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Abstracts �

Nearly ten percent of the genes in the genome of Drosophila melanogaster are in nested 

structures, in which one gene is completely nested within the intron of another gene (nested and 

including gene, respectively). Even though the coding sequences and UTRs of these 

nested/including gene pairs do not overlap, their intimate structures and the possibility of shared 

regulatory sequences raise questions about the evolutionary forces governing the origination, and 

subsequent functional and evolutionary impacts of these structures. In this study, we show that 

nested genes experience weaker evolutionary constraint, have faster rates of protein evolution 

and are expressed in fewer tissues than other genes, while including genes show the opposite 

patterns. Surprisingly, despite completely overlapping with each other, nested and including 

genes are less likely to display correlated gene expression and biological function than the 

nearby yet non-overlapping genes. Interestingly, significantly fewer nested genes are transcribed 

from the same strand as the including gene. We found that same-strand nested genes are more 

likely to be single-exon genes. In addition, same-strand including genes are less likely to have 

known lethal or sterile phenotypes than opposite-strand including genes only when the 

corresponding nested genes have introns. These results support our hypothesis that selection 

against potential erroneous mRNA splicing when nested and including genes are on the same 

strand plays an important role in the evolution of nested gene structures. 

 

Key words: nested genes, overlapping genes, splicing, gene expression, gene organization



Lee and Chang, Page 3 

 

Main Text 

The distribution of genes in the genome is not random. There are regions with few 

functional genes and regions where genes are densely packed. It has been known that the close 

proximity between genes can have significant functional consequences. Indeed, neighboring 

genes were shown to have correlated expression patterns in eukaryotes, including yeast (Cohen 

et al. 2000), Caenorhabditis elegans (Lercher et al. 2003), Drosophila (Boutanaev et al. 2002), 

Arabidopsis thaliana (Williams & Bowles 2004) and humans (Lercher et al. 2002; Trinklein et al. 

2004), as well as biological functions and/or signaling pathways (Al-Shahrour et al. 2010; Lee & 

Sonnhammer 2003; Elo et al. 2003). In extreme cases, the distance between neighboring genes is 

zero and parts or all of their gene structures (exons, introns or UTRs) overlap with each other 

(overlapping genes). These structures are commonly observed in eukaryotes [for examples, 

Caenorhabditis elegans (Chen & Stein 2006), Drosophila (Misra et al. 2002), mammals 

(Veeramachaneni et al. 2004)].  

An especially interesting class of overlapping genes is in which one gene is completely 

nested within an intron of another gene [nested and including gene, respectively (reviewed in 

Kumar 2009)]. Even though the coding sequences of these nested/including gene pairs do not 

overlap, their intimate structures raise questions about the evolutionary forces governing the 

origination of nested gene structures and their subsequent functional and evolutionary impacts. 

We found that, in Drosophila melanogaster, approximately 16% of the genes (2,295 out of 

14,072 genes) overlap with at least one other gene in exons, introns or UTRs. Genes in nested 

structures account for 9.5% of the D. melanogaster genes (1,338 genes), which is more than C. 

elegans (2.7%, Chen & Stein 2006) and human (2.73% Yu et al. 2005). To examine ����
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evolutionary and functional significance of nested gene structures in D. melanogaster while 

controlling for intrinsic attributes of genes in close proximity, we compared nested/including 

gene pairs to “control gene pairs”, which have matching chromosomal distributions to that of 

nested/including gene pairs and are within 500 bp of each other but do not overlap (see Materials 

and Methods).�

 

Mutational input is a key determinant of the location of nested genes 

Previous analysis showed that most nested gene structures in Drosophila originated 

through insertions or de novo origination of coding sequences in introns (Assis et al. 2008). 

Larger introns are larger targets for insertion or de novo mutations and should be more likely to 

harbor nested genes. Indeed, we found that the total intron lengths of including genes are 

significantly longer than control genes, even after excluding the sequence contributed by nested 

genes [medians: 12183 (including) and 308 (control), Mann-Whitney U test (MWU), p < 10-16]. 

Including genes also have more introns than both nested genes and control genes [medians: 7 

(including), 2 (control) and 1 (nested), MWU, p < 10-16 for both comparisons]. Focusing on 

including genes, introns with nested genes are significantly longer than introns without nested 

genes [medians: 4826 (with nested genes) and 138 (without nested genes), MWU, p < 10-16]. 

Because long introns were found to be more evolutionarily conserved and suggested more likely 

to harbor functional sequences (Haddrill et al. 2005), this observation is unlikely due to larger 

introns being more tolerant of insertions. Moreover, the D. melanogaster – D. simulans 

divergence of the longest introns of including genes is smaller than that of other introns of 

including genes even after excluding nested genes [medians: 0.071 (longest) and 0.082 (others), 

MWU test, p = 0.0012], indicating that the observation of long introns being more evolutionarily 
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conserved does not result from a fraction of nested genes in them. These results support that the 

mutational process is a key determinant of the location of nested genes. 

 

Selection plays an important role in the maintenance and the functional significance of 

nested gene structures  

Several hypotheses that potentially explain the selective pressures influencing the 

fixations of nested structures in the population, and their subsequent functional evolution, make 

specific predictions about the current expressional and functional correlations of nested and 

including genes. In addition to the common chromosomal environment that might have led to 

correlated expression of genes in proximity (reviewed in Hurst et al. 2004; Oliver & Misteli 

2005), genes in nested structures might be selectively favored if their expression and/or 

biological functions are co-regulated, resulting in even stronger positively correlated expression 

and/or biological functions than neighboring genes. On the other hand, the proximity of nested 

and including genes may result in interference during transcription, leading to selection against 

spatially and temporally correlated expression of nested and including genes [“transcriptional 

interference” (Shearwin et al. 2005; Liao and Zhang 2008)]. Still, the evolution of nested gene 

structures could be a nearly neutral process (Lynch & Conery 2003; Lynch 2006) and the 

expression and functional correlations between nested and including genes would be similar to 

those of genes in proximities.  

Nested/including gene pairs are significantly positively correlated (estimated using 

Spearman rank ρ) in gene expression levels across tissues (FlyAtlas, Chintapalli et al. 2007, 

MWU, p = 0.025). This is also observed for control gene pairs (MWU, p < 2 x 10-16]. However, 

the correlations in expression of nested/including gene pairs are significantly weaker![Spearman 
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Rank ρ median 0.019 (nested/including gene pairs) vs 0.174 (control gene pairs), MWU, p = 8.6 

x 10-14, Figure 1] and less likely to be positive [52.74% (nested/including gene pairs) vs 69.44% 

(control gene pairs), Fisher’s Exact Test (FET), p = 4 x 10-9] than control gene pairs. In fact, the 

correlations in expression of nested/including gene pairs are not different from two randomly 

chosen genes that are not adjacent but on the same chromosome [“random control gene pairs”; 

Spearman Rank ρ median 0.019 (nested/including gene pairs) vs 0.032 (random control gene 

pairs), MWU, p = 0.76, Figure 1]. Furthermore, we employed logistic regression and found that 

nested/including gene pairs are less likely than control gene pairs to have one gene (nested gene 

of nested/including gene pairs) to be expressed in the subset of tissues of another gene (including 

gene of nested/including gene pairs) (p = 0.05; odds ratio = 0.78), to have the same highest 

expressed tissues (p = 8 x 10-11; odds ratio = 0.25) and to be associated with the same GO 

categories (p = 0.002, 0.001, 0.02; odds ratios = 0.14, 0.17, 0.16 for biological process, 

molecular function, and cellular component, respectively). Yet, again, when we compared 

nested/including gene pairs with “random control gene pairs”, none of these three differences 

were significant. The correlations in expressional patterns and involvement in biological 

functions of nested/including genes pairs are significantly different from what have been 

observed for nearby non-overlapping genes, suggesting that selection against transcriptional 

interference might have led to their expression in different tissues and involvement in different 

biological functions.  

 

Paucity of same-strand nested/including gene pairs might result from selection against mis-

splicing 
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Nested genes can be transcribed from the same strand as their including genes (same-

strand) or different strand from their including genes (opposite-strand). The majority of nested 

genes (71.27%) were found to be on the opposite strand, which is significantly different from the 

proportion if the orientation is random (50%) and that of the control gene pairs (53.55%; FET, p 

< 10-16 for both comparisons). Although the strand-biases of nested genes have been widely 

reported in different eukaryotes [63% of same-strand nested genes in human (Yu et al. 2005) and 

88% in C. elegans (Chen & Stein 2006)], the biological cause of this bias has not been 

specifically discussed and tested on a genomic scale.  

The paucity of same-strand nested gene structures may have resulted from the intrinsic 

strand biases of the mutational processes leading to nested gene structures. Alternatively, this 

may be due to differential selection on same-strand and opposite-strand nested genes. Several 

cases of genes, transposable elements or endogeneous retroviruses that are nested within introns 

of another genes are known to cause aberrant splicing of the outer including genes (Horowitz & 

Berg 1995; Kaer et al. 2011; Maksakova et al. 2006). The mis-splicing of including genes was 

shown to be dependent on the presence of splice sites within the sequences of transposable 

elements or endogeneous virus (Lagemaat et al. 2006; Kaer et al. 2011). The splice sites of 

nested genes are more likely to interfere with splicing of including genes when the two genes are 

transcribed from the same strand. Consistent with this hypothesis, we found that same-strand 

nested genes are more likely to be single-exon genes (72.53%) than opposite-strand nested genes 

(37.41%; FET, p < 10-16). Focusing on nested genes that have more than one exon, same-strand 

nested genes still have fewer introns than opposite-strand nested genes [median: one intron 

(same-strand nested genes) vs two introns (opposite-strand nested genes), MWU, p = 0.00013]. 

Our observation is not due to opposite-strand nested genes being longer than their same-strand 
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counterparts because the coding sequence length is not statistically different between same-

strand and opposite-strand nested genes (median: 817.5 (same-strand) vs 898 (opposite-strand), 

MWU, p = 0.11).  

73 nested genes are young [less than 35 million years old (Clark et al. 2007; Zhang et al. 

2010] and originated through duplication of another gene (parental gene). The duplication 

process can be via either DNA or RNA intermediates. A characteristic of RNA-based duplication 

is that the new genes lose all introns that were originally present in their parental gene (reviewed 

in Kaessmann et al. 2009) and this process accounts for around 12.10% of duplicated genes in 

Drosophila (Zhang et al. 2010). Among the 73 duplicated nested genes, only 16.67% of 

opposite-strand nested duplicated genes originated through RNA-based duplication while 

42.11% of same-strand nested duplicated genes originated via RNA intermediates (FET, p = 

0.054). This difference is marginally significant likely due to the small sample size. Additionally, 

the decrease in intron number of duplicated nested genes when compared to their respective 

parental genes is significantly larger for same-strand nested duplicated genes than opposite-

strand nested duplicated genes [median: one intron difference (same-strand nested genes) vs zero 

intron difference (opposite-strand nested genes), MWU, p = 0.028]. Note that this difference is 

not due to the variation in intron numbers of the parental genes of same-strand and opposite-

strand nested genes, which is not significantly different (MWU, p = 0.41).  

If mis-splicing is indeed more likely to happen when including genes are on the same 

strand as nested genes than when they are on opposite strands, we expect that same-strand 

including genes are less likely to be essential for the fitness of flies. In extreme cases, we expect 

that loss of function or expression knock-down by RNA interference (RNAi) of same-strand 

including genes is less likely to be associated with lethal phenotypes. �hen considering all 
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same-strand and opposite-strand including genes, there is no significant difference in the 

proportion of genes having known lethal phenotypes [38.85% (same-strand) vs 44.66% 

(opposite-strand); Table 1]. Yet, when we only considered including genes whose nested genes 

have introns (and therefore are more likely to cause mis-splicing), same-strand including genes 

are significantly less likely to have known lethal phenotypes [26.0% (same-strand) vs 42.33% 

(opposite-strand); Table 1]. The result is strengthened if we consider both lethal and sterile 

phenotypes [30.00% (same-strand) vs 47.44% (opposite-strand); Table 1]. It is worth noting that 

the genetic disturbance (null mutant or expression knock-down) we considered here is extreme 

and it is likely that, when considering more subtle influences on fitness, the difference between 

same-strand and opposite-strand including genes will be more significant and should be more 

general. Overall, our observations that same-strand nested genes contain fewer introns and that 

same-strand including genes have a lower probability of being associated with lethal and sterile 

phenotypes suggest that the paucity of same-strand nested/including gene pairs could be 

attributable to purifying selection against mis-splicing when nested genes are transcribed from 

the same strand. 

 

Nested genes evolve faster, are more narrowly expressed and are enriched with testis-

related functions while including genes show the opposite patterns 

To test whether genes in nested structures show different patterns of evolution, we 

examined the site frequency spectrum of coding variants [using Tajima’s D (Tajima 1989)], 

relative rates of protein evolution [dN/dS, (Yang 2007)] and proportion of amino acid 

substitutions fixed by positive selection [α, (Smith & Eyre-Walker 2002)] of including genes, 

nested genes and control genes, and classified genes into those that are present in all 12 
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Drosophila species [i.e, genes older than 35 million years; Clark et al. 2007] or not (Zhang et al. 

2011) (Table 2). Including genes have more negative Tajima’s D, lower dN/dS and are more 

likely to be conserved across the Drosophila species than either nested genes or control genes, 

suggesting they are under stronger purifying selection. On the other hand, nested genes, while 

not differing in Tajima’s D from control genes, have larger dN/dS and α, and tend to be younger 

than both including genes and control genes. We did not detect any significant difference 

between same- and opposite-strand including genes or nested genes in these analyses.  

 We also found that nested and including genes have unusual gene expression patterns. 

Nested genes are expressed in significantly fewer tissues (have narrower breadth of expression) 

than either including genes or control genes (Table 2). They also have significantly higher 

expression specificity (see Materials and Methods) than either including or control genes [MWU, 

p < 10-12 for both comparisons; Figure 2]. While same- and opposite-strand nested genes do not 

differ in their breadth of expression (MWU, p = 0.15), same-strand nested genes have 

significantly higher expression specificity than opposite-strand nested genes [0.95 (same-strand) 

vs 0.93 (opposite-strand), MWU, p = 0.009]. The composition of tissues where genes have their 

highest expression is also significantly different between including genes, nested genes and 

control genes (Chi-square test, p < 10-16 for all comparisons; Figure 3). This composition is not 

different between same- and opposite-strand including genes but significantly different between 

same- and opposite-strand nested genes (Chi-square test, p  = 0.024; Figure 3). Including genes 

are more enriched with genes having their highest expression in brain than either nested genes or 

control genes (Table 2). In contrast, nested genes are significantly enriched with genes having 

highest expression in testis but are deficient for genes having highest expression in ovaries 
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(Table 2). The enrichment of high testis expression is especially strong for same-strand nested 

genes [58.46% (same-strand) vs 38.18% (opposite-strand), FET, p = 1.67x10-6].  

Consistent with previous finding that the majority of nested gene structures originated 

through insertion of DNA sequences into introns of including genes via gene duplications (Assis 

et al. 2008), we observed significantly larger proportion of nested genes that were previously 

identified as young duplicated genes (Zhang et al. 2010) than either including genes or control 

genes (Table 2). Young duplicated genes tend to evolve rapidly (Chen et al. 2010), which could 

have led to the observed exceptional evolutionary properties of nested genes. On the other hand, 

the two interesting properties of nested genes, narrow expression (Larracuente et al. 2008) and 

enrichment of highest expression in testis (reviewed in Swanson & Vacquier 2002), are widely 

known to be correlated with rapid protein evolution. To test whether the unusual evolutionary 

and expression properties of nested genes are due to the larger proportion of duplicate genes, we 

compared nested genes to a set of control genes that have the same proportion of young 

duplicated genes (“duplication control genes”, see Materials and Methods). Nested genes still 

show faster rates of protein evolution (dN/dS, MWU, p < 10-9), have greater α (MWU, p = 

0.0021], are expressed in fewer tissues (MWU, p < 10-16), have higher expression specificities 

(MWU, p < 10-16), and are enriched with genes having highest expression in testis (FET, p < 10-

16). These results indicate that the observed patterns could not be simply explained by the higher 

proportion of duplicate genes. On the contrary, when using another set of control genes that have 

the same expression patterns as nested genes (“expression control genes”, see Materials and 

Methods), nested genes are not significantly different from control genes with respect to dN/dS, α, 

or gene age (MWU, p > 0.05 for all comparisons). Accordingly, the evolutionary properties of 

nested genes might have been the “byproduct” of their expressional attributes. However, 
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selection to decouple the functions of nested genes from those of including genes due to their 

nested structures could have led to the observed narrow expression of nested genes and could be 

the ultimate cause for the evolutionary properties of nested genes.  

 While including genes are slowly evolving, highly conserved, broadly expressed, and 

enriched with genes having their highest expression in brain, nested genes are the opposite: fast 

evolving, narrowly expressed and enriched with genes having their highest expression in testis. 

Thus, positive selection for co-regulation in gene expression and biological function, which 

might have driven the evolution of gene clusters (reviewed in Hurst et al. 2004), is unlikely to 

apply to the fixation of nested gene structures. The fixation of nested gene structures, similarly to 

evolution of other complex genomic organizations (Lynch & Conery 2003; Lynch 2006), could 

have been be a nearly neutral process. However, we have evidence supporting the role of natural 

selection in shaping the relative orientations and functional importance of nested gene structures. 

We showed that nested/including gene pairs are less likely to be transcribed from the same strand, 

and that same-strand nested genes are more likely to be single-exon genes and have fewer exons 

if they are multi-exon genes. Together with the finding that including genes with same-strand 

nested genes that contain introns are less likely to be essential for fitness of flies, our results 

support that selection against mis-splicing events of same-strand nested/including gene pairs 

leads to this bias. In addition, the correlations in expressions and biological functions of 

nested/including gene pairs are lower than those of nearby gene pairs but similar to any two 

random genes of the same chromosome. This is consistent with the hypothesis that selection 

against transcriptional interference plays an important role in shaping the functional significance, 

and indirectly affects evolutionary properties of nested gene structures. In sum, despite the 

proximity of nested and including genes, we found that they are nowhere similar to each other in 
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terms of evolutionary properties, expressional patterns and biological functions, and selection 

against the potential deleterious impacts caused by their close proximity might have been the 

main force governing their evolution.  

 

Materials and Methods 

 We used D. melanogaster genome annotation version 5.47 and only considered coding 

transcripts that are annotated as “strongly supported” by FlyBase. For genes that had more than 

one isoform in nested gene structures, we considered the isoform with the longest coding 

sequence. We used FlyAtlas Expression data [www.flyatlas.org, (Chintapalli et al. 2007)], which 

used four microarrays to measure gene expression for each of the 20 tissues of D. melanogaster 

at various developmental stages. Genes were considered expressed in a tissue if annotated as 

“presence” by FlyAtlas for at least three of the four microarrays and highest expressed tissues 

were determined by using mean expression levels. Expression specificity, an index between zero 

and one, was calculated as described in the previous paper (Yanai et al. 2005). Broadly expressed 

genes with similar expression level in all tissues have low indices while tissue-specific genes 

have high indices. We used the population genomic sequences from Drosophila Population 

Genomic Project [DPGP, www.dpgp.org, (Langley et al. 2012)] and the multi-species alignments 

(including D. melanogaster, D. simulans, D. yakuba and D. erecta) as described in Langley et al. 

2012 to perform evolutionary genetic analyses. dN/dS on the branch leading to D. melanogaster 

was estimated using D. melanogaster, D. simulans and D. yakuba alleles and PAML [HKY85 

nucleotide substitution model (Hasegawa et al. 1985) and free-ratio branch model (model = 1)]. 

α (McDonald & Kreitman 1991; Smith & Eyre-walker 2002) was estimated using D. 

melanogaster within-species polymorphism (using both African and North American alleles of 
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DPGP, total 44 alleles) and D. simulans as an outgroup. Tajima’s D was calculated using North 

American D. melanogaster population of DPGP, which has a much larger sample size (37) than 

the African population (seven).!!Gene sizes include the length of coding sequences, intron and 

both UTRs. We batch downloaded phenotype data associated with nested genes from FlyBase 

and classified a gene to be associated with known lethal/sterile phenotype if at least one mutation 

or one expression knock down experiment (using RNAi) was reported to be lethal/sterile. Genes 

that have both reported lethal and sterile phenotypes are denoted as only lethal phenotype.  

 Control gene pairs are gene pairs less than 500 bp apart and were chosen randomly. The 

chromosomal distributions were matched: the number of control gene pairs on each chromosome 

was matched to the number of nested/including gene pairs on the same chromosome. We also 

used two other sets of control gene pairs: (1) gene pairs that are not adjacent to each other but are 

on the same chromosome (“random control gene pairs”); (2) gene pairs that are less than 500 bp 

apart and have the same chromosomal distributions and the same proportion of same/opposite-

strand as nested/including gene pairs (“same/opposite control gene pairs”). Our observed 

correlations in expressional patterns and functional categories of nested/including gene pairs 

hold when we compared them to “same/opposite control gene pairs”, but differ when comparing 

with “random control gene pairs” (see details in main text). Other comparisons of evolutionary 

properties and expression patterns between nested/including genes and control genes from 

different sets of control gene pairs are consistent. 

 In addition, to further tease apart the main evolutionary force that might have led to some 

of our observations, we generated additional control gene sets that match either the proportion of 

DNA/RNA-duplicated genes of nested genes (“duplication control genes”) or gene expression of 

nested and including genes (“expression control genes”). Duplication control genes were 
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matched to have the same proportions of DNA and RNA duplicate genes and chromosomal 

distributions as nested genes. Expression control genes were matched to have the same 

proportions of expression in testis and brain, the same chromosomal distributions, and similar 

expression breath and specificity (within 0.25 standard deviations) with nested genes and 

including genes individually.  

 We used Fisher’s Exact Test (FET) when examining a relationship between two 

categorical variables and Mann-Whitney U test (MWU) for non-categorical variable between two 

conditions. We employed logistic regression when studying how a binary outcome variable 

changes with input variables. The odds ratio was obtained by raising the natural exponent e to 

the power of the logistic coefficient. Because nested genes have significantly narrower breadth of 

expression (see above) and, accordingly, nested genes are more likely to be expressed in a subset 

of tissues of including genes by chance, we included the number of tissues being expressed as a 

covariate in the analysis. Otherwise, the only covariate is the binary variable that represents 

whether it is nested/including gene pair (=1) or control gene pair (=0), and the response variable 

is the property that is examined. All statistical analyses were performed using R (http://www.R-

project.org, R Development Core Team 2006).  
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!
Table 1. Known Phenotypic Effects of Including Genes!
              

     
Fisher's Exact Test p-

value 

    Lethal Sterile Viable Lethal vs 
Non-lethal1  

Affected2 
vs Viable 

same-strand 68 9 98 
All including genes 

opposite-strand  159 19 178 
0.23 0.2 

same-strand 13 2 35 Including genes with 
intron-containing 

nested genes opposite-strand  91 11 113 
0.037 0.027 

       
1 genes without known lethal phenotype (could have known sterile phenotype)!
2 genes with known lethal or sterile phenotype!
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!
Table 2. Evolutionary properties and expression patterns of nested, including, and control 
genes!

 Median Mann-Whitney U test p-value 

 Including Nested Control Including 
vs Nested 

Including 
vs Control 

Nested vs 
Control 

Tajima’s D -2.76 -1.77 -1.87 < 10-8 < 10-8 > 0.05 

dN/dS 0.042 0.107 0.073 < 10-8 < 10-8 < 10-8 

α 0.251 0.435 0.343 0.005 0.275 0.035 

Expression breadth 
(# of tissues) 18 4 19 < 10-16 0.363 < 10-16 

 

 Proportion Fisher's Exact Test p-value 

 Including Nested Control Including 
vs Nested 

Including 
vs Control 

Control 
vs Nested 

Conserved across 12 
Drosophila species 99.05% 88.13% 91.24% < 10-16 < 10-16 0.027 

Highest expression 
in brain 29.09% 5.21% 9.44% < 10-16 < 10-16 0.003 

Highest expression 
in testis 6.43% 43.91% 13.52% < 10-16 1.45 x 10-6 < 10-16 

Highest expression 
in ovary 13.78% 5.36% 23.94% 1.3x10-7 9.06 x 10-8 < 10-16 

Young duplicate 
genes 0.9% 8.4% 7% < 10-12 5.2 x 10-16 0.02�

!
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Figure legends 

Figure 1. Distributions of Spearman ρ in gene expression for nested/including gene pairs 

and control gene pairs.  

Nested/including gene pairs are less positively correlated in their expression level across 20 

tissues than control gene pairs, but have similar correlations in expression with nonadjacent pairs 

of genes on the same chromosome (“random control gene pairs”). 

 

Figure 2. Expression specificity of genes in nested structures and control genes. 

Boxplots for the expression specificity of including genes, nested genes and control genes. The 

expression specificity is highest for same-strand nested genes followed by opposite-strand nested 

genes, both of which are significantly higher than either including genes or control genes. 

 

Figure 3. The distributions of tissues where genes have their highest expression. 

Nested genes, especially same-strand nested genes, are enriched with genes having their highest 

expression level in testis when compared with both including and control genes. On the contrary, 

including genes are enriched with genes having their highest expression in brain.  
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