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Abstract

This thesis presents three distinct topics: a modified K-S test for autocorrelated

data, improving MCMC convergence rate with residual augmentations, and resting

state fMRI data analysis.

In Chapter 1, we present a modified K-S test to adjust for sample autocorrelation.

We first demonstrate that the original K-S test does not have the nominal type one

error rate when applied to autocorrelated samples. Then the notion of mixing condi-

tions and Billingsley’s theorem are reviewed. Based on these results, we suggest an

effective sample size formula to adjust sample autocorrelation. Extensive simulation

studies are presented to demonstrate that this modified K-S test has the nominal

type one error as well as reasonable power for various autocorrelated samples. An

application to an fMRI data set is presented in the end.

In Chapter 2 of this thesis, we present the work on MCMC sampling. Inspired

by a toy example of random effect model, we find there are two ways to boost the

efficiency of MCMC algorithms: direct and indirect residual augmentations. We first

report theoretical investigations under a class of normal/independece models, where

we find an intriguing phase transition type of phenomenon. Then we present an

application of the direct residual augmentations to the probit regression, where we

also include a numerical comparison with other existing algorithms.
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In Chapter 3, we present a statistical analysis of resting state fMRI data. The

functional connectivity, which can be measured as spatial correlation (or partial cor-

relation), is of great interest to the researchers. In the literature, the default estimator

is the standard sample correlation matrix obtained by ignoring the temporal correla-

tion (autocorrelation). We propose fitting the covariance separable model and using

the MLE. The relative efficiency of the MLE is demonstrated both in theory and

simulations. We also propose an empirical Bayes model and fit it to the resting state

fMRI data.
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Chapter 1

A modified K-S test for

autocorrelated data – ESS

adjustment

1.1 Introduction

The Kolmogorov-Smirnov (K-S) test has been used to compare a sample with a

reference probability distribution (one-sample K-S test), or to compare two samples

(two-sample K-S test). This is a very widely used nonparametric test. However,

critical values of the K-S statistics are sensitive to sample autocorrelation. The ac-

tual Type I error rate tends to be much bigger when there exists a positive sample

autocorrelation. As a result, direct use of the K-S test might give misleading result

in an autocorrelated sample.

For example, in studying fMRI data, researchers have proposed the use of the
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K-S statistic to test normality. However, Aguirre et al. (2005) pointed out that the

K-S test is an invalid statistical test for use with BOLD fMRI: the K-S test does not

control the false-positive rate in BOLD fMRI data mainly due to the violation of the

independence assumption. So indeed the use of the K-S test with non-independent

data is problematic. In this paper we suggest a modified K-S test to correct it.

We first consider the simplest autocorrelated process – AR(1) process with Normal

stationary distributions. Based on generalized Billingsley’s Theorem, the asymptotic

distribution of the K-S statistic could be derived in theory. Based on it, we use

Monte Carlo method to estimate the critical values from the distribution. And then

a modified K-S test with effective sample size (ESS) adjustment is constructed, with

ESS formula nESS = n(1− ρ), where ρ is the coefficient (or estimated coefficient) of

the underlying AR(1) process. It is illustrated in this paper that this modified K-S

test not only applies to data generated by AR(1) processes, but also applies to data

that can be reasonably fitted by such AR(1) processes. Several simulation studies

indicate that it has its nominal significance level (being slightly conservative) as well

as reasonable power. Therefore it could be used for a general autocorrelated sample,

though it’s inspired by AR(1) processes.

Further more, this test can be easily generalized to two sample test. In two sample

test, the effective sample sizes are calculated for two samples respectively. Then one

simply plugs them instead of the actual sample sizes into the test. It is very useful

since it provides a way of comparing two samples even if there is autocorrelation

within each sample. Hence it’s a big advantage of our method over some other

existing method.
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The structure of this chapter is as follows: we introduce the K-S test in Section

1.1.1. A simple example is included in Section 1.2 to illustrate the influence of sample

autocorrelation. For an AR(1) process with positive coefficient ρ, the actual Type

I error rate tends to increase as ρ increases. As a result, we need to adjust critical

values of test statistics. However, the asymptotic distribution of the K-S statistic of

autocorrelated data is much more involved than that of independent data. With re-

sults in empirical process literature, especially the generalized Billingsley’s Theorem,

we characterized the asymptotic distribution of the K-S statistic for AR(1) processes

with normal stationary distribution. Then a modified K-S test is constructed on it,

using effective sample size adjustment. It’s very easy to implement since the only

difference from the original K-S test is to replace the actual sample size by the effec-

tive sample size neff . In Section 1.5, we implement this modified K-S test to several

simulated data: AR(1) process, MA(2) process, Metropolis algorithm and two sample

test. In order to make comparison with, we also implement a naive “thinning” K-S

test, which is explained in Section 1.5.1. Simulations on AR(1) process indicate that

our modified K-S test has almost the nominal significance level (being slightly conser-

vative with actual Type I error rate around 0.04) as well as reasonable power (bigger

than the “thinning” K-S test). It is not surprising since it is derived from AR(1)

processes. More importantly, the results on MA(2) process, Metropolis algorithm are

also promising. They demonstrate that this method can be used to a general auto-

correlated sample as well. Further more, we also include a simulation study about

two sample test in the end. A summary of Type I error rate and power is illustrated

for all simulations. Section 1.6 provides an application of this method to fMRI data.
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1.1.1 Introduction to the K-S test

Comparing a sample to some specified distribution is frequently met in statistics.

The K-S test has been proposed by Kolmogoroff (1933) and Smirnov (1939) to solve

this problem. This nonparametric test is constructed upon the asymptotic distribu-

tion of the Kolmogorov-Smirnov (K-S) statistic. More specifically, suppose our null

hypothesis is that n i.i.d. observations Xi, i = 1, 2, · · · , n follow a distribution F (x).

Define the empirical distribution function Fn as

Fn(x) =
1

n

n∑
i=1

IXi6x.

The K-S statistic for this given cumulative distribution function F (x) is defined as:

Dn = sup
x
|Fn(x)− F (x)|.

When F is continuous, Kolmogorov has shown that under the null hypothesis

√
nDn

n→∞−−−→ sup
t∈[0,1]

|B(t)|

in distribution, where B(t) is the Brownian bridge. Noticing that supt∈[0,1] |B(t)|

(named Kolmogorov distribution) is independent of the distribution F , the K-S test

compares the statistic
√
nDn to some quantile of the Kolmogorov distribution.

For two sample test, where the null hypothesis is that two i.i.d. samples (with
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sample sizes n1 and n2 respectively) follow the same distribution, the K-S statistic is:

Dn1,n2 = sup
x
|F1,n1(x)− F2,n2(x)|,

where F1,n1 and F2,n2 are the empirical distribution functions respectively. Smirnov

has shown that under the null hypothesis,

√
n1n2

n1 + n2

Dn1,n2

n1,n2→∞−−−−−→ sup
t∈[0,1]

|B(t)|

in distribution. So similarly, the test is constructed upon the asymptotic distribution

of Dn1,n2 .

1.2 Influence of autocorrelation on the K-S test

A fundamental assumption of the K-S test, independent sampling, is sometimes

violated in application. If we still want to apply the K-S test, the first question is

whether it is still a valid test (has its nominal significance level). A simple example

of autocorrelated data is a first-order autoregressive (AR(1)) process. Suppose {Xn}

are generated from the following process:

X1 ∼ N(0, 1) (1.1)

Xn = ρXn−1 +
√

1− ρ2Zn, n = 2, 3, · · · (1.2)

where Zn follows i.i.d. standard normal distribution and is independent of Xj, j =

1, 2, · · · , n − 1. The underlying stationary distribution of this process is N(0, 1). If

5



ρ = 0, they are essentially i.i.d. observations; if ρ 6= 0, they are autocorrelated.

Suppose our null hypothesis is that the stationary distribution is N(0, 1), is the K-S

test still valid in this case? The following simulation study answers this question:

for a chosen ρ, 5000 such processes were independently simulated and the K-S test

(significance level α = 0.05) was conducted on each sample. The rejection rate (type

I error rate) was recorded for each ρ. We chose 15 different ρ’s from −1 to 1 and

different sample sizes (n = 100, 200, 500) to see the effect of sample size. Below is the

summary plot:
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Figure 1.1: Type I error rate for autocorrelated data

There are several things that can be observed from this graph:

• This curve is not symmetric: it is not monotone when ρ < 0. However, since ρ

is positive in most of the problems we want to solve, we ignore the part ρ < 0

in the discussion.

• When ρ > 0, the rejection rate is monotonely increasing as ρ increases. If
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samples are positively autocorrelated, we expect a larger K-S statistic than

i.i.d. sample, which leads to higher rejection rates. Therefore if we still want

to apply the K-S test, the critical value of the K-S statistic should be adjusted

with ρ.

• There is little influence of sample size. This ensures us it is sample autocorre-

lation that breaks the K-S test.

As a summary, the K-S test is not necessarily valid if there is an autocorrelation

within the sample. It has a larger rejection rate than its nominal type I error rate

when ρ > 0. In order to correct it, we need to find out the asymptotic distribution of

the K-S statistic when the i.i.d. assumption is violated. As a first step, we go back

to see what breaks down in the K-S test if there exists an autocorrelation.

There are two key facts in deriving the asymptotic distribution of the K-S statistic

(Doob (1949)):

• Distribution free property:

Fn(x)− F (x) =
1

n

n∑
i=1

IXi≤x − F (x) (1.3)

=
1

n

n∑
i=1

IF (Xi)≤F (x) − F (x) (1.4)

(t , F (x)) =
1

n

n∑
i=1

IUi≤t − t (1.5)

where Ui are independent uniform random variables and hence the quantity is

independent of the distribution F (·).

• The above function converges weakly to a Gaussian process. This is proved by

7



functional central limit theorem for i.i.d. random variables.

However, if there exists an autocorrelation within the sample, we can still rewrite

Fn(x)− F (x) in terms of uniform random variables, but those random variables are

not independent any more. One natural question is if there is some corresponding

functional central limit theorem for sum of correlated random variables. The literature

of empirical process gives some sufficient conditions and we cite some useful results

in the next section.

1.3 Functional central limit theorem of empirical

process

In this part, we cite some useful theorems in studying functional central limit

theorem of empirical process. Based on these theorems, the asymptotic distribution of

the K-S statistic for an AR(1) process with Normal stationary distribution is derived

theoretically. Section 1.3.1 introduces Billingsley’s theorem and its generalization in

proving weak convergence of empirical CDF; Section 1.3.2 verifies that AR(1) process

with Normal stationary distribution satisfies conditions in Billingsley’s theorem and

hence we can theoretically derive the asymptotic distribution of the K-S statistic.

1.3.1 Billingsley’s theorem and its generalization

Let’s first introduce some widely used concepts in studying weak convergence. We

will use notations by Bradley (Bradley (2005)): let the probability space be (Ω,F , P ).

For any σ-field A ⊂ F , let L2(A) be the space of square-integrable, A-measurable

8



random variables. For any two σ-fields A and B ⊂ F , define the following measures

of dependence:

α(A,B) := sup |P (A ∩B)− P (A)P (B)|, A ∈ A, B ∈ B; (1.6)

ρ(A,B) := sup |cor(f, g)|, f ∈ L2(A), g ∈ L2(B); (1.7)

φ(A,B) := sup |P (B|A)− P (B)|, A ∈ A, B ∈ B, P (A) > 0. (1.8)

These coefficients measure the dependence between two σ-fields in different as-

pects, but there are also some connections between them. For instance, one useful

relationship between α and ρ is the following inequality (Bradley (2005)):

4α(A,B) ≤ ρ(A,B).

Moreover, mixing conditions for a sequence of random variables can be defined as

follows: suppose {Xk : k ∈ Z} is a (strictly) stationary sequence of random variables.

For −∞ ≤ J ≤ L ≤ ∞, define the σ-field

FLJ := σ(Xk, J ≤ k ≤ L).

For each n ≥ 1, define the following dependence coefficients:

α(n) := α(F0
−∞,F∞n ) (1.9)

ρ(n) := ρ(F0
−∞,F∞n ) (1.10)

9



The random sequence {Xk} is said to be

“α mixing” (or “strong mixing”) if α(n)→ 0 as n→∞,

“ρ mixing” if ρ(n)→ 0 as n→∞,

“φ mixing” if φ(n)→ 0 as n→∞.

If {Xk} is furthermore a Markov Chain, the mixing coefficients become:

α(n) := α(σ(X0), σ(Xn)), (1.11)

ρ(n) := ρ(σ(X0), σ(Xn)), (1.12)

φ(n) := φ(σ(X0), σ(Xn)). (1.13)

These different types of mixing conditions characterize the dependence between

observations with lag n. Recall from last section that the functional central limit

theorem is used in the second step of deriving the asymptotic distribution of the K-S

statistic for “independent” case. There exists parallel functional central limit theorem

for “dependent” random variables under some above mixing conditions. With these

mixing conditions satisfied, the asymptotic distribution of the K-S statistic can there-

fore be derived and used to construct a hypothesis test. Billingsley (2009) established

one of the most fundamental results:

THEOREM(Billingsley). Suppose now that 0 ≤ U0 ≤ 1, and U0 has a continuous

distribution function F on [0, 1]. Let {Fn(t) : 0 ≤ t ≤ 1} be the empirical process for

10



U1, U2, · · · , Un, i.e., Fn(t) = n−1
∑n

i=1 I[0,t](Ui). Normalize Fn(t) as

Yn(t) =
√
n(Fn(t)− F (t)),

where 0 ≤ t ≤ 1. Further more, define

gt(x) = I[0,t](x)− F (t).

Let {Un : n = 0, 1, 2, · · · } be defined as above and suppose {Un} satisfies the mixing

condition: ∑
n≥1

n2φ(n)
1
2 <∞. (1.14)

Then the sequence {Yn(t) : 0 ≤ t ≤ 1} of normalized empirical processes converges

weakly in D[0, 1] to a Gaussian random function {Y (t) : 0 ≤ t ≤ 1} specified by

E[Y (t)] = 0

and

E[Y (s)Y (t)] = E[gs(U0)gt(U0)] +
∞∑
k=1

E[gs(U0)gt(Uk)] +
∞∑
k=1

E[gs(Uk)gt(U0)]. (1.15)

Furthermore, the series above converges absolutely and the sample paths of Y are

continuous with probability one.

The key message of this theorem is that as long as the mixing condition (1.14) is

satisfied, the corresponding empirical process converges weakly to a Gaussian process

11



with covariance function specified by (1.15). This is a fundamental theorem, providing

a condition when the functional central limit theorem holds for dependent variables.

Followed by it, Deo (1973) generalized the result to α-mixing condition as follows:

Billingsley’s theorem remains true if the condition (1.14) is replaced by

∑
n≥1

n2α(n)
1
2
−τ <∞ (1.16)

for some 0 < τ < 1
2
.

In the next section, we verify that the AR(1) process with Normal stationary

distribution satisfies condition (1.16).

1.3.2 Weak convergence in AR(1) process

We want to show that for the process defined in (1.1), the K-S statistic asymp-

totically converges to the supremum of some Gaussian process and then we can use

that Gaussian process to calculate critical values of the K-S test. Recall that if

Xn = ρXn−1 +
√

1− ρ2Zn has N(0, 1) as its stationary distribution, Un := Φ(Xn)1

has a marginal uniform distribution. We can verify that {Un} satisfies the mixing

condition (1.16) given by the generalization of Billingsley’s theorem (see Appendix).

Thus it converges weakly to a Gaussian process specified in the theorem. The covari-

ance function (1.15), although not analytically expressible, can be calculated numer-

ically. With the corresponding Gaussian process simulated, the critical value of the

K-S statistic can be estimated from the corresponding quantile.

1Φ(·) is the CDF of N(0, 1).

12



For a chosen ρ, a multivariate normal distribution with dimension 200 was sim-

ulated to approximate the Gaussian process. Its covariance matrix was numerically

calculated by the form (1.15). This was repeated 2000 times to estimate the 95%

quantile of the supreme absolute value of the corresponding Gaussian process. The

following plot shows the results:
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Theoretical critical value

ρ

K
S

(ρ
)

K
S

(ρ
=
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Figure 1.2: Theoretical critical value

The black line represents the estimated critical values for different coefficient ρ′s.

1.4 A modified K-S test

Given these critical values in Figure 1.2, one can construct a test, at least for AR(1)

process with normal stationary distribution. However, these critical values can only

be computed through simulations and are not easy to use or interpret. Moreover, this

method only applies to data generated from an AR(1) process with normal stationary

distribution. We hope to find some more general method.
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Surprisingly, it could be found that a simple function 1√
1−ρ fits the curve of the

critical values simulated above. Here is a plot of the theoretical values and fitted

values:
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1.
0

1.
5

2.
0

2.
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3.
0
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)
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Figure 1.3: Fitted and theoretical values

The black line represents the theoretical critical values (though derived through

simulation) for different ρ′s; the red dashed line represents the function 1√
1−ρ used to

calculate effective sample size. The difference between these two lines, measured in

terms of the proportion
| KS(ρ)
KS(ρ=0)

− 1√
1−ρ |

KS(ρ)
KS(ρ=0)

has a maximum 15.6% with all the others

below 10%2. This difference won’t allow our modified K-S test has exactly the nominal

significance level, but it’s acceptable as we will see later. Based on this fitted function,

the modified K-S test can be constructed as follows: for an AR(1) process Xn =

ρXn−1 + εn, where {εn} are i.i.d. error terms which are not necessarily normal, the

critical value KS(ρ) corresponding to a 0.05 level test is estimated by the product of

2The median difference is 6.4%.
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1√
1−ρ and KS(ρ = 0). Then the rejection area is determined as (KS(ρ),∞). Since

the estimated critical value is close to the empirical 95% quantile of the K-S statistic,

the type I error rate of the modified K-S test should be close to 0.05 (simulation study

in Section 1.5.1 confirms that it is actually smaller than 0.05 most of the time).

1.4.1 ESS interpretation

This modified K-S test not only has its nominal significance level (being slightly

conservative), but also has a nice interpretation of effective sample size (ESS) ad-

justment. Since the sample has an autocorrelation, the information contained in the

data is (usually) less than an i.i.d. sample with the same size. In other words, the

number of equivalent independent observations is fewer than the sample size n. If we

can somehow adjust for it, we may be able to modify the test.

To formalize this idea, let’s take a simple example: suppose the sample comes from

an AR(1) process defined in (1.1), our goal is to estimate the mean of the stationary

distribution. The estimator would still be the sample mean, but the variance of the

estimator is not
σ2

n
as in i.i.d. case. According to Brooks et al. (2010), the variance

of the estimator is:

V ar(x̄) =
σ2

n
[
1 + ρ

1− ρ
− 2

n

ρ(1− ρn)

(1− ρ)2
],

where σ2 is the variance of the stationary distribution, which is 1 here and ρ is the

coefficient of the AR(1) process. If an estimator from i.i.d. sample has the same

15



variance as it, the sample size is:

nESS =
n

1+ρ
1−ρ −

2
n
ρ(1−ρn)
(1−ρ)2

.

As n→∞, the effective sample size nESS = n
1− ρ
1 + ρ

asymptotically. So if we replace

n by nESS in the regular variance calculation
σ2

n
, we end up with a correct variance

calculation.

Bayley and Hammersley (1946) discussed the effective number of independent

observations in an autocorrelated time series, specifically about estimating mean and

variance of a distribution. Further more, besides estimation problem, it has been

demonstrated that some hypothesis test can be also modified for autocorrelated data

using ESS adjustment. For example, Yue and Wang (2004) proposed a modified

Mann-Kendall test by ESS adjustment to detect trend in a time series. Similar

to the K-S test, the original Mann-Kendall test has an assumption of independent

sampling, which is not satisfied in most time series data. Yue and Wang proposed use

ESS adjustment to calculate the “correct” variance that leads to the correct rejection

rate. In these problems, usually the only required modification is to replace the actual

sample size n by the effective sample size neff . And the modified estimator/test works

reasonably well.

In our problem, It turns out that f(ρ) = 1√
1−ρ corresponds to the following ESS

formula:

nESS = n(1− ρ).

In fact, after adjusting the effective sample size,
√
n(1− ρ)Dn is compared with

16



the critical value of the K-S test KS(ρ = 0), which is equivalent to comparing
√
nDn

with KS(ρ=0)√
1−ρ . Theory about why this is the proper formula of ESS adjustment for

comparing two distributions hasn’t been found yet, but heuristically it makes sense.

Recall that the ESS formula for estimating the mean is nESS = n1−ρ
1+ρ

. In general,

distinguishing the difference between two distributions is easier than distinguishing

the means of them. So information about the difference of two distributions is more

than information about the difference of two means in the same sample, wherein

indeed 1−ρ
1+ρ

< 1− ρ if ρ > 0.

1.4.2 Comparison with Weiss’s method

Weiss (1978) suggested a way of modifying the K-S test for autocorrelated data.

They considered data generated by an AR(2) process with coefficients ρ1, ρ2: he

first fitted the empirical relationship (a linear function) between KS(ρ1,ρ2)
KS(ρ1=ρ2=0)

and τ, n,

where n is the sample size and τ is derived from the second and fourth moments of

the normalized spectrum of the autoregressive process; then he used this empirical

relationship to predict the critical values of the K-S statistics for a given AR(2) process

with known ρ1, ρ2, n. In comparison to it, the method we suggest is essentially fitting

the empirical relationship between KS(ρ1)
KS(ρ1=0)

and ρ1, and then using this to predict the

critical values. As a result, the type I error rate of Weiss’s method is closer to 0.05

since it incorporates both coefficients ρ1, ρ2 and sample size n (simulations illustrate

that the type I error rate of our method is less than 0.05 most of the time). However,

our method is easier to implement and has a nice interpretation of ESS adjustment.

More importantly, our method can be easily generalized to two sample test, which
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will be discussed in Section 1.5.2.

1.5 Implementation of the modified K-S test

1.5.1 Implementation on AR(1) processes

We have discussed the construction of the modified K-S test and its interpretation.

In this section, a Monte Carlo simulation study was conducted to investigate power

of the modified K-S test under different alternatives.

We still considered the following AR(1) processes:

X1 ∼ εn (1.17)

Xn = ρXn−1 +
√

1− ρ2εn, n = 2, 3, · · · (1.18)

where εn are iid error terms following a distribution which is not necessarily normal.

Again εn is independent of Xj, j = 1, 2, · · · , n−1. When εn ∼ N(0, 1), the underlying

stationary distribution is N(0, 1); when εn follows some other distribution, such as

exponential distribution, the underlying stationary distribution is not N(0, 1) any-

more (though we don’t know it exactly). According to Mallows (1967), we know the

following:

Suppose {Yu, u ∈ U} (U is the set of all integers) is a process of standardized,

independent and identically distributed random variables with finite third moment

and with a common absolutely continuous distribution function G, and {au, u ∈ U}

is a sequence of real numbers such that
∑

u a
2
u = 1, then Xu =

∑
w awYu−w defines a
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stationary linear process with E(Xu) = 0, E(X2
u) = 1 for u ∈ U . Let f be the density

function of X0. If maxu |au| is small, then for each w ∈ U , Xw is close to Gaussian in

the sense that
∫∞
−∞(f(y)−φ(y))2dy ≤ gmaxu |au|, where φ(·) is the standard Gaussian

density function and g only depends on G.

If we carefully rewrite our process in the above formula, we can find that Xn =∑n
k=1 an−kεk, where ak = ρk

√
1− ρ2. As n→∞, this limiting distribution is the one

described by Mallows above. maxu |au| =
√

1− ρ2, which means as ρ increases, the

limiting distribution will be closer to N(0, 1) in the sense described before. This will

be observed and discussed later in this section.

We want to investigate power of the modified K-S test under these different al-

ternatives. Moreover, it is generally easier to distinguish the difference between two

distributions that have different means or standard deviations. So in order to make

fair comparisons, we chose alternative distributions such that the stationary distri-

butions still have mean 0 and standard deviation 1. For instance, if the alternative

is the exponential distribution, we chose εn ∼ Exp-1. It can be easily verified that

the underlying stationary distribution has mean 0 and standard deviation 1. As a

summary, the following six distributions were chosen as the error term distributions:

Except for “Normal2”3, all the other five distributions were modified such that

the corresponding stationary distributions have mean 0 and standard deviation 1.

The null hypothesis being tested is that the stationary distribution is N(0, 1). It’s

worth noting that in the “Normal” case the rejection rate is actually the type I error

3In “Normal2” case, the starting point X1 also has a different distribution: we draw X1 ∼
N(0.1, 1) instead of N( 0.1(1−ρ)√

1−ρ2
, 1) so that the stationary distribution is exactly N(0.1, 1).
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Table 1.1: Error term distribution

Name Error term distribution (εn) Underlying stationary distribution
Normal N(0, 1) N(0, 1)

Uniform Unif(−
√

3,
√

3) unknown [mean=0, sd=1]

t8
√

3
2
t8 unknown [mean=0, sd=1]

Exponential Exp− 1 unknown [mean=0, sd=1]

Lognormal eN(0,σ2) − eσ
2

2 , (σ2 = log 1+
√

5
2

) unknown [mean=0, sd=1]

Normal2 N(0.1(1−ρ)√
1−ρ2

, 1) N(0.1, 1)

rate; while in other cases the rejection rates are power of the test under different

alternatives.

In order to make comparison with, another alternative to the modified K-S test

was also performed here–we call it “thinning” K-S test. The idea is quite simple: we

know that autocorrelation breaks the validation of the K-S test. If we can somehow

remove the autocorrelation, problem will be solved. So a simple but inefficient way of

doing is “thinning” the data, meaning that we discard some data until the remaining

is almost independent of each other. For example, we can choose every other m

observations. Then the K-S test was performed on the reduced sample. This method

is of course not ideal: despite the reduction of power by discarding data, how to choose

an appropriate m is unclear. If we choose a relatively small m, the autocorrelation

may not be removed, which makes the validation of the test doubtful. On the other

hand, if we choose too big an m, the sample size of the reduced data is very small,

leading to unsatisfying power. Just heuristically as a rule of thumb, we chose m in

such a way that it is the smallest integer satisfying ρm < 0.01.4 We wanted to make

a comparison of power between our method and this “thinning” method.

4It means the correlation of two observations with lag m is smaller than 0.01.
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For each AR(1) process, the first 200 iterations were discarded as burning. 1000

samples were simulated from each of the six distributions and the rejection rates of

both tests were recorded. This was replicated 20 times to estimate the standard error

of rejection rates. This study was conducted on sample sizes (length of the process)

100, 300, 1000, 3000, 10000 and ρ = 0.6, 0.75, 0.9. Below are selected plots:

0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.
00

0.
02

0.
04

0.
06

0.
08

Type I error rate on selected ρ and sample size

ρ

T
yp

e 
I e

rr
or

 r
at

e

n=100
n=300
n=1000
n=3000
n=10000

1 1 1

0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Power under alternative Normal2

ρ

P
ow

er

2

2

2

3

3

3

1
2
3
1
2
3

M n=100
M n=1000
M n=10000
T n=100
T n=1000
T n=10000

1 1 1

0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ

P
ow

er

2
2

2

3

3

3

Figure 1.4: Selected summary plots

The left graph is the rejection rate under the distribution “Normal”, e.g. type

I error rate of the modified K-S test. It’s immediately seen that the type I error

rate is smaller than its nominal rate 0.05. Besides that, there are two important

features of this graph: as ρ increases, the type I error rate decreases; as the sample

size n increases, the type I error rate gets closer to 0.05. The right graph is the

rejection rate under the distribution “Normal2”, e.g. power of those two tests5 under

“Normal2” alternative. Several important features of this graph: power of both tests

5In the graph, “M” stands for the modified K-S test and “T” stands for the “thinning” K-S test.
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increase as ρ decreases and sample size n increases; power of the modified K-S is

significantly larger than that of the “thinning” K-S test. More detailed results are

provided in Table 1.2.

There are several things that can be observed from Table 1.2:

• When the underlying stationary distribution is N(0, 1) (column Normal), the

rejection rates of the modified K-S test are less than its nominal level 0.05 while

the rejection rates of the “thinning” K-S test are roughly around 0.05. This

tells us that the modified K-S test is slightly conservative.

• When the distribution of the error term is symmetric, such as Uniform, and t8

in the table, power is relatively small for both tests, especially for big ρ. For

example when ρ = 0.9, power of two tests is almost the same as the type I

error rates. This has been mentioned before. When ρ is close to 1, the limiting

distribution is close to N(0, 1)6. As a result, power is relatively low. But we

still can see that for ρ = 0.6, 0.75 power of the modified K-S test is greater than

that of the “thinning” K-S test.

• When the distribution of the error term is not symmetric about 0, such as

Exponential, Lognormal and Normal2 in the table, power is relatively large.

Moreover, power of the modified K-S test is almost as twice big as the “thinning”

K-S test.

• Power increases as sample size increases, decreases as ρ increases with all other

parameters fixed. And asymptotically it’s increasing to 1.

6Especially if the distribution of εn is symmetric.
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Table 1.2: Rejection rates of the modified and “thinning” K-S tests

Rejection rate(sd) under the distribution
Normal Uniform

Modified Thinning Modified Thinning

0.6
100 0.039 ( 0.007 ) 0.054 ( 0.006 ) 0.043 ( 0.007 ) 0.062 ( 0.009 )
1000 0.039 ( 0.006 ) 0.047 ( 0.007 ) 0.09 ( 0.008 ) 0.071 ( 0.009 )
10000 0.042 ( 0.006 ) 0.051 ( 0.006 ) 0.829 ( 0.01 ) 0.282 ( 0.012 )

0.75
100 0.037 ( 0.006 ) 0.057 ( 0.008 ) 0.033 ( 0.008 ) 0.055 ( 0.006 )
1000 0.04 ( 0.007 ) 0.052 ( 0.008 ) 0.04 ( 0.007 ) 0.056 ( 0.007 )
10000 0.038 ( 0.008 ) 0.05 ( 0.006 ) 0.106 ( 0.007 ) 0.076 ( 0.006 )

0.9
100 0.026 ( 0.004 ) 0.053 ( 0.006 ) 0.026 ( 0.006 ) 0.052 ( 0.006 )
1000 0.032 ( 0.006 ) 0.054 ( 0.008 ) 0.031 ( 0.005 ) 0.057 ( 0.007 )
10000 0.035 ( 0.006 ) 0.05 ( 0.008 ) 0.035 ( 0.007 ) 0.051 ( 0.006 )

Rejection rate(sd) under the distribution
Exponential t8

Modified Thinning Modified Thinning

0.6
100 0.127 ( 0.01 ) 0.08 ( 0.009 ) 0.041 ( 0.008 ) 0.048 ( 0.009 )
1000 0.951 ( 0.008 ) 0.382 ( 0.013 ) 0.054 ( 0.007 ) 0.048 ( 0.007 )
10000 1 ( 0 ) 1 ( 0 ) 0.265 ( 0.011 ) 0.109 ( 0.011 )

0.75
100 0.068 ( 0.009 ) 0.062 ( 0.005 ) 0.036 ( 0.008 ) 0.049 ( 0.005 )
1000 0.37 ( 0.018 ) 0.164 ( 0.01 ) 0.042 ( 0.005 ) 0.05 ( 0.007 )
10000 1 ( 0 ) 0.921 ( 0.006 ) 0.077 ( 0.007 ) 0.063 ( 0.008 )

0.9
100 0.03 ( 0.006 ) 0.053 ( 0.009 ) 0.028 ( 0.007 ) 0.052 ( 0.007 )
1000 0.073 ( 0.006 ) 0.065 ( 0.007 ) 0.035 ( 0.007 ) 0.051 ( 0.008 )
10000 0.504 ( 0.018 ) 0.206 ( 0.008 ) 0.038 ( 0.006 ) 0.048 ( 0.007 )

Rejection rate(sd) under the distribution
Lognormal Normal2

Modified Thinning Modified Thinning

0.6
100 0.122 ( 0.012 ) 0.077 ( 0.01 ) 0.061 ( 0.007 ) 0.063 ( 0.007 )
1000 0.9 ( 0.012 ) 0.364 ( 0.014 ) 0.289 ( 0.016 ) 0.139 ( 0.008 )
10000 1 ( 0 ) 1 ( 0 ) 0.996 ( 0.002 ) 0.82 ( 0.012 )

0.75
100 0.061 ( 0.01 ) 0.055 ( 0.007 ) 0.048 ( 0.004 ) 0.055 ( 0.008 )
1000 0.292 ( 0.011 ) 0.133 ( 0.01 ) 0.175 ( 0.011 ) 0.106 ( 0.009 )
10000 1 ( 0 ) 0.802 ( 0.013 ) 0.938 ( 0.006 ) 0.572 ( 0.02 )

0.9
100 0.028 ( 0.006 ) 0.05 ( 0.006 ) 0.032 ( 0.006 ) 0.055 ( 0.006 )
1000 0.051 ( 0.007 ) 0.054 ( 0.006 ) 0.08 ( 0.01 ) 0.07 ( 0.008 )
10000 0.221 ( 0.016 ) 0.112 ( 0.013 ) 0.533 ( 0.016 ) 0.248 ( 0.012 )
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1.5.2 Two sample test

As is mentioned in Section 1.4.2, one advantage of this modified K-S test over

Weiss’s method is that it can be easily generalized to two sample test problem. If the

null hypothesis is that two samples (with sample sizes n1 and n2 respectively) follow

the same distribution, the K-S test can be modified in this way:

nESS,1 = n1(1− ρ1), (1.19)

nESS,2 = n2(1− ρ2). (1.20)

As a result,
√

nESS,1nESS,2
nESS,1+nESS,2

Dn1,n2 instead of
√

n1n2

n1+n2
Dn1,n2 is compared to the critical

value of the Kolmogorov distribution. Similar to the one sample test, this modification

just replaces the sample sizes by their effective sample sizes respectively, where ρ1 and

ρ2 are coefficients of the two AR(1) processes.

The following simulation study is similar to the previous section: the null hy-

pothesis is that two samples follow the same stationary distribution. Each time

two samples were simulated from AR(1) processes defined by (1.1): in one sample,

εn ∼ N(0, 1 − ρ2) while in the other sample εn ∼ N(0, 1 − ρ2),
√

1− ρ2(Exp−1) or

N(0.1(1− ρ), 1− ρ2). Both modified K-S and “thinning” K-S tests were performed.

Different sample sizes 100, 300, 1000 and 3000 were chosen with combinations of

ρ = 0.6, 0.9. Below are selected plots:

Similar patterns can be observed as in one sample test: the type I error rate

is smaller than its nominal value; power increases as the sample size increases and

sample correlation decreases; power of the modified K-S test is significantly larger
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Figure 1.5: Selected summary plots

than the “thinning” K-S test. More detailed results are provided in Table 1.3:

Again, the first part tells us that even when two samples come from AR(1) pro-

cesses with different coefficients, type I error rate of the modified K-S test is still

close to 0.05, being slightly conservative. The second and third parts tell us power

of the modified K-S test asymptotically increases to 1, being greater than that of the

“thinning” K-S test.

1.5.3 Implementation on autocorrelated processes beyond AR(1)

We derive the modified K-S test from AR(1) processes, so it’s not surprising that

it performs well on AR(1) processes. What remains interesting to us is how general

our method is. We wonder how our method behaves on data generated from some

autocorrelated processes other than AR(1). Moving average (MA) process is one com-

monly used time series model. The other example is Metropolis algorithm generated
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Table 1.3: Rejection rates for two sample test

Rejection rate under the distribution
Normal

ρ = 0.6 ρ = 0.9
Modified Thinning Modified Thinning

ρ = 0.6

n= 100 0.049 0.03 0.035 0.043
n= 300 0.045 0.028 0.042 0.056
n= 1000 0.044 0.048 0.036 0.052
n= 3000 0.041 0.041 0.036 0.043

ρ = 0.9

n= 100 0.037 0.046 0.04 0
n= 300 0.042 0.05 0.034 0.008
n= 1000 0.038 0.056 0.038 0.034
n= 3000 0.036 0.045 0.038 0.036

Exponential
ρ = 0.6 ρ = 0.9

Modified Thinning Modified Thinning

ρ = 0.6

n= 100 0.088 0.045 0.04 0.04
n= 300 0.178 0.061 0.051 0.054
n= 1000 0.547 0.186 0.074 0.067
n= 3000 1 0.542 0.145 0.074

ρ = 0.9

n= 100 0.055 0.05 0.039 0
n= 300 0.096 0.077 0.044 0.012
n= 1000 0.214 0.111 0.06 0.037
n= 3000 0.643 0.223 0.108 0.054

Normal2
ρ = 0.6 ρ = 0.9

Modified Thinning Modified Thinning

ρ = 0.6

n= 100 0.052 0.032 0.044 0.051
n= 300 0.081 0.04 0.054 0.051
n= 1000 0.156 0.079 0.076 0.07
n= 3000 0.412 0.187 0.16 0.089

ρ = 0.9

n= 100 0.041 0.046 0.045 0
n= 300 0.058 0.06 0.046 0.011
n= 1000 0.077 0.06 0.054 0.038
n= 3000 0.16 0.089 0.11 0.059

data. By design, this type of data is also highly autocorrelated. By implementing

the test on these two models, we explore the generality of our method.
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The simulation procedure is similar to the AR(1) case. The only difference is

ρ–the AR(1) coefficient– is unknown. As a result, for each simulated process, we first

fit an AR(1) process and then use the fitted coefficient ρ̂ to calculate effective sample

size.

MA(2) process

In this simulation study, data are generated from the following MA(2) processes:

Yn = ρ1Xn + ρ2Xn−1 (1.21)

Xn
iid∼ F, (1.22)

where F is chosen to be the standard Normal distribution or Cauchy distribution

due to their stability. For different combinations of ρ1 and ρ2, a number of MA(2)

processes are simulated. Then the modified K-S test is implemented on each process

against the null hypothesis (H0 : N(0, 1) if F ∼ N(0, 1); H0 : Cauchy if F ∼ Cauchy).

Rejection rates are calculated by repeating this procedure.

Similar to the AR(1) case, we implement our test on two scenarios: under the null

hypothesis and under the alternative hypothesis. For F being N(0, 1), the combina-

tion {(ρ1, ρ2) : ρ2
1 + ρ2

2 = 1} correspond to the null hypothesis; for F being Cauchy,

the combination {(ρ1, ρ2) : |ρ1| + |ρ2| = 1} correspond to the null hypothesis. Table

1.4 summarizes the actual type I error rate for different (ρ1, ρ2) and sample sizes:

A similar pattern to the AR(1) case is observed here. The modified K-S test is

slightly conservative. Power is also investigated. For F being N(0, 1), we choose the

combination {(ρ1, ρ2) : |ρ1| + |ρ2| = 1} as the alternative; for F being Cauchy, we

27



Table 1.4: Type I error rates of the modified and “thinning” K-S tests

Type I error rate(sd) under the distribution
Normal Cauchy

Modified Thinning Modified Thinning

r1 = 0.2
n= 100 0.053 ( 0.006 ) 0.061 ( 0.006 ) 0.063 ( 0.007 ) 0.054 ( 0.006 )
n= 300 0.044 ( 0.008 ) 0.046 ( 0.006 ) 0.057 ( 0.004 ) 0.049 ( 0.006 )
n= 1000 0.043 ( 0.007 ) 0.048 ( 0.007 ) 0.055 ( 0.009 ) 0.045 ( 0.007 )

r1 = 0.5
n= 100 0.027 ( 0.003 ) 0.05 ( 0.004 ) 0.023 ( 0.002 ) 0.05 ( 0.008 )
n= 300 0.024 ( 0.003 ) 0.052 ( 0.008 ) 0.019 ( 0.005 ) 0.046 ( 0.007 )
n= 1000 0.019 ( 0.007 ) 0.044 ( 0.003 ) 0.017 ( 0.005 ) 0.043 ( 0.006 )

r1 = 0.8
n= 100 0.024 ( 0.004 ) 0.052 ( 0.005 ) 0.061 ( 0.007 ) 0.054 ( 0.008 )
n= 300 0.019 ( 0.003 ) 0.05 ( 0.008 ) 0.06 ( 0.006 ) 0.049 ( 0.005 )
n= 1000 0.017 ( 0.003 ) 0.045 ( 0.01 ) 0.052 ( 0.009 ) 0.048 ( 0.008 )

choose the combination {(ρ1, ρ2) : ρ2
1 +ρ2

2 = 1} as the alternative. The following table

summarizes power for different (ρ1, ρ2) and sample sizes:

Table 1.5: Power of the modified and “thinning” K-S tests

Power(sd) under the distribution
Normal Cauchy

Modified Thinning Modified Thinning

r1 = 0.2
n= 100 0.094 ( 0.007 ) 0.086 ( 0.009 ) 0.113 ( 0.01 ) 0.09 ( 0.008 )
n= 300 0.251 ( 0.012 ) 0.133 ( 0.012 ) 0.162 ( 0.012 ) 0.106 ( 0.012 )
n= 1000 0.936 ( 0.007 ) 0.54 ( 0.012 ) 0.42 ( 0.011 ) 0.262 ( 0.014 )

r1 = 0.5
n= 100 0.097 ( 0.007 ) 0.056 ( 0.01 ) 0.106 ( 0.014 ) 0.097 ( 0.008 )
n= 300 0.54 ( 0.018 ) 0.162 ( 0.012 ) 0.262 ( 0.014 ) 0.152 ( 0.012 )
n= 1000 1 ( 0 ) 0.733 ( 0.015 ) 0.847 ( 0.004 ) 0.374 ( 0.013 )

r1 = 0.8
n= 100 0.099 ( 0.008 ) 0.087 ( 0.008 ) 0.097 ( 0.01 ) 0.099 ( 0.008 )
n= 300 0.26 ( 0.01 ) 0.136 ( 0.008 ) 0.252 ( 0.009 ) 0.147 ( 0.015 )
n= 1000 0.94 ( 0.007 ) 0.535 ( 0.016 ) 0.86 ( 0.011 ) 0.37 ( 0.017 )

Again, our method strictly dominates the “thinning” method, implying a reason-

able power.
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Metropolis algorithm generated data

In this simulation study, data were sampled from a Metropolis algorithm. The

null hypothesis stays the same, testing whether the stationary distribution is N(0, 1).

Three markov chains were designed based on Metropolis algorithm such that their

stationary distributions are N(0, 1), Unif(−
√

3,
√

3) and Exp(1) − 1 respectively.7

Similar to the simulation in 5.1, the first 200 iterations were discarded in each sample.

1000 samples were simulated and the rejection rates were recorded. This was repeated

20 times to estimate the standard error of the rejection rate. Different sample sizes

(length of the process) 300, 1000, 3000, 1000 were chosen. Below is a summary table:

Table 1.6: Rejection rates for Metropolis generated data

Rejection rate under the distribution
Normal Exponential Uniform

Modified Thinning Modified Thinning Modified Thinning
n= 300 0.151 0.086 0.343 0.21 0.258 0.178
n= 1000 0.068 0.063 0.318 0.194 0.143 0.106
n= 3000 0.041 0.055 0.463 0.226 0.145 0.102
n= 10000 0.031 0.049 0.968 0.393 0.318 0.146

There are several things that can be observed from this table:

• When the underlying stationary distribution is N(0, 1) (column Normal), rejec-

tion rates of both tests are larger than its significance level 0.05 when sample

size is not large enough. However, both rejection rates decrease as sample size

increases. Similar to the previous results, the modified K-S test is slightly con-

servative while the “thinning” K-S test roughly has its nominal significance

7We intent to design in this way such that the stationary distributions all have mean 0 and
standard deviation 1.
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level.

• When the underlying stationary distribution is not N(0, 1), power asymptoti-

cally increases to 1 as sample size increases and power of the modified K-S test

is larger than that of the “thinning” K-S test with the same sample size. The

uniform distribution (symmetric) is harder to distinguish than the exponential

distribution (asymmetric).

As a brief summary, the Metropolis based markov chain constructed here is not

exactly but can be reasonably fitted as an AR(1) process. The modified K-S test

on this is conservative when sample size is large enough. Its power asymptotically

increases to 1 as sample size increases, faster than the power of the “thinning” K-S

test.

1.6 Application to fMRI data analysis

As is mentioned earlier, the use of the K-S test in fMRI analysis was criticized in

Aguirre et al. (2005) due to the presence of autocorrelation. Now we show that the

modified K-S test provides a remedy to this issue.

We followed the procedure in Aguirre et al. (2005) except that the data set used

in Aguirre et al. (2005) no longer exits, so we used a similar data set instead. A

brief description of the problem is as follows: functional MRI (fMRI) is a technique

to determine how the human brain works, specifically speaking, precisely which part

of the brain is handling critical functions such as thought, speech, movement, and

sensation. The general principle is that if some stimulus is given to a subject, the
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area of the brain in charge of that stimulus will be activated. As a result, the fMRI

signal values of that area will increase, which can be detected through experiment.

Researchers can find plausible areas that are handling that stimulus through such

an experiment. A typical experiment goes as follows: researchers collect fMRI signal

values on a subject over a period. During that period, a stimulus is given to the

subject periodically (say every 20 seconds) and the stimulus can last some time (say 10

seconds). Despite issues as the delay of response, noise, etc., we can compare the signal

values during the control period to the experiment period and find the area whose

signal values significantly differ. One way is to use the K-S test. However, as Geoffrey

K. Aguirre et al. pointed out, the temporal correlation (autocorrelation) among the

time series data leads to more false positive results under the null hypothesis.

To repeat the experiment by Geoffrey K. Aguirre et al., we downloaded data set

from NITRC. The data set consists of BOLD fMRI signal values collected on 20

subjects under resting state (no stimulus was given at all). As suggested by Geoffrey

K. Aguirre et al., the temporal structure of the assumed paradigm was designated to

be a boxcar with an 80-s period (i.e., two 40-s epochs; 0.0125 Hz). In other words, the

signal values within the time slots 0-40s, 80-120s, etc. are treated as control period

while the signal values within the time slots 40-80s, 120-160s, etc. are treated as

experiment period. For each voxel, observations from the two periods are compared

via the K-S test. For each subject, the overall rejection rate on all voxels represents the

actually Type I error rate (false positive rate), since observations are sampled under

the null hypothesis (control period and experiment period have the same distribution

of signal values). Linear signal drift was removed, but motion correction was not
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conducted due to lack of corresponding data. The K-S tests were conducted on the

20 subjects and we had a similar result as in Aguirre et al. (2005): The significance

level of the K-S test was chosen as 0.05. However, the actual false positive rates

were much higher than 0.05. The median false positive rate among the 20 subjects

is 0.12. If we use the modified K-S test instead, the median false positive rate falls

to 0.05. Below is a graph demonstrating the false positive rates of two methods for

each subject:
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Figure 1.6: Actual Type I error rate

The false positive rate has been pulled down significantly, very close to the nominal

level of 0.05. The main reason of the high false positive rate of the K-S test is due to

the presence of autocorrelation. On the other hand, the fMRI signal value processing

can be thought approximately an AR process. As a result, our modified K-S test

based on AR(1) fitting does a good job no surprisingly. Similar results are derived

if we model the hypothetical experiment in different frequencies (corresponding to

32



higher or lower autocorrelation).

One main critique of the use of the K-S test in this field is that it can’t control

false positive rates as well as other parametric methods when autocorrelation exists.

Our method provides a remedy of this issue. It demonstrates that the K-S test can

still be used, only with a slight modification of ESS adjustment. On the other hand,

it also demonstrates that our modified K-S test is applicable to real problems.

1.7 Concluding remarks

The main contribution of this article is to provide a modified K-S test when the

independent assumption is violated. This method, though derived from a simple

autocorrelated process–AR(1) process with Normal stationary distribution, has been

demonstrated to be reasonably used for other autocorrelated data as well. The idea of

effective sample size adjustment is not new, but has been shown powerful in dealing

with autocorrelated/time series data. However, along with direction of this article,

several questions remain interesting to us:

1. In our article, we justify the mixing condition (1.16) and hence can estimate

the critical value of the K-S statistic from those Gaussian Processes. However

in general, for the underlying AR(1) process

Xn = ρXn−1 +
√

1− ρ2εn,

where εn is not Normal, does the K-S statistic converge to some quantity? If

so, what does it converge to? To answer this, two questions need to deal with:
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• Does the sequence {
√
n(

n∑
i=1

IΦ(Xi)≤t − t) : 0 ≤ t ≤ 1} converge? If we

still want to apply Billingsley’s theorem, we need to verify the mixing

condition. But it’s not as easy as in the Normal case to evaluate those

mixing coefficients. Moreover, Billingsley’s theorem gives a sufficient but

not necessary condition for weak convergence.

• Even if we assume that the sequence {
√
n(

n∑
i=1

IΦ(Xi)≤t − t) : 0 ≤ t ≤ 1}

converges, what does it converge to? How to evaluate the formula (1.15)

is unclear for a general AR(1) process, since the stationary distribution

is unknown to us. But if we can find a way to estimate it, we can again

simulate those Gaussian processes to estimate the critical values for the

K-S statistic.

There questions still remain open to us. It would be interesting and useful if

we can find a general answer to the asymptotic distribution of the K-S statistic

for an AR(1) process (or even more general process).

2. We derived the ESS formula by fitting a curve to the simulated critical values.

However, is there a theoretical justification for the simple ESS formula nESS =

n(1− ρ)? Can we prove that it is (approximately) the correct formula?

3. We have seen that the ESS adjustment method is very powerful in dealing with

problems for autocorrelated data. But under what circumstances is this method

applicable? Is there a systematic way of finding the ESS formula? If we can

answer these type of questions, a large amount of time series problems can be

solved.
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Chapter 2

Improving MCMC convergence

rate with Residual Augmentations

2.1 Residual Augmentations: A Unified Strategy

2.1.1 Creative Re-Parameterization and Over-Parameterization

Designing algorithms that are simple, stable, and speedy is a dream shared by

virtually anyone working on Markov chain Monte Carlo (MCMC) or more generally on

statistical computing. For data augmentation (Tanner and Wong (1987)) and Gibbs

sampling (Geman and Geman (1984); Gelfand and Smith (1990)) type of algorithms,

it is well known that parameterizations can affect substantially both convergence and

ease of implementation (e.g., Gelfand et al. (1995, 1996); Van Dyk and Meng (2010)).

By using parameterizations creatively, a variety of strategies have been proposed to

accelerate convergence while maintaining implementation simplicity. In particular,
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Papaspiliopoulos et al. (2003, 2007) study the centered, noncentered, and partially

noncentered parameterizations. The idea of partial noncentering is to introduce a

family of parameterizations (or data augmentation schemes), and then to seek the

optimal parameterization for fastest convergence. This is mathematically equivalent

to the conditional augmentation approach (Meng and Van Dyk (1999); Van Dyk

and Meng (2001)), where the family of data augmentation schemes are indexed by a

working parameter.

Formally, consider the model p(θ|Yobs) ∝ p(Yobs|θ)p(θ) where θ is the parame-

ter of interest and Yobs denotes observed data. A data augmentation (DA) model

p(Yobs, Ymis|θ) is any joint distribution of Ymis (the missing or augmented data) and

Yobs given θ such that the marginal p(Yobs|θ) is preserved. In other words, we can

write p(Yobs, Ymis|θ) = p(Yobs|θ)p(Ymis|Yobs, θ). In conditional augmentation, a work-

ing parameter c is introduced such that

p(Yobs, Ymis|θ, c) = p(Yobs|θ)p(Ymis|Yobs, θ, c).

Whereas p(Yobs, Ymis|θ, c) clearly is a legitimate DA because it preserves the desired

margin p(Yobs|θ), it is a form of over-parameterization because the working parameter

c is not identifiable by the observed data Yobs. For conditional augmentation, the value

of c is obtained by optimizing a certain criterion, e.g., based on the convergence rate

of the closely related EM algorithm (Meng and Van Dyk (1998, 1999, 2002) and

Van Dyk and Meng (2001)). The resulting algorithm alternates between drawing θ

given (Yobs, Ymis) and drawing Ymis given (θ, Yobs), conditioning on the chosen value

of c. Finding a good conditional augmentation scheme requires a careful balance
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between the theoretical speed and ease of implementation, as illustrated in detail by

Van Dyk and Meng (2001, 2010).

This conditional augmentation approach contrasts with the marginal augmenta-

tion approach (Meng and Van Dyk (1999)), which is closely related to parameter-

expanded DA (PX-DA; Liu and Wu (1999)). In marginal augmentation, the working

parameter c is marginalized out after being assigned a working prior p(c). The result-

ing algorithm is a standard DA—labeled Scheme 2 in Van Dyk and Meng (2001) –

alternating between drawing Ymis given (θ, c, Yobs) and drawing (θ, c) given (Ymis, Yobs)

based on the joint posterior

p(Ymis, θ, c|Yobs) ∝ p(Yobs, Ymis|θ, c)p(θ)p(c). (2.1)

We can also sample from (2.1) by alternating between drawing (Ymis, c) given

(θ, Yobs) and drawing (θ, c) given (Ymis, Yobs), as in PX-DA (Liu and Wu (1999)).

Obviously this is algorithmically equivalent to the DA sampler that alternates between

drawing Ymis given (θ, Yobs) and drawing θ given (Ymis, Yobs), which was labeled Scheme

1 in Van Dyk and Meng (2001).

The strategies discussed above all amount to using a single data augmentation

scheme in the actual implementation. For conditional augmentation, this is rather

obvious by construction. For marginal augmentation, if the working prior p(c) is

proper, then Scheme 1 is the standard DA using

p̃(Ymis|Yobs, θ) =

∫
p(Ymis|Yobs, θ, c)p(c)µ(dc) (2.2)
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as the data augmentation, where µ is the dominating measure for the working prior,

typically the Lebesgue measure. However, when p(c) is improper, Scheme 1 is not

feasible. In contrast, Scheme 2 still is implementable, just as an improper prior

can still lead to a proper posterior. But this does not automatically imply that the

algorithm will converge properly. Minimally it should be clear that the resulting

joint chain for (θ, c, Ymis) cannot be positive recurrent because its target distribution

(2.1) is improper when p(c) is improper. By a result of Hobert (2001b,a), this also

automatically implies that the corresponding (major) sub-chain for (θ, c) cannot be

positive recurrent either. However, when the improper working prior is the limit

of a sequence of proper priors, then under regularity conditions, the sub-sub-chain

produced by Scheme 2 for θ will converge to the desired target distribution p(θ|Yobs).

Intriguingly, when p(c) corresponds to the right Haar measure, this sub-sub-chain

actually represents the fastest algorithm among a class of DA algorithms as formulated

in Liu and Wu (1999) with their elegant group-theoretic argument.

Even more intriguingly, there is often a simpler way to reach this optimality by

using two standard data augmentation schemes (i.e., no improper prior is involved),

and the new strategy is demonstrably more powerful and versatile than all known

strategies based on a single (limiting) data augmentation, for reasons presented in

the following section.

2.1.2 Alternating versus Interweaving

Suppose p(Ymis, θ|Yobs) and p(Ỹmis, θ|Yobs) are two augmentation schemes (i.e.,

both preserving the target posterior p(θ|Yobs)). An obvious strategy is to concate-

38



θ
↙ ↖

Ymis Ỹmis
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Figure 2.1: Alternating Scheme

direct direct

⇓ θ ⇓
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Ymis −→ Ỹmis
⇑

indirect

Figure 2.2: Interweaving Scheme

nate two iterations, one based on each of the two schemes, that is, by alternating

between the two algorithms. This may be represented schematically as in Figure 2.1

where each arrow indicates a sampling step. For example Ymis → θ means drawing

θ given the current Ymis (and Yobs). Somewhat surprisingly, Yu and Meng (2011)

demonstrate that an alternative interweaving strategy holds much more promise than

the simple alternating scheme. Specifically, the interweaving strategy simply cuts out

the θ between Ymis and Ỹmis, and hence it leads to the triangular diagram given in

Figure 2.2. That is, each iteration cycles through the parameter θ and the two sets of

augmented data by first drawing Ymis given θ, then Ỹmis given Ymis, and then θ given

Ỹmis. (Henceforth we suppress the conditioning on Yobs when there is no confusion.)

The triangular diagram also reveals a fundamental insight about the power of the

interweaving strategy. Similar to the usual DA algorithm, whose convergence rate is

the square of the maximal correlation between Ymis and θ in their joint posterior, the

interweaving strategy has a convergence rate that is bounded above by the product

of three maximal correlations as indicated by the three links in the above diagram.

That is, let the geometric convergence rate of DA under Ymis and Ỹmis be r1 and r2,

respectively, and the rate for the interweaving scheme be r1&2. Then Yu and Meng

(2011) proved that
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r1&2 ≤ R(Ymis, Ỹmis)R(θ, Ymis)R(θ, Ỹmis) = R1,2

√
r1r2 (2.3)

where R1,2 ≡ R(Ymis, Ỹmis), and

R(X1, X2) = sup
g,h∈L2

Corr{g(X1), h(X2)}

is the maximal correlation between (generic) X1 and X2. (Note in our application,

the joint distribution is the joint posterior predictive distribution p(Ymis, Ỹmis|Yobs).)

As discussed in Yu and Meng (2011), the key insight here is that we can make

r1&2 small (which means a faster algorithm) by making any one of {R1,2, r1, r2}

small. Indeed, it is even possible that r1 = r2 = 1, that is, neither of the two DAs

being interwoven is geometrically convergent, and yet r1&2 = 0, that is, the interwoven

algorithm will deliver i.i.d draws! See Yu and Meng (2011) for such an example.

In general, achieving i.i.d. draws is obviously too much of a dream, but the inter-

weaving strategy provides us with a new way to combat the common problem of high

dependence among consecutive MCMC draws. Specifically, with either alternating or

interweaving, we can reduce the dependence between θ(t) and θ(t+1)—where t indexes

the iteration—by reducing either r1 or r2 or both. Schematically, this corresponds

to “breaking” either or both of the two direct links marked in Figure 2.2; here a

direct link is an arrow with θ as one of its two end points. However, the interweaving

strategy allows us to achieve the same goal by breaking an indirect link, which does

not involve θ, and clearly it exists only in Figure 2.2.

Therefore, given the original augmentation as represented by the arrow from θ to
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Ymis, we now have two ways to break the cycle. The first is to make Ỹmis independent

of θ and hence to break the Ỹmis → θ link, which is what partially non-centering or

conditional augmentation aims to achieve. The second is to make Ỹmis independent

of Ymis, thereby breaking the Ymis → Ỹmis link, which is what marginal augmentation

and the interweaving strategy try to accomplish. In particular, Yu and Meng (2011)

advocate an ancillarity-sufficiency interweaving strategy (ASIS) that takes advan-

tage of the existing competing nature between sufficient augmentation and ancillary

augmentation to reduce their a posteriori dependence.

2.1.3 Direct and Indirect Residual Augmentations

Such considerations lead to the idea of residual augmentations (Yu and Meng

(2011), Rejoinder), as a way to “break links” by judiciously choosing Ỹmis for a

given (original) DA scheme (Ymis, θ). For the direct residual augmentation (DRA),

we attempt to break the direct link Ỹmis → θ by choosing Ỹmis to be a residual from

regressing Ymis on θ. The central idea here is that a residual is constructed to be

uncorrelated (though rarely independent) with the regression function, which is θ

here. The obvious choice is the usual additive residual from regressing Ymis on θ :

Ỹmis = Ymis − E[Ymis|θ, Yobs]. (2.4)

A less obvious one is its multiplicative variant:

Ỹmis =
Ymis

E[Ymis|θ, Yobs]
(2.5)
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in the scalar case. It is straightforward to show that both Ỹmis’s are uncorrelated

with θ with respect to the joint posterior distribution p(Ymis, θ|Yobs), as long as the

correlation exists. (But note the condition of having correlation does not hold for

(2.5) as often as it does for (2.4)).

For the indirect residual augmentation (IRA), the aim is to break the indirect link

Ymis → Ỹmis, and hence we need to regress θ on Ymis. This naturally leads to the

counterparts of (2.4) and (2.5) by swapping θ and Ymis, that is,

Ỹmis = θ − E[θ|Ymis, Yobs] (2.6)

and

Ỹmis =
θ

E[θ|Ymis, Yobs]
. (2.7)

For all these constructions, the implementation Ymis → Ỹmis is typically straight-

forward. We accomplish this by first drawing θ from p(θ|Ymis, Yobs), which is a step

required by the original DA algorithm based on Ymis alone. We can then compute

Ỹmis as a deterministic function of θ, Ymis and Yobs. This computation typically is

straightforward for DRA, because E[Ymis|θ, Yobs] is simply the mean function of the

full conditional p(Ymis|θ, Yobs) already needed by the original DA algorithm; it can

also be carried out by Monte Carlo if necessary. For IRA, this task typically is even

simpler, because it calls only for E[θ|Ymis, Yobs], the complete-data posterior mean.

Therefore, the simplicity of a residual augmentation algorithm depends critically

on how easy it is to implement the Ỹmis → θ step. To implement it exactly re-

quires us to derive the conditional distribution of θ given Ỹmis as implied by one of
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(2.4)-(2.7). This may not be an easy task when the regression function involved (i.e.,

E[Ymis|θ, Yobs] or E[θ|Ymis, Yobs]) is non-linear. This issue, however, can be dealt with

pragmatically by adopting a convenient global or local approximation, with the trade-

off of achieving less reduction in auto-correlations for implementation simplicity. Such

a pragmatic approach also helps us to compromise appropriately between implemen-

tation simplicity and the desire to find suitable transformations of g(θ) and h(Ymis)

such that the low correlation between them is a reasonable indicator of their lack of

dependence. Note ideally we would want a joint one-to-one transformation T (θ, Ymis)

for better joint normality because under joint normality low linear correlation is the

same as low maximal correlation. Unfortunately, this joint transformation typically

will destroy the simplicity of the original Gibbs setup that alternates between θ and

Ymis.

For the rest of the chapter, in Section 2.2 we first illustrate some theoretical prop-

erties of residual augmentations using the simplest normal hierarchical model and its

extensions, which include t distributions. In particular, we note an interesting “safe

zone” for the choice of augmentation schemes and show how ASIS can be viewed as a

“minimax” strategy, always staying within the safe zone regardless of the prior speci-

fication and the configuration of observed data. Our pragmatic strategy is illustrated

in Section 2.3 with a probit regression example. We conclude in Section 2.4 with a

host of open problems.
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2.2 Theoretical Illustrations and a Phase Transi-

tion Phenomenon

2.2.1 Illustrating DRA and IRA

A common illustrative example in the DA literature is the one-way random effect

model (Liu and Wu (1999); Yu and Meng (2011); Hobert and Roman (2011)). Instead

of repeating the standard setup, here we adopt a simpler representation capturing its

essence that is relevant for our algorithmic investigation. Specifically, suppose θ is

the parameter of interest and Ymis is the missing datum or latent variable, and their

joint posterior distribution (given Yobs) can be standardized into

 θ

Ymis


∣∣∣∣∣∣∣Yobs ∼ N


 0

0

 ,

 1 r

r 1


 . (2.8)

Here r is a known function of Yobs and, without loss of generality, we can assume

0 ≤ r < 1. The standard DA based on Ymis then iterates between sampling θ given

Ymis and sampling Ymis given θ (all conditioning on Yobs of course). Clearly this DA

has the convergence rate r1 = r2.

Now consider a conditional augmentation or partially non-centering scheme Ỹmis =

Ymis − cθ, with c being a working parameter to be determined. Clearly

 θ

Ỹmis


∣∣∣∣∣∣∣Yobs ∼ N


 0

0

 ,

 1 r − c

r − c 1 + c2 − 2rc


 . (2.9)

This implies that the DA algorithm using Ỹmis as the augmentation will have con-
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vergence rate r2 = (r − c)2/(1 + c2 − 2rc). Now because of their joint normality,

the maximal correlation between Ymis and Ỹmis is the same as the absolute value of

their linear correlation. Therefore R1,2 = |Corr(Ỹmis, Ymis)| = |1− cr|/
√

1 + c2 − 2rc.

Because the bound in (2.3) is sharp for this normal setting (Yu and Meng (2011)),

we see that the rate of convergence from interweaving the DA based on Ymis and the

DA based on Ỹmis is

r1&2 = R1,2

√
r1r2 =

|r(r − c)(1− cr)|
1 + c2 − 2rc

. (2.10)

We see immediately that when c = r or c = r−1, r1&2 = 0, and hence the

interweaving strategy will produce i.i.d. draws. The c = r case corresponds to DRA

because E[Ymis|θ, Yobs] = rθ, and hence taking c = r in Ỹmis = Ymis − cθ is the same

as making Ỹmis the additive residual, which is independent of θ because of normality.

Consequently, the link Ỹmis → θ is completely broken, yielding i.i.d. draws. On the

other hand, because E[θ|Ymis, Yobs] = rYmis, taking c = r−1 in Ỹmis = Ymis − cθ =

−c(θ− c−1Ymis) is equivalent to setting Ỹmis = θ− rYmis, which is the IRA. The joint

normality ensures that Ỹmis is independent of Ymis, and hence IRA completely breaks

the indirect link Ymis → Ỹmis, again resulting in i.i.d. draws.

2.2.2 A Phase Transition Phenomenon

In real applications, rarely can the direct or indirect link be broken completely.

Even under the normality assumption, we may not be able to compute the regression

slopes with infinite precision. A natural question then arises: What happens if we use

a c that approximates a regression slope (i.e., from regressing Ymis on θ or θ on Ymis)?
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Does it still retain approximately the benefit of residual augmentation? Common

wisdom would suggest so, based on the usual continuity argument.

Unfortunately, the continuity argument would fail here. A clue is offered by

considering what happens when c = 1, which corresponds to using ASIS for this

model (see Yu and Meng (2011)), and when r approaches 1. On the one hand, when

c = 1, it is easy to see from (2.10) that

r1&2 =
r(1− r)

2
≤ 1

8
(2.11)

for all 0 ≤ r < 1. On the other hand, for any c 6= 1, if we let r → 1, r1&2 will approach

1. Clearly therefore there is a discontinuity at c = r = 1. More interestingly or even

magically, as proved in the Appendix, the 1/8 bound in (2.11) holds whenever c falls

between the two regression slopes, that is, whenever r ≤ c ≤ r−1, with the bound 1/8

achieved if and only if r = 1/2 and c = 1.

However, as seen in the perspective plot Figure 2.3 and the contour plot Figure

2.4, as soon as c leaves this “safe” zone [r, r−1], the convergence rate r1&2—as a

function of (c, r) denoted by g(c, r)—increases dramatically, exhibiting essentially a

phase transition type of phenomenon at the two boundaries c = r and c = r−1. As

hinted previously, this phenomenon is most extreme at the point (c, r) = (1, 1): If we

fix c = 1, then g(c, r) = r(1− r)/2→ 0 as r → 1; if we fix r = 1, then g(c, r) = 1 for

any c (including c = 1 by a limiting argument).

A geometric interpretation of this phenomenon can help us to understand it bet-

ter. The joint (degenerate) normality of (θ, Ymis, Ỹmis) allows us to visualize the three

pairwise (maximal) correlations in a single triangle, as in Figure 2.5, where each vec-
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Figure 2.3: Convergence rate as a function of (c, r) viewed in two perspectives: the
light area is the “safe” zone, where the convergence rate is bounded by 1

8
; the dark area

is outside the two regression lines, where the convergence rate increases dramatically.

tor represents a random variable, and the cosine of the (directional) angle between

two vectors is their correlation. Denote the pairwise correlations between (θ, Ymis),

(θ, Ỹmis) and (Ymis, Ỹmis) as cosα1(> 0), cosα2 and cosα3 respectively. From geom-

etry, we know that α2 = α1 + α3. The convergence rate of the interweaving strategy

is

r1&2 = | cosα1 cosα2 cosα3| = | cosα1 cos(π − (α1 + α3)) cosα3|. (2.12)

For a nonobtuse triangle, the product of cosines of its three angles cannot exceed

8−1, hence the same bound is achieved when Ỹmis falls in the shaded area. Moreover,

within the “safe” zone,

Corr(Ỹmis, Ymis)Corr(Ỹmis, θ) ≤ 0.

This says that the pairwise correlations of (θ, Ỹmis) and (Ymis, Ỹmis) should have oppo-
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Contour plot of convergence rate
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Figure 2.4: Contour plot: the dashed
lines correspond to the two regression
slopes, c = r and c = r−1.

Figure 2.5: Geometric interpretation:
the shaded area corresponds to the
“safe” zone, where the formed trian-
gle is nonobtuse.

site signs to make the interweaving algorithm stable. This finding is consistent with

empirical observations and heuristic arguments reported in Yu and Meng (2011) that

the interweaving strategy works by taking advantage of the “beauty and beast” na-

ture of two competing DAs. It may also help us search for similar “safe” interweaving

algorithms for more complicated problems.

2.2.3 Going Beyond Normality

But before one conjectures generalizations inspired by this simple example, one

must contemplate the possibility that, without the normality condition, such a “safe

zone” may completely disappear. After all, the aforementioned 1/8 bound for r1&2

depends critically on the triangulation formulation in (2.12), which was possible be-

cause maximal correlation is the same as linear correlation (when it is non-negative)

under joint normality. One therefore should at least show such a “safe zone” exists
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beyond the normality setting.

A common generalization moving beyond normality is to consider a t-type of dis-

tribution. Here we consider a general class of the so-called “normal/independent”

distributions, which includes the t distribution as a special case (see Lange and Sin-

sheimer (1993)). This class of (univariate or multivariate) distributions model a

random variable Y as Y = Z/W (modulo an affine transformation), where Z is

(multivariate) normal, and W is univariate and is independent of Z (and hence the

“normal/independent” nomenclature). Obviously, choosing W =
√
χ2
v/v gives the t

distribution with v degrees of freedom.

With this setup, let us replace the normal model (2.8) by the following condi-

tional normal model. That is, conditioning on a common variable W , the posterior

distribution of (θ, Ymis) is:

 θ

Ymis


∣∣∣∣∣∣∣Yobs,W ∼ N


 0

0

 ,
1

W 2

 1 r

r 1


 , (2.13)

where 0 ≤ r < 1 is known and is free of W but may depend on Yobs. The working

parameter remains the same, that is, Ỹmis = Ymis − cθ, and hence (2.9) remains as

well other than adding the conditioning on W and the corresponding multiplicative

factor W−2 for its covariance matrix. Furthermore, the regression slopes remain the

same because

E[Ymis|θ, Yobs] = E {E[Ymis|θ,W, Yobs] |θ, Yobs} = E {rθ |θ, Yobs} = rθ

and similarly for E[θ|Ymis, Yobs] = rYmis.
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Without restricting the (posterior) distribution of W , we consider in general the

maximal correlation between θ and Ymis, which governs the rate of convergence for

the DA algorithm for (θ, Ymis). Intuitively, this maximal correlation is determined

by two separate sources of dependence, namely the maximal correlation brought in

by the common variable W and correlation r between the normal components after

conditioning on W . Mathematically, this intuition is roughly captured by Lemma 1

of Yu and Meng (2011), which in the current case allows us to establish that

R(θ, Ymis) ≤ r + (1− r)R(θ,W )R(Ymis,W ). (2.14)

Using this inequality together with (2.3) and the fact that R(θ,W ) = R(Ymis,W ), we

can show (see Appendix) that under (2.13), the rate of convergence for interweaving

Ymis and Ỹmis = Ymis − cθ satisfies

r1&2 ≤ [g + (1− g)r][g + (1− g)r1][g + (1− g)r2], (2.15)

where g = R2(θ,W ), and

r1 =
|c− r|√

1 + c2 − 2cr
and r2 =

|1− cr|√
1 + c2 − 2cr

. (2.16)

This leads to the “safe” zone c ∈ [r, r−1] because within this zone, as shown in the

Appendix,

r1&2 ≤
1

8
[1 + g]3, (2.17)

which is strictly less than 1 as long as g = R2(θ,W ) < 1. Note the bound in
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(2.17) again is independent of the value of r, and is predetermined by the maximal

correlation between a normal/independent variable Z/W and its denominator W .

To see how useful the bound in (2.17) can be, let us consider the (bivariate ) t

distribution, where W 2 ∼ χ2
v/v. Then R(θ,W ) is simply the maximal correlation

between a t random variable and its denominator, which depends only on the degrees

of freedom v. We therefore denote it as Rv(θ,W ) to emphasize this dependence.

The analytic calculation of Rv(θ,W ) seems intractable, but nevertheless we can show

that (see Appendix): as v → 0, Rv(θ,W ) → 1; and as v → ∞, Rv(θ,W ) → 0.

(Incidentally and somewhat ironically, the proof of the latter assertion turns out

to be surprisingly difficult, but we were able to establish it by employing a set of

well-known theoretical tools for bounding MCMC convergence rate itself.) Therefore

(2.17) is a generalization of the 8−1 bound under normality because, as v → ∞, the

t distribution converges to normal, and 1
8
[1 +R2

v(θ,W )]3 → 1
8
.

For an arbitrary degrees of freedom v, we generated 100,000 t samples and then

used the ACE algorithm of Breiman and Friedman (1985)—as given in the R-package

acepack—to estimate the maximal correlation Rv(θ,W ). For a given v, this process

was repeated 50 times to construct (95%) confidence intervals, represented by the

“vertical dots” in the left panel of Figure 2.6, which plots the resulting estimated

curve of Rv(θ,W ) as a function of v (on a equal-spaced grid 0 to 10 plus v = 20).

The right panel plots the corresponding bound in (2.17), using the g = R2
v(θ,W )

values displayed in the left panel.

We see from the right panel that as soon as v ≥ 6, the rate appears to not exceed

1/5. Even for v = 1, that is, the Cauchy distribution, the upper confidence limit on
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Figure 2.6: Estimated Rv(θ,W ) and convergence rate bound: the left plot is the
estimated Rv(θ,W ) via ACE; the right plot is the corresponding value given by
(2.17), an upper bound for convergence rate.

the upper bound of the convergence rate is only about 1/2. Whereas these bounds

are not as good as 1/8 for the normal case, they are far better than adequate for

practical purposes, considering most numerical bounds used in practice are above 0.9

and even above 0.99; see for example Hobert (2001a) and Van Dyk and Meng (2001),

Rejoinder. Indeed, if we use 0.9 as standard, then unless one fits a t model with tiny

fractional degrees of freedom (e.g., v ≤ 0.1), the interweaving algorithm will be safe

as long as c ∈ [r, r−1].

Regarding the phase transition phenomenon, for the normal model (2.8) we were

able to demonstrate it exactly because the chain was reversible and the inequal-

ity (2.3) becomes equality under that normal model. For this more general nor-

mal/independence model, we currently can only demonstrate such a phenomenon for

the bound in (2.15). This is given in Figure 2.7, where the four values of g correspond

to four values of the degrees of freedom v in the left panel of Figure 2.6. We see clearly

the very similar shape as in Figure 2.3, other than that the function values in the safe
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zone increase as g increases. This of course only provides suggestive evidence (and it

is only for t distributions), and we certainly hope a more direct demonstration can be

found, perhaps via finding a lower bound that shares a similar shape as in Figure 2.7.
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Figure 2.7: Bound in (2.15) as a function of (c, r), with four values of g =
R2(Z/W,W ). Note the different ranges of values on the vertical axis.

Regardless of the extent to which the phase transition phenomenon exists for an

arbitrary choice of W , it is clear that the choice of c = 1 is always safe irrespective

of the actual value of r (which depends on the actual data) in the sense that (2.17)

always hold for c = 1. Indeed, here c = 1 can be viewed as a minimax choice because

it minimizes the maximal convergence rate (strictly speaking, an upper bound of the

rate) against all possible values of r.

A couple of remarks are in order before we illustrate the power of applying the

interweaving strategy with residual augmentations in a practical setting. First, the
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demonstrations above are to provide theoretical insights (e.g., the phase transition

phenomenon) and to illustrate theoretical potential (e.g., the upper bound (2.17));

they do not take into account the issue of ease or cost of implementation, an issue

that will be investigated in the next section. Second, as a side note, the very wide

confidence intervals seen in Figure 2.6 only at v = 1 may seem puzzling at the first

sight, because one might expect the Monte Carlo error getting progressively worse as v

decreases below 1, which corresponds to tail behavior that is even heavier than Cauchy

(so much so that a sample mean is more dispersed than a single observation). Whereas

we do not have a good explanation for this phenomenon, we suspect it is related to

a hidden symmetry in the maximal correlation, that is, R(Z/W,W ) = R(W/Z,W ),

with the Cauchy distribution corresponding to the center of symmetry because it is

invariant to the reciprocal transformation, and hence its unique properties.

2.3 An Empirical Exploration via Probit Regres-

sion

2.3.1 A Locally Linearized Direct Residual Augmentation

Consider the widely used Probit regression model:

Yobs,i = sign(Ymis,i), Ymis,i|θ,Xi ∼ N(Xiθ, 1), (2.18)

where Yobs,i is the observed binary (±1) outcome, the sign of the latent score Ymis,i, Xi

is a 1× p vector of covariates, and θ is a p× 1 vector of regression coefficients. Write
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Yobs = (Yobs,1, · · · , Yobs,n)>, Ymis = (Ymis,1, · · · , Ymis,n)>, and X> = (X>1 , · · · , X>n ).

Taking the standard noninformative prior p(θ) ∝ 1, we have the well-known full con-

ditional distributions for the standard DA/Gibbs sampler (see Albert (1992); Albert

and Chib (1993); Meng and Schilling (1996)):

Ymis,i|Yobs, θ ∼ TN(Xiθ, 1, Yobs,i); (2.19)

θ|Yobs, Ymis ∼ N(θ̂, (X>X)−1). (2.20)

Here θ̂ = (X>X)−1X>Ymis, and TN(µ, σ2, Yobs,i) denotes a N(µ, σ2) distribution trun-

cated to the interval (0,∞) if Yobs,i = 1 and to (−∞, 0) if Yobs,i = −1. The standard

DA/Gibbs sampler iterates between (2.19) and (2.20). Though convenient, it can

be extremely slow. Several methods, therefore, have been proposed to improve it,

including PX-DA (Liu and Wu (1999)) and ASIS (Yu and Meng (2011)). Below we

first demonstrate how to implement the residual augmentation, and then we compare

it to several existing algorithms.

Given the normal model in (2.18) for Ymis, which is univariate (in contrast to

θ, which is often multivariate), it is easier to consider the additive DRA Ỹmis =

Ymis−E[Ymis|θ, Yobs]. In particular, it is known that if we let H(z) = z+M(z) where

M(z) = φ(z)
Φ(z)

is the inverse Mills ratio, then (recall Yobs,i = ±1)

E[Ymis,i|θ, Yobs] = E[Ymis,i|θ, Yobs,i] = Yobs,iH(Yobs,iXiθ), i = 1, . . . , n. (2.21)

However, since H(±Xiθ) is non-linear in θ, deriving and then sampling from the

resulting p(θ|Yobs, Ỹmis) is rather a difficult task. As a compromise, we seek a locally
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linear approximation to H(z) by utilizing its derivative

G(z) = H ′(z) = 1− zM(z)−M2(z).

The resulting local residual augmentation has the form

Ỹmis,i = Ymis,i −G(Yobs,iXiθ)Xiθ, i = 1, . . . , n. (2.22)

However, the corresponding p(θ|Yobs, Ỹmis) is still hard to employ, because of the θ

inside the non-linear G(·) function.

2.3.2 Seeking Compromise via Adaptive Data-Dependent Aug-

mentation

To further simplify the implementation, we adopt the adaptive MCMC idea (see

Rosenthal (2011) and references therein). That is, at (t + 1)st iteration, we adopt a

DA scheme that depends on the value of θ(t):

Ỹmis,i = Ymis,i − b(t)
i Xiθ, where b

(t)
i = G(Yobs,iXiθ

(t)). (2.23)

It is critical to recognize that (2.22) and (2.23) are different augmentation schemes,

even though they share the same conditional distribution p(Ỹ
(t+1)
mis |θ = θ(t), Yobs).

Their difference lies in the two different conditional distributions p(θ(t+1)|Ỹmis =

Ỹ
(t+1)
mis , Yobs). For scheme (2.22), the θ inside the G(·) function is free or “live”, there-

fore we need to take it into account when deriving p(θ|Ỹmis;Yobs) for drawing θ(t+1).
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In contrast, for scheme (2.23), the θ(t) inside the G(·) is fixed or “dead” by iteration

(t+1)st, so in deriving p(θ|Ỹmis;Yobs), b(t)
i = G(Yobs,iXiθ

(t)) is just a constant, rending

Ỹmis of (2.23) truly linear in θ.

This “adaptive linearity” on one hand permits an easy implementation, but on the

other hand destroys the proper convergence of the resulting Markov chain. This is

because the adaptive DA, namely an iteration-dependent DA model p(t)(θ, Ymis|Yobs),

can easily destroy the detailed balance condition. Whereas the detailed balance con-

dition is not necessary for MCMC to converge, without it proper convergence can be

easily destroyed. As a matter of fact, our empirical checking indicated that our adap-

tive algorithm does not converge to our desired target, as demonstrated in Figure 2.10

of Section 2.3.5 below.

Fortunately this is a relatively easy problem to resolve, because the reason we

invoke the adaptation is to seek a suitable compromise between simplicity and speed.

We therefore can run the adaptive algorithm for a burn-in period, say until t = t∗,

and then fix b
(t)
i = bi for all t > t∗ (and all i), eliminating adaptation. Here the value

bi can be chosen in many ways by analyzing {b(t)
i , t ≤ t∗}, such as the average of the

last (say) 10% of the {b(t)
i , t ≤ t∗}. Another way to motivate this switching strategy

is to consider the adaption as a greedy strategy, i.e., it aims to find the best piece-

wise linear approximation given the θ drawn at the current iteration. But what we

really need is a good approximation given θ within a reasonable range as determined

by its posterior distribution. Therefore, at the end of the adaptive stage, we form

a compromise by taking an appropriate summary of bi’s from the adaptive stage.

Currently we do not have a general theoretical framework for choosing the optimal
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summary. Nor do we believe there is a unique optimal choice here, because such a

choice typically entails a trade-off between statistical efficiency and computational

efficiency. Nevertheless, we conducted a preliminary empirical investigation of the

impact of the choices of bi, as reported is in Section 2.3.5 below.

In contrast to a global residual augmentation such as Ỹmis = Ymis− cXθ, where c

is a scalar working parameter, the adaptation outlined above allows us to search for

a more powerful residual augmentation (for our goal to reduce auto-correlations) by

taking into account heterogeneity in different components as governed by the actual

observed data. Specifically, the adaption leads to a component-wise (direct) residual

augmentation in the form of

Ỹmis ≡



Ỹmis,1

Ỹmis,2

...

Ỹmis,n


=



Ymis,1 − b1X1θ

Ymis,2 − b2X2θ

...

Ymis,n − bnXnθ


= Ymis −BXθ, (2.24)

where B = diag{b1, . . . , bn}. What makes (2.24) more powerful than Ỹmis =

Ymis − cXθ is not only that it permits heterogeneity among the n components, but

more importantly the value of individual working parameter bi takes into account the

information from the actual observed data because it depends on the value of Yobs,i as

seen in (2.23). The idea of data dependent augmentation has been proposed in the

previous literature. Specifically Papaspiliopoulos et al. (2003) provided a data depen-

dent partially non-centered algorithm for the normal hierarchical model. They also

suggested a general recipe based on a quadratic approximation to the log-likelihood.
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In comparison with their approach, we proposed a general methodology of residual

augmentations (direct or indirect) which by nature is data dependent. However, ex-

act residual augmentations are rarely easy to implement, therefore we use a (linear)

approximation (as in the probit regression). Based on what we have so far, this

approximation needs to be constructed case by case, seeking a compromise between

implementation simplicity and statistical efficiency; see Section 2.4 for detailed dis-

cussions.

2.3.3 A Prototype Algorithm

With the setup outlined above, we can carry out (at least) two algorithms. The

first is simply a direct DA algorithm using (2.24) as its augmentation scheme, albeit we

need to deal with its adaptive nature, as outlined below. The second is to interweave

the first with the standard DA based on the original DA Ymis to gain additional

benefit. Below we provide the details for the first, as the interweaving one is rather

trivial once the first one is in place.

Specifically, the direct (initially) adaptive DA algorithm requires two-stage exe-

cution:

I. Adaptive Stage: t = 1, . . . , t∗, update bi = b
(t)
i (i = 1, . . . , n) at each iteration;

II. Sampling Stage: Same as Adaptive Stage, except bi is fixed as b̄i, the average of

the last 10% of the b
(t)
i ’s obtained from the Adaptive Stage (i = 1, . . . , n). (See

Section 2.3.5 for other choices.)

Operationally, during the Adaptive Stage, we carry out the following (where

Ỹmis = (Ỹmis,1, . . . , Ỹmis,n)>):
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• Draw Ỹ
(t+1)
mis |θ(t), Yobs:

Step 1 Update bi ⇐ b
(t)
i = G(Yobs,iXiθ

(t)), i = 1, . . . , n;

Step 2 Draw Y
(t+1)
mis,i ∼ TN(Xiθ

(t), 1, Yobs,i) and then compute Ỹ
(t+1)
mis,i = Y

(t+1)
mis,i −

biXiθ
(t).

• Draw θ(t+1)|Ỹ (t+1)
mis , Yobs:

Step 3 For i = 1, . . . , n, compute X̃i = (1− bi)Xi and then

µ̂ = (X̃>X̃)−1X̃>Ỹ
(t+1)
mis , Σ̂ = (X̃>X̃)−1,

where X̃> = (X̃>1 , . . . , X̃
>
n );

Step 4 Draw θ(t+1)|Ỹ (t+1)
mis , Yobs ∼ TN(µ̂, Σ̂) with the truncation determined by the

constraint that sign(Ỹ
(t+1)
mis,i + biXiθ

(t+1)) = Yobs,i. We implement this step

via a nested Gibbs sampler: for each i, draw θ
(t+1)
i |Ỹ (t+1)

mis , Yobs, θ
(t+1)
−i , a

truncated univariate normal distribution, and repeat it K cycles.

At the Sampling Stage, we simply skip Step 1, that is, we use bi = b̄i for all

iterations to produce our MCMC samples. We emphasize that this algorithm is

by no means optimal in any sense; there should be many ways to improve upon it

especially regarding the potentially time consuming nested Gibbs sampler used in Step

4; see Section 2.3.5 for an exploration. Our aim here is to provide the first prototype

algorithm, in a real application setting, that builds upon the concept of residual

augmentation formulated in Yu and Meng (2011). Nevertheless, our preliminary

numerical experiments, as reported below, have shown great potential even for this
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prototype algorithm.

2.3.4 A Numerical Comparison

To see the effectiveness of our prototype algorithm and of its interweaving with

the standard Gibbs sampler, we conducted a numerical experiment using the lupus

nephritis data set of Van Dyk and Meng (2001) Table 1, which has n = 55 patients

and p = 3 covariates (including a constant term for the intercept). We compare it

with various other algorithms. The algorithms we included in our comparisons are:

I. Standard Gibbs sampler given by (2.19)-(2.20). This is also known as the DA

algorithm with Sufficient Augmentation (SA) Ymis (Yu and Meng (2011)), and

hence it is the same as setting bi ≡ 0 in our prototype algorithm for all i

(therefore Ỹmis = Ymis, which makes Step 4 the same as (2.20)).

II. A marginal augmentation/PX-DA algorithm based on a multiplicative working

parameter Ỹmis = σYmis, with Haar working prior p(σ2) ∝ σ−2—see Liu and

Wu (1999) and van Dyk and Meng (1999).

III. The DA algorithm based on Ancillary Augmentation (AA) Ỹmis = Ymis − Xθ

(Yu and Meng (2011)), which is the same as setting bi ≡ 1 in our prototype

algorithm for all i.

IV. The ASIS algorithm (Yu and Meng (2011)) that interweaves SA and AA in (I)

and (III) respectively.

V. Our prototype DRA algorithm as given in Section 2.3.3.
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VI. The algorithm that interweaves (I) and (V) (IS-DRA).
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Figure 2.8: Comparing various samplers for the lupus nephritis data: trajectories,
histograms and autocorrelations (K = 30 for III-VI).

Here the first two are well-known algorithms in the literature, which we employ as

benchmarks, even though algorithm II uses a multiplicative working parameter (and

hence theoretically it is not directly comparable with those built upon an additive

working parameter). The next two are more recent algorithms proposed in Yu and

Meng (2011) but without the benefit of tuning bi according to the actual data because

they set bi = 1 for all i. The last two are our new prototype algorithms (without

and with interweaving), benefiting from allowing data to have a strong influence

on choosing bi (i = 1, . . . , n). Figure 2.8 displays the trajectories, histograms, and

autocorrelations of the draws of θ1 (the first coefficient) for these six algorithms. We

see the algorithms work progressively better, at least in terms of autocorrelations,

empirically demonstrating that we are on the right track in our effort to reduce
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autocorrelations by using progressively more efficient DA schemes and with the help

of the interweaving strategy.

Table 2.1: Comparison of methods after 10, 000 samples averaged over 25 runs. For
AA, ASIS, DRA and IS-DRA, the number within the parentheses (e.g. DRA(K))
denotes the number of iterations in the nested Gibbs sampler. For relative speed, we
use SA as the reference point, e.g., in this application, IS-DRA(30) is about 110 times
faster than SA in terms of the relative speed.

Method Mean Time ESS (min,median,max) ESS/Time Relative Speed
SA 20.2 (4, 16, 81) 0.8 1

PX-DA 20.6 (180, 235, 273) 11.4 14
AA(1) 19.2 (64, 115, 157) 6 7
AA(10) 22.5 (211, 454, 601) 20.2 25
AA(30) 27.9 (871, 1025, 1235) 36.8 46
ASIS(1) 24.9 (78, 122, 203) 4.9 6
ASIS(10) 27.3 (363, 475, 592) 17.4 22
ASIS(30) 32.8 (771, 1047, 1337) 32 40
DRA(1) 20.2 (199, 259, 366) 12.8 16
DRA(10) 22.9 (976, 1233, 1458) 53.8 67
DRA(30) 28.8 (2216, 2928, 3968) 101.6 127

IS-DRA(1) 24.7 (222, 285, 356) 11.6 14
IS-DRA(10) 27.5 (1033, 1294, 1503) 47.1 59
IS-DRA(30) 33.3 (2363, 2950, 3286) 88.6 110

Clearly autocorrelation measures only (one aspect of the) statistical efficiency. An-

other important measure is CPU time, an aspect of computational efficiency. Table

2.1 reports the CPU time (in seconds) from 25 replications, together with estimated

effective sample size (ESS) obtained from the R-package coda. We see that in terms

of both ESS and Relative Speed, DRA(30)—with or without IS— ranks at the top,

about one order of magnitude improvement over PX-DA and about two orders of

improvement over SA. However, unlike the statistical efficiency measure ESS, which

does not depend on how the algorithm is actually implemented (as long as it is imple-

mented correctly), CPU time depends critically on how the algorithm is implemented,
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in what program language(s) it is written, on what machine it is carried out, etc. As

a matter of fact, when we initially implemented Step 4 directly via the R language,

the drawing from the truncated multivariate normal turned out to be so costly that

the gain in statistical efficiency by DRA was outweighed by the lost of computational

efficiency. The results in Table 2.1 are from using the R-package tmvtnorm (by Stefan

Wilhelm), which was implemented in Fortran. All the rest of the implementation was

done in R, except for the drawing from a truncated multivariate uniform as needed by

AA and hence also by ASIS (which corresponds to Step 4 of our prototype algorithm;

see Section 4.1 of Yu and Meng (2011)). These truncated uniform drawings were also

carried out by the same Fortran program tmvtnorm with the covariance matrix set to

a very large value, so the truncated multivariate normal effectively becomes truncated

multivariate uniform. We adopted this strategy to ensure a meaningful comparison

of CPU times so the simulation results do not bias toward our DRA; indeed, when we

implemented AA and ASIS completely in R, their CPU time was much worse than

our DRA using tmvtnorm, further illustrating how computational efficiency depends

critically on the actual implementation, not just the algorithm itself.

We remark here that the substantial increases in ESS as K increases from K =

1 to K = 30 clearly demonstrate the importance and effectiveness of using data

augmentation schemes that are as close to residual augmentations as possible. We

also note that in this case the additional gain/protection from using interweaving is

rather minor, a consequence of a rather effective DRA for this problem and particular

data set. Yu and Meng (2011) provided ample evidence that the performance of any

single DA tends to depend on the actual data set much more substantially than those
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by interweaving a pair. Our theoretical bounds given in Section 2.3 (albeit they do

not apply to the Probit regression problem) provide further suggestive evidence of

the robust nature of our interweaving strategy.

2.3.5 Seeking Effective Data-Dependent Working Parameter

In Section 2.3.2 we emphasized the importance and potential of allowing the actual

data to govern the choice of the working parameter. In the current cases, the working

parameters are {bi, i = 1, . . . , n}. In Section 2.3.3 we then mentioned that there are

a number of possible choices of bi for the sampling stage based on working parameter

values obtained during the adaptive stage: {b(t)
i , t = 1, . . . , t∗}. As a preliminary

assessment of the impact of the choice of data-dependent working parameters on

ESS, Figure 2.9 displays the box-plots of ESS for six choices of bi’s. They are:

1. Last: Set bi = b
(t∗)
i , the last updated value of bi from the adaptive stage;

2. Mean: Set bi = b̄i, the average of the last 10% b
(t)
i ’s from the adaptive stage;

3. Median: Set bi = med{bi}, the median of the last 10% b
(t)
i ’s from the adaptive

stage;

4. Mode: Set bi = mode{bi}, the mode of an estimated density (using a kernel

method) of the last 10% b
(t)
i ’s from the adaptive stage;

5. Mode2: Set bi = G(Yobs,iXiθ̂) (see (2.23)), where θ̂ is the mode of an estimated

density (using a kernel method) of the last 10% of θ(t)’s from the adaptive stage;
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6. MLE: Set bi = G(Yobs,iXiθ̂MLE), where θ̂MLE is the MLE of θ under the Probit

model. (This last choice of bi does not require the adaptive stage, and it is

included as a benchmark.)

●

Last Mean Median Mode Mode2 MLE

10
00

15
00

20
00

25
00

30
00

35
00

ESS by different methods

Different methods

Figure 2.9: Comparing various choices of the data-dependent working parameter
based on 25 simulations.

As one may expect, using only the last value from the adaptive stage creates

too much variation, although it is the least costly in terms of CPU time and easiest

to implement. The latter is true for using the MLE, which eliminates the adaptive

stage altogether. Unfortunately these two methods also have the lowest ESS on

average. The best performer seems to be using the mode of b
(t)
i , but it involves

a kernel estimation (and mode finding), which can be more costly timewise, albeit

for our simulation this was not a problem. For our Table 2.1, we adopted the mean

choice because we conjectured that it would represent a practical compromise between

statistical efficiency and computational efficiency. Figure 2.9 suggests, however, that

the median perhaps is an even better compromise. Further research obviously is

needed to assess whether using the median (or another method) is a good compromise

in general.
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We did, however, find a partial indication for the better performance of the median

when we attempted to address both reviewers’ question about how we could trust bi’s

from the adaptive stage, where the draws from our prototype algorithm itself cannot

be trusted. The answer lies in the fact that we are not seeking the theoretically

optimal choice of bi, but rather any reasonable choice of it that would result in an

algorithm with acceptably satisfactory efficiency. Recall the choice of bi does not affect

the validity of our prototype algorithm as long as it is fixed during the sampling stage.

Furthermore, although in the adaptive stage the draws of θ from our algorithm follow

a different distribution than the one for the draws from the sampling stage, the two

distributions apparently are close enough that their corresponding distributions for

bi = G(Yobs,iXiθ) do not provide significantly different summary statistics, especially

for the robust ones such as medians.

To illustrate this point, Figure 2.10 displays the Q-Q plots of the samples of the

three components of θ from the sampling stage against their counterparts from the

adaptive stages. We see clearly that although the plots show some visible differences

between the two distributions, the differences lie primarily in their tails.
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Figure 2.10: Q-Q plots for samples of θi, i = 1, 2, 3: sampling stage verses the adaptive
stage.
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Figure 2.11 displays the corresponding Q-Q plot of samples of randomly selected

four (out of n = 55) bi from the sampling stage against those from the adaptive

stage. Again we see the major differences lie in tails. To see the impact of adaptation

numerically, let b̄
[S]
i and b̄

[A]
i be the sample means of bi from the sampling stage and

the adaptive stage respectively. Then for the same data underlying Figure 2.10 and

Figure 2.11, we have (recall n = 55 for our lupus nephritis data set)

1

55

55∑
i=1

∣∣∣b̄[S]
i − b̄

[A]
i

∣∣∣ = 0.00303, (2.25)

which is only one third (0.00303/0.918=0.0033) of a percent compared with
∑55

i=1 b̄
[S]
i /55 =

0.918. If we replace the sample means in (2.25) by their sample median coun-

terparts, then the absolute difference will be even smaller: 0.00226. The corre-

sponding relative difference compared with the average of the sample medians is

0.00226/0.926 = 0.0024, only one quarter of a percent. We therefore have rather

good empirical verification that the lack of proper convergence during the adaptive

stage had non-significant impact on our overall findings.
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Figure 2.11: Q-Q plot: samples of bi (for four different i’s) from the sampling and
adaptive stages.
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It is also worthy to point out the trade-off between the number of iterations during

the adaptive stage and the sampling stage. Practically, the length of the adaptive

stage is likely to be positively correlated with the quality of our choices of bi’s for the

sampling stage. However, the lengths of the two stages obviously compete with each

other for a total given computational budget. There is hence a trade-off between a

longer sampling stage with a less effective choice of b versus a shorter sampling stage

but with a more effective b. We still need to develop a good practical guideline for

such a trade-off, as well as for a number of other trade-offs discussed in the next

Section.

2.4 Concluding remarks

The primary purpose of this article was to provide initial evidence of the potential

of residual augmentations, proposed recently (Yu and Meng (2011)). On the theo-

retical side, we demonstrated the possibility of establishing numerically rather tight

universal bounds (e.g., 1/8 or 1/5) by utilizing a unique “competing” nature of the

interweaving strategy, as well as the existence of the “safe zone” and the resulting

convenient minimax choice ASIS. At the same time, we uncovered a somewhat un-

expected phase transition behavior, which makes the issue of robustness-efficiency

trade-off particularly critical and tricky. Mathematically, the situation reminds us of

AR(1) type of time series models (see Peña et al. (2001)), where the unit root serves

as the only boundary between a stationary region and an explosive region. It is well

known that uncertainties in identifying a unit root could lead to rather different sta-

tistical properties from what were intended (e.g., Meng and Xie (2013)). Analogously
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errors in computing regression slopes for residual augmentations could mean the dif-

ference between delivering nearly independently and identically distributed draws and

producing almost identical draws (because of extremely poor mixing)!

Therefore, much needs to be done in order to identify situations where we can

push the data-dependent residual schemes to achieve their maximal efficiency, and

where it is too dangerous to do so and hence we should stay with robust “data-free”

schemes such as ASIS. Whereas we succeeded in establishing such results for a class

of normal/independent models, we nevertheless benefited from the conditional nor-

mality inherited in such a class of models and the symmetric nature of (θ, Ymis) as

in (2.13). We imagine the task is rather challenging in general because without nor-

mality of some sort (marginal or conditional), the analytic manipulation of maximal

correlations is typically intractable. Furthermore, the three maximal correlations in

(2.3) generally cannot be mapped into the same triangle because (for example) the

function (i.e., transformation) of θ that leads to its maximal correlation with Ymis

may not be the same function for maximizing its correlation with Ỹmis. This would

render the geometric expression (2.12) inapplicable, at least not directly. Neverthe-

less, given the general difficulties in establishing useful bounds for convergence rates

for MCMC (see various chapters in Brooks et al., 2011), we are encouraged by the

preliminary theoretical results reported in Section 2.3.

On the algorithmic side, as we have seen from the Probit models, there are at

least two issues we need to deal with effectively in order to fully realize the potential

of residual augmentations, with or without interweaving. The first is how to find a

good compromise between statistical efficiency, which requires us to stay as closely as
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possible to the theoretically optimal residuals (under whatever criterion adopted), and

implementation/computational efficiency, which often requires simple approximations

to the optimal residual for effective execution of the Ỹmis → θ step. The second is

that even when we know how to carry out the Ỹmis → θ step in theory, its actual

implementation can have a significant impact on the overall competitiveness of the

resulting algorithm. As seen in Section 2.3.4, different implementations of the nested

Gibbs sampler have led to very different algorithmic efficiency.
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Figure 2.12: The left plot is the H function with a two-piecewise linear approximation;
the right plot is the derivative function G(z) = H ′(z).

We are also working on finding a better approximation to the actual residual than

our current linear approximation. As is evident from the left panel in Figure 2.12, the

conditional mean function H(z) can be approximated well by a two-piecewise linear

function. That is, we can find two suitable derivative values (see the right panel) G(z)

as the bi’s for our residual augmentations Ỹmis,i = Ymis,i−biXθ depending on the value

of Xθ (from the left panel, choosing 0 as the connecting point of the two linear pieces

seems to be both effective and convenient). However better approximations do not
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transfer to better algorithms unless the added computational burden does not unduly

offset the gain in statistical/algorithmic efficiency.

Furthermore, for our probit regression we have constructed only DRA, mainly

because in this case DRA is simpler in construction than IRA due to the fact that

E[Ymis,i|θ, Yobs] = E[Ymis,i|θ, Yobs,i], permitting component-wise (as indexed by i) cal-

culations (see (2.21)), which is not the case for E[θ|Ymis, Yobs]. However, for each

component i, we notice that the probit model depends on θ only through Xiθ.

Hence it is possible to consider forming component-wise IRA in the form of Ỹmis,i =

Xiθ−E[Xiθ|Ymis,i, Yobs,i], which would still render component-wise zero posterior cor-

relation:

Cov(Ỹmis,i, Ymis,i|Yobs,i) = 0, i = 1, . . . , n. (2.26)

Although component-wise derivation/calculation will render implementation simplic-

ity, we are likely giving up some statistical efficiency because (2.26) does not achieve

the actual zero posterior correlation Cov(Ỹmis, Ymis|Yobs) = 0; note (2.26) implies nei-

ther Cov(Ỹmis,i, Ymis,j|Yobs,i) = 0 for any i 6= j, nor Cov(Ỹmis,i, Ymis,i|Yobs) = 0 for any

i.

We are currently investigating a number of such trade-off issues between statistical

efficiency and computational efficiency (e.g., implementation simplicity). There are

many challenges ahead, and what is reported above are only those from our initial

investigation. At the same time, we have so many options to explore, from forming

DRA and IRA to many of their approximations and variations (e.g., component-

wise residuals), and with or without interweaving. In our general pedagogical effort,

explaining the difference between regressing Y on X and regressing X on Y , to those
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who are ingrained in deterministic thinking of a functional relationship, has not been

a trivial task. But it is the very existence of these two regression lines that offers

us a unified theme to explore and construct MCMC algorithms which come closer to

realizing the sweet 3-S dream, a dream we invite all readers to share.
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Chapter 3

Resting state fMRI data analysis

3.1 Introduction

Exploring the human brain structure and understanding how it works has always

been a fascinating but extremely difficult challenge. Among the existing methods,

functional magnetic resonance imaging (fMRI) is an MRI procedure that measures

brain activity by detecting associated changes in blood flow. Specifically, we focus on

fMRI using blood-oxygen-level-dependent (BOLD) contrast. In BOLD fMRI, neu-

ronal activity levels are captured by blood flow in the brain. Ever since the 1990’s,

fMRI has become one major tool in neuroimaging research because it does not require

people to undergo shots, surgery, etc. (Huettel et al. (2009)).

Within this field, there are two general approaches researchers take: task based

design and resting state design. For task or stimulus based design, the scientific goal

is to study which regions or cortex are associated with a specific function(such as

vision, hearing, etc.). Subjects are usually lying in the MRI machine, treated in the
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control state (doing nothing) or the experimental state (given a specific stimulus) in

a pre-fixed order. Data are collected during those two stages and then corresponding

statistical analysis can be conducted from there. Some concrete examples include

Bullmore and Bassett (2011) and references therein. Fox and Raichle (2007) also

provides a simple example of a paradigm that requires subjects to open and close

their eyes at fixed time intervals. Please see Figure 3.1 for an example.

Figure 3.1: Traditional fMRI analysis and BOLD noise. Unaveraged BOLD
time course from a region in the primary visual cortex during a simple task paradigm
that requires subjects to open and close their eyes. The signal intensity difference
between the eyes-open condition and the eyes-closed condition is highlighted in the
right picture (Fox and Raichle (2007)).

However, there is also spontaneous modulation of the signal which can not be

attributed to the experiment. The signal values are usually averaged over time blocks

to minimize this spontaneous “noise” in those task based studies. On the other

hand, these spontaneous brain activities are themselves of interest for various rea-

sons, among which two are most important: 1. The extra energy consumed by task

experiments is not much more than that consumed by the resting state (usually less

than 5% more (Raichle and Mintun (2006)). Therefore, in order to study the func-

tion of human brain, we need to take into account this major component of energy

consumption. 2. The resting state data provides a way of measuring the functional

connectivity (which will be defined in the next section) of different regions of the
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brain, which can be used to construct a network of the brain. It is an extremely

interesting and active research area now to study this neural network, because it

provides insights into how the human brain operates as well as certain indications of

mental diseases.

In contrast to task based fMRI, in resting state fMRI subjects are usually required

to lie in the MRI machine without any stimulus or active thinking. Data are collected

during the resting state in the experiment.

3.2 Functional connectivity

One key concept that neuroscience researchers are particularly interested in is the

functional connectivity. Functional connectivity is the relationship between the neu-

ronal activation patterns of anatomically separated brain regions. Intuitively speak-

ing, people want to explore the underlying network of the human brain, which can

be understood as interactions between different regions of the brain. Naturally, func-

tional connectivity should be measuring this interaction or network. For instance,

pairwise correlations (correlation matrix) are proposed to measure the linear depen-

dence between different regions; partial correlations (precision matrix, Salvador et al.

(2005)) are also used to adjust linear dependence on other parts; moreover, mea-

surements such as mutual information (Bassett and Bullmore (2009)) aim to capture

higher order dependence. In this chapter, we only focus on using correlation matrix

or partial correlation matrix as the measurement of functional connectivity.

First of all, what does the typical data set look like for calculating the corre-

lation matrix? As emphasized earlier, subjects are not given any task or stimulus
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during the process. Data are collected on the voxel (usually a cubic with 3mm length

sides) level. However, for various reasons, we won’t directly focus on the voxel level

analysis. Instead, the brain is usually divided into several regions, according to some

anatomical or non-anatomical criterion, such as automated anatomical labeling (AAL,

Tzourio-Mazoyer et al. (2002)), Eickhoff-Zilles (EZ, Eickhoff et al. (2005)), indepen-

dent component analysis (ICA, De Luca et al. (2006)), etc. The fMRI signal of each

region of interest (ROI) is obtained by averaging over signals of all voxels within the

region. The data set we choose uses AAL criterion. AAL is an automated parcellation

method, which projects the divisions in the brain atlas onto brain-shaped volumes of

functional data. On average it has 115 ROIs. fMRI signals are collected in discrete

time (e.g. every 20s). Therefore, the raw data set for each subject consists of a data

matrix with one dimension being the number of ROIs and the other dimension being

the number of repeated measurements across time.

In the experiment, there may be issues that are unexpected or out of the exper-

imenter’s control (e.g. subject’s movement); therefore data are usually preprocessed

before analysis. Preprocessing steps usually include motion correction, slice-timing

correction, spatial filtering, etc. (see Tanabe et al. (2002) and references therein). Ide-

ally, preprocessing steps can reduce the effects of both instrumental and physiological

noise, therefore increasing the signal-to-noise ratio. However, improper preprocessing

may destroy signals, e.g. too much smoothing. How to optimize preprocessing itself

is an important research topic but beyond the scope of this chapter (see Churchill

et al. (2012)).
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3.3 Question of interest

A lot of the analysis is based on the brain network constructed with the fMRI data.

After that the network structure is obtained by thresholding (or non-thresholding)

the measures of functional connectivity between ROIs. So first and most impor-

tantly, how do researchers define a “correct” and “precise” measurement of the

functional connectivity? Pairwise correlations have been widely used in the litera-

ture. However, there is one issue that has not been addressed much, to the best

of our knowledge: suppose we have observations of a bivariate random variable

(X, Y ) : (x1, y1), (x2, y2), · · · , (xn, yn). The standard results hold for estimating their

correlation ρ = corr(X, Y ) using the sample correlation when those samples are i.i.d..

In the case of an autocorrelated sample (as often seen in time series), the asymptotic

variance of the sample correlation is not clear. Furthermore, the sample correlation is

not (at least asymptotically) the most efficient estimator when there exists autocor-

relation. The structure of the rest of this chapter is as follows: in Section 3.4.1, 3.4.2

and 3.4.3 we review the separable covariance model, the VAR model and their rela-

tionship. Then we propose fitting the separable covariance model to the fMRI data

to adjust the temporal correlation. The maximum likelihood estimator outperforms

the method of moments, which is the standard method being used in the literature,

both in theory and our simulation studies. In the end of the chapter, we compared

the fitted results of two estimators to the fMRI data set.
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3.4 Separable covariance model

3.4.1 Review of Kronecker product

The notion of Kronecker product is extremely important in this chapter. There-

fore, below is a brief review of the mathematical operation of Kronecker product.

Denoted by ⊗, Kronecker product is an operation on two matrices, as a generaliza-

tion of the outer product. Specifically, let A be a p × q matrix and B be an m × n

matrix, then the Kronecker product A⊗B is the pm× qn block matrix:

A⊗B =


a11B · · · a1qB

...
. . .

...

ap1B · · · apqB


The Kronecker product is bilinear and associative:

A⊗ (B + C) = A⊗B + A⊗ C, (3.1)

(A+B)⊗ C = A⊗ C +B ⊗ C, (3.2)

(kA)⊗B = A⊗ (kB) = k(A⊗B), (3.3)

(A⊗B)⊗ C = A⊗ (B ⊗ C). (3.4)

(3.3) will be used to illustrate the non uniqueness of the maximum likelihood

estimator.
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3.4.2 Separable covariance model

In multivariate statistics, the matrix normal distribution has a very close relation-

ship with the Kronecker product. Let X be an n× p random matrix, Ωp×p and Σn×n

be two positive definite matrices respectively. X is said to have the matrix normal

distribution if the probability density function is:

p(X|M,Ω,Σ) =
exp(−1

2
tr[Ω−1(X −M)TΣ−1(X −M)])

(2π)np/2|Ω|n/2|Σ|p/2
. (3.5)

If we stack all the columns of X together, we end up with a vector vec(X), which

follows a multivariate normal distribution. The connection between the matrix normal

distribution and multivariate normal distribution is as follows:

X ∼MNn×p(M,Ω,Σ)⇐⇒ vec(X) ∼ Nnp(vec(M),Ω⊗ Σ).

Matrix normal distribution is one of the most important matrix distributions

in statistics and it has been widely used in spatial-temporal modeling such as geo-

graphical problem. In those problems, usually one dimension is space and the other

dimension is time. The Kronecker product assumes that the spatial covariance is

independent of the temporal covariance. Therefore, the covariance between any two

observations can be factored as the product of their spatial covariance and temporal

covariance, i.e.

Cov(Xt,i, Xt′,i′) = Σt,t′Ωi,i′ . (3.6)

In this sense, the covariance matrix is separable into the spatial and temporal
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covariance matrices. One most attractive property of this model is it significantly

reduces the number of parameters. Often but not always the separability assumption

is plausible.

3.4.3 Relationship between separable covariance model and

VAR model

The vector autoregression (VAR) model is another widely used multivariate sta-

tistical model. It is often used to capture the linear dependence among multiple time

series. One natural question then rises: what is the relationship between VAR model

and the separable covariance model? Does either one model include the other? Or

do they have any overlapping? In order to answer these questions, let’s first briefly

review the basics of VAR model. A p-th order VAR is:

Yt = µ+ A1Yt−1 + · · ·+ ApYt−p + εt,

where Yt is a p × 1 random vector, µ is a p × 1 constant vector, Ak is a p × p

matrix and εt is a p× 1 vector of error term satisfying:

1. E[εt] = 0;

2. E[εtε
T
t ] = V , where V is a p× p covariance matrix of εt;

3. E[εtε
T
t′ ] = 0, whenever t 6= t′.

Naturally, if a process satisfies the assumption of VAR model, there exists both

spatial and temporal covariances, so it is interesting to find the connection between
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these two models. Generally speaking, neither one model is contained in the other

one, but they do have some overlapping:

1. Separable covariance model is not contained in VAR model. VAR model has

the assumption of weak stationarity. It implies that the marginal variances are

the same across time, and also the autocorrelation only depends on the lag.

While in the separable covariance model, it is not necessarily true. In the latter

case, the temporal covariance structure is more flexible: there could be different

marginal covariances across time, i.e. Var(Yt) 6= Var(Yt′), or the autocorrelation

is not necessarily stationary, i.e. Corr(Yt, Yt+1) 6= Corr(Yt−1, Yt).

2. VAR model is not contained in separable covariance model. In separable covari-

ance model, one fundamental property is that the temporal correlation structure

is the same across space (for different regions). However, in VAR model

Yt = AYt−1 + εt,

the correlation structure across space is not necessarily the same unless A is

multiple of an identical matrix rIp. For example, if A =

r1 0

0 r2

 (r1 6= r2),

then the covariance is not separable.

3. However, there exists some special case where VAR and separable covariance

models overlap. Suppose A is a multiple of an identical matrix (i.e. rIp) and

for simplicity we assume the mean is 0, then the VAR model is:
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Yt = rYt−1 + εt.

In this case,

Yj = rj−iYi + rj−i−1εi+1 + · · ·+ εj,

when j > i. From the stationarity, we have Cov(Yj) = r2Cov(Yi) + V , which

implies that Cov(Yi) = 1
1−r2V . Meanwhile,

Cov(Yj, Yi) = rj−iCov(Yi) =
rj−i

1− r2
V.

Therefore, this particular VAR(1) model corresponds to a separable covariance

model with Ω = V and Σ = {Σij}, where Σij =
r|j−i|

1− r2
. In Section 3.4.6 we

will show the fitted results of a similar model to this, with the only change of

AR(1) temporal correlation to AR(2) temporal correlation.

3.4.4 Estimation of covariance matrices

Method of moment and MLE

Now we have set up the separable covariance model. The next question is how we

can estimate the parameters. In our fMRI problem, we are essentially interested in the

spatial correlation matrix so the temporal correlation matrix is nuisance parameters.

LetX1, · · · , XN beN i.i.d. samples from the matrix normal distributionMNn×p(M =

0,Ω,Σ). In the lack of temporal correlation (i.e. Σ = In), the maximum likelihood
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estimator of Ω is the usual sample covariance estimator:

Ω̂MLE =
1

N

N∑
k=1

XT
k Xk.

However, when there exists temporal correlation, this estimator is no longer the

MLE. It is still unbiased (the method of moments), but may not be asymptotically

most efficient. The MLE of Ω has been proposed in different papers (Lu and Zim-

merman (2004) and therein), but has not been used in the literature of resting state

fMRI analysis, to the best of our knowledge. In the next sections, we propose using

the maximum likelihood estimator instead of the method of moments. Section 3.4.4

compares the theoretical asymptotic efficiency of these two estimators in a simple

but non trivial example; Section 3.4.5 includes simulation studies to confirm the re-

sults; Section 3.4.4 reviews the algorithm to calculate the MLE, which is presented

by Dutilleul (1999); Section 3.4.6 includes the fitted results of the fMRI data set.

Asymptotic efficiency of MLE and MoM

To compare the asymptotic efficiency of two estimators, we consider a simple but

non trivial example. Suppose the spatial dimension p = 2 and A = rI2. As seen in

Section 3.4.3, the following VAR model is also variance separable:

Yt,1
Yt,2

 =

rYt−1,1

rYt−1,2

+

εt,1
εt,2

 ,
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where εt,1
εt,2

 ∼ N
(0

0

 ,

1 ρ

ρ 1

).
It is equivalent to the separable covariance model with

Ω =

1 ρ

ρ 1


and

Σ =
1

1− r2



1 r r2 · · · rn−1

r 1 r · · · rn−2

r2 r 1 · · · rn−3

...
...

...
. . .

...

rn−1 rn−2 rn−3 · · · 1


.

Suppose r is known and we are interested in estimating ρ. Let’s consider the

following two estimators.

1. Method of moments:

ρ̂MoM =
(1− r2)

n

n∑
k=1

Yk,1Yk,2.

2. Maximum likelihood estimator:

ρ̂MLE = argmaxρl(ρ),
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where

l(ρ) = −n
2

log(1− ρ2)− 1− r2

2(1− ρ2)
(Y 2

1,1 + Y 2
1,2 − 2ρY1,1Y1,2)

− 1

2(1− ρ2)

n∑
k=2

{(Yk,1 − rYk−1,1)2 + (Yk,2 − rYk−1,2)2}

+
ρ

1− ρ2

n∑
k=2

(Yk,1 − rYk−1,1)(Yk,2 − rYk−1,2).

Both estimators are asymptotically unbiased, but their variances differ. The

asymptotic variance of ρ̂MoM is 1+ρ2

n2 (n +
∑
i 6=j

r2(j−i)). The asymptotic variance of

ρ̂MLE is (1−ρ2)2

n(1+ρ2)
, which does not depend on r. Therefore, the relative efficiency is the

ratio

Var(ρ̂MoM)

Var(ρ̂MLE)
= (

1 + ρ

1− ρ
)2

n+
∑
i 6=j

r2(j−i)

n
. (3.7)

The relative efficiency depends on the autocorrelation |r|. It coincides with our

intuition: as |r| increases, ρ̂MoM becomes less efficient by ignoring this autocorrela-

tion. More importantly, when the autocorrelation r is fixed, this ratio monotonically

increases as the spatial dimension n increases, meaning that the MLE is more efficient

in high dimensional problems. Other than this simple model, the analytical form of

the relative efficiency of these two estimators is beyond the scope of this chapter.

However, in Section 3.4.5, a comprehensive simulation study is conducted to inves-

tigate this question: is Ω̂MLE more efficient than Ω̂MoM? If so, by how much? But

before the simulation study, let’s first see how the MLE of Ω can be obtained in a

general separable covariance model.
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Algorithm to calculate MLE

The analytical form of the MLE is not available, but we can use an existing

algorithm to calculate it. Several different versions of the algorithm were derived by

Mardia and Goodall (1993), Dutilleul (1999), and Brown et al. (2001). Here we chose

the one by Dutilleul (1999).

First of all, it is worth noting that Ω⊗Σ = 1
a
Ω⊗ aΣ(a 6= 0). Therefore, the MLE

exists up to a normalizing constant: if (Ω̂, Σ̂) is the MLE, then ( 1
a
Ω̂, aΣ̂) yields to the

same likelihood for any positive a. Suppose X1, X2, · · · , XN are i.i.d. samples from

the matrix normal distribution MNn×p(M,Ω,Σ), the log-likelihood function is:

l = −Nnp
2

log(2π)−Np
2

log(|Σ|)−Nn
2

log(|Ω|)−1

2

N∑
k=1

tr{Σ−1(Xk−M)Ω−1(Xk−M)T}.

(3.8)

Dutilleul (1999) presented an iterative algorithm to calculate the MLE Ω̂ and Σ̂.

Let M̂, Ω̂ and Σ̂ be the MLE of M,Ω and Σ respectively. Obviously,

M̂ =
1

N

N∑
k=1

Xk = X̄. (3.9)

Ω̂ and Σ̂ are computed by iterating the following process:


Ω̂ = 1

Nn

∑N
k=1(Xk − X̄)T Σ̂−1(Xk − X̄);

Σ̂ = 1
Np

∑N
k=1(Xk − X̄)Ω̂−1(Xk − X̄)T .

Moreover, Dutilleul (1999) also derived the necessary and sufficient condition for
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when the MLE exists:

N ≥ max{n
p
,
p

n
}+ 1.

In our data set, each subject corresponds to a data matrix Xk and there are several

subjects in one study. Because the condition requires N ≥ 2, therefore we can not

estimate the MLE for each subject respectively. Instead, we can only estimate the

common covariance matrices if we assume Xk is generated independently from the

same distribution MNn×p(M,Ω,Σ). This is a draw back of the MLE in this problem.

However, in Section 3.4.6 we present an empirical Bayes method, where the individual

covariance matrix of Xk can be estimated respectively. Moreover, for discussions on

the convergence and stability of the MLE, see Lu and Zimmerman (2004).

3.4.5 Simulation studies on the comparison of MoM and

MLE

The theoretical comparison of the two estimators for high dimensional correlation

matrices is beyond the scope of this chapter. However, we can still compare their

empirical efficiency by simulation studies.

The first simulation study compares the performance of two estimators under

different set up of the spatial and temporal correlation matrices. Suppose Xk ∼

MNn×p(0,Ωp×p,Σn×n), k = 1, 2, · · · , N . We chose n = p = 100 to mimic the fMRI

data. The performance was evaluated based on the mean squared error (MSE) of the

estimator, i.e. ||Ω̂−Ω||2. For each combination of Ω,Σ, we simulated N independent

samples from the distribution MNn×p(0,Ω,Σ) and calculated Ω̂MoM , Ω̂MLE and then
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the MSE. This process was repeated 500 times to calibrate the variability. Below are

the four combinations of Ω,Σ we chose:

1. Σ1 = In, e.g. there is no temporal correlation. Ω1 has an AR(1) structure, i.e.

Corr(Xi,j,k, Xi,j,k′) = |ρ||k−k′|, where ρ is the coefficient parameter in Ω1.

2. Both Ω2 and Σ2 have an AR(1) structure, with coefficients ρ1 and r1 respectively.

3. Σ3 = Σ2 still has an AR(1) structure. To relax the assumption on the spatial

correlation, we let Ω3 be a random matrix generated from W−1(Ω2, ν = 200),

where W−1(V, ν) is the inverse Wishart distribution with parameters (V, ν).

4. Both Ω4 and Σ4 are random matrices: Ω4 = W−1(Ω2, ν = 200) and Σ4 =

W−1(Σ2, ν = 200).

The results are summarized in Figure 3.2: in the first case, where there is no

temporal correlation Σ = In, both estimators have the same efficiency asymptotically.

However, Ω̂MoM outperforms Ω̂MLE when sample size is small (N < 10). In the latter

three cases, where there is temporal correlation, Ω̂MLE outperforms Ω̂MoM , especially

when sample size is small. When both Ω and Σ are structured – AR(1), Ω̂MLE is

more efficient than Ω̂MoM , by a factor between 2.2 and 3.9; when Ω and Σ are random

matrices, Ω̂MLE is more efficient than Ω̂MoM by only a factor between 1.1 and 1.3.

Note that our focus is to improve the efficiency of the estimator especially when

sample size is small (ideally N = 1), therefore the reduction in the MSE is still non

negligible.

The second simulation study involves the spatial and temporal dimensions n, p.

We fixed sample size N to be 5 and let n = p vary. The comparison of the estimators
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Figure 3.2: Mean squared error of Ω̂MoM and Ω̂MLE in different scenarios.

is still based on the MSE. AR(1) structured correlation matrices are used for both Ω

and Σ. The results are summarized in Figure 3.3.

Clearly, the relative efficiency increases as the dimension (n = p) increases. This

is inline with our theoretical comparison (3.7) in the simple model. In the fMRI

problem, the dimension is usually between 100 and 300, therefore the improvement

in the statistical efficiency is around the factor of 3.
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Figure 3.3: Relative efficiency of Ω̂MLE to Ω̂MoM under different dimensions.

3.4.6 Application to the resting state fMRI data

Introduction to the data set

Now we have seen that when the assumption holds, the maximum likelihood es-

timator is asymptotically more efficient than the method of moments. In the resting

state fMRI, time series data are collected for ROIs. Due to factors such as physiolog-

ical cycles, machine noise, etc., there exists temporal correlation in the data. In the

next section, we shall fit the separable covariance model to obtain Ω̂MLE and compare

it with Ω̂MoM .

The data sets we used are released by Neuroimaging Informatics Tools and Re-

sources Clearinghouse (NITRC (2013)). Seven data sets containing pre-processed

fMRI brain images are included:

• The Kennedy Krieger Institute, Baltimore, MD, USA (“KKI”)

• The Donders Institute, Nijmegen, The Netherlands (“NeuroIMAGE”)
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• New York University Medical Center, New York, NY, USA (“NYU”)

• Oregon Health and Science University, Portland, OR, USA (“OHSU”)

• Peking University, Beijing, P. R. China (“Peking 1”, “Peking 2”, “Peking 3”)

AAL criterion was chosen (116 ROIs) to aggregate the voxel level data. There are

458 participants aged between 7 and 21 in total in these seven data sets. These partic-

ipants can be diagnosed as different levels of attention deficit-hyperactivity disorder

(ADHD). For simplicity, we divide them into ADHD and non-ADHD. The initial

goal is to estimate the spatial correlation structure (as a measurement of functional

connectivity) for ADHD and non-ADHD participants respectively and to see if there

is any significant difference between them.

Separable covariance model with AR(2) and damped oscillator temporal

correlation

The separable covariance model assumes the same temporal correlation structure

across different ROIs, therefore we first plot the autocorrelation (ACF) plots (Figure

3.4) for selected regions in both groups.

Clearly, the temporal correlation exists and could potentially inflate the variance

of the estimator. There is also one consistent feature among these different ROIs: the

autocorrelation is periodic and decaying. The explanation involves the physiological

cycles of human brains and other factors and therefore is not straightforward. But

we can capture this pattern by a simple time series model, for example AR(2) model

– AR(1) model does not suffice here because of the periodic autocorrelation. More

specifically:
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Figure 3.4: Autocorrelation plots from ADHD and normally developed children.

Xk ∼MNn×p(M,Ω,Σ)

and here we assume Σ is the autocorrelation matrix from the AR(2) model

Yt = r1Yt−1 + r2Yt−2 + εt.

Therefore Σ can be viewed as a function of r1, r2, i.e. Σ(r1, r2). A structured

temporal correlation is preferred here as compared with an unstructured one because

of the following reasons: 1. highly reduced number of parameters; 2. easier inter-

pretation of the model; 3. the structured temporal correlation has a good fit to the

data. Since we assume the AR(2) model in the temporal correlation, the algorithm

to compute the MLE is slightly different from Dutilleul’s (designed for unstructured

ones). The full description of the algorithm is as follows:

1. Calculate M̂ = X̄ = 1
N

N∑
k=1

Xk.
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2. Given r̂1, r̂2, calculate Σ̂ = Σ(r̂1, r̂2). Then calculate Ω̂ = 1
Nn

N∑
k=1

(Xk−X̄)T Σ̂−1(Xk−

X̄).

3. Given Ω̂, calculate Σ̂. In this case, if we do Cholesky decomposition Ω̂−1 = LLT

and define Zk = XkL, then we have removed the spatial correlation, which es-

sentially means we have p independent observations for each Zk, and in total

Np samples from the same AR(2) process with coefficients r1, r2. As an ap-

proximation, the conditional MLE of r̂1, r̂2 can be obtained by ordinary linear

regressions.

We repeat step 2 and 3 until the algorithm converges. Among the seven data sets,

the NYU data set has the largest sample size 139. Therefore we will present the fitted

results to the NYU data set in the rest of this chapter. Similar results are obtained

on the other data sets. Using the above algorithm, the estimated spatial correlation

matrix Ω̂MLE together with Ω̂MoM are shown in Figure 3.5:
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Figure 3.5: Ω̂MoM and Ω̂MLE for normally developed children in NYU data set: the
left plot is Ω̂MoM and the right plot is Ω̂MLE.
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The difference in these two plots lies in two aspects: 1. there are less extreme

values in the correlations in Ω̂MLE than in Ω̂MoM , especially for very negative values; 2.

Ω̂MLE is more structured than Ω̂MoM . On the other hand, the AR(2) model, though

simple, does not provide a good enough fit to the actual autocorrelation function.

In order to capture the periodicity and decaying pattern, we considered a damped

oscillator function to model the temporal correlation function. The damped oscillator

function has the form e−ahb sin(ch+d), where a, b, c, d are four parameters and h is the

lag, i.e. two observations with a lag of h(h > 0) have correlation e−ahb sin(ch+d). This

is very similar to our previous model, except replacing the AR(2) temporal correlation

structure by this damped oscillator function. The comparison of the estimated spacial

correlation matrices under these two models is in Figure 3.6:
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Figure 3.6: Ω̂MLE under the AR(2) and damped oscillator model for normally devel-
oped children in NYU data set: the left plot is Ω̂MLE under the AR(2) model and
the right plot is Ω̂MLE under the damped oscillator model.

The difference is not as big as the comparison of Ω̂MLE with Ω̂MoM . However, if

we look at the goodness of fit in temporal correlation, we can see that the damped

oscillator model provides better fit than the AR(2) model (see Figure 3.7).
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Now a natural question is: we have these two estimators Ω̂MoM , Ω̂MLE, which one

is better in this problem? Unlike in the simulation studies, where the ground truth

is known, the comparison of these two estimators in the resting state fMRI data set

is not easy. One reason is that little is well understood in the area; another reason

is that fMRI data is quite noisy, therefore a small improvement of the estimator

may not be clearly reflected in any test. Nevertheless, there is some consensus from

previous studies. This will be described in details in the next section, but simply

speaking, the correlations among some groups of ROIs are consistently stronger. For

example, the primary visual cortex is specialized in processing information about

static and moving objects. It consists of four ROIs in our data set and these ROIs are

consistently reported as highly correlated in the literature. As a result, our estimation

of correlations in this cortex may give us some indication on the goodness of fit. From

Ω̂MoM , the estimated correlations among the cortex has mean of 0.51 and minimum

of 0.22; while from Ω̂MLE, the estimated correlations among the cortex has mean of

0.62 and minimum of 0.42. Similar results are obtained for the other cortexes. This

comparison of course can not directly prove that our estimator is better than the

method of moments, but at least provides us more confidence since our results are

inline with the consensus in the field.

An empirical Bayes model

However, as mentioned before, there is one common draw back of the MLE under

these models: the condition that the sample size N > 1 is required, therefore only the

common spatial correlation matrix Ω can be estimated instead of each individual Ωk.
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Figure 3.7: Sample ACF plot and fitted autocorrelation functions with AR(2) and
Damped Oscillator model: the dots represent sample autocorrelations, the solid line
represents the fitted autocorrelation function by the AR(2) model and the dashed
line represents the fitted autocorrelation function by the Damped Oscillator model.

In this section, we present an empirical Bayes model, which not only can estimate

the individual Ωk, but also incorporates the prior knowledge from previous studies.

There are quite a few previous studies in this field, among which there is some

consensus. van den Heuvel and Hulshoff Pol (2010) reports that:

“ A number of group resting-state studies have consistently reported the formation

of functionally linked resting-state networks during rest. These studies, although all

using different groups of subjects, different methods (e.g. seed, ICA or clustering)

(Beckmann et al., 2005, Biswal et al., 1995, Damoiseaux et al., 2006, De Luca et al.,

2006 and Salvador et al., 2005a; Van den Heuvel et al., 2008a) and different types

of MR acquisition protocols, show large overlap between their results, indicating the

robust formation of functionally linked resting-state networks in the brain during

rest.”
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Figure 3.8: Eight subnetworks consistently reported by different studies (van den
Heuvel and Hulshoff Pol (2010)).

And they also included Figure 3.8 highlighting eight most consistent reported

resting state subnetworks. Intuitively speaking, the interactions within subnetworks

are generally higher than those between subnetworks. In order to incorporate this

domain knowledge, we assumed a blocked spatial correlation matrix. Within each

subnetwork, there is one parameter ρi as the correlations within the subnetwork,

between different subnetworks, there is one single “background” correlation parameter

ρ0. So there are nine parameters in total and the correlation matrix has the following

form:
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Ω0 =



1 ρ1 ρ1 ρ0 · · · ρ0 ρ0

ρ1 1 ρ1 ρ0 · · · ρ0 ρ0

ρ1 ρ1 1 ρ0 · · · ρ0 ρ0

ρ0 ρ0 ρ0 1 · · · ρ0 ρ0

...
...

...
...

. . .
...

...

ρ0 ρ0 ρ0 ρ0 · · · 1 ρ8

ρ0 ρ0 ρ0 ρ0 · · · ρ8 1


It is hard to find relevant information on those parameters ρi. Therefore, we

adopted an empirical Bayes method: the nine correlation parameters are first fit-

ted from the data set and then used as the prior. More specifically, we first com-

puted the unstructured MLE Ω̂MLE, and then find ρ̂0, · · · , ρ̂8 such that ||Ω̂MLE −

Ω0(ρ̂0, · · · , ρ̂8)||2 is minimized. For computational simplicity, we use the conjugate

prior for the spatial covariance matrix – inverse Wishart distribution, with parameters

(ν0Ω0, ν0). Then the Bayesian model is:

Ω|ν0,Ω0 ∼ W−1(ν0Ω0, ν0)

π(M, r1, r2|Ω) ∝ 1

X|M,Ω, r1, r2 ∼ MNn×p(M,Ω,Σ(r1, r2))

A Gibbs sampler to sample from the posterior distribution is:

• Sample Ω|M,Σ, X ∼ W−1(ΩN , νN), where νN = ν0 +Nn and ΩN = ν0Ω0 +SN .
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SN =
N∑
i=1

(Xi −M)TΣ−1(Xi −M).

• Sample M |Ω,Σ, X: vec(M) ∼ Nnp(vec(X̄), Ω⊗Σ
N

).

• Sample Σ|Ω,M,X, i.e. sample r1, r2|Ω,M,X. If we let Zk = (Xk − M)LT ,

where LLT = Ω is the Cholesky decomposition, then we have removed spatial

correlations. In other words, each Zk can be treated as n independent AR(2)

processes, with mean 0 and common coefficients r1, r2. Exact conditional dis-

tributions can be drawn, however, if we ignore the contribution of the first two

samples in each process, the approximation is close enough. In other words, we

can draw r1, r2|Ω,M,X from Bayesian regression model as a good approxima-

tion.

Notice that ν0 represents the equivalent sample size in the prior. If we chose ν0 to

be far smaller than Nn, we essentially put most weight on our data and therefore the

result is close to the MLE. More importantly, the Bayesian method provides a way

of estimating the spatial correlation matrix for each subject individually. If we let

each individual have its own parameters Mk,Σk and Ωk, then we can calculate the

posterior mean of Ωk respectively.

In order to let the data speak, a relatively small ν0 = 10 was chosen. For each

subject k in the data set, we calculated the posterior mean Ω̂k. From the results

we can see that there is a lot of variability across different subjects. For instance,

Ω̂k
12(k = 1, 2, · · · , N) has a mean of 0.45 and a standard deviation of 0.24. The

variability across subjects suggest that assigning a common covariance matrix may

not be appropriate here and our empirical Bayes model does adjust for that.
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Another question we can potentially answer with this model is whether any differ-

ence in the spatial correlation matrix can be found between ADHD and non-ADHD

children. Among these 139 subjects, 97 are normally developed children and the other

42 are diagnosed with ADHD. If we treat each element of the spatial correlation ma-

trix as a feature, there will be p(p−1)
2

= 6670 features in total. If we apply two sample

t tests to all the features, we may be able to find the important features that can

distinguish the two groups. Below is a histogram of the t test statistics for all the

features:
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Figure 3.9: Two sample t test statistics for all 6670 features.

Right now it is not clear to us if these differences are just sampling error or there
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are informative features that can predict the state of the subject (ADHD or non-

ADHD). If the latter were true, that means we can diagnose (with some probability)

ADHD by examining the correlations among some ROIs.

3.5 Concluding remarks

Resting state fMRI is an active research area, where a lot of studies focus on

building the brain networks with functional connectivity. Therefore it is of great

interest and importance to improve the estimate of functional connectivity, which is

our focus in this chapter. To the best of our knowledge, most studies use the standard

estimator Ω̂MoM from the independent samples by ignoring the temporal correlation.

By imposing the separable covariance model, we proposed using Ω̂MLE instead of

Ω̂MoM . And the statistical efficiency of Ω̂MLE is demonstrated both in theoretical

comparison and simulation studies. More importantly, we also present an empirical

Bayes model, under which the individual spatial correlation matrix can be estimated.

Much work needs to be done in this problem. For example, theoretical compar-

ison and simulation studies verify the superiority of the MLE when the separability

assumption holds. But how robust is this result? What is its performance when the

assumption is violated? More work needs to be done before we claim our proposed es-

timator is better in similar data sets. Another problem is that we assume a structured

temporal correlation in the model but not the spatial correlation. One key reason for

that is researchers currently do not have a good understanding of the spatial correla-

tion yet, so we choose to “let the data speak”. However, the high dimension nature

(p ≈ 200) does not encourage us to do so. A structured correlation matrix may lead
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to better efficiency.

Moreover, we can further consider fitting a hierarchical model

Ω|Ω0 ∼ π(Ω|Ω0)

Ωk|Ω, ν0 ∼ W−1(ν0Ω, ν0)

π(Mk, rk1 , r
k
2 |Ωk) ∝ 1

Xk|Mk,Ωk, rk1 , r
k
2 ∼ MNn×p(M

k,Ωk,Σ(rk1 , r
k
2)).

to not only allow estimation for each individual correlation matrix but also take

into account of information together. As for now, how to choose the conditional

distribution π(Ω|Ω0) to allow easy posterior distribution sampling remains a difficult

part.

More importantly, estimating the spatial correlation matrices is only the interme-

diate step in the fMRI study. A lot of problems can be attacked and solved from

there. For example, with the tool of brain imaging data, many researchers have de-

voted to using fMRI or other imaging data to facilitate medical diagnosis. Craddock

et al. (2009) has shown the significant difference in the brain networks among healthy

people and clinically depressed patients. Our data sets consist of ADHD and nor-

mally developed children, therefore it is of great interest to see if any classifier can be

built to predict their states. In this case, the individual spatial correlation matrix Ω̂k

is treated as features. With the empirical Bayes model, we are hoping to construct

better features than the standard methods in terms of classification accuracy.
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Appendix A

Appendix

Proof of condition (1.16) for AR(1) process

In this appendix, we prove that {Un} satisfies the mixing condition (1.16) given

by the generalization of Billingsley’s theorem for an AR(1) process.

Proof: Recall that we want to prove for {Un , Φ(Xn)}, the α mixing coefficient

satisfies the condition
∑∞

n=1 n
2α

1
4
n ≤ ∞. First note that {Φ(Xn)} has the same α

mixing coefficient as {Xn}. This is because Φ(·) is a one-to-one transformation.

Then we only need to prove the mixing condition (1.16) for {Xn}.

The ρmixing coefficient ρ(n) of the sequence {Xn} is equal to ρn. This follows from

the fact that the maximal correlation between a bivariate normal distribution is their

correlation. In other words, if

X
Y

 ∼ N


0

0

 ,

1 ρ

ρ 1


, then ρ(σ(X), σ(Y )) =

ρ (Lancaster (1957)). In the AR(1) process, the correlation of X0 and Xn is ρn and

hence ρ(σ(X0), σ(Xn)) = ρn. Therefore ρ(n) = ρn.

Provided with the fact α(n) ≤ ρ(n), we know α(n) ≤ ρn for {Φ(Xn)}. Plugging
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this upper bound,
∑∞

n=1 n
2α

1
4
n ≤

∑∞
n=1 n

2ρ
n
4 <∞ (for −1 < ρ < 1).

Proof of the 8−1 bound for the normal model

Proof : Let g(r, c) be the function defined by the right-hand side of (2.10). Then

when r ≤ c ≤ r−1,

g(r, c) =
r(c− r)(1− rc)

1 + c2 − 2rc
≤ 1

8
⇔ (1 + 8r2)c2 − 2r(4r2 + 5)c+ 1 + 8r2 ≥ 0.(A.1)

But for the quadratic form (in c) on the right-hand side, the discriminant ∆ =

4(2r + 1)2(2r − 1)2(r2 − 1) ≤ 0. This establishes our claim that when c is in the safe

zone [r, r−1], r1&2 ≤ 8−1. (As mentioned before, a geometric proof is to use (2.12). It

can also be viewed as a special case of the t model with infinite degrees of freedom,

discussed below.)

Proof of the bound (2.17)

To prove this bound we need the notion of partial maximal correlation (Yu and

Meng (2011)) defined for three random variables X, Y, Z as the following:

RZ(X, Y ) = sup
f,h∈L2

Cov(f(X)− E[f(X)|Z], h(Y )− E[h(Y )|Z])√
V(f(X)− E[f(X)|Z])V(h(Y )− E[h(Y )|Z])

. (A.2)
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We also need the notion of conditional maximal correlation, which is defined as

R(X, Y |Z) = sup
f,h∈L2

Corr(f(X), h(Y )|Z) (A.3)

= sup
f,h∈L2

Cov(f(X), h(Y )|Z)√
V(f(X)|Z)V(h(Y )|Z)

. (A.4)

The difference is that R(X, Y |Z) plays the role of conditional correlation, which is a

function of Z; while RZ(X, Y ) plays the role of partial correlation, which is averaged

over Z. But they obey the following inequality:

RZ(X, Y ) ≤ sup
z
R(X, Y |Z = z). (A.5)

This can be proved by first noticing that for any triple {X, Y, Z},

Cov(f(X)− E[f(X)|Z], h(Y )− E[h(Y )|Z]) = E
[
Cov(f(X), h(Y )|Z)

]
(A.6)

whenever the needed moments exist. Applying (A.6) to both numerator and denom-

inator of (A.2) (for the two parts in the denominator, we take f = h in (A.6)), we

obtain

RZ(X, Y ) = sup
f,h∈L2

E
[
Cov(f(X), h(Y )|Z)

]
√

E
[
V(f(X)|Z)

]
E
[
V(h(Y )|Z)

]
,

(A.7)

≤ sup
z
R(X, Y |Z = z)× sup

f,h∈L2

E
[√

V(f(X)|Z)V(h(Y )|Z)
]

√
E[V(f(X)|Z)]E[V(h(Y )|Z)]

(A.8)

= sup
z
R(X, Y |Z = z), (A.9)
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where the last equality follows from the Cauchy-Schwartz inequality, which becomes

equality when f = h.

Now applying (A.5) to (2.13), we have

RW (θ, Ymis) ≤ sup
w
R(θ, Ymis|W = w) = r. (A.10)

By the Lemma 1 of Yu and Meng (2011),

R(θ, Ymis) ≤ RW (θ, Ymis) + (1−RW (θ, Ymis))R(θ,W )R(Ymis,W ). (A.11)

Noting that under (2.13), R(Ymis,W ) = R(θ,W ), we see from (A.10)-(A.11) that

R(θ, Ymis) ≤ g + (1− g)r, where g = R2(θ,W ). (A.12)

Letting Ỹmis = Ymis − cθ, it is easy to see that the above derivation also applies to

R(Ỹmis, θ) and R(Ỹmis, Ymis), except with r replaced respectively by

r1 ≡ R(Ỹmis, θ|W ) =
|c− r|√

1 + c2 − 2cr
and r2 ≡ R(Ỹmis, Ymis|W ) =

|1− cr|√
1 + c2 − 2cr

,

(A.13)

where the calculation of R(Ỹmis, θ|W ), for example, can be directly read off from the

covariance matrix in (2.9) (the missing multiplicative factor W−2 is not relevant for

the correlation calculation). Consequently, from (2.3), we have

r1&2 ≤ R(θ, Y mis)R(θ, Ỹ mis)R(Ỹ mis, Y mis) (A.14)

≤ [g + (1− g)r][g + (1− g)r1][g + (1− g)r2] ≡ F (r, c, g), (A.15)
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Now we prove that in the “safe” zone, where r ≤ c ≤ r−1,

F (r, c, g) ≤ 1

8
(1 + g)3.

We prove this in two steps.

1. For fixed 0 < r, g < 1, F (r, c, g) is maximized at c = 1. Because

∂F

∂c
=

(1− r2)(1− g)[r + (1− r)g]

(1 + c2 − 2cr)2
[g
√

1 + c2 − 2cr + (1− g)(1 + c)](1− c),

(A.16)

we have

∂F

∂c



> 0, if c < 1

= 0, if c = 1

< 0, if c < 1.

Therefore, we see F (r, c, g) is maximized at c = 1 for any r and g.

2. For c = 1 and fixed g, F (r, 1, g) is maximized at r = 1
2
. Because

∂F (r, 1, g)

∂r
=

(1− g)[(1− g)
√

(1− r)/2 + g]

[
1− g + g√

2(1−r)+1

]
√

2(1− r)
(1− 2r),

(A.17)

we see that

∂F (r, 1, g)

∂r



> 0, if r < 1
2

= 0, if r = 1
2

< 0, if r < 1
2
.
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Hence F (r, 1, g) is maximized when r = 1
2

for any fixed g < 1.

As a result, F (r, c, g) ≤ F (1
2
, 1, g) = 1

8
(1 + g)3.

Proof of the limits of Rv(θ,W )

Now we prove that when W 2 ∼ χ2
v/v, Rv(θ,W ) → 1 as v → 0, under the model

(2.13). Consider two functions g, h : g(θ) = |θ|v/4 and h(W ) = W−v/4. Because

g(θ) and h(W ) both have finite variances, their linear correlation is a lower bound

for Rv(θ,W ). Thus it is sufficient to show that this linear correlation goes to one as

v → 0. Direct calculation shows

Corr(|θ|v/4,W−v/4) = 2
v
4 Γ[

4 + v

8
]

√
Γ[v

4
]Γ[v

2
]− Γ[3v

8
]2

2πΓ[v
2
]2 − 2

v
2 Γ[3v

8
]2Γ[4+v

8
]2
. (A.18)

By the fact that Γ[v]Γ[1− v] =
π

sin(πv)
when 0 < v < 1, we know limv→0 vΓ[v] = 1.

Together with the fact that limv→0 Γ[4+v
8

] = Γ[1
2
] =
√
π, we deduce the right-hand

side of (A.18) converges to

√
π

√√√√√√ 8− 64

9

2π×4− 64

9
π

= 1,

which completes our proof.

The proof for Rv(θ,W )→ 0 as v →∞ turns out to be much more involved, even

though the result seems obvious because as v → ∞, W converges almost surely to

the constant 1, and hence it should be independent of any random variable. The
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trouble is that there is no theory to automatically guarantee that Rv(θ,W ) is a

continuous function of v. In general, it is a rather complex task to establish even such

a continuity with respect to a simple linear combination weight because in general

it is not true (see Bryc and Dembo (2005)). We therefore take an indirect route, by

considering a two-step Gibbs sampler alternating between sampling θ|W and W |θ,

whose L2 convergence rate is R2
v(θ,W ). It was shown in Roberts and Tweedie (2001)

that, for a time reversible Markov chain (such as a two-step Gibbs sampler), its L2

geometric rate is equivalent to its L1 rate. By definition, geometric ergodicity in L1

means that the total variation distance to the target distribution can be bounded by

an exponentially decaying function. The bounds in Jones and Hobert (2004) yield

precisely such functions, from which we can read off bounds on the geometric rate.

Therefore, we can establish the desired result by proving that the L1 rate converges

to zero as v →∞.

To prove this, we first consider an equivalent two-step Gibbs sampler that alter-

nates between θ|Y and Y |θ, where Y = vW 2 ∼ χ2
v. Clearly, to draw from θ|Y, we

only need to draw Z ∼ N(0, 1) independently of Y , and then form θ = Z/
√
Y/v.

To draw Y |θ, we note the identity Y = (Y + Z2)/(θ2/ν + 1), and the fact that

1/(θ2/ν + 1) = Y/(Y + Z2) has a beta distribution and is independent of Y + Z2,

which has a χ2
ν+1 distribution. Hence we simply draw G ∼ χ2

ν+1 independently of θ

and let Y = G/(θ2/ν + 1). Combining the two steps we may represent one iteration

of the Y margin by

Y → Y new ≡ G

1 + Z2/Y
, (A.19)

where Z2 ∼ χ2
1, G ∼ χ2

ν+1, and Y, Z2, G are independent. The Markov chain
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(A.19) is irreducible (with respect to Lebesgue measure), aperiodic and positive Harris

recurrent with χ2
ν as its invariant distribution. Therefore, to bound its L1 rate we can

establish suitable minorization and drift conditions and appeal to Rosenthal (1995)’s

result as stated by Jones and Hobert (2004), Theorem 3.1.

Assume ν > 6 and define

V (y) = ν

(
ν − 6

y
− 1

)2

, y > 0.

Direct calculation using moments of the inverse χ2 distribution yields

E[V (Y new)|Y ] = γV (Y ) + b, where γ =
3

(ν − 1)(ν − 3)
and b =

2ν2

(ν − 1)(ν − 3)
.

Let dR > 4 be a constant, and suppose ν is large enough so that ν > dR > 2b/(1−γ).

Define the set C = {y > 0 : V (y) ≤ dR}, which is simply the interval

y ∈ [y∗, y
∗], where y∗ =

ν − 6

1 +
√
dR/ν

and y∗ =
ν − 6

1−
√
dR/ν

.

Let ε =
√
y∗/y∗. For any fixed y ∈ C the density of Z2/y is bounded below by ε

times the density of Z2/y∗, because

√
y

2πx
e−yx/2 ≥

√
y∗

2πx
e−y

∗x/2, x > 0.

It follows that, if we denote the distribution of G/(1 + Z2/y) by P (y, ·) (i.e., P (y, ·)
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is the transition kernel of (A.19)), then

P (y, ·) ≥ εP (y∗, ·), y ∈ C.

Specifically, one can sample from P (y, ·) by setting Y new = G/(1 + Z2/y∗) with

probability ε and using another transition rule with probability 1− ε.

We have now verified all conditions of Theorem 3.1 of Jones and Hobert (2004) and

can conclude that the L1 rate of (A.19) is bounded above by max{(1− ε)r, U r/α1−r},

where

α =
1 + dR

1 + 2b+ γdR
, U = 1 + 2(γdR + b)

and r ∈ (0, 1) is an arbitrary constant. However, for fixed dR, as ν → ∞ we have

b → 2, γ → 0, ε → 1, and this upper bound tends to 5r/((1 + dR)/5)1−r. By

choosing an arbitrarily large dR we can make this limiting upper bound arbitrarily

small. Hence the L1 rate must tend to zero as ν →∞.

Derivation of the asymptotic variance of ρ̂MoM and

ρ̂MLE

The variance of ρ̂MoM is:
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Var(
(1− r2)

n

n∑
k=1

Yk,1Yk,2)

=
(1− r2)2

n2
{nVar(Y1,1Y1,2) + 2

∑
1≤i<j≤n

Cov(Yi,1Yi,2, Yj,1Yj,2)}

=
(1− r2)2

n2
{n(1 + ρ2)

(1− r2)2
+ 2(1 + ρ2)

∑
1≤i<j≤n

r2(j−i)

(1− r2)2
}

= (n+ 2
∑

1≤i<j≤n

r2(j−i))
1 + ρ2

n2

The asymptotic variance of ρ̂MLE is:

l′(ρ) =
1

1− ρ2
{nρ+ (1− r2)Y1,1Y1,2 +

n∑
k=2

(Yk,1 − rYk−1,1)(Yk,2 − rYk−1,2)}

− ρ

(1− ρ2)2
{(1− r2)(Y 2

1,1 + Y 2
1,2 − 2ρY1,1Y1,2)

+
n∑
k=2

[(Yk,1 − rYk−1,1)2 + (Yk,2 − rYk−1,2)2 − 2ρ(Yk,1 − rYk−1,1)(Yk,2 − rYk−1,2)]}

l′′(ρ) =
2ρ

(1− ρ2)2
{nρ+ (1− r2)Y1,1Y1,2 +

n∑
k=2

(Yk,1 − rYk−1,1)(Yk,2 − rYk−1,2)}

+
n

1− ρ2
− 1 + 3ρ2

(1− ρ2)3
{(1− r2)(Y 2

1,1 + Y 2
1,2 − 2ρY1,1Y1,2)

+
n∑
k=2

[(Yk,1 − rYk−1,1)2 + (Yk,2 − rYk−1,2)2 − 2ρ(Yk,1 − rYk−1,1)(Yk,2 − rYk−1,2)]}

+
2ρ

(1− ρ2)2
{Y1,1Y1,2(1− r2) +

n∑
k=2

(Yk,1 − rYk−1,1)(Yk,2 − rYk−1,2)}

The expected Fisher information is:

E[−l′′(ρ)] = n
1 + ρ2

(1− ρ2)2
,
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and therefore

Var(ρ̂MLE) ≈ (1− ρ2)2

n(1 + ρ2)
.
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