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Professor Stephen Soumerai     Laura Faden Garabedian 

 

Quasi-Experimental Health Policy Research: Evaluation of Universal Health 

Insurance and Methods for Comparative Effectiveness Research 

 

Abstract 
 

This dissertation consists of two empirical papers and one methods paper.  The first two 

papers use quasi-experimental methods to evaluate the impact of universal health insurance 

reform in Massachusetts (MA) and Thailand and the third paper evaluates the validity of a quasi-

experimental method used in comparative effectiveness research (CER). 

My first paper uses interrupted time series with data from IMS Health to evaluate the 

impact of Thailand’s universal health insurance and physician payment reform on utilization of 

medicines for three non-communicable diseases: cancer, cardiovascular disease and diabetes.  

Expanding health insurance coverage with a medicines benefit to the entire Thai population 

increased access to medicines in primary care.  But, there is evidence of potential unintended 

consequences of the reform - the universal coverage scheme did not increase use of medicines 

for diseases that are typically treated in secondary or tertiary care settings, or increase market 

penetration for generic drugs.   

My second paper evaluates the impact of the MA health insurance reform on short-term 

enrollment and adverse selection in the unsubsidized individual insurance market.  This project 

employed interrupted time series and pre-post survival analytic methods with claims data from 

Harvard Pilgrim Health Care (HPHC).  Contrary to previous unpublished reports, we found that 

short-term enrollment decreased after the reform.  And, post-reform members had lower rates of 

inpatient stays and emergency department visits, which suggests that the MA reform, as 

intended, actually reduced adverse selection in the overall individual market.  However, there 
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was a post-reform increase in use of infertility treatments, which are expensive elective 

procedures. 

My third paper evaluates the validity of instrumental variable (IV) methods in CER.  We 

performed a systematic review of the health and economic literature to identify IVs used in CER, 

evaluated trends in the use of IVs in published CER studies, and identified the existence and 

impact of potential IV-outcome confounders for commonly used IVs.  We found that IV analysis 

is an increasingly popular method for CER.  There was overwhelming evidence of potential IV-

outcome confounders of the four most popular IVs that call into question the trustworthiness of 

the results of IV CER studies.  
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Chapter 1:  Impact of Universal Health Insurance Coverage in Thailand on 

Sales and Market Share of Medicines for Non-Communicable Diseases 
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Stephens P, Wagner AK. Impact of universal health insurance coverage in Thailand on sales and 

market share of medicines for non-communicable diseases: an interrupted time series study. BMJ 

Open. 2012;2:e001686 doi:10.1136/bmjopen-2012-001686.  Available online at: 

http://bmjopen.bmj.com/content/2/6/e001686.full 
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ABSTRACT 

Objective:  In 2001, Thailand implemented the Universal Coverage Scheme (UCS), a public 

insurance system that aimed to achieve universal access to health care, including essential 

medicines, and to influence primary care centers and hospitals to use resources efficiently, via 

capitated payment for outpatient services and other payment policies for inpatient care.  Our 

objective was to evaluate the impact of the UCS on utilization of medicines in Thailand for three 

non-communicable diseases: cancer, cardiovascular disease, and diabetes. 

Design: Interrupted time series design, with a non-equivalent comparison group. 

Setting: Thailand, 1998-2006. 

Data: Quarterly purchases of medicines from hospital and retail pharmacies collected by IMS 

Health between 1998 and 2006. 

Intervention: UCS implementation, April-October 2001. 

Outcome measures: Total pharmaceutical sales volume and percent market share by licensing 

status and National Essential Medicine List (NEML) status.  

Results: The UCS was associated with long-term increases in sales of medicines for conditions 

that are typically treated in outpatient primary care settings, such as diabetes, high cholesterol 

and high blood pressure, but not for medicines for diseases that are typically treated in secondary 

or tertiary care settings, such as heart failure, arrhythmias, and cancer.  While the majority of 

increases in sales were for essential medicines, there were also post-policy increases in sales of 

non-essential medicines.  Immediately following the reform, there was a significant shift in 

hospital sector market share by licensing status for most classes of medicines.  Government-

produced products often replaced branded generic or generic competitors.  

Conclusions:  Our results suggest that expanding health insurance coverage with a medicines 

benefit to the entire Thai population increased access to medicines in primary care.  However, 
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our study also suggests that the UCS may have had potentially undesirable effects.  Evaluations 

of the long-term impacts of universal health coverage on medicines utilization are urgently 

needed. 
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Introduction 

Universal Health Coverage 

In 2005, Member States of the World Health Organization (WHO) made a commitment to work 

towards universal health care coverage.
1
 The 2010 WHO World Health Report provides a 

roadmap for countries to achieve this goal.
2
 Universal coverage requires the restructuring of 

health care and financing systems to improve access to health care services, reduce financial 

hardship, and increase the efficiency and equity of the health system.
2
 

 

Medicines, which consume 25%–65% of total public and private spending on health in 

developing countries,
3 

present a key challenge to achieving universal coverage. The high 

spending on medicines, and inefficient use of them, threaten the financial sustainability of a 

universal coverage scheme. According to the WHO, three of the top ten sources of health care 

inefficiency involve medicines: high medicine prices and underuse of generics; use of 

substandard and counterfeit medicines; and inappropriate and ineffective use of medicines.
2
 

Health insurance systems have several features (e.g., a defined population, access to utilization 

data, and financial leverage) that give them a unique advantage to reduce out-of-pocket (OOP) 

expenditures and improve the cost-effective use of medicines through active management 

strategies involving medicines selection, purchasing, contracting (e.g., physician payment) and 

utilization management.
4
 However, there is little evidence about the impact of health insurance 

on access to and use of medicines in low- and middle-income countries (LMICs).
4
 

 

The recent implementation of universal health coverage in Thailand presents a unique 

opportunity to measure the impact of health insurance expansion and hospital payment changes 
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(the majority of the population is now covered under a closed-ended payment scheme
5
) on 

utilization of medicines. 

 

Universal Health Coverage in Thailand 

With the implementation of the UCS in 2001, Thailand became one of the first LMICs to achieve 

universal coverage.
6,7

 The reform preserved the formal sector workforce schemes: the Social 

Security Scheme (SSS) for private sector employees (7.2% of the total population in 2001) and 

the Civil Service Medical Benefit Scheme (CSMBS) for government employees and their 

dependents (8.5%).
8
 The UCS covered those previously enrolled in a voluntary health card 

(VHC) scheme (20.8%), in private health insurance (2.1%), or in a tax-based, means-tested Low 

Income Scheme (LIS) for the poor, elderly, children and disabled (32.4%)
8,9

 as well as more than 

one quarter (29.0%) of the population without previous insurance.
8
 The UCS was rolled out to all 

provinces between April and October 2001.
6
 By 2004, 95.5% of the population was insured, with 

three-quarters (75.2%) of the population covered by the UCS.
6
  

 

In addition to coverage expansion, the reform also dramatically altered the mechanism for 

hospital payment. Before the reform, hospitals were accustomed to fee-for-service (FFS) 

payments from most insurance schemes, aside from SSS, and the uninsured, who paid OOP per 

service (i.e., user fees).
10

 The majority of user fee spending was on medicines.
11

 After the 

reform, FFS payment only applied to CSMBS patients and for the majority of patients, now UCS 

enrollees, hospitals were paid on a closed-ended basis
5
 for all covered services, including 

medicines. 
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The UCS is a compulsory, tax-financed scheme with comprehensive coverage of inpatient and 

outpatient services, including medicines on the National List of Essential Medicines (NLEM).
6 

Individuals must enroll in the scheme at a local Contracting Unit for Primary Care (CUP),
6 

primarily housed in government-owned hospitals.
12

 Each CUP receives a capitated payment per 

registered member to provide outpatient services and medicines.
6  

CUPs initially served as gate-

keepers for secondary and tertiary hospitals. At the beginning of the scheme, when patients were 

referred, diagnosis-related payments (DRG) for higher-level care had to come out of the CUP’s 

capitated payment, so CUPs had a financial disincentive to refer patients.
6
 Shortly after the 

reform was implemented, a separate fund (i.e., a global budget) for inpatient services was 

created, which likely reduced disincentives to refer created by the capitated payment scheme.
6
 A 

capitated payment also creates financial incentives for use of lower cost medicines (e.g., generics 

or less expensive therapeutic alternatives).  

 

Our objective was to evaluate the immediate, short-term (one year) and long-term (five year) 

impacts of the UCS on pharmaceutical market size and composition for medicines for three non-

communicable diseases (NCDs): cancer, cardiovascular disease, and diabetes. We hypothesized 

that the UCS would result in a gradual increase in sales volume, particularly of products used in 

primary care, as enrollment into the scheme increased and likely made access to health services 

and medicines more affordable for the majority of the population. We also hypothesized that 

there would be an immediate shift in market share from more expensive brand name to less 

expensive generic or branded generic products and to medicines on the NLEM in response to 

closed-ended reimbursement rules. We focused on medicines for NCDs since these illnesses 
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represent a large and growing health care burden in Thailand
13–16

 and other LMICs
17

 and most, 

but not all, medicines for NCDs would be prescribed and dispensed in primary care settings. 

Methods 

Data 

We used data on quarterly pharmaceutical sales in Thailand from 1998 to 2006 provided by IMS 

Health.
18

 The sales data are generated from reports to IMS Health by multinational 

pharmaceutical companies and surveys of purchases by hospital and retail pharmacies. IMS 

surveys approximately 200 hospitals (including general and specialized, public and private) and 

350 retail pharmacies in Thailand. These facilities constitute a stratified random sample of the 

over 1,100 hospitals and 14,000 retail pharmacies in Thailand to enable national projections.  

Documentation on the IMS data collection and validation process is available upon request from 

the authors. Medicines were classified according to the European Pharmaceutical Research 

Association (EphMRA) Anatomical Therapeutic Chemical (ATC) system.
19

 

 

Outcomes 

We used two outcome measures: total volume and percent market share. Total volume is the 

number of standard units purchased per capita per quarter (i.e., “sales”). We analyzed total 

volume by sector (i.e., retail versus hospital). A standard unit, as defined by IMS Health, is the 

smallest dose of a product, which equates to one tablet or capsule for an oral dosage form, one 

teaspoon (5ml) for a syrup, and one ampoule or vial for an injectable product. For the total 

volume analyses, we divided total volume by size of the population over 15 years old to control 

for population growth (using yearly population estimates from the World Bank
20

). We used the 

entire population as denominator for insulins, since they are also used for Type 1 diabetes, a 
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chronic disease that affects children. Percent market share is the percent of total volume in four 

mutually exclusive categories of licensing status: originator brand products, branded generic 

products (products sold under a brand name other than the originator brand name of the 

molecule), generic products (products that are sold under the generic molecule name), and 

products manufactured by Thailand’s Government Pharmaceutical Organization (GPO). We also 

assessed percent market share by NLEM status (based on the 1999 and 2004 Thai NLEM). 

 

We analyzed total volume and market share for medicines in eight therapeutic classes: two 

classes of diabetes products (oral antidiabetics and insulins), three classes of cardiovascular 

disease products (antihypertensives, lipid-regulating, and cardiac therapy products) and three 

classes of cancer products (antineoplastics, immunostimulating agents, and cytostatic hormone 

therapy products); Table 1 in Appendix 1 lists all medicines by ATC code. We assigned each 

therapeutic class to one of two categories: medicines usually used to treat primary care health 

conditions and medicines usually used to treat more complicated conditions, typically in 

secondary/tertiary, often inpatient care, settings. Antidiabetic, insulin, antihypertensive and lipid-

lowering products are usually used for primary care conditions (i.e., diabetes, high blood 

pressure and high cholesterol), whereas cardiac therapy and cancer products are usually used for 

more severe conditions that more likely require treatment by a specialist and/or in an inpatient 

setting.  

 

Research Design  

We used an interrupted time series design, the strongest quasi-experimental approach for 

evaluating effects of interventions, which has been used extensively for medication use 
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research.
21

 Although we did not have an equivalent control group, we used medicines sold in the 

retail sector as a non-equivalent comparison group,
22

 assuming that the retail market should be 

relatively unaffected by the reforms since UCS enrollees could only obtain covered medicines 

through their local, hospital-based CUP. 

 

Statistical Analysis 

The intervention was the UCS roll-out from April to October 2001. We defined three distinct 

periods: 12 quarters pre-reform (1998Q2-2001Q1), a 3-quarter UCS roll-out period (2001Q2-

2001Q4; grey box in figures), and 19 quarters post-reform (2002Q1-2006Q3). We ended analysis 

prior to 2006Q4 since there was a policy change at that time (the removal of an initial 30 Baht 

co-payment per visit) which may have impacted outcomes. In sensitivity analyses, we extended 

the intervention roll-out period through 2002 and through 2003 to account for potentially delayed 

implementation and lag of actual enrollment into the scheme. 

 

We used segmented linear regression to measure the pre-reform trend, the immediate level 

change following the intervention period, and the post-reform change in trend (as compared to 

the pre-reform trend). For the NLEM analysis, we reclassified NLEM status in 2005Q1 (when 

the 2004 list was implemented) and included a pre-post term (“NLEM”) in the model to account 

for possible discontinuity due to the reclassification. We report two estimates from the 

segmented regression models – the post-reform change in trend and the immediate level change 

following the reform. We controlled for serial autocorrelation using an autoregressive error 

model. We retained all terms in the models, even if non-significant. We used the models to 

estimate absolute and relative differences (with 95% confidence intervals)
23

 in observed versus 
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predicted total volume at one year and five years post-reform. In sensitivity analyses, we 

included a quadratic term for the post-reform trend and used a likelihood ratio test to determine 

the best-fitting model. We report below results from the best-fitting model of the shortest (i.e., 3 

quarter) intervention period and mention differences in model results where they existed. Results 

from sensitivity analyses are available upon request. We used the AUTOREG procedure in SAS 

9.3 for all analyses. 

 

Results 

Hospital Sector Volume  

The majority of sales in Thailand for all cancer, cardiovascular disease and diabetes medicines 

studied were in the hospital sector and were for medicines on the NLEM.  After implementation 

of the UCS, there was a significant increase in level of sales of insulins and a significant increase 

in trend in sales of antidiabetic, insulin, antihypertensive, lipid regulating, and cytostatic 

hormone products [Table 1.1, Figures 1.1 and 1.2]. There was a significant reduction in level of 

sales immediately following the reform for three medication classes: antihypertensive, cardiac 

therapy and immunostimulating agents (although only the latter was significant in the sensitivity 

analyses using a longer intervention period) [Table 1.1, Figures 1.1 and 1.2]. 
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Table 1.1 Summary of the Impact of the Universal Coverage Scheme on Volume of Medicine Sales 

in the Hospital Sector (from segmented regression results) *   

Therapeutic Area Pre-policy trend Immediate change after 

policy 

Post-policy trend change 

    

DIABETES    

Antidiabetics**    

Insulins**    

    

CARDIOVASCULAR DISEASE  

Antihypertensives    

Lipid Regulating Agents**    

Cardiac Therapy    

    

CANCER    

Antineoplastics    

Cytostatic Hormones    

Immunostimulating Agents**    

*Arrows signify a statistically significant coefficient (p<0.05) from segmented regression with linear post-policy trend term, unless noted otherwise.   

**Quadratic model (which has a squared post-policy trend term) fits better than linear model. 
Note: See Appendix 1 Table 2 and Figures 1-8 for regression coefficients and figures for all therapeutic areas. 
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            Table 1.2 Relative Impact of UCS on Sales of Medicines by Class (one and five years post policy)* 

Therapeutic Class One Year Impact (in standard units) Five Year Impact (in standard units) 

 Predicted Observed Relative Change 

(95% CI) 

Predicted Observed Relative Change 

(95% CI) 

Antidiabetics 2602.91 2769.79 6.4%    

(-6.9, 19.7) 

3669.13 5090.62 38.7%   

(13.5, 64.0) 

Insulins 3.30 4.45 34.8%    

(15.1, 54.5) 

4.58 12.56 174.4%   

(113.9, 235.0) 

Cardiac Therapy 

Agents 
699.28 607.27 -13.2%    

(-26.9, 0.6) 

908.12 825.49 -9.1%    

(-31.9, 13.1) 

Lipid Regulating 

Agents 

522.34 504.58 -3.4%   

(-19.9, 13.1) 

781.97 1629.11 108.3%    

(59.8, 156.9) 

Antihypertensives 3521.47 3418.79 -2.9%    

(-15.5, 9.7) 

5200.86 6177.49 18.8%    

(-2.8, 40.3)** 

Antineoplastics 35.38 34.21 -3.3%    

(-15.4, 8.7) 

46.14 48.13 4.3%    

(-16.3, 24.9) 

Cytostatic 

Hormones 

29.48 30.58 3.7%    

(-10.1, 17.6) 

39.82 47.52 19.3%    

(-5.1, 43.8) 

Immunostimulating 

Agents 

0.65 0.43 -35.0%    

(-45.1, -25.0) 

0.81 0.60 -26.3%   

(-45.0, -7.6) 

              *Bold signifies that the change is statistically significant (i.e., confidence interval does not include the null value of 0). 

              ** The absolute five-year difference, which is estimated using more precise method, is significant.  See Appendix 1 Table 3 

 

Implementation of the UCS appears to have had a mixed impact on sales of cardiovascular 

medicines. Five years after the policy, the sale of lipid lowering agents was nearly double (108% 

increase; 95% CI: 60%, 157%) what would have been expected in the absence of the scheme 

[Table 1.2]. The increase was primarily due to sales of branded generic simvastatin and 

gemfibrozil products, which are on the NLEM, and a small but steady increase in sales of 

originator atorvastatin products, which were not on the NLEM until 2004. For antihypertensives, 

the significant increase in post-policy trend compensated for an initial drop in sales, resulting in a 

slight increase in sales five years after the policy (19% increase; 95% CI: -3%, 40%) [Figure 1.2, 

Table 1.2]. The increased trend was primarily due to sales of enalapril, atenolol, and amlodipine, 

all of which are on the NLEM and predominately sold as branded generics. The reform had no 

significant impact on sales of cardiac therapy medicines one or five years after the policy. 
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The results were also mixed for cancer medicines. The UCS had no significant one- or five-year 

impact on the sale of antineoplastics or cytostatic hormones (although the latter class did 

experience a significant post-policy increase in trend). However, the policy was associated with 

an immediate reduction in sales of immunostimulating agents that did not recover in the post-

policy period. One year after implementation, the sale of immunostimulating agents was 35% 

lower (95% CI: -45%, -25%) than expected from pre-policy trends, and 26% lower (95% CI: -

45%, -8%) five years post-policy. This drop is almost entirely due to a sharp reduction in sales of 

interferon alfa-2b, a non-NLEM medicine, around the time of UCS implementation, which could 

have been due to a coincidental recall of an interferon alfa-2b product.
24

 

 

Finally, as expected, the reform had little impact on sales volume in the retail sector – there were 

few significant post-implementation changes, and the changes that were significant were small in 

magnitude [see Appendix 1 Table 2]. 

 

Hospital Sector Market Share 

Immediately following the reform, there were significant shifts in hospital sector market share by 

licensing status for most classes [Table 1.3]. The changes for antidiabetics and cardiac medicines 

- the two therapeutic classes with the largest shifts – were due to significant increases in GPO-

produced medicines, primarily at the expense of branded generics and, to a lesser extent, 

generics. There was a significant increase in GPO antidiabetic products (+16% of market; 95% 

CI: 12%, 20%), and decreases in branded generic (-12%; 95% CI: -16%, -9%) and generic (-4%; 

95% CI: -6%,-1%) products immediately after the policy [Figure 1.3]. Similarly, there was a 

significant increase in GPO cardiac therapy products (+22%; 95% CI: 15%, 28%), and 
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significant decreases of branded generic (-14%; 95% CI:-21%, -7%) and generic (-4%; 95% CI:-

6%, -2%) products immediately after the policy [Figure 1.4]. There was also a small decrease in 

market share of generic antihypertensives (-6%; 95% CI: -8%, -3%), which was compensated by 

a marginally significant increase in GPO products. 
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Table 1.3 Immediate Impact of UCS on Hospital Sector Market Share*  

Therapeutic Area Licensing Status Immediate post-policy          

absolute change  

in % market share (95% CI) 

DIABETES   

Antidiabetics Originator brand -0.3%  (-1.6, 1.0) 

 Branded generic -12.3%  (-16.0, -8.7) 

 Generic -3.5%  (-5.8, -1.1) 

 GPO 16.1%  (12.0, 20.2) 

Insulins***  Originator brand** -0.04%  (-0.4, 0.3) 

 Branded generic 7.0%  (2.9, 11.1) 

 Generic -6.2%  (-10.3, -2.1) 

CARDIOVASCULAR DISEASE  

Antihypertensives Originator brand** -0.1%  (-2.3, 2.0) 

 Branded generic** -0.2%  (-6.1, 1.8) 

 Generic -5.7%  (-8.3, -3.0) 

 GPO 5.3%  (-0.1, 10.6) 

Lipid Regulating 

Agents 

Originator brand** -7.8%  (-10.2, -5.4) 

 Branded generic** 7.6%  (5.1, 10.0) 

 Generic 0.2%  (-0.4, 0.7) 

 GPO 0.2%  (-0.3, 0.8) 

Cardiac Therapy Originator brand 0.1%  (-0.8, 1.0) 

 Branded generic** -13.5%  (-20.5, -6.5) 

 Generic  -4.3%  (-6.2, -2.4) 

 GPO 21.6%  (15.0, 28.1) 

CANCER***   

Antineoplastics Originator brand 1.1%  (-1.0, 3.2) 

 Branded generic -1.0%  (-5.4, 3.4) 

 Generic 0.4%  (-2.7, 3.4) 

Cytostatic Hormones Originator brand** 0.4%  (-5.4, 6.1) 

 Branded generic** -7.7%  (-12.0, -3.5) 

 Generic** 6.0%  (1.4, 10.6) 

Immunostimulating 

Agents 

Originator brand -6.4%  (-9.7, -3.0) 

 Branded generic 4.5%  (1.7, 7.3) 

 Generic -0.2%  (-0.3, 0.02) 

*Bold signifies a statistically significant regression coefficient (p<0.05).  Changes are in absolute terms (i.e., percentage point change). 

**Quadratic model (which has a squared  post-policy trend term) fits better than linear model. 
***GPO did not produce any insulins or cancer medicines during the study period. 

Note 1: See Appendix 1 Table 4 and Figures 9-16 for market share regression coefficients and figures for all therapeutic areas 

Note 2: Aside from the immediate level changes following the policy, there were few major changes in market share.  See Appendix 1 Table 5 for 
absolute one- and five-year differences. 
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The market for lipid regulating agents experienced an immediate shift from originator products  

(-8% market share; 95% CI:-10%, -5%) to branded generics (+8%; 95% CI:5%, 10%). A similar 

shift was seen for in the market for immunostimulating agents (6% decrease in originator 

products [95% CI:-10%, -3%] and a 5% increase in branded generics [95% CI:2%, 7%]). The 

cytostatic hormone market experienced an immediate shift from branded generic (-8%; 95% CI:-

12%, -4%) to generic products (+6%, 95% CI: 1%, 11%).  Generic insulins experienced a slight 

decrease in market share caused by the market exit of the sole generic manufacturer just prior to 

the policy. There were no immediate changes in market share for antineoplastics. Aside from the 
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immediate level changes following the policy, there were few major changes in market share for 

all classes. 

 

The UCS did not have a major impact on NLEM market share, likely because the share of 

NLEM medicines was already quite high [see Appendix 1 Table 6 and Figure 17]. The only 

notable level change, for immunostimulating agents, was likely due to the coincidental recall of a 

non-NLEM interferon alfa-2b product.
24

 While all medicine classes had significant post-reform 

trends, these trends were small in magnitude and NLEM market share remained fairly stable over 

the study period until the 2004 NLEM was introduced. There were large changes in NLEM 

market share for three classes – antihypertensives, lipid regulating agents and cytostatic 

hormones – at the time of the 2004 NLEM implementation in 2005Q1 [see Appendix 1 Table 6 

and Figure 17]. Given the increase in post-reform volume for many medicine classes, a stable 

NLEM market share in the short-term (i.e., pre-2005) following the UCS implementation 

suggests a post-reform increase in both NLEM and non-NLEM medicines.  

 

Discussion 

The UCS was associated with long-term (i.e., 5 year) increases in hospital sector sales of 

medicines for chronic diseases that are usually treated in primary care settings, such as diabetes, 

high blood pressure, and high cholesterol. We hypothesized this gradual increase in volumes 

since the UCS expanded access to primary care
25

 and actual enrollment into the scheme occurred 

gradually from implementation in 2001 until around 2004, by which time 95.5% of the 

population had insurance coverage.
6
 The UCS, which radically changed hospital financing and 
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reimbursement, was also associated with an immediate market shift to locally produced or 

branded generic products for most therapeutic classes.  

 

Despite these increases in access, the policy did not appear to increase sales of medicines for 

more severe diseases like heart failure, arrhythmias, and cancer, which are often treated in 

secondary or tertiary settings. This finding is consistent with evidence that the capitated payment 

system initially discouraged referrals of UCS patients to higher-level care.
6,25,26

 The UCS also 

appears to have had a mixed impact on utilization of essential medicines. There were increases in 

NLEM medicines, which are covered, as well as non-NLEM medicines. Similarly, given the 

capitated UCS payment system, we expected to see an increase in sales of generic medicines, 

which are typically less expensive. However, the majority of sales in most classes were for 

branded generic products, many of which had generic alternatives in the market. Interestingly, 

substantial market share shifts occurred toward products manufactured by the Thai GPO, which 

have been noted to have higher than market prices.
27

 By law, GPO products received preferential 

status by hospital purchasers,
28

 which negates the incentive to prescribe cheaper alternatives 

under the capitated payment system. While the increase in GPO products and the UCS 

implementation may be a coincidence in timing, it is noteworthy that the GPO expanded its 

product line at a time when the UCS policy expanded the market of people who could afford 

medicines.  

 

Our study demonstrates the value of IMS Health market intelligence data for rigorous health 

policy evaluation. Unlike other sources of data on pharmaceutical utilization (i.e., national health 

surveys or ad hoc hospital surveys), IMS data represent country pharmaceutical markets 
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consistently over time and are useful for the evaluation of system-wide interventions. 

Nevertheless, the data pose some limitations. Aggregate national sales data do not allow us to 

determine whether observed increases in medicines sales occurred preferentially among UCS 

enrollees or enrollees in the SSS and CSMBS schemes, conceivably to compensate for financial 

strain of the UCS on hospital budgets.
6
 CSMBS expenditures increased following UCS 

implementation
29

 and increased medicines sales among CSMBS enrollees, reimbursed on a fee-

for-service basis, could explain increases in non-NLEM medicines and medicines with less 

expensive therapeutic alternatives.
5
 However, it is unlikely that increased utilization among 

CSMBS enrollees explains most of the observed volume changes since this would imply that 

one-half (for diabetes) to three-quarters (for hypertension) of CSMBS members (7.1% of the 

total population in 2004
6
) were on these treatments in 2004. Even the CSMBS and SSS schemes 

combined (20.3% of the total population in 2004
6
) are unlikely to be responsible for the observed 

changes since this would imply that one-quarter (for diabetes) and one-third (for hypertension) of 

enrollees in the two schemes were on these treatments in 2004. These estimates are much higher 

than the national prevalence (6.7% for diabetes
30

 and 22.0% for hypertension
31

 in 2004) and 

unlikely in the civil servant and private sector workforce populations, which are likely to be 

healthier and wealthier than the national average.   

 

Our interpretation of the observed changes assumes that pharmaceutical sales to hospital and 

retail pharmacies reflected total market utilization, and that hospital sales volumes included 

utilization at affiliated primary care units. This assumption seems justified in light of the 

estimated 91% accuracy of IMS Health data in representing the Thai pharmaceutical market.
32

 

For local generic products, including those produced by the GPO, IMS Health data are based on 
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pharmacy surveys only (as opposed to pharmacy surveys and manufacturer reports), so we may 

have underestimated utilization. However, unless this systematic underestimation changed at the 

point of the UCS implementation, it would not have impacted our results. Finally, since we did 

not convert standard units of product sold to defined daily doses (DDD), we do not describe sales 

changes in terms of average adult doses.   

 

There are also potential limitations due to study design and statistical analysis. We addressed the 

main threat to the internal validity of the interrupted time series design – a concurrent event that 

affects the outcome of interest – by assessing other policies or market events that occurred at the 

time of the UCS, through literature reviews, discussions with in-country experts, and by 

including the retail sector as a comparison. The statistical approach, segmented regression 

analysis, usually assumes a linear trend and well-defined break point. Sensitivity analyses that 

varied model specification and intervention duration did not change the findings. By reporting 

results from fully-specified models, we may have underestimated the statistical significance of 

one- and five-year change estimates. 

 

While both the context and the implementation of universal coverage in Thailand are unique and 

not necessarily generalizable to other LMICs, our findings suggest that expanding health 

insurance coverage with a medicines benefit to the entire population, together with changes in 

the payment system and increased local manufacturing, increased the per capita volume of 

medicines sold and, by inference, improved access to medicines in the primary care sector in 

Thailand, presumably by making medicines more affordable. Since the study period, Thailand 

has enacted further policies to address pharmaceutical sector cost escalation (e.g., strict 
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enforcement of reimbursement for only NLEM medicines in the CSMBS
33

) and to ensure 

appropriate access to non-NLEM medicines (e.g., coverage of medicines for HIV, renal 

replacement therapy, and mental health conditions).
34–36

 In the future, it will be important for 

Thailand and other countries to assess equity in access to and quality of use of medicines, 

availability of medicines in health centers and hospitals, out-of-pocket and system expenditures 

and affordability, and health outcomes as they pursue policies to achieve universal coverage.   
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ABSTRACT 

Background: The 2006 Massachusetts (MA) health insurance reform, which contains provisions 

– an individual mandate and health insurance exchange - similar to the Patient Protection and 

Affordable Care Act (PPACA), provides important lessons for the national reform.  While MA 

has achieved near-universal coverage, health insurance market failures may threaten the 

sustainability of the reform.  Widely cited unpublished data suggests that the MA reform 

increased short-term enrollment and adverse selection in the individual health insurance market. 

Objective: To evaluate the impact of the MA reform on short-term enrollment and utilization in 

the unsubsidized individual health insurance market. 

Design: Pre-post survival analysis and interrupted time series design.  

Intervention: Implementation of MA health insurance reform on July 1, 2007. 

Data: Harvard Pilgrim Health Care (HPHC) administrative and health care utilization claims 

data from 2004-2010.  

Participants: Members ages 18 to 64 in unsubsidized HPHC individual market plans with an 

enrollment start date between January 2004 and December 2010. 

Outcome measures: Probability of disenrollment at 45, 90, 180 and 365 days following 

enrollment, time from enrollment to disenrollment, and time from enrollment to first medical 

encounter (ambulatory, emergency department, inpatient and same day surgery) or elective event 

(knee surgery and infertility treatment). 

Results: There were 8,064 individual market HPHC members in the pre-reform cohort and 

37,798 in the post-reform cohort.  The demographic characteristics of the MA individual market 

changed significantly after health reform.  The unadjusted probabilities of disenrollment within 

45, 90, 180 or 365 days of enrollment dropped immediately after the reform and the rate of 

disenrollment was significantly lower in the post-reform period (hazard ratio (HR)=0.811, 95% 
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CI: 0.784, 0.838).  And, the rates of inpatient (HR=0.830, 95% CI: 0.744, 0.927) and emergency 

department (HR=0.851, 95% CI: 0.795, 0.911) encounters were significantly lower in the post-

reform period. However, rates of infertility treatment were significantly higher after the reform 

(HR=1.697, 95% CI: 1.325, 2.174). 

Conclusions: Contrary to previous reports,
 
we did not find evidence that the MA health reform 

led to an increase in short-term enrollment in the unsubsidized individual insurance market.  We 

also found little evidence that post-reform members were more likely to have a high cost medical 

encounter.  
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Introduction 

The 2006 Massachusetts (MA) health care reform mandates that almost all state residents have 

health insurance coverage or face a financial penalty.
1
  To facilitate access to insurance and 

foster competition, the law merged the small group and individual markets and established the 

Connector,
2,3

 a health insurance exchange for individuals, families and small groups to purchase 

private health plans that meet state-defined minimum creditable coverage criteria.
1 

 These key 

elements of the MA reform – an individual mandate and health insurance exchange - will be 

implemented as part of the Patient Protection and Affordable Care Act (PPACA)
4,5

 on January 1, 

2014.
6
  Therefore, knowledge of the intended and unintended consequences of the MA health 

reform provides important lessons for national reform. 

The purpose of the individual mandate was to attain near universal coverage and reduce adverse 

selection (i.e., people enrolling only when they are sick) in the individual market by encouraging 

young and healthy people to enroll.
7-9

  Near universal coverage has been achieved –  as of 2010, 

98% percent of MA residents were insured.
10

  However, a preliminary unpublished report 

commissioned by the Massachusetts Division of Insurance, Health Care Access Bureau
11 

suggested that the reform increased short-term enrollment and adverse selection in the individual 

market.  The report
 
and anecdotal reports

12,13 
suggested that some enrollees purchase insurance in 

anticipation of an expensive medical encounter and then drop coverage after they receive care. 

These short-term, high-cost enrollees are purported to be young and generally healthy 

individuals who need expensive, non-urgent procedures such as orthopedic surgery or infertility 

treatments.
 

 



 34 

Short-term health plan enrollment itself is not necessarily a problem.  In fact, some increases in 

short-term enrollment are to be expected given that the Connector was designed to capture 

people in transition (e.g., people between jobs).  However, this behavior is problematic for 

insurers’ sustainability if short-term enrollees systematically incur higher than expected costs 

and it is a red flag for adverse selection if these high-cost services are predictable to the enrollee 

before enrollment.  Adverse selection, a form of market failure that stems from informational 

asymmetry at the point of enrollment between members and the insurers,
7,14

 is not limited to 

short-term enrollees – this behavior is a concern for insurers regardless of a member’s enrollment 

length.  

 

Both short-term enrollment and adverse selection threaten the sustainability of health care reform 

through higher than expected costs and subsequent premium increases.  An evaluation of the 

extent of the problem in the MA individual market is both critical and timely, with implications 

for the sustainability of national health insurance reform.  To date, there has been no 

comprehensive evaluation of the impact of the MA reform on short-term enrollment and adverse 

selection in the individual insurance market.  The Massachusetts Division of Insurance 

consulting report
11

 used crude measurements, did not have patient-level data on demographic 

characteristics or health utilization, was not peer reviewed, and drew conclusions that were not 

supported by the reported data. 

 

We set out to evaluate potential unintended consequences of the MA health reform using patient-

level data and robust longitudinal methods.  We evaluated the impact of the MA reform on 

enrollment length in the unsubsidized individual market plans offered by the second largest MA 
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insurer.  And, to identify potential adverse selection, we evaluated the impact of the reform on 

rates of medical care utilization.  We examined differences in demographic characteristics and 

plan characteristics with the goal of explaining consumer behavior.  We conclude with policy 

recommendations and plans for future research. 

 

Methods 

Design 

Using a pre-post and interrupted time series design, we compared demographic and plan 

characteristics, disenrollment rates, and hazard ratios for disenrollment and health care utilization 

among members enrolled in Harvard Pilgrim Health Care (HPHC) individual market health 

insurance plans in the 3.5 years before (“pre-reform”) and 3.5 years after (“post-reform”) 

implementation of the MA health reform on July 1, 2007.  

 

Data Sources 

We used HPHC administrative and health care utilization claims data from 2004-2010.  HPHC is 

the second largest insurer in MA, with 20% of the state’s total commercial market share.
15 

 The 

data included enrollment start and stop dates, insurance plan characteristics, demographic 

characteristics, and information on medical diagnoses, encounters, procedures and outpatient 

prescription medicines dispensed.  Information on race, family income and education was 

geocoded at the block level from the 2000 Census. 

 

Study Cohort 
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We included members in unsubsidized individual market plans with an enrollment start date 

between January 2004 and December 2010.  Member identifiers remain consistent in all HPHC 

plans; only the first eligible continuous enrollment period was included in the main analysis.  We 

excluded members who were enrolled in Medicare or Medicaid, were 65 years old or older at 

enrollment end date, or died on or before their enrollment end date.  We excluded children (i.e., 

members age 0-17) from the analyses since children are not responsible for their own enrollment 

decisions.  

 

We assessed demographic and plan characteristics at the enrollment start date.  We assigned 

members who enrolled before July 1, 2007, when the individual and small group markets merged 

and the Connector plans became available, to the pre-reform cohort and members who enrolled 

on or after July 1, 2007 to the post-reform cohort.  

 

Enrollment Length 

Membership periods with gaps of 62 days or less were bridged to create a continuous enrollment 

period; this is consistent with Connector enrollment rules.
16

  In sensitivity analyses, we shortened 

the allowed enrollment gap to 45 days. 

 

Health Care Utilization 

We examined four broad categories of utilization: ambulatory visits, emergency department 

encounters, inpatient stays and same-day surgeries.  We also examined two elective procedures 

that were singled out in the initial media coverage of high cost, short-term enrollment in MA: 
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infertility treatment and arthroscopic knee surgery.
12

  Utilization categories and elective 

procedures were identified by procedure codes (i.e., DRG, ICD-9, CPT and HCPCS).    

 

Statistical Analysis 

We compared baseline demographic characteristics (age, sex, race, family income, education) 

and insurance plan characteristics (primary vs. dependent status, individual vs. family plan, 

Health Maintenance Organization [HMO], Preferred Provider Organization [PPO], High 

Deductible Health Plan [HDHP], prescription drug coverage and mental health coverage) in the 

pre- vs. post-reform groups.  We used t-tests and chi-square tests to test for statistically 

significant differences.  

 

We compared the probability of disenrollment at 45, 90, 180 and 365 days pre vs. post reform.  

We removed from the denominator members who enrolled within 45, 90, 180 and 365 days, 

respectively, of the reform date (for the pre-reform cohort) or study end date (for the post-reform 

cohort). We used chi-square tests to test for statistically significant differences.   

 

We examined the probability of disenrollment at 45, 90, 180 and 365 days by month of 

enrollment using segmented linear regression to measure the pre-reform trend, the immediate 

level change following the reform, and the post-reform change in trend (as compared to the pre-

reform trend).
17

  Again, we excluded members who enrolled within 45, 90, 180 and 365 days, 

respectively, of the reform date (for the pre-reform cohort) or study end date (for the post-reform 

cohort).  We report estimates of the immediate level change following the reform.  We controlled 

for serial autocorrelation using an autoregressive error model.  We retained all terms in the 
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models, even if non-significant.  In sensitivity analyses, we examined the probability of 

disenrollment by quarter of enrollment. 

 

We assessed time from enrollment start to disenrollment and time from enrollment start to first 

encounter for each of the four utilization categories, knee surgery and infertility treatment using 

survival analysis methods - Kaplan Meier curves and Cox Proportional Hazard models, the latter 

of which controlled for demographic and insurance plan characteristics.  We censored pre-reform 

members at the reform date (July 1, 2007) and post-reform members at the study end date 

(December 31, 2010).  We stratified the analysis by covariates that had significant interaction 

terms with the pre-post reform variable.  We examined two follow-up periods: the entire study 

period (up to 3.5 years after enrollment) and one year after enrollment.  For all survival models, 

we used the Wald chi-square statistic to test whether the hazard ratios changed significantly.  We 

assumed the hazard ratios were constant over time, given demographic and plan characteristics.  

We use the term “rate” when referring to hazard ratios in the results and discussion sections.  We 

used SAS 9.2 for all analyses.   

 

Results 

Demographic and Plan Characteristics 

There were 8,064 HPHC members in the pre-reform individual market cohort and 37,798 in the 

post-reform cohort.  The demographic characteristics of the MA individual market changed 

significantly after the health reform [Table 2.1].  Post-reform members were more likely to be 

male, younger, and to live in areas with a greater proportion of white, non-Hispanic residents and 

in areas with lower educational attainment and family income.  Missing data were negligible - 
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less than 0.01% of members in the pre and post periods were missing demographic data.  In 

addition, post reform members were more likely to be dependents (i.e., spouse or child), in a 

family plan, in a PPO or HDHP, and have prescription drug coverage (as mandated by the 

reform).  Most (60%) individual market members enrolled through the Connector.  Demographic 

and plan characteristics for the adult-only population are in Appendix 2 Table 1. 
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Table 2.1: Demographic and Plan Characteristics, Pre vs. Post Reform 

  

  

Massachusetts - Individual Market (n=45,862) 

Pre-Reform Post-Reform 

Number of Members 8,064 37,798 

Gender (% male) 42.3 47.1** 

Age (mean, std) 33.1 (17.0) 31.2 (17.7)** 

Age (distribution):   
          Birth-17 years old 14.3 22.7** 

          18-26 years old ("young adults") 25.5 24.4* 

          27-40 years old 27.8 21.0** 

          41-50 years old 12.8 13.3 

          51-64 years old 19.6 18.6* 

Race (mean % white, non-hispanic, std) 
a
 87.8 (15.4) 89.3 (14.6)** 

Education Level (mean % with ≥ some college, std) 
a
 53.4 (19.6) 51.2 (18.9)** 

Education Level Categories (mean %) 
a
   

          Less than 9th grade 3.3 (4.4) 3.4 (4.6) 

          9th - 12th grade 6.1 (5.1) 6.4 (5.1)* 

          High school graduate 21.4 (10.9) 22.7 (10.5)** 

          Some college, no degree 15.6 (5.9) 16.4 (5.9)** 

          Associate degree 6.6 (3.3) 7.1 (3.5)** 

          Bachelor degree 25.5 (9.3) 24.9 (9.5)** 

          Graduate or professional degree 21.4 (14.3) 19.2 (13.3)** 

Family Income 
a
   

          Mean % Family Income <$50,000 (std) 29.8 (16.6) 30.5 (16.7)* 

          Mean % Family Income $50,000-$99,000 (std) 37.2 (12.1) 38.4 (12.2)** 

          Mean % Family Income >$100,000 (std) 33.0 (20.0) 31.1 (19.5)** 

Primary Member (% who were subscriber) 78.2 60.3** 

Dependent Member   
          Spouse (% who are married to subscriber) 7.3 13.0** 

          Child (% who are a child of subscriber) 14.6 26.7** 

Contract Type   
          Individual (% of members in individual plan) 69.3 44.3** 

          Family (% of members in plan with at least one     

other person) 
30.7 55.8** 

Connector (% in Connector plan, post-reform only) NA 59.80 

Plan Characteristics   
          HMO (% in HMO plan) 100 87.9** 

          PPO (% in PPO plan) 0.09 12.2** 

          HDHP (% in HDHP) 0 7.2** 

          Prescription Drug Coverage (% with Rx benefit) 44.2 85.3** 

          Mental Health Coverage (% with MH coverage) 100 100 
   a

 % in census block of residence (education is % of population age 25+ in that level) 

* post significantly different than pre, p<0.05 

** post significantly different than pre, p<0.0001 
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Enrollment Length  

The probabilities of disenrollment within 45, 90, 180 or 365 days of enrollment were 

significantly lower for post-reform members [Figure 2.1].  In the segmented regression analysis, 

the probabilities of disenrollment within 45, 90, 180 or 365 days dropped significantly 

immediately following the reform in the unadjusted models [Table 2.2, Figure 2.2, Appendix 2 

Table 2].  For example, the probability of disenrollment within 180 days dropped by 10.35 (std. 

err. 2.96) percentage points immediately following the reform.   
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Table 2.2: Segmented Regression Models: Probability of Disenrollment by Month of 

Enrollment 

 

Enrollment Length 

Immediate Post-Reform 

Level Change
a
 (std. err.) 

≤ 45 days -4.54  (1.15)* 

≤ 90 days -5.26 (1.83)* 

≤ 180 days -10.35 (2.96)* 

≤ 1 year -7.50 (2.99)* 
a 
Percentage point change 

 
 

 
 

  

The reform was a significant predictor of time to disenrollment in unadjusted and adjusted 

survival analyses [Table 2.3, Appendix 2 Figure 1 and Table 3].  The rate of disenrollment was 

significantly lower in the post-reform period (HR=0.811, 95% CI: 0.784,0.838) when controlling 

for demographic and plan characteristics [Table 2.3].  Interactions with the reform and age, 
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education, race, and plan type (individual/family plan) were significant [Appendix 2 Table 3], so 

we stratified the model by these variables.  While all stratified groups had lower rates of 

disenrollment in the post-reform period, members who were older, in family plans, and live in 

areas with higher college attainment and percentage of white, non-hispanic residents had greater 

reductions in the rate of short-term enrollment following the reform [Appendix 2 Table 4].  The 

enrollment length results did not change in the sensitivity analyses with the one-year follow-up 

period or with shorter allowable gap between enrollment periods (i.e., 45 days).   

 

 

Table 2.3. Cox Proportional Hazard Models: Time to Disenrollment and First Medical 

Encounter, Pre vs. Post Reform  

Outcome
a
 Post (vs. Pre) Reform Hazard Ratio (95% CI) 

Disenrollment 0.811  (0.784, 0.838)* 

Encounter Type  

     Ambulatory 1.037  (1.004, 1.070)* 

     Emergency Department 0.851  (0.795, 0.911)* 

     Inpatient 0.830  (0.744, 0.927)* 

     Same Day Surgery 0.951  (0.842, 1.073) 

     Knee Surgery 0.846  (0.600, 1.194) 

     Infertility Treatment
b
 1.697  (1.325, 2.174)* 

a 
Models control for: sex, age, education, race, family income, and individual/family plan. Follow-up time = 3.5 

years max in pre and post. 
b 
Infertility treatment analysis limited to females ages 27-50. 

*Wald p<0.05 

 

 

Health Services Utilization  

The rates of inpatient (HR=0.830, 95% CI: 0.744, 0.927) and emergency department (HR=0.851, 

95% CI: 0.795, 0.911) encounters were significantly lower in the post-reform period in both the 

unadjusted and adjusted models [Table 2.3, Appendix 2 Table 5], suggesting that individual 

market members were less likely to have these types of encounters after the reform.  Post-reform 

members had a slightly higher rate of ambulatory encounters (HR=1.037, 95% CI: 1.004, 1.070).  

The reform was not a significant predictor of time to same-day surgery encounter.  Age and 
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income interactions were significant, [Appendix 2 Table 6] so we stratified the analyses by these 

variables.  The higher ambulatory encounter rates following the reform were driven by members 

ages 27-50 and members from higher income areas, the lower emergency department rates were 

driven by members from higher income areas, and the lower inpatient encounter rates were 

driven by younger (i.e., ages 18-40) members and members from higher income areas [Appendix 

2 Table 7]. 

 

For the elective procedures, the reform was not a significant predictor of time to arthroscopic 

knee surgery but was a predictor of infertility treatment (HR=1.697, 95% CI: 1.325, 2.174) 

[Table 3, Appendix 2 Table 8].  Interactions with plan type were significant [Appendix 2 Table 

9] – the post-reform increase in the rate of infertility treatment was driven by members in 

individual, and not family, plans [Appendix 2 Table 6]. 

 

Discussion 

Contrary to previous unpublished and anecdotal reports,
11-13 

we did not find evidence that the 

MA health reform led to an increase in short-term enrollment in the unsubsidized individual 

insurance market.  Our results suggest the opposite – the rate of short-term enrollment was 

higher in the pre-reform than in the post-reform period.   

 

We also did not find consistent evidence of a post-reform increase in utilization.  The rate of 

hospitalization and emergency department visits was actually lower in the post-reform period, 

but rate of ambulatory care was slightly higher.  Overall, this suggests that the post-reform 

individual market members were, on average, healthier than the pre-reform members, which was 
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one aim of the insurance mandate.  We found no evidence of an increase in arthroscopic surgery, 

but did see evidence of an increase in fertility treatments. 

 

These results make sense given that pre-reform individual market plans were relatively more 

expensive
10

 and adverse selection was more likely to occur before the reform.
18

  Before the 

insurance mandate, MA had already implemented a policy of community rating and guarantee 

issue,
10,19

 which meant that a person could not be charged higher premiums or denied coverage 

on the basis of pre-existing conditions before the reform.  The reform changed two things - it 

made individual coverage less expensive
10,19 

and mandated that everyone have insurance or pay a 

fine.  With the relatively high price of insurance and no financial penalty for being uninsured, 

people in the pre-reform period had a greater incentive to enroll only when they were sick and 

disenroll if the cost of insurance outweighed the benefit.  Our analyses, and previous analyses on 

the subsidized individual market in MA,
8,10

 suggest that the individual mandate succeeded in 

attracting a relatively younger and healthier population into the individual market risk pool.  

And, it appears that more affordable coverage plus the mandate encouraged people to stay 

insured for longer periods of time. 

 

Potential Market Failures 

The evidence that post-reform members were less likely than pre-reform members to have 

inpatient or emergency department encounters suggests that the MA health reform, as intended, 

actually reduced adverse selection in the overall individual market.  However, we did find 

evidence that suggests that some types of adverse selection may still occur.  The reform was 

associated with increased use of infertility treatments.  The Connector plan premiums are 
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considerably lower than the estimated cost of in vitro fertilization, which can exceed $12,400.
20

  

It is speculated that women employed by self-insured companies not subject to state laws that 

mandate insurance coverage of infertility treatment,
21

 may have joined Connector plans to obtain 

coverage for infertility services, and then dropped individual market coverage after treatment.  

Our results corroborate this theory - we observed a post-reform increase in infertility treatment 

only among women who were the sole enrollee in their insurance plan.  However, the number of 

women undergoing infertility treatment is small and is unlikely to have an impact on the entire 

individual market. 

 

Although the reform reduced short-term enrollment, the high rates of disenrollment in the 

individual market may be cause for concern.  The high rate of churning (i.e., individuals 

enrolling and then terminating coverage) could be indicative of rational consumer behavior, such 

as obtaining coverage during a short spell of uninsurance (i.e., between jobs) or switching to a 

more appropriate, less-costly insurance product.  But this situation is not ideal - there is an 

administrative burden associated with each enrollment period.  Whether or not this negatively 

impacts insurers depends on the relative cost of the premiums paid vs. the administrative costs of 

enrollment.  

 

Comparison to Prior Research 

Unlike previous reports,
11

 we did not find an increase in short-term enrollment.  There are 

multiple possible explanations.  First, our sample included members enrolled over a 7-year 

period (3.5 years before and 3.5 years after the reform) whereas the earlier report only looked at 

enrollment at two points in time - 2006 and 2008.  Second, we used different and more robust 



 47 

analytic methods.  Third, we had access to granular enrollment record data that allowed us to 

collapse multiple enrollment entries per member into a period of continuous enrollment, 

allowing for plan changes and short gaps in enrollment consistent with state insurance rules.  It is 

not clear if or how the earlier report accounted for multiple enrollment records per member.  

During our study period, post-reform members had more enrollment records per person than pre-

reform members and the average length of the first enrollment period was shorter in post-reform 

period (data not shown).  But, when we collapsed these enrollment records into periods of 

continuous coverage, short-term enrollment did not increase in the post-reform period.   

 

Consistent with our findings that the rates of hospital and emergency department utilization were 

lower in the post-reform period, the report found that per member per month (PMPM) claims 

costs in the individual market declined from 2006 to 2008 for all durations of coverage, even for 

short-term enrollees.
11

  

 

Limitations and Future Research 

This paper provides important new information on the impact of the MA reform on short-term 

enrollment and adverse selection in the individual market.  However, there are multiple 

limitations and further research is needed.  We analyzed data from a single insurer, and it is 

possible findings will vary by insurer - future studies should use these methods with data from 

other Massachusetts insurers.  Our study focused on the unsubsidized individual market, 

additional worked should examine the extent of short-term enrollment and adverse selection in 

the subsidized individual market (i.e., Commonwealth Care plans).   
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Future research should target observed member behavior, including initial plan choice and plan 

switching.  We limited our analysis to the individual market and we could not follow members 

once they left the HPHC system.  However, even within HPHC, there was considerable 

switching between markets, particularly in the pre-reform cohort.  Nearly half (42%) of 

individual market members in the pre-reform cohort and a quarter (26%) in the post-reform 

cohort were in a non-individual market HPHC plan immediately (i.e., within the 62 day 

enrollment window) prior to their individual market enrollment.  Members with previous 

enrollment drove the post-reform reduction we observed in short-term enrollment (data not 

shown).  Future work should examine the transitions between individual and group markets and 

look at churning within HPHC individual market plans to assess whether adverse selection 

occurs within an insurer’s own products – we would expect sicker members to opt for plans with 

more comprehensive coverage (e.g., PPOs) over plans with more limited coverage and higher 

out-of-pocket payments (e.g., HMOs and HDHPs).
9 
 

 

The data used in our study have certain limitations.  The data do not allow us to link dependents 

with the primary subscriber, so we cannot determine whether enrollment decisions of an entire 

family are driven by the health needs of one family member.  And, since our only source of 

health information is utilization that occurred after enrollment into a HPHC plan, we are unable 

to measure, or control for, members’ baseline health.  This is a problem with all enrollment 

studies – methods to assess baseline health in these types of studies need to be established. 

 

We were unable to control for unobserved differences that may affect disenrollment decisions 

and utilization, most importantly, prior health status.  However, this is not important from a 
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policy perspective for two reasons.  First, our analysis mimics reality – due to informational 

asymmetries, insurers must rely only on demographic and plan characteristics to predict 

disenrollment and utilization.  And second, controlling for prior health status would lead us to 

underestimate adverse selection, which was one of our main study outcomes.   

 

A major limitation of the paper was the lack of a comparator group.  Using other states as a 

control group would allow us to control for potential confounders, such as secular trends, but 

HPHC does not serve the individual market in other states.  Thus, we were unable to control for 

potential impacts of the 2008 economic recession, which started shortly after the MA reform.  

However, our unadjusted interrupted time series results suggest that short-term enrollment 

decreased immediately following the reform in July 2007, and prior to the recession (Appendix 2 

Figure 2).  And, post-reform trend changes, which may have been impacted by the recession, 

were small or non-significant.  Future studies can also use the small group market, whose 

members do not make individual insurance exit and entry decisions, as a comparison group to 

control for secular trends.  

 

Policy Implications 

The authors of the earlier unpublished report recommended that, “consideration should be given 

to creating pre-existing condition provisions, waiting periods, or open enrollment periods”
11

 and 

as a result, the MA legislature approved a law that restricts open enrollment in the individual 

market to two times a year in 2011 and once a year thereafter.
22

  Given that we did not find an 

increase in short-term enrollment or adverse selection – the two potential problems that the open 

enrollment legislation was intended to address - the costs and benefits of this policy deserve 
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attention.  It is important to assess potential unintended consequences of the open enrollment 

rules on accessibility of insurance in MA, especially since the national reform includes similar 

open enrollment restrictions.  

 

Results from Massachusetts may not be generalizable to other states since the state’s pre-reform 

economic and health insurance situation were unique.
23

  Nevertheless, MA provides the best 

evidence of how the national reform will play out and the rest of the nation is closely scrutinizing 

the MA experience.  The findings from the initial non-peer-reviewed report on short-term, high 

cost enrollment in MA,
11 

called into question by our study, have received national media 

attention and have been cited by opponents of the reform.
24,25   

It is crucial that evidence about 

the MA experience is accurate.  Our results provide important lessons for other states and the 

Federal government as they implement the national health insurance reform.  
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ABSTRACT 
 

Context: Comparative effectiveness research (CER) relies heavily on observational methods to 

estimate treatment effects to guide clinical and regulatory decisions.  Instrumental variable (IV) 

analysis is an increasingly popular CER approach that relies on identification of a variable (the 

IV) that affects treatment assignment but does not otherwise affect outcomes. In theory, the 

approach mimics random treatment assignment seen in randomized trials.  In practical 

application, however, the analysis may be biased if the IV and the outcome are related through 

an unadjusted third variable (“IV-outcome confounder”), leading to questionable findings.  

Objective: To evaluate trends in the use of IVs for CER and systematically identify the 

existence and impact of confounders of common IVs on study validity. 

Design, Setting, and Participants: We conducted a systematic search in PubMed and other 

health/economic databases to identify published CER studies that use IV methods conducted in 

the US or other industrialized countries through 2011.  We searched for evidence of potential 

confounders of the most common IV-outcome pairs. 

Main Outcome Measures: Count of IV CER studies (by year, country, and outcome measure), 

major confounders of most common IV-outcome pairs, and proportion of IV CER studies that 

failed to control for these confounders.  

Results: We found 187 IV CER studies meeting the selection criteria.  Of these, 60.9% used one 

of the four most common IV categories – regional variation (26.2% of studies), distance to 

facility (20.3%), facility variation (11.8%), and physician variation (7.5%).  Mortality was the 

most common outcome.  We observed overwhelming evidence of IV-outcome confounding.  

Major confounders of the four most common IVs and mortality include patient’s race, 

socioeconomic status, clinical risk factors, health status, and urban/rural residency, and facility 
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and procedure volume.  Every IV CER study failed to control for one or more of these 

potentially major confounders.   

Conclusions: Many effect estimates from IV analyses in CER may be biased by the failure to 

adjust for major IV-outcome confounders, which can lead to overestimation, underestimation or 

complete reversal of the true treatment effect.  While no observational method can completely 

eliminate confounding, we caution against over-reliance on IV studies for CER.  
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Introduction 

Patients, providers and payers are increasingly relying on comparative effectiveness research 

(CER), which compares the benefits and harms of alternative clinical and health care delivery 

methods,
1
 to inform evidence-based health care decision-making.  Because CER is intended to 

guide health care resource allocation, its validity is crucial.  Since randomized controlled trials 

(RCTs) are not always feasible or generalizable, CER relies heavily on observational studies,
2,3

 

which are susceptible to confounding bias and other threats to validity.
4 

 

Instrumental variable (IV) analysis has been recommended as a method to establish causal 

conclusions from observational CER studies.
2,5-7

  In theory, IVs induce variation in treatment 

assignment that allows causal inferences similar to those from a RCT [Figure 3.1].  While IV 

analysis is mathematically valid under certain assumptions,
 5,8-15

 it is difficult to implement in 

practice.  In observational CER it is often challenging to identify an IV that meets all the 

assumptions required to make the analysis valid.  

 

An example illustrates the IV method and its assumptions.  Several studies have used relative 

distance to hospitals as an IV in analyses aimed at estimating the effects on mortality of 

treatment with invasive cardiac procedures, specifically cardiac catheterization, following a heart 

attack.
16-22

  Researchers classify each hospital in the study region as a catheterization hospital or 

a non-catheterization hospital, based on the presence of a catheterization lab or the overall 

intensity (or volume) of catheterizations.  Patients are assigned a value of the binary IV based on 

whether they live closer to a catheterization hospital, making them more likely to receive the 

procedure, or a non-catheterization hospital.  This IV analysis assumes that, similar to random 
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assignment, the relative distance between a patient’s residence and a cardiac catheterization 

hospital predicts treatment choice independently of all characteristics (e.g., age, socioeconomic 

status, health status or use of life-saving medications) that usually confound the relationship 

between treatment choice and outcome.   

 

The IV method relies on two critical assumptions.  One, the IV (relative distance to hospital) is 

predictive of treatment choice (use of cardiac catheterization).  And two, the association between 

relative distance and mortality is due only to the effect of relative distance on treatment 

assignment, after control for observed variables [Figure 3.1].  Hence, IV estimates of treatment 

effects may be biased if relative distance is related to mortality directly or through an unadjusted 

third variable – an IV-outcome confounder.  A plausible IV-outcome confounder is rural 

residence.  Patients living in rural areas are more likely to live closer to a non-catheterization 

hospital, creating an association of the IV with rurality.
16   

Furthermore, there is ample evidence 

that rural residence is associated with multiple risk factors for mortality.
23-25  Therefore, an IV 

analysis would likely overstate the effect of catheterization since patients in the control group are 

on average sicker and more likely to die.   
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Although IV methods have been recommended as a tool for CER using observational data, there 

is a consensus that more research on the validity of IV in CER is needed, particularly concerning 

violations of the second IV assumption.
2,5,26

  To date there has been no critical systematic review 

to identify commonly used instrumental variables and assess the plausibility of the IV 

assumptions.  While the second IV assumption is technically unverifiable, the identification of 

IV-outcome confounders through other sources provides evidence that an IV estimate may be 

biased.  Few researchers go beyond their own, often limited, data to look for IV-outcome 

confounders.
26

 

 

This is the first comprehensive review of the validity of IV methods used in CER.  In this study, 

we review relevant literature to identify IVs in CER, evaluate trends in the use of IVs in 

Figure 3.1: Instrumental Variable Assumptions

IV

= IV Assumption

= Violation of IV Assumption

IV-Outcome ConfoundingNo IV-Outcome Confounding

The IV method substitutes actual random assignment to treatment with an IV, a variable that predicts treatment assignment but is not related to all 
other factors that influence the outcome.  This method relies on two critical assumptions: (1) the IV is correlated with the actual treatment and (2) 
the association between the IV and the outcome is due only to the effect of the IV on treatment assignment, after control for observed variables.  
Hence, IV estimates of causal effects may be biased if the IV and outcome are directly related (i.e., violation of “exclusion restriction”) or if the 
IV and the outcome are related through an unadjusted IV-outcome confounder.

Treatment Outcome

IV

Treatment Outcome

IV-Outcome

Confounder
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published CER studies, and identify the existence and potential impact of IV-outcome 

confounders for commonly used IVs.  We provide the first published list of confounders that 

may compromise the validity of CER studies that use some of the most common IVs.  We 

conclude by assessing the limitations and potential of IV in CER and recommending the use of 

CER methods that rely on assumptions that are more transparent and less likely to bias results. 

 

Methods 

Study Selection 

We conducted a systematic review in PubMed, EconLit, PsychInfo, Social Services Abstracts, 

Social Sciences Citation Index, and Web of Science to identify IV CER studies that were 

published in an English-language, peer-reviewed journal through December 31, 2011 and 

conducted in the US and other industrialized countries.  See Appendix 3.1 for specific search 

terms.   

 

We used the Institute of Medicine’s broad definition of CER that is inclusive of both patient-

level clinical interventions and system-level health care policies.
1
  We included non-

interventional studies (e.g., a study on the association between school junk food exposure and 

obesity) if the topic was amenable to clinical interventions or policy changes and the study 

included health-related outcomes.  We excluded studies that were purely methodological, used 

simulated data, or applied IV methods in a RCT.  We also excluded studies that used Mendelian 

randomization as an IV to elucidate biological mechanisms of disease
27

 and studies that used IV 

to adjust for the effects of measurement error.
28
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Analysis of IV CER Studies 

We categorized all IV CER studies by year of publication, number of articles that cite the study, 

country, type of intervention, study population, type of IV, strength of IV, and outcome.  We 

measured the trend in use of IVs in published studies of CER by year. We also identified the 

most commonly used IV-outcome pairs.  

 

Identification of IV-Outcome Confounders 

IV-outcome confounders (hereafter also referred to as “confounders”) are variables that are 

related to both the IV and outcome of interest, conditional on measured covariates and the 

treatment assignment.  IV-outcome confounders violate the causal inference assumption that the 

IV is independent of potential outcomes 
29

 and suggest that the IV is not equivalent to random 

assignment.
8
  In our example, the confounder of rural residence is associated with numerous 

health and health care disadvantages that almost certainly affect clinical outcomes, regardless of 

treatment assignment, thus mediating an association between the relative distance IV and 

outcomes that does not pass through the treatment under study.  For the purposes of this paper, 

we included as IV-outcome confounders variables that are directly causally related to the 

outcome (e.g., receipt of another lifesaving treatment) or that mediate the pathway between the 

IV and the outcome (e.g., risk factors for the outcome, such as rurality).   

 

We employed multiple search strategies in PubMed and other databases to identify peer-

reviewed articles that provided evidence of confounding for the most commonly used IV-

outcome pairs.  For example we searched for studies that included both IV and outcome to 

identify covariates that are potential confounders.  We also used a two-step search strategy: we 
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searched for evidence of variables that are correlated with each IV, and then searched to 

determine if these variables are also correlated with the study outcome.  See Appendix 3.2 for 

specific search terms and strategies. 

 

We created a database of potential confounders for each IV-outcome pair that includes estimates, 

when available in the literature, of the size and direction of the IV-confounder relationship and 

the outcome-confounder relationship.  We included univariate and multivariate (i.e., adjusted) 

estimates of association, with a preference for the latter. 

 

We determined which confounders are likely to introduce the most bias, taking into account the 

probable direction and size of the bias and the extent of evidence in the literature.  We re-

reviewed the IV CER articles to determine what percent of studies controlled for these major 

confounders.  

 

Analysis of Bias  

We estimated the direction and size of the bias introduced by potential confounders.  The 

asymptotic bias of the IV estimator with a single confounder can be obtained from a simple 

equation of the coefficients of three relationships [Figure 3.1]:  

 

Bias = outcome-confounder relationship * 
IV-confounder relationship

IV-treatment relationship
 

 

See Brookhart et al. (2007)
 
for a more technical explanation of the IV estimator and bias 

calculation.
30
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We determined the likely direction of the bias introduced by each confounder, which is the sign 

of the IV-confounder relationship multiplied by the sign of the outcome-confounder relationship 

(assuming the IV-treatment relationship is always positive).  The interpretation of the bias is 

dependent on the direction of the treatment effect.  We assume that a positive bias overstates the 

benefit of the treatment and a negative bias underestimates the treatment effect (i.e., biases 

towards the null).  Since the size of the bias is study-specific, we measured bias in the context of 

one study to demonstrate how this analysis can be applied in practice (described in discussion 

section).  

 

Results 

Systematic Review 

A total of 1,024 studies were reviewed and 187 met our eligibility criteria [Figure 3.2; see 

Appendix 3.3 for database of all IV CER studies].  Use of IV methods in CER studies has 

accelerated since the early 1990s [Figure 3.3], with a large spike in US-based studies in 2010 and 

2011, likely due to increased federal funding for CER as part of the economic stimulus in 2009.
3
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1785 Articles identified using search strategy

837 Excluded (did not meet 
eligibility criteria)

187 Studies included in analysis

761 Duplicates removed (listed in 
multiple databases)

1024 Articles reviewed

Figure 3.2: Systematic Review Results
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Over half (60.9%) of the IV CER studies used at least one of the four most common IV 

categories – regional variation (26.2% of studies), distance to facility (20.3%), facility variation 

(11.8%), and physician variation (7.5%) [Table 3.1, Appendix 3.4].  Mortality was the most 

common outcome for each of the top four IV categories [Appendix 3.4].  We focused on these 

most common IV-outcome pairs in the subsequent analyses.  
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Table 3.1: Description of the Four Most Commonly Used IV Categories  
 

IV 

Category 

 

Number of 

Studies 
 a
 

How IV assigns to 

treatment status
 b
 

How IV defines 

treatment status 
b
 

Example of IV 

treatment assignment
 b

 

Distance to 

Facility  

 

38
 
(20.3%)

 
Distance

c
 from 

patient’s residence 

to facility of 

interest 
d
 

Facility-level: high vs. 

low treatment rate, 

existence of specialty 

provider or unit, special 

designation (e.g., 

trauma, teaching) 

Patient resides closer to 

a hospital with a high 

cardiac catheterization 

rate is assigned by IV as 

treated 

Regional 

Variation 

 

49 (26.2%) Treatment patterns 

(e.g., local practice 

styles) in region
e
 

where patient lives 

or is treated  

Region-level: high vs. 

low treatment rate, 

policies that impact 

practices in region, 

provider supply or 

market share  

Patient resides in an 

area with a high cardiac 

catheterization rate is 

assigned by IV as 

treated 

Facility  

Variation 

 

22 (11.8%) Treatment patterns 

(e.g., local practice 

styles) in facility 

where patient is 

treated
d
 

Facility-level: high vs. 

low treatment rate, 

procedure volume, 

provision of specific 

services, indicator of 

quality measures 

Patient is treated in 

hospital with a high 

cardiac catheterization 

rate is assigned by IV as 

treated 

Provider 

Variation
f
 

 

14 (7.5%) Treatment patterns 

(e.g., preference) of 

treating physician 

Physician-level: high 

vs. low treatment rate, 

most recent prior 

prescription in the 

therapeutic area to a 

new patient 

Patient is treated by 

physician with a high 

cardiac catheterization 

rate is assigned by IV as 

treated 

a  
Some studies used IVs from multiple categories and are therefore counted more than once. Percent is of 187 total 

IV-CER studies.   
b
 The “treatment” referred to here is not actual receipt of the treatment.  It refers to the IV assignment to the 

treatment group. 
c  

Distance can be measured in absolute or relative
 
terms and using various methods (e.g., straight line/Euclidian 

distance, travel time).  Just over half (21 studies; 55.3%) of distance IVs used relative, or differential, distance to 

predict treatment (e.g., the distance from patient’s home to a high procedure rate hospital minus the distance from a 

patient’s home to a low procedure rate hospital).  The rest of the studies used absolute distance (e.g., the distance to 

patient’s home to high procedure hospital). 
d 
Facility is often a hospital. 
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We found that while most (89%) IV CER studies in our sample assessed the strength of the IV 

[Appendix 3.3], there was wide variation in the strength of the IVs, and many IVs were weak 

predictors of actual treatment. 

 

IV-Outcome Confounders 

We found overwhelming evidence of IV-outcome confounders that call into question the validity 

of the IV CER studies’ conclusions [Table 3.2, Appendix 3.5].  Major confounders of the four 

most-commonly used IVs and mortality include:  patient’s race, socioeconomic status, risk 

factors for mortality, health status, and urban/rural residency; and facility and procedure volume.  

Many other confounders are less researched but well recognized, such as factors associated with 

time-to-treatment (e.g., door- to-needle time), receipt of other treatments (e.g., lifesaving 

medications), and facility characteristics (e.g., teaching hospital status) that are associated with 

mortality.   
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Table 3.2: Confounders for Most Commonly Used IVs in CER and Mortality 

IV 

Category 

Confounder 

Category 

Confounders
a
 

Distance to Facility (e.g., Hospital)
b
 

 Geographical location urban/rural; region of the US, absolute distance (for relative 

difference) 

 Patient characteristics race, education, income, age, insurance status, health status, 

comorbidities, health behaviors 

 Treatment 

characteristics 

receipt of other treatments, time-to-treatment, transfer status 

 Facility characteristics all “facility characteristics” confounders from facility variation below 

apply 

Regional Variation 

 Geographical location urban/rural; region of the US 

 Patient characteristics race, education, income, age, insurance status, health status, 

comorbidities, health behaviors 

 Provider supply number of hospital beds or nursing homes, procedure volume, facility 

volume 

 Technology adoption 

and utilization 

invasive cardiac procedures, radical prostatectomies, prescribing 

behavior, practice patterns 

 Treatment 

characteristics 

receipt of other treatments, time-to-treatment, transfer status 

 Facility characteristics all “facility characteristics” confounders from facility variation apply 

Facility (e.g., Hospital) Variation 

 Geographical location urban/rural 

 Patient characteristics race, education, income, age, insurance status, health status, 

comorbidities, health behaviors 

 Facility characteristics procedure volume, facility volume, clinical services offered, 

departments, teaching status, profit status, trauma designation, delivery 

system type, practice type  

 Treatment 

characteristics 

receipt of other treatments 

Provider Variation 

 Physician 

characteristics 

age, gender, specialty, board certification, physician volume 

 Patient characteristics race, education, income, age, insurance status, health status, 

comorbidities, health behaviors 

 Treatment 

characteristics 

receipt of other treatments 

 Health system 

characteristics 

reimbursement policies, all regional variation and facility variation 

confounders apply 
a
 See Appendix 3.5 for list of references that provided evidence of confounding. 

b 
These confounders are applicable to both absolute and relative distance IVs, unless noted otherwise. 
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Control for Confounding in Current Literature  

We reviewed the studies that used one of the top four categories of IVs and had a mortality 

outcome to determine if the authors controlled for major confounders.  All studies in our review 

failed to control for one or more of the major, identified confounders in Table 3.3 [see Appendix 

3.6 for results by individual study].  While the majority of IV CER studies (by IV category) 

controlled for at least one patient health status variable and race, less than half of the studies in 

each IV category controlled for income, education, urban/rural location and volume [Table 3.3].  

Notable exceptions appeared among regional variation IV studies: 70% controlled for patient 

income and 52% controlled for urban/rural location.   

 

Table 3.3: Percent of Studies that Controlled for Major Confounders by IV 

Category
a
 

 Instrumental Variable Category 

Confounders 

Distance 

(n=27 

studies) 

Regional 

Variation 

(n=23) 

Facility 

Variation 

(n=14) 

Physician 

Variation 

(n=8)
 
 

Patient Race 77.78% 69.57% 78.57% 62.50% 

Patient Income 40.74% 69.57% 14.29% 25.00% 

Patient Education 11.11% 21.74% 14.29% 0.00% 

Patient Co-morbidities/ 

health status 
100.00% 82.61% 85.71% 100.00% 

Urban/Rural (patient 

residence or facility 

location) 

44.44% 52.17% 7.14% 12.50% 

Volume (procedure)
b
 3.85% 0.00% 27.27% 12.50% 

Volume (facility)
b
 40.74% 40.91% 38.46% 12.50% 

a 
Analysis limited to studies that use one of the four most commonly-used IVs and a mortality outcome. 

b
 We removed from the denominator studies that used procedure or facility volume as an IV or independent variable.  

 

 

Direction of Bias  

For most confounders, we found evidence that suggests either a positive or a negative bias, 

leading to an overestimation or underestimation of the treatment effect, respectively [Appendices 
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7-10].  It is difficult to make generalized statements about the direction of the bias introduced by 

confounders since the evidence is often mixed and context-dependent.  Similarly, the size of the 

bias introduced by a confounder is study-specific and therefore difficult to generalize. 

For instance, geography confounds all of the top four IVs, but the direction of bias is not clear. 

Patients living in urban areas are more likely to live closer to any health facility,
31-33 

including a 

cardiac catheterization hospital,
16

 than patients residing in rural areas.  In the introduction, we 

provided a simplified example showing how relatively poor health in rural regions could cause a 

positive bias (i.e., overestimation of treatment effect).  However, depending on the region of the 

country and study population, urban or rural residents (compared to suburban residents) have 

more risk factors for poor health and higher mortality.
23-25,32-42  

In areas where rural mortality is 

relatively high, such as predominately white, low-income Appalachia,
23

 a distance IV may 

overestimate the treatment effect since relatively healthier patients live closer to the hospital.  

Conversely, in areas where urban mortality is relatively high, such as high-density black cities,
23 

a distance IV may underestimate the treatment effect since sicker patients live closer to the 

hospital. 

 

For some confounders, the direction of the bias is more predictable.  In many cases, the 

confounders cause an overestimation of the treatment effect since various forms of advantage are 

correlated with each other.  For example, patients who live closer to a hospital – and are 

therefore assigned to the “treatment group” via a distance to hospital IV – are more likely to get 

the treatment of interest and receive other time-sensitive, life-saving treatments that improve 

survival.
43

  Similarly, patients who receive one innovative treatment, such as cardiac 

catheterization, may be more likely to receive other aspects of high-quality care (e.g., in teaching 
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hospitals
44,45

).  These confounders will result in an overestimation of the beneficial effect of the 

treatment – the confounded IV estimate incorrectly attributes the positive effect of the other 

treatments and aspects of care to the treatment of interest. 

 

Conclusions 

IV analysis is an increasingly popular method for CER.  IVs are popular for CER since, unlike 

other statistical methods that control for observed confounders (e.g., propensity score), IVs 

theoretically control for both observed and unobserved confounders.  However, it is likely that 

most effect estimates from IV analyses in observational CER studies are biased by the failure to 

adjust for IV-outcome confounders.   

 

We found overwhelming evidence of confounders of the four most popular IVs that call into 

question the trustworthiness of the results of IV CER studies.  The identification of IV-outcome 

confounders suggests that key IV assumptions are not often met and, therefore, in these cases, 

the IV method should not be used.  We found it difficult to make general conclusions about the 

direction and size of the bias introduced by most confounders since the evidence was often 

conflicting and context-dependent.  Thus, even the direction of the bias in any study may be hard 

to predict unless the confounder is measured in the study population. As we have shown, all 64 

studies that used one of the four most popular IVs failed to adjust for one or more major 

confounders affecting mortality. 

 

We demonstrated how to measure the direction and size of the bias introduced by a confounder 

using an example motivated by our review of the literature in Appendix 3.11.  The degree of bias 
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was highly dependent on the direction and size of the confounder-IV and confounder-outcome 

relationships and the strength of the instrument (i.e., the relationship between the IV and the 

treatment of interest).  A confounded IV can lead to overestimation, underestimation or complete 

reversal of the true treatment effect and a “weak” IV will inflate any residual bias.  Additionally, 

the residual association between the IV and the treatment assignment may be greatly weakened if 

the IV-outcome confounders are measured and controlled for.  For instance, the association 

between relative distance to a cardiac catheterization hospital and actual receipt of treatment 

might be much smaller if we control for rurality.  If most rural residents live closer to a non-

catheterization hospital and most urban residents live closer to a catheterization hospital, there 

will be less variation within each group (i.e., rural and urban populations), leaving little 

predictive value of the distance IV. 

 

Some confounders have particularly high potential to introduce bias.  For instance, geography, 

race and income are strongly linked to mortality:
24,25,33,46  

in the US, the gap between race-county 

combinations with the highest and lowest life expectancies is over 35 years.
33

  Our results 

showing that the most popular IVs in CER are correlated with these variables provide strong 

evidence of confounding. 

 

The validity of IV analysis might be improved if IV-outcome confounders were measured and 

controlled for.  However, all studies in our analysis failed to control for one or more major 

confounders.  And, some confounders (e.g., race
47

) are difficult to measure.  Controlling for 

inadequately measured confounders will still result in residual bias.  
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We encourage the use of multiple observational analytic methods to examine the robustness of 

IV study results.  Many of the IV-CER studies used complementary approaches, such as adjusted 

regression and propensity score models.  However, treatment-outcome confounding is an issue 

common to all observational methods used in CER.  Many CER studies rely on electronic 

healthcare databases or databases that are not created for research purposes.  These datasets often 

do not include information on important confounders, such as patient demographic and health 

system characteristics.  More comprehensive data sources are needed for all observational CER 

studies, including systematic reviews of confounders in previous studies as in this report. 

 

Our findings cast uncertainty about the validity of the most popular IVs used in CER.  However, 

confounding is generally not an issue when the instrument is random assignment, as is the case 

with randomized encouragement designs (e.g., IV is a randomized reminder sent to physicians to 

offer the flu shot).  The IV estimator can be used with the most confidence when the 

encouragement is truly randomized and also with some confidence when the encouragement is 

introduced through a policy (differing over place, time or population subgroup) that can be 

reasonably regarded as exogenous.  Yet, randomized encouragement and policy change IVs may 

be weak instruments (i.e., few “encouraged” patients actually receive treatment or physicians 

ignore the reminders) since they often rely on behavior change and patient compliance.   

 

There are several limitations to this study, all of which were created by our attempts to maintain 

a feasible study scope.  First, our search was not intended to produce an exhaustive list of all 

potential IV-outcome confounders, nor of all studies that provide empirical evidence in support 

of each confounder.  Our list of confounders is likely the “tip of the iceberg,” resulting in an 
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under-estimation of bias in IV studies.  Second, we limited our confounder search to the most 

common IV categories and therefore do not provide evidence regarding confounders for the 

other IVs.  Third, the studies that we cite as evidence of confounders include cross-sectional 

studies of association that do not control for all possible confounders.  However, for our 

purposes, exact estimates of bias due to each confounder were less important than knowing that 

confounding was present.  Moreover, it is likely that a confounded estimate is actually measuring 

the joint impact of the confounder and other unmeasured variables, which would also qualify as 

confounders (e.g., the confounder of race is also measuring income and education).  Finally, the 

impact of a confounder, if any, is study-specific and depends on the definition of the IV, the 

other variables that are controlled for in the model, the intervention, and the patient population.  

The IV-outcome associations we identified may also not be generalizable to all IV CER studies. 

Our goal was to provide general evidence of potential confounders and to demonstrate how these 

confounders could bias the results.  It is the responsibility of researchers to assess confounding in 

specific IV studies.
7 

 

 

In conclusion, we have observed that the use of IV in CER is often a reaction to limited 

resources and data availability.  In this case, the questionable validity of popular IVs in CER 

suggests that IV analysis may produce inaccurate information for evidence-based decision-

making in health care.  While no observational method can completely eliminate confounding, 

we found that most IV CER studies are over-confident in assuming that confounding is not 

present and we believe that IVs should be used rarely in CER because their results are often 

biased.  We recommend approaches that better control for confounding and other biases, such as 
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experimental and other quasi-experimental designs,
4
 in order to generate valid CER evidence to 

support more rational allocation of medical resources.  
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Appendix 1 Table 1. List of Medicines by ATC 

 

 

Therapeutic Area Classification for Analysis Molecule Name ATC2 Classification ATC4 Classification

DIABETES

Antidiabetics ACARBOSE A10 (DRUGS USED IN DIABETES) A10L0 (A-GLUCOSIDASE INH A-DIAB) 

Antidiabetics BUFORMIN A10 (DRUGS USED IN DIABETES) A10J1 (BIGUANIDE A-DIABS PLAIN) 

Antidiabetics CHLORPROPAMIDE A10 (DRUGS USED IN DIABETES) A10H0 (SULPHONYLUREA A-DIABS) 

Antidiabetics EXENATIDE A10 (DRUGS USED IN DIABETES) A10S0 (GLP-1 AGONIST A-DIABS) 

Antidiabetics GLIBENCLAMIDE A10 (DRUGS USED IN DIABETES) A10H0 (SULPHONYLUREA A-DIABS ) 

Antidiabetics GLIBENCLAMIDE#METFORMIN A10 (DRUGS USED IN DIABETES) A10J2 (BIGUANIDE & S-UREA COMBS) 

Antidiabetics GLICLAZIDE A10 (DRUGS USED IN DIABETES) A10H0 (SULPHONYLUREA A-DIABS) 

Antidiabetics GLICLAZIDE#METFORMIN A10 (DRUGS USED IN DIABETES) A10J2 (BIGUANIDE & S-UREA COMBS) 

Antidiabetics GLIMEPIRIDE A10 (DRUGS USED IN DIABETES) A10H0 (SULPHONYLUREA A-DIABS) 

Antidiabetics GLIMEPIRIDE#METFORMIN A10 (DRUGS USED IN DIABETES) A10J2 (BIGUANIDE & S-UREA COMBS) 

Antidiabetics GLIMEPIRIDE#ROSIGLITAZONE A10 (DRUGS USED IN DIABETES) A10K2 (GLITAZONE & S-UREA COMBS) 

Antidiabetics GLIPIZIDE A10 (DRUGS USED IN DIABETES) A10H0 (SULPHONYLUREA A-DIABS) 

Antidiabetics GLIQUIDONE A10 (DRUGS USED IN DIABETES) A10H0 (SULPHONYLUREA A-DIABS) 

Antidiabetics METFORMIN A10 (DRUGS USED IN DIABETES) A10J1 (BIGUANIDE A-DIABS PLAIN) 

Antidiabetics METFORMIN#PIOGLITAZONE A10 (DRUGS USED IN DIABETES) A10K3 (GLITAZONE & BIGUAN COMBS) 

Antidiabetics METFORMIN#ROSIGLITAZONE A10 (DRUGS USED IN DIABETES) A10K3 (GLITAZONE & BIGUAN COMBS) 

Antidiabetics METFORMIN#SITAGLIPTIN A10 (DRUGS USED IN DIABETES) A10N3 (DPP-IV INH & BIGUAN COMB) 

Antidiabetics METFORMIN#VILDAGLIPTIN A10 (DRUGS USED IN DIABETES) A10N3 (DPP-IV INH & BIGUAN COMB) 

Antidiabetics PIOGLITAZONE A10 (DRUGS USED IN DIABETES) A10K1 (GLITAZONE A-DIABS PLAIN) 

Antidiabetics REPAGLINIDE A10 (DRUGS USED IN DIABETES) A10M1 (GLINIDE A-DIABS PLAIN) 

Antidiabetics ROSIGLITAZONE A10 (DRUGS USED IN DIABETES) A10K1 (GLITAZONE A-DIABS PLAIN) 

Antidiabetics SITAGLIPTIN A10 (DRUGS USED IN DIABETES) A10N1 (DPP-IV INH A-DIAB PLAIN) 

Antidiabetics VILDAGLIPTIN A10 (DRUGS USED IN DIABETES) A10N1 (DPP-IV INH A-DIAB PLAIN) 

Antidiabetics VOGLIBOSE A10 (DRUGS USED IN DIABETES) A10L0 (A-GLUCOSIDASE INH A-DIAB) 

Insulins INSULIN ASPART A10 (DRUGS USED IN DIABETES) A10C1 (H INSUL+ANG FAST ACT) 

Insulins INSULIN ASPART#INSULIN ASPART PROTAMINE CRYSTALLINE A10 (DRUGS USED IN DIABETES) A10C3 (H INSUL+ANG INT+FAST ACT) 

Insulins INSULIN DETEMIR A10 (DRUGS USED IN DIABETES) A10C5 (H INSUL+ANG LONG ACT) 

Insulins INSULIN GLARGINE A10 (DRUGS USED IN DIABETES) A10C5 (H INSUL+ANG LONG ACT) 

Insulins INSULIN HUMAN BASE A10 (DRUGS USED IN DIABETES) A10C1 (H INSUL+ANG FAST ACT) 

Insulins INSULIN HUMAN BASE#INSULIN HUMAN ISOPHANE A10 (DRUGS USED IN DIABETES) A10C3 (H INSUL+ANG INT+FAST ACT) 

Insulins INSULIN HUMAN ISOPHANE A10 (DRUGS USED IN DIABETES) A10C2 (H INSUL+ANG INTERMED ACT) 

Insulins INSULIN HUMAN ZINC SUSPENSION (COMPOUND) A10 (DRUGS USED IN DIABETES) A10C4 (H INSUL+ANG INT+LONG ACT) 

Insulins INSULIN HUMAN ZINC SUSPENSION (CRYSTALLINE) A10 (DRUGS USED IN DIABETES) A10C5 (H INSUL+ANG LONG ACT) 

Insulins INSULIN LISPRO A10 (DRUGS USED IN DIABETES) A10C1 (H INSUL+ANG FAST ACT) 

Insulins INSULIN LISPRO#INSULIN LISPRO PROTAMINE A10 (DRUGS USED IN DIABETES) A10C1 (H INSUL+ANG FAST ACT ) 

Insulins INSULIN PORCINE BASE A10 (DRUGS USED IN DIABETES) A10D0 (ANIMAL INSULINS) 

Insulins INSULIN PORCINE ISOPHANE A10 (DRUGS USED IN DIABETES) A10D0 (ANIMAL INSULINS) 

Insulins INSULIN PORCINE ZINC SUSPENSION (COMPOUND) A10 (DRUGS USED IN DIABETES) A10D0 (ANIMAL INSULINS ) 
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Appendix 1 Table 1. List of Medicines by ATC (continued) 

 

  

Therapeutic Area Classification for Analysis Molecule Name ATC2 Classification ATC4 Classification

CARIOVASCULAR DISEASE

Antihypertensives AJMALICINE#BUTIZIDE#RESCINNAMINE#RESERPINE C2 (ANTIHYPERTENSIVES) C2D0 (RAUWOLF ALK+OTH COM+DIUR) 

Antihypertensives BUNAZOSIN C2 (ANTIHYPERTENSIVES) C2A2 (ANTIHYPER.PL MAINLY PERI) 

Antihypertensives CLONIDINE C2 (ANTIHYPERTENSIVES) C2A1 (ANTIHYPER.PL MAINLY CENT) 

Antihypertensives CLOPAMIDE#DIHYDROERGOCRISTINE#RESERPINE C2 (ANTIHYPERTENSIVES) C2D0 (RAUWOLF ALK+OTH COM+DIUR) 

Antihypertensives CLOPAMIDE#RESERPINE C2 (ANTIHYPERTENSIVES) C2D0 (RAUWOLF ALK+OTH COM+DIUR) 

Antihypertensives DIHYDRALAZINE C2 (ANTIHYPERTENSIVES) C2A2 (ANTIHYPER.PL MAINLY PERI) 

Antihypertensives DOXAZOSIN C2 (ANTIHYPERTENSIVES) C2A2 (ANTIHYPER.PL MAINLY PERI) 

Antihypertensives HYDRALAZINE C2 (ANTIHYPERTENSIVES) C2A2 (ANTIHYPER.PL MAINLY PERI) 

Antihypertensives HYDRALAZINE#HYDROCHLOROTHIAZIDE#RESERPINE C2 (ANTIHYPERTENSIVES) C2B2 (A-HYPERT(N V)MAINLY PERI) 

Antihypertensives KETANSERIN C2 (ANTIHYPERTENSIVES) C2A2 (ANTIHYPER.PL MAINLY PERI) 

Antihypertensives METHYLDOPA C2 (ANTIHYPERTENSIVES) C2A1 (ANTIHYPER.PL MAINLY CENT) 

Antihypertensives MINOXIDIL C2 (ANTIHYPERTENSIVES) C2A2 (ANTIHYPER.PL MAINLY PERI) 

Antihypertensives NITROPRUSSIDE C2 (ANTIHYPERTENSIVES) C2A2 (ANTIHYPER.PL MAINLY PERI) 

Antihypertensives PRAZOSIN C2 (ANTIHYPERTENSIVES) C2A2 (ANTIHYPER.PL MAINLY PERI) 

Antihypertensives RESERPINE C2 (ANTIHYPERTENSIVES) C2C0 (RAUWLF ALK+OTH A-HY HERB) 

Antihypertensives RILMENIDINE C2 (ANTIHYPERTENSIVES) C2A1 (ANTIHYPER.PL MAINLY CENT) 

Antihypertensives 1-PROPANOL C7 (BETA BLOCKING AGENTS) C7A0 (B-BLOCKING AGENTS,PLAIN) 

Antihypertensives AMILORIDE#HYDROCHLOROTHIAZIDE#TIMOLOL C7 (BETA BLOCKING AGENTS) C7B1 (B-BLOCK COMB HYPOT/DIURT) 

Antihypertensives ATENOLOL C7 (BETA BLOCKING AGENTS) C7A0 (B-BLOCKING AGENTS,PLAIN) 

Antihypertensives ATENOLOL#CHLORTALIDONE C7 (BETA BLOCKING AGENTS) C7B1 (B-BLOCK COMB HYPOT/DIURT) 

Antihypertensives BETAXOLOL C7 (BETA BLOCKING AGENTS) C7A0 (B-BLOCKING AGENTS,PLAIN) 

Antihypertensives BISOPROLOL C7 (BETA BLOCKING AGENTS) C7A0 (B-BLOCKING AGENTS,PLAIN) 

Antihypertensives BISOPROLOL#HYDROCHLOROTHIAZIDE C7 (BETA BLOCKING AGENTS) C7B1 (B-BLOCK COMB HYPOT/DIURT) 

Antihypertensives CARVEDILOL C7 (BETA BLOCKING AGENTS) C7A0 (B-BLOCKING AGENTS,PLAIN) 

Antihypertensives CLOPAMIDE#PINDOLOL C7 (BETA BLOCKING AGENTS) C7B1 (B-BLOCK COMB HYPOT/DIURT) 

Antihypertensives LABETALOL C7 (BETA BLOCKING AGENTS) C7A0 (B-BLOCKING AGENTS,PLAIN) 

Antihypertensives METOPROLOL C7 (BETA BLOCKING AGENTS) C7A0 (B-BLOCKING AGENTS,PLAIN) 

Antihypertensives NEBIVOLOL C7 (BETA BLOCKING AGENTS) C7A0 (B-BLOCKING AGENTS,PLAIN ) 

Antihypertensives OXPRENOLOL C7 (BETA BLOCKING AGENTS) C7A0 (B-BLOCKING AGENTS,PLAIN ) 

Antihypertensives PINDOLOL C7 (BETA BLOCKING AGENTS) C7A0 (B-BLOCKING AGENTS,PLAIN ) 

Antihypertensives PROPRANOLOL C7 (BETA BLOCKING AGENTS) C7A0 (B-BLOCKING AGENTS,PLAIN ) 

Antihypertensives SOTALOL C7 (BETA BLOCKING AGENTS                    ) C7A0 (B-BLOCKING AGENTS,PLAIN ) 

Antihypertensives AMLODIPINE C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 

Antihypertensives ATENOLOL#NIFEDIPINE C8 (CALCIUM ANTAGONISTS) C8B2 (CALC ANTAG/B BLOCKR COMB) 

Antihypertensives BARNIDIPINE C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 

Antihypertensives DILTIAZEM C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 

Antihypertensives FELODIPINE C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 
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Appendix 1 Table 1. List of Medicines by ATC (continued) 

 

  

Therapeutic Area Classification for Analysis Molecule Name ATC2 Classification ATC4 Classification

Antihypertensives GALLOPAMIL C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 

Antihypertensives ISRADIPINE C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 

Antihypertensives LACIDIPINE C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 

Antihypertensives LERCANIDIPINE C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 

Antihypertensives MANIDIPINE C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 

Antihypertensives MIBEFRADIL C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 

Antihypertensives NICARDIPINE C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 

Antihypertensives NIFEDIPINE C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 

Antihypertensives NISOLDIPINE C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 

Antihypertensives NITRENDIPINE C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 

Antihypertensives VERAPAMIL C8 (CALCIUM ANTAGONISTS) C8A0 (CALCIUM ANTAGONIST PLAIN) 

Antihypertensives AMILORIDE C3 (DIURETICS) C3A1 (POT SPARING AGENTS PLAIN) 

Antihypertensives AMILORIDE#HYDROCHLOROTHIAZIDE C3 (DIURETICS) C3A5 (POT SPARING+THIAZ COMBS ) 

Antihypertensives BAROSMA BETULINA#CAPSICUM#METHYLENE BLUE#URGINEA SCILLAC3 (DIURETICS) C3A6 (OTHER DIURETICS) 

Antihypertensives BAROSMA BETULINA#HYOSCYAMUS ALBUS#POTASSIUM C3 (DIURETICS) C3A6 (OTHER DIURETICS) 

Antihypertensives BENDROFLUMETHIAZIDE#POTASSIUM C3 (DIURETICS) C3A3 (THIAZIDE+ANALOGUE PLAIN) 

Antihypertensives BUMETANIDE C3 (DIURETICS) C3A2 (LOOP DIURETICS PLAIN) 

Antihypertensives FUROSEMIDE C3 (DIURETICS) C3A2 (LOOP DIURETICS PLAIN) 

Antihypertensives HYDROCHLOROTHIAZIDE C3 (DIURETICS) C3A3 (THIAZIDE+ANALOGUE PLAIN) 

Antihypertensives HYDROCHLOROTHIAZIDE#TRIAMTERENE C3 (DIURETICS) C3A5 (POT SPARING+THIAZ COMBS) 

Antihypertensives INDAPAMIDE C3 (DIURETICS) C3A3 (THIAZIDE+ANALOGUE PLAIN) 

Antihypertensives SPIRONOLACTONE C3 (DIURETICS) C3A1 (POT SPARING AGENTS PLAIN) 

Antihypertensives TORASEMIDE C3 (DIURETICS) C3A2 (LOOP DIURETICS PLAIN) 

Antihypertensives TRIPAMIDE C3 (DIURETICS) C3A3 (THIAZIDE+ANALOGUE PLAIN) 

Antihypertensives XIPAMIDE C3 (DIURETICS) C3A3 (THIAZIDE+ANALOGUE PLAIN) 

Antihypertensives ALISKIREN C9 (RENIN-ANGIOTEN SYS AGENT) C9X0 (OTH RENIN-ANGIOTEN AGENT) 

Antihypertensives ALISKIREN#HYDROCHLOROTHIAZIDE C9 (RENIN-ANGIOTEN SYS AGENT) C9X0 (OTH RENIN-ANGIOTEN AGENT) 

Antihypertensives AMLODIPINE#VALSARTAN C9 (RENIN-ANGIOTEN SYS AGENT) C9D3 (AT2 ANTG COMB CALC ANTAG) 

Antihypertensives CANDESARTAN CILEXETIL C9 (RENIN-ANGIOTEN SYS AGENT) C9C0 (ANGIOTEN-II ANTAG, PLAIN) 

Antihypertensives CANDESARTAN CILEXETIL#HYDROCHLOROTHIAZIDE C9 (RENIN-ANGIOTEN SYS AGENT) C9D1 (AT2 ANTG COMB C2 &/O DIU) 

Antihypertensives CAPTOPRIL C9 (RENIN-ANGIOTEN SYS AGENT) C9A0 (ACE INHIBITORS PLAIN) 

Antihypertensives CILAZAPRIL C9 (RENIN-ANGIOTEN SYS AGENT) C9A0 (ACE INHIBITORS PLAIN) 

Antihypertensives DELAPRIL C9 (RENIN-ANGIOTEN SYS AGENT) C9A0 (ACE INHIBITORS PLAIN) 

Antihypertensives ENALAPRIL C9 (RENIN-ANGIOTEN SYS AGENT) C9A0 (ACE INHIBITORS PLAIN) 

Antihypertensives EPROSARTAN C9 (RENIN-ANGIOTEN SYS AGENT) C9C0 (ANGIOTEN-II ANTAG, PLAIN) 

Antihypertensives FOSINOPRIL C9 (RENIN-ANGIOTEN SYS AGENT) C9A0 (ACE INHIBITORS PLAIN) 

Antihypertensives FOSINOPRIL#HYDROCHLOROTHIAZIDE C9 (RENIN-ANGIOTEN SYS AGENT) C9B1 (ACE INH COMB+A-HYP/DIUR) 

Antihypertensives HYDROCHLOROTHIAZIDE#IRBESARTAN C9 (RENIN-ANGIOTEN SYS AGENT) C9D1 (AT2 ANTG COMB C2 &/O DIU) 
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Appendix 1 Table 1. List of Medicines by ATC (continued) 

 

 

Therapeutic Area Classification for Analysis Molecule Name ATC2 Classification ATC4 Classification

Antihypertensives HYDROCHLOROTHIAZIDE#LOSARTAN C9 (RENIN-ANGIOTEN SYS AGENT) C9D1 (AT2 ANTG COMB C2 &/O DIU) 

Antihypertensives HYDROCHLOROTHIAZIDE#OLMESARTAN MEDOXOMIL C9 (RENIN-ANGIOTEN SYS AGENT) C9D1 (AT2 ANTG COMB C2 &/O DIU) 

Antihypertensives HYDROCHLOROTHIAZIDE#QUINAPRIL C9 (RENIN-ANGIOTEN SYS AGENT) C9B1 (ACE INH COMB+A-HYP/DIUR) 

Antihypertensives HYDROCHLOROTHIAZIDE#RAMIPRIL C9 (RENIN-ANGIOTEN SYS AGENT) C9B1 (ACE INH COMB+A-HYP/DIUR) 

Antihypertensives HYDROCHLOROTHIAZIDE#TELMISARTAN C9 (RENIN-ANGIOTEN SYS AGENT) C9D1 (AT2 ANTG COMB C2 &/O DIU) 

Antihypertensives HYDROCHLOROTHIAZIDE#VALSARTAN C9 (RENIN-ANGIOTEN SYS AGENT) C9D1 (AT2 ANTG COMB C2 &/O DIU) 

Antihypertensives IMIDAPRIL C9 (RENIN-ANGIOTEN SYS AGENT) C9A0 (ACE INHIBITORS PLAIN) 

Antihypertensives INDAPAMIDE#PERINDOPRIL C9 (RENIN-ANGIOTEN SYS AGENT) C9B1 (ACE INH COMB+A-HYP/DIUR) 

Antihypertensives IRBESARTAN C9 (RENIN-ANGIOTEN SYS AGENT) C9C0 (ANGIOTEN-II ANTAG, PLAIN) 

Antihypertensives LISINOPRIL C9 (RENIN-ANGIOTEN SYS AGENT) C9A0 (ACE INHIBITORS PLAIN ) 

Antihypertensives LOSARTAN C9 (RENIN-ANGIOTEN SYS AGENT) C9C0 (ANGIOTEN-II ANTAG, PLAIN) 

Antihypertensives OLMESARTAN MEDOXOMIL C9 (RENIN-ANGIOTEN SYS AGENT) C9C0 (ANGIOTEN-II ANTAG, PLAIN) 

Antihypertensives PERINDOPRIL C9 (RENIN-ANGIOTEN SYS AGENT) C9A0 (ACE INHIBITORS PLAIN ) 

Antihypertensives QUINAPRIL C9 (RENIN-ANGIOTEN SYS AGENT) C9A0 (ACE INHIBITORS PLAIN ) 

Antihypertensives RAMIPRIL C9 (RENIN-ANGIOTEN SYS AGENT) C9A0 (ACE INHIBITORS PLAIN) 

Antihypertensives TELMISARTAN C9 (RENIN-ANGIOTEN SYS AGENT) C9C0 (ANGIOTEN-II ANTAG, PLAIN) 

Antihypertensives VALSARTAN C9 (RENIN-ANGIOTEN SYS AGENT) C9C0 (ANGIOTEN-II ANTAG, PLAIN) 

Cardiac Therapy ADENOSINE C1 (CARDIAC THERAPY) C1B0 (ANTIARRHYTHMICS) 

Cardiac Therapy AMIODARONE C1 (CARDIAC THERAPY) C1B0 (ANTIARRHYTHMICS) 

Cardiac Therapy AMRINONE C1 (CARDIAC THERAPY) C1F0 (POSITIVE INOTROPIC AGENT) 

Cardiac Therapy CAFFEINE#ETAMIVAN C1 (CARDIAC THERAPY) C1C1 (CARDIAC STM EX DOPAM AGT) 

Cardiac Therapy DIGITALIS PURPUREA C1 (CARDIAC THERAPY) C1A1 (CARDIAC GLYCOSIDES PLAIN) 

Cardiac Therapy DIGITOXIN C1 (CARDIAC THERAPY) C1A1 (CARDIAC GLYCOSIDES PLAIN) 

Cardiac Therapy DIGOXIN C1 (CARDIAC THERAPY) C1A1 (CARDIAC GLYCOSIDES PLAIN) 

Cardiac Therapy DISOPYRAMIDE C1 (CARDIAC THERAPY) C1B0 (ANTIARRHYTHMICS) 

Cardiac Therapy DOBUTAMINE C1 (CARDIAC THERAPY) C1C2 (CARDIAC DOPAMINERG AGENT) 

Cardiac Therapy DOPAMINE C1 (CARDIAC THERAPY) C1C2 (CARDIAC DOPAMINERG AGENT) 

Cardiac Therapy EPINEPHRINE C1 (CARDIAC THERAPY) C1C1 (CARDIAC STM EX DOPAM AGT) 

Cardiac Therapy ETAFEDRINE C1 (CARDIAC THERAPY) C1C1 (CARDIAC STM EX DOPAM AGT) 

Cardiac Therapy ETILEFRINE C1 (CARDIAC THERAPY) C1C1 (CARDIAC STM EX DOPAM AGT) 

Cardiac Therapy FLECAINIDE C1 (CARDIAC THERAPY) C1B0 (ANTIARRHYTHMICS) 

Cardiac Therapy GLYCINE MAX#UBIDECARENONE C1 (CARDIAC THERAPY) C1X0 (ALL OTHER CARDIAC PREPS) 

Cardiac Therapy ISOPRENALINE C1 (CARDIAC THERAPY) C1C1 (CARDIAC STM EX DOPAM AGT) 

Cardiac Therapy ISOSORBIDE DINITRATE C1 (CARDIAC THERAPY) C1E0 (NITRITES AND NITRATES) 

Cardiac Therapy ISOSORBIDE MONONITRATE C1 (CARDIAC THERAPY) C1E0 (NITRITES AND NITRATES) 

Cardiac Therapy IVABRADINE C1 (CARDIAC THERAPY) C1D0 (CORONRY THER EXC C AN+NI) 

Cardiac Therapy LIDOCAINE C1 (CARDIAC THERAPY) C1B0 (ANTIARRHYTHMICS) 

Cardiac Therapy MAGNESIUM#POTASSIUM#PROCAINE C1 (CARDIAC THERAPY) C1X0 (ALL OTHER CARDIAC PREPS) 
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Appendix 1 Table 1. List of Medicines by ATC (continued) 

 

  

Therapeutic Area Classification for Analysis Molecule Name ATC2 Classification ATC4 Classification

Cardiac Therapy METARAMINOL C1 (CARDIAC THERAPY) C1C1 (CARDIAC STM EX DOPAM AGT) 

Cardiac Therapy METILDIGOXIN C1 (CARDIAC THERAPY) C1A1 (CARDIAC GLYCOSIDES PLAIN) 

Cardiac Therapy MEXILETINE C1 (CARDIAC THERAPY) C1B0 (ANTIARRHYTHMICS) 

Cardiac Therapy MIDODRINE C1 (CARDIAC THERAPY) C1C1 (CARDIAC STM EX DOPAM AGT) 

Cardiac Therapy MILRINONE C1 (CARDIAC THERAPY) C1F0 (POSITIVE INOTROPIC AGENT) 

Cardiac Therapy NITROGLYCERIN C1 (CARDIAC THERAPY) C1E0 (NITRITES AND NITRATES) 

Cardiac Therapy NOREPINEPHRINE C1 (CARDIAC THERAPY) C1C1 (CARDIAC STM EX DOPAM AGT) 

Cardiac Therapy OXYFEDRINE C1 (CARDIAC THERAPY) C1D0 (CORONRY THER EXC C AN+NI) 

Cardiac Therapy PENTAERYTHRITYL TETRANITRATE C1 (CARDIAC THERAPY) C1E0 (NITRITES AND NITRATES) 

Cardiac Therapy PROCAINAMIDE C1 (CARDIAC THERAPY) C1B0 (ANTIARRHYTHMICS) 

Cardiac Therapy PROPAFENONE C1 (CARDIAC THERAPY) C1B0 (ANTIARRHYTHMICS) 

Cardiac Therapy QUINIDINE C1 (CARDIAC THERAPY) C1B0 (ANTIARRHYTHMICS) 

Cardiac Therapy TOCAINIDE C1 (CARDIAC THERAPY) C1B0 (ANTIARRHYTHMICS) 

Cardiac Therapy TRIMETAZIDINE C1 (CARDIAC THERAPY) C1D0 (CORONRY THER EXC C AN+NI) 

Cardiac Therapy UBIDECARENONE C1 (CARDIAC THERAPY) C1X0 (ALL OTHER CARDIAC PREPS) 

Cardiac Therapy UBIQUINONE(S) C1 (CARDIAC THERAPY) C1X0 (ALL OTHER CARDIAC PREPS) 

Lipid Regulating ACIPIMOX C10 (LIP.REG./ANTI-ATH. PREPS) C10A9 (OTH.CHOLEST&TRIGLY.REGUL) 

Lipid Regulating ALLIUM SATIVUM C10 (LIP.REG./ANTI-ATH. PREPS) C10B0 (ANTI-ATHEROMA NATRL ORIG) 

Lipid Regulating ALLIUM SATIVUM#ARACHIS HYPOGAEA C10 (LIP.REG./ANTI-ATH. PREPS) C10B0 (ANTI-ATHEROMA NATRL ORIG) 

Lipid Regulating ALLIUM SATIVUM#SOYA LECITHIN C10 (LIP.REG./ANTI-ATH. PREPS) C10B0 (ANTI-ATHEROMA NATRL ORIG) 

Lipid Regulating AMLODIPINE#ATORVASTATIN C11 (C.V. MULTITH. COMB PROD) C11A1 (LIPREG.CV.MULT-TH.FX.COM) 

Lipid Regulating ATORVASTATIN C10 (LIP.REG./ANTI-ATH. PREPS) C10A1 (STATINS (HMG-COA RED)) 

Lipid Regulating BEZAFIBRATE C10 (LIP.REG./ANTI-ATH. PREPS) C10A2 (FIBRATES) 

Lipid Regulating CERIVASTATIN C10 (LIP.REG./ANTI-ATH. PREPS) C10A1 (STATINS (HMG-COA RED)) 

Lipid Regulating COLESTYRAMINE C10 (LIP.REG./ANTI-ATH. PREPS) C10A3 (ION-EXCHANGE RESINS) 

Lipid Regulating DOCOSAHEXANOIC ACID#EICOSAPENTAENOIC ACID C10 (LIP.REG./ANTI-ATH. PREPS) C10B0 (ANTI-ATHEROMA NATRL ORIG) 

Lipid Regulating DOCOSAHEXANOIC ACID#EICOSAPENTAENOIC ACID#VITAMIN E C10 (LIP.REG./ANTI-ATH. PREPS) C10B0 (ANTI-ATHEROMA NATRL ORIG) 

Lipid Regulating EZETIMIBE C10 (LIP.REG./ANTI-ATH. PREPS) C10A9 (OTH.CHOLEST&TRIGLY.REGUL) 

Lipid Regulating EZETIMIBE#SIMVASTATIN C10 (LIP.REG./ANTI-ATH. PREPS) C10C0 (LIP.REG.CO.W.OTH.LIP.REG) 

Lipid Regulating FENOFIBRATE C10 (LIP.REG./ANTI-ATH. PREPS) C10A2 (FIBRATES) 

Lipid Regulating FISH C10 (LIP.REG./ANTI-ATH. PREPS) C10B0 (ANTI-ATHEROMA NATRL ORIG) 

Lipid Regulating FISH#SOYA LECITHIN C10 (LIP.REG./ANTI-ATH. PREPS) C10B0 (ANTI-ATHEROMA NATRL ORIG) 

Lipid Regulating FLUVASTATIN C10 (LIP.REG./ANTI-ATH. PREPS) C10A1 (STATINS (HMG-COA RED)   ) 

Lipid Regulating GEMFIBROZIL C10 (LIP.REG./ANTI-ATH. PREPS) C10A2 (FIBRATES) 

Lipid Regulating LECITHIN C10 (LIP.REG./ANTI-ATH. PREPS) C10B0 (ANTI-ATHEROMA NATRL ORIG) 

Lipid Regulating LECITHIN#SOYA LECITHIN C10 (LIP.REG./ANTI-ATH. PREPS) C10B0 (ANTI-ATHEROMA NATRL ORIG) 

Lipid Regulating NICOTINIC ACID C10 (LIP.REG./ANTI-ATH. PREPS) C10A9 (OTH.CHOLEST&TRIGLY.REGUL) 

Lipid Regulating PITAVASTATIN C10 (LIP.REG./ANTI-ATH. PREPS) C10A1 (STATINS (HMG-COA RED)) 
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Therapeutic Area Classification for Analysis Molecule Name ATC2 Classification ATC4 Classification

Lipid Regulating PRAVASTATIN C10 (LIP.REG./ANTI-ATH. PREPS) C10A1 (STATINS (HMG-COA RED)) 

Lipid Regulating PROBUCOL C10 (LIP.REG./ANTI-ATH. PREPS) C10A9 (OTH.CHOLEST&TRIGLY.REGUL) 

Lipid Regulating PYRICARBATE C10 (LIP.REG./ANTI-ATH. PREPS) C10A9 (OTH.CHOLEST&TRIGLY.REGUL) 

Lipid Regulating ROSUVASTATIN C10 (LIP.REG./ANTI-ATH. PREPS) C10A1 (STATINS (HMG-COA RED)) 

Lipid Regulating SALMON C10 (LIP.REG./ANTI-ATH. PREPS) C10B0 (ANTI-ATHEROMA NATRL ORIG) 

Lipid Regulating SIMVASTATIN C10 (LIP.REG./ANTI-ATH. PREPS) C10A1 (STATINS (HMG-COA RED)) 

Lipid Regulating SOYA LECITHIN C10 (LIP.REG./ANTI-ATH. PREPS) C10B0 (ANTI-ATHEROMA NATRL ORIG) 

CANCER

Antineoplastics ALEMTUZUMAB L1 (ANTINEOPLASTICS) L1X3 (ANTINEOPLASTIC MABS) 

Antineoplastics ALTRETAMINE L1 (ANTINEOPLASTICS) L1A0 (ALKYLATING AGENTS) 

Antineoplastics ASPARAGINASE L1 (ANTINEOPLASTICS) L1X9 (ALL OTH. ANTINEOPLASTICS) 

Antineoplastics AZACITIDINE L1 (ANTINEOPLASTICS) L1B0 (ANTIMETABOLITES) 

Antineoplastics BEVACIZUMAB L1 (ANTINEOPLASTICS) L1X3 (ANTINEOPLASTIC MABS) 

Antineoplastics BLEOMYCIN L1 (ANTINEOPLASTICS) L1D0 (ANTINEOPLAS. ANTIBIOTICS) 

Antineoplastics BORTEZOMIB L1 (ANTINEOPLASTICS) L1X9 (ALL OTH. ANTINEOPLASTICS) 

Antineoplastics BUSULFAN L1 (ANTINEOPLASTICS) L1A0 (ALKYLATING AGENTS) 

Antineoplastics CAPECITABINE L1 (ANTINEOPLASTICS) L1B0 (ANTIMETABOLITES) 

Antineoplastics CARBOPLATIN L1 (ANTINEOPLASTICS) L1X2 (PLATINUM COMPOUNDS) 

Antineoplastics CARMUSTINE L1 (ANTINEOPLASTICS) L1A0 (ALKYLATING AGENTS) 

Antineoplastics CETUXIMAB L1 (ANTINEOPLASTICS) L1X3 (ANTINEOPLASTIC MABS) 

Antineoplastics CHLORAMBUCIL L1 (ANTINEOPLASTICS) L1A0 (ALKYLATING AGENTS) 

Antineoplastics CHLORMETHINE L1 (ANTINEOPLASTICS) L1A0 (ALKYLATING AGENTS ) 

Antineoplastics CISPLATIN L1 (ANTINEOPLASTICS) L1X2 (PLATINUM COMPOUNDS) 

Antineoplastics CLADRIBINE L1 (ANTINEOPLASTICS) L1B0 (ANTIMETABOLITES) 

Antineoplastics CYCLOPHOSPHAMIDE L1 (ANTINEOPLASTICS) L1A0 (ALKYLATING AGENTS) 

Antineoplastics CYTARABINE L1 (ANTINEOPLASTICS) L1B0 (ANTIMETABOLITES) 

Antineoplastics DACARBAZINE L1 (ANTINEOPLASTICS) L1A0 (ALKYLATING AGENTS) 

Antineoplastics DACTINOMYCIN L1 (ANTINEOPLASTICS) L1D0 (ANTINEOPLAS. ANTIBIOTICS) 

Antineoplastics DASATINIB L1 (ANTINEOPLASTICS) L1X4 (A-NEO PROTEIN KINASE INH) 

Antineoplastics DECITABINE L1 (ANTINEOPLASTICS) L1B0 (ANTIMETABOLITES) 

Antineoplastics DOCETAXEL L1 (ANTINEOPLASTICS) L1C0 (VINCA ALKALOIDS ) 

Antineoplastics DOXORUBICIN L1 (ANTINEOPLASTICS) L1D0 (ANTINEOPLAS. ANTIBIOTICS) 

Antineoplastics EPIRUBICIN L1 (ANTINEOPLASTICS) L1D0 (ANTINEOPLAS. ANTIBIOTICS) 

Antineoplastics ERLOTINIB L1 (ANTINEOPLASTICS) L1X4 (A-NEO PROTEIN KINASE INH) 

Antineoplastics ETOPOSIDE L1 (ANTINEOPLASTICS) L1C0 (VINCA ALKALOIDS) 

Antineoplastics FLUDARABINE L1 (ANTINEOPLASTICS) L1B0 (ANTIMETABOLITES) 

Antineoplastics FLUOROURACIL L1 (ANTINEOPLASTICS) L1B0 (ANTIMETABOLITES) 
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Appendix 1 Table 1. List of Medicines by ATC (continued) 

 

  

Therapeutic Area Classification for Analysis Molecule Name ATC2 Classification ATC4 Classification

Antineoplastics GEFITINIB L1 (ANTINEOPLASTICS) L1X4 (A-NEO PROTEIN KINASE INH) 

Antineoplastics GEMCITABINE L1 (ANTINEOPLASTICS) L1B0 (ANTIMETABOLITES) 

Antineoplastics HYDROXYCARBAMIDE L1 (ANTINEOPLASTICS) L1X9 (ALL OTH. ANTINEOPLASTICS) 

Antineoplastics IBRITUMOMAB TIUXETAN L1 (ANTINEOPLASTICS) L1X3 (ANTINEOPLASTIC MABS) 

Antineoplastics IDARUBICIN L1 (ANTINEOPLASTICS) L1D0 (ANTINEOPLAS. ANTIBIOTICS) 

Antineoplastics IFOSFAMIDE L1 (ANTINEOPLASTICS) L1A0 (ALKYLATING AGENTS) 

Antineoplastics IMATINIB L1 (ANTINEOPLASTICS) L1X4 (A-NEO PROTEIN KINASE INH) 

Antineoplastics IRINOTECAN L1 (ANTINEOPLASTICS) L1C0 (VINCA ALKALOIDS) 

Antineoplastics IXABEPILONE L1 (ANTINEOPLASTICS) L1X9 (ALL OTH. ANTINEOPLASTICS) 

Antineoplastics LAPATINIB L1 (ANTINEOPLASTICS) L1X4 (A-NEO PROTEIN KINASE INH) 

Antineoplastics LOMUSTINE L1 (ANTINEOPLASTICS) L1A0 (ALKYLATING AGENTS) 

Antineoplastics MELPHALAN L1 (ANTINEOPLASTICS) L1A0 (ALKYLATING AGENTS) 

Antineoplastics MERCAPTOPURINE L1 (ANTINEOPLASTICS) L1B0 (ANTIMETABOLITES) 

Antineoplastics METHOTREXATE L1 (ANTINEOPLASTICS) L1B0 (ANTIMETABOLITES) 

Antineoplastics MITOMYCIN L1 (ANTINEOPLASTICS) L1D0 (ANTINEOPLAS. ANTIBIOTICS) 

Antineoplastics MITOXANTRONE L1 (ANTINEOPLASTICS) L1D0 (ANTINEOPLAS. ANTIBIOTICS) 

Antineoplastics NILOTINIB L1 (ANTINEOPLASTICS) L1X4 (A-NEO PROTEIN KINASE INH) 

Antineoplastics OXALIPLATIN L1 (ANTINEOPLASTICS) L1X2 (PLATINUM COMPOUNDS) 

Antineoplastics PACLITAXEL L1 (ANTINEOPLASTICS) L1C0 (VINCA ALKALOIDS) 

Antineoplastics PEMETREXED L1 (ANTINEOPLASTICS) L1B0 (ANTIMETABOLITES) 

Antineoplastics PROCARBAZINE L1 (ANTINEOPLASTICS) L1X9 (ALL OTH. ANTINEOPLASTICS) 

Antineoplastics RITUXIMAB L1 (ANTINEOPLASTICS) L1X3 (ANTINEOPLASTIC MABS) 

Antineoplastics SORAFENIB L1 (ANTINEOPLASTICS) L1X4 (A-NEO PROTEIN KINASE INH) 

Antineoplastics SUNITINIB L1 (ANTINEOPLASTICS) L1X4 (A-NEO PROTEIN KINASE INH) 

Antineoplastics TEGAFUR L1 (ANTINEOPLASTICS) L1B0 (ANTIMETABOLITES) 

Antineoplastics TEGAFUR#URACIL L1 (ANTINEOPLASTICS) L1B0 (ANTIMETABOLITES) 

Antineoplastics TEMOZOLOMIDE L1 (ANTINEOPLASTICS) L1A0 (ALKYLATING AGENTS) 

Antineoplastics TIOGUANINE L1 (ANTINEOPLASTICS) L1B0 (ANTIMETABOLITES) 

Antineoplastics TOPOTECAN L1 (ANTINEOPLASTICS) L1C0 (VINCA ALKALOIDS) 

Antineoplastics TRASTUZUMAB L1 (ANTINEOPLASTICS) L1X3 (ANTINEOPLASTIC MABS) 

Antineoplastics TRETINOIN L1 (ANTINEOPLASTICS) L1X9 (ALL OTH. ANTINEOPLASTICS) 

Antineoplastics VINBLASTINE L1 (ANTINEOPLASTICS) L1C0 (VINCA ALKALOIDS) 

Antineoplastics VINCRISTINE L1 (ANTINEOPLASTICS) L1C0 (VINCA ALKALOIDS) 

Antineoplastics VINORELBINE L1 (ANTINEOPLASTICS) L1C0 (VINCA ALKALOIDS) 

Cytostatic Hormones AMINOGLUTETHIMIDE L2 (CYTOSTATIC HORMONE THER) L2B3 (CYTOSTAT AROMATASE INHIB) 

Cytostatic Hormones ANASTROZOLE L2 (CYTOSTATIC HORMONE THER) L2B3 (CYTOSTAT AROMATASE INHIB) 

Cytostatic Hormones BICALUTAMIDE L2 (CYTOSTATIC HORMONE THER) L2B2 (CYTO ANTI-ANDROGENS) 

Cytostatic Hormones BUSERELIN L2 (CYTOSTATIC HORMONE THER) L2A3 (CYTO GONAD HORMON ANALOG) 
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Appendix 1 Table 1. List of Medicines by ATC (continued) 

 

 
  

Therapeutic Area Classification for Analysis Molecule Name ATC2 Classification ATC4 Classification

Cytostatic Hormones CYPROTERONE L2 (CYTOSTATIC HORMONE THER) L2B2 (CYTO ANTI-ANDROGENS) 

Cytostatic Hormones EXEMESTANE L2 (CYTOSTATIC HORMONE THER) L2B3 (CYTOSTAT AROMATASE INHIB) 

Cytostatic Hormones FLUTAMIDE L2 (CYTOSTATIC HORMONE THER) L2B2 (CYTO ANTI-ANDROGENS) 

Cytostatic Hormones FORMESTANE L2 (CYTOSTATIC HORMONE THER) L2B3 (CYTOSTAT AROMATASE INHIB) 

Cytostatic Hormones FULVESTRANT L2 (CYTOSTATIC HORMONE THER) L2B9 (OTH CYTO HORMON ANTAGIST) 

Cytostatic Hormones GOSERELIN L2 (CYTOSTATIC HORMONE THER) L2A3 (CYTO GONAD HORMON ANALOG) 

Cytostatic Hormones LETROZOLE L2 (CYTOSTATIC HORMONE THER) L2B3 (CYTOSTAT AROMATASE INHIB) 

Cytostatic Hormones LEUPRORELIN L2 (CYTOSTATIC HORMONE THER) L2A3 (CYTO GONAD HORMON ANALOG) 

Cytostatic Hormones MEDROXYPROGESTERONE L2 (CYTOSTATIC HORMONE THER) L2A2 (CYTOSTATIC PROGESTOGENS ) 

Cytostatic Hormones MEGESTROL L2 (CYTOSTATIC HORMONE THER) L2A2 (CYTOSTATIC PROGESTOGENS ) 

Cytostatic Hormones TAMOXIFEN L2 (CYTOSTATIC HORMONE THER) L2B1 (CYTO ANTI-OESTROGENS) 

Cytostatic Hormones TOREMIFENE L2 (CYTOSTATIC HORMONE THER) L2B1 (CYTO ANTI-OESTROGENS) 

Cytostatic Hormones TRIPTORELIN L2 (CYTOSTATIC HORMONE THER) L2A3 (CYTO GONAD HORMON ANALOG) 

Immunostimulating Agents FILGRASTIM L3 (IMMUNOSTIMULATING AGENTS) L3A1 (COLONY-STIMULATING FACT.) 

Immunostimulating Agents INTERFERON ALFA L3 (IMMUNOSTIMULATING AGENTS) L3B1 (INTERFERONS ALPHA) 

Immunostimulating Agents INTERFERON ALFA-2A L3 (IMMUNOSTIMULATING AGENTS) L3B1 (INTERFERONS ALPHA) 

Immunostimulating Agents INTERFERON ALFA-2B L3 (IMMUNOSTIMULATING AGENTS) L3B1 (INTERFERONS ALPHA) 

Immunostimulating Agents INTERFERON ALFA-N1 L3 (IMMUNOSTIMULATING AGENTS) L3B1 (INTERFERONS ALPHA) 

Immunostimulating Agents INTERFERON BETA-1A L3 (IMMUNOSTIMULATING AGENTS) L3B2 (INTERFERONS BETA) 

Immunostimulating Agents INTERFERON BETA-1B L3 (IMMUNOSTIMULATING AGENTS) L3B2 (INTERFERONS BETA) 

Immunostimulating Agents LENOGRASTIM L3 (IMMUNOSTIMULATING AGENTS) L3A1 (COLONY-STIMULATING FACT.) 

Immunostimulating Agents MOLGRAMOSTIM L3 (IMMUNOSTIMULATING AGENTS) L3A1 (COLONY-STIMULATING FACT.) 

Immunostimulating Agents PEGFILGRASTIM L3 (IMMUNOSTIMULATING AGENTS) L3A1 (COLONY-STIMULATING FACT.) 

Immunostimulating Agents TETRACHLORODECAOXIDE L3 (IMMUNOSTIMULATING AGENTS) L3A9 (OTH.IMMUNOSTIM.EX.INTFRN) 

Immunostimulating Agents THYMALFASIN L3 (IMMUNOSTIMULATING AGENTS) L3A9 (OTH.IMMUNOSTIM.EX.INTFRN) 
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Appendix 1 Table 2. Segmented Regression Coefficients: Total Volume* 

 

 

INTERCEPT TIME INTERVENTION TIME AFTER INTERVENTION TIME AFTER INTERVENTION SQUARED**

Beta Beta (Std. Err.) Beta (Std. Err.) Beta (Std. Err.) Beta (Std. Err.)

DIABETES

Insulins

Hospital 1.6941 0.0848 (0.0185) 0.5151 (0.2400) 0.0961 (0.0432) 0.0156 (0.0019)

Retail 0.3485 -0.0134 (0.0041) 0.0902 (0.0445) 0.0288 (0.0046) -

Antidiabetics

Hospital 1252.37 71.08 (12.05) 66.40 (167.31) 12.80 (26.17) 3.08 (1.24)

Retail 228.87 6.67 (3.01) -63.98 (32.56) -1.88 (3.37) -

CARDIOVASCULAR DISEASE

Antihypertensives

Hospital 1394.24 111.96 (17.14) -390.49 (185.18) 71.95 (19.17) -

Retail 284.98 8.12 (2.24) -39.71 (24.19) 5.20 (2.50) -

Lipid Regulating Agents

Hospital 193.47 17.31 (3.33) -37.98 (43.19) -6.02 (7.78) 2.77 (0.34)

Retail 136.25 -2.59 (1.31) -21.37 (14.18) 11.72 (1.47) -

Cardiac Therapy

Hospital 434.75 13.92 (4.11) -94.51 (44.37) 0.63 (4.59) -

Retail 98.32 1.63 (1.18) 11.50 (15.31) -8.80 (2.76) 0.32 (0.12)

CANCER

Antineoplastics

Hospital 21.75 0.72 (0.16) -2.02 (1.78) 0.21 (0.18) -

Retail 0.26 0.004 (0.02) 0.18 (0.37) 0.05 (0.06) -0.005 (0.002)

Cytostatic Hormones

Hospital 16.38 0.69 (0.15) -0.66 (1.60) 0.44 (0.17) -

Retail 0.3538 -0.03 (0.01) 0.53 (0.13) -0.03 (0.02) 0.004 (0.001)

Immunostimulating Agents

Hospital 0.45 0.01 (0.004) -0.18 (0.05) -0.02 (0.008) 0.0007 (0.0004)

Retail 0.0000066 -0.0000005 (0.000001) 0.0000003 (0.000007) 0.0000005 (0.0000007) -

* Bold signifies statistically significant coefficient (i.e., p<0.05)

**Results from quadratic model (which has squared post-policy trend term) were included if quadratic model fits better than linear model.
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Appendix 1 Table 3. Absolute Impact of the Reform on Sales of Medicines by Class (one and five years post-policy)* 

 

Therapeutic Class

Predicted Observed Absolute Change (95%  CI) Predicted Observed Absolute Change (95%  CI)

Antidiabetics 2602.91 2769.79 166.87   (-160.98, 494.73) 3669.13 5090.62 1421.49   (739.57, 2103.42)

Insulins 3.30 4.45 1.15   (0.66, 1.64) 4.58 12.56 7.98   (6.94, 9.02)

Cardiac Therapy Agents 699.28 607.27 -92.01   (-201.38, 17.36) 908.12 825.49 -82.63   (-309.66, 144.40)

Lipid Regulating Agents 522.34 504.58 -17.76   (-106.50, 70.97) 781.97 1629.11 847.14   (659.98, 1034.30)

Antihypertensives 3521.47 3418.79 -102.68   (-559.16, 353.80) 5200.86 6177.49 976.62   (29.03, 1924.22)

Antineoplastics 35.38 34.21 -1.17   (-5.56, 3.22) 46.14 48.13 1.99   (-7.13, 11.11)

Cytostatic Hormones 29.48 30.58 1.10   (-2.85, 5.05) 39.82 47.52 7.70   (-0.50, 15.89)

Immunostimulating Agents 0.65 0.43 -0.23   (-0.32, -0.13) 0.81 0.60 -0.21   (-0.42, -0.01)

*bold signifies that change is statistically significant (i.e., confidence interval does not include the null value of 0)

One Year Impact (in standard units) Five Year Impact (in standard units)
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Appendix 1 Table 4. Segmented Regression Coefficients: Hospital Market Share* 

 
INTERCEPT TIME INTERVENTION TIME AFTER INTERVENTION TIME AFTER INTERVENTION SQUARED**

Beta Beta (Std. Err.) Beta (Std. Err.) Beta (Std. Err.) Beta (Std. Err.)

Insulins (Hospital)

Originator Brand -0.0017 0.0005 (0.0001) -0.0004 (0.0017) -0.0003 (0.0003) 0.0001 (0.0000002)

Branded Generic 0.8934 0.0026 (0.0019) 0.0697 (0.0200) -0.0048 (0.0021) -

Generic 0.1083 -0.0030 (0.0019) -0.0624 (0.0200) 0.0031 (0.0021) -

Antidiabetics (Hospital)

Originator Brand 0.1601 -0.0049 (0.0006) -0.0028 (0.0064) 0.0042 (0.0007) -

Branded Generic 0.5178 0.0010 (0.0016) -0.1233 (0.0178) -0.0045 (0.0017) -

Generic 0.0692 0.0005 (0.0011) -0.0345 (0.0116) -0.000545 (0.0012) -

GPO 0.2505 0.0034 (0.0018) 0.1610 (0.0200) 0.000992 (0.0019) -

Antihypertentives (Hospital)

Originator Brand 0.296 -0.0066 (0.0008) -0.0014 (0.0105) 0.0034 (0.0019) 0.0002 (0.00008)

Branded Generic 0.4491 0.0056 (0.0015) -0.0214 (0.0191) 0.0092 (0.0034) -0.0006 (0.0002)

Generic 0.041 0.0033 (0.0012) -0.0567 (0.0130) -0.0030 (0.0013) -

GPO 0.211 -0.0020 (0.0024) 0.0525 (0.0259) -0.0022 (0.0027) -

Lipid Regulating Agents (Hospital)

Originator Brand 0.5657 -0.0092 (0.0008) -0.0776 (0.0116) -0.0061 (0.0116) 0.0003 (0.00009)

Branded Generic 0.427 0.0096 (0.0008) 0.0755 (0.0118) 0.0055 (0.0017) -0.0003 (0.00009)

Generic 0.004897 -0.0003 (0.0002) 0.0015 (0.0025) 0.0002 (0.0003) -

GPO -0.000482 0.0001 (0.0003) 0.0023 (0.0028) -0.0003 (0.0003) -

Cardiac Therapy (Hospital)

Originator Brand 0.0847 -0.0014 (0.0004) 0.0013 (0.0044) 0.0014 (0.0004)

Branded Generic 0.8032 -0.0023 (0.0026) -0.1351 (0.0340) -0.0093 (0.0061) 0.0006 (0.0003)

Generic 0.005095 0.0031 (0.0009) -0.0426 (0.0093) -0.0030 (0.0010) -

GPO 0.0751 0.0015 (0.0030) 0.2155 (0.0319) -0.0010 (0.0033) -

Antineoplastics (Hospital)

Originator Brand 0.1554 0.0015 (0.0009) 0.0110 (0.0103) -0.0014 (0.0010) -

Branded Generic 0.5518 -0.0011 (0.0020) -0.0100 (0.0216) 0.0011 (0.0022) -

Generic 0.2862 -0.0004 (0.0014) 0.0037 (0.0149) 0.0002 (0.0015) -

Cytostatic Hormones (Hospital)

Originator Brand 0.4664 -0.0032 (0.0022) 0.0038 (0.0280) -0.0127 (0.0050) 0.0007 (0.0002)

Branded Generic 0.5141 0.0036 (0.0015) -0.0773 (0.0206) 0.0195 (0.0035) -0.0013 (0.0002)

Generic 0.0144 0.0004 (0.0017) 0.0600 (0.0224) -0.0060 (0.0040) 0.0005 (0.0002)

Immunostimulating Agents (Hospital)

Originator Brand 0.9742 0.0007 (0.0015) -0.0636 (0.0162) -0.0113 (0.0017) -

Branded Generic -0.000536 0.0001 (0.0013) 0.0450 (0.0137) 0.0108 (0.0014) -

Generic -0.000986 0.0002 (0.0001) -0.0016 (0.0009) -0.0003 (0.00009) -

* Bold signifies statistically significant coefficient (i.e., p<0.05)

**Results from quadratic model (which has squared post-policy trend term) were included if quadratic model fits better than linear model.
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Appendix 1 Table 5. Absolute Impact of the Reform on Sales of Licensing Status Market 

Share by Class (one and five years post-policy)* 

 

 

Therapeutic Class

Predicted Observed Relative Change (95%  CI) Predicted Observed Relative Change (95%  CI)

Antidiabetics

   Original/Licensed 0.0672 0.0813 0.0140   (-0.0016, 0.0297) -0.0061 0.0712 0.0773   (0.0448, 0.1098)

   Other 0.5371 0.3960 -0.1412   (-0.1851, -0.0972) 0.5524 0.3443 -0.2080   (-0.2966, -0.1195)

   Unbranded 0.0788 0.0421 -0.0367   (-0.0652, -0.0082) 0.0864 0.0415 -0.0449   (-0.1041, 0.0144)

   GPO 0.3142 0.4792 0.1649   (0.1156, 0.2143) 0.3645 0.5444 0.1798   (0.0805, 0.2792)

Insulins

Originator Brand 0.0079 0.0081 0.0002   (-0.0035, 0.0038) 0.0156 0.0461 0.0305   (0.0228, 0.0382)

Branded Generic 0.9419 0.9925 0.0505   (0.0010, 0.1000) 0.9802 0.9590 -0.0212   (-0.1240, 0.0815)

Generic 0.0501 0.0000 -0.0501   (-0.0994, -0.0008) 0.0042 0.0000 -0.0042   (-0.1065, 0.0982)

Antihypertensives

Originator Brand 0.1697 0.1850 0.0153   (-0.0063, 0.0368) 0.0700 0.2010 0.1310   (0.0854, 0.1765)

Branded Generic 0.5557 0.5619 0.0062   (-0.0330, 0.0454) 0.6398 0.5890 -0.0507   (-0.1333, 0.0319)

Generic 0.1029 0.0341 -0.0688   (-0.1009, -0.0368) 0.1519 0.0373 -0.1145   (-0.1811, -0.0480)

GPO 0.1725 0.2160 0.0435   (-0.0203, 0.1074) 0.1420 0.1520 0.0100   (-0.1225, 0.1425)

Cardiac Therapy

Originator Brand 0.0588 0.0656 0.0068   (-0.0041, 0.0176) 0.0384 0.0655 0.0271   (0.0049, 0.0493)

Branded Generic 0.7594 0.5961 -0.1633   (-0.2332, -0.0935) 0.7594 0.5961 -0.1633   (-0.2332, -0.0935)

Generic 0.1116 0.0113 -0.1002   (-0.1477, -0.0528) 0.1116 0.0113 -0.1002   (-0.1477, -0.0528)

GPO 0.1034 0.3149 0.2115   (0.1329, 0.2901) 0.1034 0.3149 0.2115   (0.1329, 0.2901)

 

Lipid Regulators

Originator Brand 0.3905 0.2942 -0.0963   (-0.1187, -0.0739) 0.2522 0.1838 -0.0684   (-0.1158, -0.0210)

Branded Generic 0.6086 0.7010 0.0924   (0.0697, 0.1151) 0.7519 0.8159 0.0640   (0.0160, 0.1119)

Generic -0.0009 0.0015 0.0024   (-0.0038, 0.0085) -0.0054 0.0004 0.0058   (-0.0070, 0.0186)

GPO 0.0022 0.0033 0.0011   (-0.0058, 0.0079) 0.0044 0.0008 -0.0035   (-0.0177, 0.0106)

Antineoplastics

Originator Brand 0.1840 0.1894 0.0054   (-0.0201, 0.0308) 0.2066 0.1908 -0.0158   (-0.0675, 0.0359)

Branded Generic 0.5308 0.5252 -0.0056   (-0.0587, 0.0476) 0.5142 0.5252 0.0110   (-0.0993, 0.1214)

Generic 0.2783 0.2827 0.0044   (-0.0323, 0.0412) 0.2721 0.2793 0.0072   (-0.0690, 0.0835)

Cytostatic Hormones

Originator Brand 0.4058 0.3704 -0.0353   (-0.0928, 0.0222) 0.3579 0.3803 0.0224   (-0.0988, 0.1437)

Branded Generic 0.5821 0.5626 -0.0195   (-0.0609, 0.0218) 0.6358 0.4764 -0.1595   (-0.2463, -0.0727)

Generic 0.0221 0.0653 0.0432   (-0.0029, 0.0893) 0.0282 0.1393 0.1112   (0.0140, 0.2083)

Immunostimulating Agents

Originator Brand 0.9875 0.8787 -0.1087   (-0.1488, -0.0687) 0.9979 0.7198 -0.2781   (-0.3612, -0.1951)

Branded Generic 0.0018 0.0902 0.0884   (0.0546, 0.1221) 0.0037 0.2546 0.2509   (0.1808, 0.3210)

Generic 0.0036 0.0007 -0.0028   (-0.0050, -0.0007) 0.0071 -0.0003 -0.0074   (-0.0120, -0.0029)

 *bold signifies that change is statistically significant (i.e., confidence interval does not include the null value of 0)

One Year Impact (in %  market share) Five Year Impact (in %  market share)
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Appendix 1 Table 6. Hospital Sector Market Share Regression Results by NLEM*  

 

 
  

INTERCEPT TIME INTERVENTION TIME AFTER INTERVENTION TIME AFTER INTERVENTION SQUARED** NLEM

Beta Beta (Std. Err.) Beta (Std. Err.) Beta (Std. Err.) Beta (Std. Err.) Beta (Std. Err.)

DIABETES

Insulins*** - - - - - -

Antidiabetics 0.9995 -0.0016 (0.0001) 0.0005 (0.0015) 0.0014 (0.0002) - 0.0160 (0.0013)

CARDIOVASCULAR DISEASE

Antihypertensives 0.9006 0.0022 (0.0004) -0.0010 (0.0057) -0.0070 (0.0010) 0.0003 (0.0001) -0.0814 (0.0054)

Lipid Regulating Agents 0.7394 0.0001 (0.0010) 0.0205 (0.0130) 0.0070 (0.0024) -0.0002 (0.0001) 0.1271 (0.0122)

Cardiac Therapy 0.8689 0.0027 (0.0005) 0.0073 (0.0056) -0.0030 (0.0006) - 0.0070 (0.0050)

CANCER

Antineoplastics 0.939 -0.0076 (0.0008) 0.0121 (0.0114) -0.0022 (0.0019) 0.0003 (0.0001) 0.0358 (0.0117)

Cytostatic Hormones 0.9947 -0.0019 (0.0004) -0.0099 (0.0043) -0.0021 (0.0005) - -0.1108 (0.0039)

Immunostimulating Agents 0.4144 0.0084 (0.0035) 0.0986 (0.0396) 0.0100 (0.0047) - -0.0615 (0.0359)

* Bold signifies statistically significant coefficient (i.e., p<0.05)

**Results from quadratic model (which has squared post-policy trend term) were included if quadratic model fits better than linear model.

***All insulins were on NLEM (i.e., NLEM market share = 100%)
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Appendix 1 Figure 1. Standard Units Per Capita by Quarter  

Insulin (Hospital vs. Retail)  

Hospital Insulin

Retail Insulin

Hospital Regression Line

Retail Regression Line

Predicted Hospital Regression Line

*Results from quadratic model 

*
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Appendix 1 Figure 2. Standard Units Per Capita by Quarter  

Antidiabetics (Hospital vs. Retail)  

Hospital Antidiabetics

Retail Antidiabetics

Hospital Regression Line

Retail Regression Line

Predicted Hospital Regression Line

*Results from quadratic model 

*

9
9
 

 

  



 100 

0

100

200

300

400

500

600

700

800

900

1000
1

9
9

8
Q

2

1
9

9
8

Q
3

1
9

9
8

Q
4

1
9

9
9

Q
1

1
9

9
9

Q
2

1
9

9
9

Q
3

1
9

9
9

Q
4

2
0

0
0

Q
1

2
0

0
0

Q
2

2
0

0
0

Q
3

2
0

0
0

Q
4

2
0

0
1

Q
1

2
0

0
1

Q
2

2
0

0
1

Q
3

2
0

0
1

Q
4

2
0

0
2

Q
1

2
0

0
2

Q
2

2
0

0
2

Q
3

2
0

0
2

Q
4

2
0

0
3

Q
1

2
0

0
3

Q
2

2
0

0
3

Q
3

2
0

0
3

Q
4

2
0

0
4

Q
1

2
0

0
4

Q
2

2
0

0
4

Q
3

2
0

0
4

Q
4

2
0

0
5

Q
1

2
0

0
5

Q
2

2
0

0
5

Q
3

2
0

0
5

Q
4

2
0

0
6

Q
1

2
0

0
6

Q
2

2
0

0
6

Q
3

N
u

m
b

e
r
 o

f 
S

ta
n

d
a

r
d

 U
n

it
s 

p
e
r
 1

0
0

0
 p

e
o

p
le

Quarter

Appendix 1 Figure 3. Standard Units Per Capita by Quarter  

Cardiac Therapy (Hospital vs. Retail)  

Hospital Cardiac Therapy

Retail Cardiac Therapy

Hospital Regression Line

Retail Regression Line

Predicted Hospital Regression Line
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Appendix 1 Figure 4. Standard Units Per Capita by Quarter  

Lipid Regulating Agents (Hospital vs. Retail)  

Hospital Lipid Regulating Agents

Retail Lipid Regulating Agents

Hospital Regression Line

Retail Regression Line

Predicted Hospital Regression Line

*

*Results from quadratic model 
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Appendix 1 Figure 5. Standard Units Per Capita by Quarter  

Antihypertensives (Hospital vs. Retail)  

Hospitial Antihypertensives

Retail Antihypertensives

Hosptial Regression Line

Retail Regression Line

Predicted Hospital Regression Line
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Appendix 1 Figure 6. Standard Units Per Capita by Quarter  

Antineoplastics (Hospital vs. Retail)  

Hospital Antineoplastics

Retail Antineoplastics

Hospital Regression Line

Retail Regression Line

Predicted Hospital Regression Line
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Appendix 1 Figure 7. Standard Units Per Capita by Quarter  

Cytostatic Hormones (Hospital vs. Retail)  

Hospital Cytostatic Hormones

Retail Cytostatic Hormones

Hospital Regression Line

Retail Regression Line

Predicted Hospital Regression Line
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Appendix 1 Figure 8. Standard Units Per Capita by Quarter  

Immunostimulating Agents (Hospital vs. Retail)  

Hospital Immunostimulating Agents

Retail Immunostimulating Agents

Hospital Regression Line

Retail Regression Line

Predicted Hospital Regression Line

*Results from quadratic model 

*
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Appendix 1 Figure 9. Licensing Status Market Share by Quarter 

Insulin (Hospital Sector) 

Originator brand

Branded generic

Generic

GPO

Originator brand line*

Branded generic line

Generic line

GPO line

*Results from quadratic model 
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Appendix 1 Figure 10. Licensing Status Market Share by Quarter 

Antidiabetics (Hospital Sector) 

Originator brand

Branded generic

Generic

GPO

Originator brand line

Branded generic line

Generic line

GPO line
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Appendix 1 Figure 11. Licensing Status Market Share by Quarter

Cardiac Therapy Agents (Hospital Sector)

Originator brand

Branded generic

Generic

GPO

Originator brand line

Branded generic line*

Generic line

GPO line

*Results from quadratic model 
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Appendix 1 Figure 12. Licensing Status Market Share by Quarter

Lipid Regulating Agents (Hospital Sector)

Originator brand

Branded generic

Generic

GPO

Originator brand line*

Branded generic line *

Generic line

GPO line

*Results from quadratic model 
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Appendix 1 Figure 13. Licensing Status Market Share by Quarter

Antihypertensives (Hospital Sector)

Originator brand

Branded generic

Generic

GPO

Originator brand line*

Branded generic line*

Generic line

GPO line

*Results from quadratic model 
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Appendix 1 Figure 14. Licensing Status Market Share by Quarter

Antineoplastics (Hospital Sector)

Originator brand

Branded generic

Generic

Originator brand line

Branded generic line

Generic line
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Appendix 1 Figure 15. Licensing Status Market Share by Quarter

Cytostatic Hormones (Hospital Sector)

Originator brand

Branded generic

Generic

Originator brand line*

Branded generic line*

Generic line*

*Results from quadratic model 
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Appendix 1 Figure 16. Licensing Status Market Share by Quarter

Immunostimulating Agents (Hospital Sector)

Originator brand

Branded generic

Generic

Originator brand line

Branded generic line
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Appendix 1 Figure 17. NLEM Market Share by Quarter 

(1999 and 2004 NLEM, raw data)
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Appendix 2 Table 1. Demographic and Plan Characteristics, Pre vs. Post Reform (Adults, 

ages 18-64) 

 

 

Pre-Reform Post-Reform

Number of Members 6,912 29,207

Gender (% male) 40.9 45.9**

Age (mean, std) 37.6 (13.7) 37.9 (14.0)

Age (distribution):

          Birth-17 years old - -

          18-26 years old ("young adults") 29.8 31.6*

          27-40 years old 32.5 27.2**

          41-50 years old 14.9 17.2**

          51-64 years old 22.9 24.0*

Race (mean % white, non-hispanic, std) a 87.4 (15.8) 88.7 (15.8)**

Education Level (mean % with at least some college, std) a 53.5 (19.7) 50.9 (19.1)**

Education Level Categories (mean %)  a

          Less than 9th grade 3.4 (4.5) 3.5 (4.8)

          9th - 12th grade 6.2 (5.1) 6.5 (5.2)**

          High school graduate 21.4 (10.9) 22.7 (10.6)**

          Some college, no degree 15.5 (6.0) 16.4 (6.0)**

          Associate degree 6.5 (3.4) 7.0 (3.5)**

          Bachelor degree 25.5 (9.4) 24.8 (9.5)**

          Graduate or professional degree 21.5 (14.4) 19.2 (13.3)**

Family Income a

          Mean % Family Income <$50,000 (std) 30.2 (16.8) 31.4 (17.0)**

          Mean % Family Income $50,000-$99,000 (std) 37.2 (12.2) 38.3 (12.2)**

          Mean % Family Income >$100,000 (std) 33.6 (20.0) 30.2 (19.5)**

Primary Member (% who were subscriber) 90.2 77.6**

Dependent Member

          Spouse (% who are married to subscriber) 8.5 16.9**

          Child (% who are a adult child of subscriber) 1.3 5.6**

Contract Type

          Individual (% of members in individual plan) 79.8 56.8**

          Family (% of members in plan with at least one other person) 20.2 43.2**

Connector  (% in Connector plan, post-reform only) NA 60.90

Plan Characteristics

          HMO (% in HMO plan) 100 88.2**

          PPO (% in PPO plan) 0.1 12.0**

          HDHP (% in HDHP) 0 7.1**

          Prescription Drug Coverage (% with Rx Benefit) 43.4 83.5**

          Mental Health Coverage (% with MH coverage) 100 100

a % in census block of residence (education is % of population age 25+ in that level)

* post significantly different than pre (using chi-sq for categorical and t-test for continuous variables): p<0.05

** post significantly different than pre (using chi-sq for categorical and t-test for continuous variables): p<0.0001

Massachusetts - Individual Market (n=36,119)
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Appendix 2 Figure 1. Time to Disenrollment – MA Individual Market Pre vs. Post-Reform (Adults) 
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Appendix 2 Table 2. Segmented Regression Models: Probability of Disenrollment by Month of Enrollment 

 

  

Enrollment 

Length Intercept Pre-reform Trend (std. err.)

Immediate Post-Reform Level 

Change (std. err.) Post-Reform Trend (std. err.)

≤ 45 days 0.071 0.000883 (0.000361)* -0.0454(0.0115)* -0.001031 (0.000531)

≤ 90 days 0.1606 0.001418 (0.000605)* -0.0526 (0.0183)* -0.002283 (0.000914)*

≤ 180 days 0.2896 0.002424 (0.001196) -0.1035 (0.0296)* -0.003366 (0.001851)

≤ 1 year 0.5193 0.001895 (0.000869)* -0.0750 (0.0299)* -0.003468 (0.001162)*

*p<0.05
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Appendix 2 Table 3. Cox Proportional Hazard Models: Time to Disenrollment Pre vs. Post Reform  

 

  

Parameter

Estimate Hazard Ratio (95% CI)p value Estimate Hazard Ratio (95% CI) p value Estimate Hazard Ratiop value

Post -0.23737 0.789  (0.764, 0.815)   <.0001 -0.20955 0.811  (0.784, 0.838) <.0001 -0.14841 . 0.1728

Female 0.08554 1.089  (1.059, 1.120) <.0001 0.08679 1.091 <.0001

Age 18-26 0.74979 2.117  (2.032, 2.205) <.0001 0.74945 2.116 <.0001

Age 27-40 0.58275 1.791  (1.718, 1.867) <.0001 0.46832 . <.0001

Age 41-50 0.28521 1.33  (1.264, 1.399) <.0001 0.18666 . <.0001

College Education -0.03044 0.97  (0.869, 1.083) 0.5872 0.11552 . 0.1764

White, non-hispanic -0.36236 0.696  (0.633, 0.766) <.0001 -0.13826 . 0.1391

Family Income 50-100k 0.07812 1.081  (0.939, 1.245) 0.2783 0.08876 1.093 0.2184

Family Income > 100k -0.2646 0.768  (0.676, 0.871) <.0001 -0.26508 0.767 <.0001

Individual Plan 0.1467 1.158  (1.120, 1.197) <.0001 -0.08301 . 0.0249

post*age_27to40 0.14832 . <.0001

post*age_41to50 0.15079 . 0.0033

post*education_colle -0.18476 . 0.0311

post*ra_nhs_wh -0.29509 . 0.0043

post*Individual 0.28388 . <.0001

Note: Enrollment analysis excludes children (ages 0-17); follow-up time = 3.5 years max in pre and post period

Reference groups:

Age reference group = Age 51-65

Education reference group = less than college education 

Race reference group = all other races

Income reference group = family income less than 50k

Model includes interaction terms that were significant after stepwise removal of non-significant interaction terms

Model 1: Univariate Model 2: Demographic and Plan Characteristics Model 3: With significant interaction terms
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Appendix 2 Table 4. Cox Proportional Hazard Models: Time to Disenrollment Pre vs. Post Reform (Stratified Analyses) 

 

  

Model Post (vs. Pre) Reform Hazard Ratio (95% CI)

Univariate Model 0.789  (0.764, 0.815)

Multivariate Models
a

     Entire Study Population 0.811  (0.784, 0.838)

     Age 18-26 0.841  (0.796, 0.890)

     Age 27-40 0.852  (0.852, 0.902)

     Age 41-50 0.770  (0.695, 0.852)

     Age 51-64 0.709  (0.657, 0.766)

     College Education (>51% with )
b

0.791  (0.755, 0.830)

     No College Education (≤51% with college education)
b

0.838  (0.800, 0.879)

     White, non-hispanic (>88% white)
b

0.781  (0.749, 0.814)

     All other races (≤88% white)
b

0.859  (0.813, 0.907)

     Individual Plan 0.854  (0.822, 0.887)

     Family Plan 0.681  (0.636, 0.730)

a
Multivariate models control for: sex, age, education, race, family income, and individual/family plan.  Models stratified by covariates with significant post*covariate interaction terms.

b
Percents correspond to a % in census block of residence.  Dichotomous categories created by dividing continuous variable at mean of study population.
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Appendix 2 Table 5. Cox Proportional Hazard Models: Time to First Medical Encounter By Encounter Type, Pre vs. Post 

Reform 

 

  

Parameter

Estimate Hazard Ratio (95% CI) p value Estimate Hazard Ratio (95% CI) p value Estimate Hazard Ratio (95% CI) p value Estimate Hazard Ratio (95% CI) p value

Post 0.03589 1.037  (1.004, 1.070) 0.026 -0.16165 0.851  (0.795, 0.911) <.0001 -0.18559 0.831  (0.744, 0.927) 0.001 -0.05064 0.951  (0.842, 1.073) 0.4139

Female 0.49497 1.64  (1.600, 1.682) <.0001 -0.01853 0.982  (0.928, 1.038) 0.5162 0.5089 1.663  (1.509, 1.834) <.0001 0.28106 1.325  (1.197, 1.465) <.0001

Age 18-26 -0.49973 0.607  (0.587, 0.628) <.0001 0.15268 1.165  (1.080, 1.257) <.0001 -0.46255 0.63  (0.548, 0.724) <.0001 -1.01913 0.361  (0.309, 0.421) <.0001

Age 27-40 -0.24128 0.786  (0.760, 0.812) <.0001 0.13581 1.145  (1.061, 1.236) 0.0005 0.33541 1.399  (1.249, 1.565) <.0001 -0.34727 0.707  (0.624, 0.800) <.0001

Age 41-50 -0.17297 0.841  (0.810, 0.874) <.0001 -0.00303 0.997  (0.910, 1.092) 0.9482 -0.35964 0.698  (0.598, 0.815) <.0001 -0.19967 0.819  (0.712, 0.942) 0.0051

College Education -0.19354 0.824  (0.746, 0.911) 0.0001 -0.63347 0.531  (0.422, 0.668) <.0001 -0.90566 0.404  (0.275, 0.595) <.0001 -0.22757 0.796  (0.527, 1.204) 0.2808

White, non-hispanic 0.098 1.103  (1.004, 1.211) 0.04 0.17519 1.191  (0.966, 1.469) 0.1014 -0.20886 0.812  (0.582, 1.131) 0.2176 -0.03581 0.965  (0.660, 1.410) 0.8532

Family Income 50-100k 0.0462 1.047  (0.922, 1.190) 0.4772 -0.05602 0.946  (0.710, 1.259) 0.7015 0.17357 1.19  (0.737, 1.920) 0.4771 0.17906 1.196  (0.714, 2.002) 0.4958

Family Income > 100k 0.2487 1.282  (1.145, 1.436) <.0001 0.01957 1.02  (0.785, 1.324) 0.8832 0.51692 1.677  (1.082, 2.600) 0.0208 -0.04187 0.959  (0.601, 1.529) 0.8604

Individual Plan 0.08104 1.084  (1.054, 1.115) <.0001 0.12324 1.131  (1.060, 1.207) 0.0002 -0.01323 0.987  (0.891, 1.093) 0.8002 0.07437 1.077  (0.965, 1.202) 0.1851

Ambulatory Emergency Department Inpatient Same Day Surgery

Encounter Type

1
2
1
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Appendix 2 Table 6. Cox Proportional Hazard Models: Time to First Medical Encounter By Encounter Type, Pre vs. Post 

Reform (with significant interaction terms) 

 

   

Encounter Type

Parameter Estimate

Hazard Ratio 

(95% CI) p value Estimate

Hazard Ratio 

(95% CI) p value Estimate

Hazard Ratio 

(95% CI) p value Estimate

Hazard Ratio 

(95% CI) p value

Post -0.009 . 0.7736 0.06947 . 0.54 0.24301 . 0.1925 -0.05064 0.951 0.4139

Female 0.49579 1.642 <.0001 -0.01881 0.981 0.51 0.51014 1.666 <.0001 0.28106 1.325 <.0001

Age

Age 18-26 -0.3726 . <.0001 0.15373 1.166 <.0001 -0.20402 . 0.1122 -1.01913 0.361 <.0001

Age 27-40 -0.23822 0.788 <.0001 0.13664 1.146 0.0004 0.33827 1.403 <.0001 -0.34727 0.707 <.0001

Age 41-50 -0.17231 0.842 <.0001 -0.00175 0.998 0.9701 -0.35816 0.699 <.0001 -0.19967 0.819 0.0051

College Education -0.19846 0.82 <.0001 -0.63264 0.531 <.0001 -0.91338 0.401 <.0001 -0.22757 0.796 0.2808

White, non-hispanic 0.09991 1.105 0.0365 0.17383 1.19 0.104 -0.21353 0.808 0.2073 -0.03581 0.965 0.8532

Family Income 50-100k 0.04215 1.043 0.5169 0.41575 . 0.114 0.91705 . 0.0304 0.17906 1.196 0.4958

Family Income > 100k 0.04001 . 0.6388 0.02483 1.025 0.8521 0.52988 1.699 0.0178 -0.04187 0.959 0.8604

Individual Plan 0.0862 1.09 <.0001 0.12362 1.132 0.0002 -0.00976 0.99 0.8522 0.07437 1.077 0.1851

Post*Female - - - - - - - - - - - -

Post*Age

Post*Age 18-26 -0.15488 - <.0001 - - - -0.33251 - 0.0192 - - -

Post*Age 27-40 - - - - - - - - - - - -

Post*Age 41-50 - - - - - - - - - - - -

Post*College Education - - - - - - - - - - - -

Post*White, non-hispanic - - - - - - - - - - - -

Post*Family Income 50-100k - - - -0.60521 - 0.0311 -0.96876 - 0.0324 - - -

Post*Family Income > 100k 0.26331 - 0.0008 - - - - - - - - -

Post*Individual Plan - - - - - - - - - - - -

Models include interaction terms that were significant after stepwise removal of non-significant interaction terms.

Ambulatory Emergency Department Inpatient Same Day Surgery

1
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Appendix 2 Table 7. Cox Proportional Hazard Models: Time to First Medical Encounter By Encounter Type, Pre vs. Post 

Reform (Stratified Analyses)
a
  

 

 
  

Stratified Model Ambulatory Emergency Department Inpatient Infertility Treatment

     Age 18-26 0.906  ( 0.853,  0.963) - 0.619  (0.479,  0.801) -

     Age 27-40 1.084  ( 1.024, 1.147) - 0.813  (0.686,  0.964) -

     Age 41-50 1.175  ( 1.076,  1.283) - 1.262  ( 0.887,  1.796) -

     Age 51-64 1.057  (0.995,  1.123) - 0.946 ( 0.771,  1.161) -

     Income 50-100 (≤38%)
b

- 0.933  ( 0.844, 1.032) 0.884  ( 0.753,  1.038) -

     Income 50-100 (>38%)
b

- 0.785  (0.716, 0.861) 0.769  ( 0.662,  0.895) -

     Income >100 (≤31%)
b

1.005  ( 0.963, 1.048) - - -

     Income >100 (>31%)
b

1.071  (1.022,  1.123) - - -

     Individual Plan - - - 1.985  ( 1.529,   2.576)

     Family Plan - - - 0.708 (  0.339, 1.481)

a
Stratified by covariate that had significant covariate*post interaction.  Same Day Surgery and Knee Surgery models did not have any significant interactions.

b
Percents correspond to a % in census block of residence.  Dichotomous categories created by dividing continuous variable at mean of study population.

Post (vs. Pre) Reform Hazard Ratio (95% CI) by Encounter Type

1
2
3
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Appendix 2 Table 8. Cox Proportional Hazard Models: Time to First Medical Encounter By Elective Encounter Type, Pre vs. 

Post Reform 

 

   

Parameter

Estimate Hazard Ratio (95% CI) p value Estimate Hazard Ratio (95% CI) p value

Post -0.16717 0.846  (0.600, 1.194) 0.3412 0.52894 1.697  (1.325, 2.174) <.0001

Female -0.46268 0.63  (0.476, 0.832) 0.0011 - - -

Age - - - -0.0044 0.996  (0.980, 1.011) 0.5829

Age 18-26 -0.731 0.481  (0.319, 0.727) 0.0005 - - -

Age 27-40 -0.51698 0.596  (0.407, 0.875) 0.0082 - - -

Age 41-50 0.09035 1.095  (0.758, 1.581) 0.6298 - - -

College Education 0.57211 1.772  (0.556, 5.646) 0.3333 -2.28566 0.102  (0.045, 0.231) <.0001

White, non-hispanic 0.24985 1.284  (0.415, 3.969) 0.6644 -1.23126 0.292  (0.161, 0.528) <.0001

Family Income 50-100k -0.14735 0.863  (0.201, 3.713) 0.8431 1.63629 5.136  (1.820, 14.490) 0.002

Family Income > 100k -0.66762 0.513  (0.141, 1.864) 0.3106 2.96698 19.433  (7.314, 51.636) <.0001

Individual Plan -0.09872 0.906  (0.663, 1.237) 0.5346 2.30475 10.022  (7.208, 13.934) <.0001

Elective Encounter Type

Knee Surgery Infertility Treatment

1
2
4
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Appendix 2 Table 9. Cox Proportional Hazard Models: Time to First Medical Encounter By Elective Encounter Type, Pre vs. 

Post Reform (with significant interactions) 

 

  

Encounter Type

Parameter Estimate Hazard Ratio (95% CI) p value

Post -0.66368 . 0.0755

Age -0.00229 0.998 0.7753

College Education -2.27621 0.103 <.0001

White, non-hispanic -1.23053 0.292 <.0001

Family Income 50-100k 1.65302 5.223 0.0018

Family Income > 100k 2.97087 19.509 <.0001

Individual Plan 1.19613 . 0.0007

Post*Age - - -

Post*College Education - - -

Post*White, non-hispanic - -

Post*Family Income 50-100k - - -

Post*Family Income > 100k - -

Post*Individual Plan 1.29485 . 0.0011

Infertility Treatment

1
2
5
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Appendix 2 Figure 2. MA Unemployment Rate by Month

(source: Bureau of Labor Statistics)
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APPENDIX 3.1: SYSTEMATIC REVIEW STRATEGY TO IDENTIFY IV CER 

STUDIES 

 

Databases Searched: PubMed, EconLit, PsychInfo, Social Services Abstracts, Social Sciences 

Citation Index and Web of Science 

 

Search Terms: 

("instrumental variable" OR "instrumental variables") AND ("health" OR "medicine" OR 

“medical” OR "disease" OR "patient" OR "patients" OR "care" OR "Medicare" OR "Medicaid" 

OR "obesity" OR "substance abuse" OR "epidemiology" OR "epidemiological" OR 

“epidemiologic” OR “fertility” OR “drug” OR “drugs” OR “medication”)  

 

 

APPENDIX 3.2: CONFOUNDER SEARCH TERMS AND STRATEGIES 

 

SEARCH TERMS 

Distance: 

- “Distance”  

- “Travel”  

- “Rural”  

- “Health Services Accessibility”[Mesh]  

- “Geography” 

 

Regional Variation: 

-“Regional variation” 

-“Geographic variation” 

-“Area variation” 

-“Hospital referral region” 

-“Dartmouth Atlas” 

-“Wennberg [Author]” 

-“Fisher ES [Author]” 

 

Facility Variation: 

- Hospital: ("hospitals"[MeSH Terms] OR "hospitals" OR "hospital")  

- “Variation”  

 

Physician Variation: 

-“Physician's Practice Patterns”[Mesh] 

-“Physician” 

-“Provider” 

-“Variation” 

 

Outcomes:  

- "Mortality"[MeSH] 

- "Health Status"[Mesh] 

- "Health Status Indicators"[Mesh] 
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- "Health Status Disparities"[Mesh] 

- "Outcome Assessment (Health Care)"[Mesh] 

 

Disease-specific (for popular IV CER topics): 

Cardiovascular: ("Heart Failure"[Mesh] or "acute myocardial infarction" or "stroke") 

Antipsychotics: "Antipsychotic Agents"[Mesh] 

 

Other search terms: 

-“English[lang]” 

-“Volume”  

 

[Note: We used combinations of the above search terms.  Given the qualitative and non-

systematic nature of the search for confounders, this is not an exhaustive list of all search terms.] 

 

SEARCH STRATEGIES 

1. We searched for studies that included both the IV and the outcome to identify other 
covariates that are potential confounders.   

2. We also performed a two-step search strategy, in which we first searched for 
evidence of variables that are correlated with the IV and then performed another 
search to determine whether these variables are also correlated with the outcome, 
and vice versa.   

3. We also identified potential confounders based on our subject matter knowledge 
and conducted searches to find supporting evidence.   

4. Variables that we theorized are related to the IV but for which we do not have 
empirical evidence to support that the association exists were also identified.   

 

 

 

APPENDIX 3.3: DATABASE OF ALL IV CER STUDIES (n=187)  
See supplementary digital file Excel worksheet: “Appendix 3” 

 

Note: The lack of consistency in the type of test used to assess IV strength made it difficult to 

compare IV strength across different studies.  IV strength for each study is reported in this 

database. 
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APPENDIX 3.4: IV CER STUDIES BY IV CATEGORY AND TYPE OF OUTCOME 

 

 
 

APPENDIX 3.5: LIST OF REFERENCES FOR ALL STUDIES THAT PROVIDED 

EVIDENCE OF IV-OUTCOME CONFOUNDING  

See supplementary digital file Excel worksheet: “Appendix 5” 

 

 

APPENDIX 3.6: CONTROL FOR MAJOR CONFOUNDERS  
See supplementary digital file Excel worksheet: “Appendix 6” 

 

 

APPENDICES 3.7-3.10: DIRECTION OF BIAS INTRODUCED BY CONFOUNDERS 

See supplementary digital file Excel worksheet: “Appendix 7” – “Appendix 10”  

 

 

APPENDIX 3.11: EXAMPLE: CALCULATION OF SIZE AND DIRECTION OF BIAS 

INTRODUCED BY A CONFOUNDER 

 

Many IV CER studies examined the impact of invasive cardiac procedures following acute 

myocardial infarction (AMI), with mixed results.  Using regional variation in cardiac 

catheterization as an IV, Stukel et al. (2007) found that cardiac catheterization was associated 
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with a 16.8% reduction in mortality (7-year all cause) in Medicare patients.
1
  Although the 

authors controlled for many potentially important confounders – e.g., race, income, patient co-

morbidities and hospital volume – they did not control for urban vs. rural residence.  In this 

appendix, we provide evidence that urban/rural residence is an IV-outcome confounder and 

demonstrate how this confounder may bias the IV estimate. 

 

Methods 

We first searched the literature for evidence that urban/rural residence (the confounder) is 

associated with regional variation (the IV) and with mortality (the outcome).  We recorded the 

size and direction of these relationships. 

 

We then estimated the bias introduced by the IV-outcome confounder.  The asymptotic bias of 

the IV estimator can be obtained from a simple equation of the coefficients of three relationships: 

 

Equation 1.     Bias âIV( ) =a2

E[U | Z =1]-E[U | Z = 0]

E[X | Z =1]-E[X | Z = 0]
 

 

Where α2 is the difference in risk of the outcome by level of the confounder, E[U|Z=1] – 

E[U|Z=0] is the difference in prevalence of the confounder by level of the IV, and 

E[X|Z=1] – E[X|Z=0] is the difference in prevalence of the treatment by level of the IV.  

See Brookhart et al. (2007)
 
for a more detailed explanation.

2
 

 

We performed sensitivity analyses with different estimates of the confounder-IV, confounder-

outcome, and IV-treatment relationships in order to demonstrate how different sizes and 

directions of these relationships influence the bias estimate.  

 

Results 

We found evidence that urban patients are more likely to live in high cardiac catheterization 

regions (i.e., assigned to “treatment” via the IV) than patients living in rural areas [see Appendix 

3.11 Table 1].
3
  In a study using the same Medicare population as Stukel et al. (2007)

 
(the 1994-

1995 cohort of the Cooperative Cardiovascular Project),
 1

 we found evidence that patients treated 

at urban hospitals have a lower risk of mortality compared to patients in small remote rural 

hospitals, likely due to decreased use of recommended treatments in rural areas.
4
  Since urban 

patients are more likely to be assigned to the treatment group and less likely to die for reasons 

other than the treatment of interest, the IV overestimates the true effect of cardiac catheterization 

[Analysis #1 in Appendix 3.11 Table 1].   

 

There is a smaller mortality difference, and therefore less bias, when comparing urban and large 

rural hospitals [Analysis #2].  The large differences in urban/rural cardiac catheterization rates, 

which seem plausible in the early stages of the adoption of a technology, may have reduced over 

time – this would also decrease the estimate of bias [Analysis #3].  Conversely, the size of the 

bias is inversely proportional to the association between the IV and the treatment – a weaker 

instrument will inflate the bias estimate [Analysis #4].   

 

It is also plausible that, in some regions of the US, urban patients have a higher risk of mortality 

than rural patients and that the IV analysis is actually underestimating the impact of cardiac 
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catheterization [Analysis #5].  See “Sources of bias example” below for a more detailed 

explanation of the confounder-IV and confounder-outcome relationships used in this example. 

 

Conclusion  

This example demonstrates how the degree of bias is highly dependent on the direction and size 

of the confounder-IV and confounder-outcome relationships and the strength of the instrument.  

A confounded IV can lead to overestimation, underestimation or complete reversal of the true 

treatment effect and a “weak” IV will inflate any residual bias.  

 

Limitations 

This analysis is meant to be an example of how to calculate and interpret bias of an IV estimate.  

The estimates in Appendix 3.11 Table 1 should not be interpreted as the actual bias for Stukel et 

al. (2007).
1
  In order to calculate the actual bias for Stukel et al. (2007),

 1
 one would need to 

measure the confounder-outcome and confounder-IV relationships in the study population, while 

controlling for the other variables in the study.  Also, since we analyze the impact of just one IV-

outcome confounder we did not adjust for other possible confounders.   

 

Finally, the fact that rural hospitals have been found (in an independent analysis) to have higher 

mortality does not necessarily imply that rurality is an IV-outcome confounder.  It could be 

argued that the effect of urban/rural residence is mediated through less use of catheterization 

(i.e., mortality is higher in rural areas because catheterization is less common), in which case the 

IV analysis is not invalid.  However, evidence that patients in rural areas have worse health
5
 and 

receive poorer quality of care (e.g., less likely to receive life-saving aspirin and thrombolytic 

therapy)
4,6

 suggests that mortality is higher for reasons other than just lack of invasive cardiac 

procedures.
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Appendix 3.11 Table 1: Bias Analysis Example 

   Patient population: AMI Medicare patients 

   Treatment = cardiac catheterization 

   Outcome = improved survival (i.e., reduction in mortality)   

   IV = regional variation in cardiac catheterization rates (reference group = low rate)  

   Confounder = urban/rural residence (reference group = rural) 

 

 

 

 

 

Note: Bold numbers in Analyses 2-5 indicate variation from base case (Analysis 1). 

Sensitivity Analyses Confounder-

IV 

Relationship 

Confounder-

Outcome 

Relationship 

IV-

treatment 

relationship 

Bias 

Estimate 

(Equation 1) 

Effect 

Estimate     

(IV estimate – 

bias) 

 

Interpretation 

(of IV 

estimate of 

actual study) 

Actual Study 
- - 22% 

a
 - 

IV Estimate = 

16.8% 
a
 

 

Analysis 1 – base case 46% 
b
 7%

c
 22% 15% 2% Overestimate 

Analysis 2 – varied 

outcome-confounder 

relationship 

46% 3%
 c
 22% 6% 11% Overestimate 

Analysis 3 – varied IV-

confounder relationship 
23% 

d
 7% 22% 7% 9% Overestimate 

Analysis 4 – varied IV-

treatment relationship 
46% 7% 11% 

d
 29% -12% Reverse effect 

Analysis 5 - opposite 

outcome-confounder 

relationship 

46% -10% 
e
 22% -21% 38% Underestimate 

1
3
3
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Sources for bias example: 

(a) 22%: The IV was predictive of catheterization: 65.0% vs. 42.8% of AMI patients in high vs. 

low use regions received cardiac catheterization (i.e., “strength” of the instrument is 22.2%). 

[Source: Stukel et al., 2007
1
] 

 

(b) 46%: To obtain an estimate of urban/rural differences by regional rates of cardiac 

catheterization, we extrapolated from an earlier IV CER study that used distance to cardiac 

catheterization hospital as the IV, assuming that the patients who live near a cardiac 

catheterization hospital would also be classified as living in a relatively high utilization rate 

region. Patients in high cardiac catheterization rate regions were more likely to live in an urban 

area than patients in a low rate region (52.4%-6.5%=45.9%).  [Source: McClellan et al., 1994
3
] 

 

(c) 7%; 3%: Patients in rural hospitals had higher adjusted 30-day post-AMI all-cause mortality 

than those in urban hospitals (odds ratio for large rural 1.14 [1.10 to 1.18], small rural 1.24 [1.20 

to 1.29], and remote small rural 1.32 [1.23 to 1.41].  Patients treated in urban vs. remote small 

rural (Analysis 1) and large rural (Analysis 2) had a 7% and 3% reduction in mortality, 

respectively.  [Source: Baldwin et al., 2004
4
] 

 

(d) No source.  We halved confounder-IV (Analysis 3) and IV-treatment (Analysis 4) 

relationships for sensitivity analysis. 

 

(e) Murray et al. (2006) demonstrated that urban/rural differences in mortality depend on the 

region of the country – in some regions, urban populations have lower mortality than rural 

populations.
7
  In addition to race and socioeconomic reasons, there are multiple reasons why 

urban AMI patients could be sicker, and therefore more likely to die, than rural patients.  Over 

40% of Medicare patients are transferred out of their admitting hospital,
8
 but Stukel et al. (2007)

1
 

did not take into account transfer status of the patients.  Studies on other medical conditions 

found that transferred patients are more likely to be from rural areas
9
 and sicker

10,11 
– this leaves 

a relatively healthier population in rural hospitals.  Similarly, patients who live in rural areas 

have a longer travel time to the hospital.
12,13

  For life-threatening illnesses, such as AMI, patients 

who have to travel longer distances are less likely to arrive at the hospital (i.e., they die en route).  

A person with a similarly severe illness in an urban area would have made it to the hospital and 

been included in the study population.  Again, this results in a relatively healthier patient 

population in the rural hospitals.   

 
References for bias example: 
1 

Stukel TA, Fisher ES, Wennberg DE, et al. Analysis of observational studies in the presence of 

treatment selection bias: effects of invasive cardiac management on AMI survival using 

propensity score and instrumental variable methods. JAMA. 2007;297(3):278–285. 

 
2
 Brookhart MA, Schneeweiss S. Preference-based instrumental variable methods for the 

estimation of treatment effects: assessing validity and interpreting results. Int J Biostat. 

2007;3(1):14.   
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