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Abstract

Over the past decade, multiple function genomic datasets studying chromosomal aberrations and their downstream

implications on gene expression have accumulated across a variety of cancer types. With the majority being paired

copy number/gene expression profiles originating from the same patient groups, this time frame has also induced a

wealth of integrative attempts in hope that the concurrent analysis between both genomic structures will result in opti-

mized downstream results. Borrowing the concept, this dissertation presents a novel contribution to the development

of statistical methodology for integrating copy number and gene expression data for purposes of predicting treatment

response in multiple myeloma patients.

This dissertation is structured in three complimentary sections. The first reviews the methods currently available

for integrative purposes between gene expression and copy number data. Specifically this includes the conceptual

evolution of these workflows, approaches used amongst varying methods, endpoints targeted for downstream analy-

sis, and biological milestones achieved through such efforts. The focus here is to highlight the accomplishments and

potential areas for improvement. A key takeaway message is the lack of integrative attempts in the field of response

prediction.

The second section consequently introduces a new integrative approach for response prediction. This section is

furthermore split into two subsections where the first describes the motivation, intuition, theoretical developments, and

simulation/application results with respect to the proposal; while the second describes an extension to include copy

number data. Note that since the approach introduced in the initial subsection only utilizes the gene expression data,

it will therefore require the latter argument to complete its integrative design.

The final section then concludes the dissertation by discussing future steps in data integration and how these

innovations can potentially lead to more efficient and robust response prediction models.
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1 Gene Expression And Copy Number Integration
Gene Expression And Copy Number Integration

Chapter 1

This chapter reviews methodologies designed to integrate gene expression and

copy number data. The discussion entails the evolutionary development of these

methods, the different approaches used for integrative purposes, the targeted end-

points of downstream analysis, and various biological milestones/novel insights

achieved by these workflows.



1.1 Introduction

Human cancer genesis and progression are enabled by the aberrant function of regulatory genes that control aspects

of cell proliferation, apoptosis, genome stability, angiogenesis, invasion, and metastasis[1]. This dogma, well estab-

lished even before the advent of functional genomics, confers the crucial idea that recurrent genomic abnormalities

promote an underlying selection advantage by spanning across genes vital for tumor development and metastasis[2].

Amongst these abnormalities somatic copy number alteration (CNA) of oncogenes/tumor suppressor genes (TSG) and

their downstream implications on gene expression (dosage effect) have become key events pioneering the discovery

of many important biological results.

In particular the concept of dosage effect has been heavily used to identify regulatory genes located within re-

gions of focal or chromosomal level amplifications/deletions. Most notably amplified oncogenes include ERBB2[3],

MYC[4], CCND1[5], CAD[6, 7], BCR-ABL[8], and AR[9], while deleted TSGs include PTEN[10], CDKN2A[11],

RB1, BRCA1, BRCA2, PTPRJ, and TP53[12–15]. In addition research showing the consistency of CNAs in cancer

(average of 24 gains and 18 losses per tumor sample across 26 cancer types) has highlighted the importance of these

events[2] thereby making their discovery and functional assessment an essential process to elucidate cancer biology.

To assess these genomic changes and their downstream implications, the past decade has witnessed a dramatic

increase both CNA and gene expression (GE) based studies. In addition to the biological insights that have accompa-

nied their arrival, the influx of these new datasets1 has also captivated all researchers and analysts alike. In particular

the ones that contain both sources of genomic information in reference to the same samples have garnered the most

optimism and interest of all.

Specifically these ‘paired datasets’ are valued due to the anticipation behind ‘data integration’, or its subsequent

analysis. From a biological and analytical point of view, this workflow highlights a combined analysis between CN

and GE profiles such that it would: (1) Benefit any analysis due to its ability to assess more recurrent aberrations

1Most of these datasets are generated using high throughput microarray technology. From the perspective of GE,
the maturation process of these experiments has standardized the resulting output whereas numerous options still
exist to gather CNA information. For example, both array comparative genomic hybridization (aCGH) and single-
nucleotide polymorphism (SNP) microarrays can been used to obtain high-resolution information on CNAs[16, 17].
While SNP-arrays can also be used to detect allele-specific information (chromosomal loss of heterozygosity and
unipareitnal disomy), aCGH represents a more traditional karyotyping method reserved for CN purposes. The key,
however, is that both methods offer an alternative to conventional cytogenetic approaches in the study of cancer
related CNAs[18].
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and their corresponding dosage alterations[2]; (2) Increase the accuracy to differentiate between driver and passenger

alterations; and (3) Allow for optimal power and a reduction in false positives [19, 20]. With all these aforementioned

advantages, it should come as no surprise that they have accumulated an impressive degree of popularity and attention2.

Table 1: Condensed List Of Integrative Datasets

Cancer Type   Year   GE Information   CN Information   Samples   GEO Accession 

Kidney 2009 70; HG-U133A 159; Mapping250K_Sty 229 GSE14994 

Multiple Myeloma   2009   158; HG-U133A   45; Mapping50K_Xba240   203   GSE16122 

Lymphoma 2008 203; HG-U133_Plus_2 203; Custom 406 GSE11318 

Liver   2008   91; HG-U133_Plus_2   197; Mapping250K_Sty   288   GSE9829 

Leukemia 2008 81; HG-U133_Plus_2 
79; Mapping50K_Hind240; 
Mapping50K_Xba240 

160 GSE10792 

Sarcoma   2010   158; HG-U133A   415; Mapping250K_Sty   573   GSE21124 

Breast 2010 359; SWEGENE H_v2.1.1 55K 
359; 
SWEGENE_BAC_32K_Full; 
SWEGENE_BAC_33K_Full 

718 GSE22133 

Ovarian   2010   68; HuGene-1_0-st   72; GenomeWideSNP_6   140   GSE19539 

Lung 2011 100; HG-U133_Plus_2 101; Mapping250K_Nsp 201 GSE28582 

Lung   2011   49; Custom   271; Custom   320   GSE31800 

Oral 2011 79; HuEx-1_0-st (exon) 122; GenomeWideSNP_6 201 GSE25104 

Mesotheliomas   2011   53; HG-U133A   
53; Agilent-014693 Human 
Genome CGH Microarray 
244A 

  131   GSE29211 

Breast 2011 197; HG-U133_Plus_2 
173; Agilent-014693 Human 
Genome CGH Microarray 
244A 

370 GSE23720 

Multiple Myeloma   2011   304; HG-U133_Plus_2   
254; Agilent-014693 Human 
Genome CGH Microarray 
244A 

  558   GSE26863 

Multiple Myeloma   2010   258; HG-U133_Plus_2   
233; Mapping250K_Nsp; 
Mapping250K_Sty 

  491   GSE21349 

Paired datasets with CN and GE information, similar to the ones depicted here, are com-
monly found on public repositories such as the Gene Expression Omnibus (GEO). However
the paired samples (ones with both CN and GE information from the same patient) are usu-
ally only available on a fraction of the study population due to the difficulty associated
with their collection process. Note that in both the ‘GE Information’ and ‘CN Information’
columns, the first number represents the number of available samples.

With that being said the remainder of this chapter would be reserved for the discussion of integrative methods.

Since this concept would eventually see application for response prediction, it lays a robust foundation for the subse-

quent chapters presented in this thesis.

2This upside in integrating CNA and GE profiles is also reflected in large databases (The Cancer Genome Atlas
Project[21] and Gene Expression Omnibus[22]) as the storage and production of paired datasets has dramatically
increased during this past decade. A small selection of these datasets are provided in Table 1.

3



1.2 Quantitative Relationship Between CNA And GE In Different Cancer Types

With the apparent upside of these paired datasets firmly ingrained, their analysis falls into the hands of ‘integra-

tive techniques’. These methodologies take advantage of the biological links between CN and GE profiles in order

to strengthen the downstream analysis. Therefore to understand the methodological and theoretical developments of

these workflows, it starts with rationalizing this binding relationship.

As a simple and efficient summarization of the aforementioned link, numerous studies have attempted to quantify

CN and GE similarity through the use of correlations within stratified ‘blocks’ of altered regions. For example Pollack

et al.[23] stratified the CN data entries into five blocks: deletion, no change, and low-, medium-, high-amplifications

while Hyman et al.[24] stratified into two blocks: amplified and non-amplified. These arbitrary yet intuitive cutoffs

have yielded statistically significant block-wise correlations between the CN and GE data[23–30].

Specifically these studies have reported transcriptional changes for 10-63% of genes in amplified regions and

14-62% in deleted regions across a multitude of cancer types. Furthermore they have also shown that a relative

gain/loss in genomic content would increase/decrease the averaged expression levels across all genes in the implicated

regions[25, 28, 29]. In breast cancer for example, a 2-fold change in copy number (CN) was linked to a 1.5-fold

change in the averaged GE levels[23]. Ultimately the impact of CNAs on the averaged GE levels can be described

as a widespread phomena despite the fact that many genes within these altered regions are unrelated to the malignant

progression of the cancer.

In the context of individual genes however, these correlation trends will often cease to exist. For example in regions

of large gains, significantly downregulated genes can still be commonly found. This was particularly true in prostate

cancer as 14% of downregulated genes appeared within regions of amplification while 9% of upregulated genes ap-

peared in regions of deletion[25]. Furthermore even amongst chromosome arms amplified in its entirety, there could

still exist contiguous regions where genes are expressed at normal levels[25]. Since numerous regulatory mechanisms,

in addition to CNAs can all affect mRNA transcription, these caveats were expected to some degree. Nevertheless they

serve as a constant reminder of the limitations in CN and GE integration. Ultimately the analysis driven procedure

will only expose part of a complex biological picture.
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1.3 Classification Scheme For Integration Methods

Due to the sheer number of integrative methods developed over the past decade (see Table 2 for an example), the

critical analysis of these workflows starts with the classification of these seemingly unique efforts. For example upon

initial inspection, methods can be grouped into three distinct classes based on the interaction between their biological

and methodological complexity. First, there exists a group of ‘stepwise’ methods (discussion provided in Section 1.4)

that typically employ relatively simple techniques for the computation. Not surprisingly their endpoints will also be

more intuitive - i.e. trying to quantify the interaction between CN and GE on a global scale. Later developments of

these ‘stepwise’ methods will then take advantage of these previous formulations to target better defined endpoints -

i.e. clustering and gene searching. On the other hand there also exist a class of ‘joint’ methods that are computationally

more involved (discussion provided in Section 1.5). Although some of these methods still reference routine biological

endpoints, others can be more ambitious - i.e. survival and response prediction. A summarization of this initial

classification scheme can be seen in Figure 1.

Table 2: Condensed List Of Integrative Methods

Methodology Type Endpoints Statistical Tools Used 

Ace-it S Gene Targets (Dosage Effect) nPHT 

Berger et al. J Gene Targets (Dosage Effect) SVD; Gene Shaving 

Magellan S Exploratory Analysis; Clustering ES; nPHT; CA; GO 

SIGMA2 S; J Exploratory Analysis; Gene Targets (Correlation) ES; CA; PHT 

SODEGIR S Gene Targets (Correlation) Own Statistic; nPHT 

Schafer et al. S Gene Targets (Dosage Effect) CA; nPHT 

iCLUSTER J Clustering Latent Variable Model; VS 

Van Wieringen et al. S; J Gene Targets (CNA Induced DEG) Own Statistic; BF; nPHT 

Akavia et al. J Gene Targets (Drivers) BF; Networking 

remMap J Gene Targets (Correlation) RA; VS 

DR-Integrator J Gene Targets (Correlation) CA; PHT 

CNAmet S Gene Targets (Correlation) Own Statistic; nPHT 

A condensed list of available methods for CNA and GE integration. Integration type: S
(stepwise); J (joint). Statistical tools used: ES (exploratory statistics), PHT (parametric
hypothesis test), nPHT (non-parametric hypothesis test), CA (correlation analysis), RA (re-
gression analysis), GO (gene ontology), VS (variable selection), BF (bayesian framework);
SVD (singular value decomposition).

In addition to the previous categorization scheme, integrative methods can also be grouped in terms of their ob-

jective and structure (though somewhat similar to classification based on complexity). Generally speaking this second

classification scheme is based on the combination of integrative approach (‘stepwise logic’ or ‘joint logic’), and bio-

logical objective (gene/gene-set discovery, subtype classification, etc...).
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In the context of these biological endpoints, gene/gene-set discovery methods aim to identify candidate genes[19,

31], pathways[19, 32, 33], and regulators involved in tumorigenesis[34–37]. Thus they attempt to shed light on

tumor biology through the identification of prognostic and/or therapeutic related targets[38–41]. Subtype classification

methods on the other hand are usually designed to identify patient subgroups exhibiting similar genomic patterns.

Thus they attempt to improve disease course prediction by identifying groups with similar prognostic and response

to treatment properties[42–45]. A figure summarizing this second classification scheme can be seen in Figure 3 of

Section 1.5.

(A) 
Stepwise methods for 
exploratory purposes 

(B) 
Stepwise/ 

joint methods 
for well 
defined 

endpoints 

(C) 
Mostly joint 

methods 
aimed at 
modeling 

Figure 1: Complexity Of Methodology VS. Complexity In Biological Findings

Most integrative methods can be categorized into three distinct classes based on their bio-
logical and methodological complexity. (A) Initial stepwise methods designed to explore
the relationship between CN and GE employ relatively simple techniques to quantify this
interaction on a global scale. (B) Later methods will take advantage of this established rela-
tionship to search for important genes/genesets or conduct clustering analysis. (C) Finally,
there is also a class of joint methods that are mathematically involved. Though some may
still have well defined biological endpoints, others can be more ambitious (i.e. perturbed
pathways). It is important to note however that this classification schema isn’t absolute.

1.4 Simple Integration Schemes: Stepwise Integration Methods

The aforementioned ‘stepwise integration’ approach refers to a class of integrative techniques that structure their

analysis according to a biologically sound blueprint. These methods are typically defined by transforming an accepted

biological statement into a two-step procedure that together forms the analysis plan. Example statements include:
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‘CNAs (step 1) can result in differential GE (step 2)’, or, ‘concordant amplification (step 1) and overexpression (step

2) are tell-tale signs of oncogenes while deletion (step1) along with underexpression (step2) indicate TSGs’. In

both statements, the corresponding integrative method will first identify aberrant chromosome regions (step 1) before

combining results from a separate expression analysis (step 2) to arrive at the desired endpoints[24, 28, 30, 35, 38, 46,

47].
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Figure 2: Exploratory Integrative Example

The workflow introduced by Pollack et al. was applied to IFM-I dataset (introduced in
Section 5.2). As a result, the genome-wide effect of CNAs on expression levels was
explored in multiple myeloma. Since the code corresponding to the original method
was not provided, manual programming was required to replicate the workflow. The
results were then compared with the original paper to confirm the validity of the replication.

(Left Panel): Boxes indicate the 25th, 50th, and 75th percentile of mean-centered mRNA
fluorescence ratios (on log2 scale) for five classes of probesets stratified accordingly. The
five classes were heavy deletion (< 0.8), no change (0.8-1.2), low amplification (1.2-2.0),
medium amplification (2.0-3.0), and high amplification (>3.0). The red dot and bar indi-
cates the mean value and confidence interval (95%) within each group. (Medium Panel):
Distribution of correlations between CNA and GE profiles for all probesets genes across
282 MM samples. (Right Panel): Plot of observed versus expected correlation coefficients.
The expected values were obtained by randomly perturbing the sample labels in the CN
data set. The line of unity is indicated. In all three panels, the changes in CNA have a
large, pervasive, and direct effect on global expression patterns.

From an application point of view, these stepwise methods are generally used for exploratory purposes (i.e. quan-

tifying CNA and GE similarities on a global scale) and gene identification problems. In reference to the later endpoint,

these genes are in reference to the targets implicated in tumorgenesis process. For example ACE-it[48], a stepwise

method, identifies genes with concordant CNA/GE relationship. To do so the method initially stratifies all samples

into two groups based on CN gain or loss. Afterwards a one-sided Wilcoxen test will assess the degree of concordance

with the GE data. Schafer et al.[49] also designed a gene identification method for drivers behind disease progres-

sion. In their setup, externally centered correlations are used to assess the degree of concordance between CN and GE
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alterations before conclusions are drawn on the gene’s driver potential. Other similar methods include workflows by

Garraway et al.[50], Wolf et al.[28], and the Stepwise Linkage Analysis of Microarray (SLAMS) algorithm proposed

by Adler et al.[33] Through a similar deduction technique involving initial CN classification and later differential ex-

pression analysis, they uncovered novel cancer biomarkers and potential regulator genes respectively.

As seen in the setup of these previous examples, stepwise integrative workflows were produced by simply com-

bining the analysis techniques corresponding to the CN and GE data. Not surprisingly the simplicity associated with

such design popularized this through process resulting in an abundance of stepwise based methods. However despite

their popularity, these techniques are prone to drawbacks. First, since integrative methods require matched CN and GE

data at the gene level, added filtering, imputing, and averaging of features were required to account for probeset-loci

and resolution differences. While these steps have become conventional necessities for an analysis, they nevertheless

add noise to an already complex picture. Second, since many stepwise methods simplify their analysis by introducing

arbitrary stratification thresholds to the CN and GE data (call categories or calls), the optimality of the analysis is

consistently compromised. Especially in cases where simple calls were used in downstream analysis, results should

be taken with extra caution due to the call’s inability to account for cancer-related heterogeneity[51].

With the discussion of these stepwise based drawbacks, it is clear that the complexity associated with cancer cells

and their corresponding genomic representations will require specialized attention. Consequently oversimplification

should be avoided despite the findings that have been uncovered by these workflows; because in the long run, this

tradeoff between biological reality and computation feasibility would eventually catch up and undermine the quality

of endpoints that could otherwise be extracted.

1.5 Advanced Integration Schemes: Joint Integration Methods

Unlike stepwise methods where the analysis is split into two complementary parts, joint integration approaches

are defined by one encompassing workflow. This single analysis highlights the paired relationship between CN and

GE entries such that the two genomic sources are treated as a coherent dataset instead of separate structures that each

require their own attention.

Since joint integration methods draw conclusions based on the signals that will only emerge as a result of combin-

ing both levels of data, it should not come as a surprise that they consistently take advantage of computational tech-
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niques allowing for dual inputs. For example numerous groups have implemented correlation based approaches[19,

26, 52–54] and/or regression analysis[27, 55, 56] for a wide variety of biological endpoints. These could range from

simple exploratory figures to more complex models targeting response and survival prediction.

CN Data 

GE Data 

Joint Integration 

Joint Analysis 
Results 

CN Data GE Data 

Stepwise Integration 

CN Analysis Results GE Analysis Results 

Manual Integration 

Methodological Endpoints: 
(1) Gene/Geneset Discovery 

 (2) Tumor Subtype Classification 

Figure 3: Schematic Overview Of Methods

Integrative methodologies can be grouped based on their integration structure and biolog-
ical endpoints. Stepwise methods typically interrogate the CN data for regions of CNAs
before results from a subsequent GE analysis are manually combined to complete the inte-
grative procedure. Joint integration treats CN and GE as paired data entries. Thus only one
analysis is carried out in light of the pairing. Despite the contrasting approaches, most in-
tegrative methodologies arrive at the same biological endpoints of gene/geneset discovery
or tumor subtype classification.

As a result of emphasizing the binding relationship between CN and GE data, joint methods are generally more

comprehensive when compared to stepwise methods. While this improvement is desired from a biological point of

view, it however comes at a cost. Specifically, joint methods will often face challenges associated with high dimension-

ality and computation feasibility due to the need to simultaneously model both data types. For example the imbalance

between sample size and feature (number of genes), a problem native to all genomic analyses, will be exacerbated un-

der a joint setting since the added data type essentially doubles the number of features without increasing the sample
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size. Thus without a proper treatment of the infused high dimensionality, the burden of so many features can outweigh

the benefit of integrative analysis and lead to faulty inference.

To therefore deal with the high dimensionality, joint methods will typically resort to heavily regularization or data

reduction. For example Generalized Singular Value Decomposition (GSVD) is popular amongst joint methods due

to its added value of dimension reduction. This strategy was implemented by Berger et al.[57] to identify variation

patterns between CNA and GE inputs by iteratively projecting both data types onto different decomposition directions.

Additional details of their method can be seen in Table 4.

The use of data reduction can also be seen in correlation-based applications. In general correlations are a main

staple for joint integration since they effectively modeled two data types (CN and GE in this case) simultaneously.

However due to the aforementioned issues of high dimensionality, they can not be directly applied without modifi-

cation. For example Soneson et al.[58] employed Principal Components Analysis (PCA) to first achieve dimension

reduction before Canonical Correlations (CC) identified a set of highly correlation genes. Similarly Gonzalez et al.[59]

implemented regularized CC to explore the binding relationship between CN and GE. Their use of regularization was

also meant to target the high dimensionality of the analysis. Other methods implementing a similar strategy include:

The Significant Overlap of Differentially Expressed and Genomic Imbalanced Regions algorithm (SODEGIR)[60] and

the workflow introduced by Schafer et al.[49]. Additional details can be seen in Table 4.

An extension of these early correlation based methods was the concept introduced by Lee et al.[19] for purposes

of capturing ‘distant’ correlations. Normally joint methods based on correlations only emphasize the relationships at

the gene level. In other words, the computation is restricted to paired the CN and GE entries corresponding to each

gene. However since multiple genes can be coexpressed throughout the genome and similarly, multiple CNAs can

simultaneously occur at different locations[38], the previous limitation will restrict the ability to capture all interacting

CN/GE relationships - or essentially the distant relationships. Therefore to model this feature, Lee et al. proposed a

correlation analysis by allowing clusters of coexpressed genes to be associated with CNAs through the genome. By

implementing a bi-clustering algorithm on the observed CN/GE correlation matrix, the workflow was therefore capa-

ble of linking genes with significant correlations to the CNAs of other genes. In doing so, all significant relationships

between the CN and GE data regardless of their positioning in the genome could be identified.

While improvements such as the aforementioned ones prompted the growth of correlation based joint techniques,

there are still drawbacks in light of these efforts. First many of the correlation methods, designed to assess linear trends

(i.e. Pearson correlation), are unfortunately not the most practical or robust measures of dependency. For example
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since detectable correlations required data points to exhibit a certain degree of spread, the presence of clustering even

in the extreme regions will expose the inability of these methods to pick out the corresponding features. Furthermore

since the necessary linearity between the CN and GE profiles is hardly a guarantee, the relevance of these methods

can also be questioned. Second, since correlation methods model the complex within- and between-data relationships,

or essentially the gene-to-gene and CNA-to-GE correlation matrices, they are almost guaranteed to employ judicious

assumptions as a means to curb the high dimensionality involved with the modeling process. As a result the risk of

oversimplification, unreasonable inference, and faulty results can all be potential byproducts. And finally, despite the

ability of correlation based methods to target a wide variety of biological problems, their application is still limited to

unsupervised learning endpoints. Though not entirely a surprise, correlations resemble exploratory measures and are

therefore less suited for analyses structured by predefined targets and objectives.
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Figure 4: Correlation Integrative Example

CN and GE samples from 73 liver cancer patients (GSE11318) were analyzed using DR-
Integrator. Correlation methods similar to the one implemented here would typically iden-
tify a list of significantly correlated genes that could be used for downstream functional
analysis. In this case the returned genes were studied for a significant presence of TF tar-
gets. After adjusting for multiple hypothesis testing (FDR as indicated by the blue bound-
ary), the significantly enriched TFs were plotted and indicated in as blue points (with blue
labels). Note that of the 169 TFs analyzed, only 8 turned out to be significantly enriched
amongst the list of significantly correlated genes.
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To deal with supervised learning endpoints, joint integrative methods have typically turn to regression based tech-

niques. For example Shen et al.[42] introduced a latent variable regression approach for tumor subtype classifica-

tion/prediction. By modeling the subtypes as latent variables, inference was conducted by simultaneously capturing

genomic patterns that were: Strong and consistent across both data types (CNA and GE); Strong but specific to either

data type; Weak yet consistent across both data types. In particular the last genomic pattern targeted signals that will

only emerge as a result of integrative analysis[42]. Additional details of their method are provided in Table 4.

At the bottom line joint methods emphasize the representation of all genomic inputs as one complementary pic-

ture. And while this exemplifies a more comprehensive biological approach, it also adds strain to the computation and

modeling process (in comparison to stepwise methods). Consequently this raises questions regarding their purpose -

are they truly intended to discover novel biology or just another mathematical exercise? Because on one hand joint

methods despite their complexity, offer more reality while on the other, stepwise methods, while favoring intuition,

also run the risk of oversimplify an intricate biological system. This trade off can be seen in Figure 3.

1.6 Important Biological Findings From Integrative Analysis

In the past decade numerous biological novelties have come to light through the integrative work between CN and

GE profiles. Amongst these findings the majority of the success can be attributed to the identification of genes and

pathways altered during tumorigenesis. Specifically some of the notable findings for gene-related endpoints include:

• WHSC1L1 and TPX2 amplification in pancreatic ductal adenocarcinoma and nonsmall-cell lung cancer (Tonon

et al.[61]);

• MITF as a potential ‘lineage addiction’ oncogene necessary for cancer development and progression in a variety

of tissue types (Garraway et al.[50]);

• RUNX3 deletion in breast cancer (Chen et al.[62]);

• VEGFA overexpression resulting from 6p21 amplification in heptocellular carcinomas - the pioneering work in

oncogene activation via. noncell-autonomous mechanisms (Chiang et al.[44]);

• CSN5 and MYC as genetic regulators in breast cancer (Adler et al.[33]);

• NCOA2 as a nuclear receptor coactivating oncogene in prostate cancer (Taylor et al.[63]);

• NCSTN and SCRIB as potential drivers for heptocellular carcinoma progression (Woo et al.[37]);
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• TBC1D16 and RAB27A as potential drivers of melanoma (Akavia et al.[34]);

• Various genes (734 in total) from the lymphomagenesis, cell cycle, apoptosis, and DNA repair pathways as

differentially expressed and amplified/deleted in T-cell prolymphocytic leukemia (Durig et al.[64]).

And for pathway related endpoints:

• The abnormal regulation of protein trafficking contributing to proliferation in melanoma (Akavia et al.[34]);

• The amplification of 7p13 with significant correlation to the expression values of genes within the epidermal

growth factor signaling pathway for glioblastoma multiforme; deletion of chr 13q with NF-kB cascades in blad-

der cancer; and amplification of chr 11p with reck pathway in breast cancer (Lee et al.[19]).

In addition classification related endpoints have also witnessed a great deal of success. They include tumor subtype

classification and patient group identification (ones that exhibit similar survival and/or response traits). A selection of

these findings include:

• Classification of intestinal and diffuse subtypes of gastric cancer based on the immunopositivity of ERBB2 and

MUC1 (Myllykangas et al.[65]);

• Clustering of breast tumors into three subtypes based on (1) cell line differences, (2) concordant amplification

and overexpression of HER2/ERBB2 (also associated with poor survival), and (3) amplifications at the end of

chr 17q (Shen et al.[42]);

• Clustering of lung tumors into four subtypes based on (1) deletion of chr 8p and underexpression of EGFR and

DUSP4, (2) amplification of chr 12q, (3) degree of deletion of chr 8p, and (4) degree of mutation of EGFR

(Shen et al.[42]).

• Identification of poor prognostic group in breast cancer patients that exhibited additional resistant to preoperative

paclitaxel and 5-fluorouracil-doxorubicin-cyclophosphamide chemotherapy combination (Zhang et al.[41]);

• Identification of poor response group in ovarian carcinomas patients that exhibited amplification of chr 19q12

(containing CCNE1) and chr 20q11.22 to chr 20q13.12 (Etemadmoghadam et al.[40]).

To see the remainder of the biological results, refer to Tables 3 and 4 for the complete discussion. In particular

Table 4 details the integrative efforts that focused on methodological development while Table 3 features the experi-

mentally based counterparts.
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1.7 Guidelines For Using Existing Integrative Analysis Methods

When planning an integrative analysis (between CN and GE data), the appropriate choice of methodology usually

plays an integral part behind the quality control of the final results. Thus the dual task of identifying and filtering out

methods to obtain the ‘best’ technique becomes paramount for success. Amongst these two steps the first resembles a

shotgun approach where all qualifying methods are noted (an example provided in Tables 3 and 4 of Section 1.6) while

the later will then match personal assumptions and dataset characteristics 3 to the most optimal integrative method. It

is important to note that the final filtering step isn’t limited to the options mentioned here as additional constraints may

be included based on personal choice and preference.

Nevertheless the first step, as mentioned, is to generate a working list of methods corresponding to the desired

biological endpoint. Though this may seem daunting, it should be pointed out that since all endpoints can be grouped

into three families, only three lists theoretically exist. Therefore the initial task shouldn’t be overly taxing as it may

otherwise seem.

The endpoints can be grouped as follows: Exploratory analysis; Gene identification; and Clustering. First, ex-

ploratory methods (i.e. designed to infer the extent of CNA/GE relationship) are highlighted by the workflows of

Pollack et al.[23], Hyman et al.[24], Wolf et al.[28], etc... Therefore studies looking for similar biological conclusions

can mirror these workflows as methodological guidelines. In terms of the filtering step, since exploratory methods are

all relatively similar in construction, their performance shouldn’t waiver by much given that a signal is indeed present

in the data. Second, there exists another class of methods designed for gene identification. Thus studies targeting

individual genes/pathways deemed important due to dosage effect (SIGMA2[66], ACE-it[48]), correlation (DR-I[67],

SODEGIR[60], CNAmet[68], remap[69]), and CNA induced differential expression can all resort to these methods.

Note that while these examples consistently analyze downstream expression changes, their diverse assumption base

and construction process makes filtering nontrivial. Thus unlike the previous category, selecting an optimal gene iden-

tification method will require additional effort. Finally, the last class of methods are reserved for clustering purposes.

They specifically target endpoints related to the classification of tumor subtypes and clinical groups induced by CNAs

and differential GE. iCluster[42] for example, identifies tumor subtypes characterized by concordant CNAs and GE

changes while the workflow introduced by Garrayway et al.[50] reaches the same endpoint through the identification

of lineage-specific regulators. Again, filtering is required to select the most optimal method corresponding to the

3CNA and GE platforms, resolution, preprocessing methods, and final representations.
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properties of the dataset and goals set in the analysis.

1 2 3

8p

8q

1 2 3

8p

8q

Deletion Amplification UnderExp. OverExp.

Figure 5: Clustering Integrative Example

73 paired CN and GE samples from liver cancer patients (GSE11318) were classified ac-
cording to the hidden variable model proposed by Shen et al. The left heatmap indicates the
classification results from chromosome 8 imposed on the CN data while the right heatmap
indicates the same classification imposed on the GE data. Amongst the three inferred
groups, the first was generally classified by light amplification in 8q, the second by con-
cordant deletion/underexpression of 8p and amplification/overexpression in 8q, while the
third by minor underexpression of 8q.

Without doubt the selection of an optimal integration method will play a key role for any analysis. While the

aforementioned examples only represent a small fraction of potential methodologies corresponding to each endpoint,

it should be noted that the brevity here was only meant as a concise summary and should not be used in any application.

In practice, additional methods should be noted so that the potential of including the most suitable one is maximized.

In regards to the filtering step, since each dataset is unique, filtering is therefore a personalized procedure reserved for

the researcher. Consequently without a physical structure laying out its merits and guidelines, it is omitted from this

discussion.
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1.8 Discussion: Past

Integrative analysis between CN and GE profiles has been become a mainstream analysis approach due to the

potential of such workflow. In this past decade the persistence of numerous integrative efforts has helped advance

cancer biology and clinical care. After all when >15% of heritable variation in GE can be attributed to CNAs, it

clearly highlights the interlocking nature of both data structures[27]. And in light of such relationship the blueprint

for integrative creativity was paved out for all cancer types in general.

Integrative methods have contributed the most to the working knowledge of CNAs and their downstream impli-

cations in various cancer types. While incapable of revealing the complete story behind these genomic alternations,

their application to defined endpoints has exposed numerous consequences. For example a popular research avenue of

identifying the extent of CN and GE relationship has revealed that ∼ 60% of all genes exhibit differential expression

concordant to their CN status (suggesting a cis-dosage interaction between these two variables[55]). While depen-

dency summarizations similar to this one are ultimately just ballpark estimates that furthermore vary with cancer type

and methodological choice, they nevertheless reinforce the existence of a global correlation trend interlocking both

data structures together.

Exploratory analyses similar to the one previously mentioned, are popular due to the widespread implications that

usually accompany their results. These sweeping findings, while easy to generate methodologically, have provided

deep insight into transcription regulation from a CN point of view. For example the fact that increased expression

is a direct response of amplification suggested that most genes are not prone to auto-regulation as a result of dosage

compensation. This remains true despite the notion that most genes are incapable of completely overriding the tran-

scription regulatory mechanisms already in place. Another example was the potential role of widespread CNAs in

tumorigenesis[70, 71]. Due to the popularity of analyzing data from an individual gene level, alterations that oc-

cur on a larger scale are oftentimes taken with less thought and even ignored in many cases. Typical to aneuploidy,

these massive gains and/or losses are regularly treated as the byproducts of tumorigenesis from upstream events pro-

pelling cancer development - i.e. mutations, CNAs, or regulatory changes to individual targets. However widespread

CNAs and concomitant gene expression changes have been shown to disrupt critical stoichiometric relationships in

cell metabolism and physiology (i.e. proteosome mitotic spindle). Altogether these factors could promote further

chromosomal instability and as a result, contribute to tumor development and progression. From a clinical setting,

their impact can also be seen. Since a substantial portion of phenotypic individuality could be traced back to variations

in the underlying CNA, their analysis can potentially benefit cancer therapeutics designed to target these imbalances.

on a larger scale are oftentimes taken with less thought and even ignored in many cases. Typical to aneuploidy,
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these massive gains and/or losses are regularly treated as the byproducts of tumorigenesis from upstream events pro-

pelling cancer development - i.e. mutations, CNAs, or regulatory changes to individual targets. However widespread

CNAs and concomitant gene expression changes have been shown to disrupt critical stoichiometric relationships in

cell metabolism and physiology (i.e. proteosome mitotic spindle). Altogether these factors could promote further

chromosomal instability and as a result, contribute to tumor development and progression. From a clinical setting,

their impact can also be seen. Since a substantial portion of phenotypic individuality could be traced back to variations

in the underlying CNA, their analysis can potentially benefit cancer therapeutics designed to target these imbalances.

In regards to methodological development, integrative techniques have also undergone a gradual transformation

over the past decade. From the initial exploratory tools, most methods nowadays have become specialized procedures

in hope that the added focus will eventually lead to novel findings and results. In particular the specialization has paid

off for purposes of identifying individual genes and patient clusters. For example in the initial category, integration has

uncovered numerous targets of CNA, drivers, and subtype-specific genes all vital for tumor formation. For clustering

purposes, various analyses have also identified tumor subtypes and patient groups based on the differential clinical

characteristics. These may include patient survival and response to therapy measures.

In the near future the development of integrative methods still remains an exciting area of research. As newer data

types gather popularity amongst the bioinformatics community, it almost becomes a foregone conclusion that they will

eventually play a vital role in the next wave of integrative efforts. Whereas the majority of this current discussion was

devoted to published methods, the presented analysis will likewise benefit future integrative attempts as many of the

issues that cloud researchers today will most likely still persist as problems in tomorrow’s world. For example, (1) The

use of efficient dimension reduction will inevitably remain a stressing point due to the high dimensionality involved

with any genomic analysis (that is furthermore exacerbated in an integrative setting with added data types); (2) The

uncertainty associated with random dichotomizations of the CN data should be propagated in the downstream test

statistics or altogether substituted with call probabilities; (3) Prior to the integrative analysis, tumor subclasses should

be identified so to reduce tumor heterogeneity; (4) Indirect relationships (interactions between CNA and GE profiles

not restricted by physical location) should be accounted for despite the complexity associated with their formulation

and modeling process; (5) Gene interaction and regulatory network information should be used similar to a prior on a

more consistent basis; (6) Functional enrichment analysis and clinical information should be incorporated directly into

the inference process instead of being recognized as a postanalysis interpretation tool; and finally (7) Causal analysis

followed by experimental validation should be explored due to the lack of associations that link gene expression and

disease directly to a particular CNA.
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Together these guidelines and the influx of non-standard genomic data types should pave the way for the next

generation of integrative methods.

1.9 Discussion: Future

Without a doubt integrative methods have greatly advanced our understanding of cancer biology from a theoretical

and clinical point of view. However despite their accomplishments, the full potential of this workflow has only been

partially scratched leaving plenty of room for future developments.

From an analytical point of view for example, there has been surprisingly few cases where CNAs were explored

in reference to LOH and UPD. Similarly the role of chromosomal aneuploidy in cancer has also been avoided; though

to some extent the question marks surrounding these genomic abnormalities may have contribute to their own stigma.

After all when the origins and functions of these events can still be debated[72], their analysis is usually infused with an

overwhelming amount of instability. Because if one views aneuplodiy as the central initiator of tumor formation[73–

75], then the corresponding analysis would become polar opposites to another treating them as just the side effects of

deranged cell division cycles[76, 77]. As a result the positions taken with regards to these questions would largely

determine the analysis thus making them overly volatile for attraction. Finally, the area of predicting response to par-

ticular therapies (response prediction) has also witnessed few initiatives. Without question the majority of the blame

can fall on the complex nature intrinsic to this very problem. Specifically since it has been shown that response is

dictated by a variety of subtle mechanisms[78], the ability to do accurate prediction might be a foregone conclusion

given that many of the associated data types nowadays are incapable of measuring these delicate changes. To make

things even worse, binary classification problems often require sample sizes unattainable in genomic settings. Thus

not surprisingly these blunders increase the difficulty associated with this research topic ultimately leaving it with little

to no interest.

To answer these analytical questions it is obvious that the starting point involves the development of the next gener-

ation of integrative methods. And while a strict interpretation of the guidelines provided in this chapter can guarantee

the quality of these new formulations (in terms of efficiency and effectiveness), it will remain doubtful whether or

not future workflows can successfully translate into research based models (i.e. cancer aneuploidy or response pre-

diction). After all if the ability to solve a biological question is tangent to the design of the method, then assurance

from a methodological point of view becomes a futile attempt to salvage results. For example the statistical power,
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noise tolerance levels, and sample size requirements associated with these integrative methods are oftentimes unknown

due to the complex nature of genomic datasets. Nevertheless these tangential factors still possess an insurmountable

amount of influence on the ability of each method to reach its desired endpoint. Thus a research question (i.e. cancer

aneuploidy or response prediction) characterized by unattainable levels to these factors can simply be a lost cause.

Because regardless of methodological design, the endpoints are inherently out of reach.

In spite of all these considerations, the future of data integration still maintains a promising outlook. As additional

genomic data types gather popularity, new methodological designs will accompany their arrival and eventually lead to

the advent of cutting-edge biology. Next generation sequencing, epigenetic methylation, and histone modification for

example, are just a few of these notable resources that with maturation, can provide the desired panoramic view of the

underlying biology and consequently offer more compelling insights to cancer and its corresponding clinical care.
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2 Response Prediction Overview
Response Prediction Overview

Chapter 2

This section presents an overview of response prediction and the methods re-

quired for development for this thesis work. The discussion starts by introducing

response prediction and the difficulties associated with this research topic. The

bridge with data integration is also provided. Afterwards the guidelines to a new

modeling technique featured in this thesis will also be presented. As described, the

novelty only considers the GE data as Chapter 6 will then deal with its extension

to copy number profiles.



2.1 Introduction And Bridge With Data Integration

Cancer chemotherapy has witnessed a great deal of progress ever since the introduction of nitrogen musters and

folic acids in the 1940s. These earliest forms of drugs once administered to all individual patients have gradually

evolved into targeted therapies specifically tailored for each cancer type. As a result modern day cancer chemotherapy

has become a collection of preoperative treatment strategies administered on a cancer specific basis.

However despite the added dimension of specializing treatment, the response of individual tumors to various drugs

is still unfortunately, not uniform. In some patients the biological system is just more capable of adapting to the therapy

than in others, even when the tumor histologies are identical. As a result this poses a considerable clinical dilemma

because patients exhibiting the resistance quality can be spared exposure to radiation or DNA-damaging drugs and

instead, be referred to other treatment options to increase survival chances (i.e. primary surgery or dose-intensified

protocols). Thus the clinical challenge of identifying molecular markers predictive of response (or treatment toxicity)

becomes paramount in order to reduce the variability associated with current treatment strategies.

The identification of these cancer related markers, i.e. response predictors and signatures, has become an area of

research accumulating rapid growth and popularity. Due to the promise of precise, objective, and systematic classifica-

tion, the past decade has yielded a plethora of these tools ranging from endpoints in prognosis[1–6], survival[7–10], to

tumor subtype classification[11–15]. Recently DNA microarray-based gene expression profiling (GEP) has also been

introduced to this field due to its ability to simultaneously study the expression activity of multiple genes. Combined

with research showing that (1) GEPs of cancer cell lines correlate with drug activity[13, 16, 17]/radiosensitivity[18];

and (2) expression signatures predicting sensitivity to chemotherapeutic drugs in vitro can also be used as accurate

clinical markers for these drugs in vivo[19]; it shouldn’t come as a surprise that such technological advance has opened

up a window to identify the next generation of molecular signatures for therapeutic prediction.

To this day numerous efforts to develop these response markers have accumulated. Most notably they are high-

lighted by the applications to breast[20], esophageal[21], and colon cancer[22]. In these examples, gene expression

signatures indicative of response to pre- and post-operative chemotherapy were identified and subsequently formulated

into accurate prediction models. These efforts have reinforced the potential of microarray technology to serve as a base

for building prediction tools corresponding to any administered therapy.

With the keyword being ‘potential’ however, the promise of developing response signatures based entirely on GEP

is still a proposition despite all of the optimism and apprise garnered. The cause for this uncertainty can be better un-
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derstood from a biological point of view of. Specifically it has been well documented that response to any anticancer

agent is often the combined consequence of multiple mechanisms[23]. Since gene expression represents only one of

these influential factors, considering it all by itself will significantly diminish the chances of finding a useful signature.

Furthermore, in light that some predictive signals are inherently undetectable by gene expression profiling (i.e. subtle

mutations that do not cause resulting downstream chances in expression levels[23]), the overly naive idea of using

GEP alone becomes even more of a foregone conclusion.

As a result of these aforementioned reasons, GEP based response signatures have yet to deliver on their full po-

tential in spite of the successful applications mentioned earlier. In fact amongst the studies that have explored this

topic, the greater majority have noted the inability of expression data to effectively model response[24–26]4. While

the echoed skepticism is indeed troubling, the construct of this thesis tends to think otherwise. From a more optimistic

point of view, the lack of concrete ideas in response prediction implies an abundance of room for additional research.

As a welcoming attraction, this will offer a greater opportunity to easily explore novelties that may be harder to come

by elsewhere.

With that being said, since the initial portion of this thesis was devoted to data integration, a way to explore both

ideas simultaneously is to model response from an integrative point of view. In additional to the practical consid-

erations of doing so, the proposal also makes sense for a variety of analytical reasons (i.e. many of the problems

facing response prediction can potentially be solved by data integration). First, since data integration has been shown

to strengthen downstream analysis[27], the apparent uncertainty associated with GEP based response models can be

potentially alleviated upon its implementation. Second, since a multitude of genomic mechanisms can all dictate

response[23], integrative analysis will therefore enable a combined input resulting in a more complete predictive plat-

form. Third, as a consequence of the second point, the combined input from various genomic sources will override

the need to model each data type independently and thus only require one encompassing analysis. And finally, since

relatively few studies have explored response prediction using integrative techniques, the idea will also represent a

novel contribution in comparison to the efforts that already exist.

4Studies conducted by this group, despite applications on the same cancer types and drugs, have claimed that GEP is
simply incapable of consistently predicting treatment outcome. To make things even worse, many of the so claimed
successful signatures, despite the accuracy attested in the initial tumor study, were never validated on subsequent
datasets to confirm the predictive power as claimed. Due to these mixed results, it remains unclear whether such an
approach can effectively handle response prediction problems in general.
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2.2 Outlining SCIRP

To develop a new response prediction tool predicated on data integration, the inadequacy with current methods

was initially analyzed. In doing so these persistent shortcomings can hopefully be avoided and as a result, benefit the

diagnostic potential and clinical relevance of the new technique. With that being said, the limitations corresponding

to current signatures can be roughly grouped into two categories based on their origin. First, there are deficiencies

that surfaced due to inherent properties of the data. And second, there are also pitfalls resulting from the incorrect

analytical decisions committed from a methodological standpoint.

From a data perspective, the inability of GEP to consistently predict treatment response has been well documented

(in Section 2.1). Since the expression data alone is insufficient for prediction purposes, the idea of incorporating ad-

ditional sources of genomic information becomes the best solution. However when the majority of response-based

studies are limited to expression data and occasionally CN profiles, this solution becomes impractical. Thus the re-

stricted access to additional datatypes hinders the freedom to include any input base. Therefore to benefit all studies

equally, added data types will need to be: (1) Complimentary to existing CN or GE profiles and (2) Available without

additional work. Only by following these guidelines will the resulting method be highly applicable regardless of the

rigid data structures in place.

Amongst the available sources of genomic information, biological pathways available through online databases

(KEGG[28], Biocarta[29], Reactome[30], NCI[31], etc...) represented an interesting option. From a practical point of

view, they are a free source of validated information readily available for use. While this is more of a methodologi-

cal requirement, their true advantage is seen biologically. Because based on previous studies, generating expression

signatures from pathways that potentially affected how a cell responds to a drug has shown promising results[23].

Thus this indicates that tumor responsiveness probably doens’t just depend on the expression levels of one or a few

genes. Instead, methods that allow comprehensive interrogation of genetic pathways probably hold greater promise to

deliver the desired signatures. As a consequence of the groupwise treatment of genes within pathways, it automatically

warrants their inclusion. The only question that remains is how to complement them with the existing GE profiles; all

which will be answered in Chapter 3 when the full details of the method are introduced.

Switching to the methodological standpoint, there are also numerous factors that can inhibit the performance of

GEP based response signatures. For example methods that required unattainable sample sizes, unreasonable signal
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to noise ratios, and questionable preprocessing techniques can all limit the information extracted from the data5. Not

surprisingly the idea of predicting response based on insufficient information will only exacerbate an already difficult

task. Complementary to these requirement-based-drawbacks are the poor decisions that together shape the existing

workflow. Specifically incorrect assumptions placed on the data and misguided approaches towards the problem all

act like counterfactuals that will only work outside the confines of true biology6. While they nevertheless structure an

analysis, their erroneous nature also nixes the ability to tease out any useful signatures.

To address these shortcomings, the developed technique in this thesis work will approach response prediction as

a series of pieced together solutions. First, in response to the requirement-based-drawbacks, heavy regularization will

be used so that all features, regardless of the sample size, can participate in the modeling process. Due to the subse-

quent benefit of avoiding dimension reduction, the need for preprocessing techniques is therefore omitted. Second, by

implementing a structure that accommodates multiple assumptions and approaches towards the problem (i.e. predic-

tion based on means, correlations, and additional frameworks manually specified by the user), a versatile yet robust

assumption base was used to handle the underlying biology. In doing so a more realistic modeling approach was

adopted. By resolving some of the proposed limitations, the hope is that improvements can be seen in the resulting

applications.

With the overall goals of the method in place, the remaining work sifts to its mathematical setup. Specifically

the workflow needs to accommodate the aforementioned suggestions through a joint integrative scheme designed to

analyze both data types (GE profiles and network/pathway information). While the full discussion of this process is

withheld until Chapter 3, a small preview is presented here. Some of these details include:

• 2D graphs will be used to represent the biological networks and pathways. Furthermore, they also serve as the

final data structures corresponding to each individual.

5Regression based techniques may run the risk of unattainable sample sizes for example. Since the number of features
(genes) will most definitely outweigh the number of samples, constructing a saturated model becomes a foregone
conclusion. As a result, variations of regression based techniques have often turned to dimension reduction. First a
filter is applied. Afterwards, the regression framework will be introduced on the filtered list. This second workflow,
while avoiding issues with sample size requirements, is also not free from drawbacks either. Specifically, the filters
used to reduce the number of initial features are classic examples of questionable preprocessing techniques required
to run the method. While they are sound from a mathematical point of view, they are ultimately just ad-hoc techniques
for simplifying a complex biological phenomenon for modeling purposes.

6An example approach towards the problem is prediction based on the mean values of input features - i.e. Regression,
K-means, etc... While this approach isn’t necessarily incorrect, the extreme confidence placed its ability to correctly
classify patients is still questionable. After all, what if means aren’t the best classifying choice?
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• The GE profiles will be infused with the 2D graphs.

• Support vector machine[32] (SVM) will serve as the methodological base.

Note: While the physical setup of SVM will remain the same, the primary computation involving the kernel

function[33] (kernel) will represent innovations presented in this thesis. This unique derivation will conse-

quently permit the specification of additional assumptions and approaches towards the problem all under the

presence of non-standard inputs (2D graphs).

• Modeling will be based on both mean- and correlation-based signals. Each approach would be coded by the

setup of their 2D graphs and kernel function.

While the ideas presented here are just meant as a prelude to the methodological discussion, it should be evident that

the developed response predictor would somehow incorporate SVM, classification based on correlations/means, and

2D graphs all into one logical workflow. As a result the reference used in conjunction to the method would be: ‘SVM

for Complete Integrative Response Prediction’ (SCRIP).

Since SVM and the idea of positive definite kernels will play a key role in the methodological development of

SCRIP, the remainder of this chapter will therefore be reserved for their discussion.

2.3 Support Vector Machine

SVM was developed as a machine learning framework for purposes of supervised binary classification. This pop-

ular tool was initially proposed in the 1990s from the statistical learning theory introduced by Vapnik et al.[34] Their

close connection with positive definite kernels[35] (kernel functions; kernels) should not come as a surprise as these

concepts have become central players in a variety of learning tasks.

Currently applications of SVM can be seen in a variety of fields including multimedia information retrieval[36],

pattern recognition[37], and bioinformatics[38]. While this thesis only calls upon its binary classification analogue to

model GEP and pathway information, extensions to multiclass classification[39], regression[40], and density estimation[41]

also exist. However due to the aforementioned task at hand, the focus here will be to introduce SVM as a linear discrim-

inant function for purposes of binary classification. For a complete presentation of this algorithm, other references[33]

are recommended.
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2.3.1 Linear Classification

The introduction of SVM starts with the C-classification[42] method reserved for binary prediction. In this classi-

fier, assume that the training instances (two classes in total) are linearly separable. Section 2.3.2 would then relax this

requirement.

Formally, given a set of l training objects (i.e. gene expression vectors) {x1, . . . ,xl} ∈ X and their corresponding

binary labels (i.e. no-response or response) {y1, . . . ,yl} ∈ {−1,1}, SVM produces a classifier f : X→{−1,1} capable

of predicting the class labels of new data instances x ∈X. As mentioned in Section 2.2, since the data inputs of SCRIP

will correspond to graphs (representing GE profiles and network/pathway information), the input space X will therefore

reference the graph space G (the set of all possible labeled graphs) during the application process. For this discussion

however, assume that X is the Eculidian space Rp. Hence the training objects will then reference p-dimensional

vectors.

(1) (2) 

Figure 6: Maximizing Separating Boundary

Assuming that the two classes of points are linearly separable as depicted in (1) and (2),
SVM would select the hyperplane that maximizes the distance between the superimposed
margins (as denoted by the dotted lines above and below the physical boundary). In the toy
example, SVM would therefore default to (1) since it exhibits a wider margin in comparison
to (2).

In this vector space, SVM defines a classifier based on the observed interactions between the data points. Conse-

quently this would be formalized as a hyperplane wT x+b = 0, where w ∈ Rp and b ∈ R. Note that since the training

vectors are assumed to be linearly separable, there will always exist some (w∗,b∗) ∈ (Rp×R) (which correspond

correspond to a hyperplane) satisfying:

yi
(
wT
∗ xi +b∗

)
≥ 0 ∀ i ∈ {1, . . . , l} (1)
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As a result a decision function corresponding to a new vector x can be based on the sign of the corresponding linear

function:

f (x) = sign
(
wT
∗ x+b∗

)
(2)

Geometrically, the chosen hyperplane wT
∗ x+ b∗ = 0 separates the vector space Rp into two half halves such that

the positive and negative training vectors each lie on distinct sides. However due to the separable assumption, there

will exist and infinite number of hyperplanes satisfying the condition (or essentially an infinite number of (w∗,b∗)

pairs that satisfy such condition). As a result SVM will select the hyperplane exhibiting the largest distance between

the closest data vector(s) from both classes. This basic rule translates into maximizing the hyperplane margin - a

hypothetical distance between two superimposed hyperplanes above and below the original one: wT
∗ x+ b∗ = 1 and

wT
∗ x+b∗ =−1 respectively. An illustration of this concept can be seen in Figure 6.

Since the thickness of the margin7 corresponding to any hyperplane wT x+b = 0 can be expressed as 2/
(√

wT w
)

,

the optimization process to arrive at the most optimal hyperplane can be expressed in the following minimization

(primal form):

min
w,b

1
2

wT w

subject to yi
(
wT xi +b

)
≥ 1

i = 1, · · · , l (3)

Note that in this primal form, maximizing the margin is equivalent to minimizing the objective function in Equation 38.

The inequality constraints are there to guarantee a hyperplane that correctly classifies all training points. Instances that

satisfy the equality however are called the support vectors since they are located on one of the two superimposed

hyperplanes and metaphorically ‘support’ the margin (hence the name).

Ultimately, the convex optimization problem in Equation 3 (with a quadratic criterion and linear constraint) usually

gets rewritten in a dual formulation since standard quadratic programming techniques can then be applied to the new

representation. To therefore arrive at the dual form, Lagrange multipliers[43] are used to re-expressed the problem in

an equivalent maximization on ααα (derivation provided in Section 2.3.4):

7This margin is in reference to the one generated by superimposing two additional hyperplanes, one above and one
below the original one.

8Minimize the denominator in order to maximize the entire fraction. Furthermore, since the square root function within
the denominator is an increasing function, it can be removed from the optimization procedure.
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min
ααα

1
2

ααα
T Qααα− eT

ααα

subject to αi ≥ 0

yT
ααα = 0

i = 1, · · · , l (4)

where Qi j = yiy jxT
i x j; e = {1, · · · ,1}T .

By solving Equation 4, the solution to the dual problem (α̂αα = {α̂1, . . . , α̂l}) will have a unique correspondence

with the solution (ŵ) of the primal problem (Equation 3). This relationship can be expressed as follows:

ŵ =
l

∑
i=1

α̂iyixi (5)

By plugging the result from Equation 5 into the linear decision function from Equation 2, the resulting decision

function ( f̂ ) based on the most optimal separating hyperplane (ŵT x+ b̂ = 0) is defined as follows:

f̂ (x) = sign
(
ŵT x+ b̂

)
= sign

[ l

∑
i=1

α̂iyixi

]T

x+ b̂


= sign

(
l

∑
i=1

α̂iyixi
T x+ b̂

)
(6)

2.3.2 Linear Classification With Soft Margin

Since the basic C-classification method is only valid for linearly separable data, it becomes too restrictive in many

real life applications. Therefore to relax the later part of this assumption (to account for linearly inseparable), a slight

modification to the optimization process (primal and dual forms) is required. This is achieved by introducing the

concept of a ‘soft margin[44]’.

The idea of a soft margin allows mislabeled vectors to still be classified. This extension is necessary since a

hyperplane capable of splitting all training examples will no longer exist under this scenario. As a result the soft

margin method will resort to the hyperplane that conducts a split as cleanly as possible - while still maximizing the

distance to the nearest cleanly split examples. In order to carry out this optimization, the primal and dual forms are

relaxed using slack variables ξi, which measure the degree of misclassification of each training vector xi. In particular,

the primal problem introduced in Equation 3 will be modified as follows (modifications are highlighted in red):
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min
w,ξξξ ,b

1
2

wT w+C
l

∑
i=1

ξi

subject to yi
(
wT xi +b

)
≥ 1−ξi

0≤ ξi

i = 1, · · · , l (7)

, where the introduction of C is used to control the trade off between training errors and rigid margins. In other words,

increasing the value of C will force a more accurate model (better training error) that may unfortunately not generalize

well. The corresponding modification to the dual problem is as follows (modifications are highlighted in red):

min
ααα

1
2

ααα
T Qααα− eT

ααα

subject to 0≤ αi ≤C

yT
ααα = 0

i = 1, · · · , l (8)

where Qi j = yiy jxT
i x j; e = {1, · · · ,1}T .

Note that even though a modified version of the dual problem (Equation 8) is solved, the relationship specified in

Equation 5 will still hold. Furthermore since the linear decision function remains the same, Equation 6 will also hold.

2.3.3 Kernel Classification With Soft Margin

Even though the previous formulation of SVM allows for misclassification, it is still too restrictive since linear

classifiers (optimal hyperplane in the original feature space) resemble the only options available to train the data. To

therefore relax this final assumption, SVM uses a ‘kernel function’ so that generalized decision surfaces can be ob-

tained.

A kernel function effectively enables training vectors to be mapped into higher dimensions where hyperplanes can

again facilitate as the separator. While this concept would seem similar to the previous formalization, the distinction

lies in the mapping and its ability to re-represent a linear boundary in the altered space as a nonlinear one in the

original. Due to this concept, it omits the need to fit nonlinear curves to the training data which will consequently

require drastic changes to the existing optimization theory. Instead only slight modifications to the training data will

be required. Specifically the requirements are the map Φ and its corresponding mapped space H :

Φ : Rp→H

x→Φ(x) (9)
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In reference to both of these components, H usually carries additional significance since it defines the mapping

function used in conjunction to the alternative space. Therefore in an application framework it represents the only

piece that requires specification. And in particular since few restrictions are placed on its form, it is logically easy to

understand despite the complications associated with its actual implementation.

Figure 7: Nonlinear Boundaries

In certain cases, a linear boundary would no longer conduct the most optimal classification.
Therefore the flexibility to impose a non-linear boundary becomes a necessary option in
order to guarantee the efficacy associated with the classifier.

Nevertheless the only requirement concerning H is the presence of a legitimate inner product. In other words H

needs to be a Hilbert space[45] so that Φ(x)T Φ(x′) exists for any two vectors x, x′ defined in Rp. And in practice since

the data will only be used in reference to this formulation, which coincidentally also defines H , it therefore becomes

sufficient to construct the inner product as a means to satisfy all conditions. This sufficiency can be summarized as the

kernel trick[46]:

k(x,x′) = Φ(x)T
Φ(x′) ∀ x,x′ ∈ Rp (10)

where k(x,x′) references the kernel function.

Since a classical result states that any function k : Rp×Rp→R can be plugged into SVM given its symmetry and

positive definiteness, the corresponding changes involving soft margins (Equation 7) will be as follows (modifications

are highlighted in red):

min
w,ξξξ ,b

1
2

wT w+C
l

∑
i=1

ξi

subject to yi
(
wT

Φ(xi)+b
)
≥ 1−ξi

0≤ ξi

i = 1, · · · , l (11)
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And the changes to the corresponding dual problem will be as follows (modifications are highlighted in red):

min
ααα

1
2

ααα
T Qααα− eT

ααα

subject to 0≤ αi ≤C

yT
ααα = 0

i = 1, · · · , l (12)

where Qi j = yiy jΦ(xi)
T Φ(x j) = yiy jk(xi,x j); e = {1, · · · ,1}T .

By solving Equation 12, the optimal solution (α̂αα) will have the following relationship with the optimal solution

(ŵ) from Equation 11:

ŵ =
l

∑
i=1

α̂iyiΦ(xi) (13)

The resulting non-linear decision function will then become:

f̂ (x) = sign

(
l

∑
i=1

α̂iyik(xi,x)+ b̂

)
(14)

2.3.4 Linear Classification Primal To Dual

The dual representations of SVM, in reference to the primal and dual problems from Sections 2.3.1 to 2.3.3, were

introduced for the sole purpose of computation. Since the optimization procedure described in these problems can

potentially involve high dimensions, SVM takes advantage of the kernel trick and its dual formulation to avoid these

issues.

In the linear classification case for example, the constrained quadratic problem (Equation 3 of Section 2.3.1) has

a dimension size of p+ 1 (w ∈ Rp and b ∈ R). In this primal setup optimization is therefore only guaranteed under

a small p, i.e. ≤ 103. For larger values of p the curse of dimensionality takes over making outright optimization an

impractical option. Fortunately due to the Kuhn-Tucker theorem[47] and the corresponding convexity associated with

Equation 3, Lagrange multipliers can be used to transform the above problem into its equivalent dual form. Under this

new formulation the variables are subjected to looser constraints and thus optimization, regardless of the dimension-

ality of the primal setup, becomes feasible.

In the remainder of this discussion, the derivation for the dual problem is provided. Although this particular

derivation is restricted to a linear classifier, the same logic can be extended to account for the soft margin and/or kernel
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function. However due to the lengthy arguments required, only the first example is shown. In particular, to transform

Equation 3:

min
w,b

1
2

wT w

subject to yi
(
wT xi +b

)
≥ 1

i = 1, · · · , l

, from Section 2.3.1 into its corresponding dual form, the first step is to compute the associated Lagrange function (ααα

corresponds to the Lagrange multipliers):

L(w,b,ααα) =
1
2

wT w−
l

∑
i=1

αi
(
yi
(
wT xi +b

)
−1
)

=
1
2

wT w−
l

∑
i=1

αi
(
yiwT xi−1

)
−b

l

∑
i=1

αiyi (15)

In the framework of this particular optimization problem, strong duality[48] holds. Thus the dual form is obtained

by:

Dual Form = max
ααα≥0

(
min
w,b

L(w,b,ααα)

)
(16)

To solve Equation 16, the first step will be to simplify the entire expression by consider the inner minimization by

itself. Thus for some fixed ααα the minimization becomes:

min
w,b

L(w,b,ααα) =

 −∞ if ∑
l
i=1 αiyi 6= 0

f uckyouall
minw

{ 1
2 wT w−∑

l
i=1 αi

(
yiwT xi−1

)}
if ∑

l
i=1 αiyi = 0

 (17)

Since b is unrestricted the first condition follows by setting b =±∞ when ∑αiyi 6= 0. Thus depending on the sign of

the summation, the minimization is automatically achieved at−∞ regardless of w. When ∑αiyi = 0, the minimization

occurs when:

d
dw

(
1
2

wT w−
l

∑
i=1

αi
(
yiwT xi−1

))
= 0

⇒ ŵ =
l

∑
i=1

αiyixi (18)

Thus the second condition in Equation 17 becomes:
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min
w

{
1
2

wT w−
l

∑
i=1

αi
(
yiwT xi−1

)}
=

1
2

ŵT ŵ−
l

∑
i=1

αi
(
yiŵT xi−1

)
=

1
2

ŵT ŵ− ŵT

[
l

∑
i=1

αi (yixi)

]
+

l

∑
i=1

αi

=
1
2

ŵT ŵ− ŵT ŵ+
l

∑
i=1

αi

=
l

∑
i=1

αi−
1
2

[
l

∑
i=1

αiyixi

]T [ l

∑
j=1

α jy jx j

]

=
l

∑
i=1

αi−
1
2

l

∑
i, j

αiα jyiy jxT
i x j (19)

By plugging the result from Equation 19 into Equation 17, the original maximization in Equation 16 becomes:

max
ααα≥0

(
min
w,b

L(w,b,ααα)

)
=


maxααα≥0(−∞) if ∑

l
i=1 αiyi 6= 0

f uckyouall
maxααα≥0

(
∑

l
i=1 αi− 1

2 ∑
l
i, j αiα jyiy jxT

i x j
)

if ∑
l
i=1 αiyi = 0

 (20)

Since the final goal is to perform maximization over ααα , −∞ is definitely not the answer. As a result the dual form

defaults to the second condition from Equation 20. In this formulation, ∑αiyi = 0 subsequently becomes the constraint.
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Methodological Development Of SCRIP

Chapter 3

This chapter details the methodological development of ‘SVM for Complete

Integrative Response Prediction’ (SCRIP). The discussion starts with its motiva-

tion and reference to SVM. Afterwards the workflow and mathematical details

will be presented. The later part of this discussion will include a thorough in-

terpretation of the graph structures involved, kernel computation, preprocessing

techniques of ‘overall graphs’, and merge process between GE/pathway informa-

tion. Again, as constructed, SCRIP will only utilize the GE data. Chapter 6 deals

with its expansion to CN data.



3.1 Introduction

‘SVM for Complete Integrative Response Prediction’ (SCRIP) is developed as an integrative tool for response

prediction. Its design is predicated on the shortcomings of current methods many of which are outlined in Section 2.2.

By resolving some of these issues, improvements in predictive reliability and accuracy can hopefully be achieved.

From an integrative point of view, SCRIP merges pathway information with the standard GE data. The selection of

such data type (pathway information), as opposed to any other source of genomic information, is a revelation coming

from two different angles. First, since response is dictated by a variety of mechanisms[1], adding in an additional layer

of covariates only helps to solidify the predictive platform. In comparison to other sources of genomic information,

pathways are the ideal since they allowed gene relationships to be interrogated at a group level[2]. Hence a more

comprehensive gene-based treatment (that still improves the predictive platform) will be automatically adopted upon

their inclusion. Second, since response based studies are often restricted to GE profiles, the integrated data type must

therefore be available without additional experimental work or else the practicality and relevance of the developed

method will be compromised. Thus while other genomic sources better suited for response prediction exist, the infre-

quency at which they appear makes their inclusion an implausible proposition. On the other hand since pathways can

be easily accessed through online databases, designating them as the integrated target becomes an obvious choice.

With the inclusion of pathway information, SCRIP then looked to adopt a flexibility methodological base under

which: (1) Data integration is feasible; and (2) Multiple assumptions and approaches towards classification are al-

lowed. In no particular order of satisfying these requirements, the theory of positive definite kernels[3] and support

vector machines[4] (SVM) was called upon to alleviate these issues.

In particular SVM serves as an ideal methodological base since it can easily generalize to nonvectorial spaces9.

With respect to the aforementioned requirements, this property has resounding consequences. First, it allows straight-

forward extension of linear SVM (Section 2.3.1) to a nonlinear setting without loosing the advantages inherent to the

original formulation (unicity of the solution, robustness to overfitting, etc...). And second, given that the corresponding

kernel can be defined, it enables application to nonvectorial data without being restricted by a predetermined approach.

9The nonvectorial space, say the set of all 2D graph structures, will then need to be embedded into a vector space
through some mapping function. Afterwards, linear SVM can be applied to the training points since a kernel function
is defined. These concepts refer to the ‘Kernel Classification With Soft Margin’ ideas introduced in Section 2.3.3.
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These properties consequently infuse SVM with the required flexibility10 without loss of robustness or practicality.

To demonstrate the proposed flexibility, consider response signatures predicated on the means of expression val-

ues. In this standard approach each response group is assumed to follow a unique expression pattern amongst a set

of genes. Under the validity of this biological hypothesis, classification implies using expression vectors as the data

representations and subsequently an inner product defined between these vectors as the kernel function (regular dot

product, polynomial ,or radial-basis kernel). As a result SVM metaphorically compares the expression values through

the designated kernel to thereby generate a prediction model. Upon completion the designated approach is automati-

cally carried out through the specification of these two parameters.

Not surprisingly SCRIP will also take advantage of this aforementioned flexibility to implement its unique ap-

proach. Starting with the biological hypothesis, it assumes that each response group is dictated by a unique ‘correla-

tion and mean’ based signature. Consequently the combined pairwise correlation patterns between genes along with

their physical expression values will be used for modeling; An innovation that while foreign to response prediction,

has witnessed success in other statistical frameworks thus suggesting merit for their combination[5]. And finally on

top of this, pathways will be integrated into the workflow to accompany the gene expression data. The details on the

approach and integration step will be discussed in Section 3.2.2.

In reference to the corresponding methodological setup, the implementation of the approach boils down to the

kernel function. While this discussion is postponed until Section 3.6, SCRIP will ultimately employ labeled graphs as

the data representations so that the ideas of correlations, means, and pathways can all be seamlessly merged together.

Here these graphs will receive the following notation: Vertices represent genes; Edges represent correlation-based

relationships derived from the physical gene expression values. As a result of this representation, an inner product

defined between labeled graphs would be required for the analysis, comparison, and classification of such data struc-

tures. This naturally brings up the concept of ‘graph kernels[6]’.

In particular, a variety of graph kernels have been proposed during this past decade. Amongst them the approach

involving vectoral mappings of the input graphs has become the mainstream formulation[7]. Graph similarity as at-

tested in these methods is simply defined as the dot product between the corresponding vectors. Consequently the

construction of these kernels will solely rest on the mapping used. With SCRIP, the implemented kernel function will

10Allows analysis according to multiple assumptions and non-standard data input.
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feature a map using ‘walks’ as the comparison base[6]. In reference to this mapping, the corresponding elements of

the vector will then designate the number of times a predetermined walk can be performed. Thus the resulting dot

product between such vectors will evaluate graph similarity based on these shared pairwise features. Additional details

on these concepts will be presented later in Sections 3.6.1 and 3.6.3.

In conclusion, SCRIP presents an alternative approach for response prediction that attempts to alleviate some of

the current deficiencies. First, instead of mimicking traditional classification techniques predicated on means, SCRIP

also emphasized pairwise correlation patterns. And second, by integrating pathway information into the computational

workflow, the inability of GE to completely predict response can be partially accounted for. By implementing the ex-

panded approach, the hope is that a desired signature can finally be obtained.

In the remainder of this chapter, a complete discussion of the methodological development behind SCRIP will be

provided. Here the novelties, workflow, graph details, kernel construction, and merge process inherent to SCRIP will

be presented. Subsequent chapters will then deal with the simulation and application process.

3.2 Workflow Of SCRIP

SCRIP adopts a biological hypothesis that associates a unique correlation and mean based signature with a re-

sponse group. Here the ‘mean’ part of the signature refers to the classical approach of classification based on the

physical expression values[8]. Since this idea has been thoroughly explored, the following workflow along with the

methodological discussion (Sections 3.2 to 3.6) will be heavily tailored to the correlation part of the design. The

subsequent discussion of the overall graph, individual graph, merge method, and kernel will also represent novelties

introduced on its behalf.

3.2.1 Workflow For Mean

The mean part of SCRIP was adopted from the classical approach of model fitting. First, the initial list of input

features (genes) will be filtered[9] based on a predefined criterion11. Afterwards this filtered list will then be used

11The filtering process can be defined in a variety of ways depending on the preference of the user. Variance and mean
filters are commonly used. In this thesis, filters based on the overall graph are also considered. Here the overall
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for training purposes. Since the training conducted here is predicated on means, the setup within SVM will involve

vectors as data representations and a corresponding kernel to compute their inner product[10] (i.e. Linear, polynomial,

or radial basis kernel). Once this entire procedure is carried out, predictions were subsequently obtained. The combi-

nation of these results with the correlation output will then form the final predictions of SCRIP.

3.2.2 Workflow For Correlation

In reference to the correlation part of the signature, SCRIP will use ‘correlation’ and ‘co-expression’ (between

a gene pair) interchangeably. The differentiation is only made for purposes of explanation as correlations are better

suited with the computation while co-expressions have greater appeal in the context of biology. At the end of the day

however, by defining co-expression as two genes exhibiting similar expression values, they referred to the same con-

cepts. Thus a high (positive) correlation (ρ ≥ 0.8) between two genes will indicate the presence of the co-expression

relationship and a low correlation (|ρ| ≤ 0.05) will indicate otherwise.

With the proposed setup, a toy example of these co-expression signatures can be seen in (1) of Figure 8. Here

the response specific co-expression signatures are portrayed as graphs where the nodes represent the genes and the

(present/absent) edges represent (existence/absence of) co-expression relationship. For example the response group

co-expression signature is indicated by the co-expression (or high correlation) between genes A-B and B-C. Similarly

the non-response group co-expression signature is indicated by genes A-B and B-D. These unique co-expression

signatures will be referred to as the ‘response specific graphs’ (RSG).

While the idea of RSGs effectively summarized the co-expression relationships unique to each group, they are

unfortunately just abstractions of the underlying biology and therefore hidden. Nevertheless while access to each

RSG is off limits, SCRIP assumes that their combined information is embedded within the concept of an ‘overall

graph’ (OG). Here OGs are defined similar to a biological prior that pinpoints a set of gene pairs whose co-expression

patterns can directly impact response. In other words the OG reveals all ‘important’ gene pairs without identifying

their response specific configurations. Thus in this context an ‘important’ gene pair indicates the possibility that the

co-expression status (co-expressed vs. not co-expressed) can be different between responders and non-responders. A

complete discussion of the OG will be presented in Section 3.3 and the toy example corresponding to the previously

mentioned RSGs is shown in (2) of Figure 8.

graph acts like a biological prior that designates a group of interesting genes through the nodes.
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Figure 8: Workflow Of Correlation Signature

The OG pinpoints all informative co-expression relationships but doesn’t reveal their
unique configuration within each response group. Thus for any linked gene pair, there
exists the possibility that the status (co-expression exists vs. absent) is different between
responders and non-responders. The merge method therefore examines all linked gene
pairs within an individual and for each given instance, assigns probabilistic membership
information. The membership information will then be processed by SVM to complete the
algorithm.
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Since the make-up of an OG closely resembles a treasure map that locates all potentially important gene pairs,

deciding on what constitutes as a candidate OG(s) therefore becomes a free choice. While this privilege increases the

flexibility associated with SCRIP, it however comes at a cost. On one hand, while any type of gene-map involving

edges and nodes can qualify, the questionable effectiveness of these seemingly arbitrary designations becomes an ob-

stacle for the analysis12. Thus while it is easy to designate OGs, the true difficulty becomes verifying its ability to

capture response specific co-expression patterns.

Nevertheless assuming that this previous point can be resolved and that a candidate OG can be selected, SCRIP

will then ‘merge ((4) of Figure 8)’ the expression data ((3) of Figure 8) with this prior to arrive at the individual graphs

(IG) ((5) of Figure 8). Briefly IGs are meant as a reflection of an individual’s ‘membership status’ with respect to the

important gene pairs. Since a gene pair is assumed to follow a mixture of two bivariate distributions (H - high correla-

tion; L - low correlation), membership status therefore corresponds to a probabilistic label (P(from H) or P(from L))

indicating the likelihood of H as the generator (to the given observation pair). If the truth is H, as attested by a link

in the RSG, then the collective membership status amongst these individual should be higher in comparison to the

group where the truth is L. It is exactly due to this reasoning that an effective OG (one which contains the differential

information as depicted in Figure 8) can produce membership statuses that are consistent within each response group

yet different across. Consequently such mixture of consistency and conflict will then enable classification predicated

on these signals. Additional details on the IGs and merge will be presented later in Sections 3.4 and 3.5.

Returning back to the workflow, once the IGs are obtained, SCRIP will then define a (graph) kernel so that the

analysis of such representations becomes possible. Due to the complimentary nature of kernels and support vector ma-

chines (SVM), SCRIP will ultimately generate the correlation part of the prediction model by ushering into the avenue

opened by SVM ((6) in Figure 8). Additional details on the kernel construction will be presented later in Section 3.6.

SCRIP differs from classical approaches since response prediction is predicated on co-expression- and mean-based

12From a methodological standpoint, SCRIP will require at least one effective OG so that classification based on co-
expression is feasible. While such requirement may place an extreme amount of pressure behind the formulation of
these priors, it is offset by no restriction that caps their starting number. In other words, as long as the starting batch
of OGs contains an effective one, SCRIP should theoretically produce a desirable classifier. In regards to the actual
application, an informed shotgun approach is used to generate this initial batch. Specifically, pathways/networks
from online databases (KEGG, BioCarta, Reactome, and NCI) are assembled and then screened by iteratively ap-
plying SCRIP to each input. Afterwards, the selected subset will be used to construct the final model. An in dept
discussion regarding this process will be presented later in Chapter 5.
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patterns. By introducing networks and pathways into the computation, it also takes advantage of a biologically sound

weighing scheme that naturally integrated into the SVM algorithm.

3.3 Overall Graphs

The overall graph (OG) resembles a biological prior that pinpoints a set of important gene pairs whose co-

expression relationships play an important role in determining response. Here an important gene pair indicates the

possibility that the co-expression status (present or absent) can be different amongst responders and non-responders.

Following the presentation in this current chapter, this particular set of gene pairs can also be called the ‘designated

gene pairs’ as indicated by edges in the OG.

A distinctive property of the OGs is their ‘inclusive’ yet ‘non-revealing’ nature. In other words they are inclusive

since all important co-expression relationships are noted and non-revealing since the exact configuration (co-expressed

or not co-expressed) within each response group is hidden. As a result of such relationship, there exists the possibility

that a designated gene pair will exhibit the same co-expression status amongst responders and non-responders alike.

In this case the designated gene pair is ‘non-informative13’. With such setup, designation therefore only confirms

the possibility of a differential co-expression status. By all means it isn’t an indicative statement that validates the

difference. However in the event that they are (co-expressed in one group and absent in the other), then the designated

gene pair becomes ‘informative’. Thus all informative gene pairs will have opposite co-expression statuses and can

therefore be used to differentiate between the response groups.

SCRIP will assume that an ‘effective’ OG pinpoints AT LEAST ONE informative gene pair amongst the set of

designated ones. An effective OG therefore enables classification based on its signals.

13A missing edge between two genes ALWAYS implies that the co-expression status for that particular gene pair is
the same regardless of response group. In those cases the gene pair is also considered non-informative. While non-
informative gene pairs may still be biologically relevant, their impact on response is assumed to be minimal under
the working hypothesis and hence are omitted from consideration.
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Figure 9: Edges Of The Overall Graph

A designated gene pair (1) within the OG implies the possibility that the correlation status
amongst the responders and non-responders would be different. Thus a scenario similar to
the blue box highlighted in yellow could happen. However in the other case where the gene
pair isn’t designated (2), then the correlation status amongst responders and non-responders
would be consistent.

3.4 Individual Graphs

While the overall graph (OG) pinpoints a set of important gene pairs, each individual graph (IG) reflects the

‘membership status’ of a given individual with respect to this information. Here the membership status is constructed

as a direct consequence of the assumptions placed behind these features. Specifically for a given gene pair (X ,Y ),

whose expression levels are assumed to follow some distribution, the following properties were adopted:

• In the population where all individuals come from, (X ,Y ) follows a mixture of two bivariate distributions:

H: High correlated bivariate distribution;

L: Low correlated bivariate distribution;

The mixing proportion of H and L are p1 : p2 respectively. They can be 0:1 or 1:0.

• An instance from the high correlated distribution implies (X ,Y )∼H.

Thus (X ,Y ) will have a co-expression relationship present in a subset of individuals (proportion of p1 of all

individuals).

• An instance from the low correlated distribution implies (X ,Y )∼ L.
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Thus (X ,Y ) will have no co-expression relationship present in a subset of individuals (proportion of p2 of all

individuals).

• Given an observation from any gene pair, only ONE of H or L can generated it.

0.75

0.75

0.25

Individual Graph

(1)

H; High Correlation

(2)

L; Low Correlation

(3)

Figure 10: Visualization Of Individual Graphs

All links in the IG (1) are associated with probabilities representing the likelihood that H,
high correlated distribution (2), generated the corresponding expression pair for that indi-
vidual. This probability is a conjugate to the likelihood that L, low correlated distribution
(3), generated it. Highlighted link: the individual’s observed expression for that highlighted
gene pair is more likely from H (75% confidence) than from L (25% confidence).

From these assumptions, the membership status corresponding to each gene pair observation (x,y) is defined as

a probabilistic label indicating the likelihood of H as the generator. In other words it represents an assignment14 of

the individual’s underlying distribution with respect to that gene pair. Thus edges associated with higher probabilities

(higher membership status) will indicate greater confidence in H as the underlying distribution for the expression in-

stance; while lower probabilities will indicate L. Note that the calculated membership status is a conjugate to L since

only one of H or L could have generated (x,y).

Collectively an individual’s membership status corresponding to all of the designated gene pairs will form their IG.

SCRIP hypothesizes that individuals within the same response group will exhibit similar IGs and hence a particular

14These assignments are based on probabilities.
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configuration of membership statuses15. By taking advantage of these similarities, SCRIP will then be able to assign

the most likely response label corresponding to a new individual through a comparison of these features.

3.5 Merge Method

With the full discussion of the overall graph (OG) and individual graph (IG) in place, the merge method then

bridges these concepts with the GE data. In particular it will use the OG and corresponding vector of expression

values to guide the computation of each IG.

As a reminder, links in the IG correspond to probabilistic membership labels for that particular gene pair. Since

these pairwise observations can only be an instance from a high (H) or low (L) correlated distribution, membership

status therefore defines the likelihood of the underlying generator amongst these two potential targets. As the com-

putation process behind this decision, the merge method will initially calculate the probability associated with either

choice: p((x,y) from H) and p((x,y) from L) where (x,y) represents the observation. Afterwards p((x,y) from H)

will be coupled with the edge. To help facilitate this computation, additional assumptions were adopted:

• In the population where all individuals come from, the expression values for each gene follows a normal distri-

bution;

• In the population where all individuals come from, the expression values for each gene pair follows a mixture

of two bivariate normal distributions:

H: High correlated standardized16 bivariate normal with correlation coefficient ρ = 0.85;

L: Low correlated standardized bivariate normal with correlation coefficient ρ = 0.05;

The mixing proportion of H and L are p1 : p2 respectively. They can be 0:1 or 1:0.

To obtain the complete membership information (or the entire IG), first consider the case when inference is re-

stricted to only one gene pair from a particular individual. In this example, the merge method will initially calculate

the probability that this observation (x,y) comes from H and L respectively. Since these probabilities reflect the likeli-

ness of either distribution as the generator, they can be used to construct the membership status assigned to each link.

15This follows from the differential RSGs.

16The standardized bivariate normal takes σ1 = σ2 = 1 and µ1 = µ2 = 0
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Specifically, SCRIP will create these labels through a comparison of the likelihoods previously computed. The idea

here is simple; whichever likelihood is larger should ideally highlight the generator. Thus:

• p((x,y) from H) = p((x,y)|H)
p((x,y)|H)+p((x,y)|L)

• p((x,y) from L) = p((x,y)|L)
p((x,y)|H)+p((x,y)|L)

Fortunately this formulation of the membership matches the aforementioned objective. If (x,y) is indeed an instance

of H, then p((x,y) from H) will be larger than p((x,y) from L) in a majority of such observations. Likewise if the

expression pair is an instance of L, then p((x,y) from L) will be larger.
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Figure 11: Intuition Behind Merge Process

Heatmap represents the likelihood ratio between a high (ρ = 0.85; H) and low (ρ = 0.05; L)
correlated bivariate normal. The Cartesian plane depicts combinations of expression values
and their corresponding probabilistic label (membership information) calculated from the
merge. Red: point is more likely from L. Blue: point is more likely from H. Dotted ovals:
CDF contour lines for L (red ovals) and H (blue ovals) (i.e. 50% of all points from H lie
within the inner blue oval).

To finally obtain the entire IG17 corresponding the individual’s expression vector, the described merge method will

17Also the complete membership information.
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be repeatedly applied to each designated gene pair in the OG. Therefore at the end of this process, the IG will support

the same configuration of edges and nodes as the OG. The only difference however will be the added membership

statuses corresponding to each edge.

3.6 Kernel Construction

Before introducing the kernel used in reference to the individual graphs (IG), a secondary interpretation of the

edges and associated probabilities will be necessary so that entire design can account for their presence. While pre-

viously defined in terms of membership status 18 for a particular gene pair, they will be reevaluated as ‘existence

probabilities’ for the link itself. Given the alternative name, it shouldn’t come as a surprise that they will now indicate

the likelihood of a particular edge existing.

While this new interpretation may seem dramatically different compared to the previous realization, membership

and existence are actually analogous to each other upon closer inspection. The overlap occurs since edges (in the

IG) are defined to reflect how likely a high correlated distribution (H) generated the observations. In other words

the presence of an edge will imply H as the generator (at high probability) and vice-versa19. Thus a high probability

will indicate more confidence in the presence of the edge while a lower probability will indicate otherwise - a direct

correspondence between (p((x,y) from H) and p((x,y) from L)) and (p(link exists) and p(link doesn’t exists)).

With this new definition in place, the rest of the kernel discussion will be centered around this idea. This will

ensure the applicability and validity of the resulting development.

3.6.1 Random Walk Base

SCRIP implements a type of ‘walk kernel’ to compute the inner product between two IGs on an infinite dimen-

sional feature space. These kernels are characterized by transforming each featured graph into a ‘walk count vector’

before using a simple dot product to finalize the computation. Here the elements in the count vector correspond to the

18The probability that the observed gene pair comes from a high correlated distribution H.

19A lower probability will indicate that the edge doesn’t exist and most likely isn’t an observation from H.

55



number of times each unique labeled walk (from the graph) can be traversed. Since this set can be infinite in the case

of cyclic and undirected graphs (i.e. traversing could never end), count vectors and their corresponding feature spaces

can also be infinite dimensional.

However in order to explicitly construct the count vector, some walk kernels will select a few representative walks

so that the dimensions are kept finite[11]. As a result the selection can simply limit walks past a certain length or

more intelligently, leave out infrequent and/or tottering walks from the given graph[12]. On the other hand kernels

that choose to tackle infinite dimensions will have to implement a weighting scheme corresponding to each walk since

convergence becomes an issue otherwise (the summation as a result of taking the inner product between count vectors

needs to converge).

In terms of SCRIP, the latter version of these walk kernels based on infinite dimensions was adopted. Specifically

the setup resembles a ‘random walk’ function[13]20 where Markov probabilities[14]21 reflective of the aforementioned

existence probabilities are used as the assigned weights. With that being said however, its implementation will be de-

rived using the definition of a ‘marginalized kernel[15]’. While this will initially differ from an inner product, these

two concepts are actually analogous to each other as the final result can be re-expressed as a dot product weighted

accordingly.

Nevertheless to introduce the derivation, the concept of labeled graphs and their reference to IGs will be required

and hence are presented first.

3.6.2 Labeled Graphs

The IGs from SCRIP represent labeled graphs comprised of vertices and single edges (directed or undirected). If

G is a labeled graph under this setup (with |G| vertices) then:

• Let the vertices be uniquely indexed from 1 to |G|;

• Corresponding to these indices let v(i) denote the vertex label for vertex index i and e(i, j) denote the edge

label for the edge between vertex index i and j.

20A random walk function is a type of walk kernel that defines the inner product between infinite dimensional count
vectors. The uniqueness corresponds to the weighing scheme used.

21The Markov probabilities are in reference to each individual walk.
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Figure 12 illustrates an example of the labeled graphs featured here. The distinction between vertex indices and

labels can also be seen. Note that graphs with multiple edges between vertices and self loops are not considered.
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Figure 12: Labeled Graphs And Walks

(A) Assume graph G is given. Thus |G|= 5 and the vertex indices are {1,2,3,4,5}. Note
that G has the following properties:
aaaaaaaaaaaaaaaVertex Labels {v(1),v(2),v(3),v(4),v(5)}= {a,b,a,b,c}
Since G is undirected, the pair of vertex indices indicated in each edge label can be
reversed depending on the starting vertex. Thus:
aaaaaaaaaaaaaaEdge label of 1→ 2 : e(1,2) = Edge label of 2→ 1 : e(2,1)

(B) A walk variable (right side figure) is defined as a sequence of vertex indices such that
there exists a link between any two consecutive indices. The walk variable w (starting at
the red dot) with indices {1,2,3,4,5,2} has the following properties:
aaLabels of w: {v(1),e(1,2),v(2),e(2,3),v(3),e(3,4),v(4),e(4,5),v(5),e(5,2),v(2)}=
aaLabels of w: {a,e(1,2),b,e(2,3),a,e(3,4),b,e(4,5),c,e(5,2),b}

3.6.3 Marginalized Kernel To Walk Kernel

The marginalized kernel is a generalize setup that allows inner products to be constructed between non-vectoral

instances (i.e. strings, graphs, trees, etc...). Due to its effortless extension to labeled graphs and consequently IGs,

it was used to define a modified version of the random walk kernel. Not surprisingly the concept of ‘random walks’

or simply ‘walk variables’ will play an integral role throughout this entire discussion. Here they are defined as a

sequence of vertex indices such that a link exists between any two consecutive entries. In Figure 12 for example, the

walk variable W (starting at the red dot) has the following properties:
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Indices of W : {1,2,3,4,5,2}
Labels of W : {v(1),e(1,2),v(2),e(2,3),v(3),e(3,4),v(4),e(4,5),v(5),e(5,2),v(2)}

={a,e(1,2),b,e(2,3),a,e(3,4),b,e(4,5),c,e(5,2),b}

Consequently the marginalized kernel between IGs will assume the following (denote as G as the IG and W as the

walk variable):

• The ‘random component’ is the walk variable W ;

• The ‘given component’ is the graph variable G;

• The ‘joint component’ is joint variable Z = (W,G).

The given names reflect what can or cannot be observed. For example while graphs are revealed22, walks on the other

hand are always hidden since the traversed paths are never known. Nevertheless with this setup, the formal definition

of a marginalized kernel between two IGs (G1; G2) and their corresponding set of all walks (W (G1); W (G2))23 can

be described as follows:

K(G1,G2) = ∑
W (G1)

∑
W (G2)

p(W1|G1)p′(W2|G2)Kz(Z1,Z2) (21)

Where Kz is the joint kernel referencing a particular walk from a particular graph.

In this formulation, the posterior probabilities p(W1|G1) and p′(W2|G2) represent the weights assigned to each

instance of the joint kernel Kz(Z1,Z2). In other words the marginalized kernel is simply a weighted expectation of

Kz over all possible walks in G1 and G2. By choosing an appropriate representation of these posterior probabilities

(or weights) used in conjunction to the IGs, a suitable kernel can be formulated. Ultimately this process starts with

the selection of the weights before moving to the specification of the joint kernel. Once both pieces are obtained,

Equation 21 (and the random walk kernel) will become fully specified.

3.6.4 Weight Specification

The posterior probability24 of a walk W = {w1, . . . ,wl} is constructed by recognizing it as a Markov chain. Since

22The graphs are revealed since they are physically obtainable through the merge method.

23W1 represents the set of all walks that can be traversed in G1 while W2 for G2 similarly.

24Posterior probability and weight are used interchangeably.
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this assignment has a one to one correspondence with how W is generated, the process will be initially covered before

presenting the associated weight. The procedure is as follows: (Assume W = {w1, . . . ,wl} from graph G, where wi

refers to a sequence of natural numbers from 1 to |G|.)

• At the first step, w1 is sampled from the initial probability distribution ps(w1);

• Subsequently at the ith step, the next vertex index wi will be sampled subject to the transition probability

pt(wi|wi−1). Since the walk can also terminate with ending probability pq(wi),
|G|

∑
j=1

pt( j|wi−1)+ pq(wi) = 1

Therefore at any given position, the walk must either transition or end.

Using the proposed initial, transition, and ending distributions, the posterior probability of W is described as:

p(W |G) = ps(w1) ·
l

∏
i=2

{
pt(wi|wi−1)pq(wi)

}
(22)

Given no prior information, ps and pt can be set as uniform distributions over their respective feature spaces while

pq can be initialized as a constant. In the context of IGs however, SCRIP alters the transition and ending probabilities

to accommodate the uncertainty associated with the presence of each edge. In particular this concept lends itself

perfectly with the existence probabilities previously mentioned. These details are as follows:

• The ratio of transition probabilities from vertex index wi to w j and wi to wk should be proportional to the ratio of

edge existence probabilities of wi to w j and wi to wk. In other words, if e(wi,w j) has an existence probability ‘x’

times greater than the existence probability of e(wi,wk), then the probability of transiting from wi to w j should

also be ‘x’ times greater than transiting from wi to wk;

• The ending probability at vertex index wi should reflect the uncertainty associated with the existence proba-

bilities of all edges from wi. In other words if edges from wi has low existence probabilities, then the ending

probability at vertex index wi should be high since it is more likely those edges are truly missing (and hence

nowhere to transition to). Using a similar argument if the existence probabilities are high, then the ending prob-

ability should be low (and hence a lot of vertices to transition to).

Using these guidelines the transition and ending probabilities at vertex index w∗ were constructed as follows:

pt(wi|w∗) =
p(ei)

k
∀ i ∈ 1, . . . ,k (23)

pq(w∗) = 1−
k

∑
i=1

pt(wi|w∗) (24)

, assuming that:
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• There were k potential edges {e1,e2, . . . ,ek} that connect w∗ to k unique vertex indices {w1,w2, . . . ,wk} (which

does not include w∗; no self loops);

• ei: The edge label from w∗ to wi or e(w∗,wi);

• p(ei): The existence probability of e(w∗,wi);

• pt(wi|w∗): The transition probability from w∗ to wi;

• pq(w∗) The ending probability at w∗.

In terms of the initial probability distribution, SCRIP will set it to the uniform distribution due to the lack of prior

knowledge and biological explanation.

By plugging Equation 23 and 24 into Equation 22 this concludes the weight selection process and consequently

integrates the existence probabilities and correlation design into the proposed workflow.

3.6.5 Joint Kernel Specification

With the weights in place, the final step is to define the joint kernel Kz referenced to in Equation 21. This will

specify the binary relationship between walks from either graph through a comparison of their underlying joint vari-

ables. Under the same setup of the random, given, and joint components from Section 3.6.3 and the walk variable

from Section 3.6.2, assume that walks W1 and W2 defined on IGs G1 and G2 have the following properties:

Variable W1 = {w11,w12, . . . ,w1l}
Variable W2 = {w21,w22, . . . ,w2m}

Label W1 = {v(w11),e(w11,w12),v(w12),e(w12,w13), . . . ,e(w1(l−1),w1l),v(w1l)}
Label W2 = {v(w21),e(w21,w22),v(w22),e(w22,w23), . . . ,e(w2(m−1),w2m),v(w2m)}

Assuming this setup, the joint kernel will require two smaller kernel functions K(v,v∗) and K(e,e∗) to be defined

on the vertex and edge labels respectively. Each label specific kernel will then compare the individual units within

each given walk by assessing their similarity. For example if two vertex labels are identical at step x, then the label

kernel should return a large numerical value in response to the concordance.

In the context of the IGs generated from the merge step, the labels associated with each walk will effectively

correspond to the gene symbols and therefore carry no additional information within the string itself. For example,

‘BRCA1’ and ‘BRCA2’ are not ‘more similar’ simply because the two strings only differ by one character. Due to this
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simple interpretation a straightforward comparison of the string labels is sufficient to construct the vertex and edge

label kernels respectively. Specifically SCRIPT uses:

K(v,v∗) = I(v = v∗) and K(e,e∗) = I(e = e∗) (25)

, where I(. . .) represents the indicator function returning 1 if the argument holds and 0 otherwise. The joint kernel is

then defined as the product of all labeled kernels corresponding to all individual components within each walk:

Kz(Z1,Z2) = K [v(w11),v(w21)] ·
l

∏
i=2

K
[
e(w1(i−1),w1i),e(w2(i−1),w2i)

]
K [v(w1i),v(w2i)] (26)

, where Z = (W,G). Note that the joint kernel will only return 1 when the labeled sequences from both walks matched

up perfectly. In the event of mismatches or differential walk lengths (l 6= m), Kz(Z1,Z2) will be defaulted to 0.

With this final result in Equation 26, the full specification of the joint kernel becomes completed.

3.6.6 Modified Random Walk Kernel

With the weight and joint kernel from Section 3.6.4 and refkernel5, the modified random walk kernel used in

reference to SCRIP was obtained by plugging these results back into Equation 21. Thus the existing template becomes:

K(G1,G2) = ∑
W1∈W (G1)

∑
W2∈W (G2)

p(W1|G1)p′(W2|G2)Kz(Z1,Z2)

= ∑
n=1

∑
W1∈Wn(G1)

∑
W2∈Wn(G2)

p(W1|G1)p′(W2|G2)Kz(Z1,Z2)

= ∑
n

∑
W1

∑
W2

{(
ps(w11) ·

n

∏
i=2

pt(w1i|w1(i−1)) · pq(w1n)

)
×

(
p′s(w21) ·

n

∏
i=2

p′t(w2i|w2(i−1)) · p′q(w2n)

)
×(

K [v(w11),v(w21)] ·
n

∏
i=1

K
[
e(w1(k−1),w1k),e(w2(k−1),w2k)

]
K [v(w1k),v(w2k)]

)}
(27)

, where: W (G) represents all walks in graph G;

, where: Wn(G) represents all length n walks in graph G;

, where: ∑W∈Wn(G) := ∑
|G|
w1=1 · · ·∑

|G|
wn=1.

The proposed random walk kernel will closely resemble a weighted expectation of Kz over all possible walks in

graphs G1 and G2. While this effectively summarizes the computation, straightforward enumeration of Equation 27

is not feasible since n spans from 1 to infinity. Fortunately by taking advantage of the ‘product graph[16]’ G1×G2

induced by the tensor product[17] (between graphs G1 and G2), a solution to Equation 27 that can furthermore be

computed in polynomial time becomes derivable. Thus assuming that G1 = (V1,E1) and G2 = (V2,E2) are two graphs

denoted by their vertex (V1,V2) and edge (E1,E2) labels respectively, the product graph G1×G2 is defined as the graph

G = (V,E) with:
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V = {(v1,v2) ∈V1×V2 : v1 and v2 have the same label}
E = {

(
(v1,v2),(v′1,v

′
2)
)
∈V ×V : (v1,v′1) ∈ E1 and (v2,v′2) ∈ E2}

a b 

c 

e d 

1 

2 

4 3 

G1 G2 

4c 

1d 

1a 

3c 

2d 2b 

4e 

3e 

G1 x G2  
1b 2a 

Figure 13: Product Graph Example

The product graph between G1 and G2 is depicted in G1×G2. Note that all walks shared
between G1 and G2 could be found in G1×G2 and vice-versa.

The unique property of the product graph that can subsequently assist Equation 27 is the bijection claiming:

1. Pairs of walks W1 ∈W (G1) and W2 ∈W (G2) sharing same labels,
2. Walks on the product graph: W ∈W (G1×G2).

Therefore all shared walks between the two IGs are in the product graph and all walks in the product graph are also

shared between the two IGs. This property will have resounding consequences since the walk kernel in Equation 27

can then be simplified to the following structure: (Note: walks in the product graph W ∈Wn(G1×G2) = (w1, . . . ,wn))

K(G1,G2) = ∑
n

∑
W1

∑
W2

{
n

∏
i=2
ps(w11)p′s(w21)K [v(w11),v(w21)]× pq(w1n)p′q(w2n)×

= ∑
n

∑
w1

∑
w2

{
n

∏
i=2

pt(w1i|w1(i−1))p′t(w2i|w2(i−1))K
[
e(w1(i−1),w1i),e(w2(i−1),w2i)

]
K [v(w1i),v(w2i)]

}

= ∑
n

∑
W1

∑
W2

{
s(w11,w21) ·q(w1n,w2n) ·

n

∏
i=2

t(w1i,w1(i−1),w2i,w2(i−1))

}

= ∑
n

∑
W∈Wn(G1×G2)

{
s(w1) ·q(wn) ·

n

∏
i=2

t(wi,wi−1)

}
(28)

, where:

s(w11,w21) = ps(w11)p′s(w21)K [v(w11),v(w21)]

s(w1) = ps(w1)p′s(w1)

q(w1n,w2n) = pq(w1n)p′q(w2n)

q(wn) = pq(wn)p′q(wn)

t(w1i,w1(i−1),w2i,w2(i−1)) = pt(w1i|w1(i−1))p′t(w2i|w2(i−1))×
= K

[
e(w1(i−1),w1i),e(w2(i−1),w2i)

]
K [v(w1i),v(w2i)]

t(wi,wi−1) = pt(wi|wi−1)p′t(wi|wi−1)
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Since the joint kernel Kz is defined as a series of indicator functions back in Section 3.6.5, s(w11,w21) 6= 0 and

∏
n
i=1 t(w1i,w1(i−1),w2i,w2(i−1)) 6= 0 if and only the labels corresponding to the compared walks (W1 and W2) match up

perfectly. Hence the final equality in Equation 28 can be established since the summation only needs to run through

the set of shared walks. Consequently the summation space reduces to the walks exclusive to the product graph by

definition. By rearranging the terms around, the random walk kernel has the following final structure:

K(G1,G2) = ∑
n

∑
w∈Wn(G1×G2)

{
s(w1) ·q(wn) ·

n

∏
i=2

t(wi,wi−1)

}

=
∞

∑
n=1

(Λs ◦Λ
′
s)

T (Λt ◦Λ
′
t)

n(Λq ◦Λ
′
q)

= (Λs ◦Λ
′
s)

T ((I−Λt ◦Λ
′
t)
−1− I

)
(Λq ◦Λ

′
q) (29)

, where: Λs is the vector of starting probabilities with ith element ps(i) (in G1)

, where: Λq is the vector of ending probabilities with ith element pq(i) (in G1)

, where: Λt is the matrix of transition probabilities with ith row and jth column pt(i| j) (in G1)

, where: Λ′s,Λ
′
q, and Λ′t carry the same meaning but in G2

Thus by taking advantage of the product graph, a closed form solution to the proposed random walk kernel was

obtained. With the only requirement being matrix inversion, it becomes a relatively simple procedure in comparison

to the infinite summation initially introduced in Equation 27.

3.6.7 Correspondences Between Marginalized Kernel And Dot Product

The proposed random walk kernel formulated in Section 3.6.6 was constructed from the template of a marginalized

kernel. While this may seem different compared to a dot product between ‘count vectors25’, the two ideas are actually

analogues of each other as mentioned in Section 3.6.1. To show this correspondence, the previously formulated random

walk kernel in Equation 29 will be re-expressed as a dot product between infinite dimensional count vectors weighted

according to Markov posterior probabilities. Note that the derivation here will be presented in reverse order. Thus

starting from the dot product, Equation 29 will be obtained by working backwards. This process starts with the count

vector φ(G) of graph G:

φ(G) = [φs(G)]s∈S(G)

25The vectors are vectoral representations of each IG.
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, where: S(G) represents the set of all walk labels (in comparison to W (G) which represents the set of all indexed

walks);

, where: φs(G) = ∑W∈W (G) λG(W ) ·1[s is labeled walk of w];

, where: λG(W ) represents the weight associated with a walk variable (sequence of walk indices) W ∈W (G).

In this setup each element of φ(G) corresponds to the number of times a given labeled walk can be traversed in the

graph (different sequences of walk indices may end up having the same walk label). The count will then be weighted

by the summation of all weights λG(W ) that indexed this particular walk label. Thus following the given notation the

dot product between weighted count vectors resembling G1 and G2 can be described as:

Kwalk(G1,G2) = ∑
s∈S(G)

φs(G1) ·φs(G2)

= ∑
s∈S(G)

[(
∑

W1∈W (G1)

λG1(W1)[s = label of W1]

)(
∑

W2∈W (G2)

λG2(W2)[s = label of W2]

)]
= ∑

W1∈W (G1)
∑

W2∈W (G2)

λG1(W1) ·λG2(W2) · [label of W1 = label of W2]

= ∑
W1∈{W (G1)∩W (G2)}

∑
W2∈{W (G1)∩W (G2)}

λG1(W1) ·λG2(W2)

= ∑
W∈{W (G1)∩W (G2)}

cW ·λG1(W ) ·λG2(W )

= ∑
W∈W (G1×G2)

λG1×G2(W )

=
∞

∑
n=1

∑
W∈Wn(G1×G2)

λG1×G2(W ) (30)

Thus according to this final form, the dot product simplifies to the summation of all weights associated with walks

in the product graph. By subsequently setting these weights as the multiplication between Markov walk probabilities

in graphs G1 and G2, the result will then resemble the random walk kernel presented in Section 3.6.6. Hence the

correspondence between an inner product and the Marginalized kernel is established.
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[7] J. Ramon, T. Gärtner, First International Workshop on Mining Graphs, Trees and Sequences (2003), pp. 65–74.

[8] T. Golub, et al., science 286, 531 (1999).

[9] G. Parmigiani, E. Garett, R. Irizarry, S. Zeger, The analysis of gene expression data: methods and software
(Springer, 2003).

[10] I. Dhillon, Y. Guan, B. Kulis, Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining (ACM, 2004), pp. 551–556.

[11] A. Smola, R. Kondor, Learning theory and kernel machines pp. 144–158 (2003).
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4 Kernel Simulation
Kernel Simulation

Chapter 4

This chapter details a simulation designed to investigate (modified random

walk) kernel competence. Under the working assumptions of ‘SVM for Complete

Integrative Response Prediction’ (SCRIP), the proposed kernel from Chapter 3

was used to classify simulated graphs in an attempt to elucidate data-to-kernel

based interactions. This is necessary in order to validate of the kernel used in

reference to SCRIP.



4.1 Introduction

‘SVM for Complete Integrative Response Prediction’ (SCRIP) was developed as a hybrid tool between mean- and

correlation-based classification. The corresponding workflow is defined by separate kernel functions with respect to

SVM[1] and its optimization theory. In particular the RBF[2] and random walk functions[3] were implemented as

inner products in reference to the mean and correlation signatures. Each one effectively designates the metric in which

subject similarity is evaluated within their respective setups.

Due to the heavy implications of these kernels, their efficacy becomes an integral part to the success of SCRIP.

While this quality is guaranteed from the RBF kernel, the walk kernel in comparison lacks these technicalities due to

its unpolished nature as a strict theoretical development. Therefore in response to this concern, the following simula-

tions were proposed in order to elucidate the kernel’s ability to interact with SVM, the IGs, and SCRIP in general.

To design such simulation, the emphasis was subsequently placed on replicating a real-life application so the results

can be generalized as future references. Consequently the expression vectors were designated as the simulated objects

since the data often represents an intuitive starting point. Therefore by way of various parameters that jointly define

the co-expression signatures and noise level, pseudo GEPs were generated (through a multivariate normal distribution)

at the beginning of each simulation round. To then evaluate kernel performance under the given parameter settings,

the correlation signature was fitted to these points and the prediction accuracy was used as a referencing summary.

Not surprisingly these accuracies will end up forming a comparative base across all simulations thereby pinpointing

the most ideal conditions for this particular classification tool.

The following chapter details the proposed simulations intended to verify kernel efficacy in response to the corre-

lation signature. With that being said, the following discussion starts with the simulation design. Afterwards the final

results and their interpretation will follow to effectively conclude this section.

4.2 Simulation Setup

Under the goal of simulating expression vectors as a means to test the walk kernel, a multivariate normal distribu-

tion (MVN) was adopted due to the assumed normality of each gene and consequently the need to model correlation-

based signatures. Therefore by using a set of parameters including the dimension size (number of simulated genes),

67



Expression Data

Overall Graph

Parameter Selection

(1)

N-ResponderResponders

(2a)

(2b) (2b)

(3)

Merge Expression Data with Overall Graph

(5)
Individual Graphs (Responders)  Individual Graphs (Non-Responders)  

Sample_1 Sample_nSample_i

. . . . . . . .
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Figure 14: Simulation Workflow

After designating a set of parameters (1) which would consequently structure the overall
(2a) and response specific graphs (2b), pseudo gene expression vectors (3) were simulated
through the help of a MVN. Once these vectors were obtained, the correlation signature of
SCRIP (4-6) was applied (in the same fashion as applications) to evaluate kernel efficacy
under the given parameter settings. A description of steps 4, 5, and 6, could be seen in
Figure 8.
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mean/variance vectors, and correlation matrix, MVN observations were generated to form a hypothetical dataset for

the analysis. In particular the only parameters altered across simulations were the dimension size and correlation

matrices since they can effectively induce all noise and signal levels intended for investigation. The mean and vari-

ance vectors on the other hand were set to 0 and 1 respectively since all real-life applications will be based on the

standardized values anyways. Thus instead of simulating the complexity involved with raw expression values, their

standardized forms were instead used as a attempt to simplify the entire process.

For a given parameter setting, the simulation followed:

• An overall graph (G) was created with various nodes and a random placement of edges amongst them (20% to

25% of all possible edges);

• From G, two response specific graphs (RSGs) were formed to contrast at a fraction of those edges. Increasing

this fraction therefore magnifies the difference between the RSGs and consequently the implied signal level;

• The adjacency matrix representations of these RSGs were then transformed into valid correlation matrices using

spectral decomposition[4]. Thus each class was assigned a personalized correlation signature;

• With the proposed mean, variance, and correlation matrices, standardized expression vectors corresponding to

each class were generated;

• The correlation signature of SCRIP was applied to these vectors using G as the pseudo pathway. Additionally

the mean signature was also applied to form a comparative base. In both cases the prediction accuracies were

recorded to signal the end of the given simulation round.

Thus by repeating the aforementioned outline across a wide spectrum of parameter combinations, kernel efficacy

was evaluated by simply assessing the returned accuracies. As a result questions regarding the kernel’s base efficiency

and how it responds to varying degrees of noise and signal were all elucidated in response to the correlation signature

of SCRIP.

In the remainder of this chapter, the details that map out the proposed outline will be presented.

4.2.1 Overall Graph→ Correlation Matrix

The overall graph (OG) used in reference to any simulation was initialized as an n× n adjacency matrix G with
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a total of l randomly placed, undirected edges. Under their construct these edges highlighted potential class-specific

discrepancies between the correlation statuses (high vs. low) of each referenced pair. Since this exactly defines the

combined information across both classes, the corresponding response specific graphs (RSGs) were created by ran-

domly perturbing a proportion (p) of these edges so that the results only differed at those exact positions.

To use the resulting RSGs as correlation matrices (in the context of the MVN), modifications were subsequently

required to address their adjacency-based forms. Fortunately since the edges within these graphs already designate

the presence/absence of correlation-based statuses (presence implies ρ = 0.85; absence implies ρ = 0.05), minor

adjustments were therefore only required to finalize this procedure. Specifically they were carried out as follows:

• All entries in the adjacency matrix with value 1 (or the presence of an edge) were changed to 0.85 (indicating

the presence of a high correlation between the two features);

• All entries in the adjacency matrix with value 0 (or the absence of an edge) were changed to 0.05 (indicating the

presence of a low correlation between the two features);

• All entries in the diagonal were changed to 1.

Since these altered adjacency matrices must also conform to a positive semi-definite criterion, final adjustments[5]

were therefore necessary in order to complete its validation process26. Specifically the goal here was to pinpoint a

legitimate alternative that furthermore exhibits the most affinity to its original form. To do so, spectral decomposition

was employed and carried out as follows (for argument sake, suppose A represents the altered adjacency matrix):

• The eigenvalues {λ1, . . . ,λn} and eigenvectors {s1, . . . ,sp} corresponding to A were calculated;

• The diagonal eigenvalue matrix ΛΛΛ =


λ1 · · · 0
...

. . .
...

0 · · · λn

 was created;

• The eigenvector matrix S =

[
s1 · · · sn

]
was created;

• Each negative element in ΛΛΛ was replaced with 0 and the new diagonal matrix was denoted as Λ̂ΛΛ. Thus the new

eigenvalues {λ̂1, . . . , ˆλn} had the following non-negative property: λ̂i ≥ 0 ∀ i ∈ {1, . . . ,n};

• The diagonal scaling matrix T was calculated where tii =
(

∑
n
k=1 s2

ikλ̂k

)−1
∀ i ∈ {1, . . . ,n};

26On most occasions these altered adjacency matrices don’t conform to a positive semi-definite criterion.
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• The validated correlation matrix Â was finally constructed as follows: Â =
[
t ·S · λ̂λλ

][
t ·S · λ̂λλ

]T
, where t = T1/2

and λ̂λλ = Λ̂ΛΛ
1/2

.

Thus by apply the transformation to both RSGs, the reconstruction of their correlation matrices was finalized. Conse-

quently they were ready for simulation use with respect to the parameters initializing their underlying OG.

4.3 Parameter Selection

The interactions between correlation structure, signal-to-noise ratio, and sample size were investigated in this

simulation. To subsequently generate the expression profiles corresponding to these settings, four parameters were

used in conjunction to the MVN. Here the use of multiple inputs enabled a finer degree of tuning amongst the variables

of interest. In particular the parameters include:

• N: The sample size of each simulated class (thus a total of 2N samples were generated per simulation);

• n: The number of OG nodes;

• l: The number of OG links;

• p: The proportion of OG links that differ between the RSGs.

Interpretation wise, l and p defined the correlation matrices used in reference to each class and consequently the in-

tended levels of signal and noise between both sets of vectors. For example by coupling a larger l with a large p, the

intended signal level becomes amplified since an excess of differential edges would appear between the two classes.

As a result the corresponding RSGs would gain more individuality and correspondingly, yield a greater distinction

(based on correlation) between their simulated vectors. Through a similar argument, a small l together with a small p

would then induce excess noise. On the other hand N and n were used to define the simulation size; and while inca-

pable of directly specifying the signal level, acted instead as a promoter (or minimizer) in response to a given l and p

combination. Thus under these four parameters, any simulation setup could be described and consequently carried out.

Nevertheless while the combination of N, n, l, and p enabled access to an entire spectrum of simulation designs,

their corresponding domain was unfortunately too extensive thus making a thorough exploration an impractical propo-

sition. To thereby balance computation practicality with ambition, a compromise was settled by reserving simulation

to the most realistic designs amongst the greater list. Consequently this simplified the initial parameter combinations

down to two generalized sets. First, N and n were set to 100 and 10 respectively while l and p varied. Here the effects
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of varying degrees of signal within a small pathway were elucidated using a reasonably sized dataset. And second,

with an exchange of roles, l and p were fixed under different values of N and n. This consequently provided insight to

the size of the study and its interaction with a common OG/RSG setup27.

Thus in summary:

• First simulation→ N = 100, n = 10,

First simulation→l = {0.2, . . . ,0.4}× 1
2 n(n−1), and p = {0.11, . . . ,0.2}× l;

• Second simulation→ l = 0.27× 1
2 n(n−1), p = 0.2× l,

Second simulation→N = {100, 200, 300}, n = {10, 20, 30, 40, 50}

4.4 Simulation Count And Split

With the specification of these parameters completed, the simulation was then replicated 99 times on each indi-

vidual combination where 70% and 30% of the data was used for training and testing respectively. By using their

averaged test results as the referencing summary, robustness was guaranteed in conjunction to these returned values.

4.5 Results And Discussion

Under various parameter combinations highlighting correlation structure, signal-to-noise ratio, and sample size,

the aforementioned simulation process was carried out in order to elucidate inherent technicalities of the derived

kernel. Here the primary goals were to: (1) Evaluating kernel performance across a multitude of data settings; and (2)

Compare these results with the radial basis function (RBF) to verify efficacy. As it pertains to both tasks, the returned

accuracies from each simulation served as an effective evaluation criterion.

Generally speaking the walk kernel outperformed the RBF across all parameter combinations as expected. As

a testament to the kernel’s performance, the correlation signature returned an averaged prediction accuracy of 0.705

27Common refers to the size of the OG or the number of nodes and links.
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Figure 15: Visualization Of Simulation Results

The lower right heatmap displays the difference in prediction accuracy (PA) between the
correlation signature of SCRIP and standard SVM (N = 100; n = 10; l and p vary). In each
combination of l and p, SCRIP outperforms the aforementioned approach. The values on
the horizontal tiles indicate the numerical difference in PAs and the bottom right panel
indicates the actual PAs for each combination of LD (blue dots: correlation based; red
dots: mean based). The top scatterpot displays the difference in PA between SCRIP and
standard SVM (l = 27%; p = 20%, N and n vary). The highlighted blue tile (in pink) from
the heatmap indicates the combination of l and p used in all simulations for the scatterplot.

N: Number of simulated vectors per response group;
n: Number of simulated nodes for the OG;
l: Number of simulated links in the OG (percentage of the maximum number of links);
p: Percentage of l that vary between each RSG.
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(median 0.701) far exceeding its mean counterpart at 0.609 (median 0.601). In fact under the most favorable conditions

for the walk kernel (N = 300, n = 50, l = 62, p = 0.2), the accuracy difference would actually widen to 0.231 thus

telling a compelling story for the kernel’s efficacy in light of the proposed assumptions (0.797 vs. 0.567). Thus these

results conclusively state the derivation’s capability to process a genuine correlation signal for downstream analysis in

SVM.

With kernel efficacy established, the question then turns to its cross sectional performance as it pertains to the

collection of simulated scenarios. Since this was in part elucidated under the setup of two generalized parameter sets

(as mentioned in Section 4.3), it will therefore be presented here on an individual basis. Thus:

• Under the scenario where simulation size was predefined (N = 100; n = 10), kernel performance was optimized

under the concurrent decrease of links and increase of signal both in reference to the OG (l and p respectively).

From a computation perspective this makes sense since fewer links would inevitably highlight the presence of

the remainders, which if just so happens to be richer in signal, would consequently benefit the classification

process. As a result this states the merit for sparse networks under the assumption that they contain a high

proportion of informative links. On the other hand any deviation from this given specification (i.e. increase in

link or decrease in signal) would only serve to undermine the kernel’s performance.

Note that under this parameter set, the maximum and minimum prediction accuracies were achieved at 0.711

(l = 9; p = 0.2) and 0.649 (l = 18; p = 0.1) respectively.

• Under the scenario where the signal level was predefined (OG set; l = 0.27 ·n(n−1); p = 0.2%), kernel perfor-

mance was evaluated through the interactions between (OG) dimension and sample size (N and n respectively).

Here the results were dissected from two separate angles (each parameter was assessed assuming consistency

from the other) so that their interpretations could be presented in a logical fashion. First as the dimensions

shrank, kernel performance consequently faltered amongst simulations using the same sample size (hold N;

move n). And second, in a reversal of roles, as sample sizes decrease across identical OGs, performance iron-

ically improved at first (for smaller OGs) before faltering according to intuition later on (for the larger OGs).

While alarming, the initial case could probably be attributed to the randomness resulting from a scarcity of input

nodes and edges.

Note that under this parameter set, the maximum and minimum prediction accuracies were achieved at 0.797

(N = 300; n = 50) and 0.709 (N = 100; n = 20) respectively.

As a consequence of these findings, the ideal working conditions for the kernel were extrapolated by a simple
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cross referencing procedure. Consequently the full story behind parameter fluctuations and their repercussions were

obtained and described as follows:

• Assuming that a large, sparse, and highly informative pathway (n large, l small, p large) could be analyzed using

a sufficient sample size, kernel performance should be optimized with a prediction accuracy close to 0.85 (and

difference with the mean signature close to 0.3).

• On the flip side, assuming that a small, dense, and non-informative pathway (n small, l large, p small) was

furthermore coupled with an insufficient sample size, kernel performance would then resemble nothing more

than a random guess with accuracy around 0.5.

Since it is perceivable that any application setting will lie somewhere between complete junk and the best case sce-

nario, the simulation makes a compelling case for the correlation signature assuming the validity of the proposed

assumptions.
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5 Response Prediction Application
Response Prediction Application

Chapter 5

This chapter details the application of ‘SVM for Complete Integrative Response

Prediction’ (SCRIP) to a response prediction problem involving multiple myeloma

patients. After introducing the dataset, the discussion shifts to the modeling pro-

cess. First, the mean signature of SCRIP will be detailed followed by the correla-

tion counterpart. Upon completion, the final predictions will then be presented by

combining both pieces of inference.



5.1 Introduction

With the methodological development of ‘SVM for Complete Integrative Response Prediction’ (SCRIP) com-

pleted, the emphasis will now be shifted in the direction of its application counterpart. Here multiple myeloma[1]

(MM) patients from the HOVON-65/GMMG-HD4 trial[2] were analyzed using the developed framework. As a result

a mean- and correlation-based response signature was trained under the premise of gene expression data.

With this choice of application, SCRIP also receives its first test in light of the associated challenges. Most notably

its use of expression data exposes a routine problem concerning the inadequacy of these profiles to model MM-based

response: Capped accuracy at 70% regardless of treatment type[3]. Nevertheless while such restriction will seemingly

handicap any analysis, this impediment ironically serves as a definitive evaluation of SCRIP right off the bat. Because

if the proposed method works as intended, then the corresponding prediction accuracy should exceed the given bench-

mark as a simple confirmation of its relevance and potential.

In terms of the analysis, the following chapter details the interventions and justification behind the training process.

This not only provides intuition for the current analysis, but also ensures effortless extension of future applications.

In preparation for the remainder of this discussion however, the dataset used in conjunction to the application will be

first presented. This entails the data split, array preprocessing, and feature filtering. Afterwards the modeling and final

predictions will follow to conclude the application part of this thesis.

5.2 Dataset Characteristics

The application dataset was based on the gene expression profiling (GEP) of 320 newly diagnosed MM patients

from the Dutch-Belgian/German HOVON-65/GMMG-HD4 clinical trials. Here all subjects were free of any prior

treatment and were uniformly assigned to a three-drug regimen (VAD/PAD[4]) followed by autologous stem cell

transplantation[5] (ASCT). Since the response information (response label) was only available on 282 of the 320 sub-

jects, the dataset used in conjunction to this analysis therefore only represented a subset from the initial cohort.

Here the expression data was obtained from the Gene Expression Omnibus[6] through accession number GSE19784.

The response information was however directly obtained from the authors since it remains yet unpublished.
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5.2.1 Preprocessing

GEP from the 282 samples were hybridized to the Affymetrix Gene Chip Human Genome U133 plus 2.0 arrays.

To subsequently arrive at the signal intensities, quality control, preprocessing, and normalization were done in separate

software packages. First, quality control was done using the GeneChip Operating Software. Here a combination be-

tween ‘scaling factor’ and ‘percentage of genes present’ was used to remove arrays with a scaling factoring difference

greater than 3 or a gene presence less than 20%. Afterwards preprocessing and normalization was carried out using

the GCRMA[7] package in Partek Genomics Suite version 6.4[8]. Upon completion a secondary quality control was

carried out using the AffyPLM[9] package from Bioconductor[10]. Here the relative log expression and normalized

unscaled standard errors (NUSE) jointly removed arrays exhibiting a NUSE value greater than 1.05 to go along with

an aberrant expression plot.

5.2.2 Feature Filtering

All 54,675 probes in the preprocessed dataset (n = 282) were filtered for quality control before any analysis took

place. To remove extremities and non-expressed features, each probe was subjected to the following selection criterion:

• For each probe the 90th percentile was calculated across all 282 subjects;

• Of the ordered percentiles, only the probes falling in the top 50% were selected for analysis.

Note that ‘50%’ was designated in order to reflect the percentage of non-expressed genes from any given tissue

type[11] (roughly half in total). This resulted in the final selection of 26,616 probes.

5.2.3 Dataset Split

All 282 subjects were randomly partitioned into three nonintersecting groups for training purposes. 60% of the

subjects (169 subjects) formed the first group while 20% formed each of the later two (57 and 56 subjects respectively).

All calculations were carried out in R[12].
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5.3 Class Imbalance

With any analysis pertaining to binary classification, ‘class imbalance’ poses a practical difficulty across most

applications. In effect as a particular class becomes increasingly outnumbered (usually the more interesting of the

two), learning usually succumbs to a common methodological design that will inevitably emphasize the prevalence of

a particular signal[13–17]. Thus unless highly unusual conditions apply (i.e. The data is already perfectly separable),

the rare events will become overwhelmed and subsequently be ignored in any analysis, SCRIP included.

Unfortunately the HOVON dataset also falters to the aforementioned issue; though not entirely a surprise due

to the prevalence of such problem. Fortunately however, the scarcity of responders (76 out of 282 subjects) in this

case didn’t end up jeopardizing the entire analysis in part due to the flexibility built into SCRIP. Specifically since

the associated training isn’t fixated on a set of rigid procedures, any custom built strategy designed to maximize the

potential of a given dataset can therefore be adopted. Consequently the prediction here was predicated on ‘favoring

the responders28’.

This proposed training alternative essentially highlights the rare cases at the expense of undertaking a reasonable

amount of false positives as a compensation for their inconsistency. To control the inevitable inflation, the strategy took

advantage of SCRIP’s setup and was only applied to each individual signature (mean and correlation model) before a

union of their results acted as the quality control. While not capable of filtering away all superimposed false positives,

the trade off between the deliberate favoritism and error rate still proved to be advantageous and was therefore adopted.

5.4 Mean Signature Application Process

The mean signature used in reference to SCRIP was an adaption taken from the classical modeling approach[18].

In an attempt to thoroughly explore mean-based classification, the signature was comprised of two mean-based models

separately trained in SVM. The first model used log values29 while the second incorporated standardization30 into the

28Conduct the training so that more response predictions are obtained.

29Log base 2.

30Standardization was preformed across the samples for each input feature or gene.
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mix. In both setups the RBF kernel[19] defined the inner product between vectoral representations of each subject31.

Upon completion the union of their results then formalized the mean-based signature of SCRIP.

The following section outlines the application process. This includes the data split, feature filtering, model selec-

tion, and result combination. The reason for proposing two separate models will also be brought up throughout this

discussion.

5.4.1 Data Split

In the same fashion as the proposed data split from Section 5.2.3, the first two groups of individuals were combined

to form one dataset for training purposes. Opting for a single trainer is a feasible option here since model selection

only involves one task (selecting optimal parameters). Thus without the need for validation, the first two groups of

individuals were combined to form a larger training base. Consequently the third group of individuals were designated

for testing purposes and left untouched until the final application process. This exact same splitting scheme was used

across both models.

Note: 80% of the data was used for training - 226 out of 282 subjects. The remaining 20% was used for testing -

56 out of 282 subjects.

5.4.2 Data Preprocessing

Preprocessing and normalization of the HOVON dataset was carried out according to the original protocol, all of

which can be seen in Section 5.2.1. The resulting signal intensities were then assumed at the gene level and used for

analysis. In particular their logged values (expression) along with the standardized forms were used to construct two

separate datasets corresponding to the proposed models. Here the standardization of each feature was done across the

training samples.

The objective of proposing multiple datasets (and models) is an attempt to maximize signal processing. Since the

logged values and their standardized form can each highlight important genes based on large physical differences and

31The RBF kernel along with the vectoral representations of each subject confirms mean-based classification.
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congruent collective behavior, the pooled analysis between both forms of data can potentially enhance classification

since added differential features are modeled. Thus backed up by added predictive power, the dual system was imple-

mented.

5.4.3 Filtering Procedure

Filtering on both datasets was used to minimize the inclusion of genes associated with low predictive power. In the

event of mean-based classification, such features should exhibit similar expression values across both response groups.

Hence the proposed filter was designed to remove genes with small differences between their group-wise mean values.

Assuming the same set of training subjects from Section 5.2.3, the filter was set up as follows:

• The mean value of each gene corresponding to the response group was calculated (within the training subjects);

• The previous step was repeated for the non-response group;

• The absolute difference between the means were calculated for each gene;

• The absolute differences were ranked and the subset exhibiting the smallest (or largest) difference were removed

(or selected).

The filtered subset was purposely associated with ambiguity since it is recognized as an additional parameter in

the context of model selection. Therefore the exact number of removed (or selected) genes will remain unknown until

the modeling step. However due to computational restraints, the search space pertaining to such removal (or selec-

tion) would always be defaulted to the top 1000 genes that exhibit the largest absolute differences. These details are

presented in the following section.

5.4.4 Model Selection

The model selection process pertaining to both setups selected the ‘best’ fit for the training data through parameter

optimization. With the designation of the RBF kernel as the inner product and the list of input genes obtained from

Section 5.4.3, the cost32 (C) and cutoff33 (T ) were the only parameters tuned for performance sake. The gamma

32Cost parameter used in reference to the SVM setup[20].

33Which of the top 1000 filtered genes to use.
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parameter (γ) used to adjust kernel depth perception was set to the default34 due to an augmented search space upon

its inclusion. Since the procedure was identical across both models, it would be presented here in a generic fashion by

assuming either dataset as the application base.
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Figure 16: Intuition Behind Mean Modeling

For each instance of T (shown in figure as t), LOOCV was used to generate an objective
fit for the training data and consequently select the associated optimal C (shown in figure
as e). Since the training dataset was comprised of 226 subjects (shown in figure as 5 sub-
jects labeled {1,2,3,4,5}), each iteration used a partition of 225 subjects for modeling.
The proposed C values (0.1 to 25 in increments on 0.1; 250 in total; shown in figure as
{a,b,c,d,e, f ,g}) were then used to construct 250 separate models for each left-out case.
Upon completion, the C values where the prediction matched/disagreed with the truth were
noted (shown in figure as circles and crosses). Once this process was completed for all 226
subjects, the optimal C was selected by defaulting to a value yielding the largest concor-
dance between prediction and truth (across all 226 subjects). The corresponding proportion
(shown in figure as 0.8) is also called the LOOCV prediction accuracy.

To evaluate model performance under various combinations of C and T , selected output using leave one out cross

validation[21] (LOOCV) defined the selection criterion across the search space pertaining to both parameters. Here C

and T were varied as follows:

• C ranged from 0.1 to 25 in increments of 0.1;

• T ranged from 5 to 1000 in increments of 5.

Note T = 2 implies that the top 10 mean difference genes will be used while T = 20 implies that the top 100 genes

will be used, etc...

34Assuming there are p features, then 1/p represents the defaulted gamma parameter[20].
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After applying LOOCV to each parameter combination, a subsequent duel search was used to locate the ideal

pairing. First, the optimal value of C within each instance of T was designated by pinpointing a value that maximized

the LOOCV prediction accuracy. Ties here were broken by defaulting to the smallest value so that a C corresponding

to the most generalized model was selected[20]. Upon completing this initial step, T was then optimized. Unlike

the previous selection process where a lone criterion was used, a combination between LOOCV prediction accuracy,

training accuracy, C value, and the number of predicted responses jointly structured this final search. Here multiple

criterion ensured objectivity and optimality in the final model. For example by choosing a T that referenced similar

LOOCV and training prediction accuracies (and consequently a low C value), objectivity can be achieved by avoiding

issues related to overfitting. Furthermore by also favoring a higher number of predicted responses, optimality could

also be met since additional true positives should follow in the final application. Note that while this later point will

also increase the number of false positives, this problem was partially negated since the final mean predictions will re-

quire confirmation across the two models. Thus the implemented strategy falls in line with the goals from Section 5.3:

Within each signature, maximize the number of responses; Then use both signatures to confirm the predictions. Fig-

ure 16 effectively summarizes the mean selection process.

5.4.5 Individual Model Prediction Result

For the final mean model corresponding to the log intensities ratios, C and T were optimized to 1.9 and 8 (top 40

genes) respectively. The LOOCV prediction accuracy on the training data was 0.7478, which included 26 predicted

responses (12 were false positives). The selection of this particular parameter combination was due to the large C

value that other models exhibited. Thus despite a larger number of predicted responses, they were avoided due to the

risk of overfitting. In terms of the application to the test data, the chosen parameter combination yielded 11 responders

(4 false positives) and 45 non-responders (10 false negatives).

For the final mean model corresponding to the standardized intensity ratios, C and T were optimized to 1.7 and

55 (top 275 genes) respectively. The LOOCV prediction accuracy on the training data was 0.7611, which included 27

predicted responses (11 were false positives). The selection of this particular parameter combination was again due to

objectivity considerations. In terms of the application to the test data, the chosen parameter combination yielded 12

responders (4 false positives) and 44 non-responders (8 false negatives).

Note that the preprocessing of both test datasets were carried out in the same fashion as their respective training

datasets as specified in Section 5.4.2.
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5.4.6 Final Mean Prediction Results

The final prediction corresponding to the mean signature of SCRIP was comprised of the intersection between the

aforementioned results. Here the intersection was carried out as follows:

• For any given subject, if either (or both) model(s) predicted a non-response, then they were ultimately labeled

as a non-responder;

• For any given subject, if both models predicted a response, then they were ultimately labeled as a responder.

Since the goal within each individual signature was to capture as many responders as possible, the proposed strategy

falls in line with the overall objectives. Consequently a total of 9 responders (3 false positives) and 47 non-responders

(11 false negatives) were obtained.

(1) 
1 10 . . 20 . 40 . . 30 . 50 

(2) 
1 10 . . 20 . 40 . . 30 . 50 

(3) 
1 10 . . 20 . 40 . . 30 . 50 

Figure 17: Mean Signature Prediction Result

The individual bars represent the test-subject predictions from the mean models ((1) and
(2)) and signature of SCRIP (3). Here (1) and (2) represents the models derived from the
log and standardized ratios while (3) represents the union of their results. Within each
prediction bar, the boxes highlighted with boarders represent the true responders while the
ones shaded in light blue correspond to the predicted responders (the numbers on top of
each bar index the subjects within the test dataset). The final mean signature therefore pre-
dicted a total of 9 responders (3 false positives) and 47 non-responders (11 false negatives);
an accuracy of 0.75.

5.5 Correlation Signature Application Process

The correlation signature of SCRIP represents a novelty proposed in this thesis. Based entirely on the theory from

Chapter 3, it attempts to classify graphical representations of each subject through the help of a correlation-based

metric. Thus from an approach point of view, it completely differs with respect to its mean-based counterpart.
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Nevertheless while the inherent differences between both signatures give rise to their uniqueness, the training

strategies for the most part were shared between both applications. For example in order to maximize the number of

predicted responses, both signatures use an aggregated input across multiple models to define their final predictions. In

the correlation case these models will end up corresponding to the pathways or overall graphs (OG) used within each

formulation. Since numerous pathways exist, numerous correlation-based models were consequently trained under

this setup.

By construction the training of these models were carried out on the same standardized dataset. In light of this

universal prediction base however, different models still exhibited individual characteristics since each OG pinpoints

a unique set of co-expression relationships in which the classification is predicated on. Thus the large number of

correlation-based models should not be interpreted as a drawback, i.e. the intrinsic value of each model was some-

how diffused or mitigated. Instead it should be taken as a thorough attempt to explore all potential co-expression

relationships that are capable of differentiating between response groups. Nevertheless getting back to the application

process, upon training all models, a majority voting scheme[22] is then used to formalize the final correlation signature

of SCRIP.

The following section outlines the proposed application process. This includes the OG selection, data split, data

preprocessing, feature filtering, initial training, and result combination.

5.5.1 Selection Of Overall Graphs

Pathways from four publicly available databases were used to curate a list of OGs subsequently analyzed through

SCRIP. The databases included Reactome[23], KEGG[24], BioCarta[25], and NCI[26]. In total, 765 pathways were

obtained to form a comprehensive list of these gene-wise interactions.

Table 5: Pathway Summarization From Graphite

Retrieval Number of Mean (Median) Mean (Median) 

Database Pathways Nodes Edges 

KEGG 130 71.86 (54) 211.12 (75) 

Reactome 465 33.22 (14) 780.64 (33) 

BioCarta 94 15.18 (14) 36.88 (28) 

NCI 76 76.79 (48) 165.18 (81) 

Table summarizes the pathways after conversion to networks. The average number of edges
and nodes are given according to the retrieval database.
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Figure 18: Overall Graph Preprocessing

Flowchart represents the conversion process between biological pathways (top panel) and
networks (bottom panel). Initial pathways (top panel) were downloaded from public repos-
itories including KEGG, BioCarta, Reactome, and NCI. Based on various assumptions,
the graphite package was then used to convert the topological information into a graph
based network readily available for use (bottom panel). Additional processing was required
to ease computation nonetheless.

To convert these pathways into OGs resembling gene-gene networks (or labeled graphs), the ‘graphite[27]’

(GRAPH Interaction from pathway Topological Environment) Bioconductor package was used. This decision was

based on its intuitive working assumptions and efficient interaction it provided with respect to SCRIP. For example

from the assumption point of view, graphite interprets pathway information using biologically-driven rules so that

the reconstruction of the corresponding networks will account for protein complexes, gene families, and chemical

compounds[27]. As a result the final OGs not only reinterpret pathways for SCRIP, but also retains many nuances

from their original form. Thus in light of the straightforward pathway manipulation, the use of graphite in conjunc-
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tion to SCRIP becomes an obvious choice.

Application wise, all 765 pathways were processed through graphite to arrive at their OG representations. Ad-

ditional details on these pathways can be seen in Table 5.

5.5.2 Data Split

In the same fashion as the proposed data split from Section 5.2.3, the first two groups of individuals were desig-

nated for training purposes. Here group one was reserved for parameter optimization and model selection (pertaining

to each pathway) while group two then adjusted the majority voting scheme (used to combine the individual fits across

all pathways). Thus unlike the mean signature where training was restricted to a single dataset, an additional set of

subjects were reserved for validation purposes. Consequently the first two groups of subjects formed the training and

validation datasets while the third group was again held out for testing purposes. Again these subjects were left un-

touched until the final application process.

Note: 60% of the data was used for training - 169 out of 282 subjects. 20% was used for validation - 57 out of 282

subjects. The remaining 20% was used for testing - 56 out of 282 subjects.

5.5.3 Data Preprocessing

Preprocessing and normalization of the HOVON et al. dataset was carried out according to the original protocol,

all of which are previously outlined in Section 5.2.1. The resulting signal intensities were then assumed at the gene

level and used for analysis. Since the correlation-based models used standardized values as their defaulted input, only

one dataset matching this specification was created. Here the standardization was implemented across the training

samples; in the same fashion as the dataset from the second mean-based model.

Similar to the mean signature, multiple correlation-based models were trained in anticipation of a concurrent

increase in signal level. The justification behind such thought process was as follows: First, since each pathway desig-

nates a set of important co-expression relationships, classification will therefore be based on a larger pool of predictive

signals given the increase in pathway count; And second, by virtue of having more pathways, informative/relevant

co-expression relationships repeatedly designated across multiple pathways will be highlighted and factored into the

computation accordingly. Thus for both reasons, training multiple models will most definitely increase the predictive
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power corresponding to this particular signature - a goal from the very start.

5.5.4 Filtering Procedure

The filtering pertaining to each correlation-based model was entirely specified by its pathway. Here the impor-

tant co-expression relationships were designated and subsequently used for classification. Thus unlike its mean-based

counterpart, additional training wasn’t required.

5.5.5 Initial Training

Initial training of the correlation-based models included parameter optimization followed by pathway selection. In

reference to the first step, optimization only pertained to the cost variable (C) since it represented the only free param-

eter under this setup. Once the procedure was completed, pathway selection then removed (or selected) non-predictive

(or predictive) models from the input list of 765 OGs using results from the previous optimization. Here both tasks

were carried out on the training data alone.

For all pathways, model performance under different values of C were evaluated using leave one out cross vali-

dation (LOOCV). Output from this procedure was then used to define a selection criterion that pinpointed the ‘best’

fitting model (and therefore an optimal C). Since the implemented search was consistent across all pathways, it would

be presented here in a generic fashion. Thus assuming any pathway P and the proposed training data, LOOCV was

carried out as follows:

• C was varied between 1,000 and 2,000,000;

• For a given individual, regions of C where model prediction matched/disagreed with the true response label were

computed using a bisection algorithm[28];

• Across all subjects, the first two steps were repeated;

• Optimal C (of pathway P) was then designated as the value exhibiting the most concordance between prediction

and truth across all subjects. This proportion was then referred to as the LOOCV prediction accuracy.

Note that ties in the final step were broken by favoring the smallest C value so that the most generalized classifier could

be guaranteed. Once the procedure was repeated across all 765 input pathways, parameter optimization concluded.
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With each pathway optimized for performance, model selection was subsequently used to filter away non-predictive

inputs/pathways. As a reminder they correspond to non-effective OGs or essentially priors that fail to designate any in-

formative gene pairs35. Since the initial input list of 765 pathways would inevitably contain a selection of these targets,

their removal becomes a necessity in order to control the noise level associated with the final correlation signature.

Here the removal was based on the concept of ‘beating the proportion’.
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Figure 19: Intuition Behind Initial Correlation Modeling

In the depicted example, assume that a total of 5 pathways {a,b,c,d,e}, 5 individuals
{1,2,3,4,5}, and C values between 1 and 100 were considered. Starting at the very left
panel, the initial training process was comprised of pathway filtering and optimization. In
particular each given pathway was optimized for the best ‘C’ value using LOOCV. (Middle
left panel) Specifically for a given individual, a prediction model built on the other four
subjects was used to evaluate the predictive ability under various inputs of C. Thus the
regions where model prediction matched the true respond label for that given individual
was computed. In the figure, regions of C which produced matching predictions were
shaded in blue while the non-matching regions were shaded in red. Once this procedure
was completed for all subjects, the optimal C was then designated as the smallest value
exhibiting the most concordance between prediction and truth across all subjects. This
proportion was then referred to as the LOOCV prediction accuracy. (Middle right panel)
Once this was carried out across all pathways, parameter optimization concluded. (Right
panel) By subsequently using the output from the LOOCV procedure - which would include
the prediction accuracy, number of predicted responders, etc... - non-predictive pathways
were then filtered out.

In simple terms, ‘beating the proportion’ refers to a prediction accuracy that each optimized model needed to

achieve in order to qualify for selection. Here the proportion was set at a value reflecting blind prediction since

pathways lower than this cutoff would be deemed non-predictive and subsequently removed (since they can even beat

35An in depth discussion of non-informative gene pairs can be seen in Section X.
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Figure 20: Datasets Used In Application Process

For both signatures of SCRIP, the expression dataset was initially split into training, valida-
tion, and testing sections (upper panel). (Lower left panel) For the mean signature, training
only comprised of parameter selection. Therefore the training and validation datasets were
combined for this purpose. Afterwards the optimal model was also constructed from this
same selection. The test data was left untouched until the application process of the pro-
posed signature. (Lower right panel) For the correlation signature, training was comprised
of two tasks including parameter selection and pathway combination. Hence the training
and validation datasets was used to accomplish both tasks respectively. The optimal model
was then built on the combined selection using results from the individual procedures.
Again, the test data was left untouched until the application process.

predict based on nothing). While setting the cutoff to 50% would have made intuitive sense, a more sophisticated

route involving the maximum responder/non-responder proportion was instead adopted. This decision was made

since blind prediction could entail unanimously labeling everyone as a responder or non-responder. Thus in these

cases, the maximum proportion is automatically achieved even without modeling or prior information. For example

in the training data where 126 of the 169 subjects were non-responders, a unanimous blind prediction would yield an

accuracy of 126/169 = 0.7455. Consequently any model capturing true differential information should be capable of

outperforming this random guess and its corresponding percentage.

With this idea in place, the filtering therefore selected pathways exhibiting a minimum LOOCV prediction accuracy

of 0.7455. As a result only 202 pathways made it to the final training step. A selection of them can be seen in Table 6.
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Table 6: Initial Training Pathway Output

Pathway   C   
Accuracy 

  True - False - False + True +   
Retrieval 

(Training; Validation) Database 

Linoleic acid metabolism 21497   0.858; 0.7692   119 32 7 11   KEGG 

Sulfur metabolism   17080   0.7811; 0.7633   123 37 3 6   KEGG 

P53 signaling pathway 14167 0.8166; 0.7515 121 37 5 6 KEGG 

Bone remodeling   548646   0.8047; 0.7633   124 38 2 5   BioCarta 

Ccr3 signaling in eosinophils 21108 0.7811; 0.7692 124 37 2 6 BioCarta 

Cd40l signaling pathway   532102   0.7751; 0.7633   124 38 2 5   BioCarta 

Cell to cell adhesion signaling 1987 0.8225; 0.7633 123 37 3 6 BioCarta 

Cyclin e destruction pathway   1046306   0.7988; 0.7692   123 36 3 7   BioCarta 

Cystic fibrosis transmembrane 
conductance regulator  and beta 2 
adrenergic receptor pathway 

4081 0.8107; 0.7692 124 37 2 6 BioCarta 

E2f1 destruction pathway   1046306   0.7988; 0.7692   123 36 3 7   BioCarta 

Il 2 signaling pathway 109375 0.8462; 0.7751 121 33 5 10 BioCarta 

Influence of ras and rho proteins on 
g1 to s transition 

  22659   0.8343; 0.7633   120 34 6 9   BioCarta 

Mechanism of protein import into 
the nucleus 

4682 0.8047; 0.7692 124 37 2 6 BioCarta 

Overview of telomerase rna 
component gene hterc 
transcriptional regulation 

  101413   0.7751; 0.7574   122 37 4 6   BioCarta 

Repression of pain sensation by the 
transcriptional regulator dream 

80204 0.8402; 0.7692 120 33 6 10 BioCarta 

Role of ß-arrestins in the activation 
and targeting of map kinases 

  130542   0.8521; 0.7574   117 32 9 11   BioCarta 

Sodd/tnfr1 signaling pathway 12212 0.7811; 0.7692 124 37 2 6 BioCarta 

ß-arrestins in gpcr desensitization   439909   0.7811; 0.7751   123 35 3 8   BioCarta 

Alternative NF-kappaB pathway 238159 0.8462; 0.7633 117 31 9 12 NCI 

C-MYB transcription factor network   9140   0.7988; 0.7574   121 36 5 7   NCI 

Calcium signaling in the CD4+ TCR 
pathway 

16532 0.7929; 0.7751 124 36 2 7 NCI 

Glucocorticoid receptor regulatory 
network 

  4606   0.8047; 0.7633   123 37 3 6   NCI 

IL12 signaling mediated by STAT4 519474 0.7988; 0.7633 121 35 5 8 NCI 

JNK signaling in the CD4+ TCR 
pathway 

  14400   0.8521; 0.7574   121 36 5 7   NCI 

Ras signaling in the CD4+ TCR 
pathway 

3940 0.787; 0.7692 125 38 1 5 NCI 

S1P2 pathway   10192   0.787; 0.7633   123 37 3 6   NCI 

Activation of PKB 1084438 0.8047; 0.7515 118 34 8 9 Reactome 

Activation of caspases through 
apoptosome-mediated cleavage 

  74203   0.7811; 0.7574   121 36 5 7   Reactome 

Apoptotic factor-mediated response 8640 0.7929; 0.7515 120 36 6 7 Reactome 

Assembly of the RAD50-MRE11-
NBS1 complex at DNA double-strand 
breaks 

  111431   0.8047; 0.7515   120 36 6 7   Reactome 

Beta oxidation of decanoyl-CoA to 
octanoyl-CoA-CoA 

128078 0.8047; 0.7574 120 35 6 8 Reactome 

Citric acid cycle (TCA cycle)   7244   0.8225; 0.7515   120 36 6 7   Reactome 

Collagen adhesion via alpha 2 beta 1 
glycoprotein 

1442352 0.7692; 0.7515 122 38 4 5 Reactome 

Cytochrome c-mediated apoptotic 
response 

  74203   0.7811; 0.7574   121 36 5 7   Reactome 

E2F-enabled inhibition of pre-
replication complex formation 

19916 0.8047; 0.7515 122 38 4 5 Reactome 
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Table 6 (Continued): Initial Training Pathway Output

Formation of apoptosome 1689323 0.787; 0.7692 119 32 7 11 Reactome 

G2 Phase   1522522   0.787; 0.7574   117 32 9 11   Reactome 

G2/M DNA damage checkpoint 1370483 0.7751; 0.7633 124 38 2 5 Reactome 

Interleukin-1 processing   253770   0.8166; 0.7574   122 37 4 6   Reactome 

Leading Strand Synthesis 11488 0.8047; 0.7574 123 38 3 5 Reactome 

MAP kinase activation in TLR 
cascade 

  8226   0.8284; 0.7633   121 35 5 8   Reactome 

MRN complex relocalizes to nuclear 
foci 

111431 0.8047; 0.7515 120 36 6 7 Reactome 

Metabolism of amino acids and 
derivatives 

  14446   0.8462; 0.7692   122 35 4 8   Reactome 

Metabolism of vitamins and 
cofactors 

6950 0.8107; 0.7515 120 36 6 7 Reactome 

Neuroransmitter Receptor Binding 
And Downstream Transmission In 
The  Postsynaptic Cell 

  11987   0.8107; 0.7515   122 38 4 5   Reactome 

Polymerase switching 11488 0.8047; 0.7574 123 38 3 5 Reactome 

Prostacyclin signalling through 
prostacyclin receptor 

  832035   0.7811; 0.7633   123 37 3 6   Reactome 

Recruitment of NuMA to mitotic 
centrosomes 

7526 0.8166; 0.7692 125 38 1 5 Reactome 

Regulation of Lipid Metabolism by 
Peroxisome proliferator-activated 
receptor alpha (PPARalpha) 

  10534   0.7929; 0.7751   124 36 2 7   Reactome 

Signal amplification 16410 0.8107; 0.7574 122 37 4 6 Reactome 

TRAF6 Mediated Induction of 
proinflammatory cytokines 

  9313   0.8047; 0.7692   124 37 2 6   Reactome 

Thromboxane signalling through TP 
receptor 

79744 0.8225; 0.7515 122 38 4 5 Reactome 

Mitochondrial fatty acid beta-
oxidation of unsaturated fatty acids 

  355949   0.858; 0.7692   117 30 9 13   Reactome 

Continued: A selection of the filtered pathways deemed informative from the initial training
process (only using the training data) are depicted in the given table. These pathways would
subsequently take part in the latter training process where the cutoff for the majority voting
scheme is determined. Here the responders are coded as ‘+’ while non-responders as ‘-’.
The validation accuracy refers to the LOOCV prediction accuracy. Note that a total of 202
pathways were deemed informative (produced at least one true responder).
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5.5.6 Final Training (Majority Voting)

With the filtered pathways from the previous optimization, final training then formalized the majority voting

scheme used in conjunction to each individual model. Here the validation data was used to objectively define the

cutoff (T ) referenced to in the voting. The computation was carried out as follows:

• Subjects from the validation data (57 total subjects) were preprocessed in the same fashion as subjects from the

training data;

• The optimized models from Section 5.5.5 were subsequently applied to the validation data. Here the prediction

was carried out on an individual basis for each pathway. Thus 202 separate sets of predictions (for the 57

validation subjects) were obtained;

• Assuming that a response was given a value of 1 and a non-response 0, the summation of these values across

all 202 predictions sets was repeated on each validation subject. The resulting summations then formed the

‘majority vote vector36’;

• Based on the results from the majority vote vector, T was set to 10. Therefore a minimum of 10 individual

response predictions (from the 202 pathways) were required for any subject to qualify as a responder in the final

correlation signature. Ones that fell short of this cutoff were subsequently defaulted as non-responders.

Note that T was selected in an attempt to maximize the number of predicted responses. Here it was set to 10 in order

to capture the greater majority of responders. On the other hand it wasn’t lowered any further due to the unreasonable

trade off with false positives upon its implementation.

With the full specification of the majority voting process finished, the correlation signature was finally ready for

application.

5.5.7 Final Prediction Process

Using the optimized C from Section 5.5.5, the filtered pathways were re-fitted to the combined dataset between

training (n = 169) and validation (n = 57) subjects. Thus a total sample size of 226 was used to train the final set

of correlation-based models. Upon completion, they were applied to the test subjects (n = 56) and the resulting

predictions were then combined according to the majority voting scheme derived in Section 5.5.6 (T = 10).

36Each element in the majority vote vector (1x57) ranges between 0 and 202.
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Figure 21: Correlation Signature Prediction Result

The individual bars represent the test-subject predictions from the correlation signature
of SCRIP (2). Here (1) depicts the vote count (the smaller numbers closer to the bar)
corresponding to each individual (the number above each bar index the subjects within the
test dataset) and is shaded based on the number of votes each subject received. Subjects
that received the most votes (10+) were shaded in a darker hue vs. subjects that received
fewer (5 to 9) to an inconsequential total (0 to 4). Nevertheless only the ones that amassed
more than 10 votes were labeled as responders in the final predictions ((2) - also shaded
in blue). Consequently the correlation signature predicted a total of 6 responders (2 false
positives) and 50 non-responders (13 false negatives); an accuracy of 0.72.

At the end, 6 responders (2 false positives) and 50 non-responders (13 false negatives) were obtained.

5.6 Final Results

Using the individual outputs from the mean and correlation signatures, the final predictions were subsequently

obtained by taking the union of their results. Here the process was carried out as follows:

• SCRIP will predict a non-responder if and only if both signatures labeled the subject as a non-responder;

• SCRIP will predict a responder otherwise.

Using these rules a total of 14 subjects were predicted as responders (4 false positive) and 42 as non-responders (7

false negatives). The resulting accuracy was therefore 0.8036. This effectively concludes the application part of the

thesis.

95



References
[1] R. Kyle, et al., Mayo Clinic proceedings. Mayo Clinic (1975), vol. 50, p. 29.

[2] A. Broyl, et al., Blood 116, 2543 (2010).

[3] S. Amin, et al., Gene expression profile alone is inadequate in predicting complete responses in multiple myeloma
(2010).

[4] W. Bensinger, Journal of Clinical Oncology 26, 480 (2008).

[5] J. Harousseau, et al., haematologica 91, 1498 (2006).

[6] R. Edgar, M. Domrachev, A. Lash, Nucleic acids research 30, 207 (2002).

[7] J. Wu, R. Irizarry, J. Macdonald, J. Gentry, R package version 2100 (2005).

[8] T. Downey, Methods in enzymology 411, 256 (2006).

[9] B. Bolstad, affyplm: Methods for fitting probe level models to affy data (2004).

[10] R. Gentleman, et al., Genome biology 5, R80 (2004).

[11] N. Heintzman, et al., Nature 459, 108 (2009).

[12] R. Team, et al., R Foundation Statistical Computing (2008).

[13] X. Liu, J. Wu, Z. Zhou, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 39, 539
(2009).

[14] S. Ertekin, J. Huang, L. Bottou, L. Giles, Proceedings of the sixteenth ACM conference on Conference on infor-
mation and knowledge management (ACM, 2007), pp. 127–136.

[15] S. Kotsiantis, I. Zaharakis, P. Pintelas, Frontiers in Artificial Intelligence and Applications 160, 3 (2007).

[16] Z. Zhou, X. Liu, Knowledge and Data Engineering, IEEE Transactions on 18, 63 (2006).

[17] R. Prati, G. Batista, M. Monard, MICAI 2004: Advances in Artificial Intelligence pp. 312–321 (2004).

[18] A. Brazma, J. Vilo, et al., FEBS letters 480, 17 (2000).

[19] I. Dhillon, Y. Guan, B. Kulis, Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining (ACM, 2004), pp. 551–556.

[20] C. Hsu, C. Chang, C. Lin, et al., A practical guide to support vector classification (2003).

[21] J. Shao, Journal of the American Statistical Association 88, 486 (1993).

[22] L. Penrose, Journal of the Royal Statistical Society 109, 53 (1946).

[23] G. Joshi-Tope, et al., Nucleic acids research 33, D428 (2005).

[24] H. Ogata, et al., Nucleic acids research 27, 29 (1999).

[25] D. Nishimura, Biotech Software & Internet Report: The Computer Software Journal for Scient 2, 117 (2001).

[26] J. Voigt, B. Bienfait, S. Wang, M. Nicklaus, J. Chem. Inf. Comput. Sci 41, 702 (2001).

[27] G. Sales, E. Calura, D. Cavalieri, C. Romualdi, BMC bioinformatics 13, 20 (2012).

[28] Y. Saab, Computers, IEEE Transactions on 44, 903 (1995).

96



6 Extension To Copy Number
Extension To Copy Number

Chapter 6

This chapter details the extension of ‘SVM for Complete Integrative Response

Prediction’ (SCRIP) to copy number data. Here two separate ideas for the integra-

tion process will be provided. The first involves a modification of the current walk

kernel while the second proposes new theory in light of the added computation.

In both cases, only the background developments are presented. The application

was omitted due to the absence of paired copy number data.



6.1 Introduction

As an integrative tool ‘SVM for Complete Integrative Response Prediction’ (SCRIP) proposes an enhanced clas-

sification framework predicated on both mean- and correlation- based signals. By embracing a panoply of approaches,

assumptions, and interchangeable procedures, the methodology was purposely designed around flexibility - a unique

quality with which many existing tools lack. Consequently due to the implied diversity, it should not come as a sur-

prised that SCRIP commands additional efficacy in comparison to most of its counterparts.

Nevertheless while SCRIP was built to reflect a multitude of approaches, it is still relatively one-sided when it

comes to its reliance on the gene expression data. Simply put these profiles will largely determine the success of

SCRIP since they represented the only source of farmed signal corresponding to either signature. For example from

the correlation perspective, the added pathways only guide the computation and therefore contributes minimally to

model derivation, while to a greater extreme, the mean signature even restricts inference to these profiles. Thus it is

clear that over-dependency, in reference to these signals, is being exercised.

However due to the drawbacks of modeling response using only one genomic input[1] (especially as it pertains to

the expression data in this setting), it behooved the need to incorporate an additional source of information. Because

in the event that the expression data ends up being insufficient[2], a valid alternative can then be used to backup

the existing analysis and avoid blind prediction if otherwise ignored. Consequently the copy number (CN) data was

integrated into SCRIP as planned. Some of the additional motivating factors include:

• The CN data can easily adapt to the presence of the expression profiles and pathways;

• The paired combination between CN and GE were by far the most accessible type of genomic dataset;

• The integration fell in line with the discussion from Chapter 1 under which their merits were detailed.

To therefore carry out the CN analysis within the framework of SCRIP, its formulation and theoretical development

represents the only challenges behind the integration process. Fortunately due to the flexibility associated with SCRIP,

changes of this nature can all be carried out with relative ease despite the added complexity of introducing an addi-

tional data type into the mix. Consequently two contrasting methods are proposed here for the integration process. In

the first approach, the CN data will be used as a modification tool to enhance the precision of the correlation workflow;

while secondly, a new signature will be altogether proposed for the added data type.
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The following chapter therefore details the assumptions and setup of both integrative procedures. Here the discus-

sion will only be presented from a theoretical point of view. The application, in reference to the HOVON[3] dataset

(from Chapter 5), was omitted due to the missing CN data.

6.2 Assumptions For CN Data

The copy number (CN) data used in reference to both integrative procedures is assumed in a discrete form. Thus

if X represents the CN variable corresponding to some gene, then its domain can be described as: X ∈ {0,1,2,3, . . .},

where the values will reference the number of gene copies.

6.3 First Integrative Procedure

The first integrative procedure was designed as a modification tool with respect to the correlation signature of

SCRIP. Here the copy number (CN) data was used in conjunction to the expression profiles as a refinement that in-

creased the distinction and accuracy of the inferred transition probabilities. Thus based on the existing copies of the

genes involved, they adjusted the correlation signature (from any given pathway) by highlight various relationships

accordingly.

With that being said, this initial integrative procedure is strictly based on logic alone. In other words the interactions

between CN and correlation status are assumed to follow a premeditated pattern (free of biological guidance) which

consequently defines the underlying computation. Assuming that genes {g,g1, . . . ,gp} are used in reference to a

hypothetical correlation signature, the workflow is carried out by adopting the following notation:

• g: Transition gene (transition from):

• {g1, . . . ,gp}: Potential genes to transition (starting from g);

• {pt(g1|g), . . . , pt(gp|g)}: Transition probabilities corresponding to {g1, . . . ,gp} (starting from g);

• pq(g): Ending probability corresponding to g;

• {c,c1, . . . ,cp}: Discretized CN data of {g,g1, . . . ,gp} according to Section 6.2.
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Figure 22: Intuition Behind CN Integration (1)

(1) Assume that inference is restricted to the transition probability from B to A. (2) If
B is deleted (coded in red), then all links and nodes connecting to B would be removed
from the resulting individual graph. In the case that B isn’t deleted (3), then the transition
probability P(B→ A) would be modified according to the CN status of A (red corresponds
to deletion and blue corresponds to amplification). Specifically P(B→ A) would increase
if A is amplified and decrease otherwise.

Under this setup, modifications to the ending and transition probabilities are carried out as follows: (changes were

reflected on an individual basis within each IG)

• If c = 0, then node g and all of its corresponding edges (connecting to {g1, . . . ,gp}) will be removed since no

valid targets can be legitimately correlated with a nonexistent gene (g doesn’t exist). Hence the ending and

transition probabilities will become voided under this scenario;

• If c > 0, then the transition probabilities corresponding to {g1, . . . ,gp} will be modified according to the CN sta-

tus {c1, . . . ,cp}. Here the modifications are carried out assuming that the CN can directly impact the transitions

within a given walk. For example the computation will assist transitions into amplified targets due to an increase

of ‘transitionalbe’ destinations while inhibit the movement in any other scenario. Thus the probabilities will be

strengthened or weakened according to the CN status as planned.

To implement this blueprint, the new transition (p′t(. . . |g)) and ending (p′q(g)) probabilities are constructed as

follows:

p′t(gi|g) =
ci

2
pt(gi|g) ∀ i ∈ {1, . . . , p}

p′q(g) = 1−
p

∑
i=1

p′t(gi|g) (31)

Thus any gene with a CN ratio X in reference to the baseline (2 copies for a particular gene) will get recalibrate accord-

ing to this proportion. With this result the integration process of the CN data with respect to the correlation signature
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concludes.

6.3.1 Implementation

Since the aforementioned modifications are only restricted to the individual graphs (IGs), the new proposal won’t

invalidate any existing procedure already built into the correlation signature of SCRIP. Thus the corresponding appli-

cation can still be carried out in the same fashion as detailed in Chapter 3.

6.4 Second Integrative Procedure

The second integrative procedure was specifically designed on behalf of the CN data much like the mean and cor-

relation signatures used in reference to the expression profiles. In particular it was developed as a separate predictor,

termed the ‘CN signature’, that operates as an independent classification tool within the construct of SCRIP. Here its

design emphasizes the amplifications and deletions within predetermined gene sets as a mean-based differential signal.

Not surprisingly this idea of ‘gene sets’ will again highlight the concept of ‘pathways’ and their unique depiction of

interconnected gene targets[4].

Undoubtedly the proposed setup of the CN signature will draw comparisons to its correlation counterpart due to

their universal use of pathways. And for the most part while these comparisons are valid, the workflows still differed

with respect to their computation and logic. For example while both designate an overall graph (OG) as a biological

prior, the correlation signature will use it to map informative gene pairs while the CN signature only interpret it from

a structural point of view. Consequently the resulting IGs will also differ. Whereas one references the co-expression

status, the other designates copy number profiles within an interconnect group of genes. Not surprisingly their kernels

will also contrast despite the same generic labels that can be applied to both formulations. Thus in light of all these

differences, the CN signature can be recognized as a complete derivative of the existing correlation setup.

The rest of this section will consequently discuss the underlying theory of the new development. This will be pre-

sented in two subsections where the first details the merge process and kernel while the second outlines its integration

with SCRIP.
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6.4.1 Merge Process

The CN signature will use a merge process between the overall graph (OG) and CN profiles to derive separate

individual graphs (IGs) with respect to the amplifications and deletions of an individual. This process is designed to

remove nodes (and all corresponding edges) that exhibit ‘CN statuses in contrast to the given criterion’. For example

assuming that the objective is to infer a deletion-based IG, then all genes (and their corresponding links) with observed

CN values greater than 2 will be removed accordingly. Similarly the removal will shift to genes with less than 2 copies

for the amplification-based counterpart. Thus in both constructs the resulting IGs will portray the designated alteration

on top of the imposed OG structure.
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Figure 23: Intuition Behind CN Integration (2)

The second integrative method for copy number data was constructed by defining two sep-
arate individual graphs based on the observed genomic profiles (1) and the assumed overall
graph structure (2). Specifically the amplification based IG (4) would display amplifica-
tions on top of the imposed structure while the deletion based counterpart (3) would display
the deletions.

To formalize the described procedure, suppose a hypothetical pathway has the following properties:

• The OG contained j unique nodes G = {g1, . . . ,g j} (corresponding to j unique genes) and a set of undirected

edges E between them;

• {c1, . . . ,c j} represented a generic copy number profile for {g1, . . . ,g j}.

Under this setup, the two IGs will be described as:

• Alteration IG with Ga nodes and Ea edges where:
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Ga = {gi ∈ G : ci ≥ 2}

Ea = {e(gi,g j) ∈ E : gi ∈ Ga and g j ∈ Ga}

• Deletion IG with Gd nodes and Ed edges where:

Gd = {gi ∈ G : ci ≤ 2}

Ed = {e(gi,g j) ∈ E : gi ∈ Gd and g j ∈ Gd}

Subsequently the described procedure will be repeated across all subjects to form the data summary used in con-

junction to the proposed signature.

6.4.2 Kernel Specification

With the specification of the individual graphs (IGs) in place, a valid kernel is subsequently required for their com-

parative analysis through SVM[5]. Similar to the correlation signature, the implemented kernel also takes advantage

of vectoral transformations to define an inner product within the space of graphs[6]. Consequently walks are also used

as the metric to evaluate similarity.

Fortunately since the new IGs resemble standard labeled graphs[7] (unlike their previous formulation with prob-

abilities associated to the edges), the implemented kernel can therefore be adopted from a preexisting formulation to

avoid many complications with a new derivation. In an attempt to simultaneously maximize efficacy and minimize

unnecessary effort, the nth ordered walk function[8] was therefore designated as the inner product in reference to the

CN signature. And as its name may already suggest, IGs will be strictly compared through walks of length n. Thus

sharing a greater proportion of length n walks will define ‘similarity’ in this context.

Therefore using the definition of graph structure and proposed theory of product graphs all from Section 3.6, the

nth ordered walk function Kn.walk(. . .) between graphs G1 and G2 is described as:
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Kn.walk(G1,G2) = ∑
s∈S(G)

φs(G1) ·φs(G2)

= ∑
w1∈W (G1)

∑
w2∈W (G2)

λG1(w1) ·λG2(w2) · [label w1 = label w2]

= ∑
w1∈{W (G1)∩W (G2)}

∑
w2∈{W (G1)∩W (G2)}

λG1(w1) ·λG2(w2)

= ∑
w∈{W (G1)∩W (G2)}

cw ·λG1(w) ·λG2(w)

= ∑
w∈W (G1×G2)

λG1×G2(w)

= ∑
n=1

∑
w∈Wn(G1×G2)

λG1×G2(w)

= ∑
w∈Wn(G1×G2)

1

= 1T An1 (32)

, where: λG(w) =

 1 if length of w is n

0 otherwise

, where: A is the adjacency matrix of G1×G2.

Since two IGs corresponding to the amplification and deletion status are defined for each subject, the final applica-

tion kernel is therefore constructed as a weighted summation of Kn.walk(. . .) over both graph sets[9]37. Assuming that

(Ga
i ,G

d
i ) and (Ga

j ,G
d
j ) corresponding to the (amplification, deletion) graphs of subject i and j respectively, the final

kernel K f
n.walk(. . .) is then described as follows:

K f
n.walk(subject i,subject j) =

1
2

Kn.walk(Ga
i ,G

a
j)+

1
2

Kn.walk(Gd
i ,G

d
j ) (33)

6.4.3 Integration With SCRIP

The training process of the CN signature will closely resemble its correlation counterpart. Since the new develop-

ment will also permit multiple input pathways (example can be seen in the application part of the thesis), a majority

voting scheme will therefore be required to bridge the individual predictions with the final results. However due to the

application specific nature of this step, it will be left up to user interpretation. Hence these details are left out of the

discussion.

37This was possible since the weighted summation of two legitimate kernels still remains valid.
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Nevertheless assuming that the final predictions corresponding to the CN signature can be obtained, its integration

with SCRIP will follow a simple confirmation process across the mean and correlation signatures respectively. As-

suming that Pcn, Pm, and Pcr corresponds to the prediction results from the CN, mean, and correlation signatures, their

combined prediction and ultimately the output of SCRIP will therefore be obtained as follows:

• For any subject if two or more predictions out of Pcn, Pm, and Pcr return a response label, then they will be

classified as a responder;

• In any other scenario they will be classified as a non-responder.
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7 Conclusion
Conclusion

Chapter 7

This final chapter provides a conclusion for this thesis and consequently ‘SVM

for Complete Integrative Response Prediction’ (SCRIP). The discussion starts

with an interpretation of the application results from Chapter 5 before shifting to

future plans in reference to this method.



7.1 Introduction

‘SVM for Complete Integrative Response Prediction’ (SCRIP) was developed as a novel classification scheme

on behalf of this thesis. With a central goal of enhancing the capabilities associated with response-based modeling,

its design highlights a series of ‘solutions’ in response to the shortcomings of existing methods, some of which in-

cluded: (1) Limitations inherent to the genomic data type[1–4]; (2) Questionable analytical decisions committed by

the methodology[5]; and (3) Overly rigid specifications with regards to model training[5].

In response to these problems, SCRIP adopted a comprehensive modeling approach fixated on ‘data integration’.

And for a variety of analytical reasons, the decision to do so was justified by the presumed payoff when carried through.

For example since data integration enables the simultaneous analysis of multiple data types, it will help alleviate some

of the insufficiency associated with a single genomic source[4]. Consequently due to the added dimension of such

setup, it will also allow the freedom to explore additional approaches towards the problem. Thus similar to a domino

effect, the inclusion of data integration naturally infuses the methodology with the needed flexibility and efficacy to

tackle a response prediction problem. Hence it represents an ideal setup within the context of SCRIP.

With the finalization of the methodological setup, the application of SCRIP was then conducted on a multiple

myeloma[6] (MM) dataset which featured a set of newly diagnosed patients (treated according to a three-drug regimen

of VAD/PAD followed by autologous stem cell transplantation[7]). Here these subjects were recruited as part of the

HOVON-65/GMMG-HD4[8] trial in an attempt to evaluate the efficacy of bortezomib with respect to drug response

and progression-free survival. Since the evaluation process was defined by genomic profiling, the trial consequently

collected expression data along with EBMT-derived-response-statuses. Hence it was selected in part of its matching

specifications with regards to SCRIP.

In additional to the qualifying practicality of this application, the decision to model MM-based response also re-

flects the benefits from an analytical point of view. Because without the presence of these advantages, the difficulty

associated with this particular application[1] would have warranted an alternative route in light that response data

from more favorable cancer types exist - i.e. breast cancer. For example a quick search for breast cancer datasets on

public repositories such as Gene Expression Omnibus[9] (GEO) will return up to 1000 response oriented studies all

featuring the necessary genomic profiling. And since it has been shown that certain subtypes of breast cancer (i.e.

HER2 overexpression) respond favorably under targeted treatment[10–14] (such as Herceptin, NeuVax, and Cetux-

imab), such applications will seemingly offer more assurance to obtain satisfactory response signatures when modeled

according to the designated gene targets. Hence they can be recognized as ‘easier’ applications in comparison to other
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cancer types, i.e. MM, where the same complimentary biological links have yet to be discovered. Ultimately as it will

pertain to SCRIP because of its spotlight focus on pathways and gene sets, conducting an analysis without a legiti-

mate target38 and consequently an absence of confirmed pathways will presumably hinder the otherwise likely success.

Nevertheless despite the uphill battle involved with MM, the application still offered an adequate exchange of

upside to balance out its inevitable complications. As a result it justified the decision for this particular cancer type even

when other options, potentially more suitable for response prediction, exist (similar to the aforementioned example).

With that being said, some of the motivating factors include:

• Large sample size: With a total of 282 subjects, the HOVON dataset was reasonably sized in comparison to

other genomic trials. Therefore it offers an unmatched degree of robustness for response prediction purposes.

• Concrete evaluation criteria: While the complications associated with MM supposedly caps prediction accuracy

at 70%[1], the impediment was however recognized as an assistance under the construct of this thesis. Specifi-

cally the benchmark provides an objective evaluation of SCRIP such that any returned accuracy exceeding 70%

will become a simple confirmation of its merit and worth.

Therefore under the presence of these benefits, the MM application was carried out as detailed in Chapter 5.

7.2 Results And Interpretation

The application of SCRIP on the HOVON dataset was carried out in a two-step procedure that separately featured

mean- and correlation-based modeling. The training was conducted on an individual basis in order to accommodate

methodological flexibility; whether it corresponds to the ease of integrating new signatures or the modifications re-

quired to optimize existing ones (i.e. modify the training process to counteract class imbalance). Nevertheless for this

particular application, the latter case applied and therefore two sets of predictions (mean and correlation) were trained

in reference to the test subjects. Note that while the final results require a combined input across both inference sets,

their discussion is presented on an independent basis to allow for a finer degree of interpretation.

38In reference to the HER2+ breast cancer subtype, the use of pathways involving HER2 could potentially benefit
prediction due to its confirmed pertinence.
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7.2.1 Mean Signature Focus

Corresponding to the mean signature of SCRIP, a total of 9 responders (3 false positives) and 47 non-responders

(11 false negatives) were obtained in reference to the test dataset (which featured 17 and 39 true responders and non-

responders respectively). Surprisingly the workflow yielded a prediction accuracy 0.75 (eclipsing the aforementioned

benchmark) despite implementing a limited mean-based approach. This improvement, in light that the signature is

identical to any SVM model, is most likely the result of the unique training process specifically adopted for the

HOVON dataset (the class imbalance issues as mentioned back in Section 5.3). With that being said while randomness

could have also triggered this improvement, it is however unlikely due to the marginal likelihood associated with such

event39. Thus in this context, the merit of SCRIP receives an initial vote of approval.

From a biological perspective, the genes that contributed to the mean signature were also examined to identify

molecular features that can potentially underly drug sensitivity. Here a total of 80 genes corresponding to the largest

differentially expressed features were directly corralled from the filtered lists of both mean-based models (logged

expression values and their standardized forms). Their subsequent analysis yielded some intriguing findings despite

the overwhelming randomness associated with these features. Most notably:

• Amongst the entire list, CCDC104, KDELR3, ARSB, BNIP3, XIST, and UCHL1 exhibited the largest differen-

tial expression in the favor of responders;

• Amongst the entire list, HERC6, ZNF202, IRF7, NLGN4X, DDAH1, and KLHL14 exhibited the largest differ-

ent expression in the favor of non-responders;

• Function analysis of differentially expressed genes in the favor of non-responders (32 total genes) indicated a

significant presence of targets involved in the ‘response to virus’ biological process (6 total targets, 1.5E−4 Ben-

jamini adjusted P-value). Similarly the ‘endoplasmic reticulum’ cellular component was highlighted amongst

responders (12 total targets out of 51 genes; 6.9E−3 Benjamini adjusted P-value);

• A prominent characteristic in non-responders was the elevated expression of genes controlling ‘response to

virus’. These included the IRF and CAS families; and could have potentially facilitated drug resistance.

39A unanimously blind prediction of non-responders would result in a prediction accuracy of 0.69 (39 out of the
56 subjects). Consequently a net of at least 3 correctly classified responders would be required to match the 0.75
obtained through application. With this in mind the probability of observing such event under a random guess could
be described as: ∑

17
i=1

17 choose i
56 choose i = 0.03. Thus the possibility that randomness dictated the results could be effectively

ruled out.
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Note that the partial gene list could be seen in Table 7 and 8.

Table 7: Gene Targets For Mean Model (1)

Rank Symbol Entrez ID Differential 

13 HERC6 55008 0.5135 

16 ZNF202 7753 0.5038 

20 IRF7 3665 0.4900 

25 IRF9 10379 0.4845 

26 NAV2 89797 0.4844 

27 MX2 4600 0.4829 

30 CXXC1 30827 0.4789 

Rank Symbol Entrez ID Differential 

3 CCDC104 112942 -0.5977 

4 KDELR3 11015 -0.5684 

5 ARSB 411 -0.5669 

6 CTBS 1486 -0.5368 

7 SCPEP1 59342 -0.5358 

8 CD302 9936 -0.5358 

9 GGCX 2677 -0.5316 

10 ARSB 411 -0.5312 

11 PDIA5 10954 -0.5301 

12 BNIP3 664 -0.5286 

14 CCNC 892 -0.5072 

17 FKBP7 51661 -0.4991 

18 MCFD2 90411 -0.4990 

19 RP11 25911 -0.4920 

21 BRP44L 51660 -0.4864 

22 GCSH 2653 -0.4863 

23 RECK 8434 -0.4857 

24 LY96 23643 -0.4851 

28 ALG1 56052 -0.4818 

29 HDDC2 51020 -0.4802 

31 C6orf89 221477 -0.4783 

32 KCTD20 222658 -0.4780 

33 TMEM30A 55754 -0.4779 

34 CNPY2 10330 -0.4772 

35 IQCK 124152 -0.4746 

36 DSTN 11034 -0.4739 

37 STRAP 11171 -0.4731 

38 RAB13 5872 -0.4729 

39 ATRN 8455 -0.4727 

40 SIL1 64374 -0.4714 

(A) (B) 

The entries represent the top 40 differentially expressed genes from the mean model
(trained on the standardized log expression values). The ‘differential’ column represents
the mean differences between expression values from both response groups, i.e. Mean of
non-responders - Mean of responders. Hence (A) represents the entries in favor of the re-
sponders (negative difference) and (B) the ones in favor of the non-responders. Note that
these values were calculated from the training data.

7.2.2 Correlation Signature Focus

Corresponding to the correlation signature of SCRIP, a total of 6 responders (2 false positives) and 50 non-

responders (13 false negatives) were obtained in reference to the test dataset (which featured 17 and 39 true responders

and non-responders respectively). The inflation of false negatives witnessed here was primarily due to the class im-
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Table 8: Gene Targets For Mean Model (2)

(A) (B)Rank Symbol Entrez ID Differential

2 BNIP3 664 -1.6509

3 XIST 7503 -1.4012

6 KDELR3 11015 -1.2637

8 UCHL1 7345 -1.2411

9 TSPAN7 7102 -1.2086

12 KDELR3 11015 -1.1282

13 ERAP2 64167 -1.1078

14 XIST 7503 -1.0881

17 XIST 7503 -1.0363

19 DNAJC12 56521 -1.0214

27 KDELR3 11015 -0.9389

32 BCAT1 586 -0.9106

33 CRIM1 51232 -0.9095

35 TMEM200A 114801 -0.9035

36 CCDC104 112942 -0.9001

37 ICAM4 3386 -0.8900

38 TMEM45A 55076 -0.8823

Rank Symbol Entrez ID Differential

1 NLGN4X 57502 1.6653

4 DDAH1 23576 1.3283

5 KLHL14 57565 1.2754

7 IFI44L 10964 1.2591

10 IFIT1 3434 1.1937

15 RSAD2 91543 1.0723

16 IFIT3 3437 1.0713

20 IGHG1 3500 0.9893

21 LAPTM5 7805 0.9874

22 HERC6 55008 0.9700

23 MX2 4600 0.9607

24 FRZB 2487 0.9460

25 EPHB1 2047 0.9442

26 SHISA2 387914 0.9414

28 BBOX1 8424 0.9365

29 XAF1 54739 0.9357

31 IFI27 3429 0.9278

34 ANK3 288 0.9060

39 ETS1 2113 0.8795

40 TRIM14 9830 0.8735

The entries represent the top 40 differentially expressed genes from the mean model
(trained on the log expression values). Refer to Table 7 for an interpretation.

balance issue. In particular the common cases (in this case the non-responders) are highlighted at the expense of

over-predicting their existence. Consequently the application suffered resulting in an accuracy of only 0.72; close to

the aforementioned benchmark.

At the bottom line while this performance is clearly undesirable, it also comes as no surprise given the nature of the

implemented training. Thus practically speaking, the low prediction accuracy could have been anticipated even before

the application finalized. Ironically however the foreseeable complication won’t end up compromising the application

contrary to what logic may have otherwise suggested. Instead it actually assisted SCRIP by foreshadowing the influx

of false negatives. Thus in other words it offers an opportunity to counteract their presence and plan for their impact

accordingly. And since this was partially achieved by imposing a filter with respect to both signatures of SCRIP40,

these ramifications were for the most part neutralized leaving the final predictions largely unaffected.

Nevertheless despite the net benefit of such trade off, the fact remained that the correlation signature was clearly

40SCRIP takes advantage of a confirmation process between the mean and correlation signatures in order to filter away
a subset of the inflated false negatives.
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Table 9: Final Training Pathway Output

Pathway 
  

C 
  Accuracy   

True - False - False + True + 
  Retrieval 

    (Training; Validation)     Database 

Adipocytokine signaling pathway 32140 0.8894; 0.7655 153 39 14 20 KEGG 

Citrate cycle (TCA cycle)   6248   0.7876; 0.7655   166 52 1 7   KEGG 

Huntington's disease 23277 0.8230; 0.7655 161 47 6 12 KEGG 

Nephrin interactions   3122   0.7743; 0.7655   167 53 0 6   Reactome 

Role of ß-arrestins in activation and 
targeting of kinases 

93200 0.8009; 0.7611 162 49 5 10 BioCarta 

                        

CD28 dependent Vav1 pathway 1533220 0.9204; 0.7434 142 33 25 26 Reactome 

Adipocytokine signaling pathway   32140   0.8894; 0.7655   153 39 14 20   KEGG 

Effects of Botulinum toxin 572996 0.885; 0.7522 150 39 17 20 NCI 

AKT phosphorylates targets in the 
cytosol 

  1519187   0.8274; 0.7522   153 42 14 17   Reactome 

Corticosteroids and 
cardioprotection 

  193487   0.8628; 0.7478   152 42 15 17   BioCarta 

The filtered pathways deemed informative from the initial training process (only using the
training data) were refitted to a large training base comprised of both training and valida-
tion subjects (before application to the test data). Depicted above are the top candidates
based on (cross) validation accuracy and the number of (cross validation) true responders.
Here the responders are coded as ‘+’ while non-responders as ‘-’. Note that a total of 189
pathways were deemed informative (produced at least one true responder).

depreciated in favor of the final application results. Consequently interpretations of the workflow, whether it corre-

sponds to the predictions or biological findings, require additional verification due to the presence of excess noise.

With that being said, they include:

• The Adipocytokine signaling, Citrate cycle (TCA cycle), Huntington’s disease, and Nephrin interaction path-

ways exhibited the best cross validation (training) accuracies with ties at 0.7655;

• The CD28 dependent Vav1, Adipocytokine signaling, and Effects of Botulinum toxin pathways predicted the

most CV responders at 26, 20, and 20 respectively. Note that there were a total of 59 responders in the training

dataset.

• NF-κB related pathways including NF-κB activation/survival and p75NTR signals via NF-κB appeared in the

filtered list. This indicated that the activation of NF-κB could contribute to response status in addition to tumor

progression[15–17].

• Prominent cancer pathways including AKT signaling, VEGF signaling, Apoptosis, EGFR signaling, and p53

were all featured as OGs in the correlation signature.

• The most commonly highlighted gene pairs from the filtered pathways included internal relationships between

the NUP gene family (i.e. NUP135 to NUP210) and their external connections to other gene targets (i.e. AAAS,

POM121C, RAE1, RANBP2, and TPR). This suggests that the co-expression patterns of the Nucleoporin genes
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can potentially highlight response information with respect to a subset of MM patients.

Some of these pathways are listed in Table 9.

7.2.3 Final Results

Corresponding to the final predictions from SCRIP, a total of 14 responders (4 false positive) and 42 non-responders

(7 false negatives) were obtained in reference to the test dataset (which featured 17 and 39 true responders and non-

responders respectively). The resulting accuracy of 0.80 confirms the effectiveness of the filter since improvements

on top of both individual signatures were witnessed. Thus in the greater scheme of response prediction, these results

verify the efficacy and value of SCRIP by surpassing the proposed benchmark with a comfortable margin.

(F) 
1 10 . . 20 . 40 . . 30 . 50 

(M) 
1 10 . . 20 . 40 . . 30 . 50 

(C) 
1 10 . . 20 . 40 . . 30 . 50 

Figure 24: Final Prediction Result

The individual bars represent the test-subject predictions from the (1) mean and (2) cor-
relation signatures of SCRIP. Here (3) visualizes the intersection of their predictions and
consequently the final results - 14 total responders (4 false positives) and 42 non-responders
(7 false negatives); an accuracy of 0.80. The interpretation follows the same guidelines as
in Figure 17.

7.3 Shortcoming And Future Work

In this thesis, it was shown that SCRIP can predict patient response in a MM setting with close to 80% accuracy

thus making it a promising candidate for future response-based applications. From a theoretical point of view the

success witnessed here is most likely a consequence of the targeted setup implemented in SCRIP: a design predi-

cated on the weaknesses of existing methods. For example by adopting an integrative framework through mean- and

correlation-based signals, the proposed methodology was capable of accounting for the insufficiency and rigidness

associated with many GEP-based techniques. Consequently this also enables the flexibility to designate an optimal

114



training strategy on an application specific basis. Thus as demonstrated on the HOVON dataset, SCRIP clearly presents

an ideal and realistic framework for response prediction purposes.

Despite these arguments however, SCRIP is far from a finished product in light that the methodology can still

use plenty of help. In fact as a relatively conservative technique, most of these improvements will presumably start

with the training process and its limited power to yield additional responders as seen in the application. Because

even though the methodology optimizes accuracy, it does so at a steep cost involving the sensitivity of the analysis

(10/17 = 0.59). In particular the responders ended up being predicted at a lower rate in order to accommodate the

influx of non-responders in the dataset. While this ensures a greater proportion of accurate predictions (since there

are more non-responders), it however contradicts the basic principles of response prediction especially as it pertains

to cancer therapeutics; that is to always highlight the potential beneficiaries ahead of all other considerations[18, 19].

Unfortunately this capability was not completely explored in this thesis as it was only brought up in retrospect to the

finalized results.

Nevertheless whether or not SCRIP can achieve these lofty goals will remain largely inconsequential as it pertains

to this thesis. Because at the bottom line, SCRIP represents more than just another prediction tool. Instead it is meant

as an alternative though process that recognizes the value of interchanging multiple data types and approaches in order

to restructure a once confined research avenue. And considering the fact that the future will presumably hold a wealth

of novelties and genomic sources each with the potential to capture response traits, the initiation to conduct an all

inclusive analysis ultimately highlights the key development and lasting contributions hopefully brought forth through

this presentation.
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