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Abstract

We defined a new type of open Gromov-Witten invariants Ω̃Floer on hy-

perKäher manifolds with holomorphic Lagrangian fibration (not necessary

compact). Using this new invariant, we prove a version of correspondence

theorem between holomorphic discs give rise to non-trivial invariants and

tropical discs. Moreover, we prove the above two invariants are the same

in an local model and provide an non-trivial example of wall-crossing phe-

nomenon of the open Gromov-Witten invariants on K3 surfaces. We also

connect the invariants Ω̃Floer with discs counting on Calabi-Yau 3-folds with

K3 fibration via an real analogue of Noether-Lefschetz theory.
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1 Introduction

The well-known Calabi conjecture solved by Yau guarantees that given a

compact Calabi-Yau manifold, there exists a unique Ricci-flat Kähler met-

ric in each prescribed Kähler class [38] in 1978. After existence, the next

interesting question to ask is the explicit expression of the metric. [36] sug-

gested that Calabi-Yau manifolds will admit special Lagrangian fibration

around large complex limits and the mirror will be given by the dual fibra-

tion. It is a folklore that the Ricci-flat metrics near large complex limits are

approximated by semi-flat metrics with instanton correction related to the

holomorphic discs with boundaries on special Lagrangian fibres [9]. The first

part is done for K3 surfaces: [20] wrote down the semi-flat metric for the

special Lagrangian fibration. Later, [19] proved that for elliptic K3 surfaces

around large complex limits, the Ricci-flat metrics are approximated by the

semi-flat metrics gluing with Ooguri-Vafa metrics. However, the instanton

corrections are not included in [19]. Although the original problem is for-

mulated as a differential geometric problem, [23],[18] had big success toward

an algebraic-geometric version of SYZ conjecture. They incorporated the

instanton problems of complex structure with the tropical geometry.

Inspiring by closed topological string theory, Gromov-Witten theory is

a useful tool in probing algebraic geometry/ symplectic geometry and pro-

duces interesting enumerative invariants, counting number of curves with

certain incidence conditions in the target space. One can also consider the

open topological string analogue and try to define open Gromov-Witten in-

variants, counting (pseudo-)holomorphic Riemann surface with Lagrangian
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boundary conditions. However, it is hard to define open Gromov-Witten

type invariants due to the existence of codimension one boundaries of the

moduli spaces. For compact Calabi-Yau case, there are only two situations

of which open Gromov-Witten invariants can be defined in the literature.

One is the case when the Calabi-Yau admits an anti-symplectic involution

and the Lagrangian is given by the fixed locus [33]. The other one is the case

of Calabi-Yau 3-folds with rational homology sphere Lagrangian boundary

condition [8]. Notice that in both situations the Lagrangian boundary con-

ditions are rigid in certain sense. Here we will present a new type of open

Gromov-Witten invariants on general hyperKähler manifolds and on Calabi-

Yau 3-folds with K3 sibration in [30]. Moreover, if one wants to define open

Gromov-Witten invariants on K3 surfaces, there is another naive obstruc-

tion by easy dimension count. Namely, the moduli space of holomorphic

discs (with special Lagrangian boundary condition) has virtual dimension

minus one. In particular, there is no pseudo-holomorphic discs with respect

to a generic almost complex structure. In other words, even if we can get

rid of the first issue and make the counting well-defined, the invariant would

just be zero.

To solve the two difficulties mentioned above, we proposed to consider

the Lagrangian boundary condition with non-trivial deformations. Given a

hyperKähler manifold X and a holomorphic Lagrangian submanifold L with

nontrivial deformation, any choice of hyperKähler metric will induced an S1-

family of complex structure making L a special Lagrangian submanifold. It

is natural to consider the moduli space of discs holomorphic with respect to

these S1-family of complex structures. The first observation is that given
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any relative homology class, there is at most one complex structure which

makes it holomorphic. In other words, the new moduli space coincide with

the usual one as topological spaces. However, after the introducing of S1-

family of complex structure on the target space, the virtual dimension of

the new moduli space will be one dimension higher. Similar to the idea of

changing tangent-obstruction theory to define reduced Gromov-Witten in-

variants in algebraic geometry, one can construct a new Kuranishi structure

on the new moduli space using the S1-family of complex structures. Via

this new Kuranishi structure, one can construct a reduced A∞ structure on

Λ∗(L× S1
ϑ) and a new virtual fundamental class if the moduli space has no

codimension one boundary. We couple the symplectic area and the phase of

the holomorphic discs to get a holomorphic function called central charge.

The holomorphicity and Gromov compactness theorem will guarantee that

the codimension one boundaries of the moduli spaces only occur as an real

analytic Zariski closed subsets in the deformation space of L. Although the

invariants cannot be defined when the bubbling phenomenon occur, we can

interpret the locus where bubbling occurs as the walls of marginal stability

in physics. We expect the invariants jump when the Lagrangian boundary

conditions vary across the wall of marginal stability and the jump is gov-

erned by Kontsevich-Soibelman wall-crossing formula. Therefore the struc-

ture is similar to Donalson-Thomas theory in algebraic geometry, changing

the boundary condition can be viewed as changing stability condition. The

deformation space of the holomorphic Lagrangian L can be viewed as a

complex isotropic space of the stability manifold.

We first review the twistor construction of hyperKähler metric in [17]
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in section 2. Then we define the tropical counting invariants satisfying

Kontsevich-Soibelman wall-crossing formula in section 3 and 4, thus real-

ize the physics model of [17] in K3 case. In particular, we prove mirror

symmetry in by identifying the tropical data and the instanton correction

of complex structure of the mirror in the sense of [17]. Then we define an

open Gromov-Witten type invariants on holomorphic Lagrangian torus of

hyperKähler manifolds using de Rham model introduced in [7] in section

5 and establish the correspondence between tropical geometry and holo-

morphic geometry. We will present an non-trivial example of wall-crossing

phenomenon at the end of section 5. We use this tropical discs counting

to construct a quantum corrected SYZ transform on Ooguri-Vafa space in

section 6. In section 7, we introduce a real version of Noether-Lefchetz the-

ory and establish the relation between reduced disc counting on K3 and disc

counting on Calabi-Yau 3-folds with K3 fibration.

2 Review of Twistorial Construction

2.1 Settings and HyperKähler Rotation

Let X be a hyperKähler manifold of dimension n, then it admits a P1-family

of complex structures, called twistor line parametrized by ζ, given by

Jζ =
i(−ζ + ζ̄)J1 − (ζ + ζ̄)J2 + (1− |ζ|2)J3

1 + |ζ|2 ,

where J1, J2 and J3 are integrable complex structures satisfying the quater-

nionic relation. Moreover, the holomorphic symplectic 2-forms Ωζ with re-
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spect to the compatible complex structure Jζ are given by

Ωζ = − i

2ζ
ω+ + ω3 − i

2
ζω−, (1)

where ω± = ω1 ± ω2.

Remark 2.1. Let L be a holomorphic Lagrangian in (X, ω, Ω), namely,

Ω|L = 0. Assume the north and south pole the twistor line is given by (ω, Ω)

and (−ω, Ω̄) respectively, making L an holomorphic Lagrangian. The hy-

perKähler structures corresponding to the equator {ϑ = ζ : |ζ| = 1} provides

a special Lagrangian L in Xϑ = (X, ωϑ,Ωϑ). In particular, if (X, ω, Ω)

admits holomorphic Lagrangian fibration, then it induces an S1-family of

special Lagrangian fibration on Xϑ for each ϑ ∈ S1. This is the so-called

hyperKähler rotation trick.

The twistor construction is based on the following characteristic proper-

ties of the twistor space of a hyperKähler manifold:

Theorem 2.2. [22] X is a manifold and Z = X × CP1 admits a complex

structure such p : Z → CP1 is holomophic and

1. There is a holomorphic section $ of Ω2
Z/CP1 ⊗O(2) restricting to the

holomorphic symplectic form Ωζ on each fibre p−1(ζ).

2. The map σ(x, ζ) = (x,−1/ζ̄) gives an anti-holomophic involution of Z
, which coves the antipodal map on CP1, and preserves $ in the sense

that σ∗$ = $̄.

Then X is the set of holomorphic curves C in Z isomorphic to CP1 with

normal bundles and preserved by the involution is a hyperKähler manifold.
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The above characteristic properties of the twister space of a hyperKähler

manifold allow us to cook up a hyperKähler metric g on a K3 surface X from

Z. Since $n+1 = 0, it follows that ωn
+ ∧ ω3 = 0. Therefore the real 2-form

ω3 is of type (1, 1) in complex structure J3 and we can use J3 and ω3 to

build a Kähler metric g on X. This g is the hyperKähler metric guaranteed

by the twister construction. Therefore, to extract the hyperKähler metric,

it suffices to write down the holomorphic (2, 0)-form Ωζ , for all ζ ∈ P1.

Using this idea, [17] proposes a recipe of constructing holomorphic (2, 0)-

forms on the semi-flat part of a hyperKähler manifold with holomorphic

Lagrangian fibration. We need the following data as input:

1. A complex manifold B with a divisor D and B0 = B\D, where B is

the base of the holomorphic Lagrangian fibration and D will be the

discriminant locus of the torus fibration later. B is also referred as the

Coulumb branch of abelian N = 2 gauge theory.

2. A local system Γg over B0, with a rank 2 lattice equipped with a

non-degenerate anti-symmetric integer-valued pairing 〈, 〉.

3. A fixed lattice Γf (possibly trivial).

4. A local system Γ of lattices over B0, given by the extension

0 → Γf → Γ → Γg → 0 (2)

The pairing 〈, 〉 on Γg induces one on Γ (also denoted by 〈, 〉) with

radical Γf .
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5. A homomorphism Z : Γ → C, varying holomorphic over B0. For any

local section γ of Γ we have a local holomorphic function over B0. We

call Z the central charge.

6. An element θf ∈ Γ∗f ⊗ (R/2πZ).

The above data should satisfy the conditions below:

1. Zγf
is a constant function for every γf ∈ Γf .

2. 〈dZ, dZ〉 = 0 and 〈dZ, dZ̄〉 > 0.

3. For any u ∈ B0, the dZγ(u) span T ∗uB0.

Remark 2.3. The above data determine an S1-family of affine structures

on B0. For any ϑ ∈ R/2πZ, the functions fi = Re(eiϑZγi∈Γg), give the

local integral affine coordinates with transition functions in Sp(2,Z) n R2.

In particular, Neither the choice of Kähler class of the elliptic K3 nor the

scaling of the holomorphic (2, 0)-form change the affine straight lines on the

base affine manifold.

From the above data, we can construct the semi-flat part of an hy-

perKähler manifold with holomorphic Lagrangian fibration. Indeed, let

TCharu(Γ, θf ) be the set of twisted unitary characters of Γu, namely, θ :

Γu → R/2πZ satisfying

θγ + θγ′ = θγ+γ′ + π〈γ, γ′〉

and agree with θf when restricting on Γf ⊆ Γ. Each fibre TCharu(Γ, θf ) ∼=
(S1)n and they glue together to recover the torus bundle X0 over B0.
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2.2 BPS Counting and Wall-Crossing Formula

Let T be the complexified symplectic torus with coordinate xi and equipped

with a standard holomorphic symplectic 2-form

$ =
∑

εij
dXi

Xj
∧ dXj

Xj
,

where Xi are standard multiplicative coordinate on T. Our goal is to con-

struct a multiplicative map χ : Lu → T. The pull-back of the standard

symplectic 2-form χ∗$ gives a closed 2-form on Lu. Varying the base pa-

rameter u ∈ B0 gives a global 2-form which is closed and non-degenerate

when R is large. There is an canonical smooth choice given by

χsf
γ (ζ) = exp[πR

Zγ

ζ
+ iθγ + πRζZ̄γ ].

However, the resulting 2-form will induce the semi-flat metric by Theorem

2.2 and cannot be extended to the singular fibres because of the blow-up

curvature. To overcome this defect, we need to add ”instanton corrections”

to χsf
γ : we introduce the generalized Daonaldson-Thomas invariant Ω : Γ →

Z satisfying Ω(γ;u) = Ω(−γ;u). Moreover, to each γ ∈ Γu one associates a

birational Poisson automorphism Kγ of T, defined by

K∗γXγ′ = Xγ′(1−Xγ)〈γ,γ′〉

We attach a BPS ray to each γ ∈ Γu,

lγ(u) := Zγ(u)R−.
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Then for each ray in the form above in the ζ-plane, we associate a birational

Poisson automorphism of T,

Sl(u) :=
∏

γ:lγ(u)=l

KΩ(γ;u)
γ

Define an anti-holomorphic involution τ of T by

τ∗Xγ = X̄−γ

The Riemann-Hilbert problem is formulated as follows : Fix u ∈ B0, our

goal is to find a map χ : X × C∗ → T. with the properties below:

1. χ is piecewise-holomorphic on ζ ∈ C∗, with discontinuities only along

the BPS rays lγ(u) for each γ ∈ Γu and Ω(γ;u) 6= 0.

2. The limits χ± of χ as ζ approaches any BPS ray l from both sides

exist and are related by

χ+ = S−1
l ◦ χ−

3. Reality condition

χ(−1/ζ̄) = τ∗χ(ζ)

4. For any γ, the limit lim
ζ→0

χγ(ζ)/χsf
γ (ζ) exists and is real.

We will focus on the first two properties above in this paper.

Definition 2.4. The wall of marginal stability W is a real codimension one

9



subset on B0 given by

W =
⋃

Wγ1,γ2 ,

where

Wγ1,γ2 = {u : ∃γ1, γ2 with Ω(γ1;u) 6= 0,Ω(γ2;u) 6= 0,
Zγ1(u)
Zγ2(u)

∈ R+}

Choose a strictly convex cone V in C with apex at the origin, then for

each u /∈ W we define

AV (u) =
∏

γ:Zγ(u)∈V

KΩ(γ;u)
γ =

∏

l∈V

Sl(u)

where the product is taken in order of increasing ArgZγ(u).

We say the set of numbers {Ω(γ;u)} satisfy Kontsevich-Soibelman wall-

crossing formula if given a path in B0 connecting u and u′ which has no point

u with Zγ(u) ∈ ∂V and Ω(γ;u) 6= 0, then AV (u) and AV (u′) are related by

parallel transport in B0 along the path.

Remark 2.5. The smoothness of 2-form χ∗$ is interpreted as Kontsevich-

Soibelman wall-crossing formula in [17].

From the wall-crossing formula, Ω(γ, u) are locally constant on B0\W .

Any path passing through a generic point u of a wall Wγ1,γ2 with d
Zγ1
Zγ2

(u) 6=
0, then the phase of Zγ1 and Zγ2 change order when we change u across the

wall of marginal stability. To make the product AV (u) unchanged, Ω(γ;u)

may jump when crossing the wall W . One would be able to solve for all
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Ω(γ;u), if we know Ω(γ;u0) for some fixed u0 (see Theorem 5.50).

2.3 Solving the Riemann-Hilbert Problem

From the Corollary 2.5, we want to solve the following functional equation

to glue the local holomorphic 2-forms to a global one for ζ ∈ C∗.

χγ(ζ) = χsf
γ (ζ) exp

[
1

4πi

∑

l

∫

l

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log

χγ(e−iεζ ′)
(χSl)γ(e−iεζ ′)

]

From the explicit form of the Kontsevich-Soibelman factor, we have

(χSl)γ = χγ

∏

γ′
(1− σ(γ′)χγ′)Ω(γ′;u)〈γ,γ′〉

Therefore, the integral formula for χ becomes

χγ(ζ) = χsf
γ (ζ) exp

[
− 1

4πi

∑

γ′
Ω(γ′;u)〈γ, γ′〉

∫

l

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1− σ(γ′)χγ′)

]

(3)

We will solve the above integral equation by iteration with initial data

χ = χsf . We first introduce Q-valued invariants related to Ω(γ) by the

”multiple cover formula” (see also [28])

Ω̃(γ) =
∞∑

n=1

Ω(γ/n)
n2

. (4)

Here we define Ω(γ/n) = 0 if n does not divide γ. Equivalent,

Ω(γ) =
∞∑

n=1

µ(n)
Ω̃(γ/n)

n2
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by Mobius inversion formula.

Then we consider rooted trees with vertices labeled by charges γi ∈ Γ

and edges labeled by pairs (i, j) (where i is the node closer to the root). For

each such tree T , we associate a weight

Ω̃(T ) =
1

|Aut(T )|
∏

i∈v(T )

Ω̃(γi)
∏

(i,j)∈E(T )

〈γi, γj〉 (5)

Let γT denote the label at the root vertex of T . We define a function GT (ζ)

on ( a patch of ) M inductively as follows: deleting the root vertex from T
leaves behind a set of trees Ta, and set

GT (ζ) =
1

4πi

∫

lγT

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
χsf

γT (ζ ′)
∏
a

GTa(ζ
′).

Proposition 2.6. The formal solution for the iteration integral equation

(3) is

χγ(ζ) = χsf
γ (ζ) exp

[∑

T
〈γ, γT 〉Ω̃(T )GT (ζ)

]
(6)

Proof. Let χ
(0)
γ = χsf

γ and define iteration by

χ(i+1)
γ (ζ) = χsf

γ (ζ) exp
[−1
4πi

∑

γ′
Ω(γ′;u)〈γ, γ′〉

∫

lγ′(u)

dζ ′

ζ ′
ζ + ζ ′

ζ − ζ ′
log(1−χ

(i)
γ′ (ζ

′))
]
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Formally, we can compute χ
(i)
γ by induction

χ(i+1)
γ (ζ) = χsf

γ (ζ) exp
[ 1
4πi

∑

γ′
Ω(γ′;u)〈γ, γ′〉

∫

lγ′(u)

dζ ′

ζ ′
ζ + ζ ′

ζ − ζ ′

∞∑

k=1

χ
(i)
kγ′(ζ

′)
k

]

= χsf
γ (ζ) exp

[
1

4πi

∑

γ′

∞∑

k=1

Ω(γ′;u)
k2

〈γ, kγ′〉
∫

lγ′(u)

dζ ′

ζ ′
ζ + ζ ′

ζ − ζ ′

χsf
kγ′(ζ

′) exp
[∑

T
Ω̃(γ′′)〈kγ′, γ′′〉Gγ′′(ζ ′)

]]

= χsf
γ (ζ) exp

[
1

4πi

∑

γ′
Ω̃(γ′)〈γ, γ′〉

∫

lγ′(u)

dζ ′

ζ ′
ζ + ζ ′

ζ − ζ ′

χsf
γ′ (ζ

′) exp
[ ∑

T :dept(T )≤i

Ω̃(T )〈γ′, γT 〉GT (ζ ′)
]]

= χsf
γ (ζ) exp

[
1

4πi

∑

γ′
Ω̃(γ′)〈γ, γ′〉

∫

lγ′(u)

dζ ′

ζ ′
ζ + ζ ′

ζ − ζ ′

χsf
γ′ (ζ

′)
∞∑

s=0

(
∑
T :dept(T )≤i Ω̃(T )〈γ′, γT 〉GT (ζ ′))s

s!

]

= χsf
kγ′(ζ

′) exp
[ ∑

T :dept(T )≤i+1

〈γ, γT 〉Ω̃(T )GT (ζ)
]

In the first equality we use the Taylor expansion of log(1 − x) and the

fact that (χ(i)
γ )k = χ

(i)
kγ , which is valid because χsf

γ is strictly negative along

the BPS rays lγ(u). The second equality we use the induction hypothesis

and the third ”equality” we use a formal resummation formula

∑

γ′

∞∑

k=1

Ω(γ′;u)
k2

f(kγ′) =
∑

γ′
f(γ′)Ω̃(γ′) (7)

The fourth ”equality” we use the Taylor expansion for ex and another re-

summation (7) in the last ”equality”.
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Remark 2.7. [17] If |Ω(γ)| ≤ eα‖γ‖ for some constant α, then the above for-

mal sum equalities converge absolutely and the twistor construction provides

a C∗-family of holomorphic 2-forms OUTSIDE the singular fibres.

Remark 2.8. The formal expansion expression (6) can help to establish

SYZ transform on Ooguri-Vafa space (see section 6).

Remark 2.9. There is a symmetry ζ 7→ eiϑζ, and Z 7→ eiϑZ on (6). Also,

we have χ−γ(−1/ζ̄) = χγ(ζ) formally.

2.4 Local example: Ooguri-Vafa metric

We will follow the setting for the recipe above:

1. Choose B = {|u| < Λ} be a disc and the discriminant locus is just the

origin.

2. Γ = Γg is a rank-2 local system of lattices over B0, with monodromy

around the origin γe → γe, γm → γe + γm after choosing a special set

of local basis of sections (γe, γm).

3. The intersection pairing 〈γe, γm〉 = 1.

4. The central charges are Zγe = u and Zγm = u log u
Λ − u.

(Note that both are globally defined.)

5. Γf and θf are trivial.

6. For all u, we have Ω(γ, u) =





1 if γ = ±γe,

0 otherwise.
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Following the recipe, one can derive Ooguri-Vafa metric [31] from the above

input data.

Remark 2.10. This is so far the only example of the holomorphic 2-forms

constructed from Gaiotto-Moore-Neitzke’s recipe which can extend over sin-

gular fibres (not even the pentagon example). In Ooguri-Vafa case, the ex-

tension follows from Poisson summation formula.

One can construct an S1-family of special Lagrangian fibration on the

total space of above elliptic fibration X for each ζ, with |ζ| = 1 by

Ts,λ = {(u1, u2, θe, θm) ∈ Xζ : log |χe(ζ)| = s, µS1 = λ} (8)

Remark 2.11. [4] By maximum principle, Ts,λ bounds a holomorphic disc

if and only if Re(uζ̄) = 0, u = u1 + iu2.

The two generators of Γ = H2(X, T ) ∼= H2(T ) can be written down

explicitly. γ1 is the initial disc, which is formed by the collection of {θe =

const.} in the fibres of χe(ζ) : X → C along the segment to origin. γ2 is a

section of χe(ζ) restricted to
{
λ = −2π

ε b1 = const.
}
.

Since the mirror of X−1 is Xi, direct calculation shows the following:

Observation 2.12. The central charge Z : Γ → C is given by the integration

of the 2-form ω + iImΩ on its mirror.

Remark 2.13. In [31], the total space of Ooguri-Vafa space is interpreted

as part of the hypermultiplet moduli space of type II string compactification

on a Calabi-Yau threefold. The coordinate y =
∫

Ω is the period of vanishing
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cycle, where the classical hypermultiplet moduli space develops a singularity

at y → 0. The other coordinate t and u are the expectation values of the RR

3-form corresponding to the vanishing cycle and its dual.

2.5 Application to Elliptic K3 Surfaces

We would start with f : X → B an elliptic K3 surface (with a holormorphic

section) and a prescribed Kähler class [ω]. From Yau’s theorem there exists

a unique Ricci-flat Kähler form ω satisfying the Monge-Ampere equation

2ω2 = Ω ∧ Ω̄, where Ω is a non-vanishing holomorphic (2, 0)-form. The

triple (X, ω, Ω) will induce a twistor family of K3 surfaces. For the input of

above twistor construction, we will use the long exact sequence

H2(X) → Γ = H2(X, Lu) → Γg = H1(Lu) → 0, (9)

The symplectic pairing 〈, 〉 is taken to be the natural pairing of homology on

H1(Ju). The central charge Z is taken to be the period γ 7→ ∫
γ Ω, for each

γ ∈ H2(X, Lu). The integral is well-defined because Ω|L = 0. The following

lemma is straight forward computation:

Lemma 2.14. For any v ∈ TB0, we have

dZγ(v) =
∫

∂γ
ιṽΩ, (10)

where ṽ ∈ TX is any lifting of v.

Proof. Since Ω|L = 0, we view Ω as the element (Ω, 0) ∈ H2(X, L). From

16



the variational formula of relative pairing,

dZγ(v) = Lv〈γ, (Ω, 0)〉

= 〈γ, (ιṽdΩ, ιṽ(0− Ω))〉 =
∫

∂γ
ιṽΩ

Given a point u0 ∈ B0 and an element γu0 ∈ Γu0 , there exists a neighbor-

hood U of u0 and a neighborhood of Ũ of γu0 such that U is homeomorphic

to Ũ . Under this identification, we have

Corollary 2.15. The central charge Z : Γ → C is a holomorphic function

on Γ.

Proof. Since any (0, 1)-vector on TB0 can be expressed in term of v + iJv

for some v ∈ TB0,

(v + iJv)Z =
∫

∂γ
ι(ṽ+iJṽ)Ω = 0.

The latter equality holds because Ω is a (2, 0)-form and ṽ + iJṽ is a (0, 1)-

vector. Notice that for y near a singularity of the affine structure, γ rep-

resents the relative class of Lefschetz thimble, then Zγ is bounded in a

neighborhood of the singularity and thus is a removable singularity.

Because both ReΩ and ImΩ are symplectic form, another immediate

consequence of Lemma 2.14 is the following:

Corollary 2.16. Let γ ∈ Γ, then dZγ 6= 0 whenever Zγ is defined.
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Corollary 2.17. 〈dZ, dZ〉 = 0 and 〈dZ, dZ̄〉 > 0.

Proof. There is a standard short exact sequence

0 → R1f∗Z→ R1f∗OX
∼= ωP1 → O# → 0, (11)

where O# denotes the sheaf of holomorphic sections of f : X → P1. Here

R1f∗OX is identified as the normal bundle of the zero section and the last

map is the fibrewise exponential map. There is a natural holomorphic sym-

plectic 2-form Ωcan on R1f∗OX and descend to the quotient. On the other

hand, any holormophic symplectic 2-form is a multiple of Ωcan. Therefore,

the holomorphic volume form of an elliptic K3 surface coincides with the

one descending from the canonical volume form of the cotangent bundle of

the base. The proposition follows from direct computations and Lemma

2.14.

Remark 2.18. In particular, the non-vanishing holomorphic 2-form of an

elliptic K3 surface receive no quantum correction and admits local S1-action

near singularities and local T 2-action away from singularities.

In particular, we have Zγ(u) 6= 0 for Ω(γ) 6= 0 unless u is the singular

point of the affine structure and γ is multiple of the Lefschetz thimble.

To apply the twistor construction to elliptic K3 surfaces, we still need the

key ingredient: the generalized Donaldson-Thomas invariants Ω(γ) which we

will discuss in the next section.
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3 Scattering Diagrams and Generalized Donaldson-

Thomas Invariants on K3 Surfaces

3.1 Construction of Scattering Diagrams on Elliptic K3 Sur-

faces

We first introduce a version of Novikov ring. Let R be a commutative ring

with unit,

Λ0(R) =
{ ∞∑

i=0

aiT
λi

∣∣∣∣ai ∈ R, λ ∈ R≥0, lim
i→∞

λi = ∞
}

and

Λ+(R) =
{ ∞∑

i=0

aiT
λi ∈ Λ0(R)

∣∣∣∣λ > 0
}

There is a natural filtration on Λ0(R) given by

F λΛ0(R) = T λΛ0(R)

for each λ ∈ R≥0. We will take R = C later on and ignore the notation

R. The localization of Λ0 at its maximal ideal, which is a generalization of

puiseux series, is algebraically closed and complete in T -adic topology.

We define the module of log derivations of

C[Γg]⊗̂CΛ0 = lim← C[Γg]⊗C Λ0/F λΛ0
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to be

Θ(C[Γg]⊗̂CΛ0) = Hom(Γg,C[Γg]⊗̂CΛ0) = (C[Γg]⊗̂CΛ0)⊗Z Γ∗g

For each element a∂n = a⊗ n ∈ (C[Γg]⊗̂CΛ0)⊗Z Γ∗g, it induces an ordinary

derivation of C[Γg]⊗̂CΛ0 over Λ0,

(a∂n)(zγ) = a〈γ, n〉zγ

Let g = Λ+(Θ(C[Γg]⊗̂CΛ0)). Given any ξ ∈ g, we have an element

exp(ξ) ∈ AutΛ0(C[Γg]⊗̂CΛ0).

From Baker-Cambell-Hausdorf formula and Lie algebra structure on g given

by

[zγ∂n, zγ′∂n′ ] = (−1)〈γ,γ′〉zγ+γ′∂〈γ′,n〉n′−〈γ,n′〉n.

Remark 3.1. If we write eγ = zγ∂wγγ⊥, γ = ωγγprim then the Lie bracket

becomes

[eγ1 , eγ2 ] = (−1)〈γ,γ′〉〈γ, γ′〉eγ+γ′

The subset

G = {exp ξ|ξ ∈ g}

is a subgroup of AutΛ0(C[Γg]⊗̂CΛ0). In particular, the subspace

h =
⊕

γ∈Γ\{0}
zγ(Λ+ ⊗ γ⊥)
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is closed under the above bracket and thus via exponential map produces a

subgroup

Vtrop ∈ G

Lemma 3.2. The elements in Vtrop induce sympectormorphisms of the com-

plexified symplectic torus.

Proof. It suffices to prove that the generators a of Vtrop gives Hamilitionian

vector field. Write Ω = d log e1 ∧ d log e2. and γ = a1e1 + a2e2.

−zγι(zγ∂γ)Ω = −zγ(〈zγ∂γ , e1〉d log e2 − 〈zγ∂γ , e2〉d log e1)

= −zγ(−a2d loge2
−a1d log e1)

= zγd log r(m)

= d(zγ)

Given an elliptic K3 surface (X, ω, Ω) with Ricci-flat Kähler form ω.

After hyperKäher rotation, it induces an S1-family of special Lagrangian

torus fibration on Xϑ, for each ϑ ∈ S1 (see Remark 2.1). Fix a phase

parameter ϑ ∈ S1 and we have an affine structure with singularities on the

base B. We denote the discriminate locus by ∆ and B0 = B\∆.

Definition 3.3. A scattering diagram D = {(di, fi)}i∈I on an integral affine

manifold B is a collection of 2-tuples such that

1. di = oi +Rmi is a ray emanating from oi ∈ B0 with rational slope with

respect to the affine structure, where mi is a primitive vector.
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2. The slab function fi(u) ∈ C[zmi,u ]⊗̂CΛ+ for each x ∈ di, where mi,u

is the parallel transport of mi from oi to u along di. Moreover, each

monomial of fi(u) is of the form czlmi,uTA(u), where c is a constant,

A(u) is a positive affine function along di and A(oi) > 0.

3. For every point u ∈ B and a given λ > 0, there are only finitely many

rays (di, fi) ∈ D such that fi(u) 6≡ 0(mod T λ).

4. The singularity of the scattering diagram Sing(D)>λ is given by the set

{u ∈ B|∃(di, fi) ∈ D, i = 1, 2 such that u ∈ d1 ∩ d2

and f1(u)f2(u) 6≡ 0(mod T λ)}

Let D is a scattering diagram on an integral affine manifold B, u ∈ B

and λ > 0. Consider an immersion

φ : S1 → B\Sing(D)>λ

in a small neighborhood of u such that it intersects each ray d transversally

if (d, f) ∈ D and (f(u) 6≡ 0mod T λ). Assume the intersection order is

d1, · · · ds, then we form an ordered product as follows :

θu,λ
γ,D = θd1 ◦ · · · ◦ θds ,

where each term on right hand side is of the form

θdi = exp(log (fi(u))∂ni),

22



with ni ∈ (Γg)∗ primitive, annihilates the tangent space to di and such that

〈ni, φ
′(pi)〉 > 0, for pi ∈ Imφ ∩ di.

Assume the special Lagrangian fibration has 24 singular fibres then the

its affine structure has 24 singularities such that the monodromy around

each singular point is conjugate to
(

1 1
0 1

)
. Each singular point v emanates

two rays called initial rays along both monodromy invariant direction d±

with the slab function fd± = 1 + zmd±T |Zγ± (u)|, where md± ∈ Γg, γ± ∈ Γ

denotes the relative classes of Lefschetz thimbles around the corresponding

singularity and Zγ± =
∫
γ± Ω.

The following is a modified version of statements in [23][18].

Theorem 3.4. Let Dϑ be a scattering diagram given by the initial data

above, then there is a scattering diagram S(Dϑ) such that for any λ > 0,

there are only finitely many rays with nontrivial attached function modulo

T λ. Moreover, given u ∈ B0, λ > 0 and a closed loop φ, one has

θu,λ
φ,S(Dϑ) ≡ 0 (mod T λ)

Proof. WLOG we may assume the phase of all central charges in the proof

is zero. Notice that when λ is small we can take S(Dϑ) = Dϑ. Let λ0 be

the smallest central charge among the intersections of the initial rays, then

the statement holds for λ < λ0. Moreover, there are only 24 initial rays.

Assume the theorem holds for all λ < λk and the scattering diagram Dϑ

only consists finitely many rays. Consider the scattering diagram contains
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only rays with central charge less than λk at their initial points. We consider

θρp for each singularity p of Dk and a small loop ρp around p. Note that the

exponent of T in θρ(p) is discrete. Let λk+1 be the smallest exponent of T

appearing in log (θρp,Dk
), then

θρ,Dk
(p0) ≡ exp (

s∑

i=1

ciz
γiT λk+1∂ni) (mod T λk+1+ε)

for some singularity p0 and ε > 0 such that λk+1 + ε is less than the second

small exponent of T appearing in log (θρp,Dk
) . (Actually, there might be

more than one p0. Then we have to consider them all at the same time.)

We set

Dk+1 = Dk ∪ {ok+1 + R≥0mi, 1± ciz
γiT λk+1)|i = 1, · · · , s}

The sign is chosen such that each contribute exp (−ciz
γiTZγi ∂ni) to θρp0 ,Dk

(mod T λk). The choice of p0 guarantees that for each singularity of p and a

small loop ρp around, we have

θρp,Dk+1
(p) = Id (mod T λk+1)

By induction, it suffices to take S(Dϑ) = ∪kDk.

Definition 3.5. We will call the rays in S(Dϑ) BPS rays.

Remark 3.6. It is easy to see that if we include the dependence of ϑ, the ex-

ponents of each monomial of slab functions in S(Dϑ) is of the form e−iϑ
∫
γ Ω.

Remark 3.7. Notice that we don’t have the notion of degree as in [18][23]
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therefore we need to use energy filtration instead and a static construction of

the scattering diagram. At each singularity, the degree filtration and energy

filtration are equivalent. The Theorem 3.4 can be viewed as a substitute of

Kontsevich-Soibelman wall-crossing formula for elliptic K3 surfaces.

We will use the follow standard fact of algebra,

Lemma 3.8. Fix ε = 0 or 1. Let f = 1 + a1x + a2x
2 + · · · ∈ Q[[x]], then

there is a unique factorization

f =
∏

k

(1− (−1)k2εxk)kdk ,

for some dk ∈ Q. Moreorver, we have the estimate for size of dk.

Lemma 3.9. Let c(n) =
∑

k=1
dn/k

k2 , and ds = 0 if s is not an integer. Then

we have

∞∑

k=1

kdk log (1− (−1)k2εxk) =
∞∑

n=1

nc(n)un, where u = (−1)εx.

Proof.

R.H.S. =
∞∑

k=1

∞∑

l=1

kdk
ulk

l
=

∞∑

k,l=1

(kl)d kl
l

ulk

l2

Set n = kl we get the right hand side of the lemma.

Remark 3.10. The sign ε will be related to quadratic refinement in [17].

Lemma 3.11. For generic choice of ϑ, the BPS rays will not pass through

any singular points. An intersection of two BPS lines will not fall in the
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singularities of affine structures nor an intersection of two BPS rays is con-

tained in more than one stability walls

Proof. For a fixed energy λ ∈ N, there are only finitely many BPS rays and

finitely many phase have BPS rays passing through singularities. Thus, the

former part of the lemma simply follows from Baire’s theorem. For the later

part of the lemma, since intersection of two BPS lines, the discriminant locus

and intersections of stability walls are at least of codimension two, and the

later two are independent of the phase ϑ. Notice that we might not be able

to avoid the case in which more than two BPS lines intersect at the same

point for generic phase.

Corollary 3.12. There is no tropical rational curves (see Definition 4.2 in

the next section) for a generic ϑ.

This is reasonable because generic K3 has Picard number 0 by Torelli

theorem.

3.2 Generalized Donaldson-Thomas Invariants Ωtrop

Now for each γ ∈ Γu, we want to define Ωtrop(γ;u) as follow: for generic

phase ϑ, one can construct a scattering diagram S(Dϑ) from the initial

BPS rays with respect to the corresponding phase ϑ. The walls of marginal

stability is taken to be the closure of singularities of the scattering diagram.

By straight forward computation, we have

Proposition 3.13. If the intersection product between two charges is zero,

then the associate Kontsevich-Soibelman transformation commutes. In par-
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ticular, the Kontsevich-Soibelman transformation associate to a pure flavor

charge is an identity.

Therefore, one can define Ω(γ;u) by Lemma 3.5 and extended uniquely

by requiring them to be locally constant. The Kontsevich-Soibelman wall-

crossing formula follows directly from our construction.

Remark 3.14. The construction of Ω(γ) can be view as an inverse of the

procedure in [29].

Proposition 3.15. The nontrivial Ω(γ1 + γ2) happens on the side of the

wall of marginal stability with

1
2
〈γ1, γ2〉|Z(γ1 + γ2)|
Im

[
Z(γ1)Z̄(γ2)

] > 0. (12)

Proof. This is an easy consequence of the fact that central charges are holo-

morphic.

Proposition 3.16. Given an ellptic fibred K3 surface, the invariants Ω(γ;u)

are independent of choices of the Kähler class ω.

Proof. For generic ϑ one can construct S(Dϑ) such that there are no BPS

rays passing through singularities of the affine base. The energy filtrations

induced from different choices of Kähler class are equivalent. From Theorem

4.6, Ω̃(γ, u) depends only on the degree filtration. Together we see that the

scattering diagrams S(Dϑ) constructed in Theorem 3.4 is independent of the

choice of the Kähler classes and thus so is the invariant contributed from

ϑ.
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Given an elliptic fibration K3 surface f : X → P1 with holomorphic

(2, 0)-form Ω, then any 2-form α on P1 such that Ω′ = Ω + f∗α, Ω′ ∧Ω′ = 0

gives rise to another elliptic fibration with same Jacobian. Moreover, any

elliptic fibration with the same Jacobian arises in above construction. It is

obvious that for any γ ∈ H2(X, L) and ṽ a lifting of v ∈ TP1,

∫

∂γ
ιṽf

∗α = 0.

Therefore, changing elliptic fibred K3 surfaces within same Jacobian doesn’t

change the affine structure and the scattering diagram. To sum up, we

proved

Theorem 3.17. The invariants Ωtrop(γ;u) only depend on the Jacobian of

the elliptic fibration but are independent of the Kähler class chosen.

Conjecture 3.18. (Integrality Conjecture) Ωtrop(γ) ∈ Z, for every γ ∈ Γ.

4 Tropical Geometry on K3 Surfaces

4.1 Tropical Discs

In the previous section, we construct a scattering diagram D = {(d, fd)}
on the base affine manifold from the initial data. We want to build up

tropical discs from this scattering diagram formally and establish the relation

between tropical counting and Ω(γ).

Definition 4.1. We say B is a tropical affine manifold with singularities

∆, if there exists an integral affine structure on B\∆.
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Definition 4.2. Let B be a tropical affine manifold with singularities with

discriminant locus ∆. Let G be a weighted, connected finite graph, with its

set of vertices and edges denoted by G[0] and G[1] respectively, with weight

function wG : G[1] → N \ {0}. A parametrized tropical curve (with stop) in

B is a continuous map φ : G → B satisfying the following conditions:

1. For every edge E ⊆ G, φ|Int(E) is an embedding, φ−1(B0) is dense

in Int(E), and there is a section u ∈ Γ(Int(E), φ∗(i∗Λ)) which is

tangent to φ(Int(E)) at every point of φ(Int(E)) ∩ B0. We choose

this section to be primitive, i.e. not an integral multiple of another

section of φ∗(i∗Λ).

2. For every vertex v ∈ G[0], let E1, . . . , Em ∈ G[1] be the edges adjacent

to v. Let ui be the section of φ∗(i∗Λ)|Int(Ei) promised by (1), chosen

to point away from v. This defines germs ui ∈ φ∗(i∗Λ)v = (i∗Λ)φ(v).

(a) If φ(v) ∈ B0, the following balancing condition holds in Λφ(v)

except at the stop φ(v):

m∑

j=1

wG(Ej)uj = 0.

(b) If φ(v) 6∈ B0, then all the edge attached to vertex v should be

mapped to the monodromy invariant direction.

3. If φ is a tropical rational curve with stop at p ∈ B0, then we give each

edge an orientation that it points from the vertex with larger distance

to p to the vertex with smaller distance to p. In particular, every vertex

has a unique outgoing edge and others are ingoing edges.
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We will also call tropical curves with stop by tropical discs. The balanc-

ing condition will make the following definition well-defined.

Definition 4.3. Let φ : G → B be a parametrized tropical curves with only

trivalent vertices. The multiplicity at a vertex V ∈ G[0] is

MultV (φ) = w1w2|m1 ∧m2|, (13)

where E1, E2 are two of the edge containing V and wi = wΓ(Ei) and mi ∈ M

is the primitive integral vector in the direction of φ(Ei).

Definition 4.4. 1. Let h be a tropical curve (with stop) has only trivalent

interior vertices. The multiplicity of a tropical curve (with stop) φ is

defined by

Mult(h) =
∏

V ∈G[0]

MultV (φ) (14)

2. Given directions (might repeated) mi ∈ M , N trop(w) is the weighted

count of the number of tropical curves (with stop) has in the directions

mi with multiplicities wi defined above.

4.2 Tropical Discs Counting, Ωtrop and Wall-Crossing

Definition 4.5. (Central charge of tropical discs)Let (X, ω, Ω) be an elliptic

K3 surfaces. Given a tropical discs φ with stop at u on an tropical affine

manifold B induced from the affine coordinate of special Lagrangian fibration

on Xϑ, we will associate it with a central charge as follows by induction on

the number of singularities of affine structure φ hits: If the φ only hits only

one singularity, then let [φ] ∈ H2(X, Lu) be the relative class of Lefschetz
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thimble such that
∫
[φ] ωϑ > 0 and its central charge Zφ =

∫
[φ] Ω. Assume

p is an internal vertex of φ and each let φ1, · · ·φs are the components of

Im(φ)\p containing an ingoing edge of p. By induction we already define

[φi] ∈ H2(X, Lp) and the corresponding central charges Zφi
=

∫
[φi]

Ω for each

i = 1, · · · , s. For any p′ on the outgoing edge of p, there is a natural tropical

disc φ′ with stop at p′ induced from φ, then we define [φ′] ∈ H2(X, Lp′) the

parallel transport of
∑s

i=1[φi] along the outgoing edge of p to p′. The central

charge of φ′ is given by Zφ′ =
∫
[φ′] Ω.

The following theorem is a modification of Theorem 2.8 [16].

Theorem 4.6. When u cross a wall consisting of relative classes γi, i =

1, · · · , n, then one has the following wall-crossing formula for Ω̃trop:

∆Ω̃trop(dγ) =
∑

w:
∑ |wi|γi=dγ

N trop(w)
|Aut(w)|

( ∏

1≤i≤n,1≤j≤li

Ω̃trop(wijγi)
)

, (15)

where w = (w1, · · · ,wn), wi = (wi1, · · · , wili) ∈ Zli
≥0, and |wi| =

∑li
k=1 wik.

Proof. To compute Ω̃trop(dγ) for a fixed d, it suffices to compute the attached

function fd (modulo TZγ+ε) of the BPS ray d in the scattering diagram D

associate γi with a generic phase construct in theorem 3.4, where d is the

direction given by γ.

Replacing TZγi by ti in D, we get a compatible scattering diagram D′ =

{(di, fi)|i = 1, · · · , n} over C[[t1, · · · , tn]], where di = Rmi and

logfdi =
k∑

j=1

∑

w≥1

waiwzwmitwi ∈ Rk =
C[[t1, · · · , tn]]

(tk+1
1 , · · · , tk+1

n )
, (16)
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is Taylor expansion in ti,with aijw ∈ C. Since energy filtration is equivalent

to degree filtration, it suffices to compute fd ∈ S(D′).

We follow the trick in [16] to make the substitution ti =
∑k

j=1 uij and

then do the expansion.

logfd =
k∑

w=1

∑

#J=j

j!waiwzwmi
∏

l∈J

uil.

Note that each uij squares to zero and now fi can be split into simple forms,

fd =
k∏

j=1

∏

#J=j

(
1 + j!waiwzwmi

∏

l∈J

uil

)

Each ray d ∈ S(D′) will correspond to a trivalent tree and

fd = 1 + woutMult(h)
∏

i,w,#J=w

(
w!aiw

∏

j∈J

uij

)
zmout ,

where the i, J, w run through all indices such that mout = woutm
′
out, m′

out

primitive. For large enough k and summing them up gives

log fd =
∑

w:
∑ |wi|mi=dγ

d
N trop(w)
|Aut(w)|

( ∏

1≤i≤n,1≤j≤li

aiwij t
wij

i

)
z

∑
i |wi|mi

Plugging in ti = TZγi , and by induction we have aiwij = Ω̃trop(wijγi). Com-

paring the coefficients, we get the wall crossing formula for Ω̃trop

Example 4.7. Assume there are two BPS rays hitting at p from direction

(1, 0) and (0, 1).
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1. To compute Ω̃trop(1, 2) = 0,

(1, 2) = 1 · (1, 0) + 2 · (0, 1) ⇒ N trop = 1, Aut = 2 Ã 1 · 1
2

· 1 · 12 =
1
2

= 1 · (1, 0) + 1 · (0, 2) ⇒ N trop = 1, Aut = 1 Ã 1 · 2
1

· −1
22

=
−1
2

2. To compute Ω̃trop(2, 2) = 0,

(1, 2) = 1 · (2, 0) + 1 · (0, 2) ⇒ N trop = 4, Aut = 1 Ã 2 · 4
1

· −1
22

−1
22

=
1
2

= 1 · (2, 0) + 2 · (0, 1) ⇒ N trop = 4, Aut = 2 Ã 2 · 4
2

· −1
22

· 12 = −1

= 2 · (1, 0) + 1 · (0, 2) ⇒ · · · = −1

= 2 · (1, 0) + 2 · (0, 1) ⇒ N trop = 2, Aut = 22 Ã 2 · 4
22

· 12 · 12 = 1

Together with the data from initial rays,

Ω̃trop(dγe) =
(−1)d−1

d2
, (17)

where γe is the Lefschetz thimble from each singularity. One achieves the

relation between tropical counting and {Ω̃trop}. Therefore,

Theorem 4.8. The true tropical count is sum of product of tropical counts in

(15) at each vertex after infinitesimal deformation. Moreover, these tropical

discs with nontrivial tropical invariants of an elliptic K3 correspond to the

instanton corrections (in the sense of [17]) of complex structure of its mirror.

Proof. The first statement follows directly from the construction of the trop-

ical invariants and (15) by induction on the number of internal vertices. For
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the second statement, it suffices to prove it for Ooguri-Vafa space [4], since

all the rest of the tropical discs/walls of instanton corrections are generated

by wall-crossing. From remark 2.11, for a fixed ζ torus fibre Ty bounds

holomorphic discs if Re(yζ̄) = 0 while the wall of instantons are given by

{y ∈ B0|Im(yζ̄) = 0}.

Remark 4.9. In physics literature, the mass M of any charge γ obeys

M ≥ |Zγ |, (18)

where the mass is
∫
γ |Ω| along a path. We call the charge γ is BPS if and

only if the equality holds Thus, a charge is BPS if only if its phase of central

charge is the same angle along the path. Therefore, it is reasonable to expect

tropical discs to correspond to BPS charges.

Remark 4.10. The form of (15) is similar to wall-crossing formula of

Joyce-Song. The w in (15) might related to the spin by j =
∑

(wij − 1)

in the refined wall-crossing formula and leads to refined tropical invariants.

5 Tropical versus Holomorphic

The classical way of constructing tropical discs is taking certain adiabatic

limit of the image of the holomorphic discs under the fibration. However,

this method usually involves hard analysis and we don’t know much about

the Calabi-Yau metric. Therefore, we introduce here another point of view

of tropical discs from the locus of Lagrangian fibres bounding the prescribed

class of holomorphic discs.
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Observation 5.1. From Remark 2.3, the set of special Lagrangian torus

fibres bounding holomorphic discs of a same relative class fall above a hy-

perplane on the base affine manifolds.

Similar to Ωtrop, we have support property [24] for holomorphic discs

because holomorphic cycles are calibrated . Namely,

Proposition 5.2. There exists δ > 0, such that

|Zγ |
‖γ‖ > δ

for all γ ∈ ⋃
ϑ∈S1 H ′

2(Xϑ, L).

Proof. We first choose {(αi, βi)} ∈ H2(Xϑ, L) as basis with αi ∈ A2(Xϑ,

βi ∈ A1(L) such that dαi = 0 and αi|L = dβi. Then the non-degenerate

pairing is given by

H2(Xϑ, L)×H2(Xϑ, L) −→ R

(γ, (αi, βi)) 7→
∫

γ
αi −

∫

∂γ
βi =

∫

γ
αi − dβ̃i,

where β̃i are fixed smooth extension of βi to whole Xϑ. Then if γ can be

represented by a holomorphic cycle in Xϑ, we have

|
∫

γ
(αi, βi)| ≤ Vol(γ) · sup

v1,v2∈TpX,
|v1∧v2|=1

〈αi − dβ̃i, v1 ∧ v2〉 ≤ Cϑ · |Zγ |.

Summing i through basis of H2(Xϑ, L), the left hand side gives a norm on

H2(Xϑ, L) and prove the support property for a fixed ϑ. The proposition
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follows immediately because Cϑ is continuous depending on ϑ ∈ S1 and S1

is compact.

On one hand, the support property is required to define stability data

for a suitable category. On the other hand, it might be needed to prove the

convergence of hyperKäher metric in [17] though we don’t need it here.

Definition 5.3. Given local section γ of
⋃

u H2(X, Lu), we define locally

W ′′
γ1,γ2

= {u ∈ B0|ArgZγ1 = ArgZγ2 , Zγ1Zγ2 6= 0 and γ1, γ2 are not colinear},

and W ′′
γ =

⋃
γ1+γ2

W ′′
γ1,γ2

. We say a charge γ ∈ H2(X, Lu) is primitive if

u /∈ Wγ and γ is not divisible by an integer.

Because the central charge Zγ is holomorphic, each W ′′
γ1,γ2

forms a real

analytic Zariski closed subset of real codimension one on B0. Indeed, let f

be the defining equation of W ′′
γ1,γ2

and f + ig is holomorphic on a domain

of C2. By Cauchy-Riemann equation f will not have accumulate critical

points. At every isolated critical point u of f , we first write

f + ig = wn, where n is the zero order of f + ig at u,

and w is an holomorphic function of z and locally invertible. Therefore,

f = 0 is characterized by n real codimension one smooth hypersurfaces

intersecting at u. Notice that the sublattice which is the preimage of Reiϑ

is a sub Z-module and thus a sublattice. In particular, the union in the

definition of W ′′
γ is finite. Therefore, W ′′

γ is locally a real analytic Zariski

open subset of the base by maximal principle unless multiple cover occurs

36



(which is excluded by definition). If a relative class γ ∈ H2(X, L) can be

represented as a holomorphic cycle, the phase of central charge
∫
γ Ω will

indicate which complex structure Jϑ makes γ holomorphic. This motivate

the following motivation:

Definition 5.4. Given local section γ of Γ =
⋃

u H2(X, Lu), we define lo-

cally

W ′
γ =

⋃
γ1+γ2=γ

W ′
γ1,γ2

= {u ∈ B
∣∣γ = γ1 + γ2, where γ1 and γ2 are represented by holomorphic

discs with boundary on Lu in Xϑ and γ1, γ2 are not colinear}
(19)

Notice that by Gromov compactness theorem (corollary 5.5 [10]) we have

W ′
γ1,γ2

⊆ W ′′
γ1,γ2

as a closed subset in standard topology on B0 and the ex-

pression in (19) is a finite union. However, W ′
γ might not be real codimension

one because of appearance of holomorphic discs with respect to non-generic

(almost) complex structures. Also, W ′
γ1,γ2

might depend on the choice of

Ricci-flat ω while the real codimension one W ′′
γ1,γ2

are not.

Remark 5.5. Changing the special Lagrangian boundary conditions is ex-

pected to be mirror to changing the stability conditions of stability condi-

tion in Donaldson-Thomas theory. Since our central charge is constraint

by 〈dZ, dZ〉 = 0, the affine base B can be viewed as a complex isotropic

submanifold of the corresponding stability manifold.
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5.1 Disc Contribution from Local

On Ooguri-Vafa space, there is a unique holomorphic disc with boundary on

every special Lagrangian torus over monodromy invariant direction. Thus it

gives raise to a special Lagrangian disc after hyperKähler rotation. To prove

there exists such a holomorphic discs near the I1-type singular fibre of K3

surface with special Lagrangian, we need some understanding of geometry

of K3 surfaces near large complex limit. Gross and Wilson construct an

approximate metric by gluing Ooguri-Vafa metric with the semi-flat metric

for elliptic K3 surfaces when the Kähler class goes large (along a straight line

in Kähler cone). Moreover, they derive some estimate for the approximate

metric:

Theorem 5.6. ([19] Gross-Wilson ) Let X be an elliptic K3 surface with

holomorphic volume form Ω. There exists ωε the approximate metric equal to

the twisted Ooguri-Vafa metric near the singular fibres and semi-flat metric

[20] away from singular fibres and with fibre size ε. Moreover, if Fε =

log
(Ω∧Ω̄/2

ω2
ε

)
, then the solution uε of the Monge-Ampere equation

det(gij̄ + i∂i∂̄j̄uε) = eFε

satisfies the follow exponential decay property

‖ uε ‖C0≤ D1e
−D2/ε

for some positive constant D1, D2.

We will use this asymptotic behavior of metric as the working definition
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of large complex limits.

Heuristically, Gross-Wilson proves that the Ricci-flat metric converges

to semi-flat metric when the K3 surface goes to the large complex limit.

However, this does not include even the instaton correction contribute from

the initial rays.

Assume y is on the BPS ray emanated from a singular point. Take a

neighborhood U of this segment from the singularity to y and lift the special

Lagrangian fibration to the universal cover of U . The affine coordinate on

U is (y1,−Im
∫

τdy) when |y| < ε or |y| > ε. Here we assume the mon-

odromy invariant direction is characterized by y1 = 0. Similar to the case

near the singular point, to prove that the fiber Ty can bound a holomor-

phic disc corresponding to the initial BPS ray, it suffices to construct an

approximate solution with respect to the approximate metric constructed

by Gross-Wilson. From [19], there exist a holomophic section σ and a real

function φ such that

ωSF − T ∗σωOV = i∂∂̄φ

Note that the local S1-action still live on the torus fibration over U , therefore,

we can average φ with respect to the local S1-action and assume it is S1-

invariant.

ωnew = ωSF + i∂∂̄(ψ(|y|2)ψ)

= (1− ψ(|y|2))ωSF + ψ(|y|2)T ∗σωOV

− i(ψ′(|y|2)ȳdy ∧ ∂̄φ + ψ′(|y|2)y∂φ ∧ dȳ + ψ”(|y|2)|y|2φdy ∧ dȳ).
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Remark 5.7. There is actually another term should be added to ωnew to

make it in the right cohomology class.

The candidate for the approximate holomorphic disc is given by y1 =

u = 0, so we want to prove that (ω)new restricted to zero. It is easy to see

that the first, second and last term restrict to zero. Then third and fourth

term together restrict to the disc is −2y2dy2 ∧ Re∂φ = −y2dy2 ∧ dφ but

dφ( ∂
∂t) = 0 since φ is real and S1-invariant. Thus, we get a smooth special

Lagrangian discs with respect to approximate metric (ω)new and boundary

on an elliptic torus fibre.

The following proof is the standard deformation theory of special La-

grangian submanifolds (with boundaries) modified from [1]. Start with a

smooth special Lagrangian disc f : (D2, ∂D2) → ((X, ωa,Ω), L) we consider

the a family of embeddings

ΦV : (D2, ∂D2) → ((X, ωt,Ωt), L)

φV (x) = expf(x)(V (x)),

where ωt = ωa+t(ω−ωa), Ωt = eiθ(t)Ω. Also, exp is specially constructed and

V should satisfy the Neumann boundary condition to keep ΦV (∂D2) ⊆ L.

It is natural to write down

F (V.t) : W 1,p(NL/X)× R→ X (20)

F (V, t)(x) =
(

(expx V (x))∗ωt, (expx V (x))∗Im(eiθ(t)Ωt)
)

(21)

The embedding ΦV (D2, ∂D2) gives a special Lagrangian disc on K3 (X, ω, Ω)
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if and only if F (V, 1) = 0.

To solve the equation, we first compute it’s linearization.

dF(V,t)(W, s) = (exp V )∗
(

dιV ωt + s
dωu

du
|t, dιV ImΩt + s

dIm(eiθ(u)Ωu)
du

|t
)

(22)

In particular, the linearization at (0, 0)

dF(0,0)(W, s) =
(
dη + s

dωt

dt
|0, d ∗ (ψη) + sψθ′(0)volga

)
, (23)

where η = ιW ωa is a 1-form and ReΩ|D2 = ψvolga . Notice that ∗(ψη) = ∗ψη,

where ∗ψ is the Hodge star operator for the another metric gψ.

Note that F will factor through C0,β(dΩ1(D2))×C0,β(dΩ3(D2)) because

[(expV )∗ωt] = [ωa] = 0 and [(expV )∗ImΩt] = [ImΩ] = 0.

Proposition 5.8. The linearized operator

dF(0,0) : C1,β(NL/X)N × R→ C0,β(dΩ1(D2))× C0,β(dΩ1(D2))

is surjective, if θ(t) chosen suitably.

Proof. Let N be a normal vector field of ∂D2 and α ∈ C1,β(Ω1(D2) and

β ∈ C1,β(Ω1(D2)). We are trying to solve the system

dη = dα +
dωt

dt
|0 (24)

d ∗ψ η = dβ +
dImΩt

dt
|0 (25)

η(N) = 0 (26)
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Hodge theory for a manifolds with boundary (p.123 [35]) shows that this

system of equations can be solved with Holder regularity if and only if

1. d
(
dα + dωt

dt |0
)

= 0 = d
(
dβ + dImΩt

dt |0
)

2.
(
dβ + dImΩt

dt |0
)
(E1, E2)|∂D2 = 0 for any vector E1, E2 tagent to ∂D2.

3.
∫
D2(dα+ dωt

dt |0
)∗ψ λ = 0, for every ψ-harmonic form λ of D2 satisfying

Neumann boundary condition.

4.
∫
D2 ∗ψ

(
dβ + dImΩt

dt |0
) ∗ψ κ = 0, for every ψ-harmonic form κ of D2

satisfying Neumann boundary condition.

Notice that result quoted in [35] are stated for differential forms with Sobolev

regularity but extend to Hölder regularity by standard bootstrapping argu-

ment for elliptic operators. Therefore, dF is surjective if there is no coho-

mological obstruction from
(
ωt, Im(eiθ(t)Ωt)

)
, which can be achieved if we

choose θ(t) such that

∫

D2

dβ + θ′(0)
∫

D2

ψV olga = 0

For the injectivity of dF(0,0), consider the following system of equation

dη + s(ω − ωa) = 0

d ∗ψ η + sψθ′(0)volga = 0

η(N) = 0
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Integrate the second equation over the disc D2, we have

sψθ′(0)V ol(D2) = −
∫

D2

d ∗ψ η

= −
∫

∂D2

∗ψη = 0

The last equality holds because t(∗η) = ∗(nη) = 0 (proposition 1.2.6 [35]).

Thus the solutions of the system are exactly harmonic 1-forms with Neu-

mann boundary condition on D2 (section 6 [35]), which has the same di-

mension as b1(D2) = 0. However, the distance from Ooguri-Vafa space to a

neighborhood of I1-type singular fibre of K3 surface is non-trivial. There-

fore, we need the following quantitative implicit function theorem.

Proposition 5.9. Assume that B1,B2 are Banach spaces. F : B1×R→ B2

is a map with continuous Frechet derivative. If we have

1. ∂F
∂V (0, 0) : B1 → B2 is invertible and ‖ ∂F

∂V (0, 0)−1 ‖≤ C.

2. There exists r0 > r > 0, t0 > 0 such that for every (V, t) ∈ UB1(r0) ×
[0, t0],

‖ ∂F

∂V
(V, t)− ∂F

∂V
(0, 0) ‖≤ 1

2C
, ‖ F (0, t) ‖B1≤

r

2C
. (27)

Then there exists a unique C1-path V (t) in UB1(r) for each t ∈ [0, t0] such

that F (V (t), t) = 0.

To apply proposition 5.9, we still need an effective bound for ‖ ∂F
∂V (0, 0)−1 ‖

and ‖ ∂F
∂V (V, t)− ∂F

∂V (0, 0) ‖.
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The former is has estimate

‖ ∂F

∂V
(0, 0)−1 ‖≤ Cλ1 ≤ C ′

diam(X)2
= O(ε)

the first inequality is first eigenvalue estimate and the second inequality from

[19]. For the later one, we have ‖ ∂F
∂V (V, t)− ∂F

∂V (0, 0) ‖, ‖ F (0, t) ‖B1 are of

order O(C1e
−D2/ε) from estimate in [19].

To sum up, we proved

Theorem 5.10. Assume X is a K3 surfaces with special Lagrangian fibra-

tion and 24 nodal singular fibres near large complex limit. Then around each

singular fibre, each torus fibre sits above the initial ray bound a holomorphic

disc in the relative class same as Lefschetz thimble with respect to the one of

the complex structure in the S1
ϑ-family. For any y over the initial BPS ray

does not pass through any singular point in an non-monodromy invariant

direction, Ty bounds an immersed holomorphic disc when X is close enough

to the large complex limit.

We will call this disc as initial disc from now on.

There is another way to prove that the regularity of the holomorphic

discs by applying the automatic transversality for K3 surfaces [37]

Proposition 5.11. Assume X is a K3 surface and L is a special La-

grangian, then the bundle pair (TX, TL) always has Maslov index is 0. Let

f : (D2, ∂D2) → (X, L) to be a holomorphic disc with boundary on L.

Let DN
f and DT

f be the normal and tangent splitting of the usual linearized

Cauchy-Riemann operator of f , then
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1. DN
f is injective.

2. f is regular (in the sense of next section) if and only if it is immersed

or equivalently, (f∗TX, f∗TL)C ∼= OP1(−2)⊕OP1(2).

Proof. The first part is follows from the fact that ind(DN
f ) is less than zero

and by proposition 2.2 (i) [37]. The second part is a consequence of theorem

3 in [37]

Remark 5.12. The author do not know any direct modification of the proof

of automatic transversality for S1-family due to the fact that the line bundle

generated by KJ(f, α) doesn’t have a good splitting with respect to DN and

DT .

5.2 J-Holomoprhic Discs in the S1-Family

Let (X, ω, Ω) be a hyperKähler manifold (not necessarily compact) with

Kähler form ω and holomorphic symplectic 2-form Ω, then the hyperKähler

triple (ω, Ω) will gives a twistor P1. Let L be a holomorphic Lagrangian with

respect to Ω, then there is S1-family of complex structure in the twistor

family such that L is special Lagrangian. We denote X → S1 to be the

family contains L as special Lagrangian submanifold.

Let Mk+1,β(X, L) be the moduli space of pesudo-holomorphic disc in the

family with boundary on the fixed special Lagrangian L with k+1 boundary

marked points in counter-clockwise order.

Let f : Σ → Xϑ ∈ M0,β(X, L). For each α ∈ RImΩϑ ⊆ (Ω2,0
ϑ ⊕ Ω0,2

ϑ )R,
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we associate an endomorphism Kα : TX → TX by

g(u,Kαv) = α(u, v)

and we consider the twisted ∂̄-equation

∂̄Jf = KJ(f, α) =
1
2
Kα(∂f ◦ j),

where J = Jϑ. The map satisfies the above twisted ∂̄-equation are called

(J, α)-holomorphic. One can shows that (J, α)-holomorphic maps are indeed

Jα-holomophic with

Jα =
1− |α|2
1 + |α|2 J − 2

1 + |α|2 Kα (28)

in the twistor S1 ⊆ P1 making C special Lagrangian.

Proposition 5.13. [26] Let j be the complex structure on Σ. Let g be in

the conformal class of j and dv is the corresponding volume form. For any

C1 map f , we have point-wise identity

〈∂̄Jf,KJ(f, α)〉 = f∗α.

Proof. Fix a point p in Σ, and choose an orthonormal basis {e+, e− = je+}
of TpΣ. Set v± = df(e±), then direct computation gives ∂̄Jf(e±) = 1

2(v± ±
Jv∓), and KJ(f, α)(e±) = 1

2(±Kαv∓ − JKαv±). The proposition follows

from direct computation.

One of the key observation is the following: Assume f ′ is (J, α)-holomorphic
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and in the same relative class as f , then by proposition 5.13,

∫

(Σ′,∂Σ′)
|∂̄f ′|2dv =

∫

(Σ2,∂Σ2)
g(∂̄f ′,KJ(f ′, α))dv

=
∫

(Σ′,∂Σ′)
f ′∗α

=
∫

(Σ,∂Σ)
f∗α +

∫

C
dF ∗α +

∫

C′
F ∗α = 0,

where F is the homotopy between f and f ′. The first term vanishes because

f is J-holomorphic while the second term vanishes because Ω is d-closed,

the last term is from boundary of domain and vanishes because α|L = 0.

Therefore, ∂̄f ′ = 0.

Proposition 5.14. Given any relative class γ ∈ H2(X, L), there is at most

one complex structure in the twistor P1 such that γ has a holomorphic rep-

resentative. In particular, any holomorphic Riemann surface with boundary

on the special Lagrangian in a K3 surface is rigid in the S1-family.

Proof. It is easy to see that D∂̄new is a Fredholm operator. Assume f is

both J and (J, α)-holomorphic and [Im(f)] = γ, then KJ(∂f ◦ j) = 0 or

Im(∂f) ⊆ Ker(Kα). If [f ] 6= 0, then there exists holomorphic v such that

df(v) 6= 0. For each nonzero α ∈ RImΩϑ, α is a symplectic 2-form (here we

use the fact X is a hyperKähler). Therefore, α(u, df(v)) ≡ 0 implies α = 0.

The only possible complex structure is −J but it will only realize −[γ] as

holomorphic cycle.

Therefore, the moduli space for familyMk+1,β(X, L) has the same under-

lying space as the usual moduli space of holomorphic discs Mk+1,β(Xϑ, L)
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for some ϑ ∈ S1. However, we will equip it with different Kuranishi structure

in the next section.

Proposition 5.15. ImD∂̄ ∩ {KJ(f, α)|α ∈ RImΩ′} = {0}. In particular,

There is a non-trivial map TS1 → Lp(f∗TX ⊗ Λ0,1) induced from the S1-

family of hyperKähler manifolds.

Proof. Assuming f is J-holomoprhic, then from the Proposition 5.14 one

has

∫

Σ
g(D∂̄V,KJ(f, α))dv = −

∫

Σ
g(∂̄f, KJ(V, α))dv +

∫

Σ
V ∗α = 0 + 0 = 0,

for any V ∈ A(f∗TX, (∂f)∗TL). The first term is well-defined by Holder’s

inequality and last term is zero because α|L = 0.

Remark 5.16. All the argument in this section also apply to any symplectic

almost Calabi-Yau 2-fold X, i.e. X is a symplectic 4-manifold with an

almost complex structure J such that there exists a J-holomorphic 2-form Ω

and J induces a Riemannian metric.

5.3 Kuranishi Structure for Moduli Space of Holomorphic

Discs in S1-Family

The main goal of this section is to develop the ”reduced” Kuranishi struc-

ture,which help to define the new invariant, from the S1-family of complex

structure. The construction is a modified from [7] and [12].

Theorem 5.17. There exists a Kuranishi structure admits required proper-

ties listed below:
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1. It is compatible with the forgetful maps for each k ≥ 1,

forgetk,0 : Mk,β(X, L) →Mk−1,β(X, L) (29)

2. For each k ≥ 1, the evaluation map {evi, evϑ} : Mk,β(X, L) → Lk×S1
ϑ

are weakly submersive. Thus the fibre product of Kuranishi structure

in 4. make sense.

3. It is invariant under the cyclic permutation of the boundary marked

points.

4. For the decomposition of the boundary of moduli spaces, the restriction

of the Kuranishi structure on the boundary hand side coincides with

the fibre product of the Kuranishi structures of the decomposition.

Proof. Step 1: For each point p = f : (Σ = ∪Σa, ∂Σ) → (X, L) (we include

−→z in Σ for simplicity) in the moduli space Mk,β(X, L), we will construct

a Kuranishi neighborhood. We first consider the case when the domain is

stable, namely, then the automorphism of each component is finite. Let

W 1,p(f∗TX, (∂f)∗TL) = {(va) ∈ ⊕aW
1,p(Σa; f∗TX,(∂f)∗TL)|

va coincides on nodes},

where va ∈ W 1,p(Σa; f∗TX, (∂f)∗TL) satisfies va ∈ W 1,p(Σa, f
∗TX) and

va|∂Σa ∈ W 1−1/p,p(∂Σa, f
∗TL). We may choose p large enough such that va

is continuous on Σa.

49



We consider the following linearized operator

D∂̄new : W 1,p(f∗TX, (∂f)∗TL)× Rϑ → Lp(f∗TX ⊗ Λ0,1)

(w, ϑ) 7→ D∂̄w + ϑKJ(f, α)

Notice that we use D∂̄new instead of {D∂̄ϑ}. It make sense because from

from Proposition A.8, we know that D∂̄new(V, ϑ) = 0 if and only if D∂̄V = 0

together with ϑ = 0. Since D∂̄new is also Fredholm, one can choose Ep such

that

1. Ep is a finite dimensional (complex) subspace of Lp(Σ, w∗TX ⊗Λ0,1).

2. ImD∂̄new + Ep = Lp(Σ, w∗TX ⊗ Λ0,1).

3. Elements of Ep has support away from special points on ∂Σ.

4. Ep is preserved under Γp = Aut(p).

We may enlarge the obstruction bundle E such that (ev0, evϑ) is weakly

submersive. Given any small smooth deformation f ′ of f , we can find a

diffeomorphism of the domain

If,f ′ : Σ → Σ′

such that If,f ′ smoothly depends on the domain of f ′ and If,f ′ is identity

on a compact set away from marked points.

We choose a unitary connection on TX such that L is totally geodesic
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and thus we can have a identification of obstruction bundle

L0,p(Σ, f∗(TX ⊗ Λ0,1) ∼= L0,p(Σ′, f ′∗(TX ⊗ Λ0,1) (30)

induced by If,f ′ and again denoted by the same notation. Set Ef ′ =

If,f ′(Ep) and we consider the equation

∂̄f ′ ≡ 0 mod Ef ′ (31)

Let Uf be the solutions of (31) and it is a smooth manifold of dimension

dim Ep by implicit function theorem. We define the section of Kuranishi

chart by

s(f ′) = ∂̄f ′ ∈ Ef ′

Notice that Mβ(X, L) = Mβ(Xϑ, L) for some ϑ ∈ S1 as a topological

space, therefore the one the same gluing analysis as the standard one. It

greatly reduce the complexity of constructing Kuranishi structure. By using

Taube’s gluing construction and Newton’s method we have

Proposition 5.18. Assume Σ′ is a deformation of Σ, f ′ : Σ′ → (X, L) is

the approximate solution and

(w, ϑ) ∈ Ker(πΣ′ ◦D∂̄new), ‖ (w, ϑ) ‖W 1,p≤ ε
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then there exists a unique h(Σ′,V ) ∈ Lp(Σ′;w′∗TX ⊗ Λ0,1
Σ′ ) such that

πΣ′ ◦ (∂̄ expw′
(
w + QΣ′h(Σ,V )) + KJ((expw′(w + QΣ′h(Σ,V )), α))

)
= 0

and

‖ h(Σ′,V ) ‖Lp≤ ε′

Proof. This is a modified version of Proposition 6.32 [28]. We will use

Newton’s method to find exact solution. For simplicity of notations, we

write v for f ′, Q for the right inverse for f ′, Dn for linearization of ∂̄ on

vn = expv(w + Qhn) and πn = πvn . Set h0 = 0 and

hn+1 = hn − Pn ◦ π
(
∂̄vn + ϑKJ(vn, α)

)
,

where Pn is the parallel transport along the geodesic t ∈ [0, 1] 7→ expv((1−
t)w + Qhn).

Pn+1 ◦ π ◦
(

∂̄vn+1 + ϑKJ(vn+1, α)
)

= Pn+1 ◦ π ◦
(

∂̄expv

(
w + Qhn −Q ◦ Pn ◦ π(∂̄vn + ϑKJ(vn, α))

)

+ ϑKJ

(
expv

(
w + Qhn −Q ◦ Pn ◦ π(∂̄vn + ϑKJ(vn, α))

)
, α

))

= Pn ◦ π ◦ (
∂̄vn + ϑKJ(vn, α)

)

− Pn ◦ πn ◦Dn ◦ (d expv)(w+Qhn)

(
Q ◦ Pn ◦ π(∂̄vn + ϑKJ(vn, α))

)

+ Pn ◦ πn ◦ ϑKJ

(
Dn ◦ (dexpv)(w+Qhn)

(
Q ◦ Pn ◦ π(∂̄vn + ϑKJ(vn, α))

)
, α

)

+ R
(
π ◦ (∂̄vn + ϑKJ(vn, α))

)
,
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where

‖ R
(
π ◦ (∂̄vn + ϑKJ(vn, α))

) ‖Lp≤ C1 ‖ π ◦ (∂̄vn + ϑKJ(vn, α)) ‖2
Lp ,

‖ Pn ◦ πn ◦Dn ◦ (dexpv)(w+Qhn) − π ◦Dv ‖≤ C2(|w|+ |Qhn|),

(the third term after the second equality) ≤ |ϑ| ‖ π
(
∂̄vn + ϑKJ(vn, α)

) ‖Lp .

Therefore, by induction we have

‖ π
(
∂̄vn+1 + KJ(vn+1, α)

) ‖Lp

≤C3

(|w|+ |Qhn|+ |ϑ|+ ‖ π
(
∂̄vn + KJ(vn, α)

) ‖Lp

)

· ‖ π
(
∂̄vn + KJ(vn, α))

) ‖Lp

From the recursion expression

hn = −
n−1∑

k=0

Pk ◦ π ◦ (∂̄vk + KJ(vk, α)),

we have control on

‖ π ◦ (∂̄vn+1 + ϑKJ(vn+1, α)) ‖Lp

≤C3

(
‖ (w, ϑ) ‖W 1,p +

n∑

k=0

‖ π(∂̄vk + ϑKJ(vk, α)) ‖
)
‖ ∂̄vn + ϑKJ(vn, α) ‖ .

It is easy to prove following lemma by induction.
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Lemma 5.19. Assume an ≥ 0, b > 0 with a0, b > 1
6C3

. If

an+1 ≤ C3(b +
n∑

k=0

ak)an =⇒ an+1 ≤ 1
2
an

.

Lemma 5.20. (Lemma 7.1.29 [12]) Assume that π(∂̄w + ϑKJ(u, α)) = 0,

then

‖ π(∂̄v + ϑKJ(v, α)) ‖Lp≤ C5((|η|+ |η′|) 1
2p + |ϑ|).

Therefore, ‖ π(∂̄expvw+ϑKJ(v, α)) ‖Lp≤ C5(|η|+|η′|)
1
2p +C6 ‖ w ‖W 1,p .

and small enough choice of η, η′ and (w, ϑ) guarantee the existence of hη,η′;u

by Newton’s method with required estimate. Since ∂̄ϑexpv(w+Qhn) ∈ Ev is

smooth, the exact solution expv(w +Qhn) is smooth from elliptic regularity

of Cauchy-Riemann operator.

As for uniqueness, let h = hη,η′;f and assume there another solution h′

of equation

π(∂̄expv(w + Qh) + ϑKJ(v, α)) = 0, with ‖ h ‖Lp≤ ε
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Then we have

0 = P ′ ◦ π
(
∂̄expv(w + Qh′) + ϑKJ(expv(w + Qh′), α)

)

= P ′ ◦ π
(
∂̄expv(w + Qh + Q(h′ − h)) + ϑKJ(expv(w + Q(h′ − h)))

)

= P ◦ π ◦ ∂̄expv(w + Qh) + P ◦ π ◦D1 ◦ (dexpv)(w + Qh)(Q(h′ − h))

+ R(h′ − h)

or

h′ − h = (P1 ◦ π ◦D1 ◦ (dexpv)(w+Qh) − π ◦D)
(
Q(h′ − h)) + R(h′ − h)

Therefore,

‖ h′ − h ‖Lp≤ 1
2
‖ h′ − h ‖Lp

when ε is small and h = h′.

Therefore we construct a Kuranishi chart for each element p = [f :

((Σ, ∂Σ),−→z ) → (X, L)] ∈Mk,β(X, L) when the domain is stable.

Step 2: If any of the component of the domain Σa is unstable, we will fol-

low the construction in [7] and Appendix [11]. We first add interior marked

points to make Σa stable and denote it by Σ+
a . we add the marked points

in the way that Γp acts on additional marked points freely. Since fa is

non-degenerate, it is immersed at generic point on Σa and without loss of

generality we can assume fa is immersed at additional marked points.
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For each additional marked point p, we take a 2-dimensional submanifold

Dp ⊆ X such that Dp intersect with the image of fa transversally at p and

Dp = Dγ·p, for each γ ∈ Γp. We will denote the holomorphic maps with

addtion marked points by p+ = [f+ : (Σ+, ∂Σ+) → (X, L)]

Now we may assume the domain with addition marked points Σ+ ∈
M0,k+k′ , where k′ is the number of the additional marked points. Since

M0,k+k′ admits an orbifold structure, we may assume a neighborhood of

Σ+ ∈ M0,k+k′ is parametrized by V (Σ+)/Aut(Σ+). Follow the same pro-

cedure in Step 1, we construct an Kuranishi chart Vp+ for p+. Let evadd :

Vp+ → Xk′ be the evaluation map of added points. Then

Vp := Vp+ evadd×
∏

p:additional
marked points

Dp

is a smooth manifold of expected dimension because of the transversality

condition of Dp. We define Ep by

Ef ′ = Ep+ =
⊕

a

E(Σ+
a )

(up to a parallel transport) and the Kuranishi map sp by

sp(f ′) = ∂̄f ′ ∈ Ef ′ ,

which is Γp-equivariant by construction.

Let sp(f ′) = 0, then f ′ : (Σ+
f ′ , ∂Σ+

f ′) → (X, L) is pseudo-holomorphic

and we get ψp(f ′) := f̃ : (Σ+
f ′ , ∂Σ+

f ′) → (X, L), where the later is induced
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by f ′ by forgetting those additional marked points. So far, we construct

a Kuranishi chart with notation changed by (V 0
p , E0

p,Γp, s0
p, ψ0

p) for every

point p ∈Mk,β(X, L).

Step 3: By Gromov compactness theorem, we find a finite cover

Mk,β(X, L) =
⋃

p∈U

ψ0
p((s0

p)−1(0)/Γp).

Choose closed subset Wp of ψ0
p((s0

p)−1(0)/Γp) for each p ∈ U such that

Mk,β(X, L) =
⋃

p∈U

IntWp.

and we set

Ep =
⊕

p′∈U(p)

E0
p′ , where U(p) = {p′ ∈ U|p ∈ Wp′}.

This step the closeness of Wp guarantee the coordinate change of Kuranishi

structure. Thus we construct a Kuranishi structrue on a fixed moduli space

Mk,β(X, L) but without compatibility condition.

Step 4: We will construct the Kuranishi structures on Mk,β(X, L) in-

ductively on ω(β) such that they are compatible with the decomposition of

boundary.

Notice that for the case [∂β] = 0 ∈ H1(L), there is an additional bound-

ary component of M0,γ(X, L)

Mcl
1,β̃

(X)×M L.
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The proof is also similar.

Remark 5.21. It is pointed out in [8] that we choose Eα such that its ele-

ments has support (uniformly) away from the special points for two reasons:

1. We don’t have to perturb in a neighborhood of nodal points and thus

the gluing analysis is easier.

2. It is easier to identify the sections of obstruction bundle of each com-

ponent with the sections of obstruction bundle after gluing.

Remark 5.22. Here we didn’t quotient the line bundle given by KJ(f, α)

because it is hard to identify the quotients with those of perturbation of f .

Theorem 5.23. For each ε and E0, there exists a system of continuous

family of multi-sections {sk,β} on {Mk,β |k ≥ 0, | ∫β Ω| < ε} such that

1. It is ε-close to the Kuranishi map in C0 sense.

2. It is compatible with forgetful map forget.

3. It is invariant under the cyclic permutation of the boundary marked

points.

4. All the relevant evaluation maps induce submersion on zero sets of

multi-sections.
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5. For the decomposition of the boundary of moduli spaces,

∂Mk+1,β(X, L) =
⋃

1≤i≤j+1≤k+1

⋃

β1+β2=β,
Zβ1

/Zβ2
∈R>0

Mj−1+1,β1(X, L)

(ev0,evϑ)×(evi,evϑ) Mk−j+1,β2(X, L). (32)

and

∂M0,β(X, L) =
⋃

β̃:i∗(β̃)=β

(Mcl
1,β̃
×
X

(L× S1
ϑ)

)

∪
⋃

β1+β2=β,
Zβ1

/Zβ2
∈R>0

(M1,β1(X, L) (ev0,evϑ)×(ev0,evϑ) M1,β2(X, L))/Z2

(33)

the restriction of the multi-sections on the boundary of the moduli space

coincide with the fibre product of the multi-sections from decomposi-

tion.

Proof. The proof is similar to theorem 5.1 [7]. By Gromov compactness, the

class achieve minimal area has compact moduli space consisting only smooth

domain. One constructs multi-sections on the moduli space using appendix

A.3. By induction, we have constructed multi-sections on both factor of

right hand side of (33) for β with |Zβ| < E0. For second terms on the right

hand side of (33) and right hand side of (5), multi-sections constructed are

compatible on the overlapped part of moduli spaces by lemma 7.2.55 [12].

Therefore, we can use the fibre product of multi-sections on each factor to

gives multi-sections on the left hand side of (12),(33). For the first term
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of right hand side, [11] constructs such multi-sections. We use lemma 3.14

[11] to extend the multi-sections from the boundary to the whole moduli

space and the multi-sections can satisfy (45). It is easy to see that the

extension still has the transversal property. The assumption of energy bound

guarantees we only have finitely many steps so that the (1) of Theorem 5.23

can be achieved.

We will use [M]vir to denote the zero locus of the perturbed multi-

sections of corresponding moduli space M. In particular, [M]vir is a smooth

manifold (with corners).

Remark 5.24. See 7.2.3 [12] explains why we can not construct multi-

section for all moduli space simultaneously.

5.4 Orientation

Since the tangent bundle of torus is trivial, one can choose the trivial spin

structure and is invariant under the monodromy. Let u : (D2, ∂D2) →
(X, L) be a holomorphic map with image in the relative class γ. Assume the

domain of the disc is given by D2 = {z ∈ C : |z| ≤ 1}. We shrink the circle

|z| = 1−ε, where ε is a small positive number. Let C be the resulting rational

curve and intersect a disc D′2 at a point p. The bundle pair (u∗TX, u∗TL)

is trivial on D′2 and has natural orientation. Following Chapter 8 [12],

we can define the orientation of standard moduli space M0,γ(X, L) by the

orientation of virtual vector space

H0(Σ, ∂Σ; u∗TX, u∗TL)−H1(Σ, ∂Σ; u∗TX, u∗TL)
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From the below long exact sequence we have a canonical choice of ori-

entation on the mouldi space since every term below admits a natural ori-

entation.

0 → H0(Σ, ∂Σ; u∗TX, u∗TL) → H0(C,F )⊕H0(D2, ∂D2;C2,R2) → C2

→ H1(Σ, ∂Σ; u∗TX, u∗TL) → H1(C, F )⊕H1(D2, ∂D2;C2,R2) → 0,

(34)

where F is a degree zero rank 2 bundle over C induced from (u∗TX, u∗TL).

For our moduli space M0,γ(X, L), we define its orientation to be

S1
ϑ ×

(
H0(Σ, ∂Σ; u∗TX, u∗TL)−H1(Σ, ∂Σ; u∗TX, u∗TL)

)
/Aut(D2).

Remark 5.25. Each initial ray corresponding to the singularity has same

orientation.

5.5 Reduced A∞ Structure and Floer Theoretic Counting

From the Kuranishi strucuture constructed in the previous section, one can

define a filtered A∞ structure using De Rham model as follows: Let ρk ∈
Λ∗(L× S1

ϑ) be differential forms on L× S1
ϑ. For each k ≥ 1, we define

mk,β(ρ1, · · · , ρk) ∈ Λ∗(L× S1
ϑ), ∗ =

k∑

i=1

(deg(ρi)− 1) + 1
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mk,β(ρ1, · · · , ρk) = Corr∗(Mk+1,β(X, L); (ev1, . . . , evk, evϑ), (ev0, evϑ))

(ρ1 × · · · × ρk),

m0,β(1) = Corr∗(M1,β(X, L); tri, (ev0, evϑ))(1) ∈ Λ2(L× S1
ϑ) (35)

mk =
∑

β∈π2(X,L)

mk,βT
∫

γ Ω (36)

and if X is an elliptic K3 surface and L is the torus fibre we define

m−1,β = Corr∗(M0,β(X, L); tri, tri)(1) ∈ R

Theorem 5.26. {mk,β}k≥0 forms a cyclic filtered A∞ algebra structure

modulo TE0 on Λ(L × S1
ϑ) with 1 as a strict unit. Moreover, the struc-

ture is independent of the choice of Kuranishi structure and multi-sections

chosen, up to pseudo-isotopy of inhomogeneous cyclic filtered A∞ algebras.

Proof. This is a standard argument follow [12]. However, the new Kuranishi

structure induce a new A∞ structure and can be viewed as a new symplectic

invariant. We first will construct an inhomogeneous cyclic filtered A∞ alge-

bra structure modulo TE0 . From the Kuranishi structure and multi-section

constructed in Theorem 5.23, we first prove the A∞ relation modulo TE .

The A∞ relation is equivalent to

∑

β1+β2=β

∑

k1+k2=k+1

∑

i

(−1)deg(ρ1)+···+deg(ρi−1)+i−1

mk1,β1(ρ1, · · · ,mk2,β2(ρi, · · · , ρi+k2−1), · · · , ρk) = 0
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We may write the sum from left hand side into

m1,0mk,β(ρ1, · · · , ρk)

+
∑

i

(−1)deg(ρ1)+···+deg(ρi−1)+i−1mk,β(ρ1, · · · ,m1,0(ρi), · · · , ρk)

+
∑

β1+β2=β,k1+k2=k+1
β1 6=0 or k1 6=1
β2 6=0 or k2 6=1

∑

i

(−1)deg(ρ1)+···+deg(ρi−1)+i−1

mk1,β1(ρ1, · · · ,mk2,β2(ρi, · · · , ρi+k2−1), · · · , ρk)

We need the version of Stoke’s theorem A.14 and composition law A.15

for manifolds with Kuranishi structure.

We need to check the orientation of the moduli space to fix the sign. For

0 < E0 < E1, one can extend the A∞ relation from modulo TE0 to modulo

TE1 .

The cyclic symmetry follows from the cyclic symmetry of the perturbed

multi-sections:

〈mk+1,β(ρ1, · · · , ρk), ρ0〉

=Corr∗(Mk+1,β(X, L); (ev1, · · · , evk, ev0), tri)(ρ1 × · · · ρk × ρ0)

To prove 1 is a strict unit: for β 6= 0 and k ≤ 1, we want to claim

mk,β(ρ1, · · · , ρi−1, 1, ρi+1, · · · , ρk) = 0

This is because of the compatibility of forgetful map forget : Mk →Mk−1
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Let X be the vector tangent to the fibre of the forgetful map forget, then

ιX((fs)∗αρ ∧ ω) = 0,

where ρ = ρ1 × · · · × ρi−1 × 1× ρi+1 × · · · ρk. Therefore each components of

right hand side of 5.5 vanish and 1 is a strict unit.

Remark 5.27. Here we need to include the factor S1
ϑ to make mk degree 1.

Otherwise, mk will be degree 0 and the A∞-structure is destroyed.

Proposition 5.28. The A∞-structure (Λ(L × S1
ϑ), {mk,β}) constructed in

Proposition 5.26 is independent of choice of Kuranishi structure and the

family of multi-section chosen, up to pseudo-isotopy of inhomogeneous cyclic

filtered A∞ algebra modulo TE0.

Proof. The proof is similar to proposition 4.1 [8]

Finally we apply lemma 4.2 [8] to extend the inhomogeneous cyclic fil-

tered A∞ algebra structure and finish the proof of Theorem 5.26.

Remark 5.29. Let X be the twistor space of X with two fibres admit el-

liptic fibrations discarded. From the expression (1), Ω(ζ) ∧ dζ
ζ is a nowhere

vanishing holomorphic (3, 0)-form on X . Notice that every holomorphic disc

(D2, ∂D2) → (X , L× S1
ϑ) factor through a fibre by maximal principle. The-

orem 5.26 is equivalent to the Kuranishi structure of the real 3-torus L×S1
ϑ

in X constructed in [12].

Remark 5.30. One can generalized theorem to the case includes interior

marked points and study open-closed duality.
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From now on, we will assume X is an elliptic K3 surface and L = Lu

is a torus fibre for our purpose. After hyperKähler rotation, X admits an

S1
ϑ-family of special Lagrangian torus fibration.

Lemma 5.31. Assume Lu does not falls on the W ′
β, then m−1,β is well-

defined.

Proof. Assume there are two different Kuranishi structures. We can con-

struct a pseudo-homotopy between them. Let 0 ≤ t1 ≤ t2 ≤ 1,

∂([t1, t2]×M0,β) = ({t1, t2} ×M0,β) ∪
⋃

β̃:i∗(β̃)=β

[t1, t2]×
(Mcl

1,β̃
×X L× S1

ϑ

)

∪
⋃

β1+β2=β

(([t1, t2]×M1,β1) (ev0,evϑ,evt)×(ev0,evϑ,evt) ([t1, t2]×M1,β2))/Z2

(37)

Note that the middle term has no contribution because of dimension reason.

It coincide with the expectation that there are no BPS of pure flavor charges.

Apply the Stoke’s theorem above, we get

m1
−1,β −m0

−1,β = contribution from right hand side of (37).

Because of the assumption that Lu does not fall on W ′
β except multiple

cover occur. By Proposition 5.43, the boundary of multiple covers doesn’t

contribute to the invariant. The finiteness follows from Gromov compactness

theorem.

In particular, locally there is an open dense set such m−1,β is well-defined.
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By Gromov’s compactness theorem (see remark of Theorem 0.2 [39]) and

the lemma, the wall of a fixed charge β is locally finite. Therefore,

Proposition 5.32. If m−1,β(Lu) is well-defined, then m−1,β(Lu′) is well-

defined for nearby u′.

Finally, we define

Ω̃Floer(γ;u) = m−1,γ(Lu). (38)

A priori, the ”invariants” are only defined over R.

Proposition 5.33. If Ω̃Floer(γ;u) is well-defined, then Ω̃Floer(−γ;u) is also

well-defined. Moreover, we have reality condition

Ω̃Floer(γ;u) = Ω̃Floer(−γ;u)

Proof. From (34), complex conjugation does not change orientation of C2

,L, H0(C, F )−H1(C, F ), KJ(f, α) and PSL(2,R).

Proposition 5.34. The invariants Ω(γ;u) is invariant if the elliptic fibra-

tion changed to its complex conjugate. It is also independent of the choice

of the holomorphic (2, 0)-form of the elliptic fibration.

Proof. If we change the elliptic fibration to its conjugate complex strucuture,

then both S1
ϑ and L change orientation. All the other ingredients involve

orientation remain the same. This indicates the first part of the proposition.

For the later part, we first look at the case when the holomorphic (2, 0)-

form Ω replaced by −Ω. In this case, the complex structure of the special
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Lagrangian fibration changed to its conjugate. Thus the The sign may

change on H0(C, F ) and H1(C, F ) but cancel out by Riemann-Roch formula.

Notice that the orientation of S1
ϑ is unchanged because both α = ImΩ and

j change sign and KJ(f, α) = 1
2Kα(df ◦ j) is unchanged. In general, any

two choices of holomorphic volume form will give rise to pseudo-isotopy of

Kuranishi structure and the proof is the same as Lemma 5.31.

Remark 5.35. Considering S1-family not only raises the virtual dimension

of moduli space to 0 but after projecting to a fixed phase still get the reduced

counting.

Let π : X → B to be the special Lagrangian fibration. Given a wall Wα,β

on the affine base, we choose a path on B0 passing through a generic point

of Wα,β and the boundary points L0 = L, L1 lies on different side of the

wall. Without lose of generality, we may Assume the phase ArgZα is strictly

decreasing and ArgZβ is strictly increasing. Choose a 1-parameter family of

fibration preserving diffeomorphisms φt such that φt(L0) = Lt, for t ∈ [0, 1].

By pulling back the Kähler forms and complex structures to L0, we may

view changing special Lagrangian boundary condition as changing complex

structures (hyperKähler structures) on (X, L0). Assume f : (D2, ∂D2) →
(X, L) is a holomorphic disc. The new linearized ∂̄ equations for 1-parameter

family now becomes

D∂̄ : W 1,p(f∗TX, (∂f)∗TL)× Rϑ × Rt → Lp(f∗TX ⊗ Λ0,1)

(w, ϑ, t) 7−→ D∂̄w + ϑKJ(f, α) + tY
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where Y is the tangent of complex moduli along the path. Using similar

argument in Theorem 5.23, we have

Theorem 5.36. There is a system of Kuranishi structures and families of

multi-sections s0,β on Mk,β(X, {Lt}), k = 0, 1 for | ∫β Ω| < E0 satisfying

properties below:

1. The multi-sections sk,β are transverse to 0.

2. The structure is compatible with the forgetful maps.

3. All the relevant evaluation maps are submersion restricted on the zero

locus of the perturbed multi-sections.

4. For the following decomposition of the boundary of moduli spaces,

∂M0,β(X, {Lt}) = ∪ (M0,β(X, L1)−M0,β(X, L0)
)

∪
⋃
t

⋃

T :
∑

βl=β,
Zβl

(Lt)/Zβ(Lt)∈R>0

MT (X, L) (39)

the restriction of the multi-sections on the boundary of moduli spaces

coincides with the fibre products of Kuranishi structures. The summa-

tion is over all possible boundary, each of them has a dual intersection

complex as a tree T . Each such tree T has its vertex i labeled with a

charge βi ∈ H2(X, Lt). By Proposition 5.40, we only have to consider

those trees with each edge (i, j) has 〈∂βi, ∂βj〉 6= 0. Let MT (X, L) be

the moduli space of holomorphic discs with corresponding configura-

tion.
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5. For t0 ∈ {0, 1}, the induced Kuranishi structures and multi-sections

on Mk,β(X, {Lt})∩ ev−1
t ({t0}) are the one given in Theorem 5.17 and

Theorem 5.23.

Remark 5.37. Another choice is to consider the below moduli space in [12].

Mk,β({Jϑ,t} : top(ϑ), twp(t)) → [0, 1]t × Lk.

Then the evaluation map (evi, evϑ) can be made weakly submersive and one

can construct a reduced Kuranishi structures on Λ∗(L× S1
ϑ).

Remark 5.38. Notice that by the Gromov compactness theorem, the last

term in (39) is finite.

The following proposition is straight forward from the definition.

Proposition 5.39. Let φ be an (fibration preserving) diffeomorphism, then

m−1,β(L) = m−1,φ(β)(φ(L)) assuming both are well-defined.

Proposition 5.40. Assume γ1, γ2 are primitive, then

Corr∗(M1,γ1(X, L)×L×S1
ϑ
M1,γ2(X, L); tri, tri)(1) = 〈γ1, γ2〉m−1,γ1m−1,γ2

(40)

Proof. It suffices to prove the following statement:

Lemma 5.41. Let Xi
∼= Bi × S1, where Bi are manifolds with a compact

support volume form ωi. Assume fi : Xi → T 2 are submersions such that

[f1({pt} × S1)].[f2({pt} × S1)] = k, then
∫
X ω1 ∧ ω2 = k(

∫
B1

ω1)(
∫
B2

ω2),

where X = X1 ×T 2 X2.
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Proof. Consider the map π : X → B1 × B2. X defined by f1(x) = f2(y), is

closed and π is proper. Easy computation shows that

∫

X
ω1 ∧ ω2 = (degπ) ·

∫

B1×B2

ω1 ∧ ω2 = ±k · (
∫

B1

ω1)(
∫

B2

ω2)

Compatibility of forgetful maps says that if Vαk
are local Kuranishi chart

for M0,γk
, for k = 1, 2, then one can take V ′

αk
= Vα×S1 as Kuranishi chart

of M1,γk
. Thus locally we can choose s−1

αk,i,j(0) to be Xi in above lemma.
∫
Bk

ωk is the local contribution to m−1,γk
and

∫
X ω1∧ω2 corresponding local

contribution for left hand side of (3.13). The proposition followed by using

partition of unity for Kuranishi space to glue the contribution from each

charts to give the formula.

Remark 5.42. Notice that in the expansion formula of symplectic holomor-

phic 2-form in (6), there is no contribution from those γ with [∂γ] = 0.

Similar argument as Proposition 5.40, we have follow two propositions.

Proposition 5.43. If 〈∂β1, ∂β2〉L = 0, then

Corr∗(M1,β1({Lt}) (ev0,evϑ,evt)×(ev0,evϑ,evt) M1,β2({Lt})/Z2; tri, tri)(1) = 0.

Remark 5.44. Proposition 5.43 implies the multiple cover contribution is

well-defined and the closed Gromov-Witten invariants decouple from the in-

variants {Ω̃Floer}. Moreover, it implies the analogue of Proposition 3.13 for

{Ω̃Floer}.
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Proposition 5.45. Let {Lt} be a 1-parameter family of torus fibres such

that passing through W ′′
γ transversally. Assume γ =

∑
i kiγi. If

Ω̃Floer(kγi0) = 0, for all k and some i0, then

∆Ω̃Floer(γ) = 0

Therefore, Proposition 5.45 motivates us to define the wall of marginal

stability for Ω̃Floer in the following way:

Definition 5.46. For γ1, γ2 primitive, we define

Wγ1,γ2 = {u ∈ B0|ArgZγ1 = ArgZγ2 , Ω̃
Floer(k1γ1)Ω̃Floer(k1γ2) 6= 0

for some k1, k2 ∈ N}.

The wall of marginal stability of γ for holomorphic discs counting is given

by

Wγ =
⋃

γ=kγ1+lγ2

Wγ1,γ2

It is easy to see that Wγ is an open subset of W ′
γ and W ′′

γ . The following

theorem follows from similar argument in Lemma 5.31.

Theorem 5.47. Assume [∂γ] 6= 0 and Ω̃Floer(γ;u0) is well-defined, then

Ω̃Floer(γ;u) is well-defined and locally a constant around u0.

In the definition of the invariant Ω̃Floer, there is a choice of Ricci-flat

metric to form the twistor family. However, we have
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Corollary 5.48. Assume ω, ω′ are Ricci-flat metrics such that the corre-

sponding invariants Ω̃(γ;u) and Ω̃′(γ;u) are well-defined. Then

Ω̃(γ;u) = Ω̃′(γ;u)

Proof. First we assume that u /∈ W ′′
γ then the proposition follows by similar

cobordism argument as in Lemma 5.31. In particular, the proposition holds

on an real analytic Zariski open subset of B0. For u ∈ W ′′
γ \W ′

γ , then by

Theorem 5.47 there exists u′ /∈ W ′′
γ near u such that

Ω̃(γ;u) = Ω̃(γ;u′) = Ω̃′(γ;u′) = Ω̃′(γ;u)

Lemma 5.49. Given a Lagrangian fibration X → B and δ > 0, then there

exists ε(δ) > 0 such that any holomorphic discs with non-trivial Lagrangian

boundary condition with symplectic area less than δ should contained in an

ε(δ)-neighborhood of a singular fibre.

Proof. This is a consequence of the gradient estimate of harmonic maps (ex.

theorem 2.1 [39]). Indeed, assume a holomorphic disc with boundary on fibre

L and small area will fall in a neighborhood of L. However, a (topological)

trivial Rk × T l fibration cannot bound any disc with non-trivial boundary

homology class.

The following is another well-known folklore theorem. However, we can-

not find the proof elsewhere.
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Theorem 5.50. Let γe be the Lefschetz thimble, then

Ω̃Floer(γe;u) = 1,

for u closed enough to a singularity of affine structure. Moreover, for u

close enough to the singularity, γe is the class achieves minimum energy

with Ω̃Floer(γ) 6= 0.

Proof. Assume X is a K3 surface with special Lagrangian fibration around

large complex limit. By Lemma 5.49, we will replace X by the preimage of

a ε-neighborhood of singular point on the base, with the topology same as

Ooguri-Vafa space. Notice that we still have Gromov’s compactness theorem

for X.

View the Ooguri-Vafa space as an elliptic fibration. Assume ωK3 =

ωOV + i∂∂̄φ, where φ is smooth.

Lemma 5.51. There is a path of hyperKähler triples (X,ωt,Ωt) connecting

the restriction of K3 and the Ooguri-Vafa space, keeping the elliptic fibration

structure.

Proof. It suffices to prove that the uniqueness of complex Monge-Ampere

equation with Dirichlet boundary condition and the solution is smoothly

depends on the boundary condition. Take ut = tφ and by the estimate in

[19] there exists non-negative constant εt, such that εt = 0 for t ∈ {0, 1},
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and ut are subsolutions of the below equation





(ωOV + i∂∂̄ut)2 = (1
2 − εt)Ω ∧ Ω̄

ut|∂X = tφ

Therefore, Theorem 1.1 [15] provides a solution for the Dirichlet problem.

To prove uniqueness, assume there are two solutions ψ,φ satisfy the complex

Monge-Ampere equation with Dirichlet boundary condition. Then we have

det(gij̄ + φij̄) = det(gij̄ + ψij̄)

or can rewrite it as

det(gij̄ + φij̄ + (ψij̄ − φij̄))det(gij̄ + φij̄)
−1 = 1

By arithmetic-geometric mean inequality,

1
2
[2 + ∆′(ψ − φ)] ≥ 1,

where ∆′ is the Laplacian of metric (gij̄ + φij̄). Therefore, ψ − φ is subhar-

monic with respect to ∆′. Since ψ and φ are smooth functions, we may add

a constant and assume ψ − φ ≥ 0. Then

0 =
∫

X
∆′(ψ − φ)2 = 2

∫

X
(ψ − φ)∆′(ψ − φ) + 2

∫

X
|∇′(ψ − φ)|2

All the terms arises from integration by part vanishes because ψ and φ

satisfy the same Dirichlet boundary condition. The first term of right hand
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side is non-negative implies ∇′(ψ−φ) = 0 or φ, ψ differs by a constant.

Assume the a special Lagrangian torus fibre L in K3 bounds a holomor-

phic disc of class γ with area smaller or equal to the Initial disc and has

nontrivial invariants. We will use the continuity method to prove there is

a disc with same property in the Ooguri-Vafa space. Indeed, notice that

for Ooguri-Vafa space π2(X, L) is generated by the fibres and Initial discs.

therefore wall of second kind doesn’t contribute by Proposition 5.40. If

wall of third kind contribute, then it degenerates to holomorphic discs in

class γ with area smaller or equal to |Z(γe)| on Lt such that Ω(γ) 6= 0

and is indecomposable (thus is well-defined). Then there exists a neighbor-

hood of Lt bound this discs by Gromov compactness theorem. Again by

Gromov-compactness theorem, there will be some disc with area smaller or

equal to |Z(γe)| and converge to the unique holomorphic disc in the Ooguri-

Vafa space. It contradicts to uniqueness of deformation of the only disc

in Ooguri-Vafa space by hyperKähler rotation trick. Therefore, there are

no holomorphic discs with area smaller than γe and there is only a unique

holomorphic disc represent γe. The theorem follows from M0,γe(X, L) is

Fredholm regular and consists just a point. Indeed, the zero of each branch

of perturbed multi-section is isomorphic to (Wα, ωα) and thus the invariant

is by definition

∫

Wα

ωα = 1.
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5.6 Multiple Cover Formula

To prove the corresponding theorem, one ingredient is multiple cover formula

of the holomorphic discs discussed in Theorem 5.50. Use argument similar

to Theorem 5.50, it suffices to compute the multiple cover contribution from

the following local model below: X = T ∗P1 and L ∼= R1 × S1 is the fixed

locus of an anti-symplectic, anti-holomorphic involution ι. The author learn

the localization technique from Chiu-Chu Melissa Liu. Using localization to

compute multiple cover of discs invariants can be first found in [25][21], and

later carry out rigorously in [33].

We first construct an special Lagrangian fibration with respect to Iguchi-

Hanson metric with L one of the fibre. Let X = TP1 be the blow-up of C2/Z2

at the origin. Let (y, λ), (x, µ) be the coordinate chart on X, where x = 1/y

and µ = λy2. Then there is an natural S1-action on X preserving λy = µx.

The Iguchi-Hanson metric ωEH is invariant under this S1-action and thus

X −→ R2

(y, λ) 7→ (µS1 ,Re(λy))

is a special Lagrangian fibration with smooth fibres homeomorphic to R×S1

[14]. Let ι : (y, λ) 7→ (ȳ, λ̄) be an anti-holomorphic involution and anti-

symplectic involution. The fixed locus of ι is a special Lagrangian fibre L.

Moreover, by maximal principle there exists a unique simple holomorphic

disc (up to reflection ι) in X with boundary on L. This is a local model

near the singularity of Ooguri-Vafa space. Locally around the singularity

of the fibration, Iguchi-Hanson metric and Ooguri-Vafa metric are both S1
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invariant and thus arise from Gibbons-Hawking ansatz (section 2.6 [19]).

Therefore, there is a family of hyperKähler triple from Gibbons-Hawking

ansatz connecting these two spaces. Same argument as Remark 2.11, there

is a unique embedded holomorphic discs in each space. Therefore, pseudo-

isotopy of Kuranishi structure along this family guarantees we can just com-

pute the multiple cover formula for moduli space Md = Mdγ(X, L) of discs

in X = T ∗P1 (with S1-family of complex structures by hyperKähler rota-

tion) with boundary on L and image only mapping to certain side of the

equator.

Let γ be the unique (up to sign) relative class bounding simple holomor-

phic disc and γ̃ is the homology class of zero section P1 in X. Since the

invariant Ω̃Floer(dγ) is independent of the choice of Kuranishi structures,

we will choose the Kuranishi structure for computation purpose as follows:

The obstruction bundle Fd is an orbi-bundle over an orbifold Md and the

Kuranishi map is just the zero section. For each point [f ] ∈ Md, it has a

corresponding point in Md again denoted by [f ] and

Fd|[f ] = H1(D2, ∂D2; f∗TX, f∗TL)/R,

where the quotient R-factor is induced by the S1-family of complex struc-

tures by hyperKähler rotation. Also the tangent space of Md at [f ] is

TMd|[f ] = H0(D2, ∂D2; f∗TX, f∗TL)/Aut(D2).

Notice that Md is bijective with the moduli space M̃d of real rational curves
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of degree d in a twistor family of X. (Notice that this point is quite different

from the situation of [33]) Therefore, we double the Kuranishi structure on

Md and equip M̃d with an ι-equivariant Kuranishi structure under this

identification. We may choose the perturbed multi-section on M̃d to be

ι-invariant. Therefore,

Ω̃Floer(dγ) : = Corr∗(Md; tri, tri)(1)

=
1
2
Corr∗(M̃d; tri, tri)(1) (41)

The Kuranishi structure on M̃d is a smooth closed orbifold M̃d of real di-

mension 2d−2 with an orbibundle F̃d and Kuranishi map is the zero section.

In particular, (41) is just the top Chern class of the orbibundle F̃d. We will

use localization to compute this top Chern class. Using the fact that L is

the fixed locus of ι, which is both anti-holomorphic and anti-symplectic, one

concludes that maps in Md is a d-fold cover from trees of disks to the zero

section P1 with boundary in S1. Then there is only two torus fixed point in

the moduli space M̃d, namely, the doubling of fd given by z 7→ zd composed

with the only embedded disc (we will again denote it by fd) and its reflection

under the involution ι.

Let (a) denote the complex line with the U(1)-action of weight a; while

(0)R denotes the real line with the trivial U(1)-action. It is easy to see that

the doubling of bundle

(f∗dTX, f∗dTL)C ∼= OP1(−2).
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Then straightforward computation shows

Aut(D2) = (1/d) + (0)R, (real dimension 3)

H0(D2, ∂D2; f∗dTX, f∗dTL) = ⊕d
j=1(j/d) + (0)R. (real dimension 2d + 1)

So together we have

TM̃d|[fd] = ⊕d
j=2(j/d).

On the other hand,

H1(D2, ∂D2; f∗dTX, f∗dTL) = ⊕d−1
j=1(−j/d) + (0)R (real dimension 2d− 1).

So the fibre of obstruction bundle F̃d at fd is given by

F̃d|[fd] = ⊕d−1
j=1(−j/d)

because the counting in S1-family is equivalent to changing the obstruction

bundle by (0)R. Finally we get

Ω̃Floer(dγ) =
1
2

∫

M̃d

eU(1)(F̃d) =
1

|Aut(fd)|
eU(1)(F̃d|[fd])

eU(1)(TM̃d|[fd])
=

(−1)d−1

d2
,

which coincides with the multiple cover formula of Ω̃trop for initial discs (17).

To sum up, we prove the multiple cover formula for initial discs:

Theorem 5.52. Let γ be the class of initial disc around I1-type singular
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fibre, then

Ω̃Floer(dγ) =
(−1)d−1

d2
, for every d ∈ N.

Remark 5.53. It is not enough to show that the initial data Ω(γ, u) = 1 for

u near the singularity from the observation that there is a unique simple disc.

More than that, one also needs a correct multiple cover formula Theorem

5.52.

Remark 5.54. For general In type singular fibres, the local model can also

be described by Gibbons-Hawking ansatz and same argument of 5.50 provides

that initial data Ω̃Floer(dγe) = n(−1)d−1

d2 . The rest of invariants are provided

by wall-crossing formula, thus discussion can also generalized to elliptic K3

surfaces with In-type singularities.

5.7 Corresponding Theorem

Similar argument in Theorem 5.50 together with induction, there exists

δ > 0 such that any holomorphic disc with boundary on torus fibre L and

with symplectic area less than δ implies L falls in a certain neighborhood of

a singular fibre. In other words, the holomorphic disc is a multiple cover of

the Lefschetz thimble which realized the minimal area among relative classes

with non-trivial invariant. Now we want to prove that all other holomorphic

discs in this S1-family are all from ”scattering”- gluing of these initial discs.

Assume γu ∈ H2(X, Lu) is represented as a holomorphic disc with bound-

ary on Lu such that Ω̃Floer(γ;u) 6= 0. Without lose of generality, we may

assume
∫
∂γu

Ω ∈ R+. There is an affine half line l emanating from y on
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the base such that
∫
∂γt

Ω is a decreasing function of t ∈ l, where ∂γt is the

parallel transport of ∂γu along l. Since
∫
∂γt

Ω is an affine function along l,

it has no lower bound. There is some point u′ ∈ l such that
∫
∂γu′

Ω = 0.

Thus, there are two cases:

1. If Ω̃Floer(γ;u) = Ω̃Floer(γ;u′) then Lu′ is a singular fibre by Lemma

5.49. In particular, if Lu′ is of In-type singular fibre then γu′ is rep-

resented by multiple cover of the unique area minimizing holomorphic

disc and ∂γu is the parallel of γu′ along l.

2. If Ω̃Floer(γ;u) 6= Ω̃Floer(γ;u′) then from the Proposition 5.45 and The-

orem 5.36, there exists γn,u′ in the same phase with γu′ such that
∑

n γn,u′ = γu′ and Ω̃Floer(γn;u′) 6= 0. Assume the boundary is of

second kind. By maximal principle, it happens only when γ1,u′ is a

multiple of γ2,u′ . Then by Proposition 5.40, this does not contribute

to m−1,γ . If the boundary is of third kind, the theorem is followed

by applying the Stokes theorem and Proposition 5.40. The sign is

given by Proposition 3.15. Then we replace γ by γi,u′ and repeat

the same processes. The procedure will stop at finite time because of

Gromov compactness theorem. By induction, every holomorphic disc

with nontrivial invariant give rise to a tropical disc, which is formed

by the union of the affine segments on the base. In particular, the

balancing conditions are guaranteed by the conservation of charges
∑

n γn,u′ = γu′ at each vertex u′.

To sum up, we proved the following theorem by this attractor flow mecha-

nism [6] of holomorphic discs.
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Theorem 5.55. Let X be an elliptic K3 surface (singular fibres not neces-

sarily of In-type). For every relative class γ ∈ H2(X, Lu) with Ω̃Floer(γ;u) 6=
0 has a corresponding tropical disc φ such that [φ] = γ. Moreover, the sym-

plectic area of the holomorphic disc is just the total affine length of the

corresponding tropical disc.

Below we will demonstrate a non-trivial example of wall-crossing phe-

nomenon of invariants Ω̃Floer(γ;u).

Example 5.56. Assume there are two initial rays emanating from two I1-

type singularities of phase ϑ0 intersect at p ∈ B0. From Theorem 5.10, there

are two initial holomorphic discs of relative classes γ1, γ2 corresponding to

the initial rays which are Fredholm. Moreover, the local model provided in the

proof of Theorem 5.10 indicates that they intersect transversally in Lp. From

automatic transversality of K3 surfaces, these two discs cannot be smoothed

out in Lp. To prove that these two discs will smooth when changing the

Lagrangian boundary condition, First pick two point p1, p2 near p but on

the different side of wall of marginal stability Wγ1,γ2. Let ψ : (−ε, 1 + ε)

be a path on B0 such that ψ(0) = p1, ψ(1) = p2 and intersect Wγ1,γ2 once

transversally at p. Recall X is the total space of twistor space of X with

two fibres with elliptic fibration threw away. Then Lu × S1
ϑ is a totally real

torus in X . Now consider an complex manifold X × C with a totally real

submanifold

L =
⋃
t

(Lψ(t) × S1
ϑ).

By our assumption, there are two regular holomorphic discs in X with bound-
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aries in Lp × {ϑ0} ⊆ L of relative classes again we denoted by γ1, γ2. The

tangent of evaluation maps for both discs are two dimensional and transver-

sal. By Theorem 4.1.2 [2], these two discs can be smoothed out into simple

regular discs in L and the union of initial holomorhpic discs is indeed the

codimension one of the boundary of the usual moduli space of holomorphic

discs M0,γ1+γ2(X ,L) which exists by Remark 5.29. By maximal principle

twice, each of the holomorphic disc falls in Mγ1+γ2(X, Lψ(t)) for some t. In

particular,

M1,γ1(X, Lp)×L×S1
ϑ
M1,γ2(X, Lp) ⊆Mγ1+γ2(X, {Lt})

as codimension one boundary. Therefore,

∆Ω̃Floer(γ1 + γ2) = ±Corr∗(M1,γ1(X, Lp)×L×S1
ϑ
M1,γ2(X, Lp); tri, tri)(1)

= |〈γ1, γ2〉|Ω̃Floer(γ1, p)Ω̃Floer(γ2, p),

by Theorem 5.10, Proposition A.14 and Proposition 5.40. Assume moreover,

that the two I1-type singularities on the base are closed enough to each other.

Using the same argument in the proof of Theorem 5.55, the difference of the

invariant appear the side of the wall of marginal stability satisfying (3.15)

and thus determined the sign.

Notice that the jump of the invariant is exactly the same as described

in Theorem 4.6. We expect the wall-crossing formula (15) also holds for

Ω̃Floer(γ;u). Together with Theorem 5.52, it will imply the following corre-

sponding of counting holomorphic discs and tropical discs:
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Conjecture 5.57. For elliptic K3 surface with 24 I1-type singular fibres,

Ω̃Floer(γ;u) = Ω̃trop(γ;u) for every u ∈ B0. In particular, the open Gromov-

Witten invariant Ω̃Floer(γ;u) ∈ Q.

Therefore, Conjecture 5.57 and Theorem 5.52 together provide an al-

gorithm to compute all the invariants Ω̃Floer(γ, u) on elliptic K3 surfaces

with 24 I1-type singular fibres. For more explicit computation of the in-

variants Ω̃Floer, one need to study the affine geometry induced by elliptic

fibration to describe the position of possible walls of marginal stability. The

explicit jump from wall-crossing formula may be computed from the study of

quiver representation moduli spaces [34] or proving the generating functions

of these invariants satisfy certain modularity. We close this section with fol-

lowing conjecture which indicates the existence of a Gopakumar-Vafa type

invariants ΩFloer.

Conjecture 5.58. There exists {ΩFloer(γ;u) ∈ Z|γ ∈ H2(X, Lu)} such that

Ω̃Floer(γ;u) =
∑

d>0

±d−2ΩFloer(γ/d;u).

5.8 Other Local Models

The proof of Theorem 5.55 doesn’t depend on the type of singular fibre we

have. However, different kind of singular fibres will impose different initial

data instead of (17).

Example 5.59. (I∗0 -type singular fibre) Let Eτi be elliptic curves for i = 1, 2

and Let X0 be the quotient of Eτ1 × Eτ2 by the involution ι : zi 7→ −zi. Let

X be the blow-up of X0 at the 16 ordinary double points and X is called the
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Kummer K3 surface. The Kummer K3 surface admits an elliptic fibration

with 4 singular fibres of I∗0 -type. Since the elliptic fibration is isotrivial, the

S1-family of affine structures reduce to the same one, which coincides with

the Z2-quotient of the standard affine structure on elliptic curve Eτ1.

It is pointed out in [9] that given a pair (k, l) ∈ Q2, consider a map

f : {|s| < 1} × Rt → (X0, E(k,l)) by

z1 = (k + il)s, z2 = (k + il)t

When ‖ (k, l) ‖¿ 1, then the image of f will falls in a small neighborhood

of the I∗0 -type singular fibre. It is straight forward to see that the map f

lifts to X and the image is still a smooth disc. Moreover the pull-back

of Eguchi-Hanson metric ω and ImΩ is zero. Therefore, by the similar

technique of deformation of special Lagrangian discs and estimates in [27],

it can be deformed to a smooth special Lagrangian discs with respect to true

Ricci-flat metric and thus gives rise to a holomorphic disc from hyperKähler

rotation trick. In particular, they become regular holomorphic discs after

hyperKähler rotation. We expect these are all the holomorphic discs near

the I∗0 -type singular fibre.
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6 Quantum Corrected SYZ Transform on the

Ooguri-Vafa Space

Given a torus bundle X → B and its dual X̌ → B, one can defined the SYZ

transform as follows:

X ×B X̌
pr1

{{vvvvvvvvv
pr2

##HHHHHHHHH

X

f
$$IIIIIIIIII X̌

g
zzuuuuuuuuuu

B

For a given differential form α on X, we define the SYZ transform by

FF :A∗(X) → A∗(X̌)

α 7→ pr2∗(pr∗1α ∧ F ),

where F is a differential form on X×B X̌, and pr1∗ denotes integration along

fibres.

In [?CL] it is proved that SYZ transform exchange the toric symplectic

form and holomorphic volume form for toric manifolds if F is the curvature

of the Poincare bundle. It is pointed out in [4], if we choose the same

F for the Ooguri-Vafa space, SYZ transform only exchange the semi-flat

symplectic form and holomorphic volume form.
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Ω(ζ) =
−1

4π2R
(2πRRe(ζ̄y) + idθe) ∧ (idθm + 2πiA− 2πV Im(ζ̄y))

ω̌(−iζ) = −dRe(ζ̄y) ∧ (
dθ̌m

2π
+ Ǎ)− V̌ Im(ζ̄y) ∧ dθ̌e

2πR
,

where

V = V sf + V inst

V sf = − R

4π
(log y + log ȳ)

V inst =
R

2π

∑

n6=0

einθeK0(2πR|ny|)

and

A = Asf + Ainst

Asf =
i

8π2
(log y − log ȳ)dθe

Ainst = − R

4π
(
dy

y
− dȳ

ȳ
)
∑

n6=0

(sgn n)einθe |y|K1(2πR|ny|).

All the instanton correction are excluded because they are higher mode

in Fourier expansion. However, from the formal construction of the holo-

morphic volume form of twistor family , we have a more natural candidate

of F as follow:

dΘ(ζ) = dθm + πiV inst(
1
ζ
dy − ζdȳ) + 2πAinst + ∆(ζ)

dΘ̌(−iζ) = dθ̌m + πiV̌ inst(
1
ζ
dy + ζdȳ) + 2πǍinst + ∆̌(−iζ)
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and

F = i
dΘm(ζ)

2π
∧ dθ̌e

2πR
− dθe

2πR
∧ dΘ̌m(−iζ)

2π

The quantum corrected SYZ transform is as follows:

F(eiω̌(−iζ))

=
∫

Ľ
eiω̌(−iζ) ∧ eF

=
∫

Ľ
ei[−dRe(ζ̄y)∧θ̌0−V̌ dIm(ζ̄y)∧ dθ̌e

2πR
]+[− dΘm(ζ)

2π
∧ dθ̌e

2πR
+ dθe

2πR
∧ dΘ̌m(−iζ)

2π
]

=
∫

Ľ
e−i(dRe(ζ̄y)+ idθe

2πR
)∧θ̌0+i(−V̌ dIm(ζ̄)+i

dΘm(ζ)
2π

+iAsf )∧ dθ̌e
2πR

=
∫

Ľ
−i · i(dRe(ζ̄y) +

idθe

2πR
) ∧ θ̌0 ∧ (−V̌ dIm(ζy) + i

dΘm(ζ)
2π

+ iAsf ) ∧ dθ̌e

2πR

=
∫

Ľ
−i · i(dRe(ζ̄y) +

idθe

2πR
) ∧ (−V̌ dIm(ζy) + i

dΘm(ζ)
2π

+ iAsf ) ∧ dθ̌e

2πR
∧ θ̌0

=
∫

Ľ
(dRe(ζ̄y) +

idθe

2πR
) ∧ (−V dIm(ζy) + i

dθm

2π
+ iA) ∧ dθ̌e

2πR
∧ θ̌0 = Ω(ζ)

The third equality is because iV̌ instRe(ζ̄y)+∆̌(−iζ) are higher Fourier mode

and

dθe

2πR
∧ 2πǍsf = −2πAsf dθ̌e

2πR
.
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The sixth equality is because

− V̌ dIm(ζy) + (i
dΘm(ζ)

2π
+ iAsf )

=− V̌ dIm(ζy) +
idθm

2π
− V instIm(ζ̄y) + iA + ∆(ζ)

=− V dIm(ζy) + i
dθm

2π
+ iA + ∆(ζ)

and ∆(ζ) ∝ dχe(ζ)
χe(ζ) thus has no contribution.

To sum up, we proved SYZ transform indeed transform the symplectic

form to the holomorphic 2-form of mirrors. The corrected curvature term

encodes the reduced counting defined in Section 5. This is an example of

Fourier-Mukai type transform in the level of differential forms with quantum

correction.

7 Real Noether-Lefschetz Theory and Open GW

Invariants on Calabi-Yau 3-Folds

Mathematicians focus much about the string duality between type IIA string

and type IIB string theory which predicts mirror symmetry. However, there

is another string duality between type IIA and heterotic string theory pro-

posed by Karchu-Vafa which also provide interesting mathematical implica-

tions. This IIA-heterotic string duality suggests that any Calabi-Yau 3-folds

with K3 fibration admits an heterotic string dual, which is a product of a K3

surface and an elliptic curve. It predicts that the counting of embedded ra-

tional curves in X is related to the exponents of product expression of specific

automorphic forms on the complex moduli of K3 surfaces. This is usually
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referred as the Harvey-Moore conjecture. It is first proved by Yau and Za-

slow that the generating function of embedded rational curve countings is

an modular form [40]. The well-known fact is that the moduli space of genus

zero curves in a K3 surface has negative virtual dimension. Therefore, the

stanford genus zero Gromov-Witten invariants vanishes on K3 surfaces. To

interpret the counting of embedded rational curves in K3 surfaces in terms of

Gromov-Witten theory, one has to introduce the reduced Gromov-Witten in-

variants by changing the usual tangent-obstruction theory [26][3][32]. Later

Liu and Maulik-Pandharipande generalized the Harvey-Moore conjecture

and proved that the Gromov-Witten invariants on Calabi-Yau 3-folds with

K3 fibration can be derived from reduced Gromov-Witten invariants on K3

surfaces and Noethory-Lefschetz numbers. Here we will provide an open

analogue of the genus zero result in [32].

7.1 Real Noether-Lefschetz Theory

From the discussion in section five, we know the only obstruction to deform

holomorphic discs in K3 surfaces is given by the phase, which is homological.

This motivate to consider the following real Noether-Lefschetz theory:

Let (X0, ωX0 ,ΩX0) be a K3 surface admits a special Lagrangian torus

L0. Let M be the moduli space of pairs of K3 surfaces and its oriented

special Lagrangian submanifolds with homology class [L0]. Then M can

be identified as the S2 bundle over an S1-bundle over the moduli space of

elliptic K3 surfaces such that the fibre homology class is [L0]. The S2 fi-

bres corresponding to parametrization of special Lagrangian torus in a fixed

K3 surface. The later S1 fibres corresponding to the S1-family of special
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Lagrangian fibred K3 surfaces induced from hyperKähler rotation if given

elliptic K3 surfaces and their Kähler classes. Both the deformation of ellip-

tic K3 surfaces and its special Lagrangian submanifolds are unobstructed,

we know that M is a smooth manifold. The moduli space of elliptic K3

is complex thus admits a natural orientation. We use the right thumb rule

to determine the orientation of S1 fibres. The moduli space of special La-

grangian in side a fixed K3 surface has tangents spaced naturally identified

as H1(T 2) also admits a natural orientation from the orientation of special

Lagrangian T 2. Since M is locally product of above two moduli spaces, thus

is oriented. Given a charge γ ∈ H2(X0, L0) such that Ω̃(γ) 6= 0, there is a

submersion from a local chart U of M containing (X0, L0) to S1
ϑ,

Argγ = Arg(Zγ), where Zγ(X, L) =
∫

γ(X,L)

ωX + iImΩX

The fibre of Argγ over 0 ∈ S1 is denoted by NLγ can be viewed as analogue

of the Noether-Lefschetz divisor. Indeed, the central charge Zγ is holomor-

phic and regular from the from (2.14). Therefore, Argγ is regular by open

mapping theorem and NLγ is a locally a smooth manifold. We will call

them Noether-Lefschetz walls because they are codimension one submani-

folds. Since the phase S1
ϑ is viewed as the unit circle in the complex plane

and thus is naturally oriented, the Noether-Lefschetz walls NLγ are also

oriented.

Let φ : S1 → M be a smooth immersion and φ(S1) intersects NLγ

only finitely many times. Assume φ(t) ∈ NLγ . We may define the real
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Noether-Lefschetz numbers as follows:

NLφ,t
γ = φ(t− ε, t + ε) ·NLγ ,

where ε is a positive number small enough. Notice that each term in the

summation only achieves values either ±1 or 0.

7.2 Open Gromov-Witten Invariants on Calabi-Yau 3-Folds

with K3 Fibration

Let π : X → C be a Calabi-Yau 3-fold with K3 fibration. Let MX to be

those pairs appears in X. Let φ : S1 →MX such that L =
⋃

t Lt is a smooth

3-tori, where Lt is the projection of φ(t) to the second factor. The case when

L is not a 3-torus should followed similar argument and computation but

might with involved signs.

Proposition 7.1. With the notation above, L is a totally real submanifold

of X and the fibral relative class in H2(X, L) will have Maslov index zero.

Proof. Assume JTL ∩ TL 6= {0}. We may assume there are v1, v2 ∈ TLt

and v3, v4 ∈ TL and projects to non-zero vector on TC such that

J(v1 + v3) = v2 + v4 or Jv3 − v4 = v2 − Jv1.

However, the right hand side projects nonzero to TC while the left hand

side does not. The second statement follows directly from the fact that L is

fibred by special Lagrangian torus.

Since L has trivial tangent bundle we can associate it with the trivial
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spin structure. Although L is only totally real, we don’t have the notion of

symplectic area for general J-holomorphic discs. However, if we only restrict

to the vertical relative classes respect to the pair (X, L), the symplectic area

is still well-defined and Gromov compactness for pair (X, L) still holds. One

can construct of Kuranishi structure in [12], one has

Theorem 7.2. [12] Given a fibral class γ with ∂γ 6= 0, there exists Kuranishi

structure and perturbed multi-sections such that

∂M0,γ(X, L) = ∪
⋃

γ1+γ2=γ

(M1,γ1(X, L) ev0×ev0 M1,γ2(X, L))/Z2

the restriction of the Kuranishi structure and multi-sections on the left hand

side coincides with the fibre product of those from the right hand side.

Notice that γi are all of fibral class. Notice that the wall of marginal

stability discussed in previous chapters now become real codimension two

in M. Indeed, Wγ1,γ2 is the transverse intersection of NLγ1 and NLγ2 .

Therefore, given a totally real torus from a generic choice of φ the moduli

space of holomorphic discs M0,γ(X, L)≤λ with |Zγ | ≤ λ has no codimension

one boundary components, we can define the open Gromov-Witten invariant

associated to γ,

GW≤λ
γ (X, L) = Corr∗(M0,γ(X, L)≤λ; tri, tri)(1).

From the assumption and Proposition 4.1 [8], GWγ(X, L) is well-defined.

Remark 7.3. If L∩Xt = Lt then H2(Xt, Lt) ⊆ H2(X, L) and we can omit

the subindex ≤ λ.
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7.3 Comparison of the Invariants for K3 and Calabi-Yau 3-

Folds

The walls of marginal stability described in section 5 are codimension two

in MX . We assume φ(S1) is in generic position, namely,

1. φ(S1) avoids the walls of marginal stability of energy less than λ

2. φ(S1) intersect NLγ only finitely many times, for γ with energy less

than λ.

Then the two moduli space of disc M0,γ(Xt, Lt) and

Mt
0,γ(X, L) = {f : (D2, ∂D2) → (X, L) ∈M0,γ(X, L)|Im(f) ⊆ Lt}

for γ such that |Zγ | < λ, are the same as topological space and has no codi-

mension one boundary. In particular, the disc invariant for classes with en-

ergy less than λ on both K3 surfaces and Calabi-Yau 3-folds are well-defined.

We first assume that the image of φ intersect the Noether-Lefschetz wall

NLγ transversally. Then H0(f∗NXt/X , f∗NLt/L) ∼= R induces a nontrivial

element in H1(f ′∗TXt , f
′∗TLt). Moreover, we have the following commute

diagram:
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W 1,p(f∗NXt/X , f∗NLt/L)
D∂̄N // // Lp(f∗NXt/X ⊗ Λ0,1)

W 1,p(f∗TX, f∗TL)
D∂̄f //

OO

Lp(f∗X ⊗ Λ0,1)

OOOO

Ef? _oo

W 1,p(f ′∗TXt, f
′∗TLt)

D∂̄f ′ //

OO

Lp(f ′∗Xt ⊗ Λ0,1)
?Â

OO

Ef ′? _oo

RDf ∂̄Ṽ
?Â

OO

Remark 7.4. Using the long exact sequence associate to the middle two

column of above diagram and the fact that Xt ⊆ X is a complex submanifold,

we can choose Ef = Ef ′ as C vector spaces. We lose the weakly submersion

of M(X, L) → TL in the direction of TC but we can have the same perturbed

multi-sections. Notice that they have same automorphisms.

Notice that the Calabi-Yau condition of the total space implies the bun-

dle pair (f∗NXt/X , (∂f)∗NLt/L) is trivial and thus

H0(f∗NXt/X , f∗NLt/L) ∼= R.

Moreover, it admits a natural orientation coming from the orientation of

L and Lt. Assume V is an generator of H0(f∗NXt/X , f∗NLt/L) and Ṽ is

the unique lifting to W 1,p(f∗TX, f∗TL) with smallest L2-norm, then by

diagram chasing, we have

Df ∂̄Ṽ ∈ Lp(f ′∗Xt ⊗ Λ0,1)\ImDf ′ ∂̄.
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Similar to the construction in section 5, we consider the new linearized

Cauchy-Riemann equation

D∂̄new : W 1,p(f ′∗TXt, f
′∗TLt)× Rϑ → Lp(f ′∗Xt ⊗ Λ0,1)

(w, ϑ) 7−→ Df ′ ∂̄w + ϑDf ∂̄Ṽ

and one can construct a reduced Kuranishi structure on Mβ(Xt, Lt) de-

pending on the K3 fibration X → P1 similar to the proof of Theorem 5.17.

We may choose product metric around a tubular neighborhood of the

pair (Xt, Lt), then Xt ⊆ X is totally geodesic.

Lemma 7.5. The bounded inverses for linearized Cauchy-Riemann operator

Df ∂̄ and Df ′ ∂̄ can be chosen compatible in the sense that the following

diagram commute

Lp(f∗TX ⊗ Λ0,1)/Ef

Qf // W 1,p(f∗TX, f∗TL)

Lp(f ′∗TXt ⊗ Λ0,1)/Ef ′
Qf ′ //

?Â

OO

W 1,p(f ′∗TXt, f
′∗TLt)

?Â

OO
.

Therefore, when we run the Newton’s iteration constructing the Kuran-

ishi map we can make it compatible. To sum up, with very special choices,

the Kuranishi structure on M0,γ(Xt, Lt) and Mt
0,γ(X, L) can be chosen ex-

actly the same. Therefore, we have the following proposition of comparing

reduced open discs counting invariants on K3 surfaces (depending on the K3

fibration) and open discs counting on Calabi-Yau with K3 fibration.

Proposition 7.6. Let γ ∈ H2(Xt, Lt) ⊆ H2(X, L) be a fibral relative class,
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we have

GW≤λ
γ (X, L) =

∑

t:φ(t)∈NLγ

GWX,γ
red (Xt, Lt),

where

GWX,γ
red (Xt, Lt) = Corr∗(M0,γ(Xt, Lt); tri, tri)(1).

Next we want to compare the disc counting invariant defined in this

paper using the K3 fibration and the invariant defined in section 5 using

twistor space. We first have the following observation

Lemma 7.7. The image of the map in the above diagram

H0(D2, ∂D2; f∗NXt/X , f∗NLt/L) → H1(D2, ∂D2; f ′∗Xt, f
′∗Lt)

only depends on the extended Kodaira-Spencer class

dφ(Xt,Lt) ∈ T(Xt,Lt)M = H1(Xt, TXt)×H1(Lt)

but not depends on the actual K3 fibration X.

Assume there are two K3 fibration X and X ′ both contains a fibre biholo-

morphic to Xt. Let L (and L′) be totally real submanifolds in X (and X ′)

such that L ∩Xt = Lt (and L′ ∩Xt = Lt). Let V ∈ H0(f∗NXt/X , f∗NLt/L)

and V ′ ∈ H0(f∗NXt/X′ , NLt,L′) be the generator respectively. By replacing

V by tV + (1− t)V ′, one can construct a cobordism of Kuranishi structures

using two different K3 fibration. Thus, the invariant GW γ
redX

(Xt, Lt) now
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only depends on the extended Kodaira-Spencer class but not the actual K3

fibration.

Remark 7.8. Notice that in the construction of reduced Kuranishi structure

we use KJ(f, α), which is exactly gives the pull-back of Kodaira-Spencer class

of the twistor line to the disc and zero in the second factor in the extended

Kodaira-Spencer class.

Proof. From the the expression (28)

dJtα

dt
= (

1− t2

1 + t2
)′Jα − (

2t

1 + t2
)′Kα,

we know Kα is proportional to the projection of dJtα
dt to (0, 1)-part and thus

is a representative of Kodaira-Spencer class induced by the twistor line.

Next we want to show that the invariant is even independent of the gen-

eralized Kodaira-Spencer class (up to a sign). Indeed, given a K3 fibration

X and above data, one can perturb L (actually perturb φ) to achieve any

second factor (up to a sign)of the extended Kodaira-Spencer class such that

the moduli space of holomorphic discs with totally real boundary condition

has no boundary. Here the sign is given by NLφ,t
γ . By Theorem 6.1 [8],

Remark 7.8 and Corollary 5.48, we have the following conclusion:

Lemma 7.9. With the above notation, the two invariants coincide up to

sign, namely,

GWX,γ
red (Xt, Lt) = NLφ,t

γ · Ω̃Xt(γ, Lt),
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Together with Proposition 7.6, we finally connect the genus zero reduced

open Gromov-Witten on K3 surfaces and genus zero open Gromov-Witten

invariants on Calabi-Yau 3-folds with K3 fibrations:

Theorem 7.10. Let X is a Calabi-Yau 3-folds with K3 fibration. Let φ :

S1 →MX be an immersion such that

1. φ(S1) avoids the walls of marginal stability of energy less than λ

2. φ(S1) intersect NLγ only finitely many times, for γ with energy less

than λ.

then we have the the formula

GW≤λ
γ (X, L) =

∑

t:φ(t)∈NLγ

NLφ,t
γ · Ω̃Xt(γ, Lt)

Notice that here we don’t have to assume that φ(S1) intersect NLγ

transversally.

As a corollary of Theorem 7.10, the integrality conjecture 5.58 for the

reduced open Gromov-Witten invariants on K3 surfaces implies the inte-

grality Conjecture 8.2 [8] of open Gromov-Witten invariants on Calabi-Yau

3-folds.

Remark 7.11. Professor Vafa pointed out that similar work done for flat

C2 in [5].
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A Miscellaneous of Kuranishi Structures

This Appendix is a review of standard things of Kuranishi spaces we need in

this article. Except Proposition A.16 doesn’t appears in existing literature,

all the rest can be found in [7][12][13] with more details.

A.1 Kuranishi Structure and Good Coordinate

Definition A.1. (Kuranishi neighborhood) Let M be a Haudorff topological

space. A Kuranishi neighborhood of p ∈ M is a 5-tuple (Vp, Ep,Γp, ψp, sp)

such that

1. Vp is a smooth manifold (with corners) and Ep is a smooth vector

bundle over Vp.

2. Γp is a finite group acting on Ep → Vp.

3. sp is a Γp-invariant continuous section of Ep.

4. ψp : s−1(0) → M is continuous and induced homeomorphism between

s−1(0)/Γp and a neighborhood of p ∈ M .

For x ∈ Vp, we denote the isotropy subgroup at x by

(Γp)x = {γ ∈ Γp|γx = x}.

Let op ∈ Vp such that s(op) = 0 and ψp([op]) = p. We will assume op is fixed

by all elements of Γp and thus the unique point of Vp mapping to p via ψp.

Definition A.2. (Kuranishi structure) A Kuranishi structure on a Haus-

dorff topological space M is an assignment of Kuranishi neighborhood
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(Vp, Ep,Γp, sp, ψp) for each p ∈ M and a 4-tuple (Vpq, φ̂pq, φpq, hpq) to each

pair (p, q) where p ∈ M and q ∈ ψp(s−1
p (0)/Γp) satisfying:

1. Vpq is an open subset of Vq containing oq.

2. hpq is an injective homomorphism from Γq to Γp such that restricts to

an isomorphism (Γq)x → (Γp)φpq(x) for any x ∈ Vpq

3. φpq : Vpq → Vp is an hpq-equivariant embedding such that it descends

to injective map φ
pq

: Upq = Vpq/Γp → Uq = Vq/Γq.

4. φ̂pq : E|Vpq → Ep is an hpq-equivariant embedding of vector bundles

covering φpq.

5. φ̂pq ◦ sq = sp ◦ φpq

6. ψq = ψp ◦ φ
pq

on (s−1
q (0) ∩ Vpq)/Γq.

7. If r ∈ ψq(s−1
q ∩Vpq), then φ̂pq ◦ φ̂qr = φ̂pr in a neighborhood of ψ−1(0).

8. The virtual dimension dimVp − dimEp of the Kuranishi structure is

independent of p.

9. (Cocycle condition) If r ∈ ψq((Vpq ∩ s−1
q (0))/Γp), q ∈ ψp(s−1

p (0)/Γp),

then there exists γα
pqr ∈ Γp for each connected component (φ−1

qr (Vpq) ∩
Vqr ∩ Vpr)α of φ−1

qr (Vpq) ∩ Vqr ∩ Vpr such that

hpq ◦ hqr = γα
pqr · hpr · (γα

pqr)
−1,

φpq ◦ φqr = γα
pqr · φpr, φ̂pq ◦ φ̂qr = γα

pqr · φ̂pr.
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We call a Hausdorff topological space equipped with Kuranishi structure

a Kuranishi space.

Moreover, we will ask {Vα, Eα,Γα, sα, ψα|α ∈ U} is a good coordinate

system in the following sense: We have a partial order < on U, such that

α1 ≤ α2 or α2 ≤ α1 for α1, α2 ∈ U if

ψα1(s
−1
α1

(0)/Γα1) ∩ ψα2(s
−1
α2

(0)/Γα2) 6= Ø

Assume that α1 < α2, then we have an injective homomorphism hα1α2 :

Γα1 → Γα2 , Γα2-invariant open set Vα1α2 ⊆ Vα1 such that there is an

hα1α2-equivariant embedding of open set φα1α2 : Vα1α2 → Vα2 , and hα1α2-

equivariant bundle map φ̂α1α2 : Eα1 |Vα1α2
→ Eα2 cover φα1α2 such that

analogue of above 5,6,7 are satisfied (more details see [13]).

Remark A.3. [13] section 7 guarantees the existence of good coordinate for

any compact Kuranishi space.

Assume Xi = (V i, Ei,Γi, ψi, si) Kuranishi structure and fi : Xi → Yi

strongly continuous and weakly submersive. Let Y =
∏

Yi, W some man-

ifold with corners and f : W → Y a smooth map. We can construct a

Kuranishi structure on

Z =
∏

i

Xi ×Y W

by taking

V=

∏

i

V i ×Y W, E =
∏

i

Ei, Γ =
∏

i

Γi
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Since fi are submersions, V is a smooth manifold. It is easy to define s and

ψ in a natural way.

Definition A.4. (Fibre product Kuranishi structure) Let Xi have Kuranishi

structures. Let fi : Xi → Y to be strongly continuous and weakly submersive.

We define the Kurnishi structure on Z = X1 ×Y X2 by identify Z = (X1 ×
X2)×Y 2 Y , where Y → Y 2, y → (y, y).

A.2 Partition of Unity

Fix ε > 0 sufficiently small and χδ : R→ [0, 1] smooth function such that

χε(s) =





0, if s > ε

1, if s < ε
2

(42)

For each x ∈ Vα, we put

Ux,+ = {α+|x ∈ Vαα+ , α < α+}

Ux,− = {α−|[x mod Γα] ∈ Uε(Vα−α/Γα−), α− < α}.

For α− ∈ Ux,−, we take xα− ∈ NVα−αVα such that Exp(xα−) = x.

Definition A.5. A system {χα|α ∈ U} of Γα-equivariant smooth functions

χα : Vα → [0, 1] with compact support is a partition of unity subordinate to
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the given good (Kuranishi) coordinate if for each x ∈ Vα,

χα(x) +
∑

α−∈Ux,−

χε(‖ xα− ‖)χα−(Prα−α(xα−)) +
∑

α+∈Ux,+

χα+(φαα+(x)) = 1.

(43)

A.3 Multi-Sections and Compatible Perturbations

Let (Vα, Eα,Γα, sα, ψα) be a Kuranihis chart of M and x ∈ Vα. Set S l(Eα,x)

be the l-fold symmetric product of Eα,x. There is a natural map

tmm :S l(Eα,x) → S lm(Eα,x)

[a1, . . . , al] 7→ [a1, . . . , a1︸ ︷︷ ︸
m copies

, . . . , al, . . . , al︸ ︷︷ ︸
m copies

]

A smooth multi-section s of the orbibundle Eα → Vα is a set of data si,

such that si(x) ∈ S li(Eα,x) for an open cover {Uα,i} of Vα satisfying

1. Uα,i are Γα-invariant and si is Γα-equivariant.

2. If x ∈ Uα,i ∩ Uα,j , then

tmlj (si(x)) = tmli(sj(x)) ∈ S lilj (Eα,γx) (44)

3. There exists local smooth lifting s̃.

We identify two multi-section ({Ui}, {si}, {li}), ({U ′
i}, {s′i}, {l′i}) if

tmlj (si(x)) = tmli(s
′
j(x)) ∈ S lil

′
j (Eα,γx) on Ui ∩ U ′

j .
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To add up two multi-sections s(1), s(2) together, we first refine the associated

open cover if necessarily such that they coincides and same automorphism

on each open cover. Then we can define

+ : S l1(E)× S l2(E) −→ S l1l2(E)

([a1, · · · , al1 ], [b1, · · · , bl2 ]) 7→ [ai + bj : i = 1, · · · , l1, b = 1, · · · , l2]

It is easy to check that + is well-defined, associative and commutative. How-

ever, it only has monoid structure. Another thing worth notice is although

C0(M) acts on the sets of multi-sections, we don’t have (f + g)s = fs + gs,

for f, g ∈ C0(M)!

To make the integration along fibre well-defined, we introduce the aux-

iliary manifold Wα which is a finite dimensional smooth oriented manifold.

We consider the the pull-back bundle

π∗Eα → Wα × Vα

and the action of Γα acts on Wα is trivial.

Definition A.6. (perturbed multi-section)

1. A Wα-parametrized family sα of multi-section sα is a multi-section of

π∗Eα.

2. Fix a metric on the bundle E. We say sα is ε-closed to s if each branch

sα,i,j, we have

|sα,i,j(w, · · · )− sα(· · · )|C0 < ε
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in a neighborhood of x, for each (w, x) ∈ Wα × Vα.

3. sα is transverse to 0 if every branch sα,i,j is transverse to 0.

4. With above properties, fα|s−1
α (0) is a submersion if restriction to zero

locus of each branch is a submersion.

Lemma A.7. Assume fα : Vα → M is a submersion, then there exists Wα

such that for any ε there exists a Wα-parametrized family of multi-sections

sα satisfying:

1. sα is ε-closed to sα.

2. sα is transverse to zero section.

3. f |s−1
α (0) is a submersion.

4. sα(v, 0) = sα(0).

Moreover, if a given sα satisfies the condition on a neighborhood of Γα-

invariant compact subset in V , then we may extend it to Vα.

Proof. We first choose Wα to be a vector space with dimension large enough

such that

Surα : Wα × Vα → Eα

is a surjective bundle map (not necessarily Γα-equivariant). Set

s(1)
α (w, x) = Surα(w, x) + sα(x)

106



and

s(2)
α (w, x) = [γ1s

(1)
α (w, x), · · · , γgs

(1)
α (w, x)],

where Γα = {γ1, · · · , γg}. s
(2)
α defines a multisection on Wα × Vα which is

transverse to 0 because the extra dimension from the auxiliary Wα. Finally,
(
s
(2)
α

)−1(0) → Vα is submersive implies that f |
(s

(2)
α )−1(0)

is a submersion.

Theorem A.8. [12]There exists a system of multi-sections sk+1,β on

Mk+1,β(X, L) such that

1. They are transverse to 0.

2. ev0 induces submersion on the zero sets of sk+1,β.

3. The multi-section is preserved by cyclic permutations of boundary points.

4. The multi-section sk+1,β is the pull-back of the multi-section sk,β by

the forgetful map.

5. The restriction of multi-section to the boundary is compatible.

Remark A.9. We don’t need the geometry of the moduli space to construct

perturbed multi-sections but need the Kuranishi structure itself.

Remark A.10. We can take ev0 to be weakly submersive and by cyclic

symmetry each evi is weakly submersive. However, if we ask the choice of

multi-section is compatible with the forgetful map then the map (ev1, · · · , evk)

can not be weakly submersive anymore by trivial dimensional counting ar-

gument. However, ev0 is weakly submersive already can pullback differential

forms and define the de Rham model.
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Moreover, we want the family of multi-section sk,β satisfies the com-

patibility with respect to the good coordinate. Let α1 < α2: Choose an

Γα2-invariant metric on Vα2 and consider the exponential map

Expα1α2
: BεNα1α2Vα2 → Vα2

and denotes the image by Uε(Vα1α2/Γα1) ⊆ Vα2/Γα2 . We extend the orbi-

bundle Eα1 to Uε(Vα1α2/Γα1) by pullback of projection

PrVα1α2
: Uε(Vα1α2/Γ1) → Vα1α2/Γα1

and also extend the embedding Eα1 → φ̂∗α1α2
Eα2Eα2 to Uε(Vα1α2/Γα1). Fix

a Γα-invariant invariant inner product on Eα and we have a bundle isomor-

phism

Eα2
∼= Eα1 ⊕

φ̂∗α1α2
Eα2

Eα1

over Uε(Vα1α2/Γ1). One might need to use implicit function theorem and

tangent bundle to modify Prα1α2 such that

dsα2(ỹ mod TVα1) ≡ sα2(y) mod Eα1 ,

if y = Expα1α2
(ỹ) ∈ Uε(Vα1α2/Γα1).

Definition A.11. If α1 < α2, then sα2 is compatible with sα1 if for each
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y = Expα1,α2
(ỹ) ∈ Uε(Vα1α2/Γα1), we have

sα2(ỹ) = sα1(Pr(ỹ))⊕ dsα2(ỹ mod TVα1). (45)

via isomorphism Eα2
∼= Eα1 ⊕

φ∗α1α2
TVα2

TVα1
assuming the moduli space is ori-

ented.

A.4 Smooth Correspondence

Let M with Kuranishi structure (Vα, Eα,Γα, sα, ψα), fs : M→ Ns strongly

continuous and f t : M → Nt strongly continuous and weakly submersive.

Here we assume Ns, Nt are both smooth manifolds (might with boundaries

or corners). We will define smooth correspondence

Corr∗(M; fs, f t) : Λd(Ns) → Λd+dimNt−dimNs(Nt)

We first take a compatible continuous family of multi-sections sα = {sα,i,j |j =

1, · · · li} satisfies the lemma and s̃α,i,j is the local smooth lifting. Let ρ ∈
Λ(Ns). Consider a branch s̃α,i,j as a section of Eα over Uα,i × Wα. We

choose a volume form ωα on Wα with total mass 1 and support on an ε-

neighborhood of 0 ∈ Wα and partition of unity χi for open cover {Uα,i}i.

Then

1
#Γα

∑

i

li∑

j=1

(f t
α ◦ πα|s̃−1

α,i,j(0)
)!

1
li

(χiχα(fs
α)∗ρ ∧ ωα)|s̃−1

α,i,j(0)

defines the Uα,i part of the smooth correspondence Corr∗(M; fs, f t)(ρ) and

we use partition unity χα for summing various χα to glue them together.

109



Remark A.12. The definition of smooth correspondence Corr∗(M; fs, f t)

only depends on the Kuranishi structure (Vα, Eα,Γα, sα, ψα), the auxiliary

(Wα, ωα), the perturbation sα, fα but not depends on other choices.

Remark A.13. Although one may not be able to exclude the case Mβ has

infinitely many components. However, Corr∗(Mβ; tri, tri) is always finite.

Proposition A.14. (Stoke’s theorem)

d ◦ Corr∗(M; fs, f t)− Corr∗(M; fs, f t) ◦ d = Corr∗(∂M; fs, f t) (46)

Proposition A.15. (composition formula) Let ρi ∈ Λ(N i
s), i = 1, 2 with

the following diagram,

M = M1 ×M2

²²

// M1

f1,t

²²

f1,s
// N1

s

M2

f2,t

²²

// N2
s ×N1

t
// N1

t

N2
t

then we have

Corr∗(M; fs, f t)(ρ1 × ρ2)

=Corr∗(M2; f2,s, f2,t)(Corr∗(M1; f1,s, f1,t)(ρ1)× ρ2) (47)

At the end, we have an open analogue of divisor axiom though we never

use it.
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Proposition A.16. Assume β is primitive and L doesn’t fall on W ′
β. Let

ρ ∈ Λ1(L× S1
ϑ), dρ = 0, and forget : M1,β(X, L) →M0,β(X, L), then

Corr∗(M1,β(L); (ev0, evϑ), forget)(ρ) =
( ∫

∂β
ρ

)
·m−1,β(L)

Proof.

∫

L×S1
ϑ

m0,β ∧ ρ

=
∫

L×S1
ϑ

Corr∗(M1,β(L); tri, (ev0, evϑ))(1) ∧ ρ

=Corr∗(M1,β(L); (ev0, evϑ), tri)(ρ)

=Corr∗(M1,β(L); (ev0, evϑ), tri ◦ forget)(ρ)

=Corr∗(M0,β(L); id, tri)(Corr∗(M1,β(Lt); (ev0, evϑ), forget)(ρ))

=Corr∗(M0,β(L); tri, tri) ·
∫

∂β
ρ

=m−1,β ·
∫

∂β
ρ

The second equality is from the projection formula. The fourth equality is a

bit subtle. The smooth correspondence is originally defined only when the

target is a smooth manifold. However, the compatibility of forgetful map

guarantees the definition extends to this case.
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