades move prices and allow other

traders to freely infer the costly information, but the inėnitesimal traders do not

absorb this externality.
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ǋ.Ǌ EŎńŀĵĽłĽłĻŉļĹEŁńĽŇĽķĵŀGŇŃŌŉļĽłCĵńĽŉĵŀMĵŇĿĹŉSńĹłĸ-

ĽłĻ

A key contribution of this paper is document the relationship between the efficiency

of ėnancial transactions and the growth of modern ėnance. As improvements in

technology and market organization make transactions less costly, we should expect

to see the volume of transactions increase. ĉis simply follows from the economic

Law of Demand. A more surprising result is that as ėnancial costs decrease, total

spending on ėnance increases. ĉis is fundamentally a statement about elasticities.

In this section, I focus on establishing the relationship between ėnancial efficiency

and the aggregate measures of ėnancial spending and activity. I use timing to assert

causality in the Granger sense, and using the (plausibly) exogenous historical break

in May of ǉǑǏǍ. ĉe evidence is statistically strong but open to the criticism that the

changes in efficiency may be interrelated with contemporaneous events. In section

ǋ.ǋ, I will use cross-sectional variation in the panel data to establish even stronger

results and focus more explicitly on measuring the information content and

investment horizon, two key features of the model.

A ŉĽŁĹ ňĹŇĽĹň Ńĺ ŉŇĵłňĵķŉĽŃł ķŃňŉň

With the possible exception of the very recent past, brokerage commissions were the

primary cost in trading equities (Berkowitz, Logue and Noser, ǉǑǐǐ). ĉey funded

all the operations required in ėnancial market transactions. To test the efficiency

explanation for the growth of capital markets, I construct a historical time series that
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measures the representative cost of transacting. ĉe measure I propose splices two

date ranges: ǉǑǊǏ-ǉǑǏǍ and ǉǑǏǍ-Ǌǈǉǈ.

PŇĹ-ǉǑǏǍ: ŉļĹ NYSE ĺĽŎĹĸ ķŃŁŁĽňňĽŃł ňķļĹĸŊŀĹ

From its founding in ǉǏǑǊ up to ǉǑǏǍ, the New York Stock Exchange (NYSE)

enforced a minimum commission schedule on all of its member ėrms. ĉe smaller,

regional exchanges mirrored the commission schedule of the NYSE, and in the rare

cases where they didn’t, they faced enormous industry pressure to conform. ĉe

stated goal was to ”prevent competition amongst the members” to protect their

proėts. Exchange members referenced the general fear of unfeĨered trading and

defended high trading costs by observing that ”a very low or competitive rate would

also promote speculation.” ⁴

An example commission schedule, corresponding to the NYSE rates for ǉǑǍǎ is

displayed in Figure ǋ.ǌ. We can see how the formula deėning the commission rate is a

function of the nominal share price. Purchasing a round lot (ǉǈǈ shares) of a stock

costing Ʈǋǈ per share, for example, would have a commission of ƮǉǍ +ǈ.Ǎ times Ʈǋǈ.

A round lot of a Ʈǎǈ stock would cost ƮǋǍ +ǈ.ǉ times Ʈǎǈ.

To construct a time series of the average transaction cost prior to ǉǑǏǍ I collect the

NYSE commission schedules, including the NYSE annual fact books and the

monthly S&P Stock Owners Guide. Combining these commission schedules with

trading volume and price data from CRSP,⁵ I construct an annual series of the

⁴Report of the CommiĨee Appointed Pursuant to House Resolutions ǌǊǑ and Ǎǈǌ to Investigate
the Concentration of Control of Money and Credit, H.R. REP. NO. ǎǊ-ǉǍǑǋ

⁵Center for Research in Security Prices. Graduate School of Business,ĉe University of Chicago
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Figure ǋ.ǌ: NYSE Commission Schedule, ǉǑǍǎ
An image of the New York Stock Exchange minimum commission schedule for ǉǑǍǎ, as reported on
page Ǐ of the NYSE Fact Book for ǉǑǎǍ.
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weighted average cost of trading.

Mĵŏ Dĵŏ ǉǑǏǍ

In the aěermath of the ėnancial disasters surrounding the Great Depression, the

Securities Exchange Act of ǉǑǋǌ charged the Securities and Exchange Commission

(SEC) with regulating and approving changes to any enforced commission schedules.

Over the following forty years, the NYSE would periodically submit proposals to

increase rates. A paĨern emerged whereby the NYSE would complain about the

rising costs and shrinking proėts of its members, propose an increase in the

commission schedule in order to maintain an appropriate level of proėtability, and

they would get immediate approval from the SEC.

In ǉǑǎǐ, however the SEC scrutinized the latest proposed increase with more

skepticism. Regulators asked why the cost of transacting in the ėnancial markets

could not itself be the product of a competitive response. ĉe response from the

exchange was emphatic: ”One does not move the keystone of an industry which

facilitates the raising of the bulk of new capital for this country...Negotiated rates

would bring a degree of destructive competition.”⁶

Although the SEC continued to approve a series of regular increases, this initial

dissatisfaction was not placated. On January Ǌǋ, ǉǑǏǍ the SEC adopted rule ǉǑ-b,

requiring all stock exchanges to end the practice of the ėxed commission schedule

and allow members to set rates competitively. ĉis rule was to go in effect on May ǉ,

ǉǑǏǍ. Distressed brokers and the popular press referred to the deadline as May Day.

(ǊǈǉǊ), Used with permission. All rights reserved.
⁶Richard Hack, NYSE president (August ǉǑ, ǉǑǎǐ)
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As brokers competed for the ėrst time on trading costs, there was a sharp drop in

costs, especially for institutional investors. ĉe SEC instituted a number of studies

trying to measure the impact of their rule. Only two weeks aěer the beginning of

competitive rates, the SEC Commissioner noted that they “have seen sharp price

cuĨing, in some instances to half or less of previously prevailing rates.”⁷ ĉe SEC

study of ǉǑǏǐ concluded that institutional trading costs had stabilized to a level ǍǊ.Ǒƻ

below their ėxed rate levels.⁸ Interestingly, the costs to individual traders decreased

only moderately, giving rise to price discrimination among investor types (Tinic and

West, ǉǑǐǈ).

PŃňŉ-ǉǑǏǍ: NYSE ŁĹŁĶĹŇ ĺĽłĵłķĽĵŀ ňŉĵŉĹŁĹłŉň

To continue the time series measuring the cost of transacting in the modern period of

negotiated commissions post-ǉǑǏǍ, I collect commission revenues from the member

ėnancial statements of the NYSE and divide them by trading volume to estimate the

weighted average cost per share.

Figure ǋ.Ǎ shows the composite time series from ǉǑǊǏ to Ǌǈǉǈ. We can see the

signiėcant increase in the early ǉǑǋǈ�s followed by a relatively steady increase in costs

for almost Ǎǈ years until the sudden drop resulting from the events of May ǉǑǏǍ. To

ensure the aggregate time series is a fair representation of aggregate transaction costs,

I compare it to a number of independent measures. ĉese include: the survey results

from Greenwich Associates, a consultancy that surveys institutional investors

⁷Remarks by A. A. Sommer Jr. in a talk titled ”ĉe New Breath of Competition” delivered at the
Seminar on the Analysis of Security Prices, University of Chicago, May ǉǍ, ǉǑǏǍ.

⁸SEC Staff Report on the Securities Industry in ǉǑǏǐ
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regarding the costs they pay for their transactions; the SEC studies measuring

transaction costs in the wake of rule ǉǑ-b; and for historical purposes, the cost

associated with trading a Ʈǋǈ stock, holding the nominal share price constant through

the duration of the ėxed commission schedule. Each of these measures corresponds

relatively closely to the composite series I created.

Since the post-ǉǑǏǍ series imputes costs rather than calculating them directly, it is

especially useful to compare them with data published by Greenwich Associates, a

ėrm that has been polling institutional investors on their average commission costs

since ǉǑǏǎ. ĉe time series of their survey results is ploĨed in green triangles

alongside my own estimates on Figure ǋ.Ǎ. ĉe two series are highly similar, except in

the ėrst few years of the sample where the commissions paid by institutions are even

lower than the computed average. ĉis is consistent with historical reports that the

trading commissions charged to individuals did not drop immediately in response to

the deregulation until the advent of discount stock brokers around ǉǑǐǈ.

Looking at the data prior to ǉǑǏǍ, I plot the evolution of the cost of trading a Ʈǋǈ

stock using the orange squares. Historical paĨerns in share prices and trading volume

cause the higher frequency variation in my composite series, making it useful to

compare against a series where the nominal share price is held constant. Any changes

can then be aĨributed to the imposed cost schedule and not to endogenous investor

behavior. Focusing on the cost of trading a Ʈǋǈ stock from ǉǑǊǐ to ǉǑǏǋ, we see the

round trip cost more than tripled, from ǉ.ǈǏƻ to ǋ.ǌǎƻ of the notional value.

Including the additional ǉ.Ǐƻ for paying the typical Ʈǉ/ǌ cost from the bid-ask spread,

the total cost of buying and selling exceeded Ǎƻ in ǉǑǏǍ. It is important to note the
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economic importance of this magnitude. To put this in perspective, the average stock

response to an earnings announcement is in the range of ǌƻ⁹, so even if it were

possible to know earnings announcements with certainty, you would typically not be

able to recover the cost of transacting. ĉe costs were so high that only large

misvaluations could merit aĨention. A speculator would favor low frequency

information, with the hope that transaction costs might be amortized over a long

horizon. Furthermore, any dynamic trading strategy, such as a portfolio rebalancing

rule or a derivative replication, would be incredibly costly.

TĽŁĹ ňĹŇĽĹň ĵłĵŀŏňĽň

We can expect the constructed time series of transaction costs to be negatively

correlated with trading volume, a relationship that should hold true in nearly any

economic model. If the proposed efficiency explanation for capital market growth

plays a signiėcant role, transaction costs should also be negatively related to capital

market spending. In particular, this increase should correspond to active investment

management and not just an increase in the operational costs associated with higher

trading volume. Lastly, the prediction of more informed speculation also suggests

that employees with higher skill and compensation enter the sector in response to a

cheaper cost of transacting.

ĉe series measuring the cost of capital markets continues to be the value added

measure of capital market industries relative to private GDP with annual data from

ǉǑǊǏ to Ǌǈǉǈ. ĉe series measuring capital markets compensation relative to average

⁹See, for example, Francis, Schipper and Vincent (ǊǈǈǊ).
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US private compensation was also previously described and ploĨed in Figure ǋ.ǉ. I

measure equity turnover by collecting all available CRSP data on stock volume and

shares outstanding for common equity of US ėrms. Additional details behind the

data sources and data construction can be found in the online data appendix.

SŊŁŁĵŇŏ ňŉĵŉĽňŉĽķň ĵłĸ ňĽŁńŀĹ ŇĹĻŇĹňňĽŃł ĵłĵŀŏňĽň

ĉe summary statistics for these four time series are presented in Table ǋ.Ǌ. We can

see that the transaction cost, measured in basis points (hundredths of one percent),

averages Ǐǉ basis points over the full sample. ĉe series ranges signiėcantly from

more than ǉǍǈ bps near its peak to just a few basis points in recent years. ĉe fraction

of GDP devoted to capital markets averages about ǏǑ basis points over this time

series, averaging about ǋǈ basis points before ǉǑǏǍ and increasing to about Ǌǈǈ basis

points in recent years. ĉe compensation for capital market employees has an average

that is approximately twice the US private sector average over the full sample,

increasing to almost ǌ times average compensation in recent years. Equity turnover is

about Ǎǎƻ a year on average, suggesting an average holding period of approximately

two years. While turnover was very high in the late ǉǑǊǈ′s, it was consistently low for

most of the Ǌǈth century and then rises again in the recent past, with a current

horizon of just a few months.

ĉe correlations of the four series are displayed in the boĨom panel of Table ǋ.Ǌ.

As predicted, transaction costs have a strong negative relationship with the size of

capital market spending and the volume of trade. While supporting the idea of a

contemporaneous relationship, the slow-moving nature of all four time series might
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Table ǋ.Ǌ: Time series summary statistics and correlations

ĉis table shows summary statistics for annual data on: the average commission cost of transacting
stocks in the United States (tcost) constructed as described in section ǋ.Ǌ; the percentage of national
income consumed by capital markets related activity using a GDP value-added measure divided by
private GDP calculated using data from the Bureau of Economic Analysis (capmktƻ); the ratio of
the average salary for employees in capital markets related industries relative to the average salary
across all private-sector employees using data from the Bureau of Economic Analysis (comp ratio);
and the annual turnover in US equities measured by dividing annual volume by shares outstanding
as reported in CRSP. Annual observations are used over the period ǉǑǊǏ-Ǌǈǉǈ to calculate the mean,
standard deviation and various percentiles in the upper panel. Correlations are displayed in the lower
panel.

ǉǑǊǏ-Ǌǈǉǈ
mean std. ǉ ƻile Ǎǈ ƻile ǑǑ ƻile

tcost (bps) Ǐǉ.ǉ ǌǋ.ǎ ǋ.ǎ Ǐǐ.ǌ ǉǍǊ.ǈ
capmktƻ (bps) Ǐǐ.ǐ ǎǍ.Ǐ ǐ.Ǎ ǌǋ.ǉ ǊǊǉ.ǎ

comp ratio Ǌ.ǈǑ ǈ.ǏǏ ǉ.Ǌǈ ǉ.ǏǊ ǋ.ǑǊ
turnover ǍǍ.Ǐ Ǎǐ.Ǒ Ǐ.ǋ ǋǈ.ǌ ǊǏǏ.ǉ

Correlation
tcost capmkt comp turnover

tcost (bps) ǉ.ǈǈ -ǈ.ǐǉ -ǈ.ǐǋ -ǈ.Ǐǎ
capmkt (bps) -ǈ.ǐǉ ǉ.ǈǈ ǈ.Ǒǈ ǈ.ǏǊ

comp ratio -ǈ.ǐǋ ǈ.Ǒǈ ǉ.ǈǈ ǈ.ǐǏ
turnover -ǈ.Ǐǎ ǈ.ǏǊ ǈ.ǐǏ ǉ.ǈǈ

ǉǐǍ



0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

1930 1940 1950 1960 1970 1980 1990 2000 2010

Cap Mkts (%GDP) Predicted Cap Mkts

Figure ǋ.ǎ: Predicting the cost of capital markets using the cost of transacting
ĉe above ėgure plots in red the percentage of national income consumed by capital markets related
activity using a GDP value-added measure divided by private GDP calculated using data from the
Bureau of Economic Analysis. ĉe doĨed line shows the ėt of a time series regression using the com-
posite commission time series and a linear time trend.

cast doubt on the statistical signiėcance.

We can see this more precisely in the simple regressions shown in Table ǋ.ǋ, where

the GDP share of capital market (capmkt), the relative compensation ratio for capital

markets (comp) and the estimated US equity market turnover (turnover) are each

regressed on the transaction cost series (tcost). As an illustration of the strength of

this predictive relationship, Figure ǋ.ǎ plots the growth in the cost of capital markets

(shown previously in Figure ǋ.ǉ) against the predicted value from the regression.

While there is certainly some unexplained variation, the visual ėt is striking. Note

that each of these series is highly persistent, as is observed in their plots, so it comes

as no surprise that an augmented Dickey-Fuler test does not reject the possibility of a
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unit root. ĉis degree of persistence would discount the signiėcance of their

observed correlations.

RĹĻŇĹňňĽŃł Ńĺ ĺĽŇňŉ ĸĽĺĺĹŇĹłķĹň

To make a stronger case for this relationship and establish causality (in the Granger

sense that past transaction costs forecast growth in capital market activity), we can

consider how the changes in one series affects the other by taking ėrst differences.

With the high degree of persistence in the raw time series, they may be susceptible to

the type of spurious regression results that occur with unit roots. ĉe ėrst differences

could then reveal if the time series are truly related, and if so, if one tends to forecast

the other. Table ǋ.ǋ reports the results for regressions forecasting annual changes in

capital market spending, the capital market compensation ratio, and trading volume

as each is regressed on annual changes in transaction costs with up to ǌ lags.

ĉe predicted negative relationship remains. Interestingly, changes in transaction

costs lead changes in the other series by approximately Ǌ to ǋ years. For example, in

the ėrst regression of capital market spending on lagged changes in transaction costs

we see negative coefficients for every lag with the second lag being of the strongest

magnitude. We can interpret this coefficient as suggesting a one basis point decrease

in the cost of transactions predicts that capital markets will consume a ǉǋ basis point

higher share of private GDP two years in the future. ĉe same one basis point

decrease in the cost of transacting would predict the average compensation of capital

markets professionals in three years to rise by an additional ǈ.ǉǐ times the

compensation of the average US employee. Looking at the effect on trading volume,
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Table ǋ.ǋ: Time series regressions of ėrst differences

ĉis table shows the results of regressing changes in the income share of capital markets (Δcapmkt),
capital market compensation (Δcomp), and equity turnover by volume (Δturnover) on changes in
the commission cost of stock transactions (Δtcost) with up to four lags. Newey-West adjusted t-
statistics, with four lags, are reported in parentheses. Statistical signiėcance is noted with: *** p <
Ƥ.Ƥƥ, ** p < Ƥ.ƤƩ, * p < Ƥ.ƥ.

Δcapmkt Δcomp Δturnover
(ǉ) (Ǌ) (ǋ)

Δtcost -ǋ.ǌǎ ǌ.ǋǋ ǈ.ǎǊ
(ǌ.Ǒǋ) (ǐ.ǌǍ) (ǎ.ǋǌ)

L(Δtcost) -ǋ.ǈǉ ǋ.ǌǊ -ǌ.Ǌǌ
(ǎ.Ǌǈ) (Ǒ.ǏǏ) (Ǎ.ǍǍ)

LƦ(Δtcost) -ǉǊ.Ǒǐ* Ǌ.ǎǊ -Ǌ.ǑǍ
(Ǐ.ǊǑ) (ǉǉ.ǎǏ) (Ǎ.ǎǌ)

LƧ(Δtcost) -Ǌ.ǌǉ -ǉǐ.ǉǉ** -Ǒ.ǉǎ**
(ǌ.ǏǏ) (Ǐ.ǈǏ) (ǌ.ǉǋ)

Lƨ(Δtcost) -ǎ.ǈǎ -Ǐ.Ǌǈ -Ǐ.ǋǌ
(ǎ.Ǎǎ) (Ǐ.ǑǍ) (Ǎ.ǐǎ)

Constant ǉ.ǑǊ Ǌ.ǋǐ Ǌ.ǉǎ
(ǉ.ǉǏ) (ǉ.Ǎǎ) (ǉ.ǏǊ)

Observations ǐǈ ǐǈ ǐǈ
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this one basis point decrease in transaction costs would suggest trading volume to be

Ǒƻ higher in three years’ time.

ĉis is actually what we might predict if innovations to transaction costs are

unexpected. In the context of the proposed model, investors commit to their type ex

ante, so we would expect the delayed response to correspond to the time it takes to

acquire the talent and research necessary to launch new dynamic strategies.

ĉe statistical relationship seems compelling, although any claims about the

importance of the efficiency mechanism are certainly open to critiques of omiĨed

variable bias. A number of important regulatory and technological changes happened

during the ǉǑǏǈ’s. ĉe coincident growth in capital markets and decline in

transaction costs could be coincidence, although it would be difficult to explain the

strong predictive power of the transaction cost changes exhibited in Table ǋ.ǋ. To

strengthen the identiėcation of the true mechanism causing ėnancial growth, we can

look at the cross-section of ėrms and focus on speciėc predictions around the events

of May ǉǑǏǍ.

ǋ.ǋ MĵŇĿĹŉ AķŉĽŋĽŉŏ ĵłĸ AňňĹŉ PŇĽķĹň Ľł ŉļĹ CŇŃňň SĹķŉĽŃł

Moving from broad statements about ėnancial activity to the activity we observe for

individual ėrms provides a more reėnedmeasure of howmuch of the growth in active

investing can be explained by transaction efficiency. ĉe model presented in section

ǋ.ǉ had speciėc predictions regarding trading activity and the information content of

asset prices. As trading efficiency increases we expect to see more trading volume and

more informative asset prices. ĉere should also be a differentially large impact on
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the shorter investment horizons relative to longer horizons. Observing

cross-sectional variation in the prices and trading activity of individual ėrms over the

past few decades will generate micro-level support to add to the macro-level time

series evidence presented in the previous section.

For increased conėdence that we are isolating a key driving mechanism behind the

growth of active investing, we can use the events of May ǉǑǏǍ as Rule ǉǑ-b came in

force. First, we expect that the subsequent drop in transaction costs associated with

competitive brokerage commissions should lead to a subsequent increase in the

trading and information content of US equities. Following a key prediction of the

model, we should expect this to be stronger for shorter horizons. ĉen, to beĨer

identify the efficiency channel, we can use speciėc features of how the ėxed

commission schedule affected the cross-section of ėrms until May ǉǑǏǍ to measure

differential effects. ĉis additional level of control helps rule out competing

explanations that might have occurred on or around ǉǑǏǍ.

CŃłłĹķŉĽłĻ ŉļĹ ńĵłĹŀ ĸĵŉĵ ŌĽŉļ ŉļĹ ňŉŏŀĽŐĹĸ ŁŃĸĹŀ

In the stylized model of section ǋ.ǉ, the information content of long-horizon prices

can be measured through the regression coefficient from projecting the risky

investment outcome (X− E[X]) on to the change in the long-horizon price

(RL = PƤ − Pƥ), deėning

βL =
Cov[X,RL]

Var[RL]
=

βθ,ƥσ
Ʀ
θ

Var[RL]
.
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Intuitively, the information content of long-horizon prices is positively related to the

quantity of long-horizon active investors.¹⁰

ĉe information content of short-horizon prices can be similarly expressed by

(RS = Pƥ − PƦ)

βS =
Cov[X,RS]

Var[RS]
=

βθ,Ʀσ
Ʀ
θ

Var[RS]
.

which increases with the sum of the long-horizon and the short-horizon active

investors.

We can construct an analogous measure with empirical data on stock prices and

earnings. I deėne the ”long horizon” as the period stretching from two years prior to a

ėrm’s earnings announcement to Ǐ months prior to the earnings announcement, the

”short horizon” spanning Ǐ months prior to the earnings announcement to one

month prior to the earnings announcement, and the ”announcement period” spans

from one month before to two months aěer the announcement. ĉe risky investment

outcome will be deėned as the scaled change in a ėrm’s quarterly earnings (Δxt).

ĉis motivates a corresponding empirical regression of the ėrm’s uncertain payout

on the returns over each horizon,

Δxt = βƤ + βL × rL + βS × rS + βA × rA (ǋ.ǉǐ)

Each of the returns will be measured as the change in log-price, so if time t is

¹⁰Formally, this can be stated as ∂Cov[X,RL]
∂λL > Ƥ, and also, βL

∂λL > Ƥ given Var[RL] > βθ,ƥσ
Ʀ
θ .
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measured in months relative to the earnings announcement,

rL = ln(Pt−ƫ)− ln(Pt−Ʀƨ)

rS = ln(Pt−ƥ)− ln(Pt−Ƨ))

rA = ln(Pt+ƥ)− ln(Pt−ƥ)).

Similarly, the risky payout will be measured as a log return scaled by the price

observed prior to all the returns. If EPSt corresponds to the earnings-per-share

reported on the announcement date, the risky payout in the panel regressions

speciėed by (ǋ.ǉǐ) will be deėned as

Δxt = ln
(

ƥ +
EPSt − EPSt−Ƨ

Pt−Ʀƨ

)
.

DĹňķŇĽńŉĽŃł Ńĺ ńĵłĹŀ ĸĵŉĵ

For each year from ǉǑǎǈ to ǊǈǉǊ, I construct a universe of ėrms by selecting the ǉǈǈǈ

largest ėrms by market capitalization, as measured by their CRSP-reported market

cap on December ǋǉst of the prior year. For this set of ėrms, I collect historical

weekly total returns, nominal share prices, trading volume, and shares outstanding.

Using the linked CRSP-Compustat data, I collect a panel of their reported earnings

per share and the date of the earnings announcement.

ĉe announcements dates are not always available, particularly early in the sample,

so I create an additional supplemental series of earnings announcement data where I

ǉǑǊ



use historical announcement paĨerns to estimate the date when not available. ĉis

has the advantage of increasing the sample size, and the methodology for estimating

historical announcement dates appears to be very accurate when checked against

ėrms for which the actual dates are known. Since the announcement return period is

deėned to begin one month prior to the reported announcement, any imprecision

should have liĨle effect on the results of the subsequent panel regressions.

Table ǋ.ǌ reports the summary statistics for the variables considered in the panel

data regression. ĉe earnings news measure (Δxt) for these large ėrms over the ǌǍ

year sample averages approximately zero with a standard deviation of approximately

Ǌƻ. ĉe market price for the ėrms in the sample appears surprisingly high, at about

Ʈǉǈǌ, but this is actually an artifact of Berkshire-Hathaway’s inordinately large

nominal share price. ĉe median share price is ƮǋǊ with a standard deviation of ƮǊǌ.

Dividing the trading volume recorded in CRSP for each quarter by the shares

outstanding, I obtain ėrm-level annualized turnover rates for each ėrm-quarter in the

panel. Over the full sample, annualized turnover averages Ǌ.ǋǎ, with a wide degree of

variation across ėrms. ĉe return variables, rL, rS and rA, each correspond to a

different horizon length, so the magnitudes of their average returns and standard

deviations are not directly comparable.

ĉe lower panel of Table ǋ.ǌ reports the same summary statistics for the

sub-sample corresponding to the ėve years before May of ǉǑǏǍ, the two years of

observations that overlap with May ǉǑǏǍ, and ėve years aěerward. ĉis subsample,

and ones like it, will be used in the panel regressions where the data window tightens

around the events around the implementation of Rule ǉǑ-b.
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Table ǋ.ǌ: Summary Statistics for Panel Data Analysis

ĉe summary statistics below are for the quarterly panel data collected for the ǉ,ǈǈǈ ėrms in the an-
nual universe being analyzed. ĉe universe is reset each year, taking the ǉ,ǈǈǈ largest ėrms bymarket
cap. ĉe ėrst panel cover the full sample period, while the lower panel covers the Ǎ-year window be-
fore ėxed exchange regime was ended onMay ǉ, ǉǑǏǍ up until Ǎ-years aěerMay ǉ, ǉǑǏǏãthe date at
which none of the collected series overlap with the ėxed-rate commission regime.

mean std. ǉ ƻile Ǎǈ ƻile ǑǑ ƻile

ǉǑǎǎ - Ǌǈǉǈ

Δxt -ǈ.ǈǉ Ǌ.ǈǐ -Ǒ.ǐǐ ǈ.ǈǍ ǐ.ǐǋ
price ǉǈǌ.ǉǈ Ǌǋ.Ǎǎ ǎ.Ǌǌ ǋǊ.Ǎǈ ǉǋǊ.ǎǈ

turnover Ǌ.ǋǎ ǋ.Ǌǈ ǈ.ǉǈ ǉ.ǋǑ ǉǌ.Ǎǐ
rL ǈ.ǉǊǌ ǈ.ǌǌǎ -ǈ.ǐǋǍ ǈ.ǈǐǊ ǉ.ǍǊǎ
rS ǈ.ǈǉǋ ǈ.Ǌǉǎ -ǈ.ǍǏǏ ǈ.ǈǉǉ ǈ.ǍǑǐ
rA ǈ.ǈǈǎ ǈ.ǉǍǎ -ǈ.ǌǉǉ ǈ.ǈǈǌ ǈ.ǌǋǌ

(N = ǉǋǌ,ǉǊǐ)

ǉǑǏǈ-ǉǑǐǊ

Δxt ǈ.ǈǊ ǉ.ǑǏ -Ǐ.ǎǈ ǈ.ǈǏ ǎ.Ǒǈ
price ǋǊ.ǉǏ ǊǊ.Ǌǎ ǎ.ǏǍ ǊǏ.ǋǐ ǉǉǉ.ǐǈ

turnover ǈ.ǐǉ ǈ.ǐǏ ǈ.ǈǍ ǈ.Ǎǐ ǌ.ǉǑ
rL ǈ.ǉǈǊ ǈ.ǋǐǐ -ǈ.ǏǐǍ ǈ.ǈǏǍ ǉ.ǊǌǍ
rS ǈ.ǈǉǏ ǈ.ǉǑǋ -ǈ.ǌǐǍ ǈ.ǈǉǊ ǈ.Ǎǌǎ
rA ǈ.ǈǈǏ ǈ.ǉǋǑ -ǈ.ǋǋǎ ǈ.ǈǈǌ ǈ.ǋǑǌ

(N = ǋǎ,ǉǏǌ)
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RŃŀŀĽłĻ ńĵłĹŀ ŇĹĻŇĹňňĽŃł

To generate a graphical measure of the changing information content of prices over

time, we can perform a rolling panel regression. I hold the window length constant at

two years and then estimate the panel regression corresponding to equation (ǋ.ǉǐ)

with ėrm ėxed effects. Figure ǋ.Ǐ displays the rolling coefficient estimates as a

scaĨerplot in the upper axis, where each estimated long horizon coefficient, βL,

corresponds to a white circle and each estimated short-horizon coefficient, βS,

correspond to a shaded circle. ĉe lower axis reports the estimated root mean square

error (RMSE) and the R-squared coefficient of each regression.

ĉe rising paĨern in the information content of asset prices is clearly visible.

While the magnitude of these betas are roughly similar in the ėrst ǉǈ years of the

sample, the predictive power of the short-horizon prices increases much more rapidly

than the long-horizon prices. In a more careful subsequent regression estimating the

trend in information content over time, I show the increase in the long horizon

coefficient, while positive, to be statistically difficult to distinguish from a hypothesis

of no change.

ĉis is consistent with the results of Bai et al. (ǊǈǉǊ). ĉey look at the information

content of prices at one to three years prior to earnings releases. ĉis is what my

results would consider long-horizon information, and I ėnd no compelling evidence

that this information has improved over time.

On the other hand, asset prices less than one year prior to earnings

announcements show a consistent increase in information content. Previewing my

focus on the events of May ǉǑǏǍ, this ėgure already gives a strong visual indication

ǉǑǍ



that the strongest increases in information content correspond to this change as

active investing increased dramatically.

While this rolling analysis is instructive, the underlying investment seĨing may not

be fully comparable as the sample rolls across time. ĉe information gathering

problem may be different from one decade to the next, and there may be signiėcant

changes in the price-to-earnings relationship that would affect the magnitude of the

coefficients.

With that in mind, it is interesting to look at the boĨom axis of Figure ǋ.Ǐ and note

how both the explained variation (RƦ) and the unexplained variation (RMSE) are

increasing in the late ǉǑǏǈ’s and, to a lesser extent, over the full historical sample. ĉis

suggests that the raw difficulty of forecasting earnings increased, but so did the

fraction of variation that prices could explain.

PĵłĹŀ ŇĹĻŇĹňňĽŃł ŌĽŉļ ŉŇĹłĸ

To directly estimate the paĨern of change in the information contained in asset prices

over the full sample, I run a full panel regression, interacting the return variables with

the time trend. ĉe variable, trend is measured in years, and the coefficient on

rL × trend can be interpreted as the annual change in the regression coefficient

measuring long-horizon information content. Corresponding interaction terms are

used for the short-horizon and announcement return.

Table ǋ.Ǎ reports the results of the base panel regressions suggested in equation

(ǋ.ǉǐ) as well as a version with these time trend interactions. ĉe reported standard

errors are estimated using industry clustering, where I use the two digit SIC code as

ǉǑǎ



1970 1980 1990 2000 2010
−0.5

0

0.5

1

1.5

2

 

 

rolling β
SH

rolling β
LH

1970 1980 1990 2000 2010
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 

 

rolling RMSE

rolling R2

Figure ǋ.Ǐ: Rolling Regression Coefficient and Moving Average, ǉǑǎǍ-Ǌǈǉǈ
ĉe two axes plot the results of the rolling regressions described in section ǋ.ǋ. ĉe top axis plots the
estimated regression coefficients and the lower axis plots the square root of the mean squared error
(RMSE) and the RƦ values.

ǉǑǏ



the deėnition for industry throughout.

ĉe regression reported in the ėrst column of Table ǋ.Ǎ reports the results of the

base regression using ėrm ėxed effects, considering variation within ėrms. ĉe

second regression speciėcation uses industry and quarter ėxed effects to isolate the

impact of variation among similar ėrms in the same time period. ĉe results of each

speciėcation are very similar. ĉe strong statistical signiėcance of these regression

coefficients should not be too surprising; changes in asset prices correspond to

present and future changes in earnings. On the other hand, the coefficient on the

long-horizon return is not particularly strong in the ėrst speciėcation with ėrm ėxed

effects, and disappears entirely in the second speciėcation.

ĉe third speciėcation is the primary one of interest. It shows the gradual change

in these coefficients over time. ĉe interaction term between the short horizon

return and the time trend is statistically signiėcant at the ǉƻ level. In contrast the

long horizon return shows liĨle evidence of increasing informativeness over time. Of

note, the three-month return around the earnings announcement actually shows a

decreasing relationship in predicting the reported earnings. ĉe fact that we observe

opposite effects on the short-horizon and announcement returns may indicate a

substitution of information being pulled into earlier asset prices.

TļĹ ńŃňŉ-ǉǑǏǍ ĹĺĺĹķŉ

Over such a long sample, any number of underlying parameters could be changing.

ĉe types of ėrms today are certainly very different than those of the ǉǑǎǈs. ĉere

could very well be differences in the difficulty of predicting their future proėtability,
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Table ǋ.Ǎ: Base panel regression with time trend

ĉe regression estimates below are the result of panel regressions of earnings news (Δx deėned in
section ǋ.ǋ of the paper) on past log returns, log returns interacted with a time trend. ĉe regres-
sion also includes a constant term and constant trend variable, but the coefficients are not reported.
Industry-clustered, heteroskedasticity robust standard errors are in parentheses below each estimated
coefficient. Statistical signiėcance is noted with: *** p < Ƥ.Ƥƥ, ** p < Ƥ.ƤƩ, * p < Ƥ.ƥ.

(ǉ) (Ǌ) (ǋ)

rL ǈ.ǈǋǋ -ǈ.ǈǈǉ ǈ.ǈǊǑ
(ǈ.ǈǊǐ) (ǈ.ǈǊǎ) (ǈ.ǈǍǋ)

rL × trend ǈ.ǈǈǈǈ
(ǈ.ǈǈǊǈ)

rS ǈ.ǎǎǏ*** ǈ.ǏǉǊ*** ǈ.ǋǉǍ***
(ǈ.ǈǏǐ) (ǈ.ǈǏǋ) (ǈ.ǉǈǈ)

rS × trend ǈ.ǈǉǉǈ***
(ǈ.ǈǈǊǎ)

rA ǈ.ǏǊǈ*** ǈ.ǐǉǎ*** ǉ.ǋǐǈ***
(ǈ.ǈǐǈ) (ǈ.ǈǏǋ) (ǈ.ǉǌǍ)

rA × trend -ǈ.ǈǊǈǐ***
(ǈ.ǈǈǍǎ)

Fixed Effects
ƺ ėrms ǋ,ǈǎǉ ǋ,ǈǎǉ
ƺ industries ǎǎ
ƺ quarters ǉǏǍ

Observations ǉǋǌ,ǉǊǐ ǉǋǌ,ǉǊǐ ǉǋǌ,ǉǊǐ
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there can be differences across industries, and there could be differences in their

accounting conventions. To be sure that we are truly measuring changes in asset price

information and not these other confounding features, we can focus on the change in

transaction efficiency associated with the implementation of Rule ǉǑ-b in May of

ǉǑǏǍ and tighten the estimation window around this period.

I estimate panel regressions using the same framework as before, but I now interact

the returns with a dummy variable, postƫƩ, that equals one for observations where all

corresponding variables are observed aěer the advent of competitive commissions

(i.e. aěer May of ǉǑǏǏ). Interacting with this dummy variables tests for a

discontinuity in the parameter estimates when crossing this boundary. ĉis

regression is reported in Table ǋ.ǎ.

ĉere are four regression speciėcations in the columns of the table, with each one

representing a smaller window around ǉǑǏǍ. ĉe ėrst speciėcation estimates the

panel regression over the full sample, comparing pre-ǉǑǏǍ to post-ǉǑǏǍ data using the

observations from ǉǑǎǎ to Ǌǈǉǈ. Both long horizon and short horizon prices show

dramatic increases in their information content, with their coefficients increasing by a

factor of four. However, only the short horizon variables show statistical signiėcance.

ĉe three successive regression speciėcations with tighter and tighter sample

windows increase the standard errors in the coefficient estimates but decrease the

concern that other factors unrelated to efficiency and information are driving this

result. Looking at the coefficient estimates, the post-ǉǑǏǍ effect on short horizon

price information remains roughly equal for each time window considered. ĉe effect

on long horizon information is always weaker than short horizon and difficult to
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Table ǋ.ǎ: Testing the May Day effect in the time series

ĉe regression estimates below are the result of panel regressions of earnings news (Δx deėned in
section ǋ.ǋ of the paper) on past log returns and log returns interacted with a post-ǉǑǏǍ dummy vari-
able. Coefficients for constant term and constant post-ǉǑǏǍ dummy are estimated but not reported.
Industry-clustered, heteroskedasticity-robust standard errors are reported in parentheses. Statistical
signiėcance is noted with: *** p < Ƥ.Ƥƥ, ** p < Ƥ.ƤƩ, * p < Ƥ.ƥ.

full-sample ǉǈ yr window Ǎ yr window ǋ yr window
(ǉ) (Ǌ) (ǋ) (ǌ)

rL ǈ.ǈǉǈ ǈ.ǈǉǈ ǈ.ǈǉǎ ǈ.ǈǎǑ
(ǈ.ǈǋǍ) (ǈ.ǈǋǍ) (ǈ.ǈǍǉ) (ǈ.ǈǏǌ)

rL × postƫƩ ǈ.ǈǋǉ ǈ.ǈǏǐ -ǈ.ǈǈǈ -ǈ.ǉǋǏ
(ǈ.ǈǌǋ) (ǈ.ǈǍǍ) (ǈ.ǈǎǊ) (ǈ.ǉǈǍ)

rS ǈ.Ǌǋǌ*** ǈ.ǊǋǍ*** ǈ.ǊǍǍ*** ǈ.ǋǏǍ**
(ǈ.ǈǎǎ) (ǈ.ǈǎǎ) (ǈ.ǈǐǎ) (ǈ.ǉǍǋ)

rS × postƫƩ ǈ.Ǎǉǋ*** ǈ.Ǎǎǈ*** ǈ.ǌǎǑ** ǈ.ǌǈǏ
(ǈ.ǉǉǑ) (ǈ.ǉǐǈ) (ǈ.Ǌǈǐ) (ǈ.ǋǉǑ)

rA ǈ.ǐǉǉ*** ǈ.ǐǉǊ*** ǈ.Ǒǋǋ*** ǈ.ǐǏǈ***
(ǈ.ǉǊǐ) (ǈ.ǉǊǑ) (ǈ.ǉǏǐ) (ǈ.ǊǍǉ)

rA × postƫƩ -ǈ.ǉǊǌ ǈ.Ǎǉǌ*** ǈ.Ǐǈǌ** ǉ.ǈǏǏ**
(ǈ.ǉǏǋ) (ǈ.ǉǑǉ) (ǈ.ǊǐǏ) (ǈ.ǌǑǎ)

Fixed Effects
ƺ ėrms ǋ,ǈǍǐ ǉ,ǎǍǋ ǉ,ǊǈǍ ǉ,ǈǍǑ

Observations ǉǊǐ,ǉǉǌ ǍǍ,ǉǐǌ ǋǈ,ǉǎǈ ǉǐ,ǈǏǈ
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distinguish from zero.

IĸĹłŉĽĺĽķĵŉĽŃł ŊňĽłĻ ķŇŃňň-ňĹķŉĽŃłĵŀ ķŃňŉ ĸĽĺĺĹŇĹłŉĽĵŀň

So far the panel analysis has only used the dimension of time to associate active

trading and information with transaction efficiency. ĉe strongest evidence for this

channel will come from the differential impact across stocks.

ĉe NYSE ėxed commission schedule was always a function of the nominal share

price. Assuming the nominal share price is a historical artifact, this creates variation

across stocks that is plausibly unrelated to any economic characteristics. ĉe

commission schedule was set as a decreasing function of nominal share price, so

stocks with lower prices were much more expensive to trade than those with higher

share prices.¹¹

ĉere are various ways to exploit this variation. ĉe most simplistic is to use a

difference in differences approach. I form three categories: lowP for stocks with a

nominal share price less than ƮǉǍ,midP for stocks whose nominal share price is

between ƮǉǍ and Ʈǋǈ, and highP for stocks whose nominal share price is above Ʈǋǈ.

We can then look at the differential impact across categories before and aěer ǉǑǏǍ.

Table ǋ.Ǐ reports the results of this approach, where the coefficients of interest are

the magnitudes of the product: rL × lowP× postƫƩ, rL × midP× postƫƩ,

rL× highP× postƫƩ, rS× highP× postƫƩ, and so forth. ĉe prediction we are testing is

whether these coefficients are positive (indicating more information post-ǉǑǏǍ) and

¹¹A surprising fact about stock prices is that the distribution of their nominal price per share has
been remarkably consistent over time despite inĚation and secular changes in investor and investment
characteristics. ĉis has been discussed byWeld, Michaely,ĉaler and Benartzi (ǊǈǈǑ).
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monotonically decreasing in nominal price (indicating a differential impact across

ėrms according to the relative change in transaction efficiency). As in the previous

table, each regression speciėcation corresponds to tighter windows around ǉǑǏǍ.

ĉe results for short-horizon prices are just as predicted. All prices appear more

informative, but the impact on securities with the largest change in transaction costs

(lowP) is an order of magnitude higher than stocks where the change was more

moderate. As hoped, the relationship is monotonic across the three categories and

roughly consistent as the time window shrinks.

In the ėrst regression speciėcation, which uses the longest window, there is some

evidence of an increase in information content of long-horizon prices, and the

cross-sectional relationship with respect to nominal share price is monotonically

decreasing. However, the statistical signiėcance is low, and result disappears entirely

in the speciėcations with shorter sampling windows.

ǋ.ǌ IŁńŀĽķĵŉĽŃłň ĵłĸCŃłķŀŊňĽŃłň

ĉe empirical analysis shows great success in explaining the modern growth in the

cost of capital markets and in looking at its effect on asset prices. However, looking at

the information in asset prices only opens the door to broader questions about the

social beneėts of these changes.

In the simple model presented here, the beneėts of active trading largely come

from two sources: the noise shocks and the efficient allocation of capital. However,

the improved capital allocation is a broadly shared positive externality, not something
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Table ǋ.Ǐ: Testing May Day effect in the cross-section

Coefficients for constant term and unique permutations of constant dummies are not reported.
Industry-clustered, heteroskedasticity-robust standard errors are reported in parentheses. Statistical
signiėcance is noted with: *** p < Ƥ.Ƥƥ, ** p < Ƥ.ƤƩ, * p < Ƥ.ƥ.

ǉǈ yr window Ǎ yr window ǋ yr window
(ǉ) (Ǌ) (ǋ)

Long-horizon return

RLH . . . -ǈ.ǈǉǌ ǈ.ǈǈǌ ǈ.ǈǉǍ
(ǈ.ǈǊǈ) (ǈ.ǈǊǑ) (ǈ.ǈǌǊ)

×lowP ǈ.ǈǊǍ -ǈ.ǈǈǑ -ǈ.ǈǊǋ
(ǈ.ǉǊǈ) (ǈ.ǉǋǏ) (ǈ.ǉǐǈ)

×midP -ǈ.ǈǌǈ -ǈ.ǈǐǏ -ǈ.ǉǎǌ
(ǈ.ǈǋǐ) (ǈ.ǈǍǎ) (ǈ.ǉǉǉ)

×lowP× postƫƩ ǈ.ǉǋǏ -ǈ.ǈǑǉ -ǈ.ǉǑǋ
(ǈ.ǉǑǉ) (ǈ.Ǌǈǉ) (ǈ.Ǌǎǉ)

×midP× postƫƩ ǈ.ǉǊǍ*** ǈ.ǈǎǋǑ ǈ.ǉǉǋ
(ǈ.ǈǌǏ) (ǈ.ǈǎǊ) (ǈ.ǉǋǍ)

×highP× postƫƩ -ǈ.ǈǉǋ -ǈ.ǈǌǈ -ǈ.ǈǎǍǑ
(ǈ.ǉǑǉ) (ǈ.ǊǐǏ) (ǈ.ǌǑǎ)

Short-horizon return

RSH . . . ǈ.ǉǐǎ*** ǈ.ǊǊǍ*** ǈ.ǋǉǋ***
(ǈ.ǈǌǈ) (ǈ.ǈǍǐ) (ǈ.ǈǐǑ)

×lowP -ǈ.ǈǊǉǏ -ǈ.ǈǊǏ -ǈ.ǈǑǌ
(ǈ.ǊǊǍ) (ǈ.Ǌǌǌ) (ǈ.ǋǊǍ)

×midP ǈ.ǉǋǉ -ǈ.ǈǋǏǍ -ǈ.ǈǊǍ
(ǈ.ǉǌǎ) (ǈ.ǉǎǐ) (ǈ.ǊǈǑ)

×lowP× postƫƩ Ǌ.Ǌǈǉ*** Ǌ.ǈǍǎ*** ǉ.ǑǋǑ***
(ǈ.ǌǉǎ) (ǈ.ǍǊǈ) (ǈ.ǎǏǍ)

×midP× postƫƩ ǈ.ǊǑǊ ǈ.ǋǎǐ ǈ.ǈǎǏ
(ǈ.Ǌǌǉ) (ǈ.Ǌǌǐ) (ǈ.ǊǑǊ)

×highP× postƫƩ ǈ.ǉǎǌ* ǈ.ǉǌǌ* ǈ.ǉǏǈ
(ǈ.ǈǐǊ) (ǈ.ǈǐǌ) (ǈ.ǉǊǉ)

Fixed effects
ƺ industries ǎǌ ǎǉ ǎǉ

Observations ǎǉ,ǉǑǐ ǋǎ,ǉǏǌ Ǌǌ,ǈǐǌ
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the active investors accrue directly. ĉe immediate trading proėts come at the

expense of a counterparty. To what extent will these noise traders be happy in

funding trading proėts?

SŃķĽĵŀ ŌĹŀĺĵŇĹ

ĉe bigger normative question everyone wants to answer is: are we spending too

much on ėnance? Taking the empirical results back to the modeling framework, we

easily see two important welfare effects. First, investors ėght over their slice of the

pie, leading to what Stein (ǉǑǐǏ) terms ”welfare-reducing speculation.” ĉese

expenses are wasteful and would suggest too much spending in ėnancial markets.

Second, more informed asset prices increase the size of the pie, but the informed

investors capture only a small portion of this beneėt. All of us who use public market

prices are free-riders, and this positive externality suggests we aren’t spending nearly

enough on informed speculation.

ĉe welfare-reducing speculation can be clearly seen in the simple model where

the supply of the risky investment is perfectly inelastic, as it would be for very short

horizons. Using the same model parameters that illustrated the equilibrium in

section ǋ.ǉ, I add a doĨed line to the leě panel of Figure ǋ.ǐ to show the social welfare

(calculated as average expected utility) in the same plot as the expected utility of the

active and passive investors. Since the resources spent on information have no effect

on total output, social welfare is maximized with practically no informed trading, a

solution clearly less than the competitive equilibrium.

It is this type of intuition that drives the suggestions of Philippon (Ǌǈǉǈ), who
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suggests we may have too few engineers relative to ėnanciers, or Bolton et al. (Ǌǈǉǉ)

who similarly contrasts an overabundance of ėnanciers relative to entrepreneurs.

In contrast, the free-riding effect is illustrated in the case of an elastic investment

supply, as we would expect for long horizons. ĉe leě panel of Figure ǋ.Ǒ shows the

equilibrium for the same parameters used in the previously discussed example, except

the supply of investment will now respond to more accurate asset prices. As you can

see, the socially optimal level of informed investment would allocate nearly half of

investors to buy information, but the competitive equilibrium allocates far fewer

since the uninformed investors are free riding on the social beneėts of more informed

asset prices.

ĉis analysis builds on the fundamental insight of Hirshleifer (ǉǑǏǉ), who

contrasts the private and social value of foreknowledge. In the model presented here,

all information is foreknowledge, learning about information that will inevitably be

public knowledge later.

CŃłķŀŊňĽŃłň

In the aěermath of the recent ėnancial crisis, scrutiny of ėnancial institutions has

increased. ĉe growth in the resources poured into active investment and the surging

compensation levels of ėnancial professionals are used as prima facie evidence that

ėnancial markets have become inefficient, with many doubting that more active

management leads to more informative asset prices.

In a stylized model, I show that investment research and trading are complements,

which causes the quantity of both to increase. Financial markets become more

Ǌǈǎ
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Figure ǋ.ǐ: Welfare in the case of inelastic investment supply (short-horizon)
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Figure ǋ.Ǒ: Welfare in the case of elastic investment supply (long-horizon)
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informationally and operationally efficient. Empirically, this explanation is very

successful in explaining the growth in resources spent in capital markets.

Furthermore, it introduces new evidence on the importance of time horizon. Trading

horizons have shortened, and there is a corresponding increase in the short-horizon

information contained in asset prices.

Since shorter trading horizons may not be socially optimal, this result could be

interpreted as justiėcation for Summers and Summers (ǉǑǐǑ) claim that a non-zero

tax on trading might be welfare enhancing, although this requires more explicit

measurement of the beneėts that arise from informative markets and the recognition

that the actual implementation of a ėnancial transaction tax may be impractical

(Campbell and Froot, ǉǑǑǌ).

ĉe types of dynamic strategies that become feasible with lower transaction costs

not only make short-horizon information more valuable but they can also come

closer to dynamically completing markets. It is certainly no accident that equity

options became widely available in the late ǉǑǏǈs and early ǉǑǐǈs, precisely when US

transaction costs experienced their largest drop. ĉe newfound exposures made

possible by dynamical hedging may have aĨracted investors to trade on new risks

(Simsek, ǊǈǉǊ).

ĉe cost of capital markets has grown enormously over the past few decades. A

portion of this can be aĨributed to the events of May ǉǑǏǍ that enabled dynamic

trading strategies and spurred an increase in active investing. ĉis opened the door to

modern capital markets, with information and tradesmoving at ever shorter horizons.
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