
Modeling Cardiovascular Hemodynamics Using the
Lattice Boltzmann Method on Massively Parallel
Supercomputers

Citation
Randles, Amanda Elizabeth. 2013. Modeling Cardiovascular Hemodynamics Using the Lattice
Boltzmann Method on Massively Parallel Supercomputers. Doctoral dissertation, Harvard
University.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11095963

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:11095963
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Modeling%20Cardiovascular%20Hemodynamics%20Using%20the%20Lattice%20Boltzmann%20Method%20on%20Massively%20Parallel%20Supercomputers&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=bafa00b691d8740997a3b9005564519d&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Modeling Cardiovascular Hemodynamics Using
the Lattice Boltzmann Method on Massively

Parallel Supercomputers

A dissertation presented

by

Amanda Elizabeth Randles

to

School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Applied Physics

Harvard University

Cambridge, Massachusetts

May 2013

c�2013 - Amanda Elizabeth Randles

All rights reserved.

Thesis advisor Author

Efthimios Kaxiras Amanda Elizabeth Randles

Modeling Cardiovascular Hemodynamics Using the Lattice

Boltzmann Method on Massively Parallel Supercomputers

Abstract

Accurate and reliable modeling of cardiovascular hemodynamics has the potential to

improve understanding of the localization and progression of heart diseases, which are

currently the most common cause of death in Western countries. However, building

a detailed, realistic model of human blood flow is a formidable mathematical and

computational challenge. The simulation must combine the motion of the fluid, the

intricate geometry of the blood vessels, continual changes in flow and pressure driven

by the heartbeat, and the behavior of suspended bodies such as red blood cells. Such

simulations can provide insight into factors like endothelial shear stress that act as

triggers for the complex biomechanical events that can lead to atherosclerotic patholo-

gies. Currently, it is not possible to measure endothelial shear stress in vivo, making

these simulations a crucial component to understanding and potentially predicting

the progression of cardiovascular disease. In this thesis, an approach for efficiently

modeling the fluid movement coupled to the cell dynamics in real-patient geometries

while accounting for the additional force from the expansion and contraction of the

iii

Abstract

heart will be presented and examined.

First, a novel method to couple a mesoscopic lattice Boltzmann fluid model to the

microscopic molecular dynamics model of cell movement is elucidated. A treatment of

red blood cells as extended structures, a method to handle highly irregular geometries

through topology driven graph partitioning, and an efficient molecular dynamics load

balancing scheme are introduced. These result in a large-scale simulation of the

cardiovascular system, with a realistic description of the complex human arterial

geometry, from centimeters down to the spatial resolution of red-blood cells. The

computational methods developed to enable scaling of the application to 294,912

processors are discussed, thus empowering the simulation of a full heartbeat.

Second, further extensions to enable the modeling of fluids in vessels with smaller

diameters and a method for introducing the deformational forces exerted on the arte-

rial flows from the movement of the heart by borrowing concepts from cosmodynamics

are presented. These additional forces have a great impact on the endothelial shear

stress. Third, the fluid model is extended to not only recover Navier-Stokes hydro-

dynamics, but also a wider range of Knudsen numbers, which is especially important

in micro- and nano-scale flows. The tradeoffs of many optimizations methods such

as the use of deep halo level ghost cells that, alongside hybrid programming models,

reduce the impact of such higher-order models and enable efficient modeling of ex-

treme regimes of computational fluid dynamics are discussed. Fourth, the extension

of these models to other research questions like clogging in microfluidic devices and

iv

Abstract

determining the severity of co-arctation of the aorta is presented. Through this work,

a validation of these methods by taking real patient data and the measured pressure

value before the narrowing of the aorta and predicting the pressure drop across the

co-arctation is shown. Comparison with the measured pressure drop in vivo highlights

the accuracy and potential impact of such patient specific simulations.

Finally, a method to enable the simulation of longer trajectories in time by dis-

cretizing both spatially and temporally is presented. In this method, a serial coarse

iterator is used to initialize data at discrete time steps for a fine model that runs

in parallel. This coarse solver is based on a larger time step and typically a coarser

discretization in space. Iterative refinement enables the compute-intensive fine iter-

ator to be modeled with temporal parallelization. The algorithm consists of a series

of prediction-corrector iterations completing when the results have converged within

a certain tolerance. Combined, these developments allow large fluid models to be

simulated for longer time durations than previously possible.

v

Contents

Title Page . i
Abstract . iii
Table of Contents . vi
Citations to Previously Published Work ix
Acknowledgments . x
Dedication . xii
List of Figures . xiii
List of Tables . xviii

1 Introduction 1
1.1 Overview . 1
1.2 Contributions . 5
1.3 Structure of Thesis . 7

2 Methodology 10
2.1 Lattice Boltzmann Method . 11
2.2 Boundary Treatments . 15
2.3 Hemodynamic Specific Parameters 18

2.3.1 Viscosity . 18
2.3.2 Density . 20
2.3.3 Reynolds Number . 20
2.3.4 Mach Number . 21

3 Parallel Computing 22
3.1 Overview . 22
3.2 Architecture . 27
3.3 Related Work . 29

4 Parallel Implementation and Scaling 31
4.1 Motivation . 31
4.2 Multiscale hemodynamics . 33

vi

Contents

4.3 Geometry acquisition and mesh-generation 37
4.4 Initial and Boundary conditions . 38
4.5 Code Features . 38
4.6 Results . 51

4.6.1 Strong Scaling . 52
4.6.2 Hardware Performance Monitoring 56

4.7 Discussion . 57

5 Fluid Models Beyond Navier-Stokes 61
5.1 Motivation . 61
5.2 Adaptations to the Lattice Boltzmann Method 66
5.3 Systems . 69

5.3.1 Platform Overview . 69
5.3.2 MFlup/s: A Performance Metric for the LBM 70
5.3.3 Impact of Bandwidth Limitations 72

5.4 Implementation . 75
5.5 Optimizations . 79

5.5.1 Deep Halo Ghost Cells . 79
5.5.2 Data Handling (DH) . 81
5.5.3 Compiler Optimizations . 82
5.5.4 Loop Restructuring and Branching Reduction (LoBr) 83
5.5.5 Nonblocking Communication 85
5.5.6 Separate collide function for collide (GC-C) 85
5.5.7 SIMD Vectorization . 87

5.6 Results . 87
5.6.1 Deep Halo Ghost Cells . 93
5.6.2 Hybrid Implementation . 97

5.7 Discussion . 98

6 Comparison of Simulation to in vivo Measurements 102
6.1 Motivation . 103
6.2 Geometry Data Acquisition and Segmentation 105
6.3 Initializing the Regular Simulation Grid 105
6.4 HARVEY . 108

6.4.1 Boundary Conditions . 109
6.4.2 Memory Requirements . 113

6.5 Results . 115
6.6 Discussion . 119

7 Parallel in Time Approximation of the Lattice Boltzmann Method 120
7.1 Motivation . 120
7.2 Related Work . 125

vii

Contents

7.3 Spatial Scaling Limit of the Lattice Boltzmann Method 126
7.4 Parameters . 127
7.5 Parareal algorithm . 130
7.6 Adaptation for the Lattice Boltzmann Method 134
7.7 Coupled Spatial and Temporal Decomposition 139
7.8 Theoretical Parallel Speedup . 145
7.9 Numerical Results . 147

7.9.1 Model Problem: Laminar Flow in a Cylinder 148
7.9.2 Flow through Patient Specific Aorta Geometry 161

7.10 Discussion . 168

8 Accounting for Deformational Forces 172
8.1 Motivation . 172
8.2 Definition of External Force . 177
8.3 Inclusion of External Force Term in the LBM 180
8.4 Numerical Results . 182

8.4.1 Model Problem: Flow in a Curved Tube 182
8.4.2 Flow through Patient Specific Coronary Arterial Tree Geometry 183

8.5 Discussion . 189

9 Proposed Future Work 192

10 Conclusions 196

Bibliography 198

viii

Citations to Previously Published Work

Large portions of Chapter 4, appeared in the following paper:

“Multiscale simulation of cardiovascular flows on the IBM Blue Gene/P:
full heart-circulation system at red-blood cell resolution”, A. Peters, S.
Melchionna, E. Kaxiras, J. Latt, J. Sircar, M. Bernaschi, M. Bisson, and
S. Succi, Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage, and Analysis (SC),
New Orleans, LA.

Large portions of Chapter 5, will appear in the following paper:

“Performance analysis of the Lattice Boltzmann model beyond Navier-
Stokes”, A. Peters Randles, V. Kale, J.R. Hammond, W. Gropp, and E.
Kaxiras, Proceedings of the 27th IEEE International Parallel and Dis-
tributed Processing Symposium, IPDPS 13, 2013.

Large portions of Chapter 7 are from the following two papers:

“Parallel in Time Approximation of the Lattice Boltzmann Method for
Laminar Flows”, A. Peters Randles and E. Kaxiras, submitted to Journal
of Computational Physics.

and

“Reduction in Time to Solution for Modeling Patient Specic Cardiovascu-
lar Hemodynamics through Space-Time Parallelization”, A. Peters Ran-
dles and E. Kaxiras, submitted to Proceedings of the 2013 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC), Denver, CO.

Large portions of Chapter 6, appear in the following paper:

“A Lattice Boltzmann Simulation of Hemodynamics in a Patient-Specific
Aortic Coarctation Model”, A. Peters Randles, M. Baecher, H. Pfister,
and E. Kaxiras, STACOM 2012 Workshop, Held in Conjunction with
MICCAI 2012, LNCS vol. 7746, Springer, 2012.

ix

Acknowledgments

Completing this doctoral work has been a great experience. I have received sup-

port and encouragement from a great number of individuals and benefited from col-

laborations with a number of outstanding scientists. I would like to thank Prof.

Efthimios Kaxiras for the mentorship, guidance, and support that he has provided

over my years in graduate school. He has helped me leverage my interest in large

scale computing and apply it to real world problems. Through work with Prof.

Kaxiras, I was fortunate to collaborate with the wider Multiscale Hemodynamics

Team consisting of physicians from Brigham Women’s Hospital, physicists from the

École polytechnique fédérale de Lausanne (EPFL) and the National Research Coun-

cil of Italy (CNR), computer scientists from Argonne National Laboratory (ANL),

Lawrence Livermore National Laboratory, and the University of Illinois at Urbana

Champaign, and visualization experts at ANL and Harvard University. Being a part

of the Kaxiras group has provided me with a broader context for physics research and

exposed me to other methods and fields of focus. I have enjoyed getting to know and

work with the other students and post-docs, both past and present, over the years.

I have been privileged to also be a member of Prof. Hanspeter Pfister’s group.

Prof. Pfister has provided ongoing assistance with my research and taught me a great

deal about communicating my research. He has fostered an open and collaborative

group that has not only exposed me to work in graphics and visualization research

but also introduced me to career development and productivity techniques.

I would like to thank everyone from the Harvard Institute of Applied Computa-

x

Acknowledgments

tional Science and the Harvard Academic Computing Facility for their support and

assistance over the years. I wish to thank Joy Sircar for introducing me to the compu-

tational research being done at Harvard and for many beneficial discussions that were

both research and career. His excitement about computational research has been an

inspiration.

This work was generously supported both by the National Science Foundation and

the Department of Energys Computational Science Graduate Fellowship. Throughout

the years, the alumni, administration, and other fellows of the CSGF program have

provided not only an amazing support system but also a great group of researchers

to bounce ideas off and often collaborate with.

I would like to thank my friends and family for their support, advice, and encour-

agement during my time at Harvard. I would also like to thank everyone who has

served as mentors both formally and informally throughout my time at Harvard. In

particular, Alan Edelman, Fred Streitz, Nick Bowen, Kirk Jordan, Mary Fernandez,

and Linda Zeger. Their assistance has been instrumental to my research and success.

I am grateful to have had access to many computing resources and ongoing com-

putational support. I greatly appreciate all of the help from Dave Singer and Fred

Mintzer with the Blue Gene/P system at the IBM T. J. Watson Research Center. I

also relied on the Argonne Leadership Computing Facility at Argonne National Lab-

oratory and computing facilities at Lawrence Livermore National Laboratory, both

supported by the U.S. Department of Energy.

xi

For Ed

with love and gratitude

xii

List of Figures

2.1 Bounceback boundary condition. Each particle reverses direction as it
encounters a wall node. The green circles indicate the wall nodes. The
blue circles show the fluid nodes. The yellow and dark blue arrows
indicate the path of post- and pre-collision respectively. 17

4.1 Schematic representation of a single collision-streaming cycle on four
cells of a one-dimensional Lattice Boltzmann simulation with two pop-
ulations per cell (detailed explanations are found in the text). The two
populations on each cell are distinguished by the use of a solid line
for the first and a dashed line for the second. The numbers next to
the populations label the cell on which the populations were located
at the initial time step t. Red denotes a population that has reached
the post-collisional state. 41

4.2 The distribution of the 294,912 tasks with respect to the number of
tasks with which they are required to communicate 44

4.3 Decomposition of a 2D domain in external cells (red), frontier cells
(yellow) and internal cells (green). The dashed line represents the re-
gion within a cutoff distance from the domain (solid line). The domain
frontier has a staircase shape, but in this figure it is shown as a smooth
curve for f simplicity. 48

4.4 The geometry of the 12.5µm resolution test case, derived from a CTA
scan of human coronary arteries. The inset shows a detail of the ge-
ometry with red blood cells visible. Note: the red color in the inset
is meant simply to highlight the presence of RBCs and is not an indi-
cator of ESS. The Endothelial Shear Stress (ESS) is the field derived
from the simulations that encodes the atherosclerotic risk map and is
represented as a color map on the arterial walls. 49

xiii

List of Figures

4.5 Log-log plot of the elapsed time for the LB component (circles), the
MD component (squares) and for the full simulation (diamonds) versus
the number of cores, for the system composed by 1 billion fluid nodes
and 10 million RBCs. 54

4.6 Semilog plot of the speed-up for the LB (circles) and MD (squares)
components, for the full simulation (diamonds), and for the ideal regime
(dashed line) versus the number of cores. Data are for the system of 1
billion fluid nodes and 10 million RBCs. 55

4.7 Aggregate performance (Floating Point Operations Per Second) as a
function of the number of cores. 58

5.1 Fluid density in the aorta. 63

5.2 Microfluidic device. 64

5.3 Naive implementation of the LBM. 76

5.4 Stream pseudocode. The icx, icy, and icz arrays define the velocity
directions, ξi. 77

5.5 Collide pseudocode. 78

5.6 2D example of ghost cells in x-dimension. Each processors receives a
row from its neighboring processor to be used in the stencil calculation. 80

5.7 Stream pseudocode with branch optimization. 84

5.8 Separate handing of ghost cell collision. 86

5.9 MFlup/s achieved with each optimization enhancement on the two
platforms in question. The horizontal lines represent the corresponding
peak MFlup/s. In each case, 128 nodes were used. 90

5.10 Time in seconds spent in communication for the processors that ex-
hibited the minimum, median and maximum communication time at
a range of optimization levels. 92

5.11 Results showing optimal ghost cell depth, GC, at a variety of fluid
system sizes. The results for the D3Q19 model were obtained on 2048
processors of Blue Gene/P while the results for the D3Q39 were from
16 nodes on Blue Gene/Q run with 16 tasks and 1 thread per node.
This difference was due to differences in memory constraints between
the two models. 94

5.12 Impact of threading on both velocity model’s performance. In each
case here, the time of the minimal ghost cell implementation is shown. 99

6.1 Patient specific aortic geometry acquired from the segmentation of
MRA data. The specific vessels contained in the geometry are labeled. 106

6.2 Fit to blood flow information acquired with PC-MRI. This fit is used
for the simulation of only one cardiac cycle. A more complex and
periodic fit would be leveraged when modeling multiple heartbeats. . 110

xiv

List of Figures

6.3 Mapping showing the velocity distribution at .14 seconds in a 100 mi-
cron resolution simulation. 116

6.4 Location of the proximal and distal planes to the co-arctation site for
reporting the pressure gradients [127]. 117

7.1 Speedup of LBM simulations using HARVEY for a range of fluid system
sizes on up to 32,768 cores of the IBM Blue Gene/P supercomputer. . 128

7.2 Parallel efficiency in terms of cores per fluid node for three different
lattice Boltzmann codes. HARVEY is the application presented here.
The other two codes include red blood models and the scaling studies
were also completed on IBM Blue Gene/P supercomputers (c.f. [113],
[30]). 129

7.3 Computational cost of the pipelined parareal method for K=3: each
processor is handling the time duration covered by one coarse time step,
as shown along the horizontal axis. The cost of G in terms of wall-clock
seconds per step is shown by the blue arrows and the cost of F is shown
by the red arrows. The green arrows indicate the propagation of the
data used in the correction step and the shaded regions correspond to
communication between processors. At each black circle, converge tests
are conducted. The corresponding speedup for each K value is shown
on the right. The magenta bars indicate speedup given 10 processors
and the aqua bars show the speedup given 100 processors. 133

7.4 Left panel: a two level grid where the fine grid is represented with red
dashed lines and the coarse grid with solid lines. The fine grid in this
example has twice the resolution of the coarse grid, with m = 2. Right
panel: the lattice points highlighted to demonstrate the overlapping
method used. The fine iterator applies to each grid point, both red
and blue, whereas the coarse iterator applies only to the blue ones. . 135

7.5 Multi-level Space-Time Interface breakdown. For Tier 2 (T2), the
World communicator is broken into separate communicators handling
temporal intervals. For Tier 3 (T3), each T2 group is broken up spa-
tially. Coarse and fine solvers run across T3 groups. The red arrows
indicate the tightly coupled message passing with the LBM and the
dashed lines indicate the communication between T2 groups for the
one core of each. 140

7.6 The magnitude of the velocity across the y-axis for a system broken
into N = 10 temporal domains simulated on ten processors. The lines
are labeled and color-coded according to the K value, running from
K = 1 to K = 10 (converged). The inset shows the 3-dimensional
velocity profile of the tube with the white line indicating the cross-
section along which the velocities are plotted. 149

xv

List of Figures

7.7 Boundary Condition Analysis. The velocity profile of flow in the cylin-
drical tube at varyingK levels for a simulation broken into 10 temporal
domains. (a) Shows the result using periodic boundary conditions. (b)
Demonstrates the use of Zou-He boundary conditions [173]. 150

7.8 Accuracy at different K levels. The relative error is shown for the
section of the cylinder shown on the left. The relative error is calculated
with respect to the result of the fine solver, F. This is for laminar flow
in the cylinder and demonstrates the convergence to the fine solution
as K increases. Moreover, the error variation across the section is
demonstrated. 152

7.9 Percent relative error of the magnitude of the velocity at the wall and
at the center as compared to the result of the fine solver. 153

7.10 Speedup from only the temporal portion. The relative error for the
flow at the center of the tube and at the wall are shown respectively
above each bar. 154

7.11 Accuracy test for a system broken into N = 10 temporal domains
simulated on ten processors. (a) The red points show the percent error
of the y-component of the velocity at point (5,5,50). (b) The wall-clock
time for each K level in a ten processor run. The dashed line indicates
the serial runtime. 156

7.12 Test to recover time dependent phenomena for a system broken into
N = 10 temporal domains simulated on ten processors. The blue line
shows the magnitude of the velocity over time at point (5,5,50) after
the first K iteration. The green and red lines represent K = 4 and
K = 10 respectively. The vertical dashed lines indicate the break
point between regions of time handled by each processor. 158

7.13 Performance tests demonstrating the strong correlation between the
theoretically expected performance and experimental results. The solid
lines indicate the theoretical speedup from Eq. (7.3) and the dashed
lines depict the simulation results on the IBM Blue Gene/P system
with 2048 processors. 159

7.14 Pulsatile Flow. Test to recover time dependent phenomena for a sys-
tem broken into N = 8 temporal domains simulated on 32,768 cores.
The blue line shows the magnitude of the velocity over time at point
(16,16,32) after the first K iteration. The green line, black dots, and
red line represent K = 3, K = 5 and K = 8 respectively. The vertical
dashed lines indicate the break point between regions of time handled
by each core. 163

xvi

List of Figures

7.15 Accuracy at different K levels. (a) The mesh defining the arterial
geometry from patient specific data is shown. The red rectangle depicts
the section across which velocity is assessed. (b) The three vertical lines
identify the time points that the error tests were imposed over the
coarse of one heartbeat. (c) The relative error in velocity as compared
to the solution of the fine iterator, F, is shown at four different K
levels at each time point identified in (b). The error variation across
the section is highlighted. 164

7.16 Performance tests demonstrating the strong correlation between the
theoretically expected performance and experimental results. The black
line depicts the simulation results and the red circles indicate the theo-
retical speedup added from the temporal component as calculated from
Eq. (7.3). 166

7.17 Time to solution for each K level as compared to the serial run. The
relative errors for the flow at the center of the tube and at the wall
are shown respectively above each bar. The dashed horizontal line
represents the serial runtime. 169

8.1 Results of flow in a simple curved tube similar to known coronary
geometry. (a) The geometry with δm = 0.043 and the average radius
of curvature of 0.635cm. (b) The magnitude of the velocity at point
(45,45,120) is shown over the coarse of the cardiac cycle. (c) The slices
represented here are taken from the area marked by the white line of
(a) and at the temporal checkpoints designated by the vertical red lines
in (b). 184

8.2 First two images of the evaluation of the impact of the deformational
forces on the endothelial shear stress. (a) Depicts the shear stress of a
steady flow through the patient specific geometry once it has converged
to a steady state. (b) Shear stress mapping for simulation including
the deformational forces at the initialized state. 186

8.2 (Continued) Second two images of the evaluation of the impact of the
deformational forces on the endothelial shear stress. (c) Shear stress
mapping for simulation including the deformational forces at 0.35 sec-
onds or the height of the expansion. (d) Shear stress mapping for
simulation including the deformational forces at 0.7. 187

8.3 2D projection of the shear stress map of the LAD artery at different
points in the cardiac cycle. For the time point at 0.35s, both the result
from the standard force and the result when including the deforma-
tional forces are shown. 189

xvii

List of Tables

4.1 Breakdown of the elapsed runtime . 53
4.2 Communication Breakdown for the run with 294, 912 cores. 56

5.1 Parameters for the D3Q19 velocity model. 68
5.2 Parameters for the D3Q39 velocity model. 69
5.3 Table of the maximum MFlup/s attainable on the IBM Blue Gene/P

and IBM Blue Gene/Q systems for both lattices with performance lim-
iters highlighted in red. In all cases, the code is extremely bandwidth
limited. The hardware system data for the IBM Blue Gene systems
comes from [74], [67], and [25]. 73

5.4 Optimal ghost cell depth for fluid size/processor ratios in the D3Q19
lattice model. 96

5.5 Optimal ghost cell depth for fluid size/processor ratios in the D3Q39
lattice model. 96

6.1 Coefficients for Eq. 6.1 with a 95% confidence bound. 111
6.2 Percent of the inlet flow that is routed through each branch. 112
6.3 Mean pressure gradient at different mesh resolutions. 118
6.4 Full Results at 20µm resolution. 118

xviii

1

Introduction

The mechanical motions, which take place in an animal body, are regulated
by the same general laws as the motions of inanimate bodies...and it is ob-
vious that the inquiry, in what manner and in what degree, the circulation
of the blood depends on the muscular and elastic powers of the heart and of
the arteries, supposing the nature of those powers to be known, must become
simply a question belonging to the most refined departments of the theory of
hydraulics.

– Thomas Young, 1808 Croonian lecture to the Royal Society [22]

1.1 Overview

Cardiovascular disease (CVD) is still one of the leading causes of death in the west-

ern world and is predicted to be the leading cause of death worldwide. CVD caused

approximately one of every six deaths in the United States in 2008. It is projected

that each year 785,000 Americans will suffer from a new coronary attack and 470,000

will have a recurrent attach [133]. Even more alarming is that in approximately 50%

1

1: Introduction

of these cases, sudden cardiac death is the first manifestation of the disease [172].

Finding indicators of CVD at an early stage is therefore critical for treatment and

prevention. Over the last few decades, physicians have linked key properties to the

likely development and progression of heart disease but finding methods to identify

and track these quantities for individual patients remains an outstanding question.

While the development of CVD depends on genetic predisposition and systemic

risk factors such as high blood pressure or diabetes, the localization of the disease

that occurs typically at areas of disturbed flow such as at bifurcations and curvatures,

cannot be explained simply by these systemic factors that apply equally to the entire

arterial geometry. The role of local flow properties in the causation of these local-

ization patterns has long been asserted (c.f. [59], [130]). Even in the early research

related to atherosclerosis, it was shown that hemodynamics factors could account for

the disparate locations of atherosclerotic lesions in regions subject to identical sys-

temic risk factors. In 1957, Dr. Texon showed that that the incidence and degree

of atherosclerotic sites was tied to the fluid dynamics of the blood [153]. Aoki et al.

further asserted that fluid mechanics has a controlling and inhibiting effect on the de-

velopment of atherosclerosis and demonstrated a correlation between lesion sites and

regions of low wall shear stress [2]. Studying this correlation between flow patterns

in patient-specific geometries and the localization of disease quickly gained a lot of

interest (e.g. [6], [16], [51]). While factors like oscillatory flow, eddy formation, and

boundary layer separation have been topics of interest, one of the main characteristics

2

1: Introduction

studied in this thesis is level of endothelial shear stress (ESS). Evidence has shown

that the locations of atherosclerotic lesions are often tied to regions subject to low

endothelial shear stress (ESS) (< 1.0Pa) ([100], [24], [167], [90]); however, there is

currently no method to measure ESS in vivo [80].

To address this need, personalized computer simulations that provide accurate and

reliable models of blood flows in the human cardiovascular system have become a focus

of research over the last few decades. As the velocity profiles and subsequently the

shear stress profiles depend strongly on the arterial geometry, assessing the impact

of vessel shape on the flow can provide insight into predisposition for diseases like

atherosclerosis [163]. Despite the concerted efforts of researchers, building a detailed,

realistic model of hemodynamics is still a formidable computational challenge. The

simulation must combine the motion of the fluids, the intricate geometry of the blood

vessels, continual changes in flow and pressure driven by the heartbeat, and finally the

behavior of red and white blood cells and other suspended bodies, such as platelets and

lipids [113]. There is a growing literature base of large-scale hemodynamic simulations

(c.f. [159], [126], [62], [63], [42], [108],[79]); however, until now the modeling of fluid

dynamics through vessels of realistic shapes and sizes for the duration of multiple

heartbeats has remained out of reach.

Additionally, as medical imaging modalities have improved to enable data ac-

quisition of patients at resolutions below 0.1mm, it has become possible to extract

patient-specific 3D geometries of the entire coronary arterial tree in a single heartbeat

3

1: Introduction

[100]. The joint use of these imaging techniques and simulation allow for non-invasive

screening of a large number of patients for potential coronary disease.

This thesis presents methods and ideas to help address the challenges of modeling

blood flow in large regions of patient specific geometries for long time durations.

This will be addressed through computational, algorithmic, and physical advances.

A foundation will be provided covering the lattice Boltzmann method [144], the fluid

dynamics model being leveraged in the work. Building on this mathematical model,

new computational techniques are developed to enable a large-scale parallel model

including the coupling to physiological levels of red blood cells and requiring the use

of 294,912 processors of the IBM Blue Gene/P supercomputer [113]. Additionally, a

focused investigation is presented into high order fluid models and associated parallel

optimization techniques.

In order to tackle the challenge of reducing the overall time to solution, decompo-

sition in both the temporal and spatial domains will be used to extend the capabilities

of next generation systems and enable the simulation of long time intervals. This is

important as there is a fundamental limit to the amount of parallelism that can be

extracted from traditional spatial scaling. Algorithmic advances necessary to couple

these techniques in a stable and accurate formalism will be presented.

As models of multiple cardiac cycles are achieved, the deformational forces acting

on the fluid flow through the arteries as the heart expands and contracts need to be

accounted for. A novel heuristic for introducing such forces into the lattice Boltzmann

4

1: Introduction

method in a computationally efficient manner will be presented.

1.2 Contributions

Efficient computational codes that can model flow in real systems are essential for

understanding many of these complex phenomena. As we prepare for hardware sys-

tems that can sustain an exaflop (1018 floating-point operations per second (flop/s))

or more, many computational challenges need to be addressed. Such systems will

likely involve lower memory to flop/s footprints, greater levels of concurrency due in-

creased processor counts and use of hybrid architectures, and increased strain on I/O

resources. The methods used by today’s CFD codes today may introduce limitations

of both stability and accuracy on next generation systems. The design of massively

parallel simulations that can model long time intervals requires the coupling of dif-

ferent scales, mathematical models, and parallelization schemes. To address these

challenges of patient specific computer simulations, this thesis makes the following

contributions:

Simulating the Entire Heart Circulation System at High Resolution

Through a new topology driven graph partitioning method to handle irregular geome-

tries, an efficient molecular dynamics load balancing scheme, and efficient parallel

scaling to 294,912 processors of the IBM Blue Gene/P, a simulation of physiolog-

ically accurate red blood cell (RBC) count in the coronary arteries retrieved from

high-resolution medical imaging, over 300 million RBCs is presented. Complex and

5

1: Introduction

large-scale geometries, such as the one considered here, are rare in the literature (e.g.

[36], [7]) . By leveraging large-scale parallel architectures, this work demonstrates

a simulation of cardiovascular flow of unprecedented scale in a geometry from real

patient data and at physiological hematocrit values for the length of a full heartbeat

[113].

Techniques to Enable Efficient Simulations of Higher Order Models

Recent work has shown that higher order approximations of the continuum Boltz-

mann equation enable not only recovery of the Navier-Stokes hydrodynamics, but

also simulations for a wider range of Knudsen numbers, which is especially important

in micro- and Nano-scale flows. These higher-order models have significant impact

on both the communication and computational complexity of the application. In this

thesis, the parallel optimization of such fluid models is investigated on both the IBM

Blue Gene/P and Blue Gene/Q architectures. The tradeoffs of methods such as the

use of deep halo level ghost cells that, alongside hybrid programming models, reduce

the impact of extended models and enable efficient modeling of extreme regimes of

computational fluid dynamics were evaluated [115].

Method for Coupling Temporal and Spatial Decomposition

Even with such optimizations, the time to solution needed to complete the simula-

tions can be daunting and spatial decomposition has its limits. For a fixed-size fluid

simulation, the efficiency of larger processor counts will saturate when the number of

grid points per core becomes too small. To overcome this fundamental strong scaling

6

1: Introduction

limit in space-parallel approaches, a novel version of the lattice Boltzmann method

parallelized both spatially and temporally is presented. This method is based on a

predictor-corrector scheme combined with mesh refinement to enable the simulation

of larger number of time steps. A quantitative analysis of the potential performance

impact of this method is also described [116].

Introduction of Deformational Forces

A technique to account for time dependent deformational forces that impact the

fluid flow across heartbeats while leaving the mesh representing the geometry static

is described. Drawing from previous research on methods to model the expanding

universe, these forces are estimated and cast into a kinetic formalism by using a

Gauss-Hermite projection procedure. Their impact on endothelial shear stress is

evaluated.

1.3 Structure of Thesis

This thesis is structured into ten chapters. Following this preliminary chapter, the

mathematical and physical fundamentals are presented. For each main contribution

of this thesis, the motivation of the work will be presented alongside any additional

background information that has not been previously provided. The contribution will

be presented along with a thorough evaluation of the associated experimental results.

7

1: Introduction

The remainder of the dissertation is structured as follows:

Chapter 2: Presents the necessary background regarding the fluid model used

in this thesis. An overview of the lattice Boltzmann method is given as well as

an introduction to the key characteristics of blood relevant to this work and the

definitions utilized in this thesis.

Chapter 3: Provides an overview of the necessary concepts in parallel computing

and a brief introduction to the hardware used in this thesis. Related work modeling

blood flow using large-scale supercomputers is discussed.

Chapter 4: Describes the methods used to enable the simulation of the full coro-

nary tree included physiologically accurate red blood cell levels on a massively parallel

supercomputer. Methods of memory management, irregular domain decomposition,

and model coupling will be discussed.

Chapter 5: Discusses extensions to the conventional LBM that allow for accurate

modeling of a wider range of fluid regimes. Techniques to improve computational

efficiency of parallel implementations of these models are presented.

Chapter 6: Presents an application of the code to real patient data and analyzes

the ability to recover data such as pressure gradient in the flow as compared to values

measured in vivo.

Chapter 7: Describes the method to reduce the overall time to solution through

coupling decomposition of the problem in both the spatial and temporal domains.

Numerical results for a model problem of laminar flow in a cylinder as well as flow in

8

1: Introduction

patient specific geometries are evaluated.

Chapter 8: Presents a novel method to account for the deformational forces

acting on the fluid over the coarse of a heartbeat while leaving the geometry defining

mesh static. The impact of these additional forces are evaluated both in a simplified

and real patient geometry.

Chapter 9: Outlook on future work.

Chapter 10: Finally, the results, current limitations, and potential future direc-

tions will be discussed.

9

2

Methodology

The lattice Boltzmann methods are accurate and robust computational fluid
dynamics solvers in the mesoscale, with elegant computational characteris-
tics.

– Abdel Monim Mohamed Ali Mohamed Hassan Artoli, 2003 Ph.D. Thesis [5]

In this chapter, the numerical method is reviewed. The theory behind the lattice

Boltzmann method is first reviewed followed by a brief discussion of the boundary

treatments being used in this work. The lattice Boltzmann method (LBM), the

approach discussed in this thesis, is based an algorithm that can efficiently model

flow through complex geometries such as those found in the coronary arteries or the

aorta. In order to capture the flow patterns accurately and efficiently, it is necessary

to use a method that handles complex boundaries well. The LBM is a low-Mach,

weakly compressible solver that recovers hydrodynamic behavior in the limit of small

Knudsen numbers. Some advantages of the method include and the high level of

10

2: Methodology

scalability achieved on parallel systems (see, for example, [113], [23], [165], [121]).

2.1 Lattice Boltzmann Method

Conventional solutions to problems computational fluid dynamics rely on the in-

compressible Navier-Stokes equations [152]. An alternative approach was introduced

by McNamera and Zanetti [97] and Higuera and Jimenez [72]. While it can be derived

as a numerical approximation to the classic Boltzmann equation ([144], [27]), this

method historically evolved from Lattice Gas Cellular Automata (LGCA) in which

both time and space are discretized and the fluid is viewed as a population of particles

that can move in discrete directions between lattice points [52]. In the LGCA model

the occupations were modeled by a boolean. This notion was replaced with the dis-

tribution function that represented an ensemble of averaged populations moving with

each discretized velocity at each lattice point. It was shown that the Navier-Stokes

equation could be obtained to a second-order approximation with proper definition

of the equilibrium distribution [124].

On general grounds, kinetic theory provides the conceptual framework to bridge

micro and macroscales, and the Lattice Boltzmann (LB) method is extremely well

suited for the numerical solution. The LB formalism comes from kinetic theory and

is a minimal form of the Boltzmann equation based on the collective dynamics of

fictitious particles that represent a local ensemble of molecules moving between the

points of a regular Cartesian lattice. The dynamics of such particles reproduces

11

2: Methodology

hydrodynamics in the continuum limit, when the molecular mean free path is much

shorter than typical macroscopic scales. The fundamental quantity is the particle

distribution function, denoted fi(�x, t), which represents the probability of finding

particles traveling with velocity ξ at lattice node x and at time t. The mesh spacing

is defined by ∆x, where the discrete velocities cp connect mesh points to first and

second neighbors. The fluid populations are advanced in a timestep ∆t through the

following evolution of fi(�x, t) with time as:

fi(�x+ �ci∆t, t+∆t) = fi(�x, t)− ω∆t[fi(�x, t)− f eq
i (�x, t)] (2.1)

where f eq
i (�x, t) is the equilibrium distribution and ω is the dimensionless relaxation

parameter (related to the frequency of particle collisions) [144]. In much of this

work, the19-speed cubic D3Q19 lattice connecting each lattice point to its first and

second neighbors is typically employed unless otherwise cited [92]. In this case, the

particles at each lattice point always move along the straight paths defined by the

18 discretized directions along the Cartesian axes and 12 velocities combining two

coordinate directions or can stay at rest. Each velocity is assigned a specific weight,

ω.

There are two key components to the algorithm: advection and collision. The ad-

vection step propagates the fluid particles along the discretized velocity paths defined

by the lattice.

Collisions are calculated via a relaxation toward local equilibrium, as illustrated in

12

2: Methodology

the right hand side of Eq.(5.1). The Bhatnagar-Gross-Krook (BGK) collision operator

with a single relaxation time scale [17] is leveraged. The local equilibrium is the result

of a second-order expansion in the fluid velocity of a local Maxwellian with speed �u

and is defined by:

f eq
i = wiρ

�
1 +

�ci · �u
c2s

+
1

2

�
(�ci · �u)2

(c2s)
2

− u2

c2s

��
(2.2)

where rho denotes the density, �u the average fluid speed, cs = 1/
√
3 the speed of

sound in the lattice, and wi the weights attributed to each discretized velocity as

determined by the lattice structure. A no-slip boundary condition is enforced at the

walls through a full bounce back scheme that will be discussed later. The relaxation

frequency ω controls the kinematic viscosity of the fluid:

ν = c2s∆t

�
1

ω
− 1

2

�
(2.3)

The continuum-level fluid viscosity, τ , is defined by Eqn. 2.4.

τ = ν/c2s +
1

2
(2.4)

Similar to kinetic theory, the macroscopic quantities like density, velocity, and pres-

sure can be calculated through moments of the distribution function which are avail-

able locally, with no need of resorting to any expensive Poisson solver. This allows

the local mass density to be defined by Eqn. 2.5, the mass current with Eqn. , and

the momentum-flux tensor with [101].

13

2: Methodology

ρ(x, t) =
�

i

fi(x, t) (2.5)

ρu(x, t) =
�

i

cifi(x, t) (2.6)

←→
P (−→x , t) =

�

i

fi(
−→x , t)−→ci−→ci (2.7)

One drawback is that the LBM requires many small time steps as limited by

CFL-type conditions. These time steps are extremely efficient and make the method

amenable for parallel implementations [115]. However, the most compelling asset of

LB rests with its outstanding amenability to parallel computing, even in complex

geometries. The present work represents a major testimonial to this asset, demon-

strating excellent scalability on up to ∼ 300K cores on a real-world patient geometry.

The endothelial shear stress (ESS) is calculated via the tensor second invariant in Eq.

2.10, in which −→xω denotes the the position of the sampling points near to the mesh

wall nodes [19].

The wall shear stress can be calculated using the shear tensor defined by Eq. 2.8

and evaluated though the kinetic representation in Eq. 2.9.

←→σ (−→x , t) = νρ(
−→
∂x−→u +

−→
∂x

−→
uT) (2.8)

14

2: Methodology

←→σ (−→x , t) =
νω

c2s

�

i

←→ci ←→ci (fi − f eq
i)(−→x , t) (2.9)

S = (−→xω, t) =
�
(←→σ : ←→σ)(−→xω, t) (2.10)

In this equation, xω denotes the position of the geometric wall, or sampling points

in close proximity to the mesh walls. S provides a direct measure of the degree of

shear stress exhibited near the wall [100].

2.2 Boundary Treatments

The LB formalism provides a handier treatment of complex geometries such as

those seen in real world cardiovascular problems. This comes at the expense of numer-

ical accuracy, which usually degrades to first order, due to the staircase representation

of arbitrarily shaped boundaries. This weakness is, however, strongly mitigated by

two compensating effects. First, the shear stress is available locally, as a linear com-

bination of the discrete populations sitting at each given cell, as shown by Eq. 2.10,

which relieves the burden of computing spatial derivatives of the velocity field at the

boundaries, which is an accuracy-threatening procedure used in Navier-Stokes solvers.

Second, while staircase boundaries do compromise second-order accuracy, it is also

true that a favorable pre-factor (due again to the straight discretized velocity trajec-

tories) secures significant error reduction by increasing resolution of the fluid model.

15

2: Methodology

In practice, wall shear stress is found to converge to acceptable levels of accuracy at

grid resolutions below 20 microns [101].

A no-slip boundary condition is imposed at the wall through the use of a full

bounce-back method. To this end, the velocity of any particle, which is set to advect

to a lattice point designated as a wall node, is reversed. In this case, the directions of

post-collisional particles are reversed if the prescribed velocity points to a lattice point

designated as a wall node as shown in Fig. 2.1. The curved vessels are shaped on

the regular (axis-aligned) grid via a staircase representation as opposed to the body-

fitted grids found in direct Navier-Stokes solvers. This does come at the expense

of numerical accuracy, which has been shown to degrade to first order [144]. This

representation is improved systematically by increasing the resolution of the mesh via

increased density of lattice points.

This consists of reversing at every time step the post-collisional populations to-

wards a wall node, providing first-order accuracy for irregular walls.

The method of prescribing the inflow and outflow rates within the different sim-

ulations that are discussed in this thesis varies widely. To that end, these detail

implementations will be discussed for each specific case.

A constant velocity is imposed at the inlet through a plug profile at the entrance

to the vessel. While this does not assert the known parabolic profile that drops to

zero close to the wall, it allow a total flow to be imposed at a set value. In a short

distance past the inlet, the parabolic profile is recovered. At the outlets, a constant

16

2: Methodology

Figure 2.1: Bounceback boundary condition. Each particle reverses direction as it
encounters a wall node. The green circles indicate the wall nodes. The blue circles
show the fluid nodes. The yellow and dark blue arrows indicate the path of post- and
pre-collision respectively.

pressure is imposed allowing pressure to be built up between the inlets and outlets.

The Zou-He boundary conditions [173] are used to implement these conditions. This

method uses information streamed from the bulk fluid nodes alongside a completion

scheme for the unknown particle populations whose neighbors are outside the fluid

domain. This method can be executed with second-order accuracy [89]. In this thesis,

the modification introduced by Hecht and Harting [69] is used in which the velocity

conditions are specified on-site thus removing the constraint that all nodes of a given

inlet or outlet must be aligned on a plane that is perpendicular to one of the three

main axis. Furthermore, this addition allows the boundary conditions to be applied

locally. Pulsatile hemodynamics requires the investigation of the flow pattern in the

time domain. It’s simulated via a time-dependent influx derived from physiological

data and discussed in more detail in Chapter 6.

17

2: Methodology

2.3 Hemodynamic Specific Parameters

The circulatory system is a complex maze of vessels designed to facilitate, control,

and maintain blood flow to all parts of the body. Blood is a concentrated suspension

of particulates primarily including erythrocytes (red blood cells or RBCs), leukocytes

(white blood cells or WBCs), and platelets [147]. These components are suspended

in a plasma that is generally regarded as a Newtonian fluid [147]. One microliter

of human blood contains about 5,000,000 red blood cells, 7,000 white blood cells,

and 300,000 platelets [86]. As the majority of the particle volume is occupied by

the erythrocytes (99%), hematocrit is defined as the proportion of blood volume that

is occupied by erythrocytes. For humans, it has been experimentally shown that

hematocrit is equal to 47 ±5% for healthy adult males and 42± 5% for healthy adult

females ([166], [87]). These cells dramatically influence the behavior of the fluid. The

resulting simulation specific parameters are discussed in the following sections.

2.3.1 Viscosity

Dynamic viscosity, ν, is one of the most significant mechanical properties of blood.

Viscosity defines the tendency of a fluid to resist flow which relates to the shear rate,

γ and the shear stress S. When S = −νγ then the viscosity is independent of the

shear rate and defined as a Newtonian fluid. The kinematic viscosity ν is defined as

the ratio of the dynamics viscosity to the density, v = ν/ρ.

The viscosity of blood is further dictated by the viscosity of the blood plasma and

18

2: Methodology

the density and nature of the suspended particulates. Blood plasma shows viscosity,

while whole blood is both viscous and elastic. Patients suffering from anemia will

have a lower hematocrit level and subsequently a lower viscosity while conversely,

those exhibiting polycythemia will have blood of a higher viscosity and RBC count.

It is also worth noting that the deformability of the cells can impact the viscosity

of blood and introduce elastic properties. The elastic behavior is derived from the

energy due to the movement and deformation of red blood cells [155]. For patient’s

with more rigid cells, the viscosity of the blood increases. This can be of significant

interest for patients that suffer from sickled cell anemia [41]. However, typically

the effects of variation in blood viscosity are exhibited significantly typically in the

microcirculation and not evident in the large arteries geometries considered in this

thesis. At low shear rate, below 10 sec−1, the cells are heavily clustered and the blood

is categorized as non-Newtonian. For medium shear rates between ten and 100 sec−1,

the clusters dissolved and the cells start to orient themselves. The viscosity decreases

as the shear rate increases. Finally, in regimes of large shear rates above 100 sec−1,

the blood can be fairly approximated as Newtonian [5].

A change in temperature can change the viscosity as well. For instance, a decrease

of only 1◦ Celsius can result in a 2% increase in viscosity. In this thesis, the temper-

ature is taken to be 37◦ Celsius and the hematocrit level to be 45% unless otherwise

noted. This corresponds to a viscosity of 3.2mPa · s [163].

19

2: Methodology

2.3.2 Density

The density of blood is closely tied to the hematocrit level, or proportion of blood

volume occupied by red blood cells, and can vary from patient to patient. In this

thesis, density value of 1.06 g
cm3 is used [71].

2.3.3 Reynolds Number

The Reynolds number (Re) refers to the ratio of inertial force to viscous force and

is defined as uρl/ν, where u is the mean blood velocity, ρ the fluid density, ν the

kinematic viscosity of blood, and l the diameter of the vessel [143]. In the case of

low Reynolds numbers, the viscous forces dominate while the inertial forces dominate

systems with high Reynolds numbers. The Reynolds number works as an indicator

of how close the fluid field is to a turbulent regime. In terms of the coronary arteries,

the Reynolds numbers have been shown to range from 100-460 [80]. These values fall

well below the 2000 cutoff for producing and maintaining turbulent flow. Moreover,

experimental data has demonstrated that the blood flow will remain laminar in these

regimes [143].

For large arteries like the aorta, the Reynolds number is 1150 when assuming rigid

walls, but ranges only from 1035-1265 when taking into account wall pliability. This

shows the diminished impact of wall flexibility in large vessel models and allows the

conclusion that, to the first approximation, imposing rigid walls is a valid assumption

for large arteries [5]. In this thesis, the walls will be treated as rigid.

20

2: Methodology

2.3.4 Mach Number

The Mach number (Ma) helps to assess the fluid’s compressibility by measuring

the fluid’s velocity relative to the speed of sound in the fluid. It is defined as M = u/cs

where u is again the average fluid velocity and cs is the speed of sound. It is significant

here simply due to the semi compressible nature of the selected lattice Boltzmann

method and helps to ensure the validity of the model [60].

21

3

Parallel Computing

For over a decade prophets have voiced the contention that the organization
of a single computer has reached its limits and that truly significant advances
can be made only by interconnection of a multiplicity of computers in such
a manner as to permit cooperative solution.

– Gene Amdahl, AFIPS 1967 Conference [1]

Parallel programming is a technique used to spread computation across a number of

processors in an effort to reduce the overall runtime of an application and to maximize

the use of the available hardware. In this chapter, a brief introduction to key concepts

in parallel computing and its application to cardiovascular hemodynamics is provided.

3.1 Overview

The goal of parallelizing an application is to harness the power of multiple cores

and derive a subsequent speedup in the overall runtime as more cores are utilized.

Speedup here refers to how much faster the parallel implementation is to the sequential

22

3: Parallel Computing

implementation and can be calculated with Eq. 3.1 in which S refers to the speedup,

Ts to the sequential time, and Tp to the duration of the parallel algorithm.

S =
Ts

Tp
(3.1)

Ideal or linear speedup occurs when S = N , N is the number of processors.

Essentially, if two processors are used then in the ideal case one would achieve a

2× speedup. Similarly, if 100 processors were used, one would wish to achieve a

100× speedup. In the simplest case, an algorithm can be broken down into many

serial chunks that require little to no communication. If it can be broken down into

this set of independent tasks, the algorithm is described as embarrassingly parallel or

pleasantly parallel. In the idealized case, if there were no overhead to the run, using

N cores would result in an N −× speedup.

A related quantity of interest in this thesis is the notion of parallel efficiency, Ep,

that defines how close the parallel scheme comes to the ideal. It can be calculated by

s
N and is often denoted as a percent. For example, if 100 processors are used and an

80× speedup is achieved, one would say the implementation has a parallel efficiency

of 80%.

As mentioned, in an ideal situation one would hope to see a direct match between

the number of processors and the speedup achieved; however, this is typically not

achievable due to factors like communication overhead and sections of the code that

are inherently serial. It is therefore important to get a sense of how well a particular

algorithm can be mapped to a parallel architecture. The first step to understanding

23

3: Parallel Computing

potential speedup is to examine the code and identify any existing interdependencies.

In 1967, Gene Amdahl offered a basic model to understand potential gains for paral-

lelizing an application that has come to be known as Amdahl’s Law [1]. He proposed

a method of defining S through Eq. 3.2 to identify the degree to which the speedup

of the application is limited by the serial portion of the code.

S =
1

(1− P) + P
N

(3.2)

In this case, P represents the proportion of the code that can be parallelized and

N represents the number of processors. In the case of fluid dynamics models using

lattice Boltzmann, the stream and collide function being handled for one specific

discrete velocity at one grid point in one time step is the smallest section of serial

code that the algorithm can be broken down into. The time steps must execute in

lock step thereby introducing a time dependence and inherent serial characteristic.

Amdahl’s law shows that the speedup achieved for this application will never be better

than that proportion of serial code (1-P) or in the case of the LBM, the time for each

stream and collide execution.

This model still provides an overly optimistic view of potential gains through a

parallel implementation. As stated above, the parallel portion of the code would

continue to decrease at the same rate per new processor added. This is referred to

as strong scaling and demonstrates a reduction in runtime as the problem space is

held fixed and the processor count is increased. Simply relying on Amdahl’s law

24

3: Parallel Computing

can be misleading. A straightforward example is useful to provide insight into these

drawbacks. Many embarrassingly parallel codes utilize a scheme known as the mas-

ter/worker setup. In these applications, one processor acts as the master distributing

work units to the other slave processors. In accordance with Amdahl’s Law, as the

core count increases there are subsequently more slaves available to execute the work

units in parallel. The issue arises when all work units have been distributed. Clearly

at this point, any additional processors will sit idle and not contribute to any further

speedup. Additionally, Eq. 3.2 does not take into account factors like messaging

overhead.

In 1988, John Gustafson proposed a law to address this first issue by removing

the fixed problem size constraint and instead having the problem size increase as

the machine size increases. This is significant as the goal for parallelizing many

applications is often not simply to reduce the overall runtime, but to enable the

study of much larger problem sizes. Often times, the point of growing the system is

to enable this type of large-scale science that would otherwise be infeasible. This is

referred to as weak scaling. The method that is now referred to as Gustafson’s Law

provides a modified equation for speedup as demonstrated in Eq. 3.3 [66]:

S = N − α(N − 1) (3.3)

In this case, N is again the number of processors and α is the serial portion of

the application. This address some of the points where Amdahl’s Law falls short and

25

3: Parallel Computing

provides a slightly more robust expectation for a parallel version of the code. For

the algorithm discussed in this thesis, this is extremely significant as a parallel imple-

mentation will enable the problem size to be increased drastically. When modeling

flow in the coronary arteries, it is important to model both larger fluid systems and

longer time durations.

The two laws described above still leave a lot to be desired in the prediction of

actual speedup to be obtained by a parallel code. These analyses both neglect signifi-

cant bottlenecks like memory and I/O bandwidth. The rate at which these scale with

the number of processors will have an impact on the exhibited speedup. In many

cases an algorithm–such as those described as embarrassingly parallel–may theoreti-

cally scale linearly with the system size, but communication overhead will cause it to

plateau or taper off in practice. Another concern is the method of coding the appli-

cation. For example, if the previously discussed master/worker scheme is employed,

the applications often have the master handle all of the I/O in the beginning and end

of the application. This not only results in high communication volume to distribute

the data and retrieve results, but often requires a large memory footprint for the

master to be able to handle any post-processing or data collection. This scheme often

requires special care to be taken in memory management in order to achieve stronger

performance. As applications scale to large system sizes, these issues of memory man-

agement, communication overhead, and I/O become key factors determining achieved

speedup. How an algorithm is affected by these factors can help determine the best

26

3: Parallel Computing

architecture for the code to be ported to. If the application requires a large amount of

inter-processor communication, hardware designed with optimized networks would be

more ideal whereas an application with completely independent chunks may require

hardware designed for memory management.

In the following chapters, refined equations for speedup to address concerns par-

ticular to the implementation of the LBM presented will be presented alongside data

demonstrated a strong correspondence between the theoretical and achieved speedup.

3.2 Architecture

For the work described in this thesis, the architectures used come from the family

of IBM Blue Gene supercomputers (c.f. [53], [74],[67]). All three supercomputers,

Blue Gene/L (BG/L), Blue Gene/P (BG/P), and Blue Gene/Q (BG/Q), were used

over the coarse of the presented research. The architecture for these systems is based

on low cost embedded PowerPC technology and is based on the notion of achieving

large performance at low power by coupling a large number of low power processors

together. Some of the architectural features are relevant for this thesis, so I will briefly

summarize some of the key components in this section.

The Blue Gene system is a massively parallel supercomputer that uses a dis-

tributed memory setup. The basic building block is a custom system-on-a-chip (SoC)

that integrates processors, memory, and communication. All three chips consist of low

frequency processors running at 700 MHz (BG/L), 850 MHz (BG/P), and 1.6 GHz

27

3: Parallel Computing

(BG/Q). Each compute node contains 2, 4, and 16 cores respectively and exhibit

a peak performance of 5.6 GFlop/s, 13.6 GFlop/s, and 204.8 GFlop/s. Partitions

of varying sizes include compute nodes and I/O nodes. The ratio of I/O nodes to

compute can vary and depending on how data intensive your application is, this can

impact the performance.

Four highly optimized networks connect the nodes: a three-dimensional Torus

(five-dimensional in the case of Blue Gene/Q), Global Collective Network, Giga-

bit Ethernet networks, and Control System Network. The majority of messaging is

conducted via the torus network that supports low-latency, high bandwidth point-to-

point messaging. The specialized networks are a key attribute of this system. They

were specially designed with message passing applications in mind such as those re-

lying on the standard MPI protocol. Generally one of the largest sinks for parallel

code comes from communication overhead. This fine-tuned arrangement allows for

efficient point-to-point communication along the torus and multiple node collective

communication across the global collective network. The torus interconnects all com-

pute nodes and the Global Collective Network provides both broadcast and reduce

functionalities between all nodes. The latency of the tree traversal is on the order of

microseconds. This collective network allows for standard MPI calls like Broadcast

and AlltoAll to be complete in only a few clock cycles. As the Blue Gene system

scales to such a high number of processors, the ability to communicate succinctly

between the cores is a key factor when scaling applications. For more information

28

3: Parallel Computing

regarding the networks refer to [104].

Another quantity of interest is the hardware efficiency which refers to the amount

of available system performance that a particular application can leverage. Typically

this is measured in terms of achieved floating-point operations per second (flop/s)

over the theoretical peak flop/s that can be achieved by the system. In this thesis,

the Hardware Performance Monitor from the IBM HPC Toolkit is used to measure

hardware efficiency [33].

3.3 Related Work

Modeling fluid dynamics of a biological nature has been an area of interest for

many years (c.f. [158], [84]). Specifically applying computational methodologies to

identify regions prone to cardiovascular disease dates back to the work by DeBakey

[32] and Thubriker and Robicsek [154]. Since then, research has typically focused on

either accurate modeling of the red blood cells and other particulate components of

the blood or on the fluid dynamics of blood moving through patient representative

geometries. Many models for red blood cells have been explored such as the immersed

boundary method ([112], [38]), dissipative particle dynamics ([161], [109], [73]), or lin-

ear finite element analysis (FEA) which has been shown to efficiently model hundreds

of cells ([88], [170]).

Alternatively, a great deal of research has focused on understanding the underly-

ing mechanisms that experimental measurements alone could not have achieved. A

29

3: Parallel Computing

recent study demonstrated the use of computational methods to guide cardiovascular

intervention. In this case, the focus was on determining fractional flow reserve (FFR)

to assess the significance of coronary lesions [78]. Alongside this there has been a

great deal of research applying large scale supercomputing to model hemodynamics

in patient specific geometries (e.g. [150], [160], [5], [60], [63], [64],[30], [79]). Much of

this work focuses on flow in small regions of arteries and only in 2012 were the some

of the first simulations of flow in full body large arterial networks presented [168].

The disease trajectories that can be modeled, however, have been limited by

the rate at which these simulations can be performed. A significant challenge is to

capture, in silico, functionally important biological events that typically occur on the

timescales of anywhere from seconds to decades. Furthermore, an efficient method

of modeling physiological red blood cell levels and coupling to the fluid component

is required. Throughout the following chapters, previous work related specifically to

the contribution being presented will be provided.

30

4

Parallel Implementation and

Scaling

The issue of coupling models of different events at different scales and gov-
erned by different physical laws is largely wide open and represents an enor-
mously challenging area for future research.

– Brown et al., U.S. Department of Energy Report [20]

4.1 Motivation

As mentioned, accurate and reliable modeling of blood flows in the human cardio-

vascular system has the potential to improve understanding of cardiovascular diseases,

which are the most common cause of death in Western countries. But building a de-

tailed, realistic model of hemodynamics is a formidable computational challenge. The

simulation must combine the motion of the fluids, the intricate geometry of the blood

31

4: Parallel Implementation and Scaling

vessels, continual changes in flow and pressure driven by the heartbeat, and finally the

behavior of red and white blood cells and other suspended bodies, such as platelets

and lipids.

In this chapter, the first multiscale simulation of cardiovascular flows in realistic

human arterial geometries derived from Computed Tomography Angiography (CTA)

data is presented. The simulation covers the entire heart circulation system, the

network of arteries and arterioles that supply blood to the heart muscle, with a

spatial resolution extending from 5 cm down to 10µm.

The simulations involve up to a billion fluid nodes, embedded in a bounding

space of about a three hundred billion voxels, with 10-300 million suspended bodies.

They are performed with the multiphysics code MUPHY (MUlti PHYsics/multiscale),

which couples Lattice Boltzmann methods for the fluid flow and a Molecular Dynamics

treatment of the suspended bodies [13, 100]. The simulation achieves an aggregate

performance in excess of 60 teraflops, with a parallel efficiency of more than 60 percent

on a full 294, 912-processor BlueGene/P configuration.

This work presents a number of unique features, both at the level of high-performance

computing technology and in terms of physical/computational modeling. The ex-

tremely complicated conditions that are implicit to irregular geometries require that

the workload be evenly distributed across the pool of as many as 294, 912 computa-

tional nodes of the BlueGene/P supercomputer. The formidable graph-partitioning

problem, even at the mere level of the fluid computation, cannot be overestimated. On

32

4: Parallel Implementation and Scaling

top of this, our multiphysics/scale application adds the further constraint of keeping

a good workload balance also across the Molecular Dynamics (MD) sector of the sim-

ulation. To the best of our knowledge, the latter issue has never been tackled before

in any MD simulation. Indeed, even top-ranking (Gordon-Bell winning) multi-billion

MD simulations are invariably performed in idealized geometries, cubes or regular

boxes [118]. Similarly, multi-billion node simulations of, say, biofluid turbulence are

indeed available, but only in the same ideal geometries mentioned above. Complex

and large-scale geometries, such as the one considered here, are rare in the litera-

ture (c.f. [36], [7], [61]). By leveraging large-scale parallel architectures, this work

demonstrates a simulation of cardiovascular flow of unprecedented scale in a geome-

try from real patient data and with blood flow at physiological hematocrit values. In

this paper, the treatment of red blood cells as extended structures (i.e. not as point

sources), a method to handle highly irregular geometries via topology driven graph

partitioning, and an efficient MD load balancing scheme are introduced.

4.2 Multiscale hemodynamics

The approach is based on efficient and accurate algorithms capable of handling

the requirements of the diverse computational entities and associated scales. The

numerical framework is handled by the software MUPHY developed by our group in

recent years [13]. The approach is genuinely multiphysics, as it combines different

levels of the description of matter, continuum hydrokinetic fluids for the dynamics of

33

4: Parallel Implementation and Scaling

blood plasma and individual particles for the representation of red blood cells and

other minority suspended species. The method is also multiscale, since fluid and

particles are advanced concurrently and the exchange of information is computed

on-the-fly.

Finally, the last term in Eq. (5.1) represents the coupling between fluid and

suspended bodies. This is given by

∆fp(x, t) = −wp∆t

�
G · cp
c2s

+

(G · cp)(u · cp)− c2sG · u
c4s

�
(4.1)

where G is a forcing term containing the translational and rotational exchange of

momentum induced by N moving red blood cells at position {R}. The forcing term

is smeared over a region made of 32 mesh points around each RBC and with ellipsoidal

shape. The drag force acting on particles is modelled as

FD
i (Ri) = − γT (Vi − ũ) (4.2)

and the torque is

TD
i (Ri) = −γR

�
Ωi − Ω̃

�
(4.3)

with {Vi} and {Ωi} being the RBC velocities and angular velocities, and with ũ

and Ω̃ the fluid velocity and vorticity fields, smeared over the same ellipsoidal region

occupied by a RBC. This smearing is achieved through an envelope function similar

to the one used in the Immersed Boundary method [112], which takes into account

the finite extent of the particles by means of a smooth interaction. The constants γT

34

4: Parallel Implementation and Scaling

and γR are translational and rotational coupling coefficients of RBCs represented as

oblate ellipsoids in a hydrodynamic environment.

Due to the finite extent representation of an RBC, the hydrodynamic size of RBC

is smaller than the smearing region covered by the particle, with the RBC effective

size depending on the strength of the coupling coefficients γR and γT . By varying

these coefficients, and matching the hydrodynamic volume with the GB exclusion

volume, the effective extension of a RBC covers ∼ 1 lattice cell. This corresponds to

a hematocrit level of 1%. To reach a more physiological level of 30− 45% about 300

million RBCs are required.

Here a compromise between physical fidelity and computational efficiency must

be taken. Indeed, recent studies [119] indicate that the minimum number of degrees

of freedom required for a quantitative description of RBC dynamics in a fluid flow,

including deformability, is of the order of hundreds to thousands. This is far too much

for a viable fluid-particle coupling at large-scales. As a result, an intermediate strategy

has been developed, whereby RBCs are treated as rigid ellipsoidal bodies (six degrees

of freedom) interacting with each other through custom potentials, and with the

surrounding fluid (the blood plasma) via tensorial mobility coefficients, accounting

for the anisotropic drag experienced by the RBC along and across the local fluid

direction of motion. Such an intermediate strategy permits to capture the essential

features of the complex behavior of the RBCs and their impact on the macroscopic

blood rheology, at a very moderate computational cost. The represented behavior

35

4: Parallel Implementation and Scaling

accounts not only for the translational and rotational motion of the RBCs, but also

for their mutual interaction, reproducing aggregation patterns of RBCs and their

impact on the overall behavior of the blood flow.

From an algorithmic point of view, this approach scales linearly with the num-

ber of RBCs, thanks to the fact that the solvent-mediated RBC-RBC interactions

are entirely local and explicit. This stands in marked contrast with consolidated ap-

proaches, based on Brownian dynamics, which rely upon a non-local Green function

representation of the Oseen tensor and consequently can only attain N logN scaling

with the number of RBC’s by resorting to highly sophisticated procedures. The strat-

egy described here, which is entirely new and still unpublished [98], makes therefore

a particularly efficient use of the invested computational resources. In particular, as

typical of LB applications, it provides a very economical algorithmic representation

of fairly complex physical phenomena. In the present implementation, additional

torques arising from coupling with the elongational component of the flow pattern

and tank treading of the RBCs are neglected.

Mechanical hard core forces prevent contacts between RBCs. The RBC-RBC

interactions are pairwise and modelled via the Gay-Berne potential [55], reading

uGB
ij (qij) = 4�(qij)×

��
σ0

Rij − σ(qij) + σ0

�12

−

�
σ0

Rij − σ(qij) + σ0

�6
�

(4.4)

where qij ≡ (Rij, ûi, ûj) and with Rij being the relative distance, ûi and ûj are

36

4: Parallel Implementation and Scaling

the principal directions of the i-th and j-th ellipsoids, with �(qij) and σ(qij) being

functions with lengthy expressions reported in ref. [55].

The potential uGB
ij is set to zero beyond a orientation-dependent cut-off given by

the condition

�
σ0

Rij − σ(qij) + σ0

�6

> 0 (4.5)

to retain the repulsive component of the potential only. The rigid body dynamics of

the suspended bodies is propagated in time via a second-order accurate timestepping

algorithm [35], properly modified to handle fluid-particle forces and torques.

4.3 Geometry acquisition and mesh-generation

The global geometry of the problem used for the present simulations is obtained

from CTA scans of the coronary arterial system of a real patient. Data acquisition was

performed by a 320 × 0.5 mm CTA scanner (Toshiba) and subsequently segmented

into a stack of two-dimensional contours at a nominal resolution of 0.5 mm. The

slice contours, each consisting of 256 points, are oversampled along the axial distance

down to a slice-to-slice separation of 12.5µm and further smoothed out by appropriate

interpolators. The resulting multi-branched geometrical structure is finally mapped

into the Cartesian LB lattice, ready for the simulation. Full details can be found in

[100].

37

4: Parallel Implementation and Scaling

4.4 Initial and Boundary conditions

Fluid boundary conditions are set up as follows. At the inlet, a uniform flow

profile with prescribed velocity is imposed, and at the outlet ports a zero pressure

difference from the inlet is maintained. The flow-pressure inflow/outflow conditions

are implemented via the Zou-He method to set up the LB populations in the proper

way [173]. At rigid walls, a standard mid-way bounce-back rule is applied to impose

no-slip flow conditions.

The fluid flow is initialized with zero speed and constant density across the entire

domain. Particles are seeded at random positions and orientations, and with null

linear and angular velocity. In flow conditions, RBC that exit from the outlet ports

are reinjected in the inlet port in order to maintain a constant total hematocrit. The

injected RBC have velocity given by the imposed inlet velocity, random orientation

and zero angular velocity. The RBCs are repelled by the wall via a GB pairwise

potential acting between a RBC ellipsoid and a spherical particle positioned on a

wall mesh node.

4.5 Code Features

The MUPHY (MUlti PHYsics/multiscale) code is written in Fortran 90 and uses

MPI for the parallelization. To handle in a flexible and efficient way any complex ge-

ometry, MUPHY makes use of an indirect addressing scheme that has been described

38

4: Parallel Implementation and Scaling

along with other main features of the code in [13]. We showed in the same paper

that the penalty introduced by the indirect addressing scheme for the cases of regular

geometries is very limited (∼ 5% of the execution time) and, as a matter of fact, the

code was used for problems, such as bio-polymer translocation in which the geometry

is trivial (a regular box). Originally developed for the IBM BlueGene/L system [54]

MUPHY has been recently ported to heterogeneous clusters of CPUs and Graphics

Processing Units (GPU), using the CUDA software environment, showing excellent

results [12]. For the present work the latest generation of the IBM Bluegene system

is employed whose main features may be summarized as follows:

• quad SMP processor chip per node with 2GB of memory per node.

• system-on-a-chip design with superscalar 850 MHz PowerPC 440 cores;

• a large number of cores (scalable up to at least 294,912);

• three-dimensional torus interconnect with auxiliary networks for global commu-

nications, I/O, and management;

• lightweight, Unix-like OS per node for minimum system overhead.

The first versions of the LB component of the code used the “fusion” of the

collision and streaming steps in a single loop. This technique, by now standard in all

high-performance LB codes, significantly reduces data traffic between main memory

and cache/registers of the processor, since there is only one read and one store of

39

4: Parallel Implementation and Scaling

all LB populations at each time step. However most implementations of the fused

update resort to a “double buffer” to store the LB populations. The double buffer

avoids the mixing of old and new data during the non-local streaming step that would

be a source of inconsistency but, obviously, doubles the memory required for the LB

populations. A recent enhancement to MUPHY is the implementation of the “single

buffer” mechanism for the Lattice Boltzmann update through an adaptation of the so-

called swap algorithm [95]. In this algorithm, the particle populations are rearranged

after collision. This results in a memory layout in which, as a given population

is copied to a neighboring cell during the streaming step, it simply exchanges its

memory location with a neighbor-node population. Thus, the copy operations in the

streaming step are replaced by exchange operations, or variable swaps, as suggested

by the name of the algorithm. Given that no information is lost during the swap

operation, the algorithm handles the streaming phase without the need for temporary

buffers. This point becomes clear by looking at Fig. 4.1, where four nodes of a one-

dimensional Lattice Boltzmann mesh, with just two populations per node, perform

a single global collision-streaming cycle, carrying them from a discrete time step t

to t +∆t. Right after the mesh populations have collided, the algorithm rearranges

the data locally by exchanging the two populations (in a higher-dimensional case, all

local populations are exchanged with the population corresponding to the opposite

direction), as indicated by the keyword “swap” on the figure. Then, as soon as the

neighboring node also reaches its post-collision state, a non-local exchange operation,

40

4: Parallel Implementation and Scaling

Figure 4.1: Schematic representation of a single collision-streaming cycle on four cells
of a one-dimensional Lattice Boltzmann simulation with two populations per cell
(detailed explanations are found in the text). The two populations on each cell are
distinguished by the use of a solid line for the first and a dashed line for the second.
The numbers next to the populations label the cell on which the populations were
located at the initial time step t. Red denotes a population that has reached the
post-collisional state.

indicated by the keyword “exchange”, is performed in lieu of the streaming step.

In a typical execution of a MUPHY program, memory is used mainly for the stor-

age of the particle populations and the connectivity list. Thus the swap algorithm

reduces the overall memory needs by one-third by avoiding a duplication of memory

for the particle populations. Furthermore, this approach leads to a sensible perfor-

mance improvement, because the program becomes more cache efficient as it holds

the populations and connectivity matrix in a smaller memory space.

The geometry gathered from the CTA data that was used in the runs reported in

section 7.9 is highly irregular, as shown in Figure 4.4, and its partitioning among the

41

4: Parallel Implementation and Scaling

available processors represents a major challenge in itself. Several domain decompo-

sition strategies for irregular lattices already exist, as described in [96]. In particular,

state-of-the-art techniques like those represented by multilevel k−way partitioning

schemes can be used for irregular geometries. However, when either the size of the

mesh or the number of partitions increases to critical values (in our case, the figures

are ∼ 1 billion nodes for the mesh and ∼ 300,000 partitions) most of the widely used

tools simply fail, meaning that they are unable to manage the problem (that is much

worse, of course, than producing a sub-optimal solution). For instance, the well-

known tool for graph-partitioning METIS [75], even in its parallel version, requires

the allocation on each processor of a block of memory equal in size to the square

of the number of partitions. On the other hand, preliminary tests showed that a

naive partitioning based only on a balanced number of mesh nodes on each processor

produced a very poor load balancing.

It should be emphasized that the graph-partitioning strategy is entirely topology-

driven, i.e. it proceeds based on the input provided by the local connectivity supplied

by the Lattice Boltzmann grid (18 neighbors, uniformly across the entire computa-

tional domain) with no information on the global geometry of the problem.

Finally, an effective solution was found by using PT-SCOTCH, the parallel version

of the SCOTCH graph/mesh partitioning tool [29]. One of the interesting features of

SCOTCH is that its running time is linear in the number of edges of the source graph,

and logarithmic in the number of vertices of the target graph for mapping compu-

42

4: Parallel Implementation and Scaling

tations. Moreover, a test carried out on a smaller case (∼ 20, 000, 000 mesh nodes

partitioned among 1, 024 processors) showed that SCOTCH produces a partitioning

scheme superior to METIS, that is, with a better load balancing taking into account

both the number of mesh nodes per processor and the total communication among

the processors. Unfortunately, PT-SCOTCH runs out of memory on our real test case

that produces a graph with almost one billion vertices and ∼ 18 billion edges. Our

solution has been to use a pruned graph which represents the connectivity along the

six main directions only (+x,−x,+y,−y,+z,−z). This reduces the number of edges

in the graph by 66% (by eliminating the 12 edges: +x+ y,+x− y, etc). We confirm

that, in a smaller test case, the resulting partition is, for all practical purposes, very

similar to the partition produced for the whole graph. By using the pruned graph,

the required partition (294, 912 domains) is created for the large test case on a cluster

using 128 Intel cores (Xeon E5520 @ 2.27 Ghz) with a total of 256 GB of memory.

It is interesting to look at the distribution of the tasks with respect to the number

of other tasks with which they are required to exchange data, following the partition-

ing scheme produced by SCOTCH. The result is reported in Figure 4.2, which shows

that, on average, each task exchanges data with other 15 tasks.

This workload distribution indicated that despite the highly complex geometry,

the final workload partitioning ends up relatively close to the initial topological input,

which is expected indeed as a heuristic measure of good balance. Visual inspection of

the computational domains, shows that this is realized through a fairly sophisticated

43

4: Parallel Implementation and Scaling

Figure 4.2: The distribution of the 294,912 tasks with respect to the number of tasks
with which they are required to communicate

44

4: Parallel Implementation and Scaling

and highly varied morphology of the computational domains, often taking highly

counterintuitive shapes in the vicinity of geometrical complexities. Thismorphological

richness, which stands in stark contrast with elementary partitionings in idealized

geometries (cubes, slabs and similar), conveys an intuitive flavor for the complexity

of the partitioning task and also hints at some form of homeo-morphism between

dynamics and geometry which surely deserves a separate investigation for the future.

We create the communication pattern by the following “run-time” pre-processing

procedure. Mesh nodes are assigned to tasks according to the partition created as

described above. Each mesh node is also labeled, in the input file, with a tag that

identifies it as belonging to a specific subregion of the computational domain (e.g.,

fluid, wall, inlet, outlet). After the assignment of the nodes to the tasks, the pre-

processing phase begins. Basically, each task asks which tasks own the nodes to be

accessed during the subsequent phases of simulation, for instance for the streaming

part of the LB algorithm and for the Molecular Dynamics. Such information is

exchanged by using MPI collective communication primitives, so that each task knows

the neighboring peers for send/receive operations. Information about the size of data

to be sent/received is exchanged as well.

All point-to-point communication operations make use of the same scheme: the

receive operations are always posted in advance by using corresponding non-blocking

MPI primitives, then the send operations are carried out using either blocking or

non-blocking primitives, depending on the parallel platform in use (unfortunately, as

45

4: Parallel Implementation and Scaling

it is well known, few platforms allow real overlapping between communication and

computation). Then, each task waits for the completion of its receive operations,

using the MPI wait primitives. The latter operation, in the case of non-blocking

send operations, is to wait for their completion. The choice between blocking and

non-blocking send can be done at run time. The evaluation of global quantities (e.g.,

the momentum along the x, y, z directions) is carried out by using MPI collective

reduction primitives.

Molecular Dynamics with a highly irregular domain decomposition is a major

challenge in itself. In most parallel Molecular Dynamics applications the geometry of

the spatial domain is a regular bounding box with Cartesian decompositions defined

in such a way that each task has (approximately) the same number of particles and

minimal communicating regions. In our case, this strategy would generate two sepa-

rate domain decompositions: one for the LB (defined by the graph-based partitioning

method previously described) and another for the MD part of the simulation. As a

consequence, the exchange of momentum between particles and fluid would become

a non-local operation with a very high cost due to the long-range point-to-point com-

munications imposed on the underlying hardware/software platform. For the IBM

BlueGene such communications are explicitly discouraged. We decided to resort to

a domain decomposition strategy where the MD parallel domains coincide with the

decomposition of the LB mesh. In this way, each computational task performs both

the LB and MD calculations and the interactions of the particles with the fluid are

46

4: Parallel Implementation and Scaling

quasi-local.

The underlying LB mesh serves the purpose of identifying particles that belong

to the domain via a test of membership: a particle with position R belongs to the

domain if the vector of nearest integers [round(Rx), round(Ry), round(Rz)] coincides

with a mesh point of the domain. Additionally, the load balancing of the mesh

partitioning into the MD component can be exploited, given that an even number of

RBCs is expected to populate the domains. For the MD part of the code, a novel

parallelization strategy suitable for the irregular geometry of the LB domains has

been developed. The solution relies on the notion of cells, parallelepipeds with linear

sizes greater or equal to the interaction cutoff, that cover the whole irregular domain.

This representation allows the processors to i) perform an efficient search of both

interdomain and intradomain pairs of particles and ii) to reduce data transfers by

exchanging a limited superset of the particles actually involved in interdomain pairs

and particles moving across domains.

The cells are grouped into three sets (internal, frontier and external cells) that

verify the following properties:

1. Every point of the domain is within either an internal or a frontier cell;

2. Internal cells contain only points of the domain at distance greater than the

cutoff distance from the domain boundary;

3. Frontier cells contain all the points of the domain at distance less than or equal

47

4: Parallel Implementation and Scaling

Figure 4.3: Decomposition of a 2D domain in external cells (red), frontier cells (yel-
low) and internal cells (green). The dashed line represents the region within a cutoff
distance from the domain (solid line). The domain frontier has a staircase shape, but
in this figure it is shown as a smooth curve for f simplicity.

to the cutoff distance from the domain boundary;

4. External cells contain only points outside the domain;

5. All external points at distance less than or equal to the cutoff distance from the

domain boundary lie within either an external or a frontier cell.

Figure 4.3 shows an example of such decomposition applied to a simplified two di-

mension domain.

The decomposition into cells helps in handling MD for irregular domains in the

following way. At the beginning of each iteration, each processor searches for the par-

ticles inside its domain that could interact with particles located inside neighboring

domains. Property 3 guarantees that the particles are only contained inside fron-

tier cells. All particles located in the frontier cells are exchanged with neighboring

48

4: Parallel Implementation and Scaling

Figure 4.4: The geometry of the 12.5µm resolution test case, derived from a CTA
scan of human coronary arteries. The inset shows a detail of the geometry with red
blood cells visible. Note: the red color in the inset is meant simply to highlight the
presence of RBCs and is not an indicator of ESS. The Endothelial Shear Stress (ESS)
is the field derived from the simulations that encodes the atherosclerotic risk map
and is represented as a color map on the arterial walls.

49

4: Parallel Implementation and Scaling

processors so that only a limited superset of the particles that could interact with

the outer region is transferred. On the receiving side, only the particles that could

interact with the inner region are considered. Given property 5, the received parti-

cles to be retained lie inside either external or frontier cells. After particles involved

in interdomain pairs are exchanged, forces can be computed and particles positions

updated.

Next, RBC migration among processors is handled. All particles are binned in-

side the cells they moved into, and those that left the domain are exchanged with

neighboring processors. Departing particles are found by selecting those that moved

to external cells (property 4) and frontier cells. To discriminate RBCs inside the

frontier cells that moved to other domains, the underlying mesh is used by means of

the membership test previously described. In this way, each processor sends exactly

the particles that left its domain to all neighboring domains. On the receiving side,

incoming particles are selected among the pool of all transferred ones.

The final component of the discussed multiscale methodology involves the fluid-

particle coupling. Each suspended RBC experiences hydrodynamic forces and torques

arising from the fluid macroscopic velocity and vorticity, smeared over a domain made

of 4×4×4 mesh points. This non-local operation requires a communication step such

that each processor owning a given particle exchanges the hydrodynamic quantities

with the surrounding processors. The same type of information is exchanged to build

the forces acting on the fluid and arising from the suspended RBCs.

50

4: Parallel Implementation and Scaling

4.6 Results

The performance of the Lattice Boltzmann component ofMUPHY on a single core

is in line with other LB kernels highly tuned for the Bluegene/P platform[30]. From

this viewpoint, it should be noted that: i) the algorithm for the update of the LB

populations has an unfavorable ratio between number of floating point operations and

number of memory accesses; ii) unlike other applications which can heavily draw upon

consolidated computational kernels (e.g., matrix operations or FFTs), no optimized

libraries are available to perform the basic LB operations; and iii) it is not possibile

to exploit the SIMD-like operations of the PowerPC 440 processor, since these require

stride-one access whereas the LB method has a “scattered” data access pattern due

to the streaming phase.

We focus on the total runtime for the simulation, as well as on the breakdown

between computation and communication. To this end, a simulation was run at

12.5µm resolution, corresponding to about 1 billion lattice sites for the fluid flow.

All simulations were run over 200 time-steps. The measurements were performed on

the Jülich Bluegene/P with 294, 912 cores, 144 TB of total memory and a theoretical

peak performance of about 1 Petaflops. All runs were made in VN mode.

With a mesh having 1 billion fluid nodes within a bounding box having a total

of almost 300 billion nodes, the reference hematocrit level corresponds to 10 million

RBCs, run on the 72 racks system. More recently, results were obtained utilizing the

same mesh but with 100 and 300 million RBCs on the 40 rack Bluegene/P system

51

4: Parallel Implementation and Scaling

at Argonne National Laboratory. These results provided a fundamental check of the

reliability of the code at physiologic levels of hematocrit.

The successful completion of the simulations at each number of RBCs proves

the feasibility and robustness of the method up to physiological levels. The joint

usage of linkcell algorithms to compute pairwise interactions together with the linear

method to access the indirect addresses of the mesh for the RBC-fluid exchange of

hydrodynamic forces proved the linearity of the multiscale methodology with the

problem size on the 40 racks installation. Through the combination of the fine mesh

and inclusion of red blood cells, ESS in the patient could be observed over the course

of several hundred time steps as shown in Figure 4.4.

4.6.1 Strong Scaling

This scaling analysis is performed by increasing the number of processors at a

fixed problem size, in an effort to analyze the impact of the number of computational

cores on the total simulation time. In Table 4.1 and Figure 4.5, we show the elapsed

time per time-step, as well as the breakup for the LB and MD components separately.

A few comments are in order. First, the elapsed time decreases significantly with the

number of cores, with a speed-up of 43.5 between the 4, 096- versus 294, 912- core

configurations (see Fig. 4.6), corresponding to a parallel efficiency in excess of 60%.

This result is particularly significant given that the average number of mesh points

per computational core becomes pretty low (i.e., ∼ 3, 300) on the full configuration

52

4: Parallel Implementation and Scaling

of 294, 912 cores. Particularly efficient are the data concerning the LB component,

showing a speed-up of 54.1 and efficiency of 75%. Second, note that up to 147, 456

cores the MD and LB sections remain in a fairly satisfactory balance with each other

across the whole range of cores, thereby highlighting the excellent quality of the

workload partitioning. Third, the MD component shows saturation above 147, 456

cores. This is not unexpected, since at this number of cores and with 10 million

RBCs each domain contains an average number of 60 RBCs, a critically small number

regarding the calculations of Gay-Berne forces, the time-consuming MD component.

Below the threshold of 147, 456 cores, the constant ratio between the LB and MD

workloads underscores the good response of the MD component in dealing with a

handful of particles per domain. It is likely that, with a significant increase in the

number of RBCs, the MD component would show a further speed-up up to 294, 912

cores.

Table 4.1: Breakdown of the elapsed runtime

Cores LB MD LB+MD

4,096 0.4761 0.04633 0.5224

16,384 0.1191 0.01610 0.1352

147,456 0.0151 0.00419 0.0193

294,912 0.0088 0.00419 0.0130

To further analyze the parallel performance of this simulation, the breakdown of

53

4: Parallel Implementation and Scaling

4,096 16,384 147,456 294,912
Cores

10-3

10-2

10-1

100

El
ap

se
d

Ti
m

e
(s

ec
)

LB
MD
LB+MD

Figure 4.5: Log-log plot of the elapsed time for the LB component (circles), the MD
component (squares) and for the full simulation (diamonds) versus the number of
cores, for the system composed by 1 billion fluid nodes and 10 million RBCs.

54

4: Parallel Implementation and Scaling

4,096 16,384 147,456
Cores

0

100

Ef
fic

ie
nc

y
(%

)

4,096 16,384 147,456 294,912
Cores

0

10

20

30

40

50

60

70

Sp
ee

d-
U

p
(o

ve
r 4

,0
96

 C
or

es
)

LB
MD
LB+MD
Ideal

Figure 4.6: Semilog plot of the speed-up for the LB (circles) and MD (squares)
components, for the full simulation (diamonds), and for the ideal regime (dashed
line) versus the number of cores. Data are for the system of 1 billion fluid nodes and
10 million RBCs.

55

4: Parallel Implementation and Scaling

the communication time across the pool of cores was inspected.

Details of the communication performance were obtained using the MPI Profiler

[82]. The communication times decrease significantly as the number of cores increases,

roughly by 24% when going from 16, 384 to 294, 912 cores. The time for communica-

tion by the master core remains basically the same, with just a minor 5% increase.

Table 4.2 reports the MPI function communication summary, where the Send/Irecv

calls represent by and large the most time-consuming communication routines. The

bandwidth for the (blocking) MPI send corresponds to roughly 27 MB/sec and is

satisfactory in view of the highly non-trivial communication pattern.

Table 4.2: Communication Breakdown for the run with 294, 912 cores.

MPI routine Calls Avg. bytes Time(sec)

MPI Send 10251 1187.7 0.452

MPI Irecv 10302 17148.0 0.016

MPI Waitall 603 0.0 0.222

4.6.2 Hardware Performance Monitoring

Finally, a thorough performance analysis was conducted using the hardware per-

formance monitoring library (HPM) on BlueGene/P. HPM tracks 256 performance

counters that measure events ranging from integer and floating-point operations to

cache and memory accesses. The hardware counters can be set to measure the per-

56

4: Parallel Implementation and Scaling

formance for either cores 0 and 1 or cores 2 and 3 during a single execution. The

tool reports Flops as a weighted sum of various floating-point operations. More in-

formation is given in [82]. For 72 racks of BlueGene/P in VN mode (294, 912 cores),

64 TeraFlops were measured, as shown in Figure. 4.7. In view of the intrinsic Flop-

limitations of the Lattice Boltzmann algorithm discussed previously, and taking into

account the coupling between LB and MD components, this appears to be a fairly

satisfactory overall performance. Just to convey the flavor of the practical impact of

this application, the above performance corresponds to simulating a full heartbeat at

microsecond resolution in only a few hours time on the 72-rack BlueGene/P system.

4.7 Discussion

Summarizing, presented here is the first large-scale simulation ever of the entire

heart-circulation cardiovascular system, with a realistic representation of the complex

human arterial geometry at the spatial resolution of red-blood cells: from centime-

ters all the way down to microns in a single multiscale simulation. This simulation,

involving one-billion fluid nodes, embedded in a bounding space of three hundred

billion voxels and coupled with the concurrent motion of ten million red-blood cells,

achieves over 60 Teraflops performance on the full 294, 912 BlueGene/P processor

configuration, with a parallel efficiency in excess of 60 percent, performing about 100

billion lattice updates per seconds. Using the same arterial system and simulation

parameters it has been possible to elevate the hematocrit level to physiological levels

57

4: Parallel Implementation and Scaling

4,096 16,384 147,456 294,912
Cores

0

10

20

30

40

50

60

70

TF
lo
ps

Figure 4.7: Aggregate performance (Floating Point Operations Per Second) as a
function of the number of cores.

58

4: Parallel Implementation and Scaling

of 300 million RBCs.

The above achievement results from the development of several unique features,

in terms of both high-performance computing technology and of physical/computa-

tional modeling, namely i) the solution of the formidable graph-partitioning problem

prompted by the need of evenly distributing the workload associated with the complex

arterial geometry, across as many as 294, 912 BlueGene/P cores; ii) the innovative

communication techniques required to secure a balanced workload between fluid-

dynamics and Molecular Dynamics in geometries of real-life complexity; and iii) the

innovative modeling techniques required to manage the self-consistent fluid-particle

interactions in complex geometries. As to (ii), we are not aware of any previous

implementation dealing with non-ideal geometries.

This work represents major progress in the predictive capabilities of computer

simulation for real-life cardiovascular applications. The scientific and societal impact

of the extensions of such activity cannot be underestimated.

Currently, no combination of computational models, however sophisticated, can

provide a comprehensive and all-embracing description of all complex phenomena

which underlie the dynamical behavior of the entire human cardiovascular system,

including a realistic description of the arterial tissues, wall compliance, RBCs de-

formability, to name but a few. However, this does not prevent the possibility to

gain completely new insights on specific cardiovascular phenomena of major clinical

relevance. For instance, as far as long-term atherogenesis is concerned, neither wall

59

4: Parallel Implementation and Scaling

compliance, nor RBCs deformability, are credited for playing a lead role. On the

other hand, even in large arteries, the finite extent of the RBCs, is likely to exert a

major effect on the near-wall circulation patterns, hence the local wall shear stress

distribution. This is the kind of effect that the present simulations are expected to

shed new light on, once appropriate hardware resources are available.

This research raises several questions that will be addressed in the following chap-

ters. First, even taking into account all of the aforementioned strategies for efficient

parallelization, the simulation of one heartbeat required the use of 163,840 cores for a

full six hours. This order of time scale is not feasible to enable physicians to leverage

simulations such as this on a regular basis. Furthermore, the inset of Fig. 4.4 shows

the density of red blood cells for physiological values of hematocrit. This level of den-

sity causes the distance between the cells that the plasma moves between to diminish

and cause the fluid model to approach the continuum limit. To address both of these

concerns, focus was shifted to focus purely on the fluid component of the model. In

the follow chapters, methods to optimize the lattice Boltzmann model for the D3Q19

velocity model presented here as well as higher order models that extend the accuracy

of the simulation beyond the continuum limit are presented.

60

5

Fluid Models Beyond

Navier-Stokes

But not finding it possible that this could be supplied by the juices of the
ingested aliment without the veins on the one hand becoming drained, and
the arteries on the other getting ruptured through the excessive charge of
blood, unless the blood somehow flowed back again from the arteries into the
veins and returned to the right ventricle of the heart. In consequence, I began
privately to consider if it had a movement, as it were a circle.

– William Harvey, De motu cordis [68]

5.1 Motivation

The realization that blood actually circulated through the body was a great break-

through in the history of the study of hemodynamics and as such the massively parallel

application presented in this chapter is named HARVEY after its discoverer, William

Harvey. In Chapter 4, a model of blood flow coupled with the motion of red blood

61

5: Fluid Models Beyond Navier-Stokes

cells was introduced and the methods to provide efficient scaling up to 294,912 cores

presented. As discussed, the model presented some challenges such as the length of

time required to simulate just on heartbeat. To address such difficulties, the following

chapter focuses on fine-tuning the lattice Boltzmann model to ensure minimization of

the overall time to solution for the fluid model as well as ways to extend the regime

for which it is accurate through the introduction of HARVEY.

Beyond the cardiovascular models, the increasing demand for micron scale sim-

ulations for devices such as those used for microfluidics, furthers the urgency of the

need for models that can accurately model fluid flow beyond the continuum regime,

and for the development of optimization techniques that will enable these models

to achieve strong performance on current and future computer architectures. The

objective of this work is to study the performance impact of improving the accuracy

of a computational fluid dynamics (CFD) model and to identify methods to mitigate

this cost, thus making the simulation of extreme regimes of CFD tractable.

As shown, a multiscale fluid dynamics simulation was developed that allows for

the modeling of flow in complicated geometries from microfluidic devices to patient-

specific arterial geometries obtained from computed tomography (CT) scans [113],

[114]. Initial models have focused on flow in the coronary arteries where the diameters

are on the order of millimeters as shown in Fig. 5.1. In this chapter, the model is

extended such that it can be applied to other domains in fluid dynamics such as the

study of clogging in a microfluidic device. In expanding the use of this application

62

5: Fluid Models Beyond Navier-Stokes

to modeling gaseous flows in such devices, the model must be extended to accurately

simulate flows beyond the continuum regime. This will enable us to study situations

in which the traditional model may also fail for liquids, as in the case of modeling the

plasma flow between the particulates in blood.

Figure 5.1: Fluid density in the aorta.

Traditionally, CFD methods for studying flow are based on the Euler or Navier-

Stokes equations. These equations assume that the fluid is being modeled as a contin-

uum; however, at small scales this assumption begins to break down and conventional

CFD approaches become inaccurate [43]. The limit to the regimes accurately cap-

tured by these models are flows with Knudsen numbers (Kn) between 0 and 0.1 [26];

63

5: Fluid Models Beyond Navier-Stokes

where Kn = λ
L with λ being the average distance traveled by a molecule between

collisions (the mean free path), and L the macroscopic length scale within which flow

occurs. Beyond this range, many of the continuum assumptions break down and cor-

rections are necessary as the contributions from higher kinetic moments are no longer

negligible [171].

Figure 5.2: Microfluidic device.

Experiments have shown that the conventional methods may not produce accu-

rate results for rarefied flows [3], [31], [4]. Alternative methods such as the direct

simulation Monte Carlo [43], extensions to Navier-Stokes [140], [4], and use of the

Burnett equations [169], have been investigated to address these situations. Due to

its kinetic nature, the lattice Boltzmann method (LBM) offers a promising alternative

64

5: Fluid Models Beyond Navier-Stokes

for simulating flows in which Kn falls outside the [0-0.1] interval. In this chapter, the

focus is on on recent advances to the lattice Boltzmann model (LBM) that extend its

reach to accurately model flows for larger Kn ranges such as those described by Chan,

Yuan and Chen [139]. These higher order methods impact both the communication

bandwidth and computational complexity of the application. The goal of this paper

is to assess the impact of the higher order models on computational performance and

introduce ways to mitigate this cost. The metric of success is defined as minimal wall

clock time in seconds and maximal work units completed per second to enable the

modeling of larger fluid systems in shorter physical time.

The hypothesis is that the use of deep halo ghost cells alongside further enhance-

ments such as optimized data handling and structures, loop reordering and separation,

branch minimization, and communication tuning will enable us to significantly im-

prove the code’s exhibited performance. First experiments are conducted to measure

the effect of the code quality and impacts of singe node optimizations. Second, the

impact that the message aggregation has on the communication performance is evalu-

ated. Finally, experiments that address the challenges associated with scaling such as

communication performance and threading with MPI/OpenMP are presented. Hav-

ing defined the optimization levels, the methodology is validated through tests of

each level on both the IBM Blue Gene/P and IBM Blue Gene/Q architectures. This

analysis not only provides an upper bound of the potential performance metrics for

targeted supercomputing architectures, but also highlights the increasing performance

65

5: Fluid Models Beyond Navier-Stokes

restriction on the LBM due to the growing disparity between increases in bandwidth

and flop rate on new architectures.

Significant performance results are presented: 83% of the predicted upper bound

for Blue Gene/P and 79% on Blue Gene/Q. This correlated with a three-fold improve-

ment on Blue Gene/P and almost an eight-fold improvement on Blue Gene/Q due

to the optimizations for the extended models. Furthermore, it is demonstrated that

models of extreme fluid flows through the extended LBM can be efficiently simulated

on large-scale supercomputing platforms and that the computational and memory

burdens can be mitigated through careful tuning alongside the use of special features

such as deep ghost cells and hybrid programming models.

5.2 Adaptations to the Lattice Boltzmann Method

As mentioned, the fundamental quantity of the LBM is the particle distribution

function, f(x, t), that describes the likelihood of finding a fictitious fluid particle at

lattice point x, at time step t, moving at the discrete velocity ci. The particles move

only along discretized velocity paths defined by the lattice. The distribution is evolved

according to Eq. (5.1) [144]:

f(x+ ci∆t, t+∆t) = f(x, t)− ω∆t(f(x, t)− f eq(x, t)) (5.1)

There are two key components to the algorithm: collision and advection. The

collision step is calculated through a relaxation towards local equilibrium, as shown

66

5: Fluid Models Beyond Navier-Stokes

in the right hand side of Eq. (5.1). In this work, we use the most common collision

operator, the Bhatnagar-Gross-Krook (BGK), which relaxes to equilibrium on a single

time scale [17]. The local equilibrium is defined as a truncated Hermite expansion of

a local Maxwellian with density ρ and speed u [171]. The Navier-Stokes equation is

recovered with a second order expansion:

f eq
i = ωiρ

�
1 +

ξi · u
c2s

+
1

2

�
(ξi · u)2

(c2s)
2

− u2

cs

��
(5.2)

Higher-order expansions enable the physical effects beyond the continuum regime

to be modeled. The third order accurate expansion is defined as the D3Q39 discrete

velocity model, given by:

f eq
i = ωiρ

�
1 +

ξi · u
c2s

+

�
(ξi · u)2

2(c2s)
2

− u2

cs

�

+
ξi · u
6c2s

�
(ξi · u)2

c2s
− 3

u2

cs

��
(5.3)

where ω defines the quadrature weight and cs the speed of sound [146]. The added

term in Eq. (5.3) is related to the velocity-dependent viscosity of the fluid. As

discussed in [139], third-order truncation requires a discrete velocity model of sixth

order isotropy as opposed to the fourth order needed for Eq. (5.2).

In this work, we focus on two velocity models. For continuum flow, we use the

common 19-speed cubic D3Q19 lattice connecting each lattice point to its first and

second neighbors [113]. The associated weights and discretized velocities are given in

67

5: Fluid Models Beyond Navier-Stokes

Table 5.1: Parameters for the D3Q19 velocity model.

D3Q19 Lattice

c2s ξi ωi Neighbor Order Distance

1/3 (0, 0, 0) 1/3 0 0

1/3 (±1, 0, 0) 1/18 1 1

1/3 (±1,±1, 0) 1/36 2
√
2

Table 5.1. To study further regimes, we employ a model using the next-order kinetic

moments, the 39-point Gauss-Hermite quadrature defined in [139]. The associated

weights and discretized velocities are given in Table 5.2.

The advection, or streaming step, involves propagating the fluid particles along

the appropriate velocity trajectories. For the D3Q39 model, as opposed to the D3Q19

that focuses on up to second neighbors, particles can travel to lattice nodes that are

as far away as the fifth nearest neighbor [146]. The velocities describe the 18 first

and second neighbors or 38 first, second, third, fourth, and fifth nearest neighbors

and the 19th and 39th values are for the lattice point itself, these are represented in

the first row of the tables.

68

5: Fluid Models Beyond Navier-Stokes

Table 5.2: Parameters for the D3Q39 velocity model.

D3Q39 Lattice

c2s ξi ωi Neighbor Order Distance

2/3 (0, 0, 0) 1/12 0 0

2/3 (±1, 0, 0) 1/12 1 1

2/3 (±1,±1,±1) 1/27 2
√
3

2/3 (±2, 0, 0) 2/135 3 2

2/3 (±2,±2, 0) 1/142 4 2
√
2

2/3 (±3, 0, 0) 1/1620 5 3

5.3 Systems

5.3.1 Platform Overview

The two platforms used in this paper are the IBM Blue Gene/P and IBM Blue

Gene/Q architectures. Both rely on a system-on-a-chip backbone. The Blue Gene/P

has a 32-bit PowerPC 450 processor that runs at 850 MHz. Each node consists of 4

cores capable of executing SIMD instructions when data is 16-byte aligned resulting in

a peak performance of 13.6 GFlop/s. There are 2 GB of memory per node and 1 thread

per processor, allowing up to four threads per node. Point-to-point communication

69

5: Fluid Models Beyond Navier-Stokes

between nodes is handled via a 3D torus with a hardware (software) bandwidth per

unidirectional link of 425 (375) MB/s [74].

Blue Gene/Q has a similar modular design but expands the options for threading,

memory access, and speeds. It has a 64-bit PowerPC processor at 1.6 GHz. Each

node consists of 16 cores with 4 potential threads per core. There is a 204.8 GFlop/s

peak performance per node [67]. Memory per node is expanded to 16 GB and there is

support for speculative execution and hardware assist to sleep threads while waiting

for an event [25].

5.3.2 MFlup/s: A Performance Metric for the LBM

In order to determine the methods of optimization, it is first important to assess

the bounds on performance expectations of our model for the platforms of focus.

When analyzing lattice Boltzmann performance, focusing on the flop/s is not the

best metric as this can vary widely based on factors such as the implementation of the

model, compilers, and hardware used. A more meaningful metric is the work done

per unit time. For LBM, this means the number of lattice points updated per second.

A standard measure for this is to measure MFlup/s, or million lattice point updates

per second, which assesses the runtime of a production application depending only on

domain size and number of time steps simulated. Equation 5.4 shows how the peak

number of potential MFlup/s is calculated for a specific simulation. In this case, T (s)

70

5: Fluid Models Beyond Navier-Stokes

refers to the execution time for s steps and Nfl defines the number of fluid cells [162].

P [MFlup/s] =
s ·Nfl

T (s) · 106 (5.4)

Based on the specific hardware details of each platform, we can calculate the max-

imum performance attainable of Eq. (5.4) and determine the performance limiting

factors for our model in terms of bandwidth vs. computation. The application per-

formance will either be limited by available memory bandwidth or peak performance.

To calculate the attainable maximum performance P in MFlup/s, we use Wellein

et al.’s model defined with Eq. (5.5) [162], in which B is the number of bytes per

cell transferred to and from main memory and F is the number of floating point

operations per cell.

P =
Bm

B
||Ppeak.

F
(5.5)

In this implementation there are two load operations and one store operation for

every velocity mode. For the D3Q19 model, this results in B = (19+19+19)∗8 = 456

bytes per lattice point while for the D3Q39 model, there are 936 bytes per lattice

point. For the calculation of P in Table 5.3, we use the main store bandwidth measure-

ment for individual compute nodes to obtain the maximum attainable performance.

Inherently, we will see production results below these values as those implementations

span multiple nodes and require point-to-point communication over the torus.

Both systems are capable of performing a maximum of four double precision

floating-point operations (two multiply and two add) per cycle. To get the high

baseline, we assume maximal use of this functionality in this performance model.

71

5: Fluid Models Beyond Navier-Stokes

This is clearly an overstatement as the stream function consists primarily of load and

store operations while the collide function has a high number of addition operations.

For the D3Q19 model, our implementation has 178 core floating-point operations and

for the D3Q39 model, it has 190 core floating-point operations. These rates do not

depend on problem size.

The subsequent estimates for maximum achievable performance on these two plat-

forms are shown in Table 5.3, in terms of peak MFlup/s given the main store band-

width of the system and the peak given the flop/s for each processor. The calculated

max MFlup/s are shown with the limiting factor for each system highlighted in red.

Similar to the previous studied architectures, the bandwidth imposes the performance

limit on each system.

5.3.3 Impact of Bandwidth Limitations

The fact that both models for both architectures are bandwidth limited indicates

that the stream function is the limiting function as it consists of the bulk of the

load/store operations in the movement of the particles. While the overall runtime can

be reduced through arithmetic optimization of the collide function, scalability will be

inherently limited by the memory bandwidth and therefore by the stream function.

When extrapolating beyond the single node performance, the data is retrieved via

point-to-point communication on the torus. Assuming all loads and stores occur at

the torus bandwidth provides a lower bound for parallel performance. For D3Q19

72

5: Fluid Models Beyond Navier-Stokes

Table 5.3: Table of the maximum MFlup/s attainable on the IBM Blue Gene/P and
IBM Blue Gene/Q systems for both lattices with performance limiters highlighted
in red. In all cases, the code is extremely bandwidth limited. The hardware system
data for the IBM Blue Gene systems comes from [74], [67], and [25].

D3Q19 Lattice

System Bm P(Bm) Ppeak P(Ppeak)

BG/P 13.6 GB/s 29 MFlup/s 13.6 GFlop/s 76.4 MFlup/s

BG/Q 43 GB/s 94 MFlup/s 204.8 GFlop/s 1150 MFlup/s

D3Q39 Lattice

System Bm P(Bm) Ppeak P(Ppeak)

BG/P 13.6 GB/s 14.5 MFlup/s 13.6 GFlop/s 71.5 MFlup/s

BG/Q 43 GB/s 45 MFlup/s 204.8 GFlop/s 1077 MFlup/s

73

5: Fluid Models Beyond Navier-Stokes

this falls at 11.1 MFlup/s and 70 MFlup/s for BG/P and BG/Q respectively. As for

D3Q39, the lower bounds are at 5.4 MFlup/s and 34 MFlup/s. Of course this is an

overestimate and a real code will have a mix of various accesses to various cache levels

as well as communication, but this provides a crude view of performance expectations

that is surprisingly useful.

This goal of this analysis is simply to provide insight into the limits of potential

performance tuning and therefore give greater context to the results of the previously

discussed optimizations. The P(Fp) defines the number of MFlup/s that would be

attained at the peak flop rate. The ratio of P(Bm) to P(Fp) provides the upper

bound on potential hardware efficiency. For Blue Gene/P, the models have the po-

tential of achieving 38% (D3Q19) and 20% (D3Q39) hardware efficiency. While some

applications achieve greater than 60% efficiency, most production parallel codes only

leverage at most 10% of the available flop/s. This makes LBM ripe for high efficiency

on such platforms. It is worth noting that the off node memory accesses have a less

steep drop off in bandwidth, so as the code is highly parallelized, there will be less of

a performance impact.

This model is, of course, over simplified and contains many assumptions, however,

it does provide strong ground for assessing the upper bound of potential performance

on new architectures and targeting optimization efforts. In our case, it is worth noting

that the ghost cell implementation will add computation cycles not accounted for in

the flop/flup ratio.

74

5: Fluid Models Beyond Navier-Stokes

5.4 Implementation

In the work presented here, the goal is to assess the direct impacts on the compu-

tational performance due to algorithmic changes necessary to simulate fluid flow at

finite Kn. To this end, all simulations in this work are of a cubic fluid system with

periodic boundary conditions. This assumption allows the analysis to focus on the

impact of the higher order terms and extended neighbors of the lattice instead of being

dominated by boundary conditions. We further limit the study to a three-dimensional

fluid system with one-dimensional domain decomposition. While this could restrict

performance at the large-scaling limit, it again shifts focus to the algorithm and more

specifically enables direct analysis of ghost cell depth impact. As the function of this

code is to serve as the fluid component in a multiphysics coupling of red blood cell

and blood plasma motion, the realistic domain decomposition will be irregular and

rely on neighbor lists. Furthermore, it’s been shown that cubic blocking can lead to

overhead for long thin channels such as the geometries we would expect in artery and

capillary blood flow models [162]. The code discussed in this paper is written in C

and uses MPI and OpenMP for the parallelization.

As mentioned earlier, an LBM simulation consists of alternating steps completing

the streaming and colliding of particle populations. A straightforward implementation

of the method is shown in Fig. 5.3, in which a starting distribution of fluid particles

is initialized, the stream function propagates the particles to adjacent lattice points

and store these values in a temporary distribution function distr adv. The collide

75

5: Fluid Models Beyond Navier-Stokes

read i n i t i a l d i s t r

f o r (n< max steps) {

d i s t r adv=stream (d i s t r) ;

LBM Exchange () ;

d i s t r = c o l l i d e (d i s t r adv) ;

}

:

Figure 5.3: Naive implementation of the LBM.

function subsequently reads distr adv, determines all resulting collisions, relaxes the

population towards equilibrium, and updates the original array. In this way, it acts

as a general stencil code using information from it’s neighbors to update it’s value

and then pushing it’s data to the neighbors, however, the data accessed in distr adv is

from another phase space.

Rüde, Pohl, and Wellein have extensively studied optimal data structures and

cache blocking strategies for the BGK model (c.f. [162], [121], [122]). In this imple-

mentation, the collision optimized layout that they describe as optimal is leveraged.

In order to maximize messaging performance and set the code up for an easy

transition to the use of indirect addressing necessary for irregular domains, the dis-

tribution functions were stored in two dimensional arrays of (NumV elocities, zDim ·

yDim · xDim) allocated in contiguous memory. [113].

76

5: Fluid Models Beyond Navier-Stokes

f o r i x < xDim

f o r iy < yDim

f o r i z < zDim {

f o r i s < numVel {

i xa=ix+i cx [i s]

i ya=iy+i cy [i s]

i z a=i z+i c z [i s]

boundary coundit ions () ;

d i s t r adv [i s] [i z a+iya ∗Lz+ixa ∗Lz∗Ly]

= d i s t r [i s] [i z+iy ∗Lz+ix ∗Lz∗Ly]

}

}

:

Figure 5.4: Stream pseudocode. The icx, icy, and icz arrays define the velocity
directions, ξi.

Fig. 5.4 shows the details of the stream function. For each lattice point, all

potential velocities are iterated over. The component of the velocity, ξi, is added to

the correlating component of the lattice point coordinates. For example, particles

with velocity (1, 0, 0) at lattice point (0, 0, 0) would stream to position (1, 0, 0). The

resulting distribution of the streaming step is stored in the temporary data structure

of distr adv.

The collide step is outlined in Fig. 5.5. For each lattice point and for each discrete

77

5: Fluid Models Beyond Navier-Stokes

f o r i x < xDim

f o r iy < yDim

f o r i z < zDim {

f o r i s < numVel {

c a l c r h o and v e l ()

BGK=calc BGK op

d i s t r=update (d i s t r adv ,BGK)

}

}

:

Figure 5.5: Collide pseudocode.

velocity, macroscopic quantities of ρ and u are calculated locally. These values are

then used to determine the relaxation towards equilibrium via the aforementioned

BGK collision operator. Finally, the distribution array is updated. Note that the

collision step relies on information from the neighboring processes stream function

due to the fact that the stream function can result in particles displacing to lattice

points contained on neighboring processors.

78

5: Fluid Models Beyond Navier-Stokes

5.5 Optimizations

A precise simulation of fluid flow using either velocity model is demanding and

requires well-optimized and scalable code. In this section, the sequential and parallel

optimizations employed are presented.

5.5.1 Deep Halo Ghost Cells

As the update in the collide function requires data from the distr adv array from

all neighboring processors, this can lead to a communication bottleneck. A commonly

employed tool to alleviate this contention at the boundaries is to add ghost cells or

halo cells. The addition of this ghost layer increases the distribution array size by

one in each direction of domain decomposition. At each time step, the neighboring

processors exchange a copy of their border cells and receive the borders falling in

their own ghost cell regions as shown in Fig. 5.6. Each processor adds an extra row

to its domain of interest, as shown in blue, and populates this ghost cell row with the

border data from its neighboring processor.

The use of an extra row of ghost cells is often found in large-scale models [165],

[162]; however, by stopping at one row, potential for further tuning is being left

unexplored. Kjolstad and Snir discussed implementation methods of the ghost cell

pattern in [76] and suggested the investigation of deep halos as a potential method

to trade off computation for communication. A deep halo refers to the use of ghost

cell depth greater than one. Deep halos can be leveraged to further offset message

79

5: Fluid Models Beyond Navier-Stokes

Figure 5.6: 2D example of ghost cells in x-dimension. Each processors receives a row
from its neighboring processor to be used in the stencil calculation.

latency by reducing the number of overall messages used in a simulation. While this

requires extra computation to update the ghost cells, in some cases the benefit from

message reduction and further overlap of communication and computation can make

this advantageous. By increasing the number of ghost cell width by a factor n, the

data exchange can be minimized to only be required every n steps [76].

Note that for the D3Q39 lattice model, a deep halo implementation must be

used simply for correctness. As mentioned previously, this model allows particles to

move to neighboring grid points that are further away within one time step. The

fundamental ghost cell depth must be set to include the number of neighbors that a

particle could move within a time step (k). Discussions of ghost cell depth for the

D3Q39 refer to the multiples of k included. For example, a ghost cell depth of 2

80

5: Fluid Models Beyond Navier-Stokes

would include 2k additional cells at each side of a border exchange.

In a later section, the role that deep halo exchanges have on the performance of

both velocity models investigated in this paper is discussed.

5.5.2 Data Handling (DH)

A thorough set of standard optimizations regarding the handing of the data was

employed to improve performance. One of the overarching goals was to reduce the

number of floating point operations in the two most intensive routines: stream() and

collide(). Temporary variables were introduced to remove any redundant computation

and arithmetic division was replaced with the multiplication of the reciprocal due to

the heavy cycle count associated with division operations.

In this case, the largest impact came from optimal cache usage. Loops were re-

structured to both maximize cache reuse and reduce any recalculation. As mentioned

earlier, the discrete velocities of the distribution function, f(i)(zdim ·ydim ·zdim) are

located contiguously in memory. To maximize cache reuse, the loops were reorganized

such that all velocities are iterated over followed by the z-,y- and x- coordinates in

memory order.

This was a moderate impact on performance on the Blue Gene/P architecture,

30%, but a very significant impact of an 75% increase in MFlup/s on Blue Gene/Q.

This is due to the extensive cache hierarchy. In the original implementation, almost

no loads during the collide function hit in the L2 cache while 3% hit in DDR. After

81

5: Fluid Models Beyond Navier-Stokes

the DH tuning, there was a .4% increase in L1 d-cache and L1P buffer hits and a

1.2% increase in L2 cache hits while DDR dropped to .01%. This resulted in a longer

load latency in the original version. During the stream function, cache hits were now

optimized to fall only in L1 d-cache and the L1P buffer. These measurements were

taken with the IBM Hardware Performance Monitor [58].

5.5.3 Compiler Optimizations

The impact that various XL/C compiler optimizations had for this application

compared to the default O3 optimization level were assessed and shown to provide

better loop scheduling and memory usage. It was shown that the most aggressive

optimization level of O5 produced the strongest results while maintaining correct

results, surpassing that of O3. While compilation took longer, the benefit gained was

worthwhile. The most improvement, however, was gained through optimization of the

intra-procedural analysis (IPA). By setting the qipa level to 2, whole-program alias

analysis was enabled including the disambiguation of pointer dereferences and indirect

function calls and whole program data reorganization. This resulted in significant

performance gain while accuracy was maintained.

For the BG/Q implementation, it was found that a lower optimization setting of

O3 produced better results increased the produced MFlup/s by 2.5x. By investigating

generated lst files, we found that the compilers were more successful in automating

loop unrolling and optimizing the floating-point instructions for this architecture.

82

5: Fluid Models Beyond Navier-Stokes

5.5.4 Loop Restructuring and Branching Reduction (LoBr)

To further minimize the over all runtime of the application, we restructured the

loops and reduced any branching in the code. With the addition of ghost cells to

the simulations, especially those of deep ghost cell levels, there are several distinct

sections of the domain to be modeled on each processor. In the case of a 1D domain

decomposition, there is the ghost cell region from the previous processor, the local

domain of interest, and the ghost cell region covering data from the next processor.

In the LBM, both the stream and collide functions must iterate through loops that

cover all three regions. We found that by explicitly separating these into different

for loop groupings, we were able to better take advantage of the cache and minimize

index calculation.

More improvement was garnered through a branch reduction trick we developed

to swap if statements with for loops. This is outlined in Fig. 5.7. We removed all if

statements from the innermost loop and replaced them with a for-loop that is able to

continue without stalling. The location of where a particle is displaced to determines

which region the new index falls in. For storing data, there is an offset needed to

store ghost cell data. We create an array of these new indices based on the x-index

in the outermost loop. This array is then iterated over for 1, 2, or 3 passes depending

on the number of regions being spanned.

83

5: Fluid Models Beyond Navier-Stokes

f o r i x < xDim {

i xa=ix+i cx [i s]

count = 0 ;

i f (xmin< i xa < xmax)

index [count] = (ixa−my xmin+GCS) ∗LyLz

count++

i f (gc min1< i xa < gc max1)

index [count] = (ixa−gc min1) ∗LyLz

count++

i f (gc min2< i xa < gc max2)

index [count] = (my Lx−GCS+ixa−gc min2) ∗LyLz

count++

f o r iy < yDim {

i ya=iy+i cy [i s]

f o r i z < zDim{

i z a=i z+i c z [i s]

f o r i s < numVel {

boundary coundit ions ()

a = i z+iy ∗Lz+(ix−my xmin+GCS) ∗LyLz

f o r (j j =0; j j < count ; j j++)

d i s t r adv [i s] [i z a+iya ∗Lz+index [j j]] = d i s t r [i s] [a]

} } } }

:

Figure 5.7: Stream pseudocode with branch optimization.

84

5: Fluid Models Beyond Navier-Stokes

5.5.5 Nonblocking Communication

In the naive implementation, blocking communication was used to exchange data

between processors. Instead, this was switched to the use of non-blocking MPI func-

tions. Especially for the non-ghost cell case, there is no opportunity to allow an

overlap of computation and communication as the collide function directly relies on

the results of the stream function from it’s neighbors. The MPI Irecv is posted before

the local stream calculation and the MPI ISend posts at the completion of the local

stream. This results in a small reduction in the communication overhead that will be

shown in the Results section. In the ghost cell implementation, the data can be sent

at the end of the time step and waited on before the next stream function commences.

5.5.6 Separate collide function for collide (GC-C)

When using ghost cells, and especially when using deeper halos, the computa-

tion/communication overload can actually be increased by a much further degree. A

separate function to handle the collision phase of the ghost cell regions was intro-

duced. As the data being sent to the processor’s neighbor is the border region of the

domain of interest on that processor, it can be calculated and sent before the ghost

cell region collisions are computed. By separating out the handling of the ghost cells

and the region of interest, the message latency is hidden by overlapping it with the

ghost cell computation. This is outlined in Fig. 5.8.

85

5: Fluid Models Beyond Navier-Stokes

f o r (n < maxsteps) {

read i n i t i a l d i s t r

f o r (i < num ve l o c i t i e s) {

f o r (z <z dim)

f o r (y < y dim)

f o r (x < x dim) {

i f (n%GCL == 0) {

MPI Send

MPI Waitall

}

d i s t r adv = stream ()

d i s t r = c o l l i d e (d i s t r adv)

i f ((n+1) % GCL ==0) {

MPI Irecv (d i s t r) ;

}

d i s t r = g c c o l l i d e (d i s t r adv) ;

} } }

:

Figure 5.8: Separate handing of ghost cell collision.

86

5: Fluid Models Beyond Navier-Stokes

5.5.7 SIMD Vectorization

Examining the compiler generated code for both BG/P and BG/Q, showed that

the compiler failed to have SIMD double hummer intrinsics leveraged, therefore cut-

ting the potential hardware efficiency already in half. To maximize performance, the

code was modified to explicitly generate double hummer intrinsics through direct calls

to instructions like fpmadd. This required enforcing 16-byte alignment and the disjoint

pragma. Alongside the intrinsics, XL/C pragmas were utilized to force loop unrolling

of the innermost loops in the functions [58].

For Blue Gene/Q, several compiler options were attempted as well as hand coding

the intrinsics functions. In this case, there were modifications to the compiler so

this work needed to be re-implemented for BG/Q instead of BG/P. Also, BG/Q

has the expanded ability to handle different data alignments than simply the 16-

byte alignment required for BG/P. Specifically in the collide function, quad-word

load, store, and arithmetic operations were able to be used. While more limited,

instructions like fused multiply-add were able to be taken advantage of. Without

moving to vector doubles, we were not able to fully exploit QPX instructions [58].

5.6 Results

To assess the impact of the various optimizations previously discussed, Fig. 5.9

shows the results of progressive tuning of the two velocity models on each hardware

87

5: Fluid Models Beyond Navier-Stokes

and their approach to the peak performance rate defined by our performance model.

Performance is presented in terms of the previously discussed quantity, MFlup/s.

For Blue Gene/P, the MFlup/s achieved for D3Q19 is 92% of the peak performance

from our model. The slight discrepancy can be partially accounted for in that the

model is actually targeting single node performance while Fig. 5.9 depicts results

from multi-node runs. This difference was intentional in order to enable side-by-side

comparison of the single node optimizations with the communication improvements.

It does, however, introduce the previously discussed performance degradation from

use of the torus for communication instead of all on node memory access. The torus

has a lower bandwidth and will reduce the achieved MFlup/s. Moreover, the optimal

runtime was achieved using the ghost cell method, which adds lattice updates not

accounted for in the performance model.

Additionally, the model shows a maximum hardware efficiency of 38% and with

these optimizations, we achieve 31% of peak flop/s for the full simulation and 43%

hardware efficiency in the compute heavy collide routine. This further confirms that

the optimizations discussed have tuned the code almost to its maximum potential.

For D3Q39, it was slightly lower at 83% of the peak predicted performance value,

likely due to the increased impact of the ghost cell implementation. In this case, 2

extra boundary rows are added around each processor boundary. The additional cost

of these lattice updates are not accounted for and introduce a larger impact on the

overall performance. The optimizations for this level with the largest impact were

88

5: Fluid Models Beyond Navier-Stokes

the compiler settings and the separate collide function for ghost cells. This is likely

due to the extended number of ghost cells providing a more substantial option for

communication/computation overlap. We will investigate impacts on communication

overhead later in this section.

As for Blue Gene/Q, the largest impacts came from the compiler optimizations and

the data handling. The intrinsics provided less of an impact, likely for two reasons.

First, much of the performance gain was already achieved through the compiler and

BG/Q gains a lot of its performance bump from the Quad Processing Extension

(QPX) built-in functions. In the current implementation, we do not use the vector

logical functions, leaving room for potentially further tuning. Optimal use of the

cache and compiler optimizations proved the most fruitful optimizations. The max

issue rate per core rose from 16.19% to 29.52%, meaning that each core is producing

instructions at about 30% of the theoretical limit. This value is a good issue rate

especially considering these results are from 128 nodes using 32 tasks per node with

an unthreaded implementation. As shown in Fig. 5.9, the tuned version of the

code approached the estimated performance maximum. For overall performance of

the D3Q19 and D3Q39 models, we recovered 85% and 79% of the peak predicted

performance. Again, these results are from a multi-node partition, introducing the

degradation from intra-node communication.

Some of the optimizations encapsulated in Fig. 5.9 improved the load balance of

the application and consequently the parallel nature of the application more than the

89

5: Fluid Models Beyond Navier-Stokes

Orig GC DH CF LoBr NB−C GC_C SIMD
0

500

1000

1500

2000

2500

3000

3500

4000

M
F

lu
p

/s

D3Q19

D3Q39

(a) Blue Gene/P Optimization Impacts.

Orig GC DH CF LoBr NB−C GC_C SIMD
0

2000

4000

6000

8000

10000

12000

M
F

lu
p

/s

D3Q19

D3Q39

(b) Blue Gene/Q Optimization Impacts.

Figure 5.9: MFlup/s achieved with each optimization enhancement on the two plat-
forms in question. The horizontal lines represent the corresponding peak MFlup/s.
In each case, 128 nodes were used.

90

5: Fluid Models Beyond Navier-Stokes

performance as measured by MFlup/s of a single processor count. To gain insight

into the impact of the communication tuning, we look at the time spent by the node

spending the minimum, median, and maximum time in communication. This data,

presented in Fig. 7.5, shows the communication balance of simply using non-blocking

communication with solid lines. The blue lines refer to the D3Q19 model and the

red to the D3Q39 model. The sharp slope of both lines indicates the strong load

imbalance as one node spends as little as 4.8 seconds in communication while another

spends 40 seconds almost entirely in MPI Waitall. The dash-dot lines represent the use

of both non-blocking communication and ghost cells. The introduction of the ghost

cells allows the data to be sent at the end of the time step instead of causing the collide

function to wait for the results of the stream function of neighboring processors. While

there is still limited overlap with computation, communication imbalance is reduced.

Finally, the dashed lines show the improvement gained through the introduction of

a separate collide function to calculate the ghost cell data. This function allows

the sends to be posted before the ghost cell calculations. As the receives can be

posted at the beginning of the time step, the latency of the message passing can be

hidden by the time for computing the ghost cells. The communication imbalance is

minimized to ranging from 3-5 seconds for the D3Q19 model for example, posing a

significant improvement to the initial range of 4.8-40 seconds. Simulations conducted

for a greater number of time steps and larger fluid system sizes saw roughly the same

ratio to hold throughout.

91

5: Fluid Models Beyond Navier-Stokes

Min Med Max

5

10

15

20

25

30

35

40

C
o

m
m

 T
im

e
 (

s
)

D3Q19 NB−C

D3Q19 NB−C & GC

D3Q19 GC−C

D3Q39 NB−C

D3Q39 NB−C & GC

D3Q39 GC−C

Figure 5.10: Time in seconds spent in communication for the processors that exhibited
the minimum, median and maximum communication time at a range of optimization
levels.

92

5: Fluid Models Beyond Navier-Stokes

5.6.1 Deep Halo Ghost Cells

The use of deep halo ghost cells can further reduce message overhead by reducing

the number of messages being sent. A greater number of ghost cells are retained on

each processor, subsequently introducing a small computational cost, but messages

are only exchanged every few time steps. The same amount of data is passed, but the

reduction in number of messages allows for easier masking of the messaging latency. In

order to assess the tradeoff between the communication gains and added computation,

we simulated several different fluid system sizes for 300 time steps, enough so that

the messaging tradeoff would have a visible impact on the runtime. For the D3Q19

model, 2048 processors on Blue Gene/P were used. The results given in Fig. 5.11 are

normalized to the runtime for one ghost cell. GC refers to the ghost cell depth. Again,

note that GC=1 for the D3Q39 model actually includes two extra lattice points in

that direction as particles can move up to two points in a single time steps. The

results highlight that at small population counts, the ghost cells have a higher impact

on the surface/volume ratio and lead to typically longer runtimes. It is not until the

larger sizes of 64,000 and 133,000 fluid nodes that a 2-ghost cell deep and 3 ghost cell

deep implementation becomes optimal. The size indicates the size of the dimension

being partitioned across processors. The other dimensions are held constant for the

purpose of this study. For the 133,000 case, the individual nodes ran out of memory

due to the addition of the fourth ghost cell and could not complete the simulation.

For the D3Q39 model, system sizes that fit into memory on BG/P were not large

93

5: Fluid Models Beyond Navier-Stokes

8k 16k 32k 64k 133k
0

0.5

1

1.5

2

2.5

T
im

e
 N

o
rm

a
li
z
e
d

 t
o

 G
C

1

GC=1

GC=2

GC=3

GC=4

(a) D3Q19

16k 32k 64k 133k 170k 200k
0

0.5

1

1.5

2

2.5

T
im

e
 N

o
rm

a
li
z
e
d

 t
o

 G
C

1

GC=1

GC=2

GC=3

GC=4

(b) D3Q39

Figure 5.11: Results showing optimal ghost cell depth, GC, at a variety of fluid
system sizes. The results for the D3Q19 model were obtained on 2048 processors of
Blue Gene/P while the results for the D3Q39 were from 16 nodes on Blue Gene/Q
run with 16 tasks and 1 thread per node. This difference was due to differences in
memory constraints between the two models.

94

5: Fluid Models Beyond Navier-Stokes

enough to overcome the added cost of computing an additional 2 lattice points in the

direction of each neighbor for each ghost cell level, so 16 nodes on Blue Gene/Q were

used with 16 tasks each and one thread. Fig. 5.11 shows the results for dimensions

ranging from 16,000 to 200,000.

In both graphs of Fig. 5.11, deep levels of ghost cells are shown to be beneficial at

various fluid sizes and can produce more efficient simulations. For example, with the

D3Q19 model ghost cell=2 for 64k corresponds to a hardware efficiency of 27% and

43% efficient in the collide routine, achieving several percent higher than seen with

other fluid sizes.

For both Blue Gene/P and Blue Gene/Q, the number of ghost cells ideal for the

D3Q19 model depends on the ratio of the dimension of the fluid system to the number

of processors. The ideal ratios in Table 5.4 were consistent for both architectures,

however, ratios beyond 66 per node were unable to be tested on either due to memory

constraints. For systems with larger memory footprints, further lower bounds that

require more ghost cells would likely be identified.

On Blue Gene/P, the memory overhead associated with deep halo ghost cells of

the D3Q39 model made it have no performance gain. On Blue Gene/Q, however, the

deeper levels started to have an impact mimicking the results shown for the D3Q19

model. Again, the most efficient level did not simply increase linearly with the ratio

as one might naively expect. Due to on-node memory restrictions, ratios beyond

800:1 were not able to be tested. At higher ratios, it is likely that even deeper ghost

95

5: Fluid Models Beyond Navier-Stokes

Table 5.4: Optimal ghost cell depth for fluid size/processor ratios in the D3Q19 lattice
model.

Lattice Points/Proc Ghost Cell Depth

R ≤ 16 1

16 < R ≤ 32 3

32 < R ≤ 66 2

cell depths will be beneficial. At the maximum ratio tested here, the impact of 2 vs.

3 ghost cell layers was negligible.

Table 5.5: Optimal ghost cell depth for fluid size/processor ratios in the D3Q39 lattice
model.

Lattice Points/Proc Ghost Cell Depth

R < 256 1

532 < R ≤ 256 3

680 < R ≤ 532 2

800 < R ≤ 680 2 or 3

96

5: Fluid Models Beyond Navier-Stokes

5.6.2 Hybrid Implementation

We finally studied the role that a hybrid implementation could have for a LBM

implementation that leverages a deep halo ghost cells pattern. In previous tuning

studies conducted on Blue Gene/P, flat MPI and MPI/OpenMP programming models

were shown to offer similar performance results for the LBM [165]. We found similar

results as depicted in Fig. 5.12a, however, the hybrid implementation allows us to

both increase the size of the fluid system that can be simulated and reduce the number

of ghost cells because it reduces the number of domains of interest that the problem

is broken into, thus directly reducing the number of ghost cells used. Recall that for

any ghost cell depth n, the number of ghost cells in a simulation is equal to the area

of the cross sections of the number of domains multiplied by 2n.

This tradeoff also provides the ability to model larger fluid systems on smaller

processor counts. For the results presented here, we used the maximum ratio from

the previous studies, fluid dimension of 66 lattice points per processor for the D3Q19

model and 800 lattice points per processor for the D3Q39 model.

The first set of test was conducted on 32 nodes of Blue Gene/P exploring the use

of 1,2,3 and 4 threads compared to results modeling the same fluid system but maxing

out the MPI rank count through use of virtual node mode or four MPI processes per

node. The simulations were run for ghost cell ranges 1-4 with the smallest runtime

at each level being displayed to show maximum performance. Second, 16 nodes on

Blue Gene/Q were used with a range of task and thread combinations shown in Fig.

97

5: Fluid Models Beyond Navier-Stokes

5.12b.

As shown in Fig. 5.12, threading improves the performance of both models for

both platforms. The minimal runtime for the D3Q19 model on Blue Gene/P is

approximately the same for the hybrid model with 4-threads or the flat MPI model

run in virtual node mode. This result is consistent with the previous group’s results.

The interesting point here, is that for the D3Q39 model, the hybrid model with 4-

threads with two ghost cells actually outperforms the virtual node mode case. This

improvement is due to the reduction in ghost cell overhead as the number of border

cells is decreased. There is a much bigger impact on the D3Q39 model as it not only

requires more memory bandwidth for the extended velocities but also has to take into

account the two-speed nature of the model, resulting in twice as much overhead as

seen in the D3Q19 model. In regards to Blue Gene/Q, the naive expectation was

that the optimal setup would have at least one task per processor and between one

and four threads per task. Due to the aforementioned benefit of ghost cell reduction

through the shared memory optimization, the optimal pairing of tasks and threads

for the higher order model is actually four tasks per node with 16 threads assigned,

as shown in Fig. 5.12b. This optimal pairing was true for both models.

5.7 Discussion

Modeling fluid flows beyond the Navier-Stokes regime has been a long posed chal-

lenge. With the extension of the LBM to the D3Q39 discrete velocity model, flows

98

5: Fluid Models Beyond Navier-Stokes

1T 2T 3T 4T VN
0

500

1000

1500

2000

2500

3000

3500

T
im

e
(s

)

D3Q19
D3Q39

(a) Blue Gene/P

1−64 2−32 4−1 4−4 4−8 4−16 8−8 16−1 16−2 16−3 16−4 32−1 32−2 64−1
0

500

1000

1500

2000

2500

3000

Tasks−Threads

T
im

e
(s

)

D3Q39

D3Q19

(b) Blue Gene/Q

Figure 5.12: Impact of threading on both velocity model’s performance. In each case
here, the time of the minimal ghost cell implementation is shown.

99

5: Fluid Models Beyond Navier-Stokes

at finite Kn are able to be accurately modeled and higher order kinetic moments

recovered [171], allowing the accurate modeling of nanoscale flows such at those in

the micro-vasculature or MEMS.

This extended model, however, introduces new computational challenges over pre-

viously studied LBM implementations. In this paper, the performance impact of the

extension and methods to reduce this impact were explored. By maximizing data

handling and streamlining the computation, results were produced demonstrating

92% and 83% of the predicted upper bound on performance on Blue Gene/P for the

two models, consistent with the 30% demonstrated hardware efficiency for D3Q19

and 21% of peak for D3Q39. For Blue Gene/Q, the production results were at 85%

and 79% of the predicted performance maximums, confirming strong correlation with

the simple performance projection. An overall 3× improvement for Blue Gene/P and

7.5× improvement on Blue Gene/Q were exhibited.

It was shown that for both models, deeper levels of ghost cells proved beneficial

as they minimized the overall number of messages being sent. The performance

gain from deep level ghost cells, actually made the D3Q39 model with 4 threads

outperform the single ghost cell implementation maxing out flat-MPI ranks on Blue

Gene/P. Similarly, on Blue Gene/Q, the use of deep level ghost cells alongside the

hybrid programming model produced efficient simulations of the extreme condition

fluid flows. It was found that using a high level of threading per node resulted in

maximal performance due to the ideal ratio of minimized communication due to ghost

100

5: Fluid Models Beyond Navier-Stokes

cell use and minimized added ghost cell overhead due to threading.

Finally, it was demonstrated that the extended models are highly bandwidth lim-

ited, which poses limitations to the potential hardware efficiency when there is a

greater imbalance between bandwidth and floating point capabilities. While signif-

icant runtime reduction is achieved on the Blue Gene/Q architecture, investigation

into methods to alter the algorithm as to reduce the memory accesses per lattice

update could increase the potential hardware efficiency on such systems. The simu-

lations of fluid at extreme conditions present a real world example of an application

where focus needs to be on memory bandwidth improvement over increased flop rate.

While the work presented in this paper offers demonstrated performance nearing the

upper bound predicted for this platform, it simultaneously highlights the need for

more methods to bridge the gap between bandwidth and floating-point performance

limitations.

101

6

Comparison of Simulation to in

vivo Measurements

One concrete example is better than a mountain of prose.

– Freeman Dyson, Scientific American [111]

In this chapter, the results of the proposed blood flow simulation are evaluated and

compared to in vivo measurements. The objective of this chapter is to assess the

accuracy of the calculation of the pressure gradient through a moderate thoracic

aortic co-arctation model. The focus is shifted to the pressure gradient in the aorta

due to its ease of measurement. This quantity is a strong candidate for evaluating

simulation as opposed to the aforementioned ESS that cannot currently be measured

in vivo [80].

102

6: Comparison of Simulation to in vivo Measurements

6.1 Motivation

The disease in question in this chapter is another CVD called the co-arctation of

the aorta (CoA). CoA can pose a significant problem as the narrowing of the aorta

can inhibit blood flow through the artery. CoA accounts for 8%-11% of congenital

heart defects, affecting tens of thousands of patients annually in the western world

[81]. While preventative actions such as balloon angioplasty or stent implantation

can reduce the burden the heart by alleviating the pressure gradient [127], long-term

results still reveal a decreased life expectancy associated with the disease. Studies

have indicated that biomechanical properties could be a contributing factor ([81],

[107]). The objective of personalized computer simulations of patients suffering from

CoA is to further the understanding of hemodynamic flow patterns under both resting

and exercised states to allow for a better understanding of likely sources of morbidity

and an assessment of potential treatment outcomes [81].

Currently, surgical intervention is sought if the peak-to-peak systolic pressure

gradient across the co-arcted vessel is measured at greater than 20 mmHg. This level

was shown to be the cutoff for best results by physician intervention that incurred

the least risk for the need of additional procedures [134]. This pressure gradient is

not only determined by the size of the narrowing but also factors such as the flow

rate of the fluid and the size, number, and placement of collateral vessels [127]. The

physiological state of the patient can also contribute to an increase in the pressure

gradient if, e.g., the patient is in an exercised state due to the associated elevation

103

6: Comparison of Simulation to in vivo Measurements

in heart rate. When the patient is at rest, clinicians can easily measure the pressure

gradient; however, this measurement is difficult to obtain under exercise conditions.

This difficulty causes simulation to play a key role in determining the pressure gradient

non-invasively.

In this chapter, the accuracy of the aforementioned HARVEY application is eval-

uated through comparison of measured patient data to the result of data informed

simulation. In this case, the measurements from several medical imaging modalities

are used to prescribe parameters like blood viscosity and inflow rates in order to get

an estimate of the pressure gradient across the co-arcted aorta. The simulation of

blood flow in the patient specific data involves the following five steps:

1. Acquisition of medical imaging data

2. Image segmentation to identify vessel geometry

3. Grid initialization

4. Flow simulation

5. Data analysis and simulation

The methods to obtain the medical imaging data, process it, and impose a regular

grid and model the fluid flow using parameters provided from patient data will be

discussed. Furthermore, a technique is introduced to use a patient specific inflow

waveform to produce realistic pulsatile flow that upholds the measured flow distribu-

tion via velocity-imposed boundary conditions at the inlets and outlets. Finally, the

104

6: Comparison of Simulation to in vivo Measurements

convergence of the pressure gradient is assessed alongside the overall accuracy of the

simulation.

6.2 Geometry Data Acquisition and Segmentation

The patient data used in this chapter was provided by the STACOM CFD Chal-

lenge for the simulation of hemodynamics in a patient-specific aorta co-arctation

model [127] and was discussed in detail in [81]. Gadolinium-enhanced MR angiogra-

phy (MRA) was performed on the participant using a 1.5-T GE Sigma MRI scanner

(GE Medical Systems, Milwaukee, WI). The participant was in the supine position

and instructed to hold their breath during the acquisition period that lasted approx-

imately 20s. Simvascular software [21] was used to extract a 3D volumetric repre-

sentation of the ascending aorta, arch, descending aorta, and upper branch vessels as

shown in Fig. 6.1. MeshSim (Simmetrix, Clifton Park, NY) was used to generate a

mesh file of the segmented MRA data. More details can be found in [83].

6.3 Initializing the Regular Simulation Grid

As discussed in Chapter ch:methodology, the LBM relies on a regular Cartesian

grid being applied across the vessel geometry. The computational fluid dynamics

equations are then solved at each grid point allowing the hydrodynamics properties

to be deduced. To guarantee a proper initialization of the simulation grid, it is

105

6: Comparison of Simulation to in vivo Measurements

Figure 6.1: Patient specific aortic geometry acquired from the segmentation of MRA
data. The specific vessels contained in the geometry are labeled.

106

6: Comparison of Simulation to in vivo Measurements

required the patient’s triangulated vessel geometry to be a closed, 2-manifold with

no overlaps of interior volume. The process starts by computing the axis-aligned

bounding box (AABB) of the input geometry offset by ε (I use ε = 1.8ci∆t) on each

side, then discretize the box’s volume into a regular grid of targeted resolution. Note

that ε is chosen to be slightly bigger than the length of the diagonal of a regular

grid cube (ε >
√
3ci∆t). With this choice, it can be guaranteed that every interior

grid point has a neighbor not only in any 6-neighborhood but in any diagonal grid

direction also.

Next, each grid point is classified to either be inside or outside of the given vessel

geometry. Note that it would be prohibitively slow to run an inside-outside test for

each individual grid point. The grid points falling inside the union of all sphere-sIpt

triangles (the volume of a sphere-sIpt triangle is given by the union of all spheres of

radius ε with centers on the triangle) and then “fill in” the inside-outside classification

for all remaining grid points. More specifically, the method calls for the iteration over

all vessel triangles: for each triangle, the computation of the grid points that overlap

with its AABB offset by ε and then the validation against its sphere-sIot bounding

volume. For the remaining grid points, the closest point on the triangle and – if the

point hasn’t been initialized yet or the current point is closer to the vessel geometry

than the previously initialized one – is computed and the method will classify it as

either inside or outside using the angle Iighted pseudo normal approach by Bærentzen

and Aanæs [8]. Note that [8] guarantees a correct inside-outside classification for

107

6: Comparison of Simulation to in vivo Measurements

points with respect to non-convex geometries provided that I know their closest points

on the mesh. After a run through all triangles, I can guarantee to find the correct

closest points for all grid points falling in the union of the sphere-sIpt triangles, hence,

to correctly classify them using [8]. By using a radius of ε to setup the triangles, the

method further guarantees the correct initialization of at least two inside grid points

in any 6-neighborhood and diagonal grid direction within a distance ε of the vessel’s

boundary. Finally, the algorithm proceeds by looping over the three grid indices (that

are monotonously decreasing or increasing in their respective dimension) to “fill in”

the remaining grid points and classifying all grid points as inside if the loop index of

the most inner loop has crossed the grid boundary an odd number of times.

This classification is then refined into wall, inlet, and outlet points by using the

grid point’s 6-neighborhood (if at least one of its six neighbors are classified as outside,

there is a wall point) together with proximity information to inlet or outlet triangles.

The remaining grid points are either “fluid” nodes (inside the wall), or “dead” (outside

and not considered).

6.4 HARVEY

As mentioned, the LBM has proven to be a strong alternative to simulations

derived from the Navier-Stokes equation of continuum mechanics and in this work,

the developed LBM application, HARVEY, is used to assess the pressure and flow

conditions in the aorta. A key advantage of the LBM is that macroscopic quantities

108

6: Comparison of Simulation to in vivo Measurements

such as density are moments of the distribution function. This means that they can

be calculated based on its summation and therefore are available entirely locally. In

the study of CoA, the fluid pressure is particularly important. Pressure can be easily

recovered through the ideal gas relation: P = c2sρ. This means that the value is

available locally which is particularly advantageous as this means they do not require

solving an expensive Poisson problem as in other CFD methods [100].

6.4.1 Boundary Conditions

Rigid walls are assumed throughout the coarse of the simulation and a no-slip

boundary condition is imposed at the wall through the use of a full bounce-back

method described in Chapter 2. The inflow and outflow boundary conditions are set

by measured patient specific quantities obtained via a cardiac-gated, 2D, respiratory

compensated, phase-contrast (PC) cine sequence with through-plane velocity encod-

ing. Each scan lasted approximately 3 min while the subject breathed freely [127].

In this model, there is one inlet for the aorta and multiple outlets for each of the col-

lateral vessels. The imposition of the boundary conditions is based on the knowledge

of local flow profiles as provided by the measured patient-specific data.

Fig. 6.2 shows the result of the measurements of the ascending aortic flow with

the red circles. In order to enable continuous flow throughout the heartbeat in the

CFD simulation, the sum of sine functions was fit to the data, shown in Eq. 6.1,

to determine the equation of the pulse. The fit procedure was performed in MatLab

109

6: Comparison of Simulation to in vivo Measurements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.05

0

0.05

0.1

0.15

0.2

0.25

Time(s)

F
lo

w
(m

m
3
/s

e
c

Measured Patient Data
Model Fit

Figure 6.2: Fit to blood flow information acquired with PC-MRI. This fit is used for
the simulation of only one cardiac cycle. A more complex and periodic fit would be
leveraged when modeling multiple heartbeats.

110

6: Comparison of Simulation to in vivo Measurements

Table 6.1: Coefficients for Eq. 6.1 with a 95% confidence bound.

Coefficent Value

a1 0.6639

b1 0.211

c1 2.961

a2 0.08709

b2 16.75

c2 -0.5791

a3 0.1042

b3 11.88

c3 -1.129

using a non-linear least squares method and a trust region algorithm. The associated

coefficients with a 95% confidence bound are shown in Table 6.1. Using a Pearson

correlation, there was a statistically significant agreement between the phase contrast

data and the equation derived velocity values (R = 0.981, p < 7x10−15).

u(x) = a1 · sin(b1 · x+ c1) + a2 · sin(b2 · x+ c2) + a3 · sin(b3 · x+ c3) (6.1)

A straightforward method of imposing a plug flow profile based on the flow rates

above is employed. Any node defined as an inlet node has its velocity set based

on the time point in the simulation ensuring proper pulsatile flow that matches the

111

6: Comparison of Simulation to in vivo Measurements

Table 6.2: Percent of the inlet flow that is routed through each branch.

Location QIA QLCCA QLSA QDAo

% Ascending Aortic Flow 25.6 11.3 4.26 58.8

measured data.

For the outlet condition, additional PC-MRI planes were defined to obtain flow

rates at the upper branch vessels and descending aorta. Table 6.2 shows these flow

rates as a percentage of the aortic flow. QLCCA denotes the flow through the left

common carotid artery, the QLSA is the left subclavian artery, and the QDAo is the

flow through the descending aorta. QIA refers to the flow through the innominate

artery. In order to determine flow going through the right subclavian and right

common carotid outlet faces, the physiological condition is assumed that the pressure

drop in each vessel is driven by the oxygen request from the tissues nourished by the

vessel as in the empirical procedure described in ([100]). To this end, the flow splitting

conditions of φ1/φ2 = S1/S2 in which φ1 and φ2 are employed to denote the outgoing

flow rates and S1 and S2 the corresponding sectional areas. Coupling the incoming

flow rate with the known flow splitting at each bifurcation asserts consistent outflow

conditions. For the rest of the vessels, the measured outflow rates are imposed.

112

6: Comparison of Simulation to in vivo Measurements

6.4.2 Memory Requirements

As previously discussed, the HARVEY simulation package is designed to handle

complex geometries and to run large-scale simulations on high performance hardware

resources. It has been developed from the ground up with parallel efficiency in mind

to enable high-resolution runs. The mesh is Cartesian which enables straightforward

data handling. It is written in C and uses MPI as the communication library. This

code takes advantage of optimizations such as a) hand loop unrolling b) Single In-

struction, Multiple Data (SIMD) intrinsics c) removal of redundant operations d)

non-blocking communication discussed in Chapter 5 [115].

The domain is split such that each processor handles a set division of the Cartesian

mesh. In HARVEY a double buffer approach is used in which a starting distribution

of fluid particles is initialized for each lattice point. The advection step propagates

the particles to adjacent lattice points and stores these values in a temporary dis-

tribution function. This is the data exchanged with the neighboring processors, and

subsequently used for the collision step. The result of the collision step is then used

to update the local portion of the original array containing the distribution function

for each lattice point. In this manner, HARVEY acts as a typical stencil code that

draws information from its neighbors, updates its local value, and pushes this data

to the neighbors, however, the data accessed in the temporary data structure is from

another phase space as well as from another lattice location.

This double buffer approach further increases the already large memory demand of

113

6: Comparison of Simulation to in vivo Measurements

the simulation. In the case of this data set when simulated at a 200-micron resolution,

there are 64,435 fluid voxels in a bounding box of 11,254,320 voxels. For each lattice

point, there are two buffers that make up the bulk of the memory requirements.

These buffers store the density data for each discrete velocity at each lattice point

as a floating-point number. For a 200-micron resolution simulation, this requires at

least three gigabytes of memory. While some commodity desktops may now be able

to meet the memory needs for 200 microns, this becomes increasingly difficult at finer

resolutions. For a 20-micron simulation, 3 terabytes of data are necessary. This is

beyond the capabilities of traditional computers and requires the use of large-scale

platforms such as the IBM Blue Gene/Q described in a following section, especially

when simulating full heartbeats.

The second issue is the runtime for the simulation to complete. At high resolutions,

the LBM requires rather small time steps on the order of 10−6 seconds resulting in

the need for 700,000 time steps to complete one heartbeat. The computation of the

solution of the LBM equations for each lattice point in a serial manner can take

from hours to days at these resolutions. In order to drastically decrease the time to

solution, a parallel implementation that allows us to simulate the full cardiac cycle

in minutes is leveraged.

For the work in this challenge, the IBM Blue Gene/Q architecture was relied on.

Similar to previous Blue Gene systems, it is built on a system-on-a-chip backbone and

has expanded options for threading and memory access. The Blue Gene/Q system has

114

6: Comparison of Simulation to in vivo Measurements

a 64-bit PowerPC processor operating at a 1.6 GHz frequency. Each node consists of

16 cores with 4 potential threads per core. There are capabilities for a 4-wide double

precision FPU SIMD resulting in a 204.8 GFlop/s peak performance per node [67].

Memory per node is expanded to 16 gigabytes. In this work, 256 cores on 16 nodes

of Blue Gene/Q are used for the simulations.

The velocity distribution at 0.14 seconds is shown in Fig. 6.3 for 100 − micron

resolution simulation. The velocity is shown to vary between 0.0013m/s and 0.3m/s.

Regions subject to lower velocity fields occur at points of curvature in the wall whereas

the highest fluid exhibiting the highest velocity is at the center of the arteries. As the

region in the aorta subject to the narrowing, the velocity is shown to decrease above

and below the co-arcted segment.

6.5 Results

The distribution function, f , at each lattice point is saved at a set time interval

during the simulation allowing for post processing of the data to determine relevant

macroscopic properties. It is during the post processing stage that the data is shifted

from lattice units to SI units to allow for analysis of factor like fluid velocity, density,

and pressure gradients. Only a subsample of time points are recorded and used for

visualization and analysis. In this case, checkpoints are invoked every 20000 time

steps. Paraview from Kitware is used to view the results [70].

To a fair approximation, the effect of non-Newtonian behavior of blood in the

115

6: Comparison of Simulation to in vivo Measurements

Figure 6.3: Mapping showing the velocity distribution at .14 seconds in a 100 micron
resolution simulation.

116

6: Comparison of Simulation to in vivo Measurements

Figure 6.4: Location of the proximal and distal planes to the co-arctation site for
reporting the pressure gradients [127].

aorta is negligible, and so Newtonian behavior of the blood is assumed. The physical

density is set at .001 g/mm3 and the dynamic viscosity is .004 gr/mm/s.

The mean pressure gradient between the upper and lower body is determined by

taking the difference of the average pressure of the fluid in the plane at the proximal

and distal locations as shown in Fig. 6.4 [46]. The results of simulations at three

different resolutions are provided in Table 6.3. The pressure proximal to the co-

arctation is measured at 113.1 mmHg (systolic) and 62.3 mmHg (diastolic), which

correspond well to the measured values of 115 mmHg and 65 mmHg respectively.

Table 6.4 shows the simulation results for the peak and mean pressure differences

as well as the flow splits and pressure in the AAo at a 20µm resolution.

117

6: Comparison of Simulation to in vivo Measurements

Table 6.3: Mean pressure gradient at different mesh resolutions.

Resolution Pressure Gradient at Diastole Pressure Gradient at Systole

200µm 10.1 mmHg 12.2 mmHg

100µm 8.7 mmHg 10.9 mmHg

50µm 8.1 mmHg 10.4mmHg

20µm 8.2 mmHg 10.3 mmHg

Table 6.4: Full Results at 20µm resolution.

Peak pressure difference between Plane 1 and Plane 2 10.6 mmHg

Mean pressure difference between Plane 1 and Plane 2 9.2 mmHg

Flow splits in supra-aortic and DAo 40% and 60%

Pressure in AAo(Systolic/Diastolic) 10.3mmHg/8.2mmHg

118

6: Comparison of Simulation to in vivo Measurements

6.6 Discussion

In this chapter, simulating blood flow in a patient specific geometry and estimating

the pressure gradient in the aorta assess the accuracy of the method developed in prior

sections. The system imposes a regular grid on the vessel geometry derived from the

segmentation of MRA data and uses HARVEY, a lattice Boltzmann application, to

model the blood flow through the arteries and to derive the fluid pressure gradients.

Simulations were undertaken to model the resting clinical blood pressure gradi-

ents. The results demonstrate an 8.2 mmHg pressure differential at diastole and 10.3

mmHg at systole. The average pressure difference across the entire cardiac cycle was

estimated to be 9.2mmHg. The measured value was 12mmHg giving an error of

2.8mmHg. This result improved on the simulations of previous CFD studies that

used a finite element method to solve the Navier-Stokes equations and took into ac-

count wall elasticity [81]. This previous work exhibited an error of 5mmHg and a

mean pressure gradient estimation of 7mmHg. Furthermore, the results obtained by

HARVEY were found to achieve the smallest error in regard to the average pressure

gradient of any submission to the 2012 STACOM Computational Fluid Dynamics

Challenge.

The results demonstrate the applicability of informing HARVEY with clinical

imaging data to accurately assess the pressure gradient and hemodynamics quantities

associated blood flow through a co-arcted aorta. Such a model can provide insight

into the underlying mechanisms of the disease and steer potential treatment options.

119

7

Parallel in Time Approximation of

the Lattice Boltzmann Method

Prediction is very difficult, especially about the future.
– Niels Bohr [40]

7.1 Motivation

Computational fluid dynamic (CFD) simulations of biological flows provide physi-

cians the ability to identify regions of the circulatory system that are at risk for the

development and progression of heart disease and have helped yield deep insights

into the underlying mechanisms that experimental measurements alone could not

have achieved (e.g. [99], [78], [149], [150], [160]). The disease trajectories that can

be modeled, however, have been limited by the rate at which these simulations can

120

7: Parallel in Time Approximation of the Lattice Boltzmann Method

be performed. A significant challenge is to capture, in silico, functionally important

biological events that typically occur on the timescales of anywhere from seconds to

decades. It is important to not only understand the flow patterns over the coarse of

one heartbeat, but in many instances the quantity of interest is the wall shear stress

or fluid pressure across heartbeats. Furthermore, the target for these applications is

to mode time domains that capture events such as plaque accumulation in the arte-

rial wall. In such instances, simulations of weeks to years worth of simulated time

would be required. Such long timescale simulations actually pose an arguably larger

problem than modeling larger fluid systems for more moderate timescales. To model

larger fluid systems, one can leverage the great array of prior art and exploitation

of spatial parallelism that is not available when extending a simulation in time (c.f.

[63], [113], [64], [30], [79], [165], [121]).

For many fluid simulations, the parallel efficiency saturates as soon as the size

of the fluid domain drops below a certain limit. In these cases, the speedup gained

from spatial decomposition will inevitably reach a plateau for a fixed problem size:

increasing the spatial discretization will lead to saturation of parallel speedup when

the number of lattice points per core becomes too small. After this point, any addi-

tional cores no longer improve the overall time to solution. Moreover, it is becoming

more common that large simulations need to be completed on a short time scale in

order to make a significant impact on scientific outcomes, making the wall-clock time

a crucial component. If sufficient computational resources are available, decomposing

121

7: Parallel in Time Approximation of the Lattice Boltzmann Method

the problem in the time domain as well can assist in overcoming this strong scaling

limit and significantly reduce the wall clock time. In this chapter, an efficient method

for time parallelization of the lattice Boltzmann method is presented.

The focus will be on the parareal algorithm first introduced by Lions et al. [85],

which consists of a coarse iterator calculated serially to initialize data at discrete time

steps that is used as the input for a fine grid iterator that runs in parallel. The coarse

solver is based on a larger time step and typically a coarser space discretization.

Iterative refinement enables the compute-intensive fine iterator to be handled by the

temporal parallelization. This method can be viewed as a predictor-corrector scheme

in which the coarse solver is used to predict initial values for the full time range

and these initial guesses are iteratively refined through application of the fine solver,

with the refinement (correction step) completed in parallel. The algorithm consists

of a series of these iterations completing when the results have converged within

a certain tolerance and is advantageous only if convergence happens faster than it

would have taken for the fine iterator to simply run serially. The parareal algorithm

has been shown to be effective in a variety of fluid dynamics applications including

the development of turbulent flow [50], [129], [128], [136]. Here a method to enable

parallel-in-time simulation of the LBM for modeling fluid dynamics is introduced

using a multigrid approach to define the coarse and fine iterators. This method

therefore reduces the real time duration of simulations and lengthens the bound on

time trajectories that can be modeled.

122

7: Parallel in Time Approximation of the Lattice Boltzmann Method

To gain further performance advantage, temporal decomposition is coupled with

spatial decomposition and in this chapter is presented initial performance and error

analysis results from introducing a novel space-time parallelism to the computational

hemodynamics application, HARVEY [115]. The relationships between spatial and

temporal domain decomposition that can lead to highly efficient models capable of

taking advantage of next generation supercomputers are described. An adaptation of

the parareal algorithm first introduced by Lions et al., which combines independent

coarse and fine resolutions in time to reduce the wall clock time of real time problems

will be focused on [85]. The fine representation is more computationally expensive

and is run in parallel on multiple time intervals to refine the result of that individual

interval. The result for the coarse resolution is calculated serially and used to initialize

the fine representation, which is in turn calculated in parallel. The coupling of the

two iterators provides a predictor-corrector scheme that iteratively refines the initial

values to the fine solver and completes the refinement (correction step) in parallel.

The algorithm consists of a series of these iterations that reach completion when the

results converge within a set tolerance. It is worth noting that this scheme is only

advantageous when convergence occurs faster than a serial run of the fine iterator

would take [50].

Introducing a space-time parallel scheme into a lattice Boltzmann code such as

HARVEY is not straightforward and requires computational and algorithmic devel-

opments to address challenges related to the accuracy, scalability, and stability of

123

7: Parallel in Time Approximation of the Lattice Boltzmann Method

coupling these two fluid representations. A main contribution in this chapter is the

development of a multi-level space-time coupling (MSTC) that enforces a hierarchi-

cal decomposition of the default communicator and allows seamless communication

between the spatial and temporal decompositions.

This chapter is organized as follows: in Section 7.5 the general formulation of the

parareal algorithm is given. The definition of the coarse and fine iterators and neces-

sary coupling mechanism is presented in Section 7.6, where there is also a discussion

of techniques for conserving macroscopic quantities like viscosity across the refine-

ment levels, and the expected performance model. This is followed with a discussion

of the method for extending the model to include spatial decomposition as well as

temporal.

In Section 7.9, the results of LBM with temporal parallelization are presented,

showing that up to a 32× increase in speed can be achieved for a model system

consisting of a cylinder with conditions for laminar flow. Finally, the first space-

time parallel simulation of cardiovascular flows in realistic human arterial geometries

derived from clinical imaging data is presented. The ability of our method to not

only efficiently produces accurate results, but to recover time-dependent phenomena

like the flow rate imposed by a heartbeat is demonstrated. Finally it is proven that

space-time parallelization can help applications make better use of the large core

counts available on next generation systems and overcome the intrinsic strong scaling

limit to achieve a shorter time to solution than obtained with spatial parallelization

124

7: Parallel in Time Approximation of the Lattice Boltzmann Method

alone.

7.2 Related Work

Parallel-in-time methods have been investigated as ways to go beyond the strong-

scaling limit of many applications. If the hardware is available, the combination

of a coarse and fine solver can converge and enable a shorter time to solution for

models of interest. The parareal algorithm was first proposed in 2001 [85] and so-

lidified in the predictor-corrector format shortly after (e.g. [10], [9]). It converges

with the same accuracy as would be achieved with the expensive or fine iterator.

Recently, alternate parallel-in-time methods have been propose such as the parallel

implicit time-integration algorithms (PITA) in which parallelizes the time-loop of a

time-dependent PDE solver without impacting the serial compo (c.f. [44],[45]). Other

studies use intertwining the iterations of parareal with the spectral deferred correc-

tions, the Parallel Full Approximation Scheme in Space and Time (PFASST) ([102],

[56]). Speck et al. demonstrated a speedup of 8× in addition to the spatial speedup

on up to 294,912 cores [141].

In this chapter, the focus is on adapting the parareal algorithm to enable space-

time parallel simulation of computational fluid dynamics (CFD). Previous work has

shown the potential for such algorithms in CFD applications like in recovering time

dependent behavior such as the development of turbulent flow [128], however, most

of the literature emphasizes the algorithmic aspects of the time-parallel schemes and

125

7: Parallel in Time Approximation of the Lattice Boltzmann Method

there are only a few examples of studies into the efficiency of space-time coupling.

There has been some research into the use of the parareal algorithm combined with

spatial decomposition for a Navier-Stokes solver on up to 2,048 cores modeling flow

passed a cylinder [50], but there are no studies that we are aware of investigating the

coupling of spatial and temporal parallelism at larger scales for CFD for complex flow

in a real 3 dimensional problem.

7.3 Spatial Scaling Limit of the Lattice Boltzmann

Method

While the LBM has been shown to scale with high efficiency up to 294,912 cores

[113], there is a limit to the strong scaling potential when using only spatial decom-

position. As more cores are used, fewer and fewer fluid nodes are allocated per code.

As this ratio diminishes, the cost of the internode communication starts to overwhelm

the runtime and reduce the scaling efficiency. In this work, an even spatial decom-

position was employed in which the bounding box of the fluid was broken up into

small cubes of equal sizes by evenly splitting each dimension. Fig. 7.1 shows the

speedup achieved on up to 32,768 cores of the IBM Blue Gene/P supercomputer at

Argonne National Laboratory. The blue line indicates the strong speed up for a large

fluid system consisting of 500 million fluid nodes. The green line shows the result

for a medium sized system of 100 million fluid nodes and the red line denotes a small

126

7: Parallel in Time Approximation of the Lattice Boltzmann Method

system of 10 million fluid nodes. As shown, for fixed-size fluid systems, beyond a

certain point, adding more cores can actually slow down the simulation. As the num-

ber of fluid nodes per core drops below 5000, the time spent in communication starts

to overwhelm the computation resulting in lower overall speedup. Fig. 7.2 highlights

this drop off showing a decrease in parallel efficiency for three different LBM codes.

All of the scaling studies were completed on IBM Blue Gene/P supercomputers. The

data for the second two applications were obtained from [113] and [30] respectively.

While the second two codes included red blood cell modeling as well as the CFD

component, all three demonstrate the same overall decline in efficiency corresponding

to the number of fluid nodes per core. This is the intrinsic spatial scaling limit and

will serve as the baseline for our parallel space-time simulations.

7.4 Parameters

The following parameters are used to setup the coarse-grained and fine-grained

solvers for applying the parareal algorithm to the LBM.

T = overall time to be simulated

C = (ν/νo) where ν is the viscosity of the fluid in dimensionless lattice Boltzmann

units and νo is the viscosity in terms of physical units (m2/s).

γG = cost of coarse iterator

γF = cost of fine iterator

127

7: Parallel in Time Approximation of the Lattice Boltzmann Method

0.5 1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5

3

x 10
4

Cores

S
p

e
e

d
u

p

Large Fluid System

Medium Fluid System

Small Fluid System

Linear Speedup

15000

10000

5000 10000 15000 20000 25000 30000

30000

25000

20000

5000

Figure 7.1: Speedup of LBM simulations using HARVEY for a range of fluid system
sizes on up to 32,768 cores of the IBM Blue Gene/P supercomputer.

128

7: Parallel in Time Approximation of the Lattice Boltzmann Method

0 0.5 1 1.5

x 10
−3

20

30

40

50

60

70

80

90

100

Cores Per Fluid Node

P
a
ra

ll
e
l
E

ff
ic

ie
n

c
y

HARVEY
MUPHY−SC10
Clausen−CPC2010

Figure 7.2: Parallel efficiency in terms of cores per fluid node for three different lattice
Boltzmann codes. HARVEY is the application presented here. The other two codes
include red blood models and the scaling studies were also completed on IBM Blue
Gene/P supercomputers (c.f. [113], [30]).

129

7: Parallel in Time Approximation of the Lattice Boltzmann Method

lx = length in x-dimension of fluid system

ly = length in y-dimension of fluid system

lz = length in z-dimension of fluid system

dxc = coarse grid size

dxf = fine grid size

dtc = time step for coarse iterator

dtf = time step for fine iterator

tsc = number of time steps to complete coarse iterator

tsf = number of time steps to complete fine iterator

τ = wall clock time to simulate flow for one time step at one grid point

numC = number of grid points in coarse grid

numF = number of grid points in fine grid

7.5 Parareal algorithm

Lions, Maday, and Turinici (LMT) [85] first proposed the parareal algorithm as

a method to decompose an ODE solver in the time domain. The method enables

more effective utilization of high performance parallel systems by numerically solving

a time dependent system in a shorter overall wall-clock time [15]. Temporal decom-

position is achieved through a predictor-corrector scheme consisting of a prediction

step, denoted by G, that provides a coarse approximation and a correction step, de-

noted by F, that contributes a more accurate but more computationally expensive

130

7: Parallel in Time Approximation of the Lattice Boltzmann Method

solution. This method alternates between the serial update of initial conditions with

G followed by the parallel application of F until the corrected values converge within

a predetermined tolerance, ε. By computing F in parallel, a shorter overall runtime

is obtained [10]. Inherent to the method is the need for G to be less computationally

expensive than F. The disparity between these two iterators determines the potential

speedup of the time parallelization.

In the parareal algorithm, the time interval to be modeled by the simulation is

divided into N separate intervals of equal size, [tn−1, tn], n = 1 . . . N , with n denoting

the nth time step. For simulations that are split entirely in the temporal domain, N is

set to the number of processors in the system. A different processor is responsible for

each of these discrete time intervals. For each interval, a succession of approximations

denoted UK
n+1 are calculated where K is the parareal iteration number. For each

parareal iteration, K, the following steps are taken [129], [136]:

0. (K = 0) The coarse prediction step G is first applied serially on all processors

to calculate U0
n for the full simulation time, 0 . . . , tN .

1. (K > 0) Using the initial value U0
n, each processor can calculate F in parallel

on its respective time interval, tn−1 to tn. The result is then propagated to the

next processor in line.

2. The serial correction step is calculated through:

UK+1
n+1 = G(tn+1, tn, U

K+1
n) + F(tn+1, tn, U

K
n)− G(tn+1, tn, U

K
n) (7.1)

131

7: Parallel in Time Approximation of the Lattice Boltzmann Method

Note that the second and third terms on the right-hand side of this expression

have been obtained in previous iterations and steps.

3. Convergence is checked through the condition | UK
n − UK−1

n |< ε where ε is

the predetermined tolerance value. If the difference between the solutions for

two successive parareal K iterations is smaller than ε for all time intervals, the

parareal cycle completes.

In the work described in this chapter, a pipelined implementation of the parareal

algorithm is used in which the fine approximation commences as soon as the coarse

approximation is available for the time interval to be calculated by each processor,

rather than waiting for all processors to complete the G calculation [102], [77]. This

way, every processor computes each step of the parareal algorithm as soon as possible,

removing the need for processors to remain idle while waiting for all of the other

processors to finish calculating G [102]. Fig. 7.3 illustrates the method in a diagram

for K = 3. The blue arrows indicate the wall-clock time (vertical component) for

each step of the coarse iterator. In the example shown here, each processor handles

the duration of one coarse time step (horizontal component of blue arrow). The red

arrows show the wall-clock time (vertical component) required for the fine iterator,

as described in Step 1. As will be discussed in more detail later, the fine iterator

requires more time steps and a larger number of grid points at each time step, which

implies a higher computational cost for each fine step, as indicated by the magnitude

and the slope of the red arrows relative to the blue arrows in Fig. 7.3. The green

132

7: Parallel in Time Approximation of the Lattice Boltzmann Method

arrows indicate the propagation of data needed for Eq. (7.1) in the serial correction

described in Step 2. Communication between processors occurs in the yellow shaded

regions and is presumed to have negligible computational cost. The convergence tests

are conducted at each black circle by comparing the result at that circle with that of

the circle vertically below it, as described by Step 3.

5

U
2

5

U
3

5

0 1 2 3

W
a
ll

−
c
lo

c
k
 t

im
e

4 5 n

2

3

K

1

U

=0

1

5

U
0

Figure 7.3: Computational cost of the pipelined parareal method for K=3: each
processor is handling the time duration covered by one coarse time step, as shown
along the horizontal axis. The cost of G in terms of wall-clock seconds per step
is shown by the blue arrows and the cost of F is shown by the red arrows. The
green arrows indicate the propagation of the data used in the correction step and
the shaded regions correspond to communication between processors. At each black
circle, converge tests are conducted. The corresponding speedup for each K value is
shown on the right. The magenta bars indicate speedup given 10 processors and the
aqua bars show the speedup given 100 processors.

133

7: Parallel in Time Approximation of the Lattice Boltzmann Method

7.6 Adaptation for the Lattice Boltzmann Method

our approach to enabling parallel-in-time simulation of the lattice Boltzmann

method is defined next. To this end, the coarse and fine iterators are defined through

use of grids at different resolutions. As discussed in Section 2.1, the LBM relies

on discrete particles moving and interacting on a regular uniform lattice. Different

resolutions of the simulation are achieved through the use of different size grid dis-

cretization levels, which define the coarse and fine grid iterators. The use of regular

grids in which the local connectivity remains unchanged but the lattice spacing it-

self is refined is not new to the LBM. Typically, grids of different spacing have been

used to produce multiscale models with finer resolution at specific regions in the fluid

domain, such as at the walls or boundaries. Research has also shown the success of

locally embedded grids for multigrid schemes modeling high Reynolds number flows

around objects (c.f. [145], [47], [49]). our definition of the two different grid levels

to enable temporal parallelism builds on previous work using mesh refinement [11].

Other factors that need to be taken into account include the time stepping mechanism

and continuity of the kinematic velocity across the grids. These are each discussed in

detail in the following.

Filippova and Hanel [47] developed a node-based approach for mesh refinement

that relies on a hierarchical refinement of coarse and fine grids for the LBM. This

work was extended to enable the use of fewer time steps on refined grids without

any degradation in accuracy in space or time [48]. In the present approach, such

134

7: Parallel in Time Approximation of the Lattice Boltzmann Method

a two-level hierarchical grid refinement strategy in which a coarse grid covers the

entire spatial domain and a finer grid is superimposed is leveraged. Grid refinement

is implemented by dividing the spatial discretization by a refinement factor m. Fig.

7.4 shows a refinement in which the coarse grid is half the resolution of the fine grid,

with m = 2. The red dashed lines indicate the placement of the fine grid while the

blue lines show the coarse grid. Fig. 7.4 also depicts the lattice points encompassed

by the simulation to emphasize the overlapping node-based method. The fine iterator

uses all grid points (colored blue and red) and the coarse iterator only simulates the

flow at the blue lattice points.

Figure 7.4: Left panel: a two level grid where the fine grid is represented with red
dashed lines and the coarse grid with solid lines. The fine grid in this example has
twice the resolution of the coarse grid, with m = 2. Right panel: the lattice points
highlighted to demonstrate the overlapping method used. The fine iterator applies
to each grid point, both red and blue, whereas the coarse iterator applies only to the
blue ones.

In contrast to conventional multigrid methods, the entire spatial domain is cov-

ered with the grids for the two different iterators and the fluid motion on each is

135

7: Parallel in Time Approximation of the Lattice Boltzmann Method

modeled separately. Furthermore, the key challenge for multigrid and adaptive mesh

refinement implementations is the handling of advection from one grid resolution to

the other. However, due to the fact that the grids span the full spatial system, fluid

particles are not streaming from one grid spacing to another between time steps for

the introduced time-parallel technique. Conversely, the hurdle to overcome lies in

the propagation of initial conditions from one grid resolution to the other and subse-

quently the coupling between the grids.

There are two key operations needed to address this challenge and coordinate be-

tween grid hierarchies: coarsening and interpolating. In order to transfer information

from the fine grid to the coarse grid, a coarsening process must take place in which

the distribution function at each velocity for the fine grid is averaged to pass the

data to the coarse grid. This operates on conserved values and introduces no further

truncation error. In order to move in the opposite direction, an interpolation method

is required to transfer information from the coarse grid to the fine grid, that is, to fill

in the data for the new lattice sites required by the fine iterator.

Within the two grid schemes, the time steps required for a simulation with each

grid differ in size, resulting in a different number of time steps to be modeled by

each iterator. In addition, each iterator relies on different relaxation parameters.

Specifically, the modeling of fluid motion on the coarse grid requires the use of large

time steps while modeling of the fluid motion on a fine grid relies on many smaller

time steps. The size of a time step, dt, is related directly to the square of the grid

136

7: Parallel in Time Approximation of the Lattice Boltzmann Method

resolution, dx in the LBM: dt = dx2(ν/νo) where ν is the viscosity of the fluid in

dimensionless lattice Boltzmann units and νo is the viscosity in terms of physical

units (m2/s). The number of time steps calculated by the coarse and fine operators

is determined by the size of each respective time step.

A local second-order refinement solution for coupling between the grids that relies

on different relaxation parameters and lattice spacing to transition between the grids

as described in [47] was developed to ensure stable coupling. The kinematic viscosity

in the LBM is defined by v = c2s(
1
ω − dt

2) where dx is the lattice spacing and ω

is in dimensionless lattice Boltzmann units. For multigrid methods, the relaxation

parameter ω in Eq. (5.1) must be rescaled to keep the viscosity constant across both

the coarse and fine grids [47] . Here, the modification introduced by Dupuis et al.

[37] that removes the potential singularity from the initial formulation was used that

redefines ω as:

ωf =
∆xc

∆xf

�
ωc −

1

2

�
+

1

2
,

where ∆xc and ∆xf are the spatial discretization size for the coarse and fine grids,

respectively, and ωc and ωf are the corresponding relaxation parameters. This ensures

that the simulation remains stable and introduces an upper bound on N by requiring

ωc to remain close to 2 and ωf to be greater than 1 [47]. The use of this modified

definition of ω for each grid imposes a finite limit on the disparity between the two

iterator’s resolutions.

The parareal algorithm applied to the LBM involves the following steps in which

137

7: Parallel in Time Approximation of the Lattice Boltzmann Method

each processor, n, computes the simulation for time domain [tn−1, tn]:

0. (K = 0) Initialize the coarse grid with a serial LBM simulation for the time

domain [tn−1, tn] for each processor; interpolate to initialize the fine iterator.

1. (K = K+1) Each processor separately applies F starting with the initial values

provided by the previous iteration for tn−1 to determine the distribution function

at tn for its respective interval of time. This is completed in parallel and the

result is shared with the next processor. As a serial process, G is applied.

2. The correction to F is calculated via Eq. (7.1); the result is coarsened to update

the initial conditions for G and propagated to the next processor.

3. Convergence is checked: if all intervals of time have converged, exit the cycle;

else, return to Step 1.

The key components to this scheme are the steps required to link the two different

grid resolution levels in the interpolate and coarsen steps. There are a few important

points to note: errors are introduced near the walls at boundaries as the initial

conditions are taken from the coarse grid. When a boundary is interpolated, fluid

cells are introduced that did not exist in the coarse grid and have no fluid cell from

which to draw initial data. In this case, the average of all surrounding fluid cells

is used to initialize the distribution function at this point. With each K-cycle, this

approximation is updated from previous results on the fine grid, reducing the error

at the boundaries over time. Convergence is defined by requiring the average relative

138

7: Parallel in Time Approximation of the Lattice Boltzmann Method

error of the solution in theKth iteration of fi to differ from the solution of the (K+1)th

iteration of fi by an amount less than a prescribed tolerance ε [136].

7.7 Coupled Spatial and Temporal Decomposition

To optimally leverage the available hardware of massively parallel supercomput-

ers and ultimately minimize the overall runtime of the applications in question, it is

posited that leveraging both spatial and temporal domain decomposition is needed

for fixed-size problems. A general approach is introduced for coupling these de-

composition strategies through a Multi-level Space-Time Interface. This is similar to

communicator breakdown introduced by Grinberg et al. in [64] to enable the coupling

between physical models. The key advantage of the MSTC architecture is the hier-

archical decomposition of the default World communicator into sub-communicators

to enable efficient coupling of parallel decomposition in both time and space. This

decomposition is handled by splitting the World communicator into N different sub-

communicators to handle the different time intervals of equal size. This is handled in

a topology aware manner assigning cores that are physically near each other to the

same Tier 2 (T2) group of cores. If no temporal decomposition is being used, all cores

are assigned to the same T2 group. These groups are further subdivided through spa-

tial decomposition strategies defining Tier 3, T3, non-overlapping groups. The core

kernel being modeled in this framework would be solved within T3 groups.

Fig. 7.5 shows the layout of the MSTC. At T2, new communicators are intro-

139

7: Parallel in Time Approximation of the Lattice Boltzmann Method

Figure 7.5: Multi-level Space-Time Interface breakdown. For Tier 2 (T2), the World
communicator is broken into separate communicators handling temporal intervals.
For Tier 3 (T3), each T2 group is broken up spatially. Coarse and fine solvers run
across T3 groups. The red arrows indicate the tightly coupled message passing with
the LBM and the dashed lines indicate the communication between T2 groups for
the one core of each.

140

7: Parallel in Time Approximation of the Lattice Boltzmann Method

duced splitting the cores into groups handling each time interval and at T3, these are

each further decomposed to handle specific spatial regions. The arrows in T3 give

a view of the communication patterns involved with MSTC. The red bi-directional

arrows indicate the tightly coupled interaction between cores in the same T3 group.

This is defined by the kernel in question and can involve either point-to-point or

global communication across all cores within that group. The kernel here defines

both the coarse and fine solvers that will be executed within each T3 group. The

dashed arrows indicate the point-to-point communication between T2 groups. These

provide the interaction between temporal intervals in which the core handling a set

spatial region for a time interval will inform the estimation of the corresponding core

that handles the same spatial region in the next time interval. This is implemented

through point-to-point communication between cores that have the same T3 ranks.

The communication shown here simply indicates messages for cores of rank 0 in each,

but similar message patterns occur for each rank. The bulk of the computational

time for the simulation actually occurs within the T3 groups themselves and the mes-

sage passing between T2 groups only occurs N times. As the calculations in each T3

group need to proceed in sync, blocking receive protocols are leveraged to ensure this.

The pipelined nature of the parareal algorithm though allows the use of non-blocking

sends to minimize communication overhead.

The T3 groups are implemented as input variables to the coarse and fine solvers,

so one could envision future methods where one would redefine the communicators

141

7: Parallel in Time Approximation of the Lattice Boltzmann Method

throughout the coarse of the simulation allowing processors that would remain idle

from K=0 time interval T communicators redefining the late communicators, joining

them and providing further spatial scaling (up to the limit of course).

To define the coarse and fine solvers, a two-level hierarchical refinement of coarse

and fine grids is used in which a coarse grid covers the entire spatial domain and a

finer grid is superimposed [47]. The coarse iterator models fluid moving using the

coarse grid and similarly the fine iterator is solved across the fine grid. As before,

the entire spatial domain is covered with both the coarse grid and an overlapping

superimposed finer grid. Each iterator models the fluid on its corresponding grid

points separately for the entire spatial domain. To ensure accuracy and minimize

communication overhead, the coarse and fine grid points for the same spatial region

are mapped to the same core.

In the LBM, the resolution of the imposed grid spacing determines the time step

size and contributes to the calculation of the kinematic viscosity of the fluid. The

size of a time step, dt, is related directly to the square of the grid resolution, dx

in the LBM: dt = dx2(ν/νo) where ν is the viscosity of the fluid in dimensionless

lattice Boltzmann units and νo is the viscosity in terms of physical units (m2/s).

The kinematic viscosity of the fluid is determined as v = (2/ω − 1)dx · (c/6) where

dx is the lattice spacing and c = dx/dt. It is the impact on these two quantities

that makes the adaptation of parareal for the LBM a challenging task and not a

straightforward implementation. The coupling for the fluid model on the coarse and

142

7: Parallel in Time Approximation of the Lattice Boltzmann Method

fine grid introduces potential accuracy and stability issues to the method that need

to be addressed.

As in the initial studies applying simply temporal decomposition to laminar flow

in a tube, a local second-order refinement solution for coupling between the grids that

relies on different relaxation parameters and lattice spacing to transition between the

grids was used [117]. The relaxation parameter ω in Eq. (5.1) must be rescaled to

keep the viscosity constant across both the coarse and fine grids to ensure a stable

coupling mechanism [47] . Again ω is redefined as:

ωf =
∆xc

∆xf

�
ωc −

1

2

�
+

1

2
,

where ∆xc and ∆xf are the spatial discretization size for the coarse and fine grids,

respectively, and ωc and ωf are the corresponding relaxation parameters [37]. This

both addresses the stability concern and imposes an upper bound on N by requiring

ωc to remain close to 2 and ωf to be greater than 1 [47]. Moreover, the use of this

modified definition of ω for each grid imposes a finite limit on the disparity between

the two iterator’s resolutions.

From here MSTC can be adapted to this locally embedded version of the LBM

using the following steps:

0. (K = 0)

Initialize T2 and T3 groups.

Define neighbors between T2 groups.

143

7: Parallel in Time Approximation of the Lattice Boltzmann Method

In each T3 group, initialize the coarse estimation with serial LBM simulation

for the time domain [tn−1, tn] for the assigned spatial region.

Interpolate to initialize the fine solver.

For (K = K + 1)

1. F is across all T3 groups starting with the initial values provided by the previous

iteration for tn−1 to determine the distribution function at tn for its respective

interval of time and space.

2. In each T3, G is applied. The correction to F is calculated via Eq. (7.1).

3. This result is coarsened and propagated between T2 groups to update the initial

conditions for G.

4. Convergence is checked: if all intervals of time have converged, exit the cycle;

else, return to Step 1.

The key components to this scheme are the steps required to link the two different

grid resolution levels in the coarsening and the interpolation steps. On each core, a

coarsening function in which the distribution function at each velocity for the fine grid

is averaged and rescaled is required to move data between the two grid levels. This

operates on conserved values and introduces no further truncation error. Similarly,

an interpolation method is required to address the new lattice sites requires by the

144

7: Parallel in Time Approximation of the Lattice Boltzmann Method

fine iterator. It is in both of these functions that the rescaling of ω is employed to

maintain a constant kinematic viscosity across the space-time decompositions.

To enable the pipeline approach in a space-time coupling, non-blocking sending

of messages is employed but blocking message passing by the receivers is required.

This prevents cores from within one subcommunicator to get out of sync. All cores

in the subcommunicator must handle the advection and collision within one step

sequentially as the following step relies on data from its nearest neighbors from the

previous step.

It is worth noting that even as larger fluid systems are modeled, the overhead

of the message passing between T2 groups will remain constant. This is due to the

fact that the gain from spatial speedup should always be maximized before using

temporal decomposition. In the case of lattice Boltzmann, this means that temporal

decomposition will only be employed when the number of fluid nodes per core drops

below the cutoff defined by Fig. fig:dropoff. Adhering to this drop off imposes a

fundamental limit to the potential number of fluid nodes to be handles on each core

within a T2 group and subsequently a limit to the potential message size being sent

between K iterations.

7.8 Theoretical Parallel Speedup

In order to gain insight into the performance that can be expected from the use

of this technique, an upper bound on the strong scaling capabilities are calculated.

145

7: Parallel in Time Approximation of the Lattice Boltzmann Method

To this end, it is assumed that the hardware system is homogenous in that each

processor is identical and that the communication time between the processors is

negligible. The time for one processor to compute one time step by the fine iterator

is denoted by τF and similarly, the time to compute one time step of by the coarse

iterator is denoted by τC . The number of steps required by G and F during the course

of one iteration are defined by QG and QF , respectively, and the total computational

cost as γG and γF . Through use of the pipeline method shown in Fig. 7.3, each

processor proceeds as soon as the initial conditions are available, and so the cost of

each K iteration is given by QF τF + QGτG = γF + γG. The procedure outlined by

Minion et. al. [102] is followed to calculate the parallel speedup, S, for pipelined

parareal implementations, which is given by

S =
NγF

NγG +K(γG + γF)
=

1

α + (K/N)(α + 1)
(7.2)

with N the total number of processors and K the number of parareal iterations,

and further define α = γG/γF . This model was used to demonstrate the speedup at

different K iterations for both 10 and 100 processor runs in Fig. 7.3. The potential

speedup is strongly influenced by the size of both α and K. To maximize S, both

need to be minimized; however, reducing α requires that τG be reduced. The only

way to reduce the cost of the coarse iterator is to lower the resolution and thereby

make G less computationally intense. This reduction often leads to a less accurate

coarse approximation and wider disparity between the two grids. As this disparity

increases, the number of K iterations required to converge will consequently increase.

146

7: Parallel in Time Approximation of the Lattice Boltzmann Method

Thus, the speedup cannot be increased at will, but requires a careful balance between

the ratio of time cost for the fine and coarse steps (α) and the number of iterations

(K) required to achieve the desired convergence level.

Eq. 7.3 allows the estimation of speedup achieved by simply the temporal compo-

nent of the space-time coupling. It can be taken alongside the speedup from spatial

scaling to provide the predicated total speedup. Extending the model itself to calcu-

late the combined speedup, EF and EG are defined as the parallel efficiency of the

spatial decomposition on P cores. In this instance, the total number of cores in the

system is N ∗ P where each N time interval is divided into P spatial domains. To

calculate the total speedup use the following:

SST =
EFNγF

EGNγG +K(EGγG + EFγF)
=

1

α + (K/N)(α + 1)
(7.3)

updating the definition of α to (EGγG)/(EFγF). In both cases, the values of alpha

and K strongly influence the potential speedup.

7.9 Numerical Results

The limiting factor in previous computational models has been the total extent of

real time that can be simulated on current hardware. To gain a better understanding

of the role parallelization-in-time plays on scalability and runtime, a series of tests

were undertaken to study both the implications on the accuracy of the simulation as

well as on the parallel efficiency for both a model system consisting of laminar flow

147

7: Parallel in Time Approximation of the Lattice Boltzmann Method

through a cylinder and flow through a patient specific arterial geometry.

7.9.1 Model Problem: Laminar Flow in a Cylinder

To study the accuracy of the results at different K iteration levels, the fluid

flowing through a straight cylindrical tube of 1 cm in length and 1 mm in diameter

was modeled. The flow was subject to a constant velocity at the inlet of the tube

and fixed pressure gradient at the outlet. The simulation was initialized with a 100

µm resolution for the coarse iterator and a 50 µm resolution for the fine iterator. For

the fine iterator, this corresponds to a cylinder with a height of 100 lattice points and

a diameter of 10 lattice points. A bounding box of dimensions 10×10×100 lattice

points is used to encapsulate the fine grid. This corresponds to 1200 time steps for

the coarse iterator and 4800 time steps for the fine iterator, for the simulation of 0.5

seconds of flow.

in Fig. 7.6 the velocity profile is shown on a cross-section of the system at x = 5

and z = 50 . The units in this case define the lattice point coordinates of the

cross section. The inset of Fig. 3 shows the tube with the white line indicating the

cross section used for the velocity plot. The velocity of the fluid is calculated from

(1/ρ)
�

i fi(�x, t)�ci. The deep purple line shows the result of the simulation at K = 10

which is the correct result of the fine iterator as this simulation used N = 10 temporal

domains simulated on ten processors. The black line shows the velocity estimate at

K = 1 and highlights the disparity between the initial estimate and the correct result.

148

7: Parallel in Time Approximation of the Lattice Boltzmann Method

0 3 6 9 12 15 18 21
Cross section (y coordinate)

0

0.0003

0.0006

0.0009

0.0012

0.0015

V
el

o
ci

ty
 (

m
/s

ec
) K=1

2

4

5
6

7 8

10

9

3

Figure 7.6: The magnitude of the velocity across the y-axis for a system broken into
N = 10 temporal domains simulated on ten processors. The lines are labeled and
color-coded according to the K value, running from K = 1 to K = 10 (converged).
The inset shows the 3-dimensional velocity profile of the tube with the white line
indicating the cross-section along which the velocities are plotted.

149

7: Parallel in Time Approximation of the Lattice Boltzmann Method

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

x 10
−3

Cross section (y−coordinate)

V
e
lo

c
it

y
(m

/s
e
c
)

K=1

K=2

K=3

K=4

K=5

K=6

K=7

K=8

K=9

K=10

(a) Periodic Boundary Conditions

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

x 10
−3

Cross section (y−coordinate)

V
e

lo
c

it
y

(m
/s

e
c

)

K=1

K=2

K=3

K=4

K=5

K=6

K=7

K=8

K=9

K=10

(b) Zou-He Boundary Conditions

Figure 7.7: Boundary Condition Analysis. The velocity profile of flow in the cylindri-
cal tube at varying K levels for a simulation broken into 10 temporal domains. (a)
Shows the result using periodic boundary conditions. (b) Demonstrates the use of
Zou-He boundary conditions [173].

150

7: Parallel in Time Approximation of the Lattice Boltzmann Method

First two different boundary treatments are studied. With periodic boundary

conditions, the result, shown in 7.7a, is iteratively refined in each K level moving

nearer and nearer to the correct answer at a constant rate. Flow is imposed through

the introduction of a gravitational body force. In contrast, the Zou-He boundary

conditions cause more of a jump between accuracy levels leading to a convergence after

only four K iterations. In Fig. 7.7b, Zou-He boundary conditions with a prescribed

inflow velocity of 0.14 mm/sec and constant pressure gradient at the outlet were used.

As the incorrect inlet and outlet conditions are no longer being propagated via the

periodic boundary, the set inflow rate allows HARVEY to converge to the result of

the fine iterator much faster.

Fig. 7.15 shows the change in accuracy across the slice at the center of a cylinder

with laminar flow. The relative error is shown for the section of the cylinder shown on

the left. The relative error is calculated with respect to the result of the fine solver.

The reduction in error over time is clearly depicted. In this case, steady flow is used.

At each K iteration, the overall accuracy increases. As you can see, the greatest error

is at the center of the tube. The calculated velocity at the wall of the tube converges

to the result of the fine iterator at a faster rate. This is demonstrated in Fig. 7.9 in

which the relative error is shown at a range of K values at the wall and at the center

of the cylinder.

Fig. 7.10 demonstrates the reduction in the time to solution at each K level. The

corresponding relative error for both fluid at the center and wall of the cylinder are

151

7: Parallel in Time Approximation of the Lattice Boltzmann Method

Figure 7.8: Accuracy at different K levels. The relative error is shown for the section
of the cylinder shown on the left. The relative error is calculated with respect to the
result of the fine solver, F. This is for laminar flow in the cylinder and demonstrates
the convergence to the fine solution as K increases. Moreover, the error variation
across the section is demonstrated.

shown for each level. The dashed horizontal line depicts the wall clock time of a serial

run of the fine iterator. As shown, for all K < 9, the time to solution is less than the

serial run time. In the case of K = 4, the wall clock runtime was reduced by more

than 50% while still having an accuracy of between 1-2% depending on whether the

fluid node is at the center or wall. Fig. 4.6 further emphasizes this point by showing

the corresponding parallel speedup compared to each error level. The speedup was

calculated in comparison to the serial runtime of the fine iterator. If the goal of the

simulation is to focus on flow at the wall, one could achieve a 3× speedup and only

incur 4% error by setting K = 3.

Full convergence with machine accuracy to the F solution requires K = N iter-

ations when using N processors. The results presented and discussed in this section

are intended to show that convergence within a set tolerance can be achieved with

152

7: Parallel in Time Approximation of the Lattice Boltzmann Method

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

K level

E
rr

o
r

(%
)

Center
Wall

Figure 7.9: Percent relative error of the magnitude of the velocity at the wall and at
the center as compared to the result of the fine solver.

153

7: Parallel in Time Approximation of the Lattice Boltzmann Method

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

K level

T
im

e
(s

e
c

)

Serial Time

2%
1%

34%
23%

10%
4%

<1%
<1%

<1%
<1%

<1%
<1%

<1%
<1%

<1%
<1%<1%

<1%

63%
50%

Figure 7.10: Speedup from only the temporal portion. The relative error for the flow
at the center of the tube and at the wall are shown respectively above each bar.

154

7: Parallel in Time Approximation of the Lattice Boltzmann Method

fewer K iterations than the number of processors (K < N). In the initial study, ten

2.66 GHz Intel Xeon X5650 cores were used. To assess the impact of the parareal al-

gorithm, the value of the velocity at the center of the cylindrical tube, corresponding

to lattice point (5,5,50), at each K iteration was compared. This point was selected

as it represents the magnitude of the velocity at the center of the tube, which is the

peak of the parabolic cross-section profile. The error was assessed through compari-

son with the result of one serial run of the fine iterator, F. The results are shown in

Fig. 7.11 (a).

When simulating the fluid flow using simply the coarse iterator, the results have

an error of nearly 30%, and with six iterations of the parareal predictor-corrector

method, this error is reduced by two-thirds to less than 10%. Fig. 7.11b shows the

impact of each K-level on the overall wall-clock time using a temporal break up of

only 10 domains (N = 10). The results show a linear increase in overall runtime

as more K iterations are included in the simulation, indicating that the ability to

restrict to few K iterations while remaining in an acceptable convergence tolerance

can lead to a large improvement in time-to-solution. For example, assuming that an

error of 10% is acceptable, which corresponds to K = 6, gives a time to solution of

140 s, about a 30% gain compared to the time to calculate the fine iterator serially

which was 197 seconds. The serial runtime is shown as the horizontal dashed line

indicating that the overall time to solution for all K < 9 was shorter than the serial

runtime.

155

7: Parallel in Time Approximation of the Lattice Boltzmann Method

1 2 3 4 5 6 7 8 9 10

K

0

5

10

15

20

25

30

E
rr

o
r

(%
)

1 2 3 4 5 6 7 8 9 10

K

0

50

100

150

200

250

300

T
im

e
(s

)
(a) (b)

Figure 7.11: Accuracy test for a system broken into N = 10 temporal domains
simulated on ten processors. (a) The red points show the percent error of the y-
component of the velocity at point (5,5,50). (b) The wall-clock time for each K level
in a ten processor run. The dashed line indicates the serial runtime.

156

7: Parallel in Time Approximation of the Lattice Boltzmann Method

In order to determine the success of recovering time dependent phenomena in the

simulation, pulsatile flow through the cylinder was modeled. A varying inflow velocity

was introduced via the Zou-He boundary conditions. In this instance, the inlet nodes

are provides a set velocity and a constant pressure gradient is asserted at the outlet

nodes [173]. The inbound velocity was set to oscillate on a sine wave between .011

m/s and .014 m/s. Fig. 7.12 shows the magnitude of the fluid velocity at point

(5,5,50) for a range of K levels. The regions of time handled by each processor are

indicated by the vertical dashed lines.

To assess the performance of this method on large systems, the initial studies were

supplemented with a test using an IBM Blue Gene/P system with 2048 processors.

This allowed us to assess how close the proposed method comes to meeting the the-

oretical performance prescribed by Eq. (7.3). Furthermore, these studies identified

the peak potential speedup that could be achieved for given K iteration levels. The

goal of this work was to shorten the overall time-to-solution, so the focus is shifted

to the strong scaling capabilities in which a fixed system size is used as the number

of cores is increased.

Fig. 7.13 shows the correlation between the theoretical performance model previ-

ously discussed for speedup, Eq. (7.3), and the experimental results of the simulation.

The data shows that for given number of K-iterations, the potential speedup S for

varying processor counts can be accurately estimated. The calculations are based on

the coarse and fine iterators defined previously (∆xf = 50 µm and ∆xc = 100 µm

157

7: Parallel in Time Approximation of the Lattice Boltzmann Method

Figure 7.12: Test to recover time dependent phenomena for a system broken into
N = 10 temporal domains simulated on ten processors. The blue line shows the
magnitude of the velocity over time at point (5,5,50) after the first K iteration. The
green and red lines represent K = 4 and K = 10 respectively. The vertical dashed
lines indicate the break point between regions of time handled by each processor.

158

7: Parallel in Time Approximation of the Lattice Boltzmann Method

1 10 100 1000

Number of processors

10

20

30

40

S
p
ee

d
u
p

K=

10

20

3

Figure 7.13: Performance tests demonstrating the strong correlation between the
theoretically expected performance and experimental results. The solid lines indicate
the theoretical speedup from Eq. (7.3) and the dashed lines depict the simulation
results on the IBM Blue Gene/P system with 2048 processors.

159

7: Parallel in Time Approximation of the Lattice Boltzmann Method

resolution). These resolutions determine the value of the ratio α = γG/γF as they

dictate the computational cost of both G and F. They were chosen to ensure the

stability of the simulation. A change to either grid size would inherently impact α

and the associated speedup S to be gained.

Since the theoretical model of Eq. (7.3) reproduces the data very well, the limit

on the potential speedup to be gained through the use of the method was also inves-

tigated. For every K iteration level, the potential speedup reaches a plateau at an

upper bound value.

As Eq. (7.3) demonstrates, the potential speedup is limited by 1
α . With the

iterators prescribed in this study, the coarse iterator is defined with a grid resolution

of one half the resolution of the grid used by the fine iterator. The number of grid

points in the coarse iterator is defined as numC = lx∗ly∗lz
dx3

c
and subsequently the number

of time steps required is found through the following:

tsc =
T

dtc
=

T

Cdx2
c

. (7.4)

From these two quantities, the cost of the coarse solver is prescribed as

γG = τ ∗ tsc ∗ numC = τ ∗ lx ∗ ly ∗ lz
dx3

c

∗ T

Cdx2
c

=
τT lxlylz

Cdx5
c

(7.5)

Similarly, to find γF , in the work described here, dxF = 2dxc. This causes the

number of grid points for the fine solver to be derived by:

160

7: Parallel in Time Approximation of the Lattice Boltzmann Method

numF =
lx ∗ ly ∗ lz

dx3
f

=
lxlylz

(2dxc)3
=

lxlylz

8dx3
c

(7.6)

and the time step size to be defined as dtf = (2dxc)2 = 4dx2
c . The number of

fine time steps is then tsf = T
dtf

= T
4Cdx2

c
and the cost of the fine solver is determined

through γF = τT lxlylz
32Cdx5

c
. This variance corresponds to the fine iterator having four times

as many time steps as the coarse iterator. Taking account the factor of 2 difference

in all spatial dimensions combined with the factor of 4 difference in the number of

time steps, the limit to the cost ratio, α, of the coarse to fine iterator is 32, as shown

through the following:

α =
τT lxlylz

Cdx5
c

∗ 32Cdx5
c

τT lxlylz
=

1

32
(7.7)

Fig. 7.13 shows both the experimental and theoretical data confirming a plateau

at a 32× speedup. The specific K for each simulation will depend on the chosen

convergence tolerance, ε, which can vary in each problem. In all cases, the potential

speedup reaches a limit, and beyond this point, the parallel efficiency will begin to

drop dramatically.

7.9.2 Flow through Patient Specific Aorta Geometry

In this section, results of experiments on the accuracy and speedup results from

space-time parallelization of the LBM as applied to understanding blood flow proper-

ties in a patient suffering from co-arctation of the aorta (CoA) are presented. Person-

161

7: Parallel in Time Approximation of the Lattice Boltzmann Method

alized computer simulations can provide an insightful study of the flow under stress

conditions that would otherwise require difficult stress tests that have potential side

effects. In the following studies, patient data from an 8-year old female with mod-

erate aortic co-arctation (65% area reduction) is used. Gadolinium-enhanced MR

angiography was performed using a 1.5-T GE Sigma scanner to obtain the arterial

geometry as shown in Fig 6.1 (a). Rigid walls are assumed as well as Newtonian flow

behavior for the blood, with a density r = 0.001 gr/mm3 and a dynamic viscosity

m = 0.004 gr/mm/sec [81]. All of these studies were completed using an IBM Blue

Gene/P supercomputer.

The simulation was initialized with a 100 µm resolution for the coarse iterator

and a 50 µm resolution for the fine iterator. The fine grid corresponds to the fluid

system size matching the small size in Fig. 7.1 allowing us to focus on reducing

the time to solution for simulations in which adding more cores to a spatial paral-

lelization will no longer improve the parallel performance. Unless otherwise noted,

the following simulations were conducted on 32,768 cores of the IBM Blue Gene/P

supercomputer. N = 8 was selected as the number of temporal domains so that we

would be maximizing the strong scaling potential for this fluid system. By using 8

time intervals, each subcommunicator consists of 4,096 cores. As shown in Fig. 7.2,

the small system achieves 85% parallel efficiency for 4,096 cores. The time duration

simulated was 0.7 seconds or the average length of one human heartbeat. The goal of

this work was to shorten the overall time-to-solution, so the focus here is on the strong

162

7: Parallel in Time Approximation of the Lattice Boltzmann Method

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time(s)

V
e
lo

c
it

y
(m

/s
e
c
)

a
t

P
o

in
t(

1
6
,1

6
,3

2
)

K=1
K=3
K=5
Fine Solution

Figure 7.14: Pulsatile Flow. Test to recover time dependent phenomena for a system
broken into N = 8 temporal domains simulated on 32,768 cores. The blue line
shows the magnitude of the velocity over time at point (16,16,32) after the first K
iteration. The green line, black dots, and red line represent K = 3, K = 5 and K = 8
respectively. The vertical dashed lines indicate the break point between regions of
time handled by each core.

163

7: Parallel in Time Approximation of the Lattice Boltzmann Method

Figure 7.15: Accuracy at different K levels. (a) The mesh defining the arterial
geometry from patient specific data is shown. The red rectangle depicts the section
across which velocity is assessed. (b) The three vertical lines identify the time points
that the error tests were imposed over the coarse of one heartbeat. (c) The relative
error in velocity as compared to the solution of the fine iterator, F, is shown at four
different K levels at each time point identified in (b). The error variation across the
section is highlighted.

scaling capabilities in which a fixed system size is used as the number of processors

is increased.

A patient-specific inflow velocity was prescribed at the inlet and a constant pres-

sure gradient was applied out the outlets through Zou-He boundary conditions [173].

The inflow velocity was obtained via a 2D, phase-contrast (PC) MRI sequence with

through-plane velocity encoding [81]. In order to enable continuous flow throughout

the heartbeat, a sum of sine functions is used to fit the data to determine the equa-

tion of the pulse. The fit procedure was performed in MatLab using a non-linear least

squares method and a trust region algorithm. Using a Pearson correlation, there was

164

7: Parallel in Time Approximation of the Lattice Boltzmann Method

a statistically significant agreement between the phase contrast data and the equation

derived velocity values (R = 0.981, p < 7x10−15). Fig. 7.14 shows that the space-time

framework in HARVEY starts to recover the pulsatile behavior with greater accuracy

at each K iteration. It shows the magnitude of the fluid velocity at point (16,16,32)

for a range of K levels of a simulation with 8 temporal domain slices using 32,768

cores. As the K iteration level increases, the result gets nearer and nearer to the so-

lution of the full fine solver which is equivalent to the K = 8 depicted by the red line.

Even at K = 5, the time dependent behavior is fully recovered. The dashed black

vertical lines indicate the break point between regions of time handled by different

time intervals or subcommunicators.

Full convergence with machine accuracy to the F solution requires K = N iter-

ations when using N processors. The results presented and discussed in this section

are intended to show that convergence within a set tolerance can be achieved with

fewer K iterations than the number of processors (K < N). Fig. 7.15 shows the

change in accuracy across the slice at the red plane within a real patient’s arterial

geometry as shown in Fig. 7.15(a). The relative error in velocity as compared to the

solution of the fine iterator, F, is shown at three different time points from within a

heartbeat. The pulsatile nature of the flow causes a variation in the error. At each

K iteration, the overall accuracy increases. When K > 5, the relative error across

the entire slice is approximately zero. The fact that the initial time intervals reach

convergence first is highlighted by K = 3 in which the error is greatly reduced for

165

7: Parallel in Time Approximation of the Lattice Boltzmann Method

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

K level

S
p
e
e
d
u
p
 f
ro

m
 T

im
e
 P

a
ra

lle
l C

o
m

p
o
n
e
n
t

Simulation
Theory

Figure 7.16: Performance tests demonstrating the strong correlation between the
theoretically expected performance and experimental results. The black line depicts
the simulation results and the red circles indicate the theoretical speedup added from
the temporal component as calculated from Eq. (7.3).

166

7: Parallel in Time Approximation of the Lattice Boltzmann Method

the first two time points. Of further note, the greatest error is at the center of the

tube. The calculated velocity at the wall of the tube converges to the result of the fine

iterator at a faster rate. This is significant in selecting the desired K level as it can

depend on the research question and disease targeted. Often when assessing risk for

a disease like atherosclerosis, one is concerned with the magnitude of the endothelial

shear stress on the wall of the vessel [100]. In this case a lower K iteration may

provide the accuracy desired. Conversely, when trying to understand the pressure

gradient associated with co-arctation of the aorta, the pressure at the center of the

vessel is equally as significant.

These results are congruent with results found for other domains. Baffico et al.

showed that K = 4 of a domain broken into six temporal intervals provided accurate

results for a molecular dynamics code [9] and Fisher et al. demonstrated high accuracy

at K = 2 for a Navier-Stokes simulation with ten temporal intervals [50].

The additional speedup provided by this method above and beyond that achieved

by the spatial parallelization was then assessed and the disparity between this imple-

mentation and the theoretical performance prescribed by Eq. (7.3) evaluated.

Fig. 7.16 shows the correlation between the theoretical performance model previ-

ously discussed for speedup, Eq. (7.3), and the experimental results of the simulation.

The previously mentioned resolutions (∆xf = 50 µm and ∆xc = 100 µm resolution)

were used to determine the value of α and consequently the overall computational

costs. Any change to either grid resolution would impact the associated speedup that

167

7: Parallel in Time Approximation of the Lattice Boltzmann Method

can be achieved.

Fig. 7.17 demonstrates the reduction in the time to solution at each K level.

The corresponding relative error for both fluid at the center and wall of the cylinder

are shown for each level. The bold red horizontal line shows the wall clock time of

parallel run on the full 32,768 processors with only spatial parallelization used. The

significance of this data is that available hardware can be utilized more efficiently

by combining the use of temporal and spatial scaling. As the data shows, for all

iterations with K < 9, the time to solution is less than the spatial only run time. In

the case of K = 4, the wall clock runtime was reduced by more than 50% while still

having an accuracy of between 2-5% depending on whether the fluid node is at the

center or wall.

7.10 Discussion

For many fluid problems even beyond the medical applications discusses in this

paper, there is a strong need to model longer time durations for fixed system sizes. In

these instances, there is often a fundamental limit to the benefits that can be obtained

through traditional spatial scaling. Through the careful coupling of temporal with

spatial parallelization, it has been demonstrated that this method provides an efficient

way to leverage available parallel resources and to reduce the time to solution for real

problems and real data.

In this work, a time-parallel method to speedup fluid simulations based on the lat-

168

7: Parallel in Time Approximation of the Lattice Boltzmann Method

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

K level

T
im

e
(s

)

Spatial Only
<1%
<1%

<1%
<1%

823%
401%

225%
56%

31%
9%

5%
2%

<1%
<1%

<1%
<1%

Figure 7.17: Time to solution for each K level as compared to the serial run. The rela-
tive errors for the flow at the center of the tube and at the wall are shown respectively
above each bar. The dashed horizontal line represents the serial runtime.

169

7: Parallel in Time Approximation of the Lattice Boltzmann Method

tice Boltzmann method was first introduced, thus enabling the modeling of more time

steps in a shorter wall-clock time. Previously, a limiting factor to parallel efficiency

of simulations of a fixed problem size was the saturation of spatial parallelization.

While LBM is well suited to large-scale spatial parallelism, parallel efficiency starts

to decline as the number of mesh points per processor becomes too low. Typically, in

these simulations there is a fixed resolution requirement in which further discretiza-

tion of the space will not yield better accuracy. In such cases, when the limits of

spatial parallelism have been reached, the method introduced here to parallelize the

LBM in time overcomes this intrinsic strong scaling limit.

In order to use a time parallel LBM code on large scales efficiently, carefully

designed coarse and fine iterators are needed. It was demonstrated that this goal can

be met by means of the multigrid approach. By combining mesh refinement methods

with the parareal algorithm, longer time intervals of a fluid simulation were able to

be simulated in a shorter wall-clock time, within which, through iterative refinement,

the compute-intensive fine iterator is modeled with temporal parallelization. Thus,

the novel combination of mesh refinement and the parareal algorithm presented in

this work provide a method to considerably extend the intrinsic strong scaling limit of

classical LBM codes and therefore minimize the runtime of fixed-size fluid simulations.

Finally, here are some comments on some issues related to future extensions and

further development of the method. The implementation described here requires that

processors that have achieved convergence with the fine iterator remain idle until the

170

7: Parallel in Time Approximation of the Lattice Boltzmann Method

solution for the entire time domain has converged within the desired tolerance. The

parallel efficiency of this method can be improved through reuse of these processors.

One such option would be to re-allocate their use for further spatial discretization of

remaining time intervals. Another subtle point is that if a grid point is defined as a

boundary node on the coarse mesh, it will translate to a wall plus fluid nodes in the

fine mesh. The value of the fluid quantities near the wall will be inaccurate as they

are initialized to zero due to the averaging from the coarseness. The additional fluid

nodes encompassed by the fine grid have contributions from coarse wall nodes in their

initialization. The contribution from the wall nodes lowers the real distribution value

seen by the fluid at the wall. Through each K-iteration, the value will be refined

and propagated to the mesh. After the first iteration they will be based on values

from the first fine full iteration and propagated through the system. This may take

more time but only impacts the few lattice points directly next to the wall in the fine

grid. In an extremely porous material, this could be an issue but otherwise (as in the

case of the model system presented here) it does not have serious adverse effects. For

porous materials, an interpolation function should take nearby fluid data to initialize

the conditions instead of using the zero contribution from the wall.

171

8

Accounting for Deformational

Forces

Nothing happens until something moves.
– Albert Einstein [131]

8.1 Motivation

While it is accepted that complex flow fields in coronary arteries are related to

the development and progression of CVD, most numeral studies rely on geometry,

pulsatile flow, and the non-Newtonian behavior of blood in non-moving vessels [120].

The coronary arteries are located such that they curve around the myocardium, the

muscular tissue of the heart, and throughout the cardiac cycle, the coronary arteries

undergo large dynamic variations in curvature due to this position on the beating

172

8: Accounting for Deformational Forces

heart. In 1976, Gibson et al. studied the left ventricular angiograms of 60 patients

with heart disease and 10 normal patients frame by frame to evaluate the vessel motion

throughout the cardiac cycle. This study demonstrated significant wall movement

over the coarse of the heartbeat both for normal and diseased patients [57]. More

recently, Gross and Friedman specifically evaluated the curvature variation of the left

anterior descending (LAD) artery over the coarse of a heartbeat and demonstrated a

significant change [65].

A useful quantification to assess the range of curvature change in the coronary

arteries is referred to as the curvature ratio, δ, and defined as δ = a
R . In this case a

denotes the arterial radius and R indicates the radius of curvature. For the left coro-

nary tree, δ typically falls in the range of 0.02-0.5, with a varying between 3− 4mm.

Throughout the cardiac cycle, the expansion and contraction of the myocardium leads

to the aforementioned curvature change and displacement of the coronary arteries.

Santamarina et al. defined this change in curvature as � or the ratio of the amplitude

of the change in radius, ∆R, to the average radius of curvature shown in Eq. 8.1

[137]. Experimental measurements of the left anterior descending artery have deter-

mined � to fall between 0.7 and 0.8 (c.f. [123], [65]). While the effect of curvature on

flow in tubes has been a subject of heavy investigation (summarized well in [110]),

accounting for the dynamic curvature change in time that poses new challenges.

� =
∆R

Rmean
(8.1)

173

8: Accounting for Deformational Forces

Initial experiments have shown the importance of accounting for flow pulsatility

when modeling hemodynamics in coronary arteries by measuring steady and pulsatile

flow through vascular casts (c.f. [135], [91]); however, it wasn’t until recently that

studies have been undertaken to gain insight into the impact of the cardiac-induced

motion on coronary flow. In 1998, Santamarina et al. conducted an experiment in

which a uniformly curved tube was fixed in place at its inlet and had the radius of cur-

vature varied in time in order to assess flow patterns of a simplified geometry similarly

shaped to coronary arteries. Flow patterns and wall shear rates were determined for

steady inflow while curvature was varied sinusoidally in time at a frequency of 1Hz.

When compared to results from flow through curved tubes fixed with the static radii

of curvature equal to the minimum, mean, and maximum exhibited in the oscillating

experiment, it was shown that the dynamic deformation had significant impact. The

wall shear rates vary as much as 52% of the static mean wall shear rate when dynamic

deformation was included [137]. These results proved that it is not simply enough

to account for the change in curvature, but rather the smooth transition between

curvature states has to be accounted for.

This effect was further shown in more simplistic models of the right coronary

artery (RCA) ([103], [125]) as well as in simple patient geometries like a symmet-

ric bifurcation [164] and a non-compliant model of the LAD and it’s first diagonal

branch. Torii et al. introduced one of the first subject-specific models of an RCA by

interpolating between geometries acquired at multiple time points [157]. The dynam-

174

8: Accounting for Deformational Forces

ically varying vascular geometry was reconstructed from magnetic resonance images

(MRI). The effects of the vessel motion on shear stress was examined through the

comparison of an RCA model with time-varying geometry compared to those with

a static geometry corresponding to 9 different time points in the cardiac cycle. A

method to leverage two-dimensional cross-sectional images that are obtained via an

interleaved spiral k-space technique with short acquisition windows on the order of

10 ms was developed. This technique enabled imaging at any time-point without

motion blurring or the need for full three-dimensional image acquisition at multi-

ple time points in the heartbeat [157]. Torii et al further studied the impact the

dynamic vessel motion had specifically on the the resulting endothelial shear stress.

Time-varying curvature change was introduced by interpolating geometries obtained

at 14 time points during the cardiac cycle using MRI. These experiments confirmed

the significant impact that dynamic curvature change could have on associated wall

shear stress [156].

Pivkin et al. extended these studies to investigate the role that the combination of

both pulsatility and curvature variation has on the wall shear rate at the bifurcation of

a coronary artery. The increase in curvature during ventricular expansion, decrease

during contraction, and the corresponding flow rates are taken into account. An

arbitrary Lagrangian Eulerian (ALE) formulation of the unsteady, incompressible,

three-dimensional Navier-Stokes equations is employed to solve for the flow field. In

this work, a representative geometry was created as an analytical intersection of two

175

8: Accounting for Deformational Forces

cylinders. The motion of the cardiac muscle was simulated y changing the curvature

radius of the main cylindrical tube over time. Velocity smoothing is used to update

the computational mesh defining the arterial geometry. The effect of pulsatile inflow

alongside the time-varying geometry was shown to have a considerable impact on the

flow dynamics and specifically on the wall shear rate [120].

The studies mentioned above concretely demonstrate not only the contribution

that arterial curvature has on hemodynamic factors like wall shear stress, but the

essential need to include its dynamic temporal change in order to obtain accurate

numerical estimates of such quantities. As the changes in flow patterns have been

shown to potentially be more important than the flow patterns themselves in deter-

mining the locations of potentially deleterious effects on the vascular walls [28], it is

important to adequately account for the changes in flow dynamics. The aforemen-

tioned studies suffer from two common drawbacks. First, most rely on simplified

geometrical representations of coronary arteries. Those that do rely on data acquired

for medical imaging technologies, focus on a single artery or at most the inclusion

of one simple bifurcation. The goal of this thesis is to enable efficient and accurate

modeling of larger arterial sections such as the entire coronary arterial tree. This

results in a much more complex geometry including at least 12 main coronary arter-

ies. Second, in all cases the definition of the arterial geometry is modified throughout

the cardiac cycle to account for the curvature changes. This is typically employed

through the interpolation between static geometries obtained through multiple MRI

176

8: Accounting for Deformational Forces

acquisitions. Not only can this interpolation become computationally expensive for

large arterial trees, but also the need for many acquisition time points increases the

patient radiation dosage. In this chapter, a method to account for the deformational

forces exerted on the blood flow due to the curvature changes throughout the cardiac

cycle while leaving the geometry itself static is proposed. The numerical method

will be discussed followed by experiments demonstrating the capture of the effects of

dynamic curvature change in a computationally efficient manner.

8.2 Definition of External Force

In order to account for the deformational forces in the LBM leveraged in work

presented in this thesis, the introduction of a body force that encompasses the defor-

mational forces is used. As mentioned, a uniform curvature at each individual time

point is assumed requiring an isotropic and homogeneous system view. To incorporate

the curvature changes into the model, the underlying lattice grid applied is expanded

uniformly between time points to enforce that the relationship between the different

grid points remain the same while the density of the overall system changes.

This approach is similar to kinetic models of the expanding universe. As described

by H.P. Robertson in [132], the general theory of relativity takes the view that on

sufficiently large scales, the universe on average is homogeneous and isotropic. This is

also known as the cosmological principle. In both the de Sitter and Einstein models of

cosmology, the curvature of the universe remains constant in time [14]. This achieved

177

8: Accounting for Deformational Forces

through the use of co-moving coordinates in which the grid system applied to a

galaxy is assigned values that remain constant as the universe expands. To clarify,

the distance between the grids points themselves will actually increase to account for

the expansion of the underlying manifold. The Robertson-Walker metric, as named

for the two researchers who first derived it in cosmology, requires that the large-scale

curvature is the same at each location in each time point, similar to the requirements

imposed on the representation of the curvature of coronary arteries [39]. A single

cosmic scale factor, R(t), defines the relative expansion of the universe as a function

of time. It is used to relate the distance between two objects over time.

Taking a kinetic formalism of the universe, the fundamental quantity in the de-

scription of fluid particles in the expanding universe is the distribution function, f ,

similar to the function described in Chapter 2 to capture hydrodynamic behavior.

This quantity is modified to be a function of position, velocity, and now R(t) instead

of simply time. The Liouville operator which asserts that the f is constant along the

trajectories of the system is thus defined by Eq. 8.2.

L(f)
∂f

∂t
− 2

Ṙ

R
ρ
∂f

∂ρ
(8.2)

The distribution function is strongly influenced by the microscopic behavior of the

inter-particle collisions. It is therefore useful to recast the Liouville operator in terms

of the local momentum. To do so, the method put forth by Bernstein is used alongside

the assumption of massless particles resulting in Eq. 8.3. Readers are referred to [14]

178

8: Accounting for Deformational Forces

for more in depth background.

L(f) =
∂f

∂t
− Ṙ

R
vi∂vf (8.3)

The underlying manifold is expanding and increasing the distance between pre-

scribed grid points; however, the relationship between the grid points themselves

remains the same. The Bernstein method for introducing forces due to the increase

of the radius of curvature of the universe is used to define the additional body force

resulting from the expansion and contraction of the heart.

Ṙ

R
=

−∆Dωsin(ωt)

Ro+∆Dcos(ωt)
(8.4)

In this case the variable Ṙ
R from Eq. 8.3 is modified as shown in Eq. 8.4 where ∆D

defines the average change in diameter of the system, Ro defines the initial radius

of the heart, and omega controls the curvature change over time. In this thesis,

∆D, the average change in diameter throughout a cardiac cycle, is set to 1cm [163].

The average radius of the heart is defined as 2.5cm and drawing from the work by

Santamarina et al. [137] the curvature change is prescribed as a sinusoidal function,

ω = 2π
0.7s .

179

8: Accounting for Deformational Forces

8.3 Inclusion of External Force Term in the LBM

Shan and He demonstrated the equivalence between the solution of the LBM and

the approximations to the Boltzmann equation by Hermite polynomial expansion as

a new and alternate approach for discretizing the Boltzmann Equation in velocity

space [138]. The truncation of the Hermite expansion of the Boltzmann distribution

was shown to be equivalent to using the LBM for selected discrete velocity models,

including the previously described D3Q19 model.

In this section, we follow the procedure laid out in [139] to define the external

forcing term by casting it in the Gauss-Hermite formalism. A detailed description

of the relationship between hydrodynamic moment integrations and hydrodynamic

quantities like density and velocity is presented followed by the extension to include

the external force term. By expanding fi(�x + �ci∆t, t + ∆t) as defined by Eq. 5.1

in terms of dimensionless Hermite ortho-normal polynomials in velocity space xi, as

outlined in [139] f is recast as:

f(�x, ξ, t) = ω(ξ)
∞�

n=0

1

n!
a(n)(x, t)H(n)(ξ) (8.5)

The dimensionless expansion coefficients, a(n)(x, t), are defined by

a(n)(x, t) =

�
f(�x, ξ, t)H(n)(ξ)∂ξ (8.6)

Eq. 8.6 demonstrates that all expansion coefficients are linear combinations of the

180

8: Accounting for Deformational Forces

velocity moments of f . Shan et al. demonstrated that the first few expansion coef-

ficients are directly associated with conventional hydrodynamic variables and can be

defined as follows [139]:

a(0) =

�
f∂ξ = ρ (8.7)

a(1) =

�
fξ∂ξ = ρu (8.8)

a(2) =

�
f(ξ2 − δ)∂ξ = P + ρ(u2 − δ) (8.9)

Eq. 8.7-8.9 demonstrate that the thermodynamic variables can be expressed in terms

of just the first three Hermite expansion coefficients. In this case, density is defined

in Eq. 8.7, momentum in Eq. 8.8, and the momentum flux tensor, P , in Eq. 8.9.

Martys et al. built on this formalism to introduce the inclusion of a body force term

[93]. In this case, the external force term, F (ξ), is defined as−→g · ∂vf and Eq. 8.10

is the Hermite expansion in which ga(n−1) is the symmetric tensor product of g and

a(n−1).

F (ξ) = ω
∞�

n=1

1

n!
ga(n−1)

H
(n) (8.10)

As the leading coefficients are defined by Equations 8.7-8.9, the second order expan-

sion of F can be denoted with Eq. 8.11.

181

8: Accounting for Deformational Forces

F · ∂vf = ω(ξ)ρ
�
0 +−→g ·

−→
ξ + (−→g ·

−→
ξ)(−→u ·

−→
ξ)−−→g ·−→u

�
(8.11)

Following this same procedure for the external force from the curvature change as

defined by −̇R
R
−→v · ∂vf , Eq. 8.12 is derived.

F (v) · ∂vf =
Ṙ

R
ωξρ

�
1 + 2−→u ·

−→
uξ + (3P̂ + 2c2ρÎ) : (ξ̂ξ − c2Î)

�
(8.12)

8.4 Numerical Results

To evaluate the accuracy of the proposed method of capturing the impact on shear

stress and velocity profiles of time varying curvature change, a series of tests were

undertaken on two representative geometries: a curved tube and a patient-specific

left coronary tree.

8.4.1 Model Problem: Flow in a Curved Tube

First, a computational model mimicking the in vitro experiment conducted by

Santamarina et al. was constructed [137]. In this case, a curved section of a tube with

a1.27cm inside diameter was surrounded by a spiral vacuum hose to prevent the dis-

tortion of the cross sectional area. The other geometric parameters were δm = 0.043,

� = 0.26, and Re=300. One end of the tube was held fixed while the curvature change

was introduced through a motor coupled to a crank-piston linkage that introduced

182

8: Accounting for Deformational Forces

the sinusoidal oscillation. The fluid in the system was a water-glycerin solution of

65% glycerin by volume and had a kinematic viscosity of 0.12cm2/s. These conditions

were replicated in the simulation.

The geometry of the curved tube, shown in Fig. 8.1 (a), was similar to that of

typical coronary arteries. Fig. 8.1 (b) shows the velocity magnitude at the point

(45,45,120) over the coarse of 350 time steps. The impact of the curvature change

has been introduced as a sine wave applied uniformly across the geometry using the

introduction of the external force defined in Eq. 8.12. Over the cardiac cycle, the

velocity fluctuation recovers the sinusoidal deformation wave form. Fig. 8.1 (c) shows

the velocity profile across the spatial slice of the tube indicated by the white line in

(a) taken at each checkpoint (C0, C1, C2, and C3) defined in (b). Again, as the

cardiac cycle progresses, a significant qualitative change in flow patterns for the fours

checkpoints in the figure, which reflect the waveform of the curvature change.

8.4.2 Flow through Patient Specific Coronary Arterial Tree

Geometry

The overall impact of the deformational forces on shear stress in a real geome-

try was evaluated using the left coronary arterial tree obtained from multidetector

computed tomography (MDCT). This geometry was acquired in a single heartbeat

at 0.5mm resolution as described in Chapter 4. In all simulations, a steady flow was

used to put emphasis on the impact from the forces resulting purely from the curva-

183

8: Accounting for Deformational Forces

(a) Simplified Geometry

(b) Curvature Variation

(c) Velocity Profile

Figure 8.1: Results of flow in a simple curved tube similar to known coronary ge-
ometry. (a) The geometry with δm = 0.043 and the average radius of curvature of
0.635cm. (b) The magnitude of the velocity at point (45,45,120) is shown over the
coarse of the cardiac cycle. (c) The slices represented here are taken from the area
marked by the white line of (a) and at the temporal checkpoints designated by the
vertical red lines in (b).

184

8: Accounting for Deformational Forces

ture change as the heart expands and contracts. Fig. 8.4.2 (a) the conventional result

using a steady flow of 0.14m/s is shown. This is the result after the shear stress has

converged to a steady state. Fig. 8.4.2 (b-d) depict the shear stress map at three time

points in the expansion cycle. In this case, the curvature change is being represented

as a sinusiodal wave that is applied uniformly across the arterial tree. The sine wave

was scaled to match the time duration of the average heartbeat, 0.7 seconds [163];

however, this does result in the peak of the expansion occurring at t = 0.35s. In

future work, the sine waveform would be replaced with the patient’s cardiac inflow

waveform.

In order to better assess the impact of the deformational forces on the shear stress

across the individual arteries, Fig. 8.3 shows a 2D projection of the LAD artery in

which the width equals the circumference of the artery at the cross section. ESS is

mapped to the surface using a color encoding that diverges from red to blue. In a

formal quantitative user study with domain experts, this 2D representation and color

map resulted in fewer diagnostic errors and faster identification of at risk regions

[18]. Using this representation, one can see the impact that the curvature change

has at different points in the arterial wall throughout the cardiac cycle. Again, the

cardiac cycle is implemented as an idealized sinusoidal wave with the maximum point

of expansion occurring at t = 0.35s. For the time point at 0.35s, both the result

from the standard force and the result when including the deformational forces are

shown. This emphasizes the change in ESS that occurs due to the introduction of

185

8: Accounting for Deformational Forces

(a) Standard Force

(b) t=0s

Figure 8.2: First two images of the evaluation of the impact of the deformational forces
on the endothelial shear stress. (a) Depicts the shear stress of a steady flow through
the patient specific geometry once it has converged to a steady state. (b) Shear stress
mapping for simulation including the deformational forces at the initialized state.186

8: Accounting for Deformational Forces

(c) t=0.35s

(d) t=0.7s

Figure 8.2: (Continued) Second two images of the evaluation of the impact of the
deformational forces on the endothelial shear stress. (c) Shear stress mapping for
simulation including the deformational forces at 0.35 seconds or the height of the
expansion. (d) Shear stress mapping for simulation including the deformational forces
at 0.7. 187

8: Accounting for Deformational Forces

the deformational forces. In conventional simulations that ignore the time-varying

curvature change, such changes in endothelial shear stress are not accounted for.

188

8: Accounting for Deformational Forces

Figure 8.3: 2D projection of the shear stress map of the LAD artery at different points
in the cardiac cycle. For the time point at 0.35s, both the result from the standard
force and the result when including the deformational forces are shown.

8.5 Discussion

In the current chapter, a method for accounting for the deformational forces that

impact coronary blood flow due to the curvature change of the arteries is introduced.

This method captures the dynamic curvature change while allowing the geometry of

the artery itself to remain static. Key advantages are the ease of incorporating this

force into the LBM as an external body force and removing the need to redefine the

geometrical mesh at each time point. The use of the body force allows the simulation

to be based on one 3D patient geometry, thus minimizing the number and duration

of image acquisitions (and consequently minimizing the associated radiation dose)

189

8: Accounting for Deformational Forces

and also reducing the computational complexity of the method. First, the flow in

a simple geometry representing a coronary artery shows the successful addition of

a sinusoidal curvature change. The simplified arterial motion allowed the focus to

be on the unsteady motion on the arteries as the underlying myocardium expands

and contracts. It was shown that the inclusion of this force caused a large temporal

variance in the velocity profile. Second, the change in endothelial shear stress in a

complex patient geometry was assessed. Again the curvature change was introduced

through a sinusoidal wave and a strong qualitative change in ESS was observed. When

comparing the result of this method to simulations including only a standard body

force for steady flow, a large impact is shown.

In general, such computational studies offer a method of assessing the impact of

various forces on ESS in real patient geometries. In this study, the focus was only on

the addition of the deformational forces. In future work, the combination of pulsatile

flow and the motion of the arteries should be considered. This can be especially

important if cardiac disease is present. In such cases, the cardiac muscle may contract

differently leading to potentially non-uniform curvature changes. Moreover, if aortic

regurgitation is present, the phase difference between the arterial motion and pulsatile

flow may increase having a severe effect on the overall shear rates ([94], [120]).

A limitation of this study is the assumption that the cardiac muscle is subjected to

a uniform contraction and expansion across its volume should be modified to reflect

more realistic change. The variation of curvature change across porcine hearts was

190

8: Accounting for Deformational Forces

investigated in [142]. Similar changes for human myocardium should be studied and

potentially included in the model. An ellipsoidal representation could be used to get

a more accurate model. Also, patient-specific or more accurate models for the flow

rate waveform could be used instead of the sinusoidal wave used here.

191

9

Proposed Future Work

Attention in computational vascular mechanics should focus on patient-
specific analyses of disease progression, device-tissue interactions, and inter-
ventional and surgical planning based on appropriate couplings of advection-
reactiondiffusion formulations and fluidsolid-growth models. Models should
be as simple as possible, yet include complexities that enable the underlying
mechanobiology and chemomechanics to be modeled well.

– Charles Taylor and Jay Humphrey [151]

The objective of the research presented in this thesis is to provide conceptual insight

into the development of CVD and to serve as a proof of principle for larger circu-

latory models to aid in disease prediction and diagnosis. The prediction of disease

localization and progression is still an important open question facing cardiovascular

researchers. One of the fundamental questions is to understand the mechanism of cell

movement through the vascular system and the likelihood of penetration of the vessel

wall. Depending on the cell-types involved, these adhesions can lead to the develop-

ment of an atherosclerotic plaque. During the past few decades, clinical studies have

192

9: Proposed Future Work

found that in silico identification of areas of low ESS has enabled the potential for

early detection of regions prone to atherosclerotic disease development. It is there-

fore of great importance to detect the underlying mechanisms at early stages in the

disease process, so that appropriate treatment can be started in time.

Simulation of the movement of disease-specific cells through the blood vessels will

enable the investigation of factors like cell concentration, cell size, blood pressure,

and velocity and the calculation of the probability of adhesion at different points in

the circulatory system. Such studies will provide insight into likely locations of dis-

ease sites and a coherent understanding of the complex interactions involved with the

development of vulnerable plaques. However, the ability to model fluid movement in

the full circulatory system is currently limited by deep conceptual and technical chal-

lenges. While computational models allow us to reconstruct patient specific arterial

geometries and assess fluid flow in the system, these simulations typically involve a

small subsection of the circulatory system or ignore complex cellular interactions.

In Chapter 4, the first multiscale simulation of cardiovascular flows in realistic

human arterial geometries was presented. A challenge raised by this work was that

even taking the described strategies for efficient parallelization, the simulation of one

heartbeat required the use of 163,840 cores for a full six hours. This order of time

scale is simply not feasible to enable physicians to leverage such personalized computer

simulations as routine component of patient assessment. In the following chapters,

methods to extend the accuracy of the model, improve computational efficiency, and

193

9: Proposed Future Work

reduce time to solution through coupled space-time parallelism were presented. This

work has raised several open questions for future research.

One such question involves the red blood cell model. In response to the simula-

tion time exhibited in Chapter 4, the rest of this thesis focused on improving the fluid

component of the model. The result is HARVEY, a highly efficient lattice Boltzmann

based code, which is capable of accurately modeling blood flow for long time dura-

tions. Now that the fluid component has been optimized and extended to regimes

beyond the continuum limit, can a red blood cell model be introduced that allows for

reasonable time to solution for large-scale models? Moreover, mechanical factors like

wall shear stress play a factor in its development and high low-density lipoprotein

(LDL) concentration has been shown to correspond with sites of plaque development

and indicate the nature of the plaque’s growth [148], [106]. Through modeling the

interaction of the LDLs with other cells and the arterial wall, quantities like concen-

tration and residence time at the wall can be compared with experimental data for

insight to the disease progression. In the initial work discussed here, red blood cells

were modeled as rigid body ellipsoids. To study LDL interaction at the arterial wall,

the interaction of the cells with the wall and with others cells plays an important role

rather than in the previous case when the focus was on the bulk movement of the

fluid. A low-dimensional model that takes into account the flexibility of the cells is

necessary; however, the scale of the cells needed for the simulations is on the order of

billions of cells simultaneously being modeled.

194

9: Proposed Future Work

Another open question is whether or not these methods can extended to enable

modeling of larger circulatory models. What are the bounds on the size an duration of

the hemodynamic simulations? Typical hemodynamic models are simulated for short

stretches of a single artery or focus only on the bulk fluid in an arterial system of

typically 10-12 vessels. Recently, simulations of full body hemodynamics have started

to be completed. In these cases, only fluid is modeled and only larger arteries are

included (c.f [168], [105]).

In Chapter 8, a method to account for the deformational force applied to coronary

blood flow as a result of the artery’s curvature change. This was completed through

the formalism of an external body force which both reduced the potential computa-

tional complexity of the model and the radiation dose the patient was exposed to by

enabling arterial motion to be included even while the geometry remained static over

the entire cardiac cycle. In all of the simulations discusses in that chapter, steady flow

was used to emphasize the role curvature change had in changing the ESS exhibited

in the arteries. In future work, a more realistic waveform to describe the curvature

change as well as the coupling between the vessel movement and pulsatile flow should

be investigated. Studies taking into account the potential phase difference between

the arterial motion and flow rate should be pursued.

195

10

Conclusions

Each problem that I solved became a rule which served afterwards to solve
other problems.

– René Descartes [34]

And so I conclude that blood lives and is nourished of itself and in no way
depends on any other part of the body as being prior to it or more excellent...
So that from this we may perceive the causes not only of life in general...
but also of longer or shorter life, of sleeping and waking, of skill, of strength
and so forth.

– William Harvey, De motu cordis [68]

This thesis has attempted to address the challenges associated with using mas-

sively parallel supercomputers to model blood flow in real patient geometries. The

entire heart circulation system was simulated at high resolution using up to 294,912

processors of the IBM Blue Gene/P supercomputer. This involved the designing of

new algorithms to address difficulties like the extremely complex and irregular geom-

etry and workload balancing across the large core count.

Methods to optimize the the lattice Boltzmann model for the D3Q19 velocity

196

10: Conclusions

model as well as higher order models that extend the accuracy of the simulation be-

yond the continuum limit were presented. Techniques such as deep halo level ghost

cells and hybrid programming models were introduced to help reduce the computa-

tional impact of these extended models.

In order to further reduce the overall time to solution for cardiovascular simula-

tions, a novel scheme for coupling temporal and spatial decomposition was developed.

This has the benefit of overcoming the fundamental strong scaling limit of space-

parallel CFD methods and enabling more efficient use of the core counts becoming

available on next generation systems.

Additionally, a new algorithm was presented to account for the arterial curvature

change over the coarse of the cardiac cycle and its impact on coronary blood flow.

Various steady and unsteady numerical simulations were performed, all yielding excel-

lent agreement with either analytical solutions or in vivo measurements. The ability

to evaluate the proclivity of patients for various cardiovascular diseases through per-

sonalized computer simulations has been demonstrated. In conclusion, the lattice

Boltzmann methods discussed here are shown to be accurate and robust solvers for

computational fluid dynamics in the regimes associated with cardiovascular disease.

The work in this thesis demonstrates that applying such computational techniques

to study CVD has the potential to ultimately help reduce long-term morbidity by

identifying risk factors before there are clinical manifestations.

197

Bibliography

[1] Gene M Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring

Joint Computer Conference, pages 483–485. ACM, 1967.

[2] T. Aoki, H.A. Wood, L.J. Old, and E.A. Boyse. Arterial wall shear and distri-

bution of early atheroma in man. Nature, 223(1):159, 1969.

[3] E.B. Arkilic, M.A. Schmidt, and K.S. Breuer. Gaseous slip flow in long mi-

crochannels. Microelectromechanical Systems, Journal of, 6(2):167 –178, jun

1997.

[4] E.J. Arlemark, S.K. Dadzie, and J.M. Reese. An extension to the Navier–Stokes

equations to incorporate gas molecular collisions with boundaries. Journal of

Heat Transfer, 132(4):041006, 2010.

[5] AMM Artoli. Mesoscopic computational haemodynamics. Ponsen en Looijen,

2003.

198

Bibliography

[6] T. Asakura and T. Karino. Flow patterns and spatial distribution of atheroscle-

rotic lesions in human coronary arteries. Circulation research, 66(4):1045–1066,

1990.

[7] L. Axner, J. Bernsdorf, T. Zeiser, P. Lammers, J. Linxweiler, and A.G. Hoek-

stra. Performance evaluation of a parallel sparse lattice Boltzmann solver. Jour-

nal of Computational Physics, 227(10):4895–4911, 2008.

[8] J.A. Bærentzen and H. Anaæs. Signed distance computation using the angle

weighted pseudonormal. IEEE Transactions on Visualization and Computer

Graphics, 11(3):243–253, May 2005.

[9] L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah. Parallel-in-time

molecular-dynamics simulations. Phys. Rev. E, 66:057701, Nov 2002.

[10] G. Bal and Y. Maday. A parareal time discretization for non-linear p.d.e’s with

application to the pricing of an american put. Lecture Notes in Computational

Science and Engineering, 23:189–202, 2002.

[11] M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial

differential equations. Journal of Computational Physics, 53(3):484–512, 1984.

[12] M. Bernaschi, M. Fatica, S. Melchionna, S. Succi, and E. Kaxiras. A flexible

high-performance lattice Boltzmann gpu code for the simulations of fluid flows

199

Bibliography

in complex geometries. Concurrency and Computation: Practice and Experi-

ence, 22(1):1–14, 2009.

[13] M. Bernaschi, S. Melchionna, S. Succi, M. Fyta, E. Kaxiras, and J.K. Sircar.

Muphy: A parallel MUltiPHYsics/scale code for high performance bio-fluidic

simulations. Computer Physics Communications, 180(9):1495–1502, 2009.

[14] Jeremy Bernstein. Kinetic theory in the expanding universe. Cambridge Uni-

versity Press, 2004.

[15] L.A. Berry, W. Elwasif, J.M. Reynolds-Barredo, D. Samaddar, R. Sanchez, and

D.E. Newman. Event-based parareal: A data-flow based implementation of

parareal. Journal of Computational Physics, 231(17):5945 – 5954, 2012.

[16] BK Bharadvaj, RF Mabon, and DP Giddens. Steady flow in a model of the hu-

man carotid bifurcation. part iilaser-doppler anemometer measurements. Jour-

nal of Biomechanics, 15(5):363–378, 1982.

[17] P.L. Bhatnagar, E. Gross, and M. Krook. A model for collision processes in

gases. Physics Review Letters, 94:511, 1954.

[18] M. Borkin, Krzysztof Gajos, A. Peters, D. Mitsouras, S. Melchionna, Frank

Rybicki, C.L. Feldman, and H. Pfister. Evaluation of artery visualizations for

heart disease diagnosis. Visualization and Computer Graphics, IEEE Transac-

tions on, 17(12):2479–2488, 2011.

200

Bibliography

[19] J Boyd and JM Buick. Three-dimensional modeling of the human carotid artery

using the lattice Boltzmann method: Ii. shear analysis. Physics in Medicine

and Biology, 53(20):5781, 2008.

[20] David L Brown, John Bell, Donald Estep, William Gropp, Bruce Hendrick-

son, Sallie Keller-McNulty, David Keyes, J Tinsley Oden, Linda Petzold, and

Margaret Wright. Applied mathematics at the us department of energy: Past,

present and a view to the future. Technical report, Lawrence Livermore Na-

tional Laboratory (LLNL), Livermore, CA, 2008.

[21] M. Cannataro, Pietro H. Guzzi, G. Tradigo, and P. Veltri. A tool for the semi-

automatic acquisition of the morphological data of blood vessel networks. In

Parallel and Distributed Processing with Applications, 2008. ISPA’08. Interna-

tional Symposium on, pages 837–840. IEEE, 2008.

[22] Colin Gerald Caro, TJ Pedley, RC Schroter, and WA Seed. The mechanics of

the circulation. Cambridge University Press, 2011.

[23] J. Carter, M. Soe, L. Oliker, Y. Tsuda, G. Vahala, L. Vahala, and A. Macnab.

Magnetohydrodynamic turbulence simulations on the earth simulator using the

lattice Boltzmann method. In Proceedings of the 2005 ACM/IEEE Interna-

tional Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’05. IEEE Computer Society, 2005.

[24] Y.S. Chatzizisis, M. Jonas, A.U. Coskun, R. Beigel, B.V. Stone, C. Maynard,

201

Bibliography

R.G. Gerrity, W. Daley, C. Rogers, E.R. Edelman, et al. Prediction of the

localization of high-risk coronary atherosclerotic plaques on the basis of low

endothelial shear stress an intravascular ultrasound and histopathology natural

history study. Circulation, 117(8):993–1002, 2008.

[25] D. Chen, N.A Eisley, P. Heidelberger, R.M. Senger, Y. Sugaware, S. Kumar,

V. Salapura, D.L. Satterfield, B. Burrow-Steinmacher, and J. Parker. The IBM

Blue Gene/q interconnection network and message unit. In Proceedings of the

2011 ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’11. IEEE Computer Society, 2011.

[26] H. Chen, S.A. Orszag, and I. Staroselsky. Macroscopic description of arbitrary

Knudsen number flow using Boltzmann-BGK kinetic theory. Journal of Fluid

Mechanics, 574:495–505, 2007.

[27] Shiyi Chen and Gary D Doolen. Lattice Boltzmann method for fluid flows.

Annual Review of Fluid Mechanics, 30(1):329–364, 1998.

[28] C. Cheng, D. Tempel, R. van Haperen, A. van der Baan, F. Grosveld, M. Dae-

men, R. Krams, and R. de Crom. Atherosclerotic lesion size and vulnerability

are determined by patterns of fluid shear stress. Circulation, 113(23):2744–2753,

2006.

[29] C. Chevalier and F. Pellegrini. Pt-scotch: A tool for efficient parallel graph

ordering. Parallel Computing, 34(6):318–331, 2008.

202

Bibliography

[30] J.R. Clausen, D.A. Reasor Jr, and C.K. Aidun. Parallel performance of a lattice-

Boltzmann/finite element cellular blood flow solver on the ibm Blue Gene/p

architecture. Computer Physics Communications, 181(6):1013–1020, 2010.

[31] S. Colin. Rarefaction and compressibility effects on steady and transient

gas flows in microchannels. Microfluidics and Nanofluidics, 1:268–279, 2005.

10.1007/s10404-004-0002-y.

[32] Michael E DeBakey, Gerald M Lawrie, and Donald H Glaeser. Patterns of

atherosclerosis and their surgical significance. Annals of surgery, 201(2):115,

1985.

[33] L.A. DeRose. The hardware performance monitor toolkit. In Euro-Par 2001

Parallel Processing, pages 122–132. Springer, 2001.

[34] René Descartes and John Veitch. Discourse on method. Open Court, 1962.

[35] A. Dullweber, B. Leimkuhler, and R. McLachlan. Symplectic splitting methods

for rigid body molecular dynamics. The Journal of Chemical Physics, 107:5840,

1997.

[36] M.M. Dupin, I. Halliday, C.M. Care, L. Alboul, and L.L. Munn. Modeling the

flow of dense suspensions of deformable particles in three dimensions. Physical

Review E, 75(6):066707, 2007.

203

Bibliography

[37] A. Dupuis and B. Chopard. Theory and applications of an alternative lattice

Boltzmann grid refinement algorithm. Physical Review E, 67(6):066707, 2003.

[38] CD Eggleton and AS Popel. Large deformation of red blood cell ghosts in a

simple shear flow. Physics of Fluids, 10:1834, 1998.

[39] J Ehlers and W Rindler. Robertson-walker metric? Astron. Astrophys, 174:14,

1987.

[40] Arthur Ellis. Teaching and Learning Elementary Social Studies. 1970.

[41] Franklin H Epstein and H Franklin Bunn. Pathogenesis and treatment of sickle

cell disease. New England Journal of Medicine, 337(11):762–769, 1997.

[42] D.J.W. Evans, P.V. Lawford, J. Gunn, D. Walker, D.R. Hose, RH Smallwood,

B Chopard, M Krafczyk, J Bernsdorf, and A Hoekstra. The application of

multiscale modeling to the process of development and prevention of stenosis in

a stented coronary artery. Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 366(1879):3343–3360, 2008.

[43] Q. Fan and H. Xue. Compressible effects in microchannel flows [MEMS]. In

Electronics Packaging Technology Conference, 1998. Proceedings of 2nd, pages

224 –228, dec 1998.

[44] C. Farhat and M. Chandesris. Time-decomposed parallel time-integrators: the-

ory and feasibility studies for fluid, structure, and fluid–structure applications.

204

Bibliography

International Journal for Numerical Methods in Engineering, 58(9):1397–1434,

2003.

[45] C. Farhat, J. Cortial, C. Dastillung, and H. Bavestrello. Time-parallel im-

plicit integrators for the near-real-time prediction of linear structural dy-

namic responses. International Journal for Numerical Methods in Engineering,

67(5):697–724, 2006.

[46] Alberto Figueroa, Tommaso Mansi, Puneet Sharma, and Nathan Wilson. CFD

challenge: Simulation of hemodynamics in a patient-specific aortic coarctation

model. http://www.vascularmodel.org/miccai2012/, 2012.

[47] O. Filippova and D. Hänel. Grid refinement for lattice-BGK models. Journal

of Computational Physics, 147(1):219–228, 1998.

[48] O. Filippova and D. Hänel. Acceleration of lattice-BGK schemes with grid

refinement. Journal of Computational Physics, 165(2):407–427, 2000.

[49] O. Filippova, S. Succi, F. Mazzocco, C. Arrighetti, G. Bella, and D. Hänel.

Multiscale lattice Boltzmann schemes with turbulence modeling. Journal of

Computational Physics, 170(2):812–829, 2001.

[50] P.F. Fischer, F. Hecht, and Y. Maday. A parareal in time semi-implicit approx-

imation of the Navier-Stokes equations. In Proceedings of Fifteen International

205

Bibliography

Conference on Domain Decomposition Methods, pages 433–440. Springer Ver-

lag, 2004.

[51] M.H. Friedman, B.D. Kuban, P. Schmalbrock, K. Smith, and T. Altan. Fabri-

cation of vascular replicas from magnetic resonance images. Journal of Biome-

chanical Engineering, 117(3):364, 1995.

[52] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the navier-

stokes equation. Physical Review Letters, 56(14):1505–1508, 1986.

[53] A. Gara, M. A. Blumrich, and et. al. Overview of the Blue Gene/L system

architecture. IBM Journal of Research and Development, 49:193–212, 2005.

[54] A. Gara, M.A. Blumrich, D. Chen, G.L.T. Chiu, P. Coteus, M.E. Giampapa,

R.A. Haring, P. Heidelberger, D. Hoenicke, G.V. Kopcsay, et al. Overview of the

Blue Gene/l system architecture. IBM Journal of Research and Development,

49(2.3):195–212, 2005.

[55] J.G. Gay and B.J. Berne. Modification of the overlap potential to mimic a

linear site–site potential. The Journal of Chemical Physics, 74(6):3316–3319,

1981.

[56] I.P. Gent, C. Jefferson, and I. Miguel. Minion: A fast scalable constraint solver.

Frontiers in Artificial Intelligence and Applications, 141:98, 2006.

206

Bibliography

[57] DG Gibson, TA Prewitt, and DJ Brown. Analysis of left ventricular wall move-

ment during isovolumic relaxation and its relation to coronary artery disease.

British Heart Journal, 38(10):1010–1019, 1976.

[58] M. Gilge. Ibm system Blue Gene solution: Blue Gene/Q application develop-

ment. IBM Redbook Draft SG24–7948–00, 2012.

[59] S. Glagov, C. Zarins, D.P. Giddens, D.N. Ku, et al. Hemodynamics and

atherosclerosis. insights and perspectives gained from studies of human arteries.

Archives of Pathology & Laboratory Medicine, 112(10):1018, 1988.

[60] J. Götz. Numerical simulation of blood flow with lattice Boltzmann methods.

PhD thesis, Masters thesis, University of Erlangen-Nuremberg, Computer Sci-

ence 10–System Simulation, 2006.

[61] J. Götz, K. Iglberger, C. Feichtinger, S. Donath, and U. Rüde. Coupling multi-

body dynamics and computational fluid dynamics on 8192 processor cores. Par-

allel Computing, 36(2):142–151, 2010.

[62] L. Grinberg, T. Anor, E. Cheever, J.R. Madsen, and G.Em. Karniadakis.

Simulation of the human intracranial arterial tree. Philosophical Transac-

tions of the Royal Society A: Mathematical, Physical and Engineering Sciences,

367(1896):2371–2386, 2009.

[63] L. Grinberg, T. Anor, J.R. Madsen, A. Yakhot, and G.E. Karniadakis. Larg.e.-

207

Bibliography

scale simulation of the human arterial tree. Clinical and Experimental Pharma-

cology and Physiology, 36(2):194–205, 2009.

[64] L. Grinberg, V.i Morozov, D. Fedosov, J.A. Insley, M.E. Papka, K. Kumaran,

and G.E. Karniadakis. A new computational paradigm in multiscale simula-

tions: Application to brain blood flow. In High Performance Computing, Net-

working, Storage and Analysis (SC), 2011 International Conference for, pages

1–12. IEEE, 2011.

[65] M.F. Gross and M.H. Friedman. Dynamics of coronary artery curvature ob-

tained from biplane cineangiograms. Journal of Biomechanics, 31(5):479–484,

1998.

[66] John L Gustafson. Reevaluating amdahl’s law. Communications of the ACM,

31(5):532–533, 1988.

[67] R.A. Haring, M. Ohmacht, T.W. Fox, M.K. Gschwind, D.L. Satterfield, K. Sug-

avanam, P.W. Coteus, P. Heidelberger, M.A. Blumrich, R.W. Wisniewski,

A. Gara, G. Liang-Tai Chiu, P.A. Boyle, N.H. Chist, and C. Kim. The IBM

Blue Gene/q compute chip. volume 32, pages 48–60, Los Alamitos, CA, USA,

2012. IEEE Computer Society.

[68] William Harvey. De Motu Cordis. Frankfurt: William Fitzer, 1628.

[69] M. Hecht and J. Harting. Implementation of on-site velocity boundary condi-

208

Bibliography

tions for d3q19 lattice Boltzmann simulations. Journal of Statistical Mechanics:

Theory and Experiment, 2010(01):P01018, 2010.

[70] A. Henderson. Paraview guide, a parallel visualization application. 2007.

[71] P. Herscovitch and M.E Raichle. What is the correct value for the brain-blood

partition coefficient for water? Journal of Cerebral Blood Flow & Metabolism,

5(1):65–69, 1985.

[72] FJ Higuera, S. Succi, and R. Benzi. Lattice gas dynamics with enhanced colli-

sions. EPL (Europhysics Letters), 9(4):345–349, 1989.

[73] PJ Hoogerbrugge and JMVA Koelman. Simulating microscopic hydrodynamic

phenomena with dissipative particle dynamics. EPL (Europhysics Letters),

19(3):155, 1992.

[74] IBM Blue Gene Team. Overview of the IBM Blue Gene/p project. IBM Journal

of Research and Development, 52:1–2, 2008.

[75] G. Karypis and V. Kumar. Metis-unstructured graph partitioning and sparse

matrix ordering system, version 2.0. 1995.

[76] F. Kjolstad and M. Snir. Ghost Cell Pattern. In 2nd Annual Workshop on

Parallel Programming Patterns, ParaPLoP’10. Association for Computing Ma-

chinery (ACM), Mar. 2010.

209

Bibliography

[77] N. Kok Fu and N.H.J. Mohd Ali. Improving pipelined time stepping algorithm

for distributed memory multicomputers. Sains Malaysiana, 39(6):1041–1048,

2010.

[78] B-K Koo et al. Diagnosis of ischemia-causing stenoses obtained via non-invasive

fractional flow reserve (discover-flow): a prospective multicentre first-in-man

study. In Proceedings of EuroPCR: the annual meeting of the European Asso-

ciation for Percutaneous Cardiovascular Interventions., PCR ’11, 2011.

[79] C. Körner, T. Pohl, U. Rüde, N. Thürey, and T. Zeiser. Parallel lattice Boltz-

mann methods for cfd applications. In Numerical Solution of Partial Differential

Equations on Parallel Computers, pages 439–466. Springer, 2006.

[80] R Krams, JJ Wentzel, JAF Oomen, R Vinke, JCH Schuurbiers, PJ De Feyter,

PW Serruys, and CJ Slager. Evaluation of endothelial shear stress and 3d geom-

etry as factors determining the development of atherosclerosis and remodeling

in human coronary arteries in vivo combining 3d reconstruction from angiog-

raphy and i.v.us (angus) with computational fluid dynamics. Arteriosclerosis,

thrombosis, and vascular biology, 17(10):2061–2065, 1997.

[81] J.F. Ladisa, C.A. Figueroa, I.E. Vignon-Clementel, H. Jin Kim, N. Xiao, L.M.

Ellwein, F.P. Chan, J.A. Feinstein, C.A. Taylor, et al. Computational simula-

tions for aortic coarctation: representative results from a sampling of patients.

Journal of biomechanical engineering, 133(9):091008, 2011.

210

Bibliography

[82] G. Lakner, I.H. Chung, G. Cong, S. Fadden, N. Goracke, D. Klepacki, J. Lien,

C. Pospiech, S.R. Seelam, and H.F. Wen. IBM system Blue Gene solution:

Performance analysis tools. IBM Redpaper Publication, 2008.

[83] Andrea S Les, Shawn C Shadden, C Alberto Figueroa, Jinha M Park, Mau-

reen M Tedesco, Robert J Herfkens, Ronald L Dalman, and Charles A Taylor.

Quantification of hemodynamics in abdominal aortic aneurysms during rest and

exercise using magnetic resonance imaging and computational fluid dynamics.

Annals of Biomedical Engineering, 38(4):1288–1313, 2010.

[84] Aristid Lindenmayer. Mathematical models for cellular interactions in devel-

opment i. filaments with one-sided inputs. Journal of Theoretical Biology,

18(3):280–299, 1968.

[85] J.-L. Lions, Y. Maday, and G. Turinici. A parareal in time discretization of

P.D.E’s. C.R. Acad. Sci. Paris, Serie I, 332:661–668, 2001.

[86] Y. Liu, L. Zhang, X. Wang, and W.K. Liu. Coupling of navier–stokes equations

with protein molecular dynamics and its application to hemodynamics. Inter-

national Journal for Numerical Methods in Fluids, 46(12):1237–1252, 2004.

[87] J. Z Ma, J. Ebben, H. Xia, and A.J. Collins. Hematocrit level and associ-

ated mortality in hemodialysis patients. Journal of the American Society of

Nephrology, 10(3):610–619, 1999.

211

Bibliography

[88] R.M. Macmeccan, JR Clausen, GP Neitzel, and CK Aidun. Simulating de-

formable particle suspensions using a coupled lattice-boltzmann and finite-

element method. Journal of Fluid Mechanics, 618(1):13–39, 2009.

[89] O. Malaspinas, B. Chopard, and J. Latt. General regularized boundary condi-

tion for multi-speed lattice Boltzmann models. Computers & Fluids, 49(1):29–

35, 2011.

[90] A.M. Malek, S.L. Alper, and S. Izumo. Hemodynamic shear stress and its role

in atherosclerosis. JAMA: the Journal of the American Medical Association,

282(21):2035–2042, 1999.

[91] FF Mark, CB Bargeron, OJ Deters, and MH Friedman. Nonquasi-steady char-

acter of pulsatile flow in human coronary arteries. Journal of Biomechanical

Engineering, 107(1):24, 1985.

[92] N.S. Martys and H. Chen. Simulation of multicomponent fluids in complex

three-dimensional geometries by the lattice Boltzmann method. Physical Review

E, 53(1):743, 1996.

[93] N.S. Martys, X. Shan, and H. Chen. Evaluation of the external force term in

the discrete Boltzmann equation. Physical Review E, 58(5):6855–6857, 1998.

[94] S. Matsuo, M. Tsuruta, M. Hayano, Y. Imamura, Y. Eguchi, T. Tokushima, and

S. Tsuji. Phasic coronary artery flow velocity determined by doppler flowmeter

212

Bibliography

catheter in aortic stenosis and aortic regurgitation. The American Jjournal of

Cardiology, 62(13):917–922, 1988.

[95] K. Mattila, J. Hyväluoma, T. Rossi, M. Aspnäs, and J. Westerholm. An ef-

ficient swap algorithm for the lattice Boltzmann method. Computer Physics

Communications, 176(3):200–210, 2007.

[96] P.V. Mazzeo, M.D.and Coveney. Hemelb: A high performance parallel lattice-

Boltzmann code for large scale fluid flow in complex geometries. Computer

Physics Communications, 178(12):894–914, 2008.

[97] G.R. McNamara and G. Zanetti. Use of the Boltzmann equation to simulate

lattice-gas automata. Physical Review Letters, 61(20):2332–2335, 1988.

[98] S. Melchionna. A model for red blood cells in simulations of large-scale blood

flows. Macromolecular Theory and Simulations, 20(7):548–561, 2011.

[99] S. Melchionna, M. Bernaschi, S. Succi, E. Kaxiras, F.J. Rybicki, D. Mitsouras,

A.U. Coskun, and C.L. Feldman. Hydrokinetic approach to large-scale car-

diovascular blood flow. Computer Physics Communications, 181(3):462–472,

2010.

[100] S. Melchionna, M. Bernaschi, S. Succi, E. Kaxiras, Frank J. Rybicki, D. Mit-

souras, Ahmet U. Coskun, and C.L. Feldman. Hydrokinetic approach to large-

213

Bibliography

scale cardiovascular blood flow. Computer Physics Communications, 181(3):462

– 472, 2010.

[101] S. Melchionna, J. Lätt, E. Kaxiras, A. Peters, M. Bernaschi, and S. Succi.

Endothelial shear stress from large-scale blood flow simulations. In Proceedings

of Fifth European Conference on Computational Fluid Dynamics, ECCOMAS

CFD’10, 2010.

[102] M. Minion. A hybrid parareal spectral deferred corrections method. Communi-

cations in Applied Mathematics and Computational Science, 5:265–301, 2010.

[103] J.E. Moore, E.S. Weydahl, A. Santamarina, et al. Frequency dependence of

dynamic curvature effects on flow through coronary arteries. Journal of Biome-

chanical Engineering, 123(2):129, 2001.

[104] et. al. N. R. Adiga, M. A. Blumrich. Blue Gene/L torus interconnection network.

IBM Journal of Research and Development, 49:265–276, 2005.

[105] M.L. Neal and R. Kerckhoffs. Current progress in patient-specific modeling.

Briefings in Bioinformatics, 11(1):111–126, 2010.

[106] U. Olgac, D. Poulikakos, S.C. Saur, H. Alkadhi, and V. Kurtcuoglu. Patient-

specific three-dimensional simulation of ldl accumulation in a human left coro-

nary artery in its healthy and atherosclerotic states. American Journal of

Physiology-Heart and Circulatory Physiology, 296(6):H1969–H1982, 2009.

214

Bibliography

[107] Catherine M Ong, Charles E Canter, Fernando R Gutierrez, Daniel R Sekarski,

and David R Goldring. Increased stiffness and persistent narrowing of the aorta

after successful repair of coarctation of the aorta: relationship to left ventricular

mass and blood pressure at rest and with exercise. American Heart Journal,

123(6):1594–1600, 1992.

[108] R. Ouared and B. Chopard. Lattice Boltzmann simulations of blood flow:

non-newtonian rheology and clotting processes. Journal of statistical physics,

121(1-2):209–221, 2005.

[109] W. Pan, D.A. Fedosov, B. Caswell, and G.E. Karniadakis. Predicting dynam-

ics and rheology of blood flow: A comparative study of multiscale and low-

dimensional models of red blood cells. Microvascular Research, 82(2):163–170,

2011.

[110] T.J. Pedley. The fluid mechanics of large blood vessels, volume 1. Cambridge

University Press Cambridge, 1980.

[111] Max F Perutz. I Wish Id Made You Angry Earlier: Essays on Science, Scien-

tists, and Humanity. Oxford University Press, 2002.

[112] C.S. Peskin. The immersed boundary method. Acta numerica, 11(0):479–517,

2002.

[113] A. Peters, S. Melchionna, E. Kaxiras, J. Lätt, J. Sircar, M. Bernaschi, M. Bis-

215

Bibliography

son, and S. Succi. Multiscale simulation of cardiovascular flows on the IBM Blue

Gene/P: Full heart-circulation system at red-blood cell resolution. In Proceed-

ings of the 2010 ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’10. IEEE Computer Society,

2010.

[114] A. Peters Randles, M. Baecher, H. Pfister, and E. Kaxiras. A lattice Boltzmann

simulation of hemodynamics in a patient-specific aortic coarctation model. In

Proceedings of Statistical Atlases and Computational Models of the Heart (STA-

COM) Computational Fluid Dynamics Challenge, 2012.

[115] A. Peters Randles, V. Kale, J.R. Hammond, W. Gropp, and E. Kaxiras. Per-

formance analysis of the lattice Boltzmann model beyond Navier-Stokes. In

Proceedings of the 27th IEEE International Parallel and Distributed Processing

Symposium, IP.D.PS ’13, 2013.

[116] A. Peters Randles and E. Kaxiras. Parallel in time approximation of the lattice

Boltzmann method for laminar flows. April 2013. (submitted).

[117] A. Peters Randles and E. Kaxiras. Parallel in time approximation of the lattice

Boltzmann method for laminar flows. March 2013. (submitted).

[118] J.C. Phillips, G. Zheng, S. Kumar, and L.V. Kalé. Namd: Biomolecular simu-

lation on thousands of processors. In Supercomputing, ACM/IEEE 2002 Con-

ference, pages 36–36. IEEE, 2002.

216

Bibliography

[119] I.V. Pivkin and G.E. Karniadakis. Accurate coarse-grained modeling of red

blood cells. Physical Review Letters, 101(11):118105, 2008.

[120] I.V. Pivkin, P.D. Richardson, D.H. Laidlaw, and G.E. Karniadakis. Combined

effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary

artery bifurcation model. Journal of Biomechanics, 38(6):1283–1290, 2005.

[121] T. Pohl, F. Deserno, N. Thurey, U. Rude, P. Lammers, G. Wellein, and

T. Zeiser. Performance evaluation of parallel large-scale lattice Boltzmann ap-

plications on three supercomputing architectures. In Proceedings of the 2004

ACM/IEEE International Conference for High Performance Computing, Net-

working, Storage and Analysis, SC ’04. IEEE Computer Society, 2004.

[122] T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger, and U. Rde. Optimization and

profiling of the cache performance of parallel lattice Boltzmann codes in 2D and

3D. Parallel Processing Letters, 13:2003, 2003.

[123] M. Prosi, K. Perktold, Z. Ding, M.H. Friedman, et al. Influence of curvature

dynamics on pulsatile coronary artery flow in a realistic bifurcation model.

Journal of Biomechanics, 37(11):1767, 2004.

[124] YH Qian, D d’Humieres, and P Lallemand. Lattice BGK models for navier-

stokes equation. EPL (Europhysics Letters), 17(6):479, 1992.

[125] Y. Qiu, J.M. Tarbell, et al. Numerical simulation of pulsatile flow in a compliant

217

Bibliography

curved tube model of a coronary artery. Journal of Biomechanical Engineering,

122(1):77, 2000.

[126] A. Quarteroni, A. Veneziani, and P. Zunino. Mathematical and numerical mod-

eling of solute dynamics in blood flow and arterial walls. SIAM Journal on

Numerical Analysis, 39(5):1488–1511, 2002.

[127] P. Rao. Coarctation of the aorta. Current Cardiology Reports, 7:425–434, 2005.

10.1007/s11886-005-0060-0.

[128] JM Reynolds-Barredo, DE Newman, JM Reynolds-Barredo, R. Sanchez, and

LA Berry. modeling parareal convergence in 2D drift wave plasma turbulence.

In High Performance Computing and Simulation (HPCS), 2012 International

Conference on, pages 726–727. IEEE, 2012.

[129] JM Reynolds-Barredo, D.E. Newman, R. Sanchez, D. Samaddar, L.A. Berry,

andW.R. Elwasif. Mechanisms for the convergence of time-parallelized, parareal

turbulent plasma simulations. Journal of Computational Physics, 2012.

[130] Y. Richter and E.R. Edelman. Cardiology is flow. Circulation, 113(23):2679–

2682, 2006.

[131] Robert Ringer. Action!: Nothing Happens Until Something Moves. M. Evans,

2004.

[132] H.P. Robertson. On the foundations of relativistic cosmology. Proceedings of

218

Bibliography

the National Academy of Sciences of the United States of America, 15(11):822,

1929.

[133] V.L Roger, A.S. Go, D.M. Lloyd-Jones, E.J. Benjamin, J.D. Berry, D.M. Bor-

den, W.B .and Bravata, S. Dai, E.S. Ford, C.S. Fox, et al. Heart disease and

stroke statistics2012 update a report from the american heart association. Cir-

culation, 125(1):e2–e220, 2012.

[134] Eric Rosenthal. Stent implantation for aortic coarctation: the treatment of

choice in adults?*. Journal of the American College of Cardiology, 38(5):1524–

1527, 2001.

[135] HN Sabbah, FJ Walburn, and P.D. Stein. Patterns of flow in the left coronary

artery. Journal of Biomechanical Engineering, 106(3):272, 1984.

[136] D. Samaddar, D.E. Newman, and R. Sánchez. Parallelization in time of nu-

merical simulations of fully-developed plasma turbulence using the parareal

algorithm. Journal of Computational Physics, 229(18):6558–6573, 2010.

[137] A. Santamarina, E. Weydahl, J.M. Siegel, and J.E. Moore. Computational

analysis of flow in a curved tube model of the coronary arteries: effects of time-

varying curvature. Annals of Biomedical Engineering, 26(6):944–954, 1998.

[138] X. Shan and X. He. Discretization of the velocity space in the solution of the

Boltzmann equation. Physical Review Letters, 80(1):65–68, 1998.

219

Bibliography

[139] X. Shan, X. Yuan, and H. Chen. Kinetic theory representation of hydrody-

namics: a way beyond the Navier-Stokes equation. Journal of Fluid Mechanics,

550:413–441, 2006.

[140] A. Sorger, M. Freitag, A. Shaporin, and J. Mehner. CFD analysis of viscous

losses in complex microsystems. In Systems, Signals and Devices (SSD), 2012

9th International Multi-Conference on, pages 1 –4, march 2012.

[141] R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel, and

P. Gibbon. A massively space-time parallel n-body solver. In Proceedings of

the International Conference on High Performance Computing, Networking,

Storage and Analysis, SC ’12, pages 92:1–92:11, Los Alamitos, CA, USA, 2012.

IEEE Computer Society Press.

[142] C. Stevens and P.J. Hunter. Sarcomere length changes in a 3d mathematical

model of the pig ventricles. Progress in Biophysics and Molecular Biology,

82(1):229–241, 2003.

[143] J. Strony, A. Beaudoin, D. Brands, and B. Adelman. Analysis of shear

stress and hemodynamic factors in a model of coronary artery stenosis and

thrombosis. American Journal of Physiology-Heart and Circulatory Physiology,

265(5):H1787–H1796, 1993.

[144] S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.

Oxford University Press, 2001.

220

Bibliography

[145] S. Succi, O. Filippova, G. Smith, and E. Kaxiras. Applying the lattice Boltz-

mann equation to multiscale fluid problems. Computing in Science & Engineer-

ing, 3(6):26–37, 2001.

[146] K. Suga, S. Takenaka, T. Kinjo, and S. Hyodo. LBM and MD simulations of

a flow in a nano-porous medium. In Proceedings of the 2nd Asian Symposium

on Computational Heat Transfer and Fluid Flow, ASCHT ’09, pages 112–117,

2009.

[147] C. Sun and L.L Munn. Particulate nature of blood determines macroscopic

rheology: a 2-d lattice Boltzmann analysis. Biophysical Journal, 88(3):1635–

1645, 2005.

[148] N. Sun, N.B. Wood, and X.Y. Xu. Computational modeling of mass transport

in large arteries. 2010.

[149] C. A. Taylor, M.T. Draney, J.P. Ku, D. Parker, B.N. Steele, K. Wang, and C.K.

Zarins. Predictive medicine: computational techniques in therapeutic decision-

making. Computer Aided Surgery, 4(5):231–247, 1999.

[150] C.A. Taylor, T. Hughes, and C.K. Zarins. Finite element modeling of blood

flow in arteries. Computer Methods in Applied Mechanics and Engineering,

158(1):155–196, 1998.

[151] Charles A Taylor and JD Humphrey. Open problems in computational vascular

221

Bibliography

biomechanics: hemodynamics and arterial wall mechanics. Computer Methods

in Applied Mechanics and Engineering, 198(45):3514–3523, 2009.

[152] R. Temam. Navier-Stokes equations: theory and numerical analysis, volume

343. Oxford University Press, 2001.

[153] M. Texon. A hemodynamic concept of atherosclerosis, with particular reference

to coronary occlusion. AMA Archives of Internal Medicine, 99(3):418–427,

1957.

[154] Mano J Thubrikar and Francis Robicsek. Pressure-induced arterial wall stress

and atherosclerosis. The Annals of Thoracic Surgery, 59(6):1594–1603, 1995.

[155] G.B. Thurston. Viscoelasticity of human blood. Biophysical Journal,

12(9):1205–1217, 1972.

[156] R. Torii, J. Keegan, N.B. Wood, A.W. Dowsey, A.D. Hughes, G.Z. Yang, D.N.

Firmin, S.A. Thom, and X. Y. Xu. Mr image-based geometric and hemodynamic

investigation of the right coronary artery with dynamic vessel motion. Annals

of Biomedical Engineering, 38(8):2606–2620, 2010.

[157] R. Torii, J. Keegan, N.B. Wood, A.W. Dowsey, A.D. Hughes, G.Z. Yang, D.N.

Firmin, S.A. Mcg Thom, and X.Y. Xu. The effect of dynamic vessel motion

on haemodynamic parameters in the right coronary artery: a combined mr and

cfd study. British Journal of Radiology, 82(Special Issue 1):S24–S32, 2009.

222

Bibliography

[158] Alan Mathison Turing. The chemical basis of morphogenesis. Philosophical

Transactions of the Royal Society of London, B237:37–72, 1952.

[159] D.A. Vorp, D.A. Steinman, and C.R. Ethier. Computational modeling of arte-

rial biomechanics. Computing in Science & Engineering, 3(5):51–64, 2001.

[160] D.A. Vorp, D.A. Steinman, and C.R. Ethier. Computational modeling of arte-

rial biomechanics. Computing in Science & Engineering, 3(5):51–64, 2001.

[161] Patrick B Warren. Dissipative particle dynamics. Current Opinion in Colloid

& Interface Science, 3(6):620–624, 1998.

[162] G. Wellein, T. Zeiser, G. Hager, and S. Donath. On the single processor per-

formance of simple lattice Boltzmann kernels. Computers & Fluids, 35(8-9):910

– 919, 2006. Proceedings of the First International Conference for Mesoscopic

Methods in Engineering and Science.

[163] N. Westerhof. Snapshots of hemodynamics. Springer, 2010.

[164] E.S. Weydahl and J.E. Moore. Dynamic curvature strongly affects wall

shear rates in a coronary artery bifurcation model. Journal of Biomechanics,

34(9):1189–1196, 2001.

[165] S. Williams, L. Oliker, J. Carter, and J. Shalf. Extracting ultra-scale lattice

Boltzmann performance via hierarchical and distributed auto-tuning. In Pro-

ceedings of the 2011 ACM/IEEE International Conference for High Perfor-

223

Bibliography

mance Computing, Networking, Storage and Analysis, SC ’11, pages 1–10. IEEE

Computer Society, 2011.

[166] M.M. Wintrobe, J.P. Greer, et al. Wintrobe’s Clinical Hematology, volume 1.

Lippincott Williams & Wilkins, 2009.

[167] N. Woolf. The origins of atherosclerosis. Postgraduate Medical Journal,

54(629):156–162, 1978.

[168] N. Xiao, J.D. Humphrey, and A.C. Figueroa. Multi-scale computational model

of three-dimensional hemodynamics within a deformable full-body arterial net-

work. Journal of Computational Physics, 2012.

[169] K. Xu and Z. Li. Microchannel flow in the slip regime: gas-kinetic BGK Burnett

solutions. Journal of Fluid Mechanics, 513:87–110, 2004.

[170] PR Zarda, S Chien, and R Skalak. Elastic deformations of red blood cells.

Journal of Biomechanics, 10(4):211–221, 1977.

[171] R. Zhang, X. Shan, and H. Chen. Efficient kinetic method for fluid simulation

beyond the Navier-Stokes equation. Physics Review E, 74:1–7, 2006.

[172] D.P. Zipes and H.J. Wellens. Sudden cardiac death. Circulation, 98(21):2334–

2351, 1998.

[173] Q. Zou and X. He. On pressure and velocity boundary conditions for the lattice

Boltzmann BGK model. Physics of Fluids, 9:1591, 1997.

224

