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Abstract 
 

Differential gene expression is an essential component of the programs that give 

rise to specific cellular fates and functions.  This differential regulation occurs primarily at 

the transcriptional level and is controlled by complex regulatory networks governed by 

the action of transcription factors at specific DNA regulatory elements.  Transcription 

factors rarely act alone, often functioning through combinatorial interactions with other 

transcription factors, co-factors and chromatin-remodeling proteins.  Defining these 

protein-protein interactions is an essential component to understanding transcription 

factor function and consequently, the cell as an integrated network. 

 The core of this work encompasses a study of Drosophila melanogaster transcription 

factors, defining protein-protein interactions using a co-affinity purification mass 

spectrometry methodology, representing roughly half of the established catalog of 

transcription factors.  These interactions were subsequently used to probe functional 

relationships in vivo, validating a number of physical interactions in the animal, while also 

demonstrating predictive value with regard to function, for the protein-protein interaction 

dataset as a whole.   

 Using these defined protein interactions, this work explores the biology of 

transcription factors from the perspective of the protein complex, integrating a variety of 

data including large-scale expression datasets, transcription factor occupancy studies and 

inferred gene regulatory networks.  These datasets are used to build tissue-specific 

interaction networks, identifying prospective interactions in a variety of settings 
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throughout development.  Next, shared physical targets of interacting transcription 

factors are identified, defining likely targets of combinatorial regulation by these 

interacting factors.  Lastly, regulatory network inference models are combined with 

physical interaction data to define an integrated network, connecting transcription factor 

protein interactions directly to the gene regulatory network of the cell.  This integrated 

network is subsequently used as a tool to connect the functional network of genetic 

modifiers related to mastermind, a transcriptional co-factor in the Notch signaling pathway.  

The fundamental goal of this work is to provide a framework from which to build 

hypotheses and to probe the mechanisms of gene regulation.  Given the broad coverage 

of the data, and the degree of conservation of transcription complexes and regulatory 

programs, this study lays the foundation for a deeper understanding of transcriptional 

regulation in Drosophila and other metazoans.  
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Chapter 1  

Introduction 

“An organism consists essentially of an integrated system of chemical 
reactions controlled in some manner by genes.” 
 
-George Beadle and Edward Tatum 1941 
 

A Requirement for Systems 

As one takes a moment to consider the basic necessities for life, four widely 

examined requirements come to light.  First, the cell as the fundamental unit of life; second, the 

gene as the basis for heredity; third, that life needs chemistry to exist; and last, evolution through natural 

selection (Nurse 2003).  A fifth requirement has been recently considered, the need for 

biological organization or “systems” (Carvunis et al., 2013, Vidal 2009).  A theme present 

since the time of Beadle and Tatum, this fifth component addresses the fact that genes 

and molecules do not act alone, but rather exist in a dynamic environment involving a 

vast array of interactions to control the range of biological outcomes.  Therefore the cell 

exists as a dynamic and complex integrated network. 

 As we have entered an era of systems level analysis, technology has enabled us to 

probe many components of the cellular network, evidenced by large-scale studies of 

protein-protein interaction (PPI), gene regulatory network (GRN) and metabolic network 

studies (Guruharsha et al., 2012, Herrgård et al., 2008, Marbach et al., 2012).  Each of 

these shed light onto different aspects of the global organization of the cell, though much 

work remains to be done and the challenge remains as how to best combine these various 

data types into one coherent picture of cellular biology.  The ultimate goal is to 

understand how various stimuli affect this dynamic network to influence the functional 
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output of the cell and the organism as a whole (i.e. a phenotype).  This particular body of 

work focuses on Transcription Factors (TFs), proteins that directly bind DNA and thus, 

connect the protein interaction network of a cell to the regulatory network of the genome 

through protein-DNA interactions (Figure 1.1). 

 

 

 

Figure 1.1 Systems Biology: An Essential Component of Life 
Systems biology encompasses the organization of molecules and genes within a cell.  
Transcription Factors exist as a central component of this organization as they connect 
the interaction network of proteins directly to the genome. 
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Nucleic Acids and Gene Regulation 

Since the initial discovery of deoxyribonucleic acid (DNA) in the 19th century, one 

of the biggest challenges in Biology and indeed, science as a whole has been to unravel 

the complexities and functions of DNA.  Nucleic acids were first isolated from pus-

derived leukocytes and later from sperm cells by Friederich Miescher, a Swiss physician 

(Dahm 2008).  Originally named “nuclein,” Miescher was able to demonstrate that this 

material was localized to the nucleus of cells, contained large amounts of phosphorus and 

was fundamentally different from any protein known at the time.  Despite these early 

discoveries, the connection between DNA and heredity remained elusive for many years.  

It was not until the now famous Avery-MacLeod-McCarty experiment in 1944 that DNA 

was shown to carry genetic information, “transforming” bacteria from a non-virulent to a 

virulent form (Avery et al., 1944).  This was corroborated a decade later in the Hershey-

Chase experiments in 1952, where viral DNA was shown to enter bacteria during 

infection, while protein did not (Hershey and Chase 1952).  Shortly thereafter, work by 

Francis Crick and James Watson established the double helix model of DNA (Watson and 

Crick 1953).  Building on these discoveries, Francis Crick laid out the central dogma of 

molecular biology in 1958; in short, that DNA makes RNA makes Protein (Crick 1958). 

 While the transfer of information from nucleic acids to proteins was known for 

some time, messenger RNA was not uncovered until 1961, when Sydney Brenner, 

Matthew Meselson and Francois Jacob reported the presence of an “unstable 

intermediate carrying information from genes to ribosomes” (Brenner et al., 1961).  That 

same year, Jacob and Jacques Monod published their interrogation of the lac operon, 

where the complexities of transcriptional regulation were first elucidated (Jacob and 
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Monod 1961).   This represents the first gene regulatory network, introducing us to now 

common themes of transcriptional regulation (Figure 1.2). 

 

 

Figure 1.2 Transcriptional Regulation of the lac Operon   
Simplified view of the transcriptional regulatory mechanisms of the lac operon.  Many of 
the basic themes found in eukaryotic transcription were uncovered from work on the 
prokaryotic lac operon.  These include (A) inhibition of transcription by repressor 
proteins, (B) De-repression and binding of polymerase to promoter elements, and (C) 
Activation of transcription by an activator protein.  
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While many discoveries were being made in prokaryotic systems, work in 

eukaryotes began with the discovery of RNA polymerase activity in the rat liver by Weiss 

and Gladstone (Weiss and Gladstone, 1959).  About a decade later, the three eukaryotic 

RNA polymerases were identified by Robert Roeder, who went on to pioneer much of 

the work in eukaryotic transcription including the discovery of transcriptional co-

activators (Roeder and Rutter 1969).  What became apparent early on was that although 

the polymerases had been identified, other additional factors were necessary to activate 

transcription above a basal level, as DNA was bound by repressive factors or was 

inaccessibly packaged as chromatin.  Robert Tjian discovered the first sequence-specific 

DNA-binding factor, SV40 T antigen, in 1978 (Tjian 1978).  Shortly thereafter, Robert 

Roeder’s group identified the first eukaryotic transcription factor, TFIIIA, opening the 

door to the discovery of hundreds of sequence-specific transcription factors (Engelke et 

al., 1980, Ginsberg et al., 1984). 

 

Transcription Factors 

Transcription factors are defined as proteins that bind specific sequences of DNA 

and either activate or repress transcription.  Their genes comprise between 5-10% of the 

protein coding capacity of the genome (depending on the species) and are identified by 

the presence of a DNA-binding domain, falling into several families based on the type of 

domain (Adryan and Teichmann 2006, Babu et al., 2004).  TFs are modular in nature 

and are typically composed of a DNA binding domain accompanied by an activating 

domain.  They bind at specific enhancer elements, short DNA motifs that are modular in 

nature and function autonomously in most cases (Spitz and Furlong 2012).  The Drosophila 

melanogaster genome encodes fifty different types of DNA binding domains; however, only 
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14 of these are appear in more than 5 proteins (Table 1.1) (Adryan and Teichmann 

2010).  

 
Table 1.1 Common TF Families in Drosophila melanogaster 
The most commonly found Drosophila TF families organized by PFAM domain and the 
total number of proteins in each family (based on Adryan and Teichmann 2010). 
 

DNA$Binding$Domain$ Number$of$TFs$
Zinc$Finger7C2H2$ 249$
Homeobox$ 99$
HLH$ 55$
Zinc$Finger7C4$ 22$
BESS$ 20$
Forkhead$ 19$
bZIP_2$ 11$
HTH7psq$ 9$
T7box$ 9$
Myb$ 8$
Ets$ 8$
bZIP_1$ 7$
GATA$ 6$
zinc$finger7BED$ 5$

 

Upon TF binding, transcription is either activated or suppressed through 

interactions with the general transcription machinery, which directly controls the activity 

of preinitiation complexes at the promoters of target genes.  These interactions may be 

direct or may be facilitated through the mediator complex or a variety of co-regulatory 

factors (Figure 1.3) (Roeder 2005).  Recent work has also suggested that tissue-specific 

variants of the basal transcription machinery exist, allowing for further regulation of 

transcription in specific contexts (D’Alessio et al., 2009).   
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Figure 1.3 Transcription Factor Interactions Regulate TF Function 
TF protein interactions play a central role in their function.  These interactions mediate 
the localization of TFs, their binding affinity and binding sequence specificity, 
connections to chromatin as well as the basal transcriptional machinery. 
 
 

In addition to the interactions with basal machinery components, TFs interact 

with a wide range of other proteins at enhancer sites, including other TFs, cofactors and 

chromatin modifiers (D’Alessio et al., 2009, Grove and Walhout 2008, Naar et al., 2001, 

Spitz and Furlong 2012).  The biological activity of each TF depends on these protein 

interactions, which ultimately govern TF localization, DNA binding affinity and 

activation of chromatin remodeling, as well as DNA binding sequence specificity (Siggers 

et al., 2011, Slattery et al., 2011).  This combinatorial nature is further reflected in the 

fact that TFs tend to bind the genome together, at high occupancy target (HOT) regions, 

defined as areas where 15 or more independent TFs are present (Gerstein et al., 2010).  

This collective binding of factors assembles both activators and repressors, allowing for 

precise control of transcription from a particular locus, as is the case during early 
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segmentation of the Drosophila embryo (Stanojevic et al., 1991).  Given the importance of 

TF protein-protein interactions, defining these interactions is essential to understanding 

their function. 

TFs play a role in a wide range of biological processes, but are most often 

discussed in the context of development as they are frequently expressed in specific 

spatiotemporal patterns; and there are clear cases where they act as “master regulators,” 

where a particular TF can specify a distinctive tissue or an organ.  One example of this is 

in muscle development, where MyoD, a basic helix-loop-helix transcription factor, 

activates transcriptional programs to give rise to muscle cell identity (Choi et al., 1990).  

Other examples include Pax6 in eye development and tinman in Drosophila heart 

development (Bodmer 1993, Halder et al., 1998).  Recent work has also demonstrated 

that the use of just four TFs: Oct 4, Sox2, KLF3 and Myc can reprogram fibroblasts to 

become pluripotent stem cells (Takahashi and Yamanaka 2006).   

Interestingly, the majority of TFs remain expressed in the adult, suggesting they 

are important for processes beyond their developmental roles.  TFs are frequently the 

target of signaling pathways, are involved in the control of the cell cycle and can be 

induced by environmental signals, as is the case for example with the heat shock response 

(Lindquist 1986, Medema et al., 2000).  They also play a significant role in disease, 

including disorders involving hormone response and in cancer (Latchman 1996).  While 

much remains to be discovered with regard to TF biology, what is clear is that TF protein 

interactions are essential to understanding their functions and that TFs play a pivotal role 

in the life of the cell, through many mechanisms. 
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Protein Interactomes 

As the majority of proteins (not just TFs) rely on interactions with other proteins, 

large-scale protein interaction networks have provided a valuable resource for predicting 

and understanding biological function.  These networks are composed of nodes and 

edges, representing proteins and interactions, respectively.  Most of these studies have 

relied on yeast two-hybrid methods (Y2H) to generate large datasets of binary protein-

protein interactions in a variety of different systems (Giot et al., 2003, Ito et al., 2001, Li 

et al., 2004, Rual et al., 2005, Stanyon et al., 2004, Stelzl et al., 2005, Uetz et al., 2000).  

As the Y2H system uses a transcriptional read out, TFs pose a distinct problem, as many 

TFs are capable of activating transcription on their own.  As a result, TFs are often 

underrepresented in Y2H-based interactome studies.  Nonetheless, the system has been 

used previously to define binary TF-TF interactions via a matrix approach in C. elegans 

and in mammalian species (Grove et al., 2009, Ravasi et al., 2010).  These reports have 

contributed a number of novel connections between TFs, but still only represent a small 

portion of the entire TF interactome as a whole, and by experimental design, only 

examine each TF pair in isolation and cannot take into account the large repertoire of 

protein interactions between TFs and other non-TF proteins.   

An alternative to Y2H-based networks is the use of co-affinity purification 

followed by tandem mass spectrometry (Co-AP/MS).  In this method, a protein is pulled-

down and interacting proteins are subsequently identified through MS/MS analysis.  By 

combining many individual pull-down experiments, one is able to construct large-scale 

protein interaction networks.  This method has been used successfully to build proteome 

wide interaction networks (Gavin et al., 2006, Ho et al., 2002, Krogan et al., 2006), 

though only one study to date has examined a metazoan species at a large scale (Figure 
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1.4) (Appendix B, Guruharsha et al., 2011).  The benefits of this approach include the 

examination of proteins at the level of the complex and in the case of TFs, the added 

advantage of avoiding a transcriptional readout for interaction.    

 

Figure 1.4 A Drosophila Protein Interaction Network Map 
A co-AP/MS based protein interaction network encompassing ~2,300 proteins 
connected by ~11,000 connections (Appendix B, Guruharsha et al., 2011). 
 

To date, no TF-specific protein interactome study has been published for 

Drosophila, nor has the co-AP/MS approach been used to specifically examine these 

relationships in any metazoan species at a large scale.  Existing interaction data in 

Drosophila covers only a small proportion of known TFs, thus the majority of TF protein 

interactions have yet to be defined.  This body of work uses a co-AP/MS approach to 
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systematically define these interactions, identifying interactions, in many cases novel ones, 

for nearly half of the TFs in Drosophila. 

 

Gene Regulatory Networks (GRNs) 

While protein interaction networks capture the physical relationships between the 

proteins in a cell, GRNs capture the connections between TFs and the DNA elements 

needed to regulate gene expression.  These networks consist of two types of nodes, TFs 

and their binding sites.  These nodes are connected through two types of edges, physical 

and regulatory, where physical edges are defined by the binding of TFs to DNA and 

regulatory edges capture the activation or suppression of a gene product, based on the 

overexpression or loss of a particular TF (Figure 1.5) (Capaldi et al., 2008).  Not only are 

TFs the central focus of these networks, they represent a crucial interface between the 

protein interactome and the regulatory network of the cell, thus providing a link between 

two distinct spaces within the cellular network.    

 GRNs are often constructed from TF occupancy studies, using methods such as 

Chromatin Immunoprecipitation-sequencing (ChIP-seq), though recent work has 

suggested that direct physical binding of a factor does not always correspond to a 

functional output (Spitz and Furlong 2012).  It would seem, given the combinatorial 

nature of TFs, that methods that examine these factors in isolation require more 

information to understand the complex regulatory mechanisms of differential gene 

expression.  It is easy to imagine a scenario where many of these factors are simply bound 

to a repressive co-factor, thus inhibiting transcription.  As such, integrating the protein 

interactome of TFs into regulatory network models will provide deeper insight into the 

function of these proteins. 
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Figure 1.5 Gene Regulatory Networks 
An example regulatory network from our integrated network analysis.  TFs (red nodes) 
represent the central components of the network.  Directional edges indicate transfer of 
information, in this case, regulatory relationships between TFs and their target proteins 
(blue nodes). 
 
 

Alternative approaches to defining regulatory interactions have relied on 

computational methods, where a set of high-quality regulatory interactions is used to train 

datasets using machine learning approaches (Marbach et al., 2012, Roy et al., 2010).  

These models allow for the incorporation of many different data types, including large-

scale expression studies, TF occupancy and chromatin marks.  Although the majority of 

the regulatory edges inferred from these methods will need to be validated 

experimentally, these approaches provide a powerful tool for developing hypotheses and 

allow for the incorporation of many of the large-scale datasets currently available.  We 

utilize such regulatory networks to connect our TF protein interaction network to the 

regulatory network of the cell, thus defining regulatory relationships from the perspective 

of the protein complex. 
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Notch Signaling 

Notch signalling represents one of only a few fundamentally conserved metazoan-

signalling mechanisms in development (Artavanis-Tsakonas et al., 1999).  The Notch 

pathway was originally discovered through the occurrence of a spontaneous mutant in 

Drosophila, identified by a serrated wing phenotype (Morgan and Bridges 1916, Mohr 

1919).  Early work established the pleiotropic nature of the pathway, revealing embryonic 

“neurogenic” phenotypes, where neural tissue formed at the expense of epidermis, as well 

as roles in the development of the wing margin and bristles (Poulson 1937).  The Notch 

locus was cloned in the early 1980’s, revealing a transmembrane receptor containing 

EGF-like repeats in the extracellular domain (Artavanis-Tsakonas et al., 1983, Kidd et al., 

1983, Wharton et al., 1985). 

The fundamental pathway consists of the Notch receptor and membrane bound 

Delta-Serrate-LAG2 (DSL) ligands (Jagged in mammals).  The interaction between the 

Notch receptor on one cell and its ligand on an adjacent cell triggers two proteolytic 

events, first involving ADAM-family metalloproteases and a second, mediated by gamma-

secretase, which releases the Notch intracellular domain (NICD) from the membrane 

(Bray 2006).  The NICD enters the nucleus and interacts with CSL [CBF1, Su(H) and 

LAG-1], a transcription factor, and mastermind (mam), a transcription co-factor, to activate 

transcription (Figure 1.6).  



! 14!

 

Figure 1.6 The Notch Signaling Pathway 
Simplified view of the Notch signaling pathway.  When Notch is activated, it undergoes to 
cleavage steps to release the Notch Intracellular Domain (NICD) from the cell 
membrane.  The NICD enters the nucleus, where it interacts with Suppressor of Hairless 
(Su(H)), creating a binding interface for the transcriptional co-activator, mastermind.   
 

 
The pathway is inherently simple in design in that the receptor itself includes a 

transcriptional activator, presumably circumventing the need for second messengers and 
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amplification steps.  This straightforward design belies the underlying complexity, 

revealed largely through genetic screens performed in Drosophila and in C. elegans (Xu and 

Artavanis-Tsakonas 1990, Fortini and Artavanis-Tsakonas 1994, Go and Artavanis-

Tsakonas 1998, Kankel et al., 2007, Shalaby et al. 2009).  These various screens have 

uncovered hundreds of genes that functionally interact with Notch pathway components, 

though different screens show little overlap (Reviewed in Guruharsha et al., 2012).  What 

is unclear is why there is such little overlap between studies and how these numerous 

genes are connected to the Notch signalling network at a mechanistic level. 

Recent large-scale protein-protein interaction studies (Guruharsha et al., 2011), 

expression profiling and transcription factor occupancy studies (Celniker et al., 2009, Roy 

et al., 2010) have provided a framework from which to probe the connections between 

these Notch-connected proteins.  While some functionally interacting proteins do interact 

with one another through direct physical edges (either protein-protein or protein-DNA), 

the majority do not.  Capturing both physical and regulatory edges in a network allows us 

to explore the space among these functionally related proteins, and will hopefully provide 

insight into understanding the pleiotropic nature of the pathway.  We use such an 

approach, building an integrated PPI-regulatory network to interrogate genetic modifiers 

related to Notch signaling. 

 

Project Goals 

The vast majority of TF protein interactions in metazoans have not yet been 

defined.  Given that these interactions play a central role in TF function, we have 

constructed a large-scale TF protein interaction network, identifying novel interactions 

for a significant proportion of TFs in Drosophila.  We use these physical interactions to 
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predict functional relationships and validate some of these in vivo, demonstrating 

predictive value for our PPI network. 

 As TFs are frequently discussed in the context of tissue specificity and 

development, we have integrated our interaction network with expression datasets to 

define both tissue-specific and broadly expressed proteins, identifying interactions that are 

likely to exist in specific tissues or across many different tissue types.  We also define 

shared physical targets of interacting pairs of TFs, identifying examples where 

combinatorial regulation is likely to occur. 

 As TFs represent the connection between the protein interactome and GRNs of a 

cell, we integrate our protein interaction network with inferred regulatory network 

models to define transcription regulatory motifs, such as feedback loops between 

interacting proteins, and to build an integrated network, identifying shared targets of 

proteins that exist as a protein complex.  This integrated network allows us to bridge the 

gap between physical interactions and functional genetic datasets, which we demonstrate 

by connecting known genetic modifiers of mastermind, a Notch transcription co-activator.   

These data are intended to be used as hypothesis-generating tools, where a single 

protein, protein complex or a network of genetic interactions can be used as a starting 

point to probe biological mechanisms. 
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Summary 

We established a co-AP/MS pipeline to specifically isolate and analyze TF protein 

complexes.  To that end, we transfected, expressed and purified 499 unique tagged 

proteins, including TFs, putative TFs, transcription machinery components and 

chromatin remodeling proteins.  We recovered interactions for 327 out of an estimated 

711 TFs in Drosophila.  These data were analyzed using the HyperGeometric Spectral 

Counts Score algorithm (HGScore) to construct a high-confidence protein interaction 

network containing 624 connections between 647 unique proteins, of which 229 are TFs.  

We compared this network to The Comprehensive Drosophila Interactions Database 

(DroID), demonstrating the recovery of a number of known protein complexes and 

revealing that the vast majority of interactions defined in our networks are novel.  As 

proteins that interact often share function, we used our interaction data to identify 

proteins that directly interact with known functional modifiers of the Notch pathway.  As 

a number of these relationships had not been tested before, we examined them in vivo, 

recovering functional genetic interactions for a significant fraction of our protein-protein 

interaction (PPI)-based predictions.  This analysis demonstrates the utility of our PPI data 

for making functional predictions and validated a number of our physical interactions in 

the animal. 
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Introduction 

From the earliest embryo to the adult, the spatiotemporal expression of genes is 

essential for normal development and physiology.  At the very basis of this is the 

regulation of transcription via transcription factors, proteins that physically bind DNA to 

activate or suppress gene expression.  As the target of signaling pathways and the first step 

in synthesis of proteins and regulatory RNAs, transcription factors represent a crucial 

point of regulation relating to the vast majority of cellular processes.  The majority of TFs 

function through interactions with other proteins.  Consequently, the characterization of 

these protein-protein interactions is essential for understanding how TFs function to 

regulate gene expression and in turn, the biology of the cell.   

 As we examined available resources for protein-protein interactions in Drosophila, 

it became apparent that in the majority of studies, TFs are either underrepresented or are 

completely absent from published interactomes.  For instance, the recently published 

Drosophila Protein Interaction Map, representing the largest metazoan protein complex 

map to date, contains only 82 of an estimated ~700 Drosophila TFs, despite comprising 

10,969 connections between 2,297 unique proteins (Appendix B, Guruharsha et al., 

2011).  Other studies have either focused specifically on non-TF proteins or utilized two-

hybrid screening strategies, which are traditionally underrepresented for TFs due to the 

dependency on transcription as a read out for protein interaction (Formstecher et al., 

2005, Friedman et al., 2011, Yu et al., 2011). 

Alternative approaches to TF interactome construction have included interaction 

predictions based on co-expression (Adryan and Teichmann 2010, Suzuki et al., 2009) or 

on the combining of multiple TF occupancy studies (Cole et al., 2008, Lee et al., 2006. 

Mathur et al., 2008, Roy et al., 2010).  In each case, direct interactions must still be 
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confirmed through additional experimental means.  Given the combinatorial nature of 

TFs and the absence of general rules for their incorporation into protein complexes, 

systematically defining their interactions would represent a substantial leap forward in our 

understanding of gene regulation in the cell. 

Toward this goal, we interrogated the protein interaction network of Drosophila 

TFs using a co-affinity purification/mass spectrometry (co-AP/MS) platform.  This 

represents the first co-AP/MS based protein interaction network in any metazoan species 

to specifically address TF protein interactions.  Although we recover a number of 

previously characterized TF protein interactions, the vast majority of edges in our 

network are novel, representing new avenues for investigation.  We use this PPI 

framework to predict and validate proteins that function in vivo as a part of the Notch 

signalling network.  Ultimately these data represent a resource for the community as a 

whole, providing a considerable framework for the exploration of the mechanisms of gene 

regulation. 

 

Results 

Literature Search to Establish a List of Drosophila Transcription Factors 

As a first step, we sought to define a list of TFs and TF-related proteins, with 

which to begin our interactome study.  A defining feature of TFs is their ability to bind 

DNA through the presence of a DNA binding domain.  Based on this property, 

approaches to identifying TFs have included simple BLAST searches for DNA binding 

domains, or cross-species comparisons with previously characterized TFs and the DNA 

binding domains they contain (Adryan and Teichmann 2007).  These methods have led 

to the availability of several Drosophila TF databases, most notably FlyTF.org, which 
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combines functional annotations from FlyBase, as well as domain-based TF predictions to 

identify putative TFs (Adryan and Teichmann 2006). 

We built on several, partially overlapping TF prediction datasets: first, a list of 754 

putative TFs from FlyTF.org, a list of 749 factors generated by Bart DePlacnke’s group 

(Adryan and Teichmann 2006, Pfreundt et al., 2010), 433 factors from the Berkeley 

Drosophila Genome Project (http://www.fruitfly.org/EST/TFweblist433.html) and a 

manually curated list of 711 factors from Susan Celniker’s group (Celniker and 

Hammond, personal communication).  The TFs on the list from Dr. Celniker’s group are 

hereafter referred to as “characterized TFs,” as they contain proteins that are definitively 

TFs, excluding computational predictions as well as other TF-related proteins (such as 

cofactors that do not bind to DNA).  We combined all of these resources to generate a 

master list of 996 unique TF genes (Table 2.1).   
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Table 2.1 Transcription Factors in Drosophila melanogaster 
A list of 996 putative TF genes, based manual curation and currently available motif 
based prediction models.  
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Table 2.1 Continued 
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Table 2.1 Continued 

 
 
!

We obtained FLAG-HA tagged inducible expression clones encoding 668 proteins 

from the Universal Proteomics Resource (Yu et al., 2011; 

http://fruitfly.org/EST/proteomics/shtml), a part of the Berkeley Drosophila Genome 

Project.  These clones contain a metallothionein promoter, which allows for conditional 

expression upon the addition of copper to the cell culture media.  In addition to TFs, we 

included clones for proteins that are related to transcription, such as basal transcriptional 

machinery components and chromatin-remodeling proteins.  These 668 clones were used 

in subsequent experiments (Table 2.2).   
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Table 2.2 Transcription Factor Clones Used in Protein Interactome Study 
A list of the 668 FLAG-HA tagged expression clones used in this study. 

 
 
 



! 37!
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TF Specific Co-AP/MS Pipeline 

Building on methods from our previous protein interaction network study 

(Appendix B, Guruharsha et al., 2011), we developed an experimental pipeline to 

specifically isolate TF protein complexes (Figure 2.1).  Each expression clone was 

transiently transfected into Drosophila S2R+ cells, an embryonically derived cell line 

(Yanagawa et al., 1998), and nuclear extracts were generated, allowing us to address TF 

interactions specifically in the context of the nucleus.  This additional step removes the 

abundant membrane and cytoplasmic proteins, increasing the sensitivity of the 

subsequent mass spectrometry analysis.  Protein complexes were isolated using single-step 

affinity purification utilizing anti-HA affinity resin, fragmented with trypsin and analyzed 

by high-pressure liquid chromatography followed by tandem mass spectrometry (LC-

MS/MS).  The raw MS results were searched against the Drosophila genome to identify 

specific peptides and proteins, also providing peptide quantification via spectral counts. 
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Figure 2.1: TF Protein Purification Experimental Pipeline 
Experimental pipeline established for TF protein purification, diagram details the process 
from transfection of expression constructs through protein and peptide identification. 
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Approximately 80% of the transfected clones were expressed successfully, as their 

unique cognate peptides were detected by LC/MS/MS.  A number of these individual 

MS experiments were removed from the subsequent analysis as we applied a manual 

filtering step, where either the number of total peptides in an experiment was well below 

or well above average, or in clear cases of contamination.  Across these filtered 

experiments, we recovered 2,065 proteins from 468 individual purifications with a 2.27% 

FDR (Supplemental Table 2.1).  This represents recovery of approximately 1/3rd of the 

S2R+ proteome, based on transcriptome and whole proteome analyses (Cherbas et al., 

2011; Appendix B, Guruharsha et al., 2011).  We next examined the protein functional 

classes of our MS data, using the PANTHER classification system (Thomas et al., 2003).  

This analysis demonstrated relative enrichment for both nucleic acid binding proteins 

and TFs, while extracellular matrix proteins, receptors and cell adhesion molecules were 

underrepresented in our MS results, consistent with the notion that our experimental 

pipeline successfully addresses TFs and related proteins (Figure 2.2).  From these data, we 

identified 3407 binary TF-TF interactions between characterized TFs (Supplemental 

Table 2.2), as well as interaction data for 72 chromatin-related proteins and 327 

characterized TFs. 
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Figure 2.2: Protein Functional Class Analysis of MS Results 
Analysis was performed using online resources at pantherdb.org (Thomas et al., 2003).  
Proteins used as bait (green) were compared to all proteins identified via MS across all 
experiments (blue) and the entire Drosophila genome (red).  As expected, the proteins 
identified in our experiments or proteins used as bait were enriched for transcription 
factors and nucleic acid binding terms compared to the whole genome.  Non-nuclear  
proteins such as extracellular matrix proteins, cell adhesion molecules and receptor 
proteins are underrepresented when compared to the distribution across the whole 
genome. 
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Construction of a High-confidence Interaction Network 

We subsequently filtered our data using the HGScore method, which integrates 

quantitative data (spectral counts) into the analysis and was shown to recover more 

previously described interactions compared to other existing published methods and thus 

a higher quality interaction map (Appendix B, Guruharsha et al., 2011).  Though 

HGScore was originally designed to include prey-prey interactions (interactions defined 

only by co-occurrence), we examined only bait-prey relationships to reduce network noise 

and to focus the network specifically on TF-protein interactions.  In total, 174,561 

interactions between the 2,065 identified proteins were analyzed and scored 

(Supplemental Table 2.3).  These scored interactions were filtered to a false discovery rate 

(FDR) of 2%, based on the use of random datasets, leading to a high-confidence network 

containing 624 connections between 647 proteins, of which, 229 (35%) are characterized 

TFs (Figure 2.3, Supplemental Figure 2.1, and Supplemental Table 2.4).  This interaction 

network shows a group of 406 proteins (63%) as the giant interconnected component of 

the network with a second group of 241 proteins in smaller, independent protein 

complexes.  Interestingly, 39% (253) of the proteins in the high-confidence network have 

no previous functional annotation or are annotated only in silico (by inferred electronic 

annotation) thus our map provides direct physical evidence for the functions of these 

previously uncharacterized proteins (Marygold et al., 2013).  It is important to note that 

we purposefully applied an extremely stringent statistical filter so as to remove false 

positives from our final high-confidence interaction network map.  A number of 

previously characterized protein complexes fell below this cut-off, suggesting that there 

are significant data below this severe statistical limit.  Though the level of noise may 
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increase, it may be useful to employ a more inclusive statistical cut-off when searching the 

network for interactions of interest. 

 

 
Figure 2.3 A High-Confidence TF protein-protein interaction network 
High-confidence interaction network representing high-confidence interactions involving 
229 characterized transcription factors (Red nodes).  The network contains 647 proteins  
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(Figure 2.3 Continued) 
connected by 624 edges.  Protein interactions are shown as grey lines, with the thickness 
proportional to the HGScore for the interacting pair of proteins.  A number of previously 
characterized protein complexes have been labeled.  
  

TF Network Quality Assessment 

As with previous large-scale protein interaction studies, defining a reference set of 

positive interactions has been difficult due to the small degree of overlap between existing 

data sets and the lack of a high-quality manually curated set of interactions, such as in 

yeast (Yu et al., 2008).  We utilized the Drosophila Interactions Database (DroID, Murali et 

al., 2011), which contains protein interaction data from nine discrete sources, including 

recently published large-scale data sets (Friedman et al., 2011, Guruharsha et al., 2011).  

A direct comparison shows that 21% of edges in our high-confidence TF interaction 

network are present in the DroID database (Supplemental Table 2.5).  Our experiments 

provide an additional experimental validation for these previously described interactions 

and validate our approach.  Amongst these previously identified protein interactions, we 

recovered a number of well-characterized protein complexes such as the extradenticle-

homothorax (exd-hth) transcriptional cofactor, Polycomb Repressive Complex 2 (PRC2), 

and the Dp-E2F TF (dREAM) complex, among others (Figure 2.3, Figure 2.4).   

It is important to note that demonstrating the high quality of our data presents a 

unique challenge due to the lack of a “gold standard” reference set of PPI interactions in 

Drosophila to compare our data with, and the fact that 39% of the proteins in our network 

are currently unstudied.  As such, we have used rigorous, established statistical methods 

to define interactions, leaning heavily on strict statistical cutoffs to limit the number of 

false-positive interactions in our high-confidence interaction network.  The recovery of 

well-characterized protein complexes and, as I described further below, our ability to 
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functionally validate in vivo relationships predicted by our proteomic data, indicate the 

network we generate is reliable.     

 

Recovery of Characterized TF Protein Complexes 

As evidence of the quality of our PPI network analysis, we successfully recovered a 

number of previously identified, well-characterized protein complexes.  We focus on 

several examples, while also highlighting the biological implications for some of our 

findings.  The first complex, exd-hth, is a dimeric cofactor that can interact with all Hox 

family members (Fig 2.4A).  Recent work has suggested that these interactions mediate 

the sequence binding specificity of the Hox genes, directly impacting TF binding as well 

as subsequent functions (Joshi et al., 2007, Slattery et al., 2011).  In our interaction 

network, we recover the dimer as an interacting pair (Figure 2.4A).  Interestingly, our 

network identifies interactions with five previously unstudied proteins (CG33260, 

CG34163, CG32425, CG5446, and PQBP1).  One of these, CG33260, connects the exd-

hth cofactor to the Hox gene, Ultrabithorax (Ubx) and the Ubx interactor, aristaless (al).  

Given previously characterized interactions between exd-hth and Ubx, this strongly 

suggests a role for CG33260 in Hox function. 

We also recovered the polycomblike-polycomb repressive complex 2 (Pcl-PRC2, 

Fig 2.4B).  The PRC2 complex trimethylates Lysine 27 of Histone 3 at Polycomb target 

genes, a modification that typically characterizes suppressed chromatin.  The Pcl 

containing variant of this complex has been shown to result in high levels of H3K27 

trimethylation at target genes, resulting in inhibition of target gene expression (Nekrasov 

et al., 2007).     
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Figure 2.4 TF protein complexes 
A subset of protein complexes from our high-confidence interaction network.  Red nodes 
represent characterized transcription factors, blue nodes represent non-TF proteins.  
Protein interactions are connected using gray lines, with the thickness proportional to the 
HGScore for the pair of interacting proteins.  Nodes outlined in green represent proteins 
used as a bait protein.  (A) extradenticle-homothorax transcription cofactor.  (B) 
Polycomblike-Polycomb Repressive Complex 2.  (C) Dp-E2F dimeric transcription factor 
(dREAM complex).   
 

 Likewise, we recovered the dREAM complex, composed of the TF-TF dimer Dp-

E2F and the TF Rbf (Figure 2.4C).  dREAM is conserved in most eukaryotes and plays 

multiple roles including the regulation of development, cell division and apoptosis (van 

den Heuvel and Dyson 2008).  Dp and E2f comprise a dimeric transcription factor that is 

important in the G1/S phase transition during the cell cycle, where E2f levels are rate-

limiting for cell proliferation (Johnson et al., 1993).  It has been shown previously that 

both E2F and E2F2 interact with DP and RBF in Drosophila, confirming the protein-

protein interactions in our network (Fig 2.4, Frolov et al., 2001). 
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Functional Validation of TF Interaction Network 

An essential aspect of PPI networks is their utility in predicting biological function 

and in generating hypotheses.  We tested predictions from our interactions in vivo, 

specifically focusing our efforts on the Notch pathway, a conserved fundamental 

signalling mechanism broadly controlling cell fates in development (Artavanis-Tsakonas 

et al., 1999).  In a previous report, genome-wide genetic modifier studies of a dominant-

negative allele of mastermind (mam), a Notch transcriptional co-activator (Kankel et al., 

2007), identified 408 genes that genetically interact with mam, recovering genetic 

modifiers in ~4% of genes screened.  This particular screen utilized the Exelixis 

collection, a transposon-induced mutant collection with insertions in just over half of all 

genes in the Drosophila genome (Parks et a., 2004; Thibault et al., 2004). 

With a simple guilt-by-association hypothesis that proteins that interact often 

share function, we mapped these previously identified genetic modifiers onto our 

interaction data and identified 88 proteins that physically interact with mam modifiers that 

had not been tested in the aforementioned genetic screen (Table 2.3).  To interrogate 

these 88 genes functionally, we obtained transgenic RNAi alleles under UAS control for 

these genes and crossed them to a dominant-negative C-terminal mastermind truncation 

specifically expressed in the developing wing 1/2C96-GAL4, UAS-MamN (C96-MamN) 

(Helms et al., 1999, , Kankel et al., 2007, Kitagawa et al., 2001, Wu et al., 2000).   

 

Table 2.3 Genetic Screen of Proteins that Physically Interact with Known 
mastermind Modifiers. 
 
A table containing the 88 proteins that physically interact with previously identified 
mastermind modifiers that were tested in our genetic screen.  The specific RNAi TRiP 
alleles used in the screen are listed, along with the phenotype seen when each was crossed 
to the dominant negative mastermind allele (C96-mamN x TRiP Stock) and for the control  
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(Table 2.3 Continued) 
cross between the RNAi allele and the C96-Gal4 (wing) driver.  For crosses that yielded 
an interaction, the number of flies with a modifier phenotype and percentage are listed. 
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The C96-MamN fly exhibits a wing nicking phenotype, similar to phenotypes 

seen with the loss of function of other Notch pathway components (Figure 2.5B).  We 

screened the RNAi x C96-MamN crosses for modifiers of this wing phenotype, 

identifying both enhancers and suppressors (Figure 2.5).  From the 88 crosses tested, we 

recovered genetic modifiers in 35% of our crosses (Table 2.3), representing a seven-fold 

increase when compared to the 4% recovered in the previously reported genome-wide 

unbiased screen, demonstrating clear predictive power for our protein-protein interaction 

data. 
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Figure 2.5 mastermind Genetic Screen Phenotypes 
Examples of phenotypes identified in the genetic screen for modifiers of the mastermind 
phenotype.  (A) Wild type Drosophila wing.  (B) Dominant-negative mastermind (C96-
mamN) phenotype. (C, E, G) Enhancer phenotypes seen when RNAi alleles of gfzf, 
Cdk12 and ct are crossed to C96-mamN.  (D, F, H) Suppressor phenotypes seen when 
NELF-B, Poxn, and C15 are crossed to the C96-mamN. 
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One of the biggest challenges with interpreting genetic screens is in understanding 

how various genes that modify the same pathway are related to one another at a 

mechanistic level.  As an example of the utility of our protein interaction data for this 

purpose, we found that five previously characterized modifiers of the mam phenotype: 

simj, Lim1, CG11334, fd68A and CG34417 — though previously unlinked to one 

another in the literature (Figure 2.6A), physically interact with cut (ct), a transcriptional 

target of the Notch pathway (Figure 2.6B).  ct itself is a TF that was also demonstrated to 

genetically interact with mam in our genetic screen (Figure 2.5G).  As three of the 

interacting proteins are TFs (the other two are unstudied), this strongly suggests their 

functional connection to the Notch signaling pathway may be mediated through 

regulation of transcription via TF-TF interactions with ct. 

 

 
 

Figure 2.6 mastermind Modifier Protein Interactions 
(A) Protein interactions for five previously identified mastermind genetic interactors from 
the GeneMANIA database (Warde-Farley et al., 2010).  Though all five genetically 
interact with mastermind, they share no physical connections in the literature.  (B) Protein 
interactions identified in our TF interaction data.  All five of the previously identified mam 
modifiers interact with cut, a known target of Notch signaling.  Red nodes are TF, while 
blue nodes are non-TF proteins. 
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Discussion 
 

We present here a protein-protein interaction study of TFs in Drosophila 

melanogaster, defining interactions for nearly half of the characterized TFs in the species.  

As defining these interactions is essential to understanding TF function, we expect this 

body of work to be a valuable resource for probing the mechanisms of differential gene 

expression, relevant to the vast majority of biological processes.  A considerable fraction 

of our interaction results are novel, which demonstrate biological hypotheses to be tested.  

The predictive value of our network is indicated by the recovery of known interactions, as 

well as through functional validation in vivo of interactions indicated by the network. 

We acknowledge several limitations in our methods, in particular, the use of 

epitope-tagged proteins expressed at non-physiological levels.  While we cannot ignore 

that epitope tags in some cases will perturb protein folding and function, the recovery of 

previously characterized protein complexes, including those identified via alternative 

methods such as two-hybrid screening, provide additional evidence of the validity of our 

experimental pipeline.  Furthermore, similar methods have been used successfully to 

identify confirmed interactions in a number of settings, including the human autophagy 

system and in a proteome-wide analysis in Drosophila (Behrends et al., 2010; Appendix B, 

Guruharsha et al., 2011; Sowa et al., 2009).  Ultimately, the protein-protein interactions 

defined in this body of work represent a starting point for further inquiry and will need to 

be validated through other additional experimental means. 

TF protein interactions represent an essential component to understanding the 

combinatorial regulation of gene expression by TFs.  Nevertheless, physical interactions 

characterize just one parameter of TF biology.  In the following chapter, I focus on 

integrating these data with other data types to provide insight into tissue-specific 
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regulation by TFs, shared physical targets of interacting factors and ultimately gene 

regulatory network models that allow us to further probe the regulatory mechanisms 

within functional networks. 

 

Materials and Methods 

 
Protein Expression and Purification 

C-terminal FLAG-HA tagged transcription factor clones in the pMK33-CFH-BD 

vector were acquired from the Berkeley Drosophila Genome Project (Yu et al., 2011).  

Each clone was transiently transfected into two 54 ml cultures of Drosophila S2R+ cells 

using Effectene (Qiagen), and subsequently cultured in Schneider’s media with 10% Fetal 

Bovine Serum.  24 hours post-transfection, gene expression was induced with 0.35 mM 

CuSO4 and cells were harvested 24 hours after induction (Veraksa et al., 2005).  Nuclear 

extracts were prepared as previously described with the exception that cells were lysed 

using an 18-gauge syringe (Dignam et al. 1983).  Nuclear extracts were diluted 1:1 with 

dialysis buffer (20 mM HEPES pH 7.6, 20% glycerol, 100 mM KCl, 2mM MgCl2, 0.1 

mM EDTA, 1mM DTT, 0.25mM PMSF, and Roche mini complete protease inhibitor) 

to reduce the overall salt concentration.  Each extract was incubated with 40 uL of 

dimethyl pimelimidate cross-linked HA immunoaffinity resin (Sigma) for three hours at 

4°.  Following incubation, the resin was washed 2x with dialysis buffer followed by 2x 

PBS washes.  Bound proteins were eluted using IgG Elution Buffer (Thermo Scientific), 

400 uL total divided into two separate five minute incubations performed at room 

temperature with gentle shaking.  The elution was then neutralized with 52 uL 1M Tris 

pH 8.0.  
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Mass Spectrometry 

Co-purified proteins were subsequently precipitated with Tricholoroacetic acid 

(TCA), followed by a 10% TCA wash and two acetone washes.  The samples were then 

dried, digested overnight with trypsin, cleaned with c18 Stage Tips (Thermo Scientific), 

and analyzed by LC-MS/MS on a linear trap quadrupole (Thermo Scientific) 

instrument.  MS/MS spectra were searched with SEQUEST (Eng et al., 2008) against 

FlyBase release 5.41 and filtered to 2.27% protein FDR for the entire data set with the 

reverse database approach (Elias and Gygi, 2007).  Column carry-over between 

experiments was corrected with a statistical approach, incorporating peptide abundance 

and probability of consecutive observations.  

 

Network Construction 

Following processing and filtering, the high-confidence TF interaction map was 

generated using the HGSCore method to distinguish specific interactions as described 

previously, but filtering out indirect prey-prey interactions to focus the network on the 

TF-interacting subspace.  To draw the cut-off for interaction specificity and determine 

false discovery rate, we ran HGScore on 40 simulated datasets, randomly sampled from 

the real dataset until convergence on a cut-off score resulting in a 2% FDR.       

 

Genetic Screen 

Flies were cultured on standard media and crosses were carried out at 23°.  The 
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C96-Gal4, UASMamN (C96-MamN) stocks were previously described (Helms et al., 1999).  

UAS-RNAi fly stocks were obtained from the TRiP collection at Harvard Medical School 

(NIH/NIGMRS R01-GM084947).  Adult fly wings were dehydrated in isopropanol and 

mounted in a 3:1 dilution of CMCP-10 (Masters Company Inc, Wood Dale, IL) and 

lactic acid.   
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Chapter 3 

Integration of the Drosophila TF Interaction Network  
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Summary 

As TF protein interactions define just one component of TF biology, we 

integrated our PPI data with a number of existing datasets to better define the 

contribution of TF protein complexes to the biology of the cell.  These analyses build on 

the recent availability of genome wide datasets from the modENCODE project and 

others, and include gene expression studies, TF occupancy studies, as well as inferred 

regulatory network models.  These datasets, respectively, allow us to address the 

importance of TFs in tissue specificity, to identify shared physical targets of interacting 

TFs, and to connect TF protein complexes to the gene regulatory networks in a cell.  We 

classify proteins in our interaction network into bins based on tissue specificity and 

construct 24 tissue-specific interaction networks, outlining likely interactions within 

specific contexts.  We then examined physical TF targets from the perspective of the 

protein complex, identifying likely targets of combinatorial regulation and lastly, 

constructed integrated networks, combining regulatory edges with our PPI data to 

examine regulatory connections from the viewpoint of protein complexes.  We ultimately 

use each of these analyses to form testable hypotheses, which highlight the ultimate goal 

of this work, to provide a resource for the community as a whole to examine the biology 

of TFs and their role in regulating gene expression.  
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Introduction 

In the first part of this work, we defined a protein interaction network of Drosophila 

transcription factors.  While TF protein interactions constitute a central component to 

defining TF function, a number of other TF parameters must be incorporated in order to 

gain a more complete view of TF biology.  These include examining the spatio-temporal 

expression of proteins in our interaction network, classifying TF targets as well as defining 

the regulatory relationships between TF protein complexes and their target genes. 

TFs are often discussed in the context of conferring tissue specificity as they are 

frequently expressed within narrow domains and play a central role in developmental 

processes such as cell fate specification.  In general terms, TFs fall into two broad groups, 

“general” factors that are broadly expressed and “specific” factors that exhibit restricted 

domains of expression (Ravasi et al., 2010).  The underlying reasoning is that general 

factors enable transcription across many tissues, while specific factors are important in 

regulating tissue-specific gene programs, as is the case with “master regulator” genes in 

tissue specification.  Proteins in these two categories frequently interact with one another 

in overlapping domains, altering TF function and resulting in even more specific activity.  

To address this fundamental component of TF biology, we utilized large-scale tissue 

expression datasets from the modENCODE project to score proteins in our PPI network, 

defining bins of TF expression specificity.  We then examined the group of proteins 

exhibiting high tissue specificity, assigning these proteins to individual tissues, and 

ultimately used this analysis as the basis for constructing 24 tissue-specific interaction 

networks.  These networks define likely interactions between proteins within specific 

contexts, providing a framework for understanding tissue-specific gene regulation and 

also provide insight into the interactions between general and specific factors. 
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A second crucial component to understanding TF function is defining the targets 

of TFs.  TF target identification is frequently divided into two categories, physical and 

functional (Walhout 2006).  Physical targets represent DNA sequences that are bound 

directly by TFs, often identified through chromatin-immunoprecipitation strategies or 

through yeast one-hybrid methods (Bulyk and Walhout 2012).  Functional targets are 

identified through expression studies, where gene expression changes are characterized 

following perturbation of a particular TF (Capaldi et al., 2008).  The disparity between 

these two categories is reflected in the fact that only 10-25% of defined physical targets, in 

higher eukaryotes, result in functional changes upon disruption (Spitz and Furlong 2012).  

An important component to these findings is that TF occupancy studies often examine 

each factor individually.  As the bulk of TFs function through interactions with other 

proteins, it is expected that combinatorial interactions are playing an important role in 

regulating functional output.  For instance, an interaction between a TF and a 

transcriptional suppressor or the lack of a co-factor could explain the discrepancy 

between a defined physical target and subsequent function.  Thus examining TF targets 

from the perspective of the TF protein complex would provide significant insight into the 

activity of physical TF targets.  Taking this into consideration, we combined multiple TF 

occupancy datasets from modENCODE and the Berkeley Drosophila Transcription 

Network Project (MacArthur et al., 2009, Roy et al., 2010) to define common physical 

targets between interacting TFs, defining potential targets for combinatorial regulation 

and to gain insight into potential mechanisms of regulation at these target genes. 

Lastly, TF regulatory connections are often captured from the perspective of gene 

regulatory networks, where edges are represented not by physical interactions, but by 

regulatory relationships between proteins.  The most extensive of these GRNs have been 
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constructed using learned regulatory network inference methods, incorporating many 

data types to construct large regulatory networks (Marbach et al., 2012).  While these 

networks are broad in nature, they do not incorporate PPI data, thus limiting the scope to 

regulatory relationships from the perspective of the individual TF.  Thus, we integrated 

our protein interaction network with such regulatory networks to examine TF regulatory 

relationships from the perspective of the protein complex.  This integrated network 

analysis allows us to probe functional networks such as genetic screens, which we 

demonstrate by connecting genetic modifiers identified in the aforementioned, genome-

wide screen for mastermind (Kankel et al., 2007).  As regulatory programs are often 

conserved across species (Erwin and Davidson 2009), these analyses provide a universal 

framework from which to interrogate the biology of TFs and their targets.  

 

Results 

Tissue-Specific Interaction Networks 

As a general rule, we expect that proteins that interact are expressed in the same 

place at the same time.  To examine co-expression and tissue specificity of our interaction 

network, we utilized RNA-seq data from the modENCODE project spanning 29 tissues 

and developmental time points (Smibert et al., 2012).  While TFs are often discussed in 

the context of conferring tissue specificity, a significant proportion of Drosophila TFs are 

expressed ubiquitously at some point during embryonic development and most exhibit a 

broad pattern of expression in the adult animal (Adryan and Teichmann 2010).  TFs that 

show tissue specificity embryonically are usually not limited to a single tissue, but rather a 

narrow range of expression in several tissues.  These findings suggest that it is not only the 
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presence of a specific TF that defines a particular tissue, but also the interactions of these 

TFs that establish tissue identity.  

All proteins in our network were scored using tissue specificity score (TSPS, 

Ravasi et al., 2010).  This particular method utilizes relative entropy to measure how the 

observed expression of a gene diverges from a distribution where a gene is uniformly 

expressed across all tissues.  The distribution of TSPS scored proteins revealed three 

categories of expression, one representing broad or “general” expression across tissues, a 

group with high or “specific” tissue specificity, and a middle group exhibiting expression 

across several tissues (Figure 3.1, Supplemental Table 3.1).   

 

Figure 3.1 Distribution of TSPS Scored Proteins in TF Interaction Network 
The distribution of TSPS for all proteins in our TF PPI network.  Green bars represent 
the “specific” proteins, yellow represents moderate specificity and blue represents 
“general” or broad specificity.  The distribution was fit to a trimodal Gaussian 
distribution to define the three separate groups. 
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Low TSPS proteins, representing broad expression, were assembled into a “core” 

network of 128 interactions which, based on their broad expression, are likely to be 

present across most tissues (Supplemental Figure 3.1).  We then focused on the group of 

high scoring TSPS proteins, utilizing an outlier method (Kadota et al., 2003) to assign 

each protein to specific tissues (Supplemental Table 3.2).  We combined these high-

specificity proteins with our “core” network to build 24 different tissue-specific interaction 

networks (Figure 3.2, Supplemental Table 3.3, Supplemental Figure 3.1) 

 

 

 

Figure 3.2: Third Instar Larval CNS-Specific TF Interaction Network 
An example network from our tissue specific network analysis.  “Specific” proteins are 
represented by circular nodes.  “General” (low-specificity) proteins are represented by 
square nodes.  Red nodes represent TFs.  Protein-protein interactions are represented by 
gray edges, with the thickness relative to the HGScore. 
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Two very different protein complexes are illustrative of the value of this tissue-

specificity analysis, one specific to the testis and another to the larval central nervous 

system (Figure 3.3).  The first complex is centered on an unnamed protein CG8117, 

which according to our results is a part of the RNA polymerase II complex, connected to 

established RNA Polymerase II complex members through 8 physical edges (Figure 

3.3A).  CG8117 is electronically inferred to have transcription regulatory activity and to 

bind both zinc ions and nucleic acids.  It is expressed at high levels in the adult testis, but 

is largely absent from other tissues.  Outside of large-scale screens, CG8117 has not been 

independently studied in Drosophila.  However, the human ortholog of this protein, 

TCEA2, has been characterized to be a testis-specific transcription factor (Weaver and 

Kane 1997), suggesting that this gene could play a similar tissue-specific role in Drosophila. 

The second protein complex links two TFs, nervous fingers 1 (nerfin-1) and 

scalloped (sd) to the transcriptional co-activator yorkie (yki) (Figure 3.3B).  sd is expressed 

in the developing nervous system, where it is essential for development of the sensory 

organs (Campbell et al., 1992).  nerfin-1 has been shown to be important for axon 

guidance during early CNS development (Kuzin et al., 2005).  yki is the Drosophila 

ortholog of the human protein YAP and is a transcriptional co-activator that functions in 

the hippo-yap pathway.  yki and sd have been shown previously to interact (Goulev et al., 

2008).  It has also been suggested that Nerfin-1 is a binding partner of sd (Garg et al., 

2007).  Both Nerfin-1 and sd are expressed in a highly specific manner in the larval CNS 

and given their established importance in CNS development; their interaction suggests 

that they work together to regulate larval CNS development, possibly in tandem with the 

co-activator yki. 
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Figure 3.3 Tissue Specific Protein Complexes 
Testis-specific and larval CNS-specific protein complexes.  Circular nodes represent tissue 
specific proteins, while square nodes represent core network or “general” proteins.  Gray 
edges represent PPI, with the width proportional to the HGScore.  (A) A testis specific 
RNA Polymerase II protein complex.  (B) A larval CNS-specific transcriptional complex 
containing the TFs scalloped (sd) and nerfin-1 (nervous fingers 1), along with the 
transcriptional co-activator yorkie (yki). 
 
 
Combinatorial Targets of Interacting Transcription Factors 

Given the importance of combinatorial TF interactions in gene regulation, we 

next compared our protein-protein interaction data with in vivo DNA binding data for all 

TF-TF pairs for which genome-wide ChIP data was available, defining shared targets for 

10 TF pairs (Supplemental Table 3.4).  For this analysis, we utilized TF occupancy 

datasets from the Berkeley Drosophila Transcription Network Project (MacArthur et al., 

2009) and from modENCODE (Roy et al., 2010).  We identified multiple pairs where the 

protein-protein interactions and DNA co-binding are consistent with the existing 

literature. For example, we observed an interaction between ecdysone receptor (EcR) and 

ultraspiracle (usp), which are the two proteins that comprise the complete ecdysone 

receptor; upon ligand binding, EcR-Usp are activated and coordinately regulate genes 
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including Eip75B and DHR3 (Yao et al., 1993; Figure 3.4A).  We also recovered an 

interaction between polycomblike (pcl) and enhancer of zeste [E(z)], two proteins that are 

members of the polycomblike-polycomb repressive complex 2 (Pcl-PRC2; Figure 3.4B), 

as well an interaction between the segment polarity gene engrailed (en) and the co-

repressor groucho (gro) (Figure 3.4C) (Hittinger and Carroll 2008). 

Beyond these characterized interactions, we found several examples of less 

characterized protein-protein interactions that are supported by TF-TF co-localization on 

DNA. For instance, we observed an interaction between tramtrack (ttk) and Trithorax-

like (Trl) (Figure 3.4D).  Both are BTB/POZ (Br-C, ttk and bab/Pox virus and Zinc 

finger) domain containing proteins.  This interaction has been described using the yeast 

two-hybrid method and in Drosophila S2 cells, providing additional evidence for this TF-

TF interaction (Pagans et al., 2002).  Ttk has been shown to function both as a 

transcriptional repressor and an activator, playing a variety of developmental roles 

including development of the nervous system, photoreceptor differentiation and in 

tracheal development (Arujo et al., 2007, Badenhorst 2001, Lai and Li 1999).  Trl (also 

known as GAGA factor, or GAF) has been suggested to play a role in transcriptional 

activation through chromatin remodeling and in some cases, is necessary for full 

activation of transcription complexes (Bayarmagnai et al., 2012, Granok 1995).  This 

would suggest that Ttk activity is modulated through interactions with Trl, likely playing 

a role in activation of expression of shared targets. 
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Figure 3.4 Common Physical Targets of Interacting TFs 
Shared physical targets of interacting TF pairs. (A) ecdysone receptor (EcR) and 
ultraspiracle (usp) comprise the two parts of the complete Ecdysone receptor. They co-
occupy 93 shared targets during pupal stages. (B) Polycomblike (Pcl) and Enhancer of 
zeste (E(z)), two members of the Pcl-PRC2 complex. (C) engrailed (en) and groucho (gro). 
(D) tramtrack (ttk) and Trithoraxlike (Trl), two BTB/POZ domain containing proteins.  
The red text indicates enrichment of shared TF targets for functional terms based on 
Panther analysis (Thomas et al., 2003). 
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Inferred Regulatory Motifs for TF complexes 

To gain insight into the regulatory consequences of the PPI in our network, we 

have integrated our results with existing inferred regulatory network models (Marbach et 

al., 2012).  These inferred networks integrate a wide range of data sets, including TF 

binding, gene expression and chromatin modifications, utilizing supervised and 

unsupervised machine-learning frameworks to predict regulatory edges.  Supervised 

machine learning utilizes a training dataset (in this case, established regulatory 

relationships from the REDfly database (Gallo et al., 2010) to “teach” a network, 

providing either an error or reward based on this training set to achieve a certain range of 

outcomes for a set of inputs.  Unsupervised machine learning lacks this training set, but 

rather looks for hidden organization within a dataset without the help of a “teacher.” 

These inferred networks have been shown to be a useful tool in predicting gene 

function, recovering previously identified regulatory edges at a higher rate when 

compared with other methods, such as TF binding data (Marbach et al., 2012).  It is 

important to note, however, that protein-protein interaction data were not included in the 

assembly of these particular networks, nor do they contain PPI edges.  By integrating our 

PPI data with such transcriptional regulatory networks, we provide a new dimension to 

this analysis, gaining insight into the combinatorial action of interacting TFs by linking 

regulatory edges directly to TF protein complexes.   

To combine PPI with regulatory interactions and to probe these large integrated 

networks, we defined a set of TF regulatory motifs based on physical and regulatory 

interactions (Figure 3.5A, Supplemental Table 3.5).  These three motifs represent 

instances where (1) An interacting protein is regulated by its binding partner; (2) Where 

two interacting proteins regulate the same target; and (3) a single factor regulates 
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interacting proteins.  Each instance of these motifs essentially defines a biological 

hypothesis, representing an avenue for future inquiry. 

 

Figure 3.5 Transcriptional Regulatory Motifs 
Transcriptional regulatory motifs, representing instances where (A) an interacting protein 
regulates its binding partner (1:1), (B) combinatorial regulation of a target by two 
interacting factors (2:1), and (C) regulation of interacting proteins by a single factor (1:2). 
Red edges indicate protein-protein interactions while grey edges with arrows indicate 
directional regulatory edges.  The numbers indicate the total count uncovered for each 
motif within the supervised and unsupervised models. 

 

By permuting the edges of both our high confidence PPI network and the inferred 

regulatory networks independently, we confirmed that these motifs are more frequent 

than expected by chance.  Furthermore, as we have demonstrated the predictive power of 

the high-confidence interactions in our PPI network, focusing only on motifs containing 

one of our PPI edges, effectively filters the regulatory network based on experimental 

evidence.  These motifs were then combined to build integrated PPI-regulatory networks 

containing 22,781 edges between 3,145 proteins and 19,062 edges between 2,331 
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proteins, corresponding to supervised and unsupervised models respectively (Figure 3.6, 

Supplemental Figure 3.2).  

 

Figure 3.6 Integrated Networks 
Integrated networks based on our transcriptional regulatory motifs.  These networks 
contain both our high-confidence PPI interactions as well as regulatory edges that are 
directly linked to PPI edges.  (A) Integrated network based on supervised regulatory 
network inference, containing 22,781 edges.  (B) Integrated network based on 
unsupervised regulatory network inference, containing 19,062 edges. 
 
 

Within the supervised integrated network, we have highlighted the network 

related to the Dp transcription factor and E2F, members of the dREAM (RBF, dE2F2, 

dMyb) complex (Figure 3.7).  The dREAM complex is conserved in most eukaryotes and 

plays multiple roles including the regulation of development, cell division and apoptosis 

(van den Heuvel and Dyson 2008).  Dp and E2f comprise a heterodimeric transcription 

factor that is important in the G1/S phase transition during the cell cycle, where E2f 

levels are rate-limiting for cell proliferation (Johnson et al., 1993).   
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Previous work has described interactions between E2F and Dp and Rbf and 

E2F2, corroborating the protein-protein interactions in our network (Figure 3.7A, Frolov 

et al., 2001).  Another component of the dREAM complex, Myb, acts in a mutually 

exclusive manner with Dp/E2f to regulate target selection (Georlette et al., 2007).  

Though we did not recover Myb as a physical interactor, it is one of only three proteins 

that are inferred to both regulate Dp/E2f and are in turn targeted by the TF pair.  The 

other two proteins are MTA1-like and CG17385, which have not been previously tied to 

dREAM functions, and thus define targets for functional analyses (Figure 3.7A).  As 

expected, downstream targets of DP/E2f in our network include genes important for the 

cell cycle (Figure 3.7D) and DNA replication (Figure 3.7E).     

The dREAM complex is thought to regulate transcription in three ways: the 

repressive binding of Rbf to E2f, inhibition of the basal transcription machinery and by 

recruiting chromatin-modifying proteins (Frolov et al., 2001).  Our regulatory network 

reflects all three of these possibilities, showing a physical interaction between Rbf and E2f, 

the targeting of a number of basal transcriptional machinery components (Figure 3.7C), 

and the regulation of chromatin-modifying proteins such as brahma and MRG15 (Figure 

3.7G).  Other downstream targets of DP/E2f in our network include a group largely 

enriched for transcription-related proteins (Figure 3.7F) and 28 targets that are 

unannotated (Figure 3.7H).  Dp and E2f are themselves targeted by a cohort of TFs and 

co-factors including DREF, Mad and trithorax-like (Figure 3.7B).  Consequently, we have 

identified a well-characterized protein complex, a number of its known regulatory targets, 

and, most interestingly, targets that have not been previously linked to dREAM complex 

function. 
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Figure 3.7 Integrated Network View of the dREAM Complex 
The components of the Drosophila dREAM complex recovered in our integrated network.  
Red nodes represent TFs.  Blue nodes represent non-TF proteins.  Gray edges indicate 
regulatory interactions with the direction of regulation indicated by an arrow.  Red edges 
indicate protein-protein interactions.  (B) Transcriptional regulators of Dp-E2f, (C) Basal 
transcriptional machinery components, (D) Cell cycle proteins, (E) DNA Replication-
related proteins, (F) Transcription-related proteins, (G) Chromatin-related proteins, (H) 
Unannotated targets of Dp-E2F. 
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Connecting Functional Networks  

Genetic screens, especially in Drosophila, have been used as a powerful tool to 

define networks of proteins that share function (reviewed in St Johnston 2002).  One of 

the resulting difficulties is in understanding, at a mechanistic level, how these proteins are 

connected to one another.  On the other end of the spectrum, PPI networks describe the 

physical relationships between proteins, but do not capture functional relationships.  As 

we have shown in the previous chapter, there is some overlap between these two network 

types, however, not every functional relationship is the result of a direct protein-protein 

interaction.  As such, the majority of network edges between these two data types do not 

typically overlap.  By combining GRNs with our PPI data, our integrated network allows 

us to bridge the gap between physical and functional relationships through defined 

regulatory edges.   

As an example, we once again focused on the genetic interaction network of 

mastermind, defined in a genome-wide screen in Drosophila (Kankel et al., 2007).  In this 

study, 408 genes were shown to genetically interact with mastermind, in vivo.  Our 

supervised and unsupervised integrated networks contain 140 and 103 of these modifiers 

respectively.  If we examine direct relationships between these in our networks, 88 and 34 

proteins are directly linked to one another (Figure 3.8).  If we expand this view to include 

first neighbor interactions, all mam modifiers in both instances are connected to one 

another. 

The organization of these networks reveals several potential “hubs” of regulation, 

based on the total number of edges that connect to a particular node.  For instance, the 

transcription factor serpent (srp) is connected by 12 separate network edges in our 

supervised network (Figure 3.8B).  Though srp itself has not been demonstrated to be 
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directly regulated by the Notch pathway, it has been previously shown to function 

upstream of direct Notch targets during Drosophila larval hematopoiesis (Duvic et al., 

2002).  This would suggest a potential mechanism by which loss of srp would modulate 

Notch activity downstream, thus explaining the genetic interaction between srp and 

mastermind.  Interestingly, our network identifies mam as a direct target of srp. 

 

 

 
 
Figure 3.8 Unsupervised and Supervised Networks of the Functional Genetic 
Network of mastermind interactors. 
 (A) Unsupervised network view of 34 mastermind modifiers.  (B) Supervised network view 
of 65 mastermind modifiers.  Red nodes represent TFs.  Blue nodes represent non-TF 
proteins.  Red edges represent protein-protein interactions.  Gray edges with arrows 
represent directional regulatory edges.   

 

 



! 92!

While these regulatory edges will certainly vary depending on context, this 

approach provides a network of hypotheses linking functional data points to be used as 

the basis for probing the mechanisms that link these proteins.  We expect, as more data 

become available, that these networks will be further refined and expanded to provide 

higher resolution insight into the mechanisms driving biological function.  As things 

stand, our integrated networks provide a substantial foundation from which to explore the 

mechanisms that connect functional datasets. 

 

Discussion 

We have taken our TF PPI interaction network and have integrated data derived 

from different experimental approaches, including distinct experimental parameters, to 

further explore the biology of TF protein complexes and their regulatory relationships.  

Our tissue-specific sub-networks emphasize the importance of context with regard to TF 

function.  We have defined groups of proteins based on their broad or specific expression, 

and then connect these categories, providing insights into how general and specific TFs 

cooperate with one another to drive transcriptional programs.  As has been suggested 

previously, it is likely that the presence of a particular TF protein interaction within a 

specific tissue, rather than the expression of a single tissue-specific TF, confers tissue 

identity (Ravasi et al., 2010).  As such, we expect our tissue-specific interaction networks 

to be valuable tools for further probing the contributions of TFs to developmental 

processes. 

 We next examined the combinatorial targets of interacting TFs.  As previous work 

has shown, TFs do not function in isolation, nor does physical binding of a single factor 

necessarily correlate to a change in gene expression.  It is the combination of various TFs 



! 93!

and their interacting proteins that confers a specific activity.  As such, TF targets should 

be viewed from the perspective of the TF protein complex and, indeed, we find multiple 

examples of PPI interactions that are supported by genome-wide DNA-binding data, as 

well as interactions that postulate novel functional hypotheses, warranting further 

exploration.  It is important to note that despite the large number of TF occupancy 

datasets currently available, they are severely biased for proteins that have been 

previously studied, as ChIP methods depend on the availability of useful antibodies.  

Given that a substantial portion of our PPI network is composed of unstudied proteins, 

the overlap between these two datasets is still relatively small.  Currently, the 

modENCODE project is systematically producing antibodies for TFs in Drosophila so it 

expected that more comprehensive target prediction in conjunction with our PPI network 

will be possible in the near future.   

Finally, we connected TF protein complexes to gene regulatory networks using 

inferred regulatory edges, allowing us to expand target prediction beyond direct physical 

targets, and tying TFs directly to interacting groups of proteins.  As we have 

demonstrated the predictive value of the physical edges in our network, this likely 

improves the quality of the inferred regulatory network, given that we examined only the 

edges that are directly linked to an experimentally observed physical interaction.  We 

have demonstrated the utility of this integrated network in the characterization of a TF 

protein complex, including the identification of both characterized and novel targets, and 

used these integrated networks to interrogate large-scale functional data sets.  While 

genetic screens have been used for decades, connecting the large number of functional 

modifiers identified in these screens to one another has been, and remains, a significant 

challenge.  While Gene Ontology analysis certainly provides insights into the 
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categorization of genes within these datasets, the complex relationships between these 

components are only captured from a network perspective.  Our integrated network 

provides a considerable foundation from which to build hypotheses as to how various 

functionally connected proteins are related to one another at a mechanistic level.   

Ultimately, we view our data as a framework for developing specific hypotheses 

for future studies in both Drosophila and other metazoans.  Given the conservation of 

regulatory programs, it is likely that many of the regulatory connections presented here 

will be preserved in other species, though possibly (and interestingly) used in different 

biological contexts.  As transcription factors represent a fundamental point of regulation 

in the cell, we expect this present work to be relevant to the vast majority of biological 

processes. 

 
 
Materials and Methods 
 
 

Tissue Specificity Score (TSPS) 

The tissue specificity score was executed as previously described in Ravasi et al., 

2010, utilizing 24 mRNA-sequencing datasets from Smibert et al., 2012, encompassing 

24 groups containing various tissues dissected from Oregon R wild type flies.  The 

distribution for all proteins based on their TSPS was fit to a tri-modal Gaussian 

distribution, identifying cut-off values of 0.4781 for low (general) specificity proteins, while 

the cut-off for high specificity (specific) was 1.17406. 
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Specific Tissue Assignments and Network Construction 
 

High specificity proteins, based on TSPS distribution were assigned to specific 

tissues using the method described in Kadota et al., 2002.  This method searches for 

proteins that exhibit expression profiles that are very different in one tissue versus 

another, defining them as outliers and thus assigning them to a specific tissue.  These 

tissue-specific proteins were then combined with the group of broadly expressed, low 

TSPS proteins, and assembled into respective tissue-specific networks using Cytoscape 

(Shannon et al., 2003).  

 

Chromatin-Immunoprecipitation Data 

ChIP data were used from both the modENCODE project (Roy et al., 2010) and 

the Berkeley Drosophila Transcription Network Project (MacArthurt et al., 2009).  For 

published ChIP-chip and ChIP-seq datasets, filtered peaks were taken directly from the 

published analyses.  New ChIP-seq datasets were generated as described in Roy et al., 

2010, but analyzed through the Irreproducible Discovery Rate data analysis pipeline, 

described in detail here (https://sites.google.com/site/anshulkundaje/projects/idr).   

 

Integrated Network Construction and Analysis 

The supervised and unsupervised regulatory networks described in Marbach et 

al., 2012 were assembled together with our high-confidence TF PPI network.  We then 

searched these combined networks for our three defined TF regulatory motifs.  All edges 

that did not fall into one of these three motifs were filtered out and remaining edges were 

assembled to create our integrated networks.  Network views and all subsequent analyses 

were performed in Cytoscape (Shannon et al., 2003). 
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This body of work encompasses a study of transcription factors, proteins that play 

an essential role in the biology of the cell through the regulation of transcription.  Though 

frequently discussed in the context of development, TFs play myriad roles in the embryo 

and the adult.  The functions of these proteins are defined by several parameters, mainly 

their protein-protein interactions, protein-DNA interactions and the specific contexts in 

which they function.  Although recent advances, in particular sequencing technologies, 

have allowed for genome-wide analyses of both gene expression and TF-DNA targets, the 

majority of TF protein interactions had not yet been defined.  As the central component 

of the dissertation, I systematically probed these relationships using a co-AP/MS 

approach, describing connections for nearly half of the characterized TFs in Drosophila.  

 Chapter Two discusses the generation of this protein interaction dataset, the 

construction of a high-confidence protein interaction network and the use of these data to 

both predict and functionally validate relationships in vivo.   Although the functional 

studies here are specifically focused on the Notch signaling pathway, these data represent 

a general resource that can be used to probe a multitude of biological questions.  Of 

particular interest, ~40% of the proteins in the high-confidence TF interaction network 

are currently unstudied (many have annotations based only on electronic inference).  As 

highlighted in the example of the extradenticle-homothorax transcription co-factor 

protein complex (Figure 2.4A), many of these “unknowns” are directly linked to proteins 

or protein complexes of known function, providing an entry point for further inquiry.   

Although this study encompasses a significant fraction of Drosophila TFs, it 

represents a first pass analysis of these proteins.  As new expression clones become 

available for the TFs not included in this work, these should be analyzed and 

incorporated to improve coverage of the Drosophila TF protein interaction network.  
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Additionally, these data were generated using Drosophila S2R+ cells, which express 

approximately half of the ~14,000 protein-coding genes in the Drosophila genome.  It is 

certain that some interactions will be missed as some proteins are simply not present in 

our system.  As such, the use of other cell lines that express these other proteins or 

experiments in vivo is necessary to capture the remaining portions of the TF protein 

interactome.  It is also likely that the methods used here do not capture transient or weak 

interactions, which may be characterized using methods such as cross-linking prior to 

mass spectrometry analysis.   

In Chapter Three, I integrated the TF protein interaction network with a number 

of data types to probe various aspects of TF function.  First, expression data sets were 

used to define tissue specificity for proteins in the high-confidence network, which were 

then assigned to individual tissues and subsequently assembled into 24 different tissue-

specific interaction networks.  This analysis allows us to take data that were generated in a 

cell culture system and examines them within distinct settings in the animal, providing an 

atlas of relevant interactions for each tissue.  It has been suggested that it is not only the 

expression of a particular TF, but also the presence of a specific TF interaction that is 

important in specifying a tissue or an activity.  As such, each of these interactions 

represents a biological hypothesis for future study.  It is important to note that while this 

analysis covers 24 tissues and time points, many of these expression datasets can and 

should be further refined.  For example, the expression data for imaginal discs does not 

differentiate between different disc types (e.g., wing vs. eye), an important distinction as 

these represent precursors for completely different tissues.  As more precise expression 

data become available, one would expect the resolution of these tissue-specific networks 

to increase. 
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Second, I combined multiple transcription factor occupancy datasets (ChIP-chip 

and ChIP-seq) to identify shared physical targets of TFs that interact with one another.  

Just as two proteins that interact should be expressed in the same tissue, two TFs that 

interact and function together should bind directly or indirectly at the same DNA targets.  

Indeed, I found that shared targets were identified for all interacting TFs where 

occupancy data were available.  This analysis not only identifies potential targets of 

combinatorial regulation by these factors, but also provides additional evidence for the 

existence of each TF-TF interaction.  The non-overlapping targets of interacting TFs are 

also of particular interest, as these may provide insights into the regulatory mechanisms 

affected by these genes.  Although this comparison corroborates some of my interaction 

data, unfortunately, the overlap between existing TF occupancy datasets and our data 

was small.  This is likely a reflection of the fact that ChIP based methods depend on the 

availability of suitable antibodies, thus biasing experiments towards previously 

characterized proteins and limiting the total number of available datasets.  Currently, as a 

part of the modENCODE project, TF antibodies for ChIP are being systematically 

generated, so it is expected that more data will become available in the near future. 

Finally, I utilized inferred regulatory networks to connect TF protein interactions 

to the regulatory network of the cell.  These inferred networks were constructed using 

multiple large-scale datasets predicting regulatory connections, based on a machine-

learning framework.  While these methods are not a perfect substitute for experiments 

done at the bench, they provide a means to extract information from various data types 

and in principle, use a mathematical approach to define biological hypotheses.  The 

inferred regulatory networks were combined with the TF interaction network and 

subsequently filtered by searching for three distinct transcriptional regulatory motifs, each 
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containing a protein-protein interaction.  I highlighted the dREAM complex as an 

example of the utility of this integrated approach, identifying both well-characterized and 

novel targets of this TF protein complex.  This case represents just one of many 

thousands of examples to be explored in these networks.  

I subsequently used these integrated networks to probe the space among 

functionally related proteins identified in genetic modifier screens.  It is often difficult to 

connect the genes identified in such studies, as most of these proteins do not directly 

interact with one another.  For instance, for the genome-wide mastermind genetic screen 

that was used in this work, only about one-third of the modifiers are connected to one 

another in the current literature.  This is likely an overestimate as the majority of the PPI 

edges that connect these proteins were derived from low-quality, unfiltered interaction 

data.  The integrated networks in this study contain ~25% of the modifiers identified in 

the mastermind screen.  Though this is a relatively small fraction of the entire functional 

dataset, the modifiers that are present are highly interconnected.  In fact, for both the 

supervised and unsupervised integrated networks, all mastermind modifiers present are 

connected to one another when viewed as a first neighbor network.  As each of these 

modifiers has already been demonstrated to interact at a functional level, the edges in this 

integrated analysis provide predictions regarding the mechanisms that lead to this shared 

function. 

The data presented here have relied heavily on the use of currently available 

genomic datasets.  Given the recent explosion of large-scale studies, it is expected that in 

the coming months and years that these networks can and should be expanded and 

further refined as more resources become available.  I would expect better coverage of the 

transcription factor interactome as well as the whole protein interactome, in Drosophila as 
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well as in other species, including humans.  Regulatory network models will also be more 

complete as both the modENCODE and ENCODE projects are systematically 

characterizing DNA elements that are relevant for the function of genes in both Drosophila 

and in humans.  Combining these massive datasets using further improved computational 

models will provide a strong platform for identifying and exploring regulatory 

mechanisms.  I also fully expect improved experimental methods to provide better data 

for such analyses.  In particular, the recent development of small-scale chromatin 

immunoprecipitation (Adli and Bernstein 2011) is especially exciting as this opens the 

door to inquiry in a wide range of in vivo settings, especially during development, where 

TF expression frequently defines developmental domains (e.g., developing motor neuron 

pools).  This raises the prospect of defining high-resolution regulatory networks within 

sub-compartments of developing tissues in vivo. 

Taken together, the work in this dissertation explores multiple aspects of 

transcription factor biology to provide a set of tools from which to generate biological 

hypotheses.  Though I worked exclusively in Drosophila, as TFs are well conserved, I fully 

anticipate these findings to be relevant for studies in other species including humans.  

Gene regulatory mechanisms are also frequently preserved from one species to the next, 

often used in different contexts.  As such, the integrated regulatory networks described 

here can be used as the basis for studies in other species.  Given the importance of 

transcriptional regulation in the biology of the cell, I expect these findings to be directly 

relevant to the majority of biological processes, from the earliest embryo all the way to the 

senescing adult. 
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Chapter 2 
 

A Cytoscape file of the high-confidence transcription factor interaction network is 

attached electronically (Supplemental Figure 2.1).  Supplemental Table 2.1 contains a list 

of all the unique proteins identified across all MS experiments in this study.  

Supplemental Table 2.2 is an electronic supplement containing an Excel file with the raw 

interaction data and a list of all binary TF-TF interactions identified in the raw, unscored, 

MS data from all experiments.  Supplemental Table 2.3 (electronic supplement) is an 

Excel file containing the HGScore analysis.  Supplemental Table 2.4 (electronic 

supplement) is an Excel file containing the high-confidence network edges.  Supplemental 

Table 2.5 contains an Excel file with all DroID edges recovered by the TF interaction 

network analysis. 
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Supplemental Table 2.1 Unique Proteins Identified across all MS 
experiments  A list of all unique proteins identified in the Co-AP/MS analysis.  The 
Flybase Gene ID and Gene symbols are listed.   
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! 113!

Supplemental Table 2.1 Continued 
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Chapter 3 
 

Supplemental Figure 3.1 (electronic) contains a Cytoscape file containing the 

tissue specific network analysis.  Supplemental Figure 3.2 (electronic) contains a 

Cytoscape file with the supervised and unsupervised integrated network analysis.  

Supplemental Table 3.1 is a list of all proteins in the high confidence interaction network, 

scored using tissue specificity score (TSPS).  Supplemental Table 3.2 (electronic) is an 

Excel file containing the tissue specificity assignments.  Supplemental Table 3.3 

(electronic) is an Excel file containing all the nodes for each tissue specific network.  

Supplemental Table 3.4 (electronic) is an Excel file containing all shared targets between 

interacting TFs.  Supplemental Table 3.5 (electronic) is an Excel file containing all 

instances of the transcriptional regulatory motifs from the integrated network analysis. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



! 135!

Supplemental Table 3.1 TSPS Scored Proteins 
A table containing all proteins from the high confidence interaction network, the 
corresponding tissue specificity score and the specificity group that each proteins falls 
into.  
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SUMMARY

Determining the composition of protein complexes
is an essential step toward understanding the cell
as an integrated system. Using coaffinity purification
coupled to mass spectrometry analysis, we exam-
ined protein associations involving nearly 5,000
individual, FLAG-HA epitope-taggedDrosophila pro-
teins. Stringent analysis of these data, based on
a statistical framework designed to define individual
protein-protein interactions, led to the generation
of a Drosophila protein interaction map (DPiM) en-
compassing 556 protein complexes. The high quality
of the DPiM and its usefulness as a paradigm for
metazoan proteomes are apparent from the recovery
of many known complexes, significant enrichment
for shared functional attributes, and validation in
human cells. The DPiM defines potential novel
members for several important protein complexes
and assigns functional links to 586 protein-coding
genes lacking previous experimental annotation.
The DPiM represents, to our knowledge, the largest
metazoan protein complex map and provides a
valuable resource for analysis of protein complex
evolution.

INTRODUCTION

The vast majority of proteins work as parts of assemblies com-
posed of several elements, thereby defining protein complexes
as essential cellular functional units. The functionality of proteins
relies on their ability to interact with one another, whereas path-
ogenic conditions can reflect the loss of such function. Given the
fundamental importance of protein interactions, proteome-wide
‘‘interactome’’ maps based on pairwise protein interactions
using the yeast two-hybrid (Y2H) system have been determined
for several organisms (Giot et al., 2003; Ito et al., 2001; Li et al.,
2004; Rual et al., 2005; Stanyon et al., 2004; Stelzl et al., 2005;
Uetz et al., 2000). Alternatively, protein complex isolation based

on coaffinity purification combinedwith tandemmass spectrom-
etry (coAP-MS) has been used to generate protein complex
maps at proteome scale for Saccharomyces cerevisiae (Gavin
et al., 2006; Ho et al., 2002; Krogan et al., 2006), Escherichia
coli (Hu et al., 2009), and Mycoplasma pneumoniae (Kühner
et al., 2009). This approach has been proven successful in the
study of defined metazoan proteomic subspaces (Behrends
et al., 2010; Bouwmeester et al., 2004; Ewing et al., 2007; Guer-
rero et al., 2008; Sowa et al., 2009), but there are no large-scale
protein complex maps available for metazoans (reviewed in
Gavin et al., 2011). Here, we present a substantial resource of
affinity-tagged proteins, as well as the generation of a protein
complex map of Drosophila that serves as a blueprint of interac-
tions in a metazoan proteome.
Extensive genetic analyses in Drosophila have contributed

fundamentally to our understanding of metazoan morphogen-
esis. However, many functional associations defined genetically
in the animal lack mechanistic explanations. A comprehensive
protein complex map would serve as a powerful resource to
uncover the molecular basis of these genetic interactions
and provide necessary mechanistic insights. Moreover, despite
the success of the extensive molecular genetic studies in
Drosophila, one-third (!14,000) of predicted Drosophila proteins
(Adams et al., 2000) remains without functional annotation
(Tweedie et al., 2009). The genetic tools available in Drosophila
enable testing of predicted physical interactions in vivo, making
it an ideal model organism for the generation of a comprehensive
protein complex map. Such a map is a compelling tool for
gene annotation, which is also incomplete in mammals, so a
Drosophila map will be of considerable value for annotating
mammalian proteomes.
Here, we describe the generation of a large-scale Drosophila

Protein interaction Map (DPiM) by coAP-MS analysis based on
!3,500 affinity purifications. We developed a semiquantitative
statistical approach to score protein interactions and defined
a high-quality map. The map recovers many known and
hundreds of previously uncharacterized protein complexes,
thus providing functional associations and biological context
for 586 proteins that previously lacked annotation. To our knowl-
edge, the DPiM is the first large-scale metazoan protein complex
analysis that is not focused on a specific subproteomic space,

690 Cell 147, 690–703, October 28, 2011 ª2011 Elsevier Inc.
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thereby providing a systems biology view of a metazoan pro-
teome. The map defines a primary protein interaction landscape
for Drosophila cells that allows study of the developmental
dynamics and tissue level variation of any protein complex in
the map. Finally, the DPiM offers a new reference point in the
analysis of protein complex evolution.

RESULTS

High-Throughput Drosophila Proteomics Platform
To systematically isolate Drosophila protein complexes and
determine their composition, we developed a large collection of
affinity-tagged clones called the Universal Proteomics Resource
(Yu et al., 2011; http://www.fruitfly.org/EST/proteomics.shtml)
as part of the Berkeley Drosophila Genome Project (BDGP; see
Experimental Procedures). From this collection, 4,273 individual
clones were transiently transfected into S2R+ cells. Approxi-
mately 80% of the clones successfully expressed ‘‘bait’’ protein
at detectable levels, and associated protein complexes were

affinity purified. Purifications that resulted in detection of one
or more unique, bait-derived peptides by mass spectrometry
were considered for subsequent analysis, with few exceptions
(see Experimental Procedures). This resulted in identification of
a total of 4,927 Drosophila proteins (at 0.8% false discovery
rate [FDR]) from 3,488 individual affinity purifications (Figure 1A).
In general, mass spectrometric analysis of tryptic peptides
cannot distinguish a specific protein isoform with confidence.
So, for this analysis all the identified isoforms were traced back
to the genes encoding them. From here on, all gene products
are referred to as proteins without specifying isoforms. The
raw mass spectrometry data are available in Table S1 (available
online) and are accessible through FlyBase Linkouts and the
DPiM website (https://interfly.med.harvard.edu/).
Comparison of protein functional class distribution using the

PANTHER classification system (Thomas et al., 2003) indicates
that the distribution of protein categories of baits used and
proteins identified in coAP-MS is very similar to the overall distri-
bution of the Drosophila proteome, much of which remains
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Figure 1. Analysis of Proteins Identified in the coAP-MS Pipeline
(A) Cumulative number of gene counts (blue) and unique gene counts (green) detected as a function of the number of high-quality affinity purification experiments.

(B) Comparison of protein class distribution between the Drosophila proteome, baits used and proteins identified in DPiM analysis (coAP-MS) using PANTHER

(Thomas et al., 2003).

(C) A conservative estimate of overlap between the S2R+ cell transcriptome (5,044 protein-coding genes with gene score R300; Cherbas et al. [2011]), S2R+

proteomewhole-cell lysateMS analysis (5,695 proteins), and the proteins identified in coAP-MS analysis (4,927 proteins). The intersections of the data sets are as

follows: 4,056 (Transcriptome and Whole Cell Proteome), 3,470 (coAP-MS and Whole Cell Proteome), and 2,866 (Transcriptome and coAP-MS).

See also Figure S1 and Tables S1 and S2.
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Figure 2. DPiM
Graphical representation of the DPiM comprising 10,969 high-confidence co-complex membership interactions (at 0.05% FDR) involving 2,297 proteins. Protein

interactions are shown as gray lines with thickness proportional to the HGSCore for the interaction in the DPiM. The map defines 556 clusters, 377 of which are

692 Cell 147, 690–703, October 28, 2011 ª2011 Elsevier Inc.
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unannotated (Figure 1B). A few minor differences are noted:
nucleic acid-binding proteins and oxidoreductases are overrep-
resented, whereas receptor and signaling molecules are under-
represented in the coAP-MS data set (Figure 1B).
We determined the proteome composition of the S2R+ cell

by high-resolution mass spectrometry, resulting in the identifica-
tion of 6,081 proteins corresponding to 5,695 genes (1% FDR) in
S2R+ cells (Figure 1C) (see Experimental Procedures; Figure S1;
Table S2). The transcriptome data (Cherbas et al., 2011) and
whole-cell proteome analyses indicate that more than one-third
of the predictedDrosophila proteome is expressed in these cells.
A large fraction of baits used for generating thismap is expressed
in S2R+ cells (61%), and 75% of proteins identified by coAP-MS
were found in either transcriptome or whole-cell proteome anal-
ysis.Our analysis has interrogated a largeportion of theS2R+cell
proteome but not saturated it. These are conservative estimates
because strict comparisons with the transcriptome data are not
possible given the methodological differences and absence of
a rigorously defined FDR for the transcriptome data.

A Drosophila Protein Interaction Map
Proteins identified by coAP-MS represent a mixture of genuine
direct or indirect interactors and nonspecific interactors (Ewing
et al., 2007; Rees et al., 2011). The nonspecific interactors are
present in a large number of data sets independent of the bait
used, whereas genuine interactors tend to co-occur across rele-
vant experiments. We developed a scoring system based on the
hypergeometric probability distribution (Hart et al., 2007) to
calculate the significance of co-occurrence of protein pairs by
incorporating the total spectral counts (TSCs) for each protein.
The number of TSCs correlates roughly with protein abundance
in a sample (Liu et al., 2004) and, thus, increases the sensitivity
of our approach by providing a semiquantitative dimension to
the score. We refer to this scoring system as the HGSCore
(HyperGeometric Spectral Counts score; see Experimental
Procedures). A matrix model was used for both bait-prey and
prey-prey interactions, and a total of 209,912 potential protein-
protein interactions were scored among 4,927 Drosophila
proteins (Table S3).
This statistical analysis led to the prediction of 10,969 high-

confidence co-complex membership interactions (0.05% FDR)
involving 2,297 Drosophila proteins, which are visualized as
a network (Figure 2; Data S1). Further analyses of these high-
confidence co-complex membership interactions based on the
Markov clustering algorithm (MCL) (Enright et al., 2002) defined
556 putative complexes encompassing 2,240 proteins (Table
S4). We use the term DPiM to refer to the composite data set
and the resulting network. The map shows a distinct grouping
of 1,817 (80% of total) proteins as the giant component of the
network encompassing 377 (68%) putative complexes with
a high degree of interconnectedness (Figure 2). A second group
of 179 (32%) independent complexes defined by themap are not
connected to other complexes. Among the baits that are ex-
pressed in S2R+ cells and part of the same MCL cluster, 36%

(159 of 442) are found in direct reciprocal pull-downs. Some of
the well-known complexes recovered in the DPiM are indicated
in Figure 2.

DPiM Quality Assessment
The quality of the DPiM was evaluated using four approaches.
First, we examined whether the coAP-MS approach was
capable of identifying known interactions. Second, we asked if
the members of complexes tend to share Gene Ontology (GO)
annotation. Third, we examined whether the genes encoding
proteins of the same complex tend to be coexpressed. Finally,
we tested the ability of DPiM interactions to be validated across
species using human proteins as baits in human embryonic
kidney (HEK) 293 cells.
Defining a positive Drosophila reference set in order to assess

the sensitivity and specificity of different scoringmethods is diffi-
cult because existing data sets show little overlap (Yu et al.,
2008), and there are no hand-curated databases similar to those
available for the yeast and human proteomes. Hence, we used
the extent of overlap from multiple diverse sources as an esti-
mate of reliability of a given pairwise interaction. The DroID data-
base (Murali et al., 2011) consolidates protein interaction data
from seven discrete sources. Four bins of interactions were
defined with increasing levels of confidence, i.e., those sup-
ported by at least one, two, three, or four independent DroID
sources, and the overlaps with the DPiM were computed (Fig-
ure 3A). The coAP-MS data set was also analyzed using pub-
lished scoring methods (Breitkreutz et al., 2010; Choi et al.,
2011; Gavin et al., 2006; Hart et al., 2007; Sowa et al., 2009).
Because these methods produce different numbers of interac-
tions, we compared the top 25,000 interactions reported from
each method with those listed in DroID. The HGSCore method
recovered more interactions than other published scoring
methods across all confidence levels, reflecting a 15% increase
on average that is significant even when compared to the next
best method (p value 6.9 3 10!12) (Figure 3A). We find that the
top 25,000 HGSCore interactions recover between 68% and
84%of the highest confidence interactions, i.e., physical interac-
tions supported by either three or four independent DroID data
sets (n = 247 and 61, respectively). When considering only those
interactions above the 0.05 FDR threshold of HGSCore, the
DPiM recovers between 56%and 71%of the highest confidence
interactions. The overall increase in recall at increasing reference
set confidence levels across multiple analysis methods sug-
gests that the underlying data in the DPiM are of high quality,
whereas the robust improvement HGSCore makes over estab-
lished methods validates our approach. Nearly 86% of the inter-
actions in the DPiM are novel when considering all the interac-
tions reported in DroID, which includes interolog data from
three species (yeast, worm, and human).
Proteins belonging to the same protein complex can be

expected to be enriched for GO annotations, share the same
KEGG pathways, and contain similar protein domains. The
DAVID Functional Annotation Tools (Huang da et al., 2009)

interconnected, representing nearly 80% of the proteins in the network. The remaining 179 clusters are not connected to members of other complexes. Depicted

with different colors are 153 clusters enriched for GO terms, KEGG pathways, or Pfam/InterPro domains. Proteins in other clusters that are not enriched are

shown as gray circles. Selected complexes with known molecular function/biological role are indicated. See also Tables S3 and S4.
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were used to calculate enrichment for annotations, pathways,
and domains within each protein cluster generated by the
DPiM. About 28% of the MCL-derived protein clusters (153 of
556) are enriched for one or more of these features (multiple
hypothesis testing-adjusted p < 0.01) (Figure S4). In total, almost
half of the proteins in the DPiM network fall into a GO term-
enriched cluster (Table S4). Due to the nature of MCL clustering,
some components of larger complexes tend to separate into
smaller independent clusters, making it statistically less likely
to find significant enrichment due to the small sample size.

Genes expressing subunits of protein complexes often tend to
be coexpressed (Jansen et al., 2002; Krogan et al., 2006). There-
fore, we used the developmental time course transcription
profiling data sets from the modEncode project (Graveley

et al., 2011) to examine the mRNA expression profile correlation
between genes encoding interacting proteins. The frequency
distribution of the correlation coefficients calculated between
genes connected by DPiM edges is clearly skewed toward
coregulated expression when compared with all-to-all gene
correlations (Figure 3B). Similarly, transcripts corresponding to
the same MCL clusters tend to be coexpressed more frequently
than those belonging to different clusters (Figure 3C). Aside from
correlated profiles, it has been suggested that both the expres-
sion profiles and the absolute level of expression of interacting
partners may be maintained at similar levels in the cell as a
consequence of coregulation of complex subunit stoichiometry
(Jansen et al., 2002). Following Jansen et al. (2002), we calcu-
lated the normalized differences between absolute mRNA
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Figure 3. Evaluation of Quality of DPiM Protein Interactions
(A) Comparison of interactions in the DPiM data set and DroID. Four bins with increasing levels of confidence supported by at least one, two, three, or four DroID

sources were defined. The overlap between the top 25,000 interactions defined by each of the co-occurrence analysis methods and DroID is shown. The number

of interactions supported by given number of sources is indicated in parentheses along the x axis.

(B) Distribution of correlation coefficients between mRNAs corresponding to interacting proteins in the DPiM compared to all gene pairs, based on the RNA-Seq

data (Graveley et al., 2011).

(C) Distribution of correlation coefficients of mRNAs corresponding to proteins within MCL clusters compared to those between MCL clusters, analysis similar

to (B).

(D) Normalized absolute mRNA expression differences between DPiM interactors and all gene pairs (Cherbas et al., 2011).

See also Figure S2 and Table S5.
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expression levels from the modEncode RNA-Seq data (Cherbas
et al., 2011) and confirmed this trend in flies (Figure 3D). Similar
results involving both expression profiling and absolute levels
were obtained from analogous analysis of gene expression
data from 26 Drosophila tissues in FlyAtlas (Chintapalli et al.,
2007) (Figure S2).

Cross-Species Validation of DPiM Interactions
Using orthologous HA-tagged human proteins as coAP-MS
baits in HEK293 cell line (Graham et al., 1977), we examined
whether DPiM-defined interactions can be validated across
species. A set of 118 human bait proteins was selected based
on whether an ORF clone was available in the CCSB human
ORFeome collection (Lamesch et al., 2007; Rual et al., 2004),
and if the corresponding Drosophila ortholog involved high
HGSCore interactions in the DPiM.
After Gateway cloning of the corresponding ORF inserts into

the pHAGE-N-FLAG-HA vector (Behrends et al., 2010), we
successfully cloned and affinity purified 80% (94 of 118) of the
baits, but the data set was too small to be analyzed by the
HGSCore method. In the DPiM, a total of 2,641 interactions
involves Drosophila orthologs of 1 of these 94 human proteins.
Transcriptome data of HEK293 cells (Shaw et al., 2002; Williams
et al., 2004) suggested that several human orthologs of interac-
tors predicted by DPiM are not expressed in this cell type. There-
fore, the analysis was restricted to 114DPiM interactions that are
found as ‘‘bait-prey’’ interactors in the raw Drosophila data set
for which both human orthologs are expressed in 293 cells; the
success rate was 51% (58 of 114) (Table S5). This validation
rate illustrates the high specificity of our coAP-MS approach
and the value of the DPiM as a reliable resource for biological
hypothesis in human cells. A total of 268 human-validated
DPiM interactions were novel (Table S5). Examples of these
cross-species validated interactions are considered further
below.

Proteasome and SNARE Complexes
To further assess the quality of the DPiM at protein complex
level, we performed an in-depth analysis of two previously
well-characterized complexes: the proteasome and the SNARE
(SNAP [soluble NSF attachment protein] receptor) complex.
The proteasome is a large multiprotein complex involved in
protein degradation and has been extensively characterized in
a variety of organisms but little studied in Drosophila (Hölzl
et al., 2000). We used the KEGG database (Kanehisa et al.,
2010), FlyBase (Tweedie et al., 2009), and original literature to
generate a list of 51 putative Drosophila proteasome subunits
(described in Table S6).
Affinity purification was performed for 32 individual protea-

some subunits, and 42 of the 51 classified proteasome subunits
were detected as copurifying proteins in at least 2 bait purifica-
tions. On average, 70% of the copurifying proteins are common
between replicate proteasome bait purifications, and 84% of
the high-confidence (DPiM) interactors were detected in both
replicates (Table S6). It is noteworthy that proteins predicted to
be from the same proteasome substructure, i.e., core, base, or
lid, consistently copurified (Figure 4A). Consistent with yeast
and human proteasome studies (Leggett et al., 2002; Wang

et al., 2007), Rpn11—a proteasomal lid subunit—pulled down
the majority of the proteasome components. Consistent with
its predicted role in maturation of the proteasome core (Fricke
et al., 2007), the proteasome maturation protein (Pomp) copuri-
fied with only a few core members (Figure 4A).
Of the 51 annotated proteasome subunits, 6 were detected

only when they were used as bait. Interestingly, these were
all recently described as testis-specific proteasome proteins
(Belote and Zhong, 2009), and indeed, expression profiling anal-
ysis confirmed that they are not expressed in the Drosophila
embryo-derived S2R+ cells (Cherbas et al., 2011). Nevertheless,
when used as baits, the testis-specific proteins interacted with
other proteasome components with profiles similar to those of
their respective ubiquitous paralogs (Figure 4A). The fact that
paralogous proteins produce similar interaction profiles illus-
trates the reproducibility of our coAP-MS approach and also
suggests that the DPiM provides valuable information that can
reach beyond the S2R+ proteome.
Importantly, this study also uncovered a set of seven addi-

tional subunits not originally predicted to be part of the
proteasome complex: CG12321, CG11885, CG2046, CG13319,
GNBP2, CG3812, andRPR (Figure 4B). Sequence similarity anal-
ysis revealed that CG12321 and CG11885 are the Drosophila
homologs of proteasome assembly chaperone 2 and 3, respec-
tively (KEGG). Nothing is known about the functions of CG2046
or CG13319, and the sequences or domain structures of
GNBP2, CG3812, and RPR do not suggest a plausible relation-
ship to the proteasome. Direct experimentation will be essential
to explore their functionality and potential role in the proteasome
complex.
We next examined the SNARE complex. SNARE proteins are

a large protein superfamily implicated in mediating membrane
fusion events during protein trafficking (Südhof and Rothman,
2009). In Drosophila, 23 SNARE proteins have been described
(KEGG pathway: dme04130), and all of them are well connected
in the DPiM. All SNARE proteins with the exception of Syntaxin 6
fall into two clusters (clusters #7 and #162; Figure 4C). Among
nine proteins in cluster #7 (Table S4) that are not classified in
KEGG as SNARE proteins, seven (Syb, Snap, Slh, gammaSnap,
Syx13, CG6208, and Nsf2) have ‘‘SNAP receptor activity’’ or
‘‘SNAP activity’’ GO annotations and, thus, represent potential
genuine interactors of the SNARE proteins. The remaining two
proteins in cluster #7 (AttD and Rme-8) do not have prior anno-
tation related to SNAP receptor activity. We also found that
Syb is linked to several proteins in the map, which suggests
that it is a shared component of multiple complexes. Connec-
tions of particular interest are the ones that link Syb with
members of cluster #22 (the Flotillin complex), which is involved
in protein transport and control of subcellular localization (Fig-
ure 4C). In total, 57 interactions (31 novel) from the SNAP/SNARE
complex and 10 interactions (9 novel) from the Flotillin complex
were independently validated in human 293F cells (Table S5).
The analyses of the proteasome and SNARE complexes

confirm previously reported interactions, further validating the
quality of the DPiM. Consequently, this also strengthens the
potential of the DPiM to formulate functional hypotheses at
the levels of both pairwise interactions and protein complex
definition.
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Figure 4. Biological Implications of Protein Complexes in the DPiM
(A) Two-dimensional heat map showing the number of peptides identified for each proteasome subunit. Each column corresponds to proteins copurified in

a particular proteasome bait experiment. Gray columns (marked by asterisks) were added if a bait was unavailable. Both axes are arranged according to pro-

teasome subunit classification, i.e., core (b and a) or regulatory (base and lid). Seven testis-specific subunits are highlighted in blue. ‘‘P’’ refers to Pomp.
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Functional Implications of the DPiM
Slightly over half of the Drosophila protein-coding genes have
associated experimental annotation (based on FlyBase release
5.23). Another 12% are annotated purely in silico (by inferred
electronic annotation [IEA]), and the remainder (one-third of
protein-coding genes) have no functional annotation. The DPiM
provides empirical evidence and functional validation for 376
uncharacterized gene products and another 210 that were until
now only annotated with IEA evidence. A total of 153 MCL clus-
ters in the map show significant enrichment for GO terms, KEGG
pathways, and Pfam/InterPro domains (multiple hypothesis-
adjusted p < 0.01), indicating that members share common bio-
logical or functional attributes. These 153 annotation-enriched
clusters include 167 proteins that lacked any annotation, for
which the DPiM provides functional associations and biological
context (Table S4). Inspection of individual protein complexes
provides insights into specific as well as general functional
aspects of the map. To illustrate this, six protein clusters with
members sharing GO terms and pleiotropic cellular functions
are described below (Figure 4).
The Hedgehog pathway is presumed to be ‘‘off’’ in the S2R+

cell line (Cherbas et al., 2011) but was represented by a few
known pathway members (Pka-C1, Pka-R2, Cos, and Fu) as
an autonomous cluster (Figure 4D). Interestingly, three of the
four members of this cluster are protein kinases. Pka-R1 has
only subthreshold HGSCore interactions with members of this
cluster (Figure 4D). Pka-C1, known to interact with the transcrip-
tion factor Costa, was not detected in our analysis of S2R+ cells.
Eukaryotic prefoldin is a multisubunit complex composed of

two a and four b subunits that are required for stabilization of
nascent proteins as they are translated and delivered to chaper-
onins for protein folding (Ohtaki et al., 2010). The complex is not
well characterized in flies, and the subunits have been inferred
from in silico approaches. This complex in the DPiM (Figure 4E)
contains all six components (CG7770, CG6719, l(3)01239,
CG7048, CG13993, and CG10635) as well as three additional
putative complex members (CG9542, CG8617, and CG10252)
(Figure 4E); essentially nothing is known about these proteins
except for their sequences.
The complex related to Protein Phosphatase type 1 (PP1),

one of the major classes of eukaryotic serine/threonine protein
phosphatases (Dombrádi et al., 1990), includes all four known
catalytic subunits, PP1c’s, as well as the testis-specific subunit
Pp1-Y1 (arrows in Figure 4F). In the DPiM, this complex includes
the two inhibitory subunits (I-2 and CG12620) and two regulatory
subunits (sds22 and A16). The two additional components

CG15705 and CG13994 in this cluster were also found by Y2H
analysis (Giot et al., 2003). Based mainly on Y2H interactions, it
has been suggested that the Drosophila PP1c-interactome
may include 40 putative PP1c-binding proteins (Bennett et al.,
2006). Our coAP-MS analysis suggests that the PP1c complex
in this cell type may be composed of fewer (12) proteins
(Figure 4F).
TheMCM (minichromosomemaintenance 2–7) complex impli-

cated in replication-associated helicase activity is suggested
to be composed of six proteins in Drosophila (Forsburg, 2004).
The DPiM defines a complex that contains all six as well as a
seventh putative member, the uncharacterized protein CG3430
(Figure 4G).
The Augmin complex (Figure 4H), which is essential for spindle

formation, has been defined through a series of biochemical
studies, which in addition to the dgt protein core (dgt2–6),
identified wac, msd1, and msd5 as members of the complex
(Goshima and Kimura, 2010). The DPiM identified the Augmin
complex in its entirety as a stand-alone cluster (Figure 4H).
Additional examples of known protein complexes with diverse

biological and molecular functions are shown in Figure S3. The
map also identified several IEA annotated proteins, which,
although sharing GO terms, were not known to be members of
a complex. For example cluster #166 (Table S4) is made up
of three members (CG12171, CG31549, and CG31548) with a
high average HGSCore (388). All three share a glucose/ribitol
dehydrogenase domain, a NAD(P)-binding domain, and short-
chain dehydrogenase/reductase (SDR)-conserved sites. DPiM
results suggest that these previously uncharacterized proteins
form a functional complex. In contrast, the DPiM also predicts
the existence of complexes with members sharing experimen-
tally derived annotation but no common GO terms (for example,
cluster #27, Table S4).

Intercomplex Interactions and Functional Relationships
The predictive value of the DPiM for individual protein complexes
is exemplified by the aforementioned analysis, but probing the
interconnectedness of complexes within the map is far more
challenging. On a global level, the interconnectedness of DPiM
complexes is visualized in Figure S4. In numerous cases, we
observed that functionally related complexes are well connected
in the map. For a better understanding of protein function, it
is important to examine possible functional relationships that
involve not only immediate complex neighbors but also com-
plexes that are associated with each other indirectly via inter-
mediate protein assemblies.

(B) The proteasome cluster in the DPiM with subunits shaped according to Pfam/InterPro domains; circles represent nodes without domain enrichment. The

thickness of each gray line is proportional to the HGSCore of interaction. Additional physical (red lines) and genetic (green lines) evidence from literature is shown,

with line thickness proportional to number of sources.

(C) Clusters #7 and #162, the SNAP/SNARE complex, is connected by Syb to several members of cluster #22, the Flotillin complex.

(D) Cluster #117 includes proteins belonging to the Hedgehog-signaling pathway. Protein Pka-R1 has interactions with HGSCores below threshold (dotted lines).

(E) Cluster #42, the Prefoldin complex, in which all six predicted members are connected, along with three additional proteins, none of which is well studied.

(F) Cluster #26, the PP1 complex has multiple genetic and physical interactions described in the literature. The known subunits PP1a87B, PP1a13C, PP1a96A,

and PP1b9C (blue arrows) and testis-specific subunit Pp1-Y1 (red arrow) are shown.

(G) Cluster #60, the MCM (helicase) complex, has all six known members along with CG3430 (connected to Mcm3 and Mcm5).

(H) Cluster #47, the Augmin complex, involved in mitotic spindle organization, is a stand-alone complex in the DPiM network.

See also Figure S3 and Table S6.
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Given the level of functional characterization andmodularity of
the spliceosome, we chose it to examine whether functionally
significant first- and second-degree neighboring interactions
and clusters could be identified in the DPiM. The conformation
and composition of the spliceosome are highly dynamic and
are responsible for the accuracy as well as the flexibility of
the splicing machinery. It is composed of several well-defined
snRNPs that associate sequentially with pre-mRNA to guide
intron splicing (Figure 5A). Each snRNP consists of one or two
snRNAs, a commonset of sevenSm (or LSm)proteins, andavari-
able number of unit-specific proteins (Will and Lührmann, 2011).

The spliceosome subnetwork in the DPiM (Figure 5B) is
composed of 12 clusters containing most of the known spliceo-
some-related proteins. This clustering of spliceosome compo-

nents in an unbiased systematic analysis of whole-cell lysates
illustrates the power of our approach. Importantly, these spliceo-
some clusters are interconnected in the network, consistent with
the notion that they share functionality, while remaining spatially
and temporally modular. The complex defined by the six Sm
proteins (green arrowhead, Figure 5A) is connected to other
first-degree and second-degree neighboring clusters composed
of specific U1-, U2-, U4-, U5-, and U6-related factors. Most
Prp19/CDC5L complex members (magenta arrowhead, Fig-
ure 5A) are well connected to all U5-specific factors (blue arrow-
head, Figure 5A and Figure 5B). Similarly, the U2 snRNP-specific
factors (CG2807, CG7810, CG13900, CG13298, and CG11985;
cyan arrow, Figure 5B) and members of exon junction complex
(EJC, blue-gray arrow, Figure 5B) are connected to Sm/LSm
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Figure 5. Modularity of the Spliceosome Subnetwork
(A) Schematic representation of stepwise interaction of snRNPswith pre-mRNA and other proteins in the process of splicing introns, as described in the literature.

(B) The spliceosome subnetwork in the DPiM consists of 12 clusters that are well connected. The !80 nodes in this subnetwork constitute a very substantial

portion of the spliceosome pathway as defined in KEGG (pathway: dme03040) and Herold et al. (2009). The major spliceosome subcomplexes are colored

according to functional annotation (same as in A for comparison), and proteins are shaped according to Pfam domain enrichment. Protein interactions are shown

as gray lines with thicknesses proportional to HGSCore, and those with scores below the statistical cutoff are shown as dotted lines. Other proteins that are not

classified as spliceosome components in KEGG or elsewhere but connected to these complexes in the DPiM network are uncolored. A majority of such non-

spliceosomal proteins have ‘‘mRNA binding’’ annotation. The modularity of this multisubunit molecular machinery is preserved in the DPiM in the form of

subnetworks that cluster together. Colored arrows and arrowheads denote complexes referred to in the text.

See also Figure S4.
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proteins via CG14786 (Figure 5B) and other members of cluster
#62 (black arrow, Figure 5B). Although none of the cluster #62
members is classified as a spliceosome component, two are
predicted as members of EJC (Upf1 and btz), and two others
(CG8021 and bsf) have GO term annotation related to mRNA
binding (not enriched at p < 0.01). Thus, a second-degree neigh-
boring cluster defines functionally related protein assemblies in
the DPiM.

Protein Complex Evolution
Examining the extent of conservation of individual protein
subunits as well as the overall complex composition across
organisms can shed valuable insight into their cellular roles. The
most extensive manually curated annotations of protein com-
plexes exist for yeast (MIPS,CYC2008) and human (REACTOME,
CORUM). We aligned complexes defined by DPiM clusters with
those described in yeast and human. Several complexes, for
example MCM (Figure 4G, cluster #60), CCT (chaperonin-con-
taining TCP1, Figure S3, cluster #32), and prefoldin (Figure 4E,
cluster #42), showed almost complete conservation of composi-
tion between clearly orthologous subunits. Below, we focus
on examples where orthology relationships are less obvious
(Figure 6).
The eIF3 complex defines the largest eukaryotic initiation

factor, which directs the multitude of steps essential for initiating
translation. Comparison of the complexes from yeast and human
to that of Drosophila (cluster #24, DPiM) reveals significant
differences. The metazoan Drosophila and human complexes
share seven interconnected proteins (Figures 6A–6C, within
green-dotted region), which are not present in unicellular yeast,
suggesting structural and functional remodeling specific to
multicellular organisms. A group of four interconnected proteins
is conserved in all three species (Figures 6A–6C, within blue-
dotted region). Neither the raw data nor the HGSCore analysis
supports Trp1 or Adam being part of the eIF3 complex, though
their homologs are predicted to be members in other species.
These findings allow us to raise the testable hypothesis that
the role of yeast or human orthologs of Adam and Trip1 is not
essential to the function of eIF3.We also compared Pfamdomain
compositions across the three species, revealing a gain of six
domains in the metazoans in comparison to yeast and the loss
of an unclassified domain in yeast with respect to metazoans
(Table S7A). It is worth noting that none of the eIF3 complex
members was used as bait; its recovery illustrates the power of
our scoring approach.
The signalosome is a functionally conserved complex that

catalyzes the deneddylation of proteins and promotes degrada-
tion through the cullin family of ubiquitin E3 ligases (Kato and
Yoneda-Kato, 2009). Yeast proteins share surprisingly little
sequence similarity with metazoan counterparts, despite the
fact that the yeast complex has been shown to be functionally
homologous to metazoan signalosomes (Wee et al., 2002) (Fig-
ure 6D). The eukaryotic signalosomes are composed of eight
subunits (CSN1–8) as seen in the human complex (Figure 6F).
The Drosophila signalosome has also been suggested to
comprise eight subunits (Freilich et al., 1999), but our coAP-
MS data raise the possibility that CSN1a, CSN1b, and CSN8
are not part of the complex, at least in S2R+ cells (Figure 6E).

Domain analysis shows a linear growth in the number of PCI
domains from yeast to humans, which cannot be attributed to
the growth in the number of protein subunits (Table S7B).
The three-member ESCRT-I (endosomal-sorting complex

required for transport) complex is well known in flies and humans
(Michelet et al., 2010) (Figures 6G–6I). In the DPiM the ESCRT-I
complex clustered with three other proteins that have no
human homologs according to InParanoid (Figure 6H). The yeast
complex shows some interesting characteristics. First, Vps28
is linked to STP22, a conserved interaction also evident in
Drosophila and humans. On the other hand, MVB12, a multive-
sicular body-associated protein in yeast (arrow, Figure 6G),
does not have a clear fly ortholog nor does it share a Pfam
domain with any of the fly complex components. However, the
Drosophila complex member CG7192, a protein of unknown
function (arrow, Figure 6H), shares weak sequence similarity
with the Caenorhabditis elegans protein C06A6.3, which has
recently been shown to be functionally homologous to the yeast
MVB12 (Audhya et al., 2007). Moreover, the yeast SRN2,
whereas not identified as an ortholog of any metazoan gene,
shares the Mod_r Pfam domain with fly CG1115 as well as
human VPS37C (marked by asterisks, Figures 6G–6I), suggest-
ing a weak evolutionary relationship.
Cluster #160 in the DPiM links four proteins associated with

the UTP-B complex, a subcomplex of the SSU processome,
a large ribonucleoprotein essential for RNA processing (Fig-
ure 6K). In yeast, two additional proteins (UTP6 and UTP18)
are clearly part of this complex, but the corresponding proteins
in Drosophila (CG7246 and l(2)kO7824) are not included in
cluster #160 (Figures 6J and 6K). Both these proteins have
been used as baits in the coAP-MS analysis, and they did not
copurify other UTP complex members. Although the homolo-
gous proteins exist in humans, neither the interactions nor the
complex has been extensively studied. The contrast of evolu-
tionary information between yeast and fly provides an entry point
for further investigation to see which of the interactions have
been lost or retained in humans.

DISCUSSION

Understanding how functional units in the cell integrate their
actions to control development and homeostasis defines a
quintessential biological problem. Essential insights into this
come from the definition of proteome architecture such as the
map we present here, enabled by the knowledge of genome
sequences and the development of sensitive mass spectro-
metry-based approaches. Although there are several studies
focused on specific subproteomic spaces, no large-scale unbi-
ased proteome map exists for higher eukaryotes (see review in
Gavin et al., 2011). Our study defines a global metazoan protein
complex network based on expression of a large library of
affinity-tagged baits. The map includes a majority of proteins
expressed in S2R+ cells and is based on the HGSCore, which
includes a semiquantitative measure of protein abundance
(TSCs), thus improving the sensitivity in comparison to other
existing scoring methods. However, we note that several known
interactions are detected in our analysis but fall below the statis-
tical threshold (Table S3).
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Figure 6. Examples of Protein Complex Evolution
Comparison of four complexes defined in fly by the DPiM (center panels) with yeast (left panels) and human complexes (right panels). Gray lines show physical

interactions that haveweighted scores, and red lines show interactions implied by the curated data sets. For comparison, InParanoid orthologs in all three species

are depicted with identical colors. Proteins that do not have homologs in other species are shown in white. Complex members for which evidence exists in both

high-throughput and curated data sets (yeast) or both REACTOME and CORUM databases (human) are distinguished by thicker nodes.

(A–C) The eIF3 complex (cluster #24). The fly and human complexes share seven interconnected proteins (within green-dotted region), which are not present in

yeast. Five proteins are conserved in all three species (within blue-dotted region).

(D–F) The signalosome complex in yeast is composed of proteins sharing little sequence similarity with metazoan counterparts. The eukaryotic signalosome is

composed of eight subunits (CSN1–8) as seen in the human complex (F), but CSN1a, CSN1b, and CSN8 are not part of the fly signalosome in S2R+ cells.

(G–I) ESCRT-I function is conserved from yeast to humans, but only VPS28 and STP22 in yeast and their respective fly and human orthologs are readily apparent.

Additional analysis suggests a distant relationship between MVB12 in yeast and Drosophila complex member CG7192, a protein of unknown function (arrows).

The yeast SRN2 also shares the Mod_r domain with CG1115 and VPS37C (asterisks).

(J) The yeast UTP-B complex involved in RNA processing has six well-connected members.

(K) In DPiM only four members are connected, but CG7246 and l(2)kO7824 are not included in the DPiM cluster #160.

(L) There is no evidence suggesting physical interaction among the complex members in human.

See also Table S7.
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Several independent criteria indicate that the quality of the
map is high, and clearly, the algorithmswe use successfully clus-
tered proteins that have been grouped previously as multimeric
complexes. The broad recovery of known interactions and
the remarkable enrichment of GO terms in individual clusters
suggest that novel interactions predicted by the DPiM define
important biological hypotheses as well as a powerful annotation
tool. The analysis of the human protein orthologs we tested
indicates that the DPiM reflects general features of metazoan
proteomes and, thus, will be directly useful in probing protein
interactions across species. We expect that the experimental
and analytical resources we established will be useful as the pro-
teome analysis is expanded to include additional Drosophila
proteins and cells lines or tissues and provide a paradigm for
proteomic studies in other organisms.
The DPiM, like its yeast counterparts (Gavin et al., 2006;

Krogan et al., 2006), defines protein complex membership
and suggests intercomplex relationships linking together func-
tional units. Both issues are essential for understanding the
network of functional relationships that govern the physiology
of the cell. Experimentally probing such relationships is not
trivial, but the availability of sophisticated genetic tools in
Drosophila offers a unique opportunity to explore interactions
using in vivo assays. Indeed, 118 of the DPiM direct interactions
have been validated independently through genetic interactions
involving mutant combinations (see FlyBase). Integration of
protein and genetic interaction networks will afford us important
insights that may provide a molecular basis for relationships
only defined by genetics and, hence, generate mechanistic
hypotheses.
The experimental approach we used has certain a priori limita-

tions. We rely on the transient expression of epitope-tagged
bait proteins, which are not expressed at normal levels, and
tagging of the proteins may interfere with their functions.
Nevertheless, the quality testing of the map indicates that
despite these potential limitations, our experimental approach
is generally reliable. We also note that several recent studies
of subproteomic spaces using a similar experimental approach
have produced valid results (Behrends et al., 2010; Sowa
et al., 2009). Any cell type used will inevitably involve only a
fraction of the predicted proteome, and expanding the analysis
to different cell lines and tissues in the future will improve the
overall proteomic coverage and define possible tissue-specific
aspects of the map. We presume that some of the baits
that failed to produce high-quality coAP-MS results may be
due to interference of a C-terminal tag with protein function.
For the future we note that the C-terminally tagged baits have
also been tagged at the N terminus (Yu et al., 2011; http://
www.fruitfly.org/EST/proteomics.shtml), possibly circumventing
such inactivation.
The evolutionary comparisons illustrated in Figure 6 provide

valuable means to explore gene function and to recognize func-
tionally important protein interactions implied by themap. Exam-
ining the evolution of protein complex architecture across
species can help establish or confirm distant orthologous rela-
tionships and improve annotation of orphan genes. The extent
of protein conservation is linked to their ability to interact with
other proteins, the nature of interactions, and how essential

a protein function is for the cell (Mintseris and Weng, 2005;
Wuchty, 2004). Our data support models of protein network
evolution that are driven by the acquisition or loss of protein
complex members rather than rewiring of existing components
(van Dam and Snel, 2008; Yamada and Bork, 2009). A more
detailed structural analysis will be necessary to examine the
subunit interactions in those complexes where the level of
conservation is low.
The DPiM establishes a singular resource and a baseline to

explore dynamic properties of the protein interaction network
in a metazoan proteome. It also enables the analysis of specific
subproteomic spaces at greater depth. It is now possible to
examine if and how the protein complex relationships derived
from S2R+ cells change in different developmental or genetic
backgrounds. To promote such studies, we are producing trans-
genic fly lines carrying the same FLAG-HA tagged version of
the proteins under the control of a UAS promoter (https://
interfly.med.harvard.edu/transgenic_info.php). The expression
of tagged proteins can be spatiotemporally regulated by the
use of different Gal4 drivers. Exploring the dynamic nature of
the protein complex network defined here, enhanced through
the use of quantitative mass spectrometry, will be of funda-
mental value and will likely provide system-wide insights into
the molecular defects underlying pathogenic conditions. We
expect that analogies of protein interaction relationships
between Drosophila and humans will be helpful in the analysis
of disease-related pathways and, indeed, the identification and
evaluation of disease-related targets.

EXPERIMENTAL PROCEDURES

Cloning, Expression, and Purification
Open reading frames were transferred from the BDGP Drosophila mela-

nogaster expression-ready clone set to the pMK33-C-FLAG-HA acceptor

vector (Yu et al., 2011). Each clone was transiently transfected into a 54 ml

culture of Drosophila S2R+ cells. Protein expression was induced with

0.35 mM CuSO4 and whole-cell lysates prepared in lysis buffer (25 mM NaF,

1 mM Na3VO4, 50 mM Tris [pH 7.5], 1.5 mM MgCl2, 125 mM NaCl, 0.2%

IGEPAL, 5% glycerol, and Complete). Each clarified lysate was bound

overnight to 75 ml of crosslinked HA immunoaffinity resin (Sigma). Unbound

proteins were washed off with lysis buffer followed by PBS and then bound

protein complexes were competitively eluted using synthetic HA peptide

YPYDVPDYA (250 mg/ml) in PBS.

Mass Spectrometry and Data Analysis
The copurified proteins were precipitated using trichloroacetic acid, washed

with acetone, dried, digested overnight with trypsin, and analyzed by LC-

MS/MS. The spectral data were searched with SEQUEST (Eng et al., 2008)

against a database of D. melanogaster proteins derived from FlyBase version

5.23. The LC-MS/MS identifications were filtered to, on average, a 1.2%

protein FDR and 0.3% peptide FDR. The compiled data set was filtered to

a combined 0.8% FDR, and further post-processing was used to correct for

column carryover issues.

Bioinformatic Analysis
Both bait-prey and prey-prey protein interactions from coAP-MS data were

analyzed and scored using HGSCore—a hypergeometric distribution error

model, incorporating TSCs to improve the accuracy of co-occurrence predic-

tion. A randomized data set of similar size was created to estimate FDR.

Protein interactions were clustered using MCL (Enright et al., 2002). Other

algorithms were implemented as described in original literature. Additional

details are provided in the Extended Experimental Procedures.
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